Bibliographic citations
Guillermo, B., (2024). Diseño de una arquitectura de internet de las cosas (IoT) orientada al monitoreo de la calidad del aire en zonas de impacto ambiental de operaciones mineras a tajo abierto, empleando sensores de bajo costo y comunicación mediante el protocolo LoRaWAN [Trabajo de suficiencia profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/683406
Guillermo, B., Diseño de una arquitectura de internet de las cosas (IoT) orientada al monitoreo de la calidad del aire en zonas de impacto ambiental de operaciones mineras a tajo abierto, empleando sensores de bajo costo y comunicación mediante el protocolo LoRaWAN [Trabajo de suficiencia profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/683406
@misc{renati/1039588,
title = "Diseño de una arquitectura de internet de las cosas (IoT) orientada al monitoreo de la calidad del aire en zonas de impacto ambiental de operaciones mineras a tajo abierto, empleando sensores de bajo costo y comunicación mediante el protocolo LoRaWAN",
author = "Guillermo Rimac, Bill Oswaldo",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
This work describes the design of an Internet of Things (IoT) architecture aimed at air quality monitoring in open-pit mining impact zones, using low-cost sensors and the LoRaWAN communication protocol. The proposed solution is based on PMS7003 sensors for measuring PM2.5 particles, integrated with SX1261 transceivers that enable long-range transmission through LoRa modulation. Data collected is transmitted via a RAK7246 gateway and managed by the ChirpStack server, which operates the LoRaWAN network and stores the information in InfluxDB, a time-series optimized database. The stored data is visualized and analyzed in Grafana in real-time, facilitating pattern detection and enabling automatic alerts for high contamination levels. The architecture also includes an initial calibration of the sensors using polynomial regression methods to adjust potential measurement biases against a homologated reference. This design offers a flexible and scalable solution for implementing environmental monitoring systems in complex settings, providing an effective tool for air quality supervision and control in highly sensitive areas.
This item is licensed under a Creative Commons License