Buscar en Google Scholar
Registro completo de metadatos
Huamaní Navarrete, Pedro Freddy
Caya Pérez, Jhan Carlos
2021-04-20T18:21:40Z
2021-04-20T18:21:40Z
2020
https://hdl.handle.net/20.500.14138/3523
En marzo del presente año la OMS declaró como pandemia mundial al COVID-19. Esta enfermedad, causada por el nuevo coronavirus, afecta principalmente al sistema respiratorio ocasionando enfermedades graves como la neumonía. Esta requiere para su diagnóstico la revisión y análisis de radiografías de tórax, las cuales permiten evaluar el estado de los pulmones. Sin embargo, ante este contexto de pandemia, el tiempo empleado para detectar la enfermedad dificulta ofrecer un tratamiento temprano y oportuno al paciente. Por ello, este proyecto de tesis propuso la evaluación de tres modelos de redes neuronales convolucionales aplicado a radiografías de tórax, para apoyar al proceso de diagnóstico de neumonía asociada al COVID-19, por medio de la clasificación de imágenes. Esto permite contribuir en la reducción del tiempo que toma la labor de detección de la enfermedad en radiografías de tórax, además de definir cuál de los tres modelos es el más apto para dicha labor. Los modelos utilizados en este proyecto de tesis son un modelo de implementación propia, ResNet50 e InceptionV3. Para la implementación de estos dos últimos se requirió aplicar transfer learning. Además, se aplicó data augmentation para conocer su utilidad e influencia en el proceso de entrenamiento de cada uno de los tres modelos. Se utilizó un dataset compuesto por imágenes de radiografías de tórax de casos positivos a COVID-19 y casos normales para el entrenamiento y validación de los tres modelos. Finalmente, basado en los resultados obtenidos, el modelo más efectivo de los tres evaluados fue InceptionV3 con un 0.9886 de exactitud cuando se entrenó con data augmentation y 0.9848 sin data augmentation. (es_ES)
Submitted by Hidalgo Alvarez Jofre (jhidalgoa@urp.edu.pe) on 2021-04-20T18:21:40Z No. of bitstreams: 1 ELEC-T030_46733086_T CAYA PÉREZ JHAN CARLOS.pdf: 2823118 bytes, checksum: 57a199a3b75fbb29e74d2c7f55401b79 (MD5) (es_ES)
Made available in DSpace on 2021-04-20T18:21:40Z (GMT). No. of bitstreams: 1 ELEC-T030_46733086_T CAYA PÉREZ JHAN CARLOS.pdf: 2823118 bytes, checksum: 57a199a3b75fbb29e74d2c7f55401b79 (MD5) Previous issue date: 2020 (es_ES)
Tesis (es_ES)
application/pdf
spa
Universidad Ricardo Palma - URP (es_ES)
info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio Institucional - URP (es_ES)
COVID-19 (es_ES)
red neuronal convolucional (es_ES)
radiografías de tórax (es_ES)
transfer learning (es_ES)
data augmentation (es_ES)
Evaluación de modelos de redes neuronales convolucionales aplicado a radiografías de tórax, para apoyar al proceso de diagnóstico de neumonía asociada al Covid-19 (es_ES)
info:eu-repo/semantics/bachelorThesis
Universidad Ricardo Palma. Facultad de Ingeniería. Escuela Profesional de Ingeniería Electrónica (es_ES)
Ingeniería Electrónica (es_ES)
Título Profesional (es_ES)
Ingeniero Electrónico (es_ES)
PE (es_ES)
https://purl.org/pe-repo/ocde/ford#2.02.00
Ingeniería Electrónica (es_ES)
https://purl.org/pe-repo/renati/nivel#tituloProfesional
10032682
https://orcid.org/0000-0002-3753-9777
46733086
712026
Chong Rodríguez, Humberto
Sánchez Bravo, Miguel Ángel
Gónzales Prado, Julio César
https://purl.org/pe-repo/renati/type#tesis
Privada asociativa
info:eu-repo/semantics/publishedVersion



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons