Bibliographic citations
Pantoja, F., (2024). Control centralizado y descentralizado del nivel y la temperatura en el módulo industrial multipropósito SIEMENS [Tesis, Universidad de Ingeniería y Tecnología]. https://hdl.handle.net/20.500.12815/383
Pantoja, F., Control centralizado y descentralizado del nivel y la temperatura en el módulo industrial multipropósito SIEMENS [Tesis]. PE: Universidad de Ingeniería y Tecnología; 2024. https://hdl.handle.net/20.500.12815/383
@misc{renati/230608,
title = "Control centralizado y descentralizado del nivel y la temperatura en el módulo industrial multipropósito SIEMENS",
author = "Pantoja Almonacid, Freddy Raul",
publisher = "Universidad de Ingeniería y Tecnología",
year = "2024"
}
In the present thesis, a centralized control system and a decentralized control system are designed and implemented for the simultaneous control of the water level and temperature in the tank of the multipurpose industrial module for control and supervision SIEMENS, located in the Industrial Automation Laboratory L415 of the University of Engineering and Technology (UTEC). In order to implement such control systems, the dynamic experimental model of the module, that is, its transfer matrix, is first determined using the data acquisition tool of the TIA Portal software and the SystemIdentification tool of the MATLAB software. Once the transfer matrix of the module is determined, the centralized and decentralized control systems are simulated and implemented to simultaneously control the level and temperature of the tank with the following design specifications: overshoot percentage not to exceed 5 %, stabilization time for the level less than 1 minute and for temperature less than 10 minutes, steady-state error for the level within +/- 1 % (0.5 cm) and for temperature within +/- 1 °C. For the design of the decentralized control, the Effective Relative Gain Array method is used, which determines the pairing between a controller (in this case, PID controllers are selected) and the variable to be controlled. To design the decentralized control system, decoupling between the reference signals and their corresponding signals to be controlled (level and temperature) is assumed. Based on this strategy, the multivariable control system consisting of two PID controllers and another arbitrarily chosen controller is designed. Such controllers were implemented in the discrete domain. Considering that the maximum height of the tank is 50 cm, for comparison purposes, two implementations were carried out, which consist of varying the level from 20 % (10 cm) to 30 % (15 cm) and from 30 % (15 cm) to 40 % (20 cm); for the temperature, it varied from 27 °C to 30 °C and, finally, from 30 °C to 33 °C. The experimental results indicate that, for the 30 % (15 cm) level, the stabilization time is better in the decentralized control system by 1.8 seconds, as well as the steadystate error by +/-0.5 % (0.25 cm). For the 40 % (20 cm) level, the stabilization time is better than the centralized control by 9.6 seconds, and the steady-state error is also better by +/-0.2 % (0.1 cm). The experimental results indicate that, for the temperature with a setpoint of 30 °C, the stabilization time is better in the decentralized control system by 0.4 minutes, and the steady-state error improves by +/-0.04 °C. For the setpoint of 33 °C, the stabilization time is better in the decentralized control by 0.1 minutes and the steady-state error by +/-0.1 °C.
This item is licensed under a Creative Commons License