Look-up in Google Scholar
Full metadata record
Flores García, Anibal Fernando (es_ES)
Paxi Apaza, Walter Juvenal (es_ES)
2023-10-06T15:32:12Z
2023-10-06T15:32:12Z
2023-06-15
https://hdl.handle.net/20.500.14655/504
La radiación solar en la actualidad es dañina, su exposición prolongada trae consecuencias irreversibles en los seres humanos esta a su vez es aprovechable como fuente de energía, de ahí el proceso para predecir su comportamiento implementado un modelo que usa Deep learning con datos de series de tiempo de la región Moquegua y Tacna. La técnica de aumento de datos es fundamental para trabajar con modelos de aprendizaje profundo – Deep Learning, por la necesidad de que manejan grandes cantidades de datos para el máximo desarrollo del aprendizaje y esta al no estar disponible se generan inconvenientes de subajuste o sobreajuste, se propone la arquitectura LSTM – Memoria Corto-Largo Plazo, para pronosticar series temporales de radiación solar diaria. Entre las diferentes arquitecturas no hibridas el LSTM de 4 capas produjo mejores resultados para la predicción de series temporales de radiación solar diaria, y el aumento de datos de usó para fortalecer los datos y mejorar la predicción del modelo. Se ha logrado implementar un modelo de predicción de radiación solar basado en Deep Learning específicamente Long Short-Term Memory (LSTM) con aumento de datos (DA+LSTM), el cual logra superar considerablemente al mismo modelo sin aumento de datos (LSTM). De esta manera de acuerdo con el RMSE, el modelo propuesto DA+LSTM alcanza en promedio un RMSE=0.0580 superando el RMSE=0.2688 del modelo sin aumento de datos (LSTM). Del mismo modo en términos porcentuales, de acuerdo con el MAPE. (es_ES)
application/pdf (es_ES)
spa (es_ES)
Universidad Nacional de Moquegua (es_ES)
info:eu-repo/semantics/openAccess (es_ES)
Attribution-NonCommercial-NoDerivatives 4.0 Internacional (*)
http://creativecommons.org/licenses/by-nc-nd/4.0/ (*)
Repositorio institucional - UNAM (es_ES)
Aumento de datos (es_ES)
Deep learning (es_ES)
Memoria a corto plazo (es_ES)
Redes neuronales (es_ES)
Series de tiempo (es_ES)
Predicción de series de tiempo de radiación solar en el sur del Perú aplicando deep learning, caso: Moquegua y Tacna. (es_ES)
info:eu-repo/semantics/bachelorThesis (es_ES)
Universidad Nacional de Moquegua . Escuela Profesional de Ingeniería de Sistemas e Informática (es_ES)
Ingeniería de Sistemas e Informática (es_ES)
Ingeniero de Sistemas e Informática (es_ES)
PE (es_ES)
http://purl.org/pe-repo/ocde/ford#2.00.00 (es_ES)
http://purl.org/pe-repo/renati/nivel#bachiller (es_ES)
04743476
https://orcid.org/0000-0003-4638-8242 (es_ES)
48003698
612156
Tito Chura, Hugo Euler (es_ES)
Gauna Chino, Mario (es_ES)
Ramos Rivera, Salomón Rey (es_ES)
http://purl.org/pe-repo/renati/type#tesis (es_ES)
Pública
info:eu-repo/semantics/acceptedVersion (es_ES)



This item is licensed under a Creative Commons License Creative Commons