Bibliographic citations
Ballón, D., Bernabé, E. (2015). Análisis clasificatorio de las gestantes según vía de culminación del parto aplicando regresión logística binaria [Tesis, Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/2200
Ballón, D., Bernabé, E. Análisis clasificatorio de las gestantes según vía de culminación del parto aplicando regresión logística binaria [Tesis]. : Universidad Nacional Agraria La Molina; 2015. https://hdl.handle.net/20.500.12996/2200
@misc{renati/242807,
title = "Análisis clasificatorio de las gestantes según vía de culminación del parto aplicando regresión logística binaria",
author = "Bernabé Ponte, Eduardo",
publisher = "Universidad Nacional Agraria La Molina",
year = "2015"
}
The main purpose of the following study is to be able to describe and predict the appropriate delivery process in pregnant women. (Normal labor or Caesaream section) using an in depth binary logistic regresion. A secondary objetive will be to be able to identifi different factors that help determine the type of delivery expectan mother should receive. To obtain the desired results an in depth binary logistic regression analysis will be conducted. This is dude to the fact that variable in question is dichotomous (two typeof deliveries: normal labor and C-section). The objetive of the investigation will be to find a specific model that successfully explain the relationship between the main variable and the following independent variables: complications with the mother, mother’s age, gestional age of the newborn, number of babies, newborn’s weight and height and cephalic perimeter. The main results presented are as following: Rate of classification depending on the delevery process 88.5%; a 65.9% coefficient of determination of the model; In regards to the Hosmer-Lemershow test we obtain a number of 0.760. This allows us to veriy that our data is in line with the binary logistic regression model; finally we got a bad classification of the model rate validated through cross-validation of 11.65%. This make it a low estimation rate and thus acceptable.
This item is licensed under a Creative Commons License