Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Cotrina, M., (2024). Modelo matemático de la interacción de las partículas de radiación con las células cancerígenas [Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/22234
Cotrina, M., Modelo matemático de la interacción de las partículas de radiación con las células cancerígenas []. PE: Universidad Nacional de Trujillo; 2024. https://hdl.handle.net/20.500.14414/22234
@phdthesis{renati/1050585,
title = "Modelo matemático de la interacción de las partículas de radiación con las células cancerígenas",
author = "Cotrina León, María Elena",
publisher = "Universidad Nacional de Trujillo",
year = "2024"
}
Title: Modelo matemático de la interacción de las partículas de radiación con las células cancerígenas
Authors(s): Cotrina León, María Elena
Advisor(s): Lara Romero, Luis Alberto
OCDE field: https://purl.org/pe-repo/ocde/ford#1.05.08
Issue Date: 2024
Institution: Universidad Nacional de Trujillo
Abstract: El presente trabajo de investigación modeló la interacción de las partículas de radiación con
las células cancerígenas de forma probabilística haciendo uso de las cadenas de Markov,
teniendo en cuenta dos factores: el efecto de la radiación y la reparación de las células
después de una dosis de radiación consecutiva; con el propósito de conocer el número de
células sobrevivientes durante el tratamiento de radioterapia. La investigación se llevó a
cabo de acuerdo al procedimiento de radioterapia que realiza el Instituto Nacional de
Enfermedades Neoplásicas (INEN), que aplican el tratamiento en cinco fracciones de dosis
por semana, descansando los fines de semana. Se observó que, durante el tratamiento, los
tamaños de las fracciones de dosis no varían. En el proceso de planificación del tratamiento,
con la ayuda de la tomografía computarizada 3D, el médico describe el volumen tumoral
macroscópico, el volumen blanco clínico y el volumen blanco de planificación. Se
descompone en subvolumenes llamado voxel, de tal manera que cada voxel reciba una dosis
por fracción uniforme, pero este puede variar de un voxel a otro. Teniendo como resultado
una matriz de probabilidades tanto para el factor de efecto de la radiación como para el
factor de reparación de las células después de una dosis de radiación consecutiva, finalmente
para obtener la matriz de transición se multiplican dichas matrices. A partir de esta se irá
calculando de forma recurrente el vector de probabilidades día a día, cálculo necesario para
obtener el número de células sobrevivientes, llegando a la conclusión que el modelo se
compone de los siguientes parámetros: número de blancos m, la cantidad de dosis inicial u0,
los valores de alpha y beta de acuerdo al tipo de célula del órgano afectado, la probabilidad
r para un blanco inactivo en una célula viva se reactivará, el número de días del tratamiento
y el número de células del voxel. Al implementar el modelo se simuló con diferentes
parámetros, teniendo como resultado que en los últimos días del tratamiento la variación del
número de células muertas es pequeña, por tanto, concluimos que la investigación ha dado
buenos resultados en la planificación y monitoreo del tratamiento por radioterapia para
pacientes de cáncer.
The present research work modeled the interaction of radiation particles with cancer cells probabilistically using Markov chains, taking into account two factors: the effect of radiation and the repair of cells after a dose of consecutive radiation; with the purpose of knowing the number of surviving cells during the radiotherapy treatment. The research was carried out according to the radiotherapy procedure carried out by the National Institute of Neoplastic Diseases (INEN), which applies the treatment in five dose fractions per week, resting on weekends. It was observed that, during treatment, the sizes of the dose fractions do not vary. In the treatment planning process, with the help of 3D CT, the doctor describes the macroscopic tumor volume, the clinical target volume and the planning target volume. It is decomposed into subvolumes called voxels, so that each voxel receives a dose per uniform fraction, but this may vary from one voxel to another. Resulting in a probability matrix for both the radiation effect factor and the cell repair factor after a consecutive radiation dose, finally, these matrices are multiplied to obtain the transition matrix. From this, the vector of probabilities will be calculated recursively day by day, a calculation necessary to obtain the number of surviving cells, arriving at the conclusion that the model is composed of the following parameters: number m of targets, the amount of initial dose u0, the alpha and beta values according to the cell type of the affected organ, the probability r for an inactive target in a living cell to be reactivated, the number of days of treatment and the number of cells in the voxel. When implementing the model, it was simulated with different parameters, resulting in that in the last days of the treatment the variation in the number of dead cells is small, therefore, we conclude that the research has given good results in the planning and monitoring of radiotherapy treatment. for cancer patients.
The present research work modeled the interaction of radiation particles with cancer cells probabilistically using Markov chains, taking into account two factors: the effect of radiation and the repair of cells after a dose of consecutive radiation; with the purpose of knowing the number of surviving cells during the radiotherapy treatment. The research was carried out according to the radiotherapy procedure carried out by the National Institute of Neoplastic Diseases (INEN), which applies the treatment in five dose fractions per week, resting on weekends. It was observed that, during treatment, the sizes of the dose fractions do not vary. In the treatment planning process, with the help of 3D CT, the doctor describes the macroscopic tumor volume, the clinical target volume and the planning target volume. It is decomposed into subvolumes called voxels, so that each voxel receives a dose per uniform fraction, but this may vary from one voxel to another. Resulting in a probability matrix for both the radiation effect factor and the cell repair factor after a consecutive radiation dose, finally, these matrices are multiplied to obtain the transition matrix. From this, the vector of probabilities will be calculated recursively day by day, a calculation necessary to obtain the number of surviving cells, arriving at the conclusion that the model is composed of the following parameters: number m of targets, the amount of initial dose u0, the alpha and beta values according to the cell type of the affected organ, the probability r for an inactive target in a living cell to be reactivated, the number of days of treatment and the number of cells in the voxel. When implementing the model, it was simulated with different parameters, resulting in that in the last days of the treatment the variation in the number of dead cells is small, therefore, we conclude that the research has given good results in the planning and monitoring of radiotherapy treatment. for cancer patients.
Link to repository: https://hdl.handle.net/20.500.14414/22234
Discipline: Doctorado en Ciencias e Ingeniería
Grade or title grantor: Universidad Nacional de Trujillo. Escuela de Posgrado
Grade or title: Doctor en Ciencias e Ingeniería
Juror: Rodríguez Soto, Juan Carlos; Alcántara Moreno, Oscar Romel; Agreda Gamboa, Everson David; Lara Romero, Luis Alberto
Register date: 7-Sep-2024
This item is licensed under a Creative Commons License