Bibliographic citations
Casimiro, E., (2019). Balance de carbono, energía y productividad ecosistémica en la amazonía occidental empleando el método de flujos turbulentos [Tesis, Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/14900
Casimiro, E., Balance de carbono, energía y productividad ecosistémica en la amazonía occidental empleando el método de flujos turbulentos [Tesis]. PE: Pontificia Universidad Católica del Perú; 2019. http://hdl.handle.net/20.500.12404/14900
@mastersthesis{renati/1665924,
title = "Balance de carbono, energía y productividad ecosistémica en la amazonía occidental empleando el método de flujos turbulentos",
author = "Casimiro Soriano, Enzo Martín",
publisher = "Pontificia Universidad Católica del Perú",
year = "2019"
}
The eddy covariance method was used to determine the carbon fluxes, ecosystem respiration and gross primary productivity of a western Amazon forest, in the Madre de Dios región in Peru and its relationship with micrometeorological parameters, from November 2016 (rainy season) until October 2018 (dry season). A sonic anemometer, infrared gas analyzer, radiation, humidity and a temperature sensors were used on the platform of the SAGES flux tower, at 46 m. The compilation, processing and the analysis of data were done using the R programming language, and the commercial software packages Eddy Pro and TOVI. A 78,30% of valid data was recorded over a period of 541 days, between October 2016 and October 2018. The air temperatures ranged between 21,6 and 25,6°C while the relative humidity fluctuated around 80%. The distribution of wind patterns showed a predominant direction towards the NW and a speed interval between 0,1 to 1,4 m.s-1. The main evidence of turbulences, u*, recorded a mean value around 0,31 m.s-1 during day and around 0,14 m.s-1 during night. Throughout the day, the peaks of temperature, wind speed, temperature and the minimum of %RH were recorded between 12:00 and 14:00 h. Short wave radiation fluxes oscillated around 300 W.m-2 and for long wave around -40 W.m-2, with highest values in the dry seasons. For the 2016-2017 wet season, a net radiation flow was recorded at 156,98 W.m-2 and 137,76 W.m-2 in the dry season. For the 2017-2018 period, these values were 151,20 W.m-2 in the rainy season and 139,81 W.m-2 in the dry season. Photosyntethic Active Radiation (PAR) recorded a daily average between 300 and 400 μmol.m-2.s-1. The daily distribution indicates that the forest received radiation between 06:00 and 18:00 h, reaching maximum peaks around noon. During the night, the forest behaved like a net source of radiation. In the flux analysis, an average daily flux of CO2 was determined ranging around -5 μmol.m-2.s-1 for the wet season and -4 μmol.m-2.s-1 for the rainy seasons. Registered storage CO2 flux values were 2,03 μmol.m-2.s-1 in the wet seasons and 1,3 μmol.m-2.s-1 in the dry season. The Net Ecosystemic Exchange (NEE) oscillated between -2 and -1 μmol.m-2.s-1. The daily behavior, influenced by the activity of the boundary layer, indicated that the forest was a carbon sink during days and a constant source at nights. Around 6:00 am, the turbulence due to the entry of solar radiation into the atmospheric boundary layer caused a CO2 flush with a maximum between 6 and 9 μmol.m-2.s-1. In the flux and energy balance analysis, sensible heat (H) and latent heat (LE) were studied. On a monthly scale, H fluctuated around 20 W.m-2 and LE near 60 W.m-2, with higher values during the wet seasons due to greater cloudiness, availability of H2O and lower incoming radiation. On a daily basis, due to the presence of solar radiation, the highest heat flux was registered during the day and the peaks were reached at noon. The energy balance, as a correspondence between the net radiation and H + LE, showed slopes between 0,70 and 0,80. The loss of energy balance was caused by errors in the instrumentation, sampling, application of the turbulence filter and the presence of vertical energy reserves that were not considered and registered by the equipment. The calculation of nocturnal ecosystemic respiration (R) was determined from the quadratic hyperbolic regression of NEE vs. PAR. During the 2016-2017 period, R was in the range of 9,49 to 11,84 μmol.m-2.s-1, while in 2017-2018, it was located between 7,03 and 7,88 μmol.m-2.s-1. The magnitude of R was more intense in the rainy seasons due to promotion of heterotrophic respiration and higher humidity at soil level. Gross primary productivity (GPP) was calculated as the difference of NEE and R. The values indicated a net annual carbon fixation of 44,86 tons per hectare in the period 2016-2017 and 45,92 tons per hectare during 2017-2018. The impact of the micrometorological and physiological variables, including possible errors due to lack of data continuity, could had affected the averages in GPP. Finally, the behavior of the R was modeled using the maximum daily temperature in each season. The results showed a remarkable approximation to the experimental results, so there is the possibility of expanding this field in the search to predict the behavior of the forest in the future.
This item is licensed under a Creative Commons License