Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Navarro, J., (2024). Construcción de wavelets splines sobre intervalos acotados [Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/21021
Navarro, J., Construcción de wavelets splines sobre intervalos acotados []. PE: Universidad Nacional de Trujillo; 2024. https://hdl.handle.net/20.500.14414/21021
@misc{renati/1046926,
title = "Construcción de wavelets splines sobre intervalos acotados",
author = "Navarro Caballero, Juan Estuardo",
publisher = "Universidad Nacional de Trujillo",
year = "2024"
}
Title: Construcción de wavelets splines sobre intervalos acotados
Authors(s): Navarro Caballero, Juan Estuardo
Advisor(s): León Navarro, Ronald Wiston
OCDE field: https://purl.org/pe-repo/ocde/ford#1.01.01
Issue Date: 2024
Institution: Universidad Nacional de Trujillo
Abstract: En este trabajo de investigación se determinó una base de wavelets splines sobre intervalos acotados de la forma [0, r], con r ∈ N. El primero en construir wavelets sobre intervalos acotados fue Meyer que restringió las funciones de escalamiento de Daubechie a [0, 1]. El enfoque presentado en este trabajo se basa en las wavelets splines de Chui-Wang y hace uso del concepto de nudos múltiples para construir funciones de escalamiento y wavelets de frontera. Por último, se presentan algoritmos wavelets de descomposición y reconstrucción sobre intervalos acotados que permiten determinar los coeficientes wavelets asociados a la base wavelet spline establecida.
Abstract In this research work a base of wavelet splines on bounded intervals of the form [0, r] was determined, with r ∈ N. The first to build wavelets on bounded intervals was Meyer who restricted the Daubechie scaling functions to [0, 1]. The approach presented in this work is based on the Chui-Wang wavelet splines and makes use of the concept of multiple nodes to construct scaling functions and boundary wavelets. Finally, wavelet decomposition and reconstruction algorithms on bounded intervals are presented that allow determining the wavelet coefficients associated with the established wavelet spline basis
Abstract In this research work a base of wavelet splines on bounded intervals of the form [0, r] was determined, with r ∈ N. The first to build wavelets on bounded intervals was Meyer who restricted the Daubechie scaling functions to [0, 1]. The approach presented in this work is based on the Chui-Wang wavelet splines and makes use of the concept of multiple nodes to construct scaling functions and boundary wavelets. Finally, wavelet decomposition and reconstruction algorithms on bounded intervals are presented that allow determining the wavelet coefficients associated with the established wavelet spline basis
Link to repository: https://hdl.handle.net/20.500.14414/21021
Discipline: Matemáticas
Grade or title grantor: Universidad Nacional de Trujillo.Facultad de Ciencias Físicas y Matemáticas
Grade or title: Licenciado en Matemáticas
Juror: Aragonés Salazar, Nelson Omar; Lara Romero, Luis Alberto; León Navarro, Ronald Wiston
Register date: 10-Apr-2024
This item is licensed under a Creative Commons License