Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
García, D., (2021). Determinación de la vida útil del pan de molde libre de glutén con quinua (Chenopodium quinoa) [Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/4617
García, D., Determinación de la vida útil del pan de molde libre de glutén con quinua (Chenopodium quinoa) []. PE: Universidad Nacional Agraria La Molina; 2021. https://hdl.handle.net/20.500.12996/4617
@mastersthesis{renati/245488,
title = "Determinación de la vida útil del pan de molde libre de glutén con quinua (Chenopodium quinoa)",
author = "García Ramón, Diego Fernando",
publisher = "Universidad Nacional Agraria La Molina",
year = "2021"
}
Title: Determinación de la vida útil del pan de molde libre de glutén con quinua (Chenopodium quinoa)
Authors(s): García Ramón, Diego Fernando
Advisor(s): Salas Valerio, Walter Francisco
Keywords: Pan; Chenopodium quinoa; Harinas de no cereal; Gluten; Ingredientes; Procesamiento; Aptitud para la conservación; Perú; Harina de quinua; Pan de molde; Pan sin gluten; Tiempo de vida útil
OCDE field: https://purl.org/pe-repo/ocde/ford#2.11.01
Issue Date: 2021
Institution: Universidad Nacional Agraria La Molina
Abstract: La investigación tuvo como objetivo la determinación de la vida útil del pan de molde sin gluten con quinua (Chenopodium quinoa) utilizando los cambios de las propiedades físicas, químicas, microbiológicas y aceptabilidad general en el tiempo. El pan de molde sin gluten se elaboró con almidón de papa, harina de quinua, y se añadió propionato de calcio (como conservante). Finalmente, se envasaron en dos materiales (polietileno y polipropileno) y fueron almacenados durante 12 días a 25 °C y 80 por ciento de HR. Para determinar la vida útil se utilizaron las técnicas de: Cinética de reacción, modelamiento matemático por
migración de humedad y el análisis de supervivencia. Se caracterizó el producto inicial obteniéndose un volumen específico de 1,77 ± 0,006 cm3
/g, la estructura de la miga fue de 4,27 ± 1,90 mm2 para el área de la célula y 83,65 ± 1,38 para el número de alveolos/cm2.
Los cambios de humedad, aw y textura siguieron la cinética de reacción de orden uno tanto para el pan sin gluten envasado en polipropileno como en el polietileno. La vida útil mediante la cinética de reacción estuvo limitada principalmente por la firmeza obteniéndose un valor de 3,15 días para el pan envasado en polipropileno y 1,88 días para el polietileno. Los materiales de empaque (p<0,05) influyeron significativamente en la humedad, aw y aceptabilidad general. El pan permaneció estable microbiológicamente durante seis días. En la simulación mediante el modelo matemático por migración de humedad que utilizó la isoterma de sorción del pan sin gluten, el modelo Oswin fue el que dio una mejor correlación con los datos experimentales (R2= 0,94 y error relativo medio 5,61 por ciento) y los resultados obtenidos de la vida útil fueron 50,26 días para el polipropileno y 43,53 días para el polietileno. Finalmente, la vida útil (SL) mediante el análisis de supervivencia fue de 4,47 días para el polipropileno y 3,89 días para el polietileno asumiendo una probabilidad de falla del 50 por ciento.
The research aimed to determine the shelf life of gluten-free sliced bread with quinoa (Chenopodium quinoa) using changes in physical, chemical, microbiological properties and general acceptability over time. The gluten-free sliced bread was made with potato starch, quinoa flour, and calcium propionate was added (as a preservative). Finally, they were packaged in two materials (polyethylene and polypropylene) and were stored for 12 days at 25 °C and 80 percent RH. To determine the shelf life the techniques of: Reaction kinetics, mathematical modeling by moisture migration and survival analysis were used. The initial product was characterized obtaining a specific volume of 1,77 ± 0,006 cm3 /g, the structure of the crumb was 4,27 ± 1,90 mm2 for the cell area and 83,65 ± 1,38 for the number of alveoli/cm2. The changes in moisture, aw and texture followed the reaction kinetics of order one for both the gluten-free bread packed in polypropylene and in polyethylene. The shelf life by reaction kinetics was mainly limited by firmness, obtaining a value of 3,15 days for bread packed in polypropylene and 1,88 days for polyethylene. Packaging materials (p<0,05) significantly influenced moisture, aw, and general acceptability. The bread remained microbiologically stable for six days. In the simulation using the mathematical model by moisture migration that used the sorption isotherm of gluten-free bread, the Oswin model was the one that gave the best correlation with the experimental data (R2 = 0,94 and mean relative error 5,61 per percent) and the results obtained for the shelf life were 50,26 days for polypropylene and 43,53 days for polyethylene. Finally, the shelf life (SL) by survival analysis was 4,47 days for polypropylene and 3,89 days for polyethylene assuming a 50 percent probability of failure.
The research aimed to determine the shelf life of gluten-free sliced bread with quinoa (Chenopodium quinoa) using changes in physical, chemical, microbiological properties and general acceptability over time. The gluten-free sliced bread was made with potato starch, quinoa flour, and calcium propionate was added (as a preservative). Finally, they were packaged in two materials (polyethylene and polypropylene) and were stored for 12 days at 25 °C and 80 percent RH. To determine the shelf life the techniques of: Reaction kinetics, mathematical modeling by moisture migration and survival analysis were used. The initial product was characterized obtaining a specific volume of 1,77 ± 0,006 cm3 /g, the structure of the crumb was 4,27 ± 1,90 mm2 for the cell area and 83,65 ± 1,38 for the number of alveoli/cm2. The changes in moisture, aw and texture followed the reaction kinetics of order one for both the gluten-free bread packed in polypropylene and in polyethylene. The shelf life by reaction kinetics was mainly limited by firmness, obtaining a value of 3,15 days for bread packed in polypropylene and 1,88 days for polyethylene. Packaging materials (p<0,05) significantly influenced moisture, aw, and general acceptability. The bread remained microbiologically stable for six days. In the simulation using the mathematical model by moisture migration that used the sorption isotherm of gluten-free bread, the Oswin model was the one that gave the best correlation with the experimental data (R2 = 0,94 and mean relative error 5,61 per percent) and the results obtained for the shelf life were 50,26 days for polypropylene and 43,53 days for polyethylene. Finally, the shelf life (SL) by survival analysis was 4,47 days for polypropylene and 3,89 days for polyethylene assuming a 50 percent probability of failure.
Link to repository: https://hdl.handle.net/20.500.12996/4617
Note: Universidad Nacional Agraria La Molina. Escuela de Posgrado. Maestría en Tecnología de Alimentos
Discipline: Tecnología de Alimentos
Grade or title grantor: Universidad Nacional Agraria La Molina. Escuela de Posgrado
Grade or title: Magister Scientiae - Tecnología de Alimentos
Juror: Chirinos Gallardo, Rosana; Repo de Carrasco, Ritva; Vargas Delgado, Luis Fernando
Register date: 24-Feb-2021
This item is licensed under a Creative Commons License