Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Ramos, R., (2020). On super curves with a xed super volume form [Instituto de Matemática Pura e Aplicada]. http://renati.sunedu.gob.pe/handle/sunedu/1591617
Ramos, R., On super curves with a xed super volume form []. BR: Instituto de Matemática Pura e Aplicada; 2020. http://renati.sunedu.gob.pe/handle/sunedu/1591617
@phdthesis{renati/2026,
title = "On super curves with a xed super volume form",
author = "Ramos Castillo, Ricardo Jesús",
publisher = "Instituto de Matemática Pura e Aplicada",
year = "2020"
}
Title: On super curves with a xed super volume form
Authors(s): Ramos Castillo, Ricardo Jesús
Advisor(s): Heluani, Reimundo
Keywords: Superalgebras; Supergeometry; Curvas; Curvas algebráicas; Automorfismos
OCDE field: https://purl.org/pe-repo/ocde/ford#1.00.00; https://purl.org/pe-repo/ocde/ford#1.01.00
Issue Date: 2020
Institution: Instituto de Matemática Pura e Aplicada
Abstract: Estudia la familia de super curvas con una forma de super volumen fija. Las caracterizamos y
encontramos el espacio de moduli correspondiente. Empezamos con un resumen de super álgebra y super geometría. Con ello podemos definir S(1,2) super curvas. Después, nos especializamos en la familia de curvas que están asociadas al grupo simple S(2), a las que llamaremos curvas S(2). Finalmente, estudiamos el espacio de moduli. Dicho espacio no es una variedad, más bien tiene un comportamiento de orbifold.
In this Ph.D. thesis, we focus on super curves with a trivial super volume form. The rst part, focuses in giving a correct way to de ne Sp2q-super curves, since is not enough just to give a super volume, we also have to consider an a ne line bundle over the curve that should be trivial in order to obtain a Sp2q-super curve. The second part, analyses family of Sp2q-super curves over an purely even base, in order to proof that such families are ever split. In the last part, we study the moduli space of such curves.
In this Ph.D. thesis, we focus on super curves with a trivial super volume form. The rst part, focuses in giving a correct way to de ne Sp2q-super curves, since is not enough just to give a super volume, we also have to consider an a ne line bundle over the curve that should be trivial in order to obtain a Sp2q-super curve. The second part, analyses family of Sp2q-super curves over an purely even base, in order to proof that such families are ever split. In the last part, we study the moduli space of such curves.
Link to repository: http://renati.sunedu.gob.pe/handle/sunedu/1591617
Discipline: Matemáticas
Grade or title grantor: Instituto de Matemática Pura e Aplicada
Grade or title: Doctor en Ciencias en el Programa de Doctorado en Matemáticas
Juror: Esteves, Eduardo; Bursztyn, Henrique; Cabrera, Alejandro; Drummond, Thiago
Register date: 13-Jan-2021
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RamosCastilloRJ.pdf | Disertación | 749.47 kB | Adobe PDF | View/Open |
Autorizacion.pdf Restricted Access | Autorización del registro | 287.62 kB | Adobe PDF | View/Open Request a copy |
This item is licensed under a Creative Commons License