Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Barboza, J., (2023). Efectividad de un modelo de clasificación basado en Deep Learning en la detección de Covid-19 [Universidad Nacional José María Arguedas]. https://hdl.handle.net/20.500.14168/822
Barboza, J., Efectividad de un modelo de clasificación basado en Deep Learning en la detección de Covid-19 []. PE: Universidad Nacional José María Arguedas; 2023. https://hdl.handle.net/20.500.14168/822
@misc{renati/309816,
title = "Efectividad de un modelo de clasificación basado en Deep Learning en la detección de Covid-19",
author = "Barboza Gonzales, José Luis",
publisher = "Universidad Nacional José María Arguedas",
year = "2023"
}
Title: Efectividad de un modelo de clasificación basado en Deep Learning en la detección de Covid-19
Authors(s): Barboza Gonzales, José Luis
Advisor(s): Huillcen Baca, Herwin Alayn
OCDE field: http://purl.org/pe-repo/ocde/ford#2.02.04
Issue Date: 2023
Institution: Universidad Nacional José María Arguedas
Abstract: La enfermedad del Coronavirus (COVID-19) es una enfermedad extremadamente contagiosa y de rápida propagación; por lo tanto, su diagnóstico temprano es de suma importancia. Ante la problemática de no contar con una herramienta eficaz, además de las pruebas para ayudar en la detección, se plantea este trabajo.
Este trabajo de investigación plantea evaluar la efectividad de un modelo de clasificación hecho con Deep Learning para la identificación de COVID-19, con el objetivo de determinar qué tan efectivo y eficiente es el modelo propuesto para la detección del virus. Para ello, se hizo uso de tres conjuntos de datos públicos (COVID Chest X-ray, COVID Chest X-ray y COVID-19 Radiography Database) y un conjunto de datos propio utilizado para la validación.
Para llevar a cabo la investigación, se utilizaron diversos modelos pre-entrenados basados en la arquitectura DenseNet y se propone una modificación en la arquitectura DenseNet201, donde se realiza una modificación en la primera fase de la convolución y en las “Transition Layers“. Este modelo, a su vez, utiliza transfer learning con el Dataset de ImageNet. Los resultados indican que el modelo propuesto llega a una efectividad del 98%, y cuenta con una eficiencia de 18.1M parámetros y 3.2GFLOPs, superando otras propuestas del estado del arte. Se concluye que el modelo propuesto es fiable, efectivo y de bajo costo para la detección del COVID-19.
Link to repository: https://hdl.handle.net/20.500.14168/822
Discipline: Ingeniería de Sistemas
Grade or title grantor: Universidad Nacional José María Arguedas. Facultad de Ingeniería
Grade or title: Ingeniero de Sistemas
Juror: Catacora Flores, Norma Lorena; Soria Solís, Iván; Silvera Reynaga, Humberto
Register date: 11-Jan-2024
This item is licensed under a Creative Commons License