Look-up in Google Scholar
Full metadata record
Paiva Yanayaco, Daúl Andrés
Apari Quispe, Michael
2023-01-27T17:38:45Z
2023-01-27T17:38:45Z
2022
TESIS CF38_Apa
http://repositorio.unsch.edu.pe/handle/UNSCH/4760
Las integrales impropias así como las integrales de funciones singulares aparecen en diversos problemas de aplicación y el calcular su valor se enmarca dentro de la matemática aplicada, sin embargo las condiciones que deben cumplir ciertas funciones que actúan como integrando también las hace ubicarse dentro del análisis funcional, pues se exige que determinadas funciones estén en espacios como Cⁿ (I) o en el caso de que se requiera emplear polinomios ortogonales, dichas funciones deben estar en el espacio L² (I) y las funciones peso deben satisfacer la no negatividad. Desde buen tiempo hasta la actualidad han sido estudiado diversos métodos de aproximación de dichas integrales. En la actualidad,muchos autores abordan el problema a través de métodos de elementos de contorno, especificando que los métodos funcionan para casos específicos de funciones. Es por ello que el tratamiento de estas integrales aveces exige sus propios métodos o formas de solución. En la minimización del error se buscan siempre nuevos métodos de aproximación que nos de muy buenos resultados a un costo muy bajo, es decir, menos cálculos numéricos. De hechoque también las fórmulas de cuadratura de Gauss ofrecen esa alternativa pero para algunas funciones. En este trabajo de investigación nos limitaremos al cálculo de funciones, como las eulerianas, las variaciones muy altas, o de mucho contraste que con los métodos de expansión de Taylor y cambios de variable se puede suavizar una función. (es_PE)
Tesis (es_PE)
application/pdf
spa (es_PE)
Universidad Nacional de San Cristóbal de Huamanga (es_PE)
info:eu-repo/semantics/openAccess (en_US)
https://creativecommons.org/licenses/by/4.0/ (*)
Universidad Nacional de San Cristóbal de Huamanga (es_PE)
Repositorio Institucional - UNSCH (es_PE)
Integrales impropias (es_PE)
Integrales singulares (es_PE)
Funciones eulerianas (es_PE)
Análisis numérico (es_PE)
“Aproximación numérica de integrales impropias e integrandos discontinuos” (es_PE)
info:eu-repo/semantics/bachelorThesis (en_US)
Universidad Nacional de San Cristóbal de Huamanga. Facultad de Ingeniería de Minas, Geología y Civil
Ciencias Físico Matemáticas
Título profesional
Licenciado en Ciencias Físico Matemáticas
PE
https://purl.org/pe-repo/ocde/ford#1.01.00
https://purl.org/pe-repo/ocde/ford#1.01.02
https://purl.org/pe-repo/renati/level#tituloProfesional
02885967
https://orcid.org/0000-0001-7084-5840
47256076
533016
Porras Flores, Efraín Elías
Allaucca Paucar, Adrián
Coaquira Cárdenas, Víctor Alcides
Pereda Medina, Alex Miguel
Paiva Yanayaco, Daúl Andrés
https://purl.org/pe-repo/renati/type#tesis
Pública



This item is licensed under a Creative Commons License Creative Commons