Bibliographic citations
Palomino, S., (2024). Diseño e implementación de un prototipo de dispositivo háptico de 7 GDL orientado a cirugía con control fraccionario de torque y compensación de gravedad para el control de trayectoria de un robot UR5 [Tesis, Universidad de Ingeniería y Tecnología]. https://hdl.handle.net/20.500.12815/354
Palomino, S., Diseño e implementación de un prototipo de dispositivo háptico de 7 GDL orientado a cirugía con control fraccionario de torque y compensación de gravedad para el control de trayectoria de un robot UR5 [Tesis]. PE: Universidad de Ingeniería y Tecnología; 2024. https://hdl.handle.net/20.500.12815/354
@misc{renati/231228,
title = "Diseño e implementación de un prototipo de dispositivo háptico de 7 GDL orientado a cirugía con control fraccionario de torque y compensación de gravedad para el control de trayectoria de un robot UR5",
author = "Palomino Barzola, Styven Felix",
publisher = "Universidad de Ingeniería y Tecnología",
year = "2024"
}
Nowadays, it is usual to use robots to perform minimally invasive surgery. Surgeons can control these robots with parent devices. However, there is a problem when using these robots: the lack of haptic feedback. To solve this problem, commercial devices are often chosen, which are not designed for surgeries. When use these devices, there are problems of unwanted movements due to the lack of actuation in all its degrees of freedom. Also, the impossibility of staying in a fixed position complicates surgeons because they have to hold these devices during the whole surgery. Considering this, the present work addresses design and implementation of a surgeryoriented haptic device prototype. This prototype serves as a parent device that has 7 degrees of freedom and commands positions to a UR5 child robot. In the design, the Z-X-Z joint configuration based on literature was used. Then, the minimum and maximum angles of the device were optimized, obtaining an improvement of 27 % to cover the space of a 35 cm cube required for surgery. Following this, the PD controller with gravity compensation was implemented to ensure that the device is able to maintain its last position. The result of the PD controller showed an error of 0.14 %. On the another hand, the torque fractional order PID control was implemented to generate the haptic sensation in the end effector of the prototype. This controller obtained an error of 0.6 % with a settling time of 0.1 second. Finally, a closed trajectory with an error of 6.2 mm and open trajectory with an error of 19.2 mm were generated for simulation and implementation, respectively.
This item is licensed under a Creative Commons License