Bibliographic citations
Herencia, W., (2024). Estudio comparativo de la acción de copolímeros en bloque de estirenobutadieno- estireno (SBS) en la modificación de las propiedades físicas y reológicas del asfalto [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/29076
Herencia, W., Estudio comparativo de la acción de copolímeros en bloque de estirenobutadieno- estireno (SBS) en la modificación de las propiedades físicas y reológicas del asfalto []. PE: Pontificia Universidad Católica del Perú; 2024. http://hdl.handle.net/20.500.12404/29076
@mastersthesis{renati/1659726,
title = "Estudio comparativo de la acción de copolímeros en bloque de estirenobutadieno- estireno (SBS) en la modificación de las propiedades físicas y reológicas del asfalto",
author = "Herencia Peña de Pareja, Wendy Luisa",
publisher = "Pontificia Universidad Católica del Perú",
year = "2024"
}
In this thesis, a comparative study was made of two linear block styrene-butadienestyrene (SBS) copolymers, which are currently used as asphalt modifiers, both come from the company Dynasol Elastómeros S.A. of C.V. and were prepared by anionic polymerization and named for the purposes of the study as: SBS-1 and SBS-2. The characterization of the SBS copolymers was carried out using NMR, FTIR-ATR and GPC techniques. The main difference in their chemical composition of SBS-1 and SBS-2 lay in the content of the 1,2-vinyl group of the polybutadiene chain. The SBS-2 copolymer had 36 mol% of 1,2-vinyl groups while the SBS-1 copolymer only had 11 mol%. The polystyrene content by weight was 31% for the SBS-1 copolymer and 34% for the SBS- 2 copolymer. The weight average molecular weights (Mw) were 146,000 g/mol for the two copolymers. The polydispersity was 1.5 for SBS-1 and 1.6 for SBS-2. The asphalt selected to be modified with polymers was PEN 60-70 with Performance Grade PG 64-22, from the Conchan Refinery of the company Petroperú S.A. whose chemical composition, obtained through SARA chromatography, was: 22.45% saturated compounds, 9.51% aromatic compounds, 53.45% resin compounds and 14.59% asphaltene compounds. Given the chemical composition of the asphalt, the requirements to ensure a high degree of asphalt/polymer compatibility were not met, as it was found that the colloidal instability index was equal to 0.59 and not 0.3, the aromatic content equal to 9.51% and not 55% minimum and, on the other hand, the saturates/aromatics ratio was equal to 2.36 and not 0.55, as recommended in the literature (Polaccoa, 2015). Consequently, due to the low content of aromatics, the asphalt-SBS polymer mixture would have incompatibility problems, as a result of the lower degree of polymer solvency. (Airey, 2003). Given the chemical composition of the selected asphalt, the polymer dose was not high and the use of sulfur as a vulcanizing agent of the polymer helped to improve the storage stability of the modified asphalt. The sulfur/polymer ratio was 0.05 with both SBS copolymers. However, this relationship depends on the quality of the selected polymer and above all on the characteristics of the modified asphalt required for its use in the pavement, according to the General Technical Specifications for Construction EG-2013 of the Ministry of Transportation and Communications of Peru. In this thesis, for comparison, the copolymers SBS-1 and SBS-2 were used with the same dose, that is, 3% by weight with respect to PEN 60-70 asphalt. Of the two SBS copolymers evaluated, only the SBS-1 copolymer met the quality requirements to obtain a modified asphalt with the characteristics according to the Peruvian standard for type IC and also with Performance Grade PG 76-22 and classification for traffic. very heavy (V). The higher content of 1,2-vinyl groups in the polybutadiene chain of the SBS-2 copolymer generated better physical properties, but not better rheological properties in the asphalt. Additionally, this thesis incorporated in the characterization of the modified asphalts the determination of the Grade of Performance, the classification by type of traffic through the MSCR test, Multiple Strees Creep and Recovery Test, (ASTM D-7405) and the measurement of the fatigue resistance of asphalts using the LAS test (Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep, AASHTO T-391), these being valuable tools in the selection of the polymer for a specific modified asphalt.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.