Look-up in Google Scholar
Full metadata record
Murray Herrera, Victor Manuel
Gonzales Vera, Ricardo Alonso
Seemann, Felicia
Lamy, Jérôme
Arvidsson, Per M.
Heiberg, Einar
Peters, Dana C.
2021-08-17T21:42:16Z
2021-08-17T21:42:16Z
2021-06-19
Gonzales, R. A., Seemann, F., Lamy, J., Arvidsson, P. M., Heiberg, E., Murray, V. y Peters, D. C. Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours. BMC Med Imaging 21, 101 (2021). https://doi.org/10.1186/s12880-021-00630-3 (es_PE)
1471-2342 (es_PE)
https://hdl.handle.net/20.500.12815/244
Artículo sustentado el 22 de Julio 2021 para la obtención del título profesional de Ingeniero Electrónico. (es_PE)
Background: Segmentation of the left atrium (LA) is required to evaluate atrial size and function, which are important imaging biomarkers for a wide range of cardiovascular conditions, such as atrial fbrillation, stroke, and diastolic dysfunction. LA segmentations are currently being performed manually, which is time-consuming and observer-dependent. Methods: This study presents an automated image processing algorithm for time-resolved LA segmentation in cardiac magnetic resonance imaging (MRI) long-axis cine images of the 2-chamber (2ch) and 4-chamber (4ch) views using active contours. The proposed algorithm combines mitral valve tracking, automated threshold calculation, edge detection on a radially resampled image, edge tracking based on Dijkstra’s algorithm, and post-processing involving smoothing and interpolation. The algorithm was evaluated in 37 patients diagnosed mainly with paroxysmal atrial fibrillation. Segmentation accuracy was assessed using the Dice similarity coefcient (DSC) and Hausdorf distance (HD), with manual segmentations in all time frames as the reference standard. For inter-observer variability analysis, a second observer performed manual segmentations at end-diastole and end-systole on all subjects. Results: The proposed automated method achieved high performance in segmenting the LA in long-axis cine sequences, with a DSC of 0.96 for 2ch and 0.95 for 4ch, and an HD of 5.5 mm for 2ch and 6.4 mm for 4ch. The manual inter-observer variability analysis had an average DSC of 0.95 and an average HD of 4.9 mm. Conclusion: The proposed automated method achieved performance on par with human experts analyzing MRI images for evaluation of atrial size and function. (es_PE)
Tesis (es_PE)
application/pdf (es_PE)
eng (es_PE)
Universidad de Ingeniería y Tecnología (es_PE)
BioMed Central (es_PE)
info:eu-repo/semantics/closedAccess (es_PE)
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio Institucional UTEC (es_PE)
Universidad de Ingeniería y Tecnología - UTEC (es_PE)
Active contours (es_PE)
Cardiovascular imaging (es_PE)
Magnetic resonance imaging (es_PE)
Left atrium (es_PE)
Segmentation (es_PE)
Automated left atrial time-resolved segmentation in MRI long-axis cine images using active contours (es_PE)
info:eu-repo/semantics/bachelorThesis (es_PE)
Universidad de Ingeniería y Tecnología. Ingeniería Electrónica (es_PE)
Ingeniería Electrónica (es_PE)
Título profesional (es_PE)
Ingeniero Electrónico (es_PE)
PE (es_PE)
https://purl.org/pe-repo/ocde/ford#2.02.01 (es_PE)
http://purl.org/pe-repo/renati/level#tituloProfesional (es_PE)
40703463
https://orcid.org/0000-0002-6000-3380 (es_PE)
72692721
712026 (es_PE)
Rojas Moreno, Arturo
Valdivia Silva, Julio Ernesto
Aranda Egúsquiza, Sergio
http://purl.org/pe-repo/renati/type#tesis (es_PE)
Privada asociativa



This item is licensed under a Creative Commons License Creative Commons