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Abstract 
 

Model predictive control (MPC) has been widely used in the process industry 

with reportedly remarkable economic benefits for quite a while now in spite of 

the fact that no systematic approach to evaluate its performance is yet 

available. This inconvenience not only hinders monitoring and maintenance of 

current implementations but also restricts the chances for new initiatives in MPC 

to be implemented in real plants. 

 

In this thesis a methodology for performance assessment of such advanced 

controllers is exposed, taking some special consideration for applications based 

on multi-stage nonlinear model predictive control (multi-stage NMPC), a novel 

proposed formulation to handle nonlinear systems with uncertainties efficiently.  

 

In this context, the stage cost is proposed as the fundamental measure of 

performance. From this definition, some performance indices can be computed 

by means of comparisons between the achieved stage cost in the process and 

the predicted stage cost from the controller. 

 

The predicted stage cost as a performance benchmark has to be computed in 

general by means of Monte Carlo simulations. Nonetheless, for special cases 

such as linear systems with normal statistical distributions and systems with 

polynomial nonlinearities some efficient computation procedures can be utilized. 

Additionally, the use of Markov chains is explored in order to handle cases with 

complex distributions.  

 

The proposed methodologies are illustrated with applications on industrial case 

studies. The range of possible applications is shown to be not only restricted to 

performance monitoring but also to cover cases such as controller selection, 

fault detection and training of operators. 
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1. Introduction 
 

1.1. Motivation 
 

Since the late 1970’s, the field of model predictive control has been in the 

center of attention of the process control community mainly due to its practical 

industrial success. This type of advanced controller is especially suitable for 

complex systems subject to constraints with strong interaction between 

variables such as those typically encountered in the chemical industry. The 

good performance of this controller relies heavily on a precise representation of 

the process, from which the optimal control strategy can be obtained in order to 

improve the overall operation of the plant.  

 

Unfortunately, this requirement is hardly ever fulfilled as the presence of 

uncertainties not only in the formulation of the model, but also during process 

operation is inevitable in real plants. This fact is especially critical in the context 

of economic NMPC, in which typically some process variables are intended to 

be driven to their physical, quality or safety bounds. Therefore, in order to 

guarantee reliable satisfaction of constraints, robust techniques must be 

employed such as multi-stage NMPC (Lucía et al. 2014). Multi-stage NMPC is 

based on the representation of the uncertainties by means of a scenario tree 

with the capacity to include feedback in the predictions and has demonstrated 

great potential in comparison to other robust techniques. 

 

Along with the progress in the development of MPC formulations, the field of 

control performance assessment has also been an important topic in the 

research community since the work of Åström (1970). Nonetheless, despite the 

efforts, the topic of performance assessment for MPC applications is still an 

open issue due to its complex nature and no systematic approach has been yet 

applied in industrial practices. Such standardized performance assessment 

methodologies would prove to be quite valuable to improve significantly the 

credibility of MPC solutions in practical terms. 
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For complex applications, MPC is considered mainly as a guideline controller, 

the outputs of which may be disregarded by the operators whenever they 

appear counterproductive. Provided intuitive performance indicators, field 

engineers may be more inclined to accept the outputs generated by the MPC 

controller and focus on those loops that are performing below optimal conditions 

with respect to a reference benchmark and may need maintenance.  

 

On the other hand, applications on the control design stage may also be 

envisioned, as performance-based methodologies would assist control 

engineers to develop standard design procedures and would serve as a 

powerful tool in the analysis and selection of control structures as will be 

illustrated later in this work. 

 

1.2. Goals 
 

In order to address the topic of multi-stage NMPC performance assessment, 

focus has been set on the following goals: 

 

1. Propose suitable performance indicators for control performance 

assessment. A literature review of reported methods for process 

monitoring is required in order to define appropriate measures of 

performance for multi-stage NMPC applications.  

 

2. Provide insights in the computation of the proposed benchmarks for 

different cases. Different numerical and statistical methods will be 

evaluated in order to reduce the computational complexity of the 

assessment. 

 

3. Introduce feasible applications for the proposed methodologies in control 

design and performance monitoring. 
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2. State of the art 
 

2.1. Introduction 
 

In this chapter the most relevant documentation used in this project will be 

reviewed. Important results such as the historical minimum variance benchmark 

and alternative methodologies for MPC assessment will be discussed along 

with theoretical results on the statistics of some benchmarks. Additionally, the 

design and development of the real-time environment used in the project will be 

exposed highlighting its main components and functionality. 

 

2.2. Literature review 
 

2.2.1. Minimum variance benchmark  
 

In 1970, Åström made the first reported contribution to the field of control 

performance assessment while presenting some remarks on his formulation of 

the so-called minimum variance strategy (Åström, 1970). This control law was 

formulated in the context of unconstrained SISO stochastic linear systems and 

had the property of optimality in the sense of output variance. Åström made the 

observation that the analysis of the actual output variance in comparison to the 

theoretical minimum would be quite convenient to evaluate if a system was 

optimally operated. 

 

The minimum output variance can be computed from the process transfer 

function and is proved to be independent from any control action. Harris (1989) 

proposed to obtain such lower bound for the output variance by time series 

analysis of routine closed-loop data, thus providing a practical means to define 

a benchmark for performance assessment.  

 

It must be clearly specified that selecting this benchmark does not necessarily 

mean that the minimum variance controller must be implemented in the plant. In 

fact, such a controller may even not be feasible to use in practice due to 

process constraints. Nonetheless, as a benchmark, it provides quite useful 

information on the current state of the controller and the plant. For example, if 
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the assessment indicates good performance relative to this benchmark, then 

further tuning or changes in the control algorithm will not provide considerable 

improvement. In this case, further reduction of output variance may only be 

possible by re-engineering of the plant itself. On the other hand, if the 

assessment indicates poor performance then further analysis should be 

performed on the controller tuning, process model, robustness and constraints.  

 

Following this direction, there have been numerous efforts to extend this 

benchmark to multivariable systems, all with limited success, mainly due to the 

complexity of the resulting algorithms and the requirement for deeper process 

knowledge (Harris et al. 1999). Some simplifications and modifications of the 

original benchmark, including user-defined requirements in order to motivate its 

industrial application, were more recently reported such as in Yuan, Lennox and 

McEwan (2009) and Liu, Huang and Wang (2011). 

 

2.2.2. MPC performance assessment 
 

In addition to output variance monitoring, there have been other techniques 

reported for MPC performance assessment, which can be classified, in general 

terms, as model-based and model-free approaches. 

 

Clearly, the minimum variance benchmark belongs to the model-based group 

and its extended form for multivariable systems is historically considered as one 

of the most frequently used benchmarks for MPC applications (Kadali and 

Huang, 2008). Prior to its selection, however, it must be evaluated if the 

optimization objectives are reasonably compatible and if this benchmark would 

provide useful and realistic performance values.  

 

Taking this into consideration, a more natural selection for MPC applications 

would be the linear-quadratic Gaussian (LQG) benchmark. In this case, explicit 

consideration of the input variance and its range constraint is taken in order to 

determine the minimum output variance, thus providing a more realistic 

performance benchmark (Huang and Shah, 1999). The optimal curve lies on the 

Pareto front and the sub-optimal controller lies above this trade-off curve, from 
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which a performance measurement can be directly computed. In this context, 

Kadali and Huang (2002) and Dai and Yang (2004) developed methods to 

compute the required process model with subspace identification techniques in 

order to improve its practical applicability.  

 

Another line of research proposes a simulation-based approach, in which the 

predicted design objective function from the optimizer is compared with the 

actual achieved objective function, computed from routine process data, in 

order to determine a performance index (Patwardhan, 1999). Such an index is a 

direct measure of the deviation from the expected performance and does not 

require any time series or identification procedures, thus a low performance 

index clearly indicating changes in the process or presence of disturbances. 

Along this line, Schäfer and Cinar (2002) proposed to use this index for 

diagnosis tasks and a historical benchmark for monitoring purposes on some 

case studies. More recently, in Ellis and Christofides (2014), a framework for 

performance monitoring in economic MPC applications is presented based on 

these concepts. 

 

For the cases in which no process model is available, performance assessment 

based on historic data must be performed. There are several methods reported 

in the literature, mainly based on conventional data analysis, estimation of the 

closed-loop response and signal processing approaches, as summarized in 

Kadali and Huang (2008). 

 

2.2.3. Statistics of benchmarks 
 

Performance assessment involves handling of stochastic variables, implying 

that a proper analysis of its statistics is mandatory in order to compare 

accurately the achieved measure with the benchmark. 

 

Harris (1989), in his work regarding the estimation of the minimum variance 

benchmark by time series, analyzed the sampling properties of this estimate in 

order to find an appropriate number of samples required for this benchmark. 

Zhang and Henson (1999) analyzed statistically the ratio of the expected and 
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actual performance in order to detect more reliably significant changes in the 

controller performance. A more detailed discussion on the statistics of 

performance indices was presented by Harris (2004). In this work, he focused 

on the ratio of common quadratic forms and approximations to compute 

confidence intervals. More recently, Zagrobelny (2014) developed a theoretical 

benchmark for MPC based on the analysis of a linear unconstrained system 

and provided closed formulas for its moments. 

 

2.3. Real-time software framework to assess multi-stage NMPC 
 

2.3.1. do-mpc platform 
 

do-mpc is an open-source software platform designed to facilitate the rapid 

development of NMPC applications in a friendly and standardized environment 

(Lucía et al. 2014). It consists of a set of template scripts in Python with efficient 

implementations of NMPC and multi-stage NMPC. do-mpc relies heavily on 

third party software such as CasADi and IPOPT in order to compute 

integrations, formulate optimization problems and solve them efficiently. 

 

do-mpc employs a modularized approach in order to provide increased flexibility 

for the users. The building blocks of do-mpc are structured as follows: model 

and problem descriptor, optimizer, estimator and simulator. Such a structure is 

schematically represented in Figure 2.3.1. In this platform, the simulation is 

performed purely offline and the data exchange between the corresponding 

modules is synchronized on a fixed sequence of steps for each iteration. 

 

From the diagram, it must be clear that the optimizer sends the current control 

input � (��1) to the process and the estimator, the process sends the current 

output � (��1) to the estimator, with which the estimator can compute and 

send the estimated state ��| (��1) to the optimizer. 

 

In order to bring do-mpc one step closer to industrial practices, a real-time 

implementation of the platform was developed. In this environment, all the 

modules run asynchronously and only exchange information through a 
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database. The main advantage of this implementation is that it allows studying 

the control performance in a realistic scenario in which limited resources in 

computing power, computing and communication delays, access to the 

database and synchronization issues play a major role.   

 

Figure 2.3.1: do-mpc platform modularization 

 

2.3.2. General scheme 
 

In the real-time environment, each module has its own clock to read from and 

write to the database as shown schematically in Figure 2.3.2. The database 

selected for the implementation was the open-source MongoDB. MongoDB 

allows saving and organizing the process information as data structures in 

BSON documents, so that each module can access any required field in a safe 

and efficient manner.  

 

From the diagram, it must be clear that the process is allowed to read the 

current true state � from its own collection, read the current control input � 

from the optimizer’s collection and write the next true state ��� and the next 

process output ���	to its own collection. The optimizer is allowed to read from 

the estimator’s collection the current estimated state ��|�� to compute and 

write the next control input ��� to its own collection. The estimator is allowed to 

read from its own collection the current estimated state ��|��, the current 

process output � from the process’s collection and the current control input � 
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from the optimizer’s collection to compute and write the next estimated state ����| to its own collection. In the next section, further details on the operation 

of these modules will be provided. 

 

 

Figure 2.3.2: Real-time do-mpc platform scheme 

 

2.3.3. Real-time modules 
 

2.3.3.1. Process module 
 

The process module was written in MATLAB and replaces the original simulator 

module from do-mpc. The main operations performed in this module are 

presented in Figure 2.3.3.1. 

 

As shown, this module works with an Excel sheet, in which the nominal value of 

the process parameters, noise variances, initial conditions and configuration of 

process events, such as presence of disturbances in a predetermined time 

interval, are defined. To complete the initialization phase, the communication 

with the database is established and the initial true state, process output and 

control input are written.  
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After initialization, the periodic execution of the module is scheduled by means 

of MATLAB’s timer functionality. At each time period the current true state � 

and control input � are read from the database. The process module then 

evaluates if at the current time some event must be activated and then 

proceeds with the integration. The process noise � is sampled from a normal 

distribution and kept constant during the integration. The measurement noise � 

is also sampled from a normal distribution and added to the output after the 

integration.  

 

Finally, the next true state ��� and process output ���	are written to the 

database. The loop repeats itself until the number of iterations is completed. In 

the last iteration, a synchronization signal is sent to the database in order to 

stop the execution of the other modules. 

 

 

Figure 2.3.3.1: Process module flow chart 
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2.3.3.2. Estimator module 
 

The estimator module is required in order to reproduce a typical situation in 

which only a limited amount of process measurements is available and a state-

feedback scheme must be employed for control purposes. The estimator 

module was written in Python based on the well-known Extended Kalman Filter. 

The main operations performed in this module are presented in Figure 2.3.3.2.  

 

 

Figure 2.3.3.2: Estimator module flow chart 

 

In the initialization step the noise covariance matrices are specified, along with 

the initial value of the estimated states and a nominal model for the process. In 

this step, the communication with MongoDB is also established by means of the 

pymongo driver. For the periodic execution of the module, a timer code was 

implemented based on a Python’s generator. The generator provides the next 

instant in which the estimator should run, taking into consideration the desired 

time period and the previous computing time, so that the estimator can be 

triggered at specific time points.  
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At each time period, the update step is performed taking the current process 

output �	from the database to perform the correction on the current estimated 

state ��|�� to obtain ��| by means of the well-known Kalman gain. Following, 

the prediction step is performed taking the corrected estimated state ��| from 

the previous step and the current control input �	from the database in order to 

predict the next estimated state ����| based on the nominal model. After the 

prediction, the next estimated state is written to the database. The operation of 

the estimator concludes when it receives a stop signal from the process. 

 

2.3.3.3. Optimizer module 
 

The optimization module is arguably the most important block of do-mpc as it 

represents its main line of study. This module was written in Python based on 

do-mpc version 1.0. The main operations performed in this module are 

presented in Figure 2.3.3.3. 

 

Figure 2.3.3.3: Optimizer module flow chart 
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In the initialization step the communication with MongoDB is established and 

the optimization problem is set up. This includes decision variables, cost 

function, bound constraints in the prediction horizon and uncertainty values for 

multi-stage NMPC. The timer for periodic execution is implemented similarly as 

in the case of the estimator module.  

 

In order to compensate for the feedback delay, an additional prediction step is 

performed from the current estimated state ��|�� to obtain ����|��, which is 

set as the initial condition in the prediction horizon. Once this step is completed, 

the nonlinear optimization problem (NLP) is solved by means of the IPOPT tool. 

The exit flag of the optimizer is taken into consideration so that only feasible 

solutions are written to the database.  

 
Finally, the optimal solution of the current problem is used to prepare the next 

optimization problem. The operation of the optimizer concludes when it receives 

a stop signal from the process. 
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3. Control performance assessment 
 

3.1. Introduction 
 

In this chapter some methodologies for control performance assessment are 

proposed along with some possible applications. Each main part will be 

preceded by a theoretical background and followed by an implementation 

procedure. 

 

3.2. Proposed methodologies 
 

3.2.1. Definition of performance metrics 
 

In this section the basic performance measurement is defined along with the 

reference benchmark. Additionally, some performance indices are proposed in 

order to facilitate a comparison between them. The procedure developed 

focuses especially on performance assessment for multi-stage NMPC 

applications, for which a short review is included in the theoretical background. 

 

3.2.1.1. Theoretical background 
 

The optimization problem for multi-stage NMPC is reviewed as presented in 

Lucía et al. (2014) in order to introduce some fundamentals, terminology and 

notations that will be useful in the main part. 

 

Multi-stage NMPC is a robust NMPC approach based on a scenario tree 

construction that describes the evolution of uncertainties and their effect on the 

process. This tree is constructed assuming that, at each point in the prediction 

horizon, some discrete set of uncertainty values will be realized in the process, 

the effect of which is a branching in the process prediction. Future inputs are 

allowed to depend on previous values of the uncertainties, implicitly 

incorporating feedback into the scheme. The uncertain nonlinear system is 

represented as: 
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    ���� = �  �!"�#, �� , %&"�#',           (1) 

 

where the state ����  at time k+1 in branch j is a function of the state �!"�# at 

time k in the previous branch, the control input ��  at time k in branch j and the 

realization of the uncertainty %&"�# for that branch at time k. The set of all 

possible indices (j, k) in the tree construction will be denoted as I. 

 

Each path from the first node �( to a terminal one �)*  is called a scenario +,, 
where K is the prediction horizon. From this explanation, it must be clear that 

the number of scenarios N grows significantly fast with the prediction horizon, 

the number of uncertainties and the set of uncertainty values considered. This 

practical problem can be handled by assuming that the uncertainties remain 

constant after a time point, which is called the robust horizon. 

 

The optimization problem is written in general as follows: 

 �-��� , �� 	∀"/, 0# ∈ 2  ∑  4,5,6���� , �� 7'89,:� '�/8          (2a) 

   

subject to: 

 ���� = �  �!"�#, �� , %&"�#' , ∀"/, 0 + 1# ∈ 2,                           (2b) 

 =6�� , �� 7 ≤ 0, ∀"/, 0# ∈ 2,                               (2c) 

 �� = �@ 	-�	�!"�# = �!"@#, ∀"/, 0#, "A, 0# ∈ 2,                               (2d) 

 

where (2a) is the cost function, (2b) the process model, (2c) represents general 

nonlinear constraints on the states and inputs and (2d) a non-anticipativity 

constraint. 
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The cost of each scenario +, with weight 4, is denoted as 5,6���� , �� 7 and is 

defined as: 

       5,6���� , �� 7 = ∑ 	6���� , �� 7, ∀���� , �� ∈ +,,B���:C            (3) 

 

where 	6���� , �� 7 is a general stage cost. 

 

3.2.1.2. Main contribution 
 

3.2.1.2.1. Achieved performance and benchmark 
 

Given the stage cost 	6���� , �� 7, the measurement of achieved performance is 

defined in general as: 	�D = 	6��|��, �7            (4)  

 

Alternatively, for many practical applications, in which the stage cost is typically 

expressed exclusively in terms of measured states and control inputs, the 

following definition can also be provided: 

 	�D = 	E"�, �#,            (5)  

 

where 	"�, �# = 	E"�, �#.  
 

For monitoring purposes, this performance measurement will be compared to a 

model-based benchmark defined as: 

 	
�� = 	  ��|(� , ��|(F�"�#' , ∀"/, 0 − 0C# ∈ 2, 0 > 0C,          (6) 

       

where state predictions ��|(�  are computed from time 0C using (2b) and the 

optimizer predicted inputs ��|(F�"�#. The superscript �1"/#	represents one of the 

branches that emerge from node ��|(� .  

This benchmark represents the achievable performance of the system by 

design and is in general, a stochastic variable if noise covariance information is 
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included in the predictions and if the predicted uncertainty realizations %I|(&"�#  are 

sampled from probability distributions.  

 

Depending on the selection of 0C, it is possible to define this benchmark based 

on one-step or multi-step predictions up to the prediction horizon: 

 

 	
��� = 	 ��|��� , ��|��F�"�# ', ∀"/, 1# ∈ 2,                   (7) 

 

    	
��B = 	  ��|�")��#� , ��|�")��#F�"�# ' , ∀"/, J − 1# ∈ 2,                   (8) 

 

in order to evaluate the short and long term predictive capacity of the optimizer, 

respectively. Taking into consideration the size problem of the scenario tree, it 

is worth providing expressions for the benchmark for the simple case in which 

the robust horizon equals 1: 

 	
��� = 	6��|��� , ��|��� 7, ∀/ = 1, … , L                     (9) 

 	
��B = 	  ��|�")��#� , ��|�")��#� ' , ∀/ = 1, … , L                     (10) 

 

3.2.1.2.2. Performance indices 
 

Once the achieved performance measurement and the benchmark have been 

defined, some performance indices can be computed in order to establish a 

systematic comparison between them. 

 

Following the work of Patwardhan (1999), the α-index is defined as the ratio of 

the expected value of the benchmark and the achieved stage cost: 

 

  �
�� = 
MNOPQR SOQT            (11) 
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The α-index evaluates the proximity of the achieved performance to the 

expected value of the benchmark. This definition represents an instantaneous 

performance indicator prone to noisy readings. Therefore, it is advisable to 

define also time-averaged versions of the α-index such as follows: 

 

 �
��� = 
∑ MNOPQURV SQQUWQXYZ∑ OQUTQQUWQXYZ ,                                 (12) 

 

   �
��B =  
∑ MNOPUQQUR[ SQQUWQXY[∑ OQUTQQUWQXY[ ,                                 (13) 

 

where L\ is a user-defined time window. The auxiliary variable 	
]��]�B  is defined: 

	
]��]�B = 	  ��]|�")��#�] , ��]|�")��#F�"�]# ' , ∀  /], 0] − 60 − "J − 1#7' ∈ 2, 0] > 0 − "J − 1#   
so that with LB = J − 2, the whole prediction horizon can be chosen as an 

averaging window for the multi-step case.  

 

Additionally to the α-index, it is possible to define another performance index in 

which the distribution spread of the benchmark is explicitly taken into account. 

This spread may be considered in terms of quantiles or a certain number of 

standard deviations around the expected value. The β-index is defined as: 

 

�
�� =
_̀à
bcdeOPQR fOQT 	�D > ghN	
�� S1 giN	
�� S ≤ 	�D ≤ ghN	
�� ScjeOPQR fOQT 	�D < giN	
�� S

,          (14) 

 

where gil. n and ghl. n are estimations of lower and upper bounds for a 

probability distribution, respectively. Analogously, time-averaged versions of the 

β-index can be formulated as follows: 
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�
��� =
_̀à
b∑ cdeOPQURV fQQUWQXYZ∑ OQUTQQUWQXYZ ∑ 	�]D��]:��9Z > ∑ ghN	
�]�� S��]:��9Z1 ∑ giN	
�]�� S��]:��9Z ≤ ∑ 	�]D��]:��9Z ≤ ∑ ghN	
�]�� S��]:��9Z∑ cjeOPQURV fQQUWQXYZ∑ OQUTQQUWQXYZ ∑ 	�]D��]:��9Z < ∑ giN	
�]�� S��]:��9Z

  (15) 

 

�
��B =
_̀à
b∑ cdeOPQQUR[ fQQUWQXY[∑ OQUTQQUWQXY[ ∑ 	�]D��]:��9[ > ∑ ghN	
��]�B S��]:��9[1 ∑ giN	
��]�B S��]:��9[ ≤ ∑ 	�]D��]:��9[ ≤ ∑ ghN	
��]�B S��]:��9[∑ cjeOPQQUR[ fQQUWQXY[∑ OQUTQQUWQXY[ ∑ 	�]D��]:��9[ < ∑ giN	
��]�B S��]:��9[

      (16) 

 

3.2.1.3. Implementation details 
 

In addition to the modules presented in Figure 2.3.2, an evaluator module is 

proposed in order to compute periodically performance indices based on 

process data and results from the optimizer and the estimator as explained in 

the previous section. The scheme is represented graphically in Figure 3.2.1.3.1.  

As shown in the figure, the predicted inputs ��]|� 	∀0] = 0,… , 0 + J − 1 for all 

scenarios have to be stored in the database for further analysis in the evaluator 

module. 

 

 

Figure 3.2.1.3.1: Evaluator module in real-time scheme 
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The basic steps to implement the performance assessment in the evaluator 

module are summarized as a flowchart in Figure 3.2.1.3.2. 

 

 

Figure 3.2.1.3.2: Evaluator module flow chart  

 

At each time step, according to the definition of achieved performance adopted, ��|�� (or �) and � are read from the database to compute 	�D  with (4) (or (5)). 

A buffer of size max	"L\, LB# containing past values of 	�D  is required in order to 

compute time-averaged performance indices as explained in last section. 

 

The next step is to simulate the system to obtain the predicted states ��]|� , for 

all scenarios, integrating the process model (1) from the initial condition ��|�� 

with control input sequences ��U|� . The lack of precision in the initial condition, 

which can be measured by the estimator’s error covariance matrix rs,�|���, the 

effect of noise represented by the covariance matrices t\,� and uv,�, for 

process and measurement noise, respectively, and the realization of the 

uncertainties %IU|&"�#
 should be taken into consideration. 
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Samples of the benchmark are computed with (6) considering the variability of 

the uncertain parameters. From the samples, some statistics can be estimated 

such as moments and quantiles. These results should be conveniently stored in 

a buffer for future performance evaluations. Finally, retrieving the necessary 

elements from the buffers, the different performance indices can be computed 

with (11)-(16).  

 

3.2.2. Computation of benchmark statistics 
 

The main idea behind the computation of the benchmark is to perform 

simulations. In the general case, a number of Monte Carlo simulations are 

required in order to estimate properly its statistics. Nonetheless, some special 

cases are worth analyzing in order to produce more computationally efficient 

methodologies. For uncertainties with complex distributions, a methodology 

based on Markov chains is presented. 

 

3.2.2.1. General case 
 

3.2.2.1.1. Theoretical background 
 

A short review of Monte Carlo methods for systems simulation is presented as 

in Brandimarte (2014). 

 

Monte Carlo methods are a broad class of computational algorithms used to 

simulate systems affected by randomness, in which typically, several random 

scenarios are generated numerically and suitable statistics are estimated from 

the results. These conceptually simple methods provide flexible and valuable 

tools to perform simulations of complex systems. 

 

A typical Monte Carlo simulation consists of the following steps: 

 

1. Generate independent samples from stochastic variables. This requires 

efficient computation algorithms and a thorough analysis on the nature of 
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the uncertain parameters in order to develop realistic probability 

distributions.  

 

2. Simulate the system. For this step a detailed mathematical model with 

correctly estimated parameters is mandatory. Efficient methods to 

compute numeric integrals are also in order. 

 
3. The outcomes are collected in order to compute appropriate statistical 

measurements.  

 

Following this methodology, it is possible to compute the benchmark in the 

general case as will be explained in the following section. 

 

3.2.2.1.2. Implementation details 
 

The Monte Carlo simulation is implemented as explained in the previous section 

and represented graphically in Figure 3.2.2.1.2.  

 

The procedure is initialized by reading from the database the initial condition ��|��, the future control inputs ��]|� , the estimator’s error covariance matrix rs,�|���, the noise covariance matrices t\,� and uv,�, as well as the realization 

of the uncertainties %I]|&"�# . 
 

At time w = 0, a sample is taken from the initial condition’s multivariable normal 

distribution Lx"��(|��,rs,C|��#. Analogously, at each time step, values for the 

noises are sampled from their distributions Lx"0, t\,�# and Ly"0, uv,�#. The 

realization of uncertainties can also be considered as a stochastic variable if a 

proper probability distribution is assigned. 

 
The simulation is performed from time w = 0 to w = wzx� = "J − 1#{, with time 

steps equal to the optimizer’s period {. At each time step, the stage cost is 

computed and stored in a buffer. 
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This complete procedure is iterated Ly| times for each scenario. For each time 

step, estimations for the expected value and lower and upper bounds for the 

stage cost’s distribution are computed and stored in a buffer. 

 

 

Figure 3.2.2.1.2: Monte Carlo simulation flow chart 

  

3.2.2.2. Linear case with normal distributions 
 

The case of linear systems with normal distributions for uncertainties is worth 

analyzing as it allows formulating closed-form statistics for common 

benchmarks. The procedure is based on important properties of normal 

distributions, which are reviewed in the theoretical section.  
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3.2.2.2.1. Theoretical background 
 

Linear systems have been widely studied in the literature and their application in 

industrial control systems is commonplace. Linear models are commonly used 

in practice due to their simplicity, provided that they can represent correctly a 

process in a required range of operation. This is specially the case in control 

systems in which the objective is to keep the process as close as possible to 

some desired operating point.  

 

Furthermore, it is a common practice to consider noise as the result of several 

unmodeled random effects. With this justification, the central limit theorem 

allows to employ a normal distribution for noises, from which a distribution for all 

the states in the process can be computed (Zagrobelny, 2014). This result can 

be obtained from exploiting certain properties of the normal distribution. 

 

As presented in Tong (1990), it can be proved that the family of multivariate 

normal distributions is closed under linear transformations and combinations of 

random variables. Furthermore, it can be proved that if }�~Lx"��, Σ�# and }�~Lx"��, Σ�# are independent normally-distributed variables, then  

 � = ��}� + ��}�~Lx"���� + ����, ��Σ���] + ��Σ���]#,                (17) 

  

from which the mean and variance of a linear combination can be computed.  

 

Another quite useful result is presented in Mathai (1992) regarding the statistics 

of quadratic forms. It is shown that if }~Lx"�, Σ#, t"}# = }]�}, � = �′ , then 

 �6t"}#7 = w�"�Σ# + �′��,                                    (18) 

 ���6t"}#7 = 2w�"�Σ#� + 4�′�ΣA�,                               (19) 

 

from which, the expected value and variance of a quadratic stage cost can be 

exactly computed. 
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3.2.2.2.2. Main contribution 
 

Given a time-discrete linear system: 

 ���� = ��,��!"�# + ��,��� + ��,�%&"�# +�,                      (20a) 

 �� = ���� + �,                                             (20b) 

 

with deterministic control inputs ��  and normally-distributed stochastic variables 

�~Lx6(, t\,�7, �~Ly6(, uv,�7 and %&"�#~L� �%,&"�#, Σ�,��"
#'. If �(~Lx6��,(, Σs,C7, 
then, by (17): 

  ��~Lx6��,� , Σs,�
 7                                           (21) 

and 

  ��~Ly  ��,� , Σ�,�
 ',                                        (22) 

where ��,��� = ��,���,!"�# + ��,��� + ��,��%,&"�#
                           (23) 

 Σs,���
 = ��,�Σs,��"
#��,�] + ��,�Σ�,��"
#��,�] + t\,�                      (24) 

 ��,� = ����,�
                                             (25) 

  Σ�,�
 = ��Σs,�
 ��] + uv,�                                        (26) 

 

Equations (23)-(26) provide a theoretical procedure to compute the expected 

value and variance of all the states and outputs of the system by means of 

difference equations. It must be clear that statistics for linear stage costs can 

also be computed directly by this method. 

 

Furthermore, for a typical quadratic stage cost in set point tracking problems: 	"�# = 6� − ��!,7′t�,�6� − ��!,7, the following result holds by (18) and (19): 
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�  	6�� 7' = w�6t�,�Σ�,�
 7 +  ��,� − ��!,' ′t�,�  ��,� − ��!,'            (27)                             

 ���  	6�� 7' = 2w�6t�,�Σ�,�
 7� + 4 ��,� − ��!,' ′t�,�Σ�,�
 t�,�  ��,� − ��!,'   (28)                           

 

Therefore, the presented procedure allows efficient computation of the 

benchmark’s statistics for the linear case with normal distributions. 

 

3.2.2.2.3. Implementation details 
 

The proposed method for linear systems with normal distributions is 

implemented as explained in the previous section and represented graphically 

in Figure 3.2.2.2.3.  

 

Figure 3.2.2.2.3: Procedure for linear systems with normal distributions 

 

After reading from the database the required information, the difference 

equations (23)-(26) are solved in order to compute the expected value and 

variance of states and outputs. It must be kept into consideration that %I]|&"�#
 has 

to be modeled as a normally-distributed variable in the evaluator module. The 

simulation is performed for each scenario from time w = 0 to w = "J − 1#{, with 

time steps equal to the optimizer’s period {. At each time step, the results 

obtained with (27) and (28) should be stored in a buffer for future evaluations. 
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3.2.2.3. Nonlinear case with polynomial nonlinearities 
 

The theory of polynomial chaos expansion (Wiener, 1938) can be efficiently 

applied to estimate the benchmark statistics in the context of nonlinear systems, 

for which a review of its fundamentals will be explained in the theoretical 

section, as detailed in Xiu and Karniadakis (2002) and in Streif et al. (2014).  

 

3.2.2.3.1. Theoretical background 
 

In 1938, Wiener presented his theory on homogeneous chaos expansion in 

order to represent general second-order random processes by means of 

Hermite polynomials and combinations of them, which he called Hermite-chaos.  

 

The Hermite polynomials have multiple interesting properties, among which, 

orthogonality is especially important in this context. These polynomials are 

orthogonal with respect to a weighting function, which has the same form as a 

Gaussian probability density function: 

 

〈H,"x#, H
"x#〉 = � �������� H,"x#H
"x#�� = √2�	-! �,
,                  (29) 

 

where H,"x# is the Hermite polynomial of degree i and �,
 is the Kronecker delta.  

Following Wiener’s formulation, the Hermite-chaos expansion for a general 

second-order random process can be represented as follows: 

 �"�# = �C�C + ∑ �,V��6ξ,V7 +x,V:� ∑ ∑ �,V,���6ξ,V , ξ,�7,V,�:�x,V:� +
														∑ ∑ ∑ �,V,�,¡,�,¡:� �¢6ξ,V , ξ,� , ξ,¡7 + ⋯,V,�:�x,V:� ,                       (30) 

 

where �y6ξ,V , … , ξ,¤7 denotes the Hermite-chaos of order � in the variable �, 
which is composed of �	independent Gaussian variables. The coefficients �,V…,¥ 

describe the influence of each Hermite-chaos on the stochastic variable �. 
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For computational purposes, this infinite summation must be truncated at some 

order p and is conveniently represented as: 

 �"�# ≈ ∑ �§

̈:C ψ
"�#,                                     (31) 

 

where there is a one-to-one correspondence between the functions �y6ξ,V , … , ξ,¤7 and ψ
"�#. The number of terms of the summation can be proven 

to be given by: r + 1 = "x��#!x!�!                                                (32) 

 

From (32), it is clear that the number of coefficients grows significantly with the 

number of uncertainties and the maximum order of the Hermite-chaos. 

 

With such proper considerations, this method can be applied to efficiently solve 

stochastic differential equations as follows. Given a process model: 

 �s�ª = �"�, �, �#,                                         (33) 

 

with deterministic inputs � and stochastic uncertainties	�. The state � and 

the uncertainty � can be represented by the following expansion: 

  �"�, t# = ∑ �§
"w#
̈:C ψ
"�#                                      (34a) 

 �"�, t# = ∑ �¬
"w#
̈:C ψ
"�#                                     (34b) 

 

Normally, the uncertainty’s distribution is known, from which the coefficients  �¬
 
can be directly computed. Replacing (34) in (33), the following ordinary 

differential equation (ODE) system for the coefficients �§
 is obtained: 

 ∑ �s§P"ª#�ª
̈:C ψ
"�# = �  ∑ �§
"w#
̈:C ψ
"�#, �, ∑ �¬
"w#
̈:C ψ
"�#'              (35) 
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This system can be further simplified by means of a Galerkin projection method, 

by taking the inner product on both sides and using (29): 

 

�s§Q"ª#�ª = 〈®∑ s§P"ª#P̄W° ±P"�#,²,∑ �³P"ª#P̄W° ±P"�#´,±Q"�#〉√�µ	�! 	 ∀0 = 0,1, … , r     (36)           

 

In order to compute the coefficients �§�"w# from (36), the expansion for the initial 

state should be obtained first given its distribution. For the integration, 

conventional ODE solvers can be used such as Runge-Kutta methods. It must 

be considered that the right-hand side integrals in (36), result of the Galerkin 

projection, are in general quite cumbersome to compute, except for cases in 

which the nonlinearities in � are polynomials, as explained in Streif et al. (2014).  

 

Once the coefficients �§�"w# have been obtained, the expected value and 

variance of �"�, t# can be derived as follows: 

 �6�"�, t#7 = � ∑ �§�"w#�̈:C ψ�"�#' = ∑ �§�"w#�̈:C �6ψ�"�#7            (37) 

 

���6�"�, t#7 = 	�6��"�, t#7 −  �6�"�, t#7'� 

                                                 = ∑ �§��"w#�̈:C � ψ��"�#' −  �6�"�, t#7'�            (38) 

 

The Hermite-chaos expansion was proven to be effective in solving stochastic 

differential equations with Gaussian uncertainties. In order to handle other types 

of typical uncertainty distributions such as uniform and Poisson, a 

generalization of the original Wiener-chaos expansion has been proposed 

based on polynomials in the Askey scheme as explained in Xiu and Karniadakis 

(2002) and summarized in Table 3.2.2.3.1. 
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Table 3.2.2.3.1: Wiener-Askey polynomial chaos 

Random variable "�# Wiener-Askey chaos ¶ψ"�#· Support 

Gaussian Hermite-chaos "−∞,∞# 
Gamma Laguerre-chaos l0,∞# 

Beta Jacobi-chaos l�, ¹n 
Uniform Legendre-chaos l�, ¹n 
Poisson Charlier-chaos ¶0, 1, 2, … · 
Binomial Krawtchouk-chaos ¶0, 1, … ,L· 

 

3.2.2.3.2. Implementation details 
 

For the application of the polynomial chaos expansion theory, the PCET toolbox 

developed at the Technische Universität Chemnitz and reported in Streif et al. 

(2014) and Petzke et al. (2015) was employed. The procedure is represented 

graphically in Figure 3.2.2.3.2. 

 

 

Figure 3.2.2.3.2: Procedure for nonlinear case with polynomial nonlinearities 

(PCET Toolbox) 
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The toolbox allows defining models in terms of their basic components: states, 

inputs, parameters and outputs, based on an organizational structure. Each 

component requires a certain name, which will be used in turn to write the 

differential and output equations of the system. Currently, there is only support 

for polynomial nonlinearities in the differential equations and for normal and 

uniform distributions to describe uncertainties in the initial states and 

parameters. The inputs are considered deterministic and can be defined as time 

sequences in piecewise fashion. Once the data structures are completed and 

the order of the polynomials is specified, the expanded equations (36) are 

composed and saved in files. It must be considered that the initial setup of the 

system takes a considerable amount of time in general. 

 
The toolbox provides an update function to efficiently modify the description of 

the uncertainties in the initial states and parameters after the model has been 

defined. For the case of normal distributions, the mean and standard deviation 

can be adjusted, whereas for uniform distributions, the lower and upper bounds. 

This functionality is quite useful for setting up the integrations for different 

scenarios. The Galerkin projection method is provided as in (36), by which the 

composed system is then integrated to obtain the coefficients of the expansion 

for a given input sequence. Finally, the central moments are computed such as 

with (37) and (38) from the coefficients obtained in the previous step. 

 

3.2.2.4. Nonlinear case with complex distributions 
 

Markov chain models are proposed to represent complex uncertainties which 

cannot be correctly described by typical distributions. A short review on Markov 

chain fundamentals is therefore presented in the theoretical background section 

as in Brandimarte (2014). The application based on the Markov chain Monte 

Carlo methodology is presented in the following subsections. 
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3.2.2.4.1. Theoretical background 
 

A discrete-time Markov chain is a random process with a state variable º�, 0 = 0, 1, 2, 3, …,  taking values on a discrete set. Typically, this type of 

process is represented with a directed graph, in which nodes correspond to 

states and directed arcs to the transition probabilities between them. 

 

In order to determine the future evolution of the process, only the current state 

and the transition probabilities are required, which is an essential property of a 

Markov chain. For stationary processes, in which the transition probabilities do 

not depend on time, the chain can be described by a transition probability 

matrix, such that: r,
y| = r¶º��� = /|º� = -·                                      (39) 

 

Given the initial state distribution ¼( ∈ ℜ
9 , �,,C = r¶ºC = -·, the probability that 

the system will be in the next step in state º� = / is given by the chain rule: 

 r¶º� = /· = ∑ r¶º� = /|ºC = -·. r¶ºC = -·9,:�                       (40) 

 

or in matrix form: ¼�½ = ¼(½ry|                                              (41) 

                                             

The rule for distribution evolution can be generalized as follows: 

 

 ¼��½ = ¼½ry| = ¼(½"ry|#��                                 (42) 

 

3.2.2.4.2. Main contribution 
 

Markov chains are envisioned to represent complex uncertainties such as 

hardware malfunctions. Such description may prove especially useful for cases 

regarding slow processes with rather long prediction horizons, in which a 

correct analysis of the uncertainty evolution should be taken into consideration 

to perform realistic predictions for performance monitoring purposes. 
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The states of the Markov model º�U�� are proposed to be the indices �"/# of the 

uncertainty realizations in the multi-stage NMPC scheme. A graphical 

representation for a simple example is shown in Figure 3.2.2.4.2. The state 

space is the set {L, N, H} and corresponds to the typical case of one uncertainty 

with three uncertainty values in the robust formulation.  

 

Figure 3.2.2.4.2: Markov chain model example 

 

Therefore, for a given scenario, the effective uncertainty realization in the 

evaluator will be given by: 

%I]|∗ = %I]|}UX,                                               (43) 

 

where ºC = �"/#, ∀"/, 1# ∈ 2. The initial state distribution is thus assigned by the 

following rule: 

�,,C = ¿1, -�	- = �"/#0 ÀwÁ��Â-Ã�                                          (44) 

 

and its evolution is determined by (42). For the example, the transition 

probability matrix is given by: 

ry| = ÄrOOy| rO9y| rOÅy|r9Oy| r99y| r9Åy|rÅOy| rÅ9y| rÅÅy|Æ,                                   (45) 

 

which may be estimated based on maintenance history and process knowledge. 
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As a generalization, each state in the Markov model may be related to a 

standard statistical distribution, such as normal or uniform, representing the 

variability in the possible faults realization.  

 

3.2.2.4.3. Implementation details 
 

The procedure for Markov chain Monte Carlo simulation is represented 

graphically in Figure 3.2.2.4.3. 

 

Figure 3.2.2.4.3: Markov chain Monte Carlo simulation flow chart 

 

The procedure is initialized by reading from the database the required 

information. The initial state distribution of the Markov chain is assigned 
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according to (44). At each time period, a sample from the Markov chain model 

is taken in order to determine the state º�U��, from which an uncertainty 

realization can be obtained for the integration process. Following, the state 

probabilities are updated according to (42). The simulation is performed for a 

whole prediction horizon, Ly| times for each scenario. For each time step, 

estimations for the expected value, lower and upper bounds for the stage cost 

distribution are computed and stored properly. 

 

3.3. Proposed applications 
 

In this section some possible applications based on performance assessment 

are proposed in order to illustrate the potential of this methodology. 

 

3.3.1. Controller selection 
 

Performance assessment techniques may prove quite useful in the design 

stage of control systems. With such methodologies it would be possible to 

develop systematic design tools to automate the analysis and comparison of 

controllers, leading to the most suitable choice. 

 

For controller selection based on performance assessment, a target design 

performance 	��  must be specified in terms of an expected value and 

reasonable upper and lower bounds. Such desired performance may be related 

to the performance of an ideal controller or user defined. In this context, the 

following performance indices are proposed: 

 

��� = 
MNOQÇSOQT                                           (46) 

 

��� =
_̀à
bcdeOQÇfOQT 	�D > ghN	��S1 giN	��S ≤ 	�D ≤ ghN	��ScjeOQÇfOQT 	�D < giN	��S

                                (47) 
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Furthermore, in order to facilitate the comparison between different control 

structures, overall averaged measures of performance may be defined such as 

follows: 

∆� = 
∑ �0�YQQWV9Q ,                                             (48) 

∆� = 
∑ �0�YQQWV9Q ,                                         (49) 

 

where L� time stamps have been recorded from simulations. Once such 

indicators have been computed, a controller, from a list of possible candidates, 

is validated if ∆� and ∆� satisfy performance specifications such as: 

∆� É Ê8                                              (50) 

 ∆� É ÊË                                              (51) 

 

for given Ê8 and ÊË. With these considerations, a proposed procedure for 

controller selection is represented graphically in Figure 3.3.1. 

 

Figure 3.3.1: Procedure for controller selection 
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3.3.2. Performance monitoring and fault detection 
 

The benchmark for performance monitoring has been defined in section 3.2.1.2, 

along with the corresponding performance indices. Additionally for this task, a 

benchmark based on historical data 	�h  may prove quite useful for practical 

online applications. This approach requires expert process knowledge to 

determine a time window in which the performance could be considered 

appropriate. Similarly to (46)-(47), the following indices are defined: 

 

��h = 
MNOQdSOQT                                           (52) 

  

��h =
_̀à
bcdeOQdfOQT 	�D > ghN	�h S1 giN	�h S ≤ 	�D ≤ ghN	�h ScjeOQdfOQT 	�D < giN	�h S

                              (53) 

 

Furthermore, in order to facilitate the online monitoring task, the following 

indices are defined: 

 ��� = �
∗�� , 			/∗ = ��=�-�
6Ì�
�� − 1Ì7,                           (54) 

 ��� = �
∗�� , 			/∗ = ��=�-�
6Ì�
�� − 1Ì7,                           (55) 

 

which represent the best indices found for all scenarios.  

 

A thorough analysis on these indices may shed some light not only on the 

detection of performance degradation but also on possible root causes as 

discussed in Schäfer and Cinar (2002). Certainly, several root causes will have 

a significant impact on the history-based indices, while this is not necessarily 

true for those indices based on a process model. For instance, factors such as 

a significant plant-model mismatch, presence of disturbances out of the range 
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of uncertainty or actuator faults will not influence the model-based benchmark 

significantly, leading to relatively low values of ��� and ���. On the other hand, 

factors such as a poor tuning of the controller and input saturation will surely 

affect the model-based benchmark, leading to relatively small changes in the 

respective indices. 

 

With these considerations, a proposed procedure for performance monitoring 

and fault detection is represented graphically in Figure 3.3.2. 

 

 

Figure 3.3.2: Procedure for performance monitoring and fault detection 

 

Based on historical data, a reference of acceptable performance 	�h  is selected. 

After the analysis of a time window and computation of indices, a flag of normal 

operation is raised if ��h and ��h are in acceptable levels. Otherwise, the values 

of ��� and ��� are taken into consideration to indicate the status of the system 

after the fault was detected. 
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3.3.3. Re-tuning of the controller 
 

In most cases the weights 4, of the scenarios are considered invariant with time 

and equal to each other so that 4, = �9 , indicating that all scenarios are equally 

important for robust reasons. 

 

However, for some applications it may be desirable to prioritize performance 

over robustness. For such cases, an update formula, based on performance 

assessment methodologies, can be proposed to adjust the weights of the 

scenarios dynamically considering the model-based performance indices as 

follows:  

4
� = Í�Î�/0¹ −1Î+Ê+ Í�
Î�/0¹ +1Î+Ê

∑ Ï Í�Î�/0¹ −1Î+Ê+ Í�
Î�/0¹ +1Î+ÊÐ/

,                           (56) 

 

where Í8 and ÍË are weighting coefficients and Ê is a small number. Therefore, 

more weight is systematically given to scenarios with indices close to 1 in order 

to improve the performance of the system. In general for this operation, the 

indices obtained from multi-step predictions �
��B and �
��B should be employed, 

as they are directly related to the scenarios. Only for cases in which the robust 

horizon equals 1, the indices obtained from one-step predictions �
��� and �
��� 

may also be used. 

 

3.3.4. Training of operators 
 

In recent times, the use of dynamic simulation and operator training systems 

has become a reality in the process industry. Such systems allow training 

operators, instructors and plant management in how to best operate their 

facilities. Given the current trend of advanced control implementations, such 

tools will prove mandatory to test and validate control strategies and logic 

before start-up of main facilities and to investigate future engineering solutions. 

This is especially true for MPC applications, whose counterintuitive behavior 

may be hard to analyze even for expert plant personnel. Provided performance 
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indicators in the training environment, such analysis would be considerably 

facilitated, allowing operators not only to evaluate the effects of controller 

parameters tuning, but also to recognize normal from abnormal situations with 

easiness. Troubleshooting procedures and settings for emergency control 

strategies without risking plant operation may therefore be put in practice 

beforehand increasing the confidence in operators. 

 

Furthermore, for a known given process scenario set up by an experienced 

operator, the visualization and study of the controller predictions would allow a 

better understanding on the decision criterion employed by the optimizer. Such 

simulation should be performed under realistic considerations and typical 

process events, with which the operators are already familiarized. With the 

support of the presented performance indicators, training tasks such as pre-

tuning of new control loops and evaluation of design changes before 

implementation may be safely performed.  
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4.  Case studies 
 

In this chapter the case studies used in this project will be presented. The 

description includes differential equations and process parameters, the setup of 

the estimators and the optimization problems. All tables with configuration 

parameters will be included in the appendix section. 

 

4.1. Controller selection for a 4-Tank system 
 

4.1.1. Process module 
 

A quadruple-tank process as presented in Botelho et al. (2016) was used as 

case study for controller selection. The system consists of four interconnected 

tanks as shown in Figure 4.1.1.  

 

 

Figure 4.1.1: Schematic representation of 4-Tank system (Botelho et al. 2016) 

 

From a reservoir, water is pumped to the tanks by means of voltages Ñ�� and Ñ��. Additionally, the flux to the tanks can be regulated by means of two valves 

with openings �v� and �v�. The state vector is defined as � = lÁ�	Á�	Á¢	ÁÒn½ and 

the control input as � = NÑ��	Ñ��	�v�	�v�S½. 
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From mass balances involving tank levels, the nonlinear differential equations 

that describe the system can be obtained: 

 �Ó = �"�, �#           (57a) 

 

�"�, �# = 

ÔÕÕ
ÕÕÕ
Ö− |ÇV×ØV "��#zÙV + |Ç¡×ØV "�¢#zÙ¡ + ²¡�V×ØV ��− |Ç�×Ø� "��#zÙ� + |ÇÚ×Ø� "�Ò#zÙÚ + ²Ú��×Ø� ��− |Ç¡×Ø¡ "�¢#zÙ¡ + "��²Ú#��×Ø¡ ��− |ÇÚ×ØÚ "�Ò#zÙÚ + "��²¡#�V×ØÚ �� ÛÜÜ

ÜÜÜ
Ý
               (57b) 

 

Nominal values for the parameters of the system are shown in Table A.1.1.1. 

 

From (57), the linearization of the system around the equilibrium point "��, ��# is 

given by: 

 ∆�Ó = �"��, ��#∆� + �"��, ��#∆�, ∆� = � − ��, ∆� = � − ��        (58a) 

 �"��, ��#
=

ÔÕÕ
ÕÕÖ−

Í������E� "�E�#zÙV��000
0−Í������E� "�E�#zÙ���00

Í�¢��¢�E� "�E¢#zÙ¡��0− Í�¢��¢�E¢ "�E¢#zÙ¡��0

0Í�Ò��Ò�E� "�EÒ#zÙÚ��0− Í�Ò��Ò�EÒ "�EÒ#zÙÚ��ÛÜÜ
ÜÜÝ 

  (58b) 

�"��, ��# =
ÔÕ
ÕÕ
Ö 01�Ã3�Ã10001"1−�Ã3#�Ã4

002�Ã4�Ã202"1−�Ã4#�Ã30
01�Ã1�Ã100− 01�Ã1�Ã4

002�Ã2�Ã2− 02�Ã2�Ã30 ÛÜ
ÜÜ
Ý
                   (58c) 

 

The deviations ∆� are available as output measurements. The initial value of ∆� 

and ∆�, as well as the equilibrium point selected for the study are shown in 

Tables A.1.1.2 and A.1.1.3, respectively. 

 



42 

 

Uncertainties in the form of normally-distributed noise and deterministic 

disturbances will affect the process. Parametric disturbances �Í�¢ and �Í�Ò as 

deviations from the nominal values in Table A.1.1.1 and input disturbances ��� 

and ��� as deviations from the inputs sent from the controller will be 

considered. The vector of disturbances % = l�Í�¢	�Í�Ò	���	���n½ is added to the 

model, along with the noise terms: 

 ∆�Ó = �"��, ��#∆� + �"��, ��#∆� + �"��, ��#% + �,                 (59a) 

 � = ∆� + �,                                             (59b) 

 

where all matrices are computed considering nominal parameter values and � 

is given by: 

 

�"��, ��# = 

ÔÕ
ÕÕ
Ö "sØ¡#ÞÙ¡×ØV0− "sØ¡#ÞÙ¡×Ø¡0

0"sØÚ#ÞÙÚ×Ø�0− "sØÚ#ÞÙÚ×ØÚ

�V²Ø¡×ØV00�V"��²Ø¡#×ØÚ

0��²ØÚ×Ø���"��²ØÚ#×Ø¡0 ÛÜ
ÜÜ
Ý
       (59c) 

 

The noise distribution and the description of the deterministic disturbances as 

process events are shown in Tables A.1.1.4 and 4.1.1, respectively. The system 

(59) must be discretized in time considering the period of the optimizer in order 

to apply the results obtained in section 3.2.2.2. 

 

Table 4.1.1: Process events for 4-Tank system 

Variable 
Start time 

(min) 
End time 

(min) 
Nominal 

value 
Test 

Value �Í�¢ 10.0 15.0 0.0 -0.4 �Í�Ò 10.0 15.0 0.0 -0.3 ��� 10.0 15.0 0.0 0.4 
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4.1.2. Estimator module 
 

The estimator is a Kalman filter working with the nominal model (58). Table 

A.1.2.1 shows the initial conditions ∆��(|�� = l∆�§C�, ∆�§C�, ∆�§C¢, ∆�§CÒn½ and rs,C|�� = �-�="rsC�, rsC�, rsC¢, rsCÒ#. On the other hand, the noise covariance 

matrices, tuned from process information, t\ = �-�="t\�, t\�, t\¢, t\Ò# and uv = �-�="uv�, uv�, uv¢, uvÒ# are shown in Table A.1.2.2. The period for the 

estimator was chosen as Te = 5.0 s. 

 
4.1.3. Optimizer module 
 

For the benchmark, the performance of an unconstrained MPC controller was 

taken into consideration. For such controller, the optimization problem is 

formulated as follows: 

 

�-�∆�], ∆�] ß ∆�U��½ à5 0 0 00 5 0 000 00 00 00â
�ã

�]:� ∆�U�� + ∆�]½ Ä1 0 0 00 1 0 000 00 400 040Æ ∆�] + 

 

"∆�] − ∆�]��#½ Ä 0.1 0 0 0		0 0.1 0 000 	00 0.10 00.1Æ "∆�] − ∆�]��#       (60a) 

subject to: ∆�]�� = ��"��, ��#∆�] + ��"��, ��#∆�], ∆�( = ∆����|��,         (60b) 

 

where ��"��, ��# and ��"��, ��# are time discretizations of (58b) and (58c). 

 

For the test cases based on multi-stage MPC, the optimization problems are 

formulated as: 
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�-�∆��]
 , ∆��]
 	∀"/, 0′# ∈ 2ß ß6∆�U��� 7½ à5 0 0 00 5 0 000 00 00 00â
B��
�]:� ∆�U��� +�ä


:�  

6∆�]� 7½ Ä1 0 0 00 1 0 000 00 400 040Æ∆�]� + 

 ∆�]� − ∆�U��!"�# '½ Ä 0.1 0 0 0		0 0.1 0 000 	00 0.10 00.1Æ  ∆�]� − ∆�U��!"�# '           

											                                                                            (61a) 

subject to: 

 ∆�U��� = ��"��, ��#∆�U!"�# + ��"��, ��#∆�]� + ��"��, ��#%]&"�#, ∆�( = ∆����|��, ∀"/, 0′ + 1# ∈ 2,                             (61b) 

 −1 ≤ ∆�,,�U
 ≤ 1, ∀- = 1,… , 4, ∀"/, 0′# ∈ 2,                      (61c) 

     −2.5 ≤ ∆�,,�U
 ≤ 2.5, ∀- = 1, 2, ∀"/, 0′# ∈ 2,          (61d) 

 −0.25 ≤ ∆�,,�U
 ≤ 0.25, ∀- = 3, 4, ∀"/, 0′# ∈ 2,                        (61e) 

 ∆�]� = ∆�]@ 	-�	∆�]!"�# = ∆�]!"@#, ∀"/, 0]#, "A, 0′# ∈ 2,                                  (61f) 

 

where %]&"�# takes all combinations of 3 elements from vector %, defined in 

section 4.1.1. The uncertainty values considered are [-1 0 1] for all cases. �� is 

the respective time discretization of (59c) for each combination. Radau 

collocation points have been used as discretization method with second degree 

polynomials and two finite elements per control interval. The robust horizon is 

equal to 1 and the period of the optimizer was chosen as To = 5.0 s. 
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4.2. Performance monitoring on a CSTR 
 

4.2.1. Process module 
 

A continuously stirred tank reactor (CSTR) as presented in Kvasnica et al. 

(2010) was used as a case study for performance monitoring. In the CSTR 

three reactions take place to convert the input feed component A in the desired 

component B including two side products C and D as shown in Figure 4.2.1.  

 

 

Figure 4.2.1: Schematic representation of CSTR (Kvasnica et al. 2010) 

 

The CSTR is equipped with a jacket to cool down the reactor. The input feed 

flow å and the cooling power tÓ  define the control input vector � = Nå	tÓ S½. 

Furthermore, a state vector composed of concentrations and temperatures is 

defined as � = l�D	��	{æ	{Bn½, where �D and �� represent the concentration of 

components A and B, respectively. On the other hand, the temperatures {æ and {B represent the reactor and the cooling jacket temperature, respectively.  

 

From mass balances involving components concentration and energy balances 

regarding temperatures, the nonlinear differential equations that describe the 

system can be obtained: 
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�Ó = �"�, �#,                (62a) 

 

�"�, �# =
ÔÕÕ
ÕÕÖ

�1"��,-� − �1# − J1�1 − J3�12−�1�2 + J1�1 − J2�2J1�1�u�¹+J2�1�u¹Í+J3�12�u��	−ç�� + �1"{-� − �3# + JÂ�uç���u "�4 − �3#
�2+JÂ�u"�3-�4#	�J��,J ÛÜÜ

ÜÜÝ ,    (62b) 

 

where the reaction rates are driven by the Arrhenius law: 

 

J� = ��¹JCD��é� êëTRì¡í�î¡.Vïð         (62c) 

 

J� = JC�|�é� êëRñì¡í�î¡.Vïð         (62d) 

 

J¢ = JCD��é���� êëTÇì¡í�î¡.Vïð         (62e) 

 

Nominal values of the individual parameters of the system are shown in Table 

A.2.1.1. On the other hand, the initial value of � and � is shown in Table 

A.2.1.2. 

 

Uncertainties in the form of normally-distributed noise and multiplicative 

deterministic disturbances will affect the process. Input disturbances ��� and ��� as deviations from the inputs sent from the controller and a parametric 

disturbance ��D,,x as deviation from the nominal value in Table A.2.1.1 will be 

considered. The vector of disturbances % = N���	���	��D,,xS½ is included in the 

model, along with the noise terms: 

 �Ó = ��"�, �, %# + �                                        (63a) 

 � = � + �                      (63b 
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��"�, �, %# =
ÔÕ
ÕÕÕ
Ö �1�1"��,-��3 − �1# − J1�1 − J3�12−�1�1�2 + J1�1 − J2�2J1�1�u�¹+J2�1�u¹Í+J3�12�u��	−ç�� + �1�1"{-� − �3# + JÂ�uç���u "�4 − �3#

�2�2+JÂ�u"�3-�4#	�J��,J ÛÜ
ÜÜÜ
Ý
  (63c) 

 

The noise distribution and the description of the deterministic disturbances as 

process events are shown in Tables A.2.1.3 and 4.2.1, respectively. 

 

Table 4.2.1: Process events for CSTR 

Variable 
Start time 

(min) 
End time 

(min) 
Nominal 

Value 
Test 

Value ��� 20.0 25.0 1.0 1.25 ��� 10.0 15.0 1.0 0.8 ��D,,x 30.0 35.0 1.0 0.8 

 

4.2.2. Estimator module 
 

The Extended Kalman filter uses the nominal model (62) extended for input 

disturbance estimation assuming a zero order hold behavior for ��� and ���. 

Considering that �� = N�¬D	�¬�	{³æ	{³B	��§�	��§�S½, the extended model used by the 

estimator is given by:  ��Ó = �z"��, �#,                  (64a) 

 �� = lòÒ (Òs�n��,       (64b)  

 

�z"��, �# = ó��"l�§�	�§�	�§¢	�§Òn½ , �, l�§ô	�§õ	1n½#(�s� ö,                    (64c) 

 

where ò is the identity matrix and ( is the zero matrix. Table A.2.2.1 shows the 

initial conditions ��(|�� = l�§C�, �§C�, … , �§Cõn and rs,C|�� = �-�="rsC�, rsC�, … , rsCõ#. 
On the other hand, the noise covariance matrices, tuned from process 

information, t\ = �-�="t\�, t\�, … , t\õ# and uv = �-�="uv�, uv�, uv¢, uvÒ# are 

shown in Table A.2.2.2. The period for the estimator was chosen as Te = 5.0 s. 
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4.2.3. Optimizer module 
 

The optimization problem for multi-stage NMPC is formulated as follows: 

 

�-���]
 , ��]
 	∀"/, 0′# ∈ 2ß ß6�U��� 7½ à10Ò 0 0 00 10ô 0 000 00 00 00â
�ã

�]:� �U��� +ã

:�  

6�]� 7½ e2�10�¢ 00 10�÷f �]� + 

 �]� − �U��!"�# '½ ó10�ô 00 10��Cö  �]� − �U��!"�# '           

											                                                                            (65a) 

subject to: 

 

�U��� = �� ®�]!"�#, �]� , ó%]&"�#1 	ö´ , �( = ����|��, ∀"/, 0′ + 1# ∈ 2,              (65b) 

 1.5 ≤ ��,�U
 ≤ 2.3, ∀"/, 0′# ∈ 2,                        (65c) 

 0.6 ≤ ��,�U
 ≤ 0.8, ∀"/, 0′# ∈ 2,                        (65d) 

 120 ≤ �¢,�U
 ≤ 160, ∀"/, 0′# ∈ 2,                     (65e) 

 40 ≤ �Ò,�U
 ≤ 180, ∀"/, 0′# ∈ 2,                          (65f) 

 5 ≤ ��,�U
 ≤ 250, ∀"/, 0′# ∈ 2,                     (65g) 

 −85000 ≤ ��,�U
 ≤ 0, ∀"/, 0′# ∈ 2,                (65h) 

 �]� = �]@ 	-�	�]!"�# = �]!"@#, ∀"/, 0]#, "A, 0′# ∈ 2,                                          (65i) 
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The uncertainties considered in the optimization problem are ��� and ��� with 

uncertainty values [0.7 1.0 1.3]. Radau collocation points have been used as 

discretization method with second degree polynomials and two finite elements 

per control interval. The robust horizon is equal to 1 and the period of the 

optimizer was chosen as To = 5.0 s. 

 

4.2.4. Performance assessment module 
 

The benchmark for online performance assessment for this case study was 

computed by means of the PCET toolbox with the Galerkin projection method. 

The configuration included 8 uncertain parameters: lÂ�	Â�	Â¢	ÂÒ	Ñ�	Ñ�	���	���n 
with order 1 for the polynomials. The statistical description of ��� and ��� for 

each scenario is given in Table 4.2.4. The reaction rates were approximated by 

a 4th-degree Taylor expansion in order to make the equations compatible with 

the toolbox. 

 

Table 4.2.4: Statistical description of ��� and ��� for performance  

monitoring on CSTR 

Scenario Distribution for ��� Distribution for ��� 

1 L"0.7750, 0.0375�# L"0.7750, 0.0375�# 
2 L"0.7750, 0.0375�# L"1, 0.0150�# 
3 L"0.7750, 0.0375�# L"1.2250, 0.0375�# 
4 L"1, 0.0150�# L"0.7750, 0.0375�# 
5 L"1, 0.0150�# L"1, 0.0150�# 
6 L"1, 0.0150�# L"1.2250, 0.0375�# 
7 L"1.2250, 0.0375�# L"0.7750, 0.0375�# 
8 L"1.2250, 0.0375�# L"1, 0.0150�# 
9 L"1.2250, 0.0375�# L"1.2250, 0.0375�# 
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4.3. Performance monitoring on a polymerization reactor 
 

4.3.1. Process module 
 

An industrial batch polymerization reactor as presented in Lucía et al. (2014) 

was used as a case study for performance monitoring. In the reactor a very 

exothermic reaction takes place in order to produce polymer B from monomer A 

as shown in Figure 4.3.1. The reactor is equipped with a jacket and an external 

heat exchanger to allow regulation of internal temperature. The input feed flow 

of A �Ó û and the coolant temperatures at the inlet of the jacket {üý9 and at the 

inlet of the heat exchanger {×þ½ý9  define the input vector � = l�Ó û	{üý9	{×þ½ý9 n½. 

Furthermore, a state vector composed of masses and temperatures in the 

system is defined as � = l�þ	�×	�¨	{æ	{�	{ü	{MB	{×þ½	{D�,D�	�ûD||n½, where �þ 

is the mass of water in the reactor, �× the mass of monomer, �¨ the mass of 

product, {æ the reactor temperature, {� the vessel temperature, {ü the jacket 

temperature, {MB the temperature of the mixture in the heat exchanger, {×þ½ the 

temperature of the coolant leaving the heat exchanger, {D�,D� the maximum 

temperature in the reactor under cooling system failure and �ûD||, the total 

amount of material that has been fed in the reactor.  

 

 

Figure 4.3.1: Schematic representation of batch polymerization system 

(Lucía et al. 2014) 
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From mass balances and energy balances regarding temperatures in the 

system, the nonlinear differential equations that describe the system can be 

obtained: �Ó = �"�, �#                 (66a) 

 �"�, �# =

ÔÕ
ÕÕ
ÕÕ
ÕÕ
ÕÕ
ÕÕ
ÕÕ
ÕÕ
Ö ��4þ,û��4×,û − 0æ��×,æ − ���yë��s�y�ÞØ0æ��×,æ + ���yë��s�y�ÞØ�|Ù,�y�ÞØ  ��Í�,û"{û − �Ò# + ∆�æ0æ��×,æ − 0B�"�Ò − �ô# − �Ó ×þ½Í�,æ"�Ò − �ä#'�|Ù,�y� 60B�"�Ò − �ô# + 0B�"�õ − �ô#7�|Ù,�y�,[�  �Ó ü,BþÍ�,þ"�� − �õ# + 0B�"�ô − �õ#'

�|Ù,�yë�� ®�Ó ×þ½Í�,æ"�Ò − �ä# + �zs�"�÷ − �ä# + ���yë��∆Å�s�y�ÞØ ´
�|Ù,�yë��,[�  �Ó ×þ½,BþÍ�,þ"�¢ − �÷# + �zs�"�ä − �÷#'

∆Å�|Ù,�y�ÞØ �Ó� − "�Ó� + �Ó� + �Ó¢# ® s�∆Å�|Ù,�y�ÞØ� ´ + �ÓÒ�� ÛÜ
ÜÜ
ÜÜ
ÜÜ
ÜÜ
ÜÜ
ÜÜ
ÜÜ
Ý

, 

  (66b) 

where 

� = �3�2+�3        (66c) 

 �	zE = �� + �� + �¢        (66d) 

 

0æ� = 0C� XêT�"ìÚí�î¡.Vï#"0
�"1 − �# + 0
��#                        (66e) 

 

0æ� = 0C� XêT�"ìîí�î¡.Vï#"0
�"1 − �# + 0
��#         (66f) 

 0B = 0�+�1+0�+�2+0r+�3�=�Ã           (66g) 

 �×,æ = �� − yë��s�y�ÞØ           (66h) 
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Nominal values of the individual parameters are shown in Table A.3.1.1. On the 

other hand, the initial value of � and � is shown in Table A.3.1.2. 

 

Uncertainties in the form of normally-distributed noise and multiplicative 

deterministic disturbances will affect the process. Input disturbances ���, ��� 

and ��¢	as deviations from the inputs sent from the controller will be 

considered. The vector of disturbances % = l���	���	��¢n is included in the 

model, along with the noise terms: 

 �Ó = ��"�, �, %# + �                                        (67a) 

 � = � + �                      (67b) 

 ��"�, �, %# = �"�, � ∘ %#                                     (67c) 

 

The operator ∘	 denote the component-wise Hadamard product. The noise 

distribution and the description of the deterministic disturbances as process 

events are shown in Tables A.3.1.3 and 4.3.1, respectively. 

 

Table 4.3.1: Process events for batch polymerization reactor 

Variable 
Start time 

(min) 
End time 

(min) 
Nominal 

Value 
Test 

Value ��� 30.0 40.0 1.0 1.0005 ��� 55.0 65.0 1.0 0.995 ��¢ 80.0 90.0 1.0 0.995 

 

4.3.2. Estimator module 
 

The Extended Kalman filter uses the nominal model (66) extended for input 

disturbance estimation assuming a zero order hold behavior for ��� and ���. 

Considering that �� = N��þ	��×	��¨	{³æ	{³�	{³ü	{³MB	{³×þ½	{³D�,D�	��ûD||	��§�	��§�S½, the 

extended model used by the estimator is given by: 
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��Ó = �z"��, �#                  (68a) 

 �� = lò�C (�Cs�n��       (68b) 

 

�z"��, �# = ��6l��1	��2…	��10n{, �, l��11	��12	1n{7(2�1 �               (68c) 

 

Table A.3.2.1 shows the initial conditions ��(|�� = l�§C�, �§C�, . . , �§C��n and rs,C|�� =�-�="rsC�, rsC�, … , rsC��#. On the other hand, the noise covariance matrices, 

tuned from process information, t\ = �-�="t\�, t\�, … , t\��# and uv =�-�="uv�, uv�, … , uv�C# are shown in Table A.3.2.2. The period for the estimator 

was chosen as Te = 5 s. 

 

4.3.3. Optimizer module 
 

The polymerization reactor is a batch process that will be operated optimally in 

terms of an economic cost function. For this case study the use of soft 

constraints will prove quite valuable to maintain the reactor temperature inside 

safety bounds. 

 

The optimization problem for multi-stage NMPC is formulated as follows: 

 �-���]
 , ��]
 	∀"/, 0′# ∈ 2ß ß −�¢,�U
�ã
�]:� +ã


:�  �]� − �U��!"�# '½ �10�ô 0 00 2�10�Ò 00 0 10�Ò�  �]� −�U��!"�# ' + 

10  �"�¢,�U
 − 368.15#'  �¢,�U
 − 368.15'� + 

10  1 − �"�¢,�U
 − 358.15#'  �¢,�U
 − 358.15'�                (69a) 

 

subject to: 

 

�U��� = �� ®�]!"�#, �]� , ó%]&"�#1 	ö´ , �( = ����|��, ∀"/, 0′ + 1# ∈ 2,              (69b) 

 �,,�U
 É 0, ∀- = 1, 2	, ∀"/, 0′# ∈ 2,             (69c) 
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 �¢,�U
 É 26, ∀"/, 0′# ∈ 2,                        (69d) 

 353.15 ≤ �Ò,�U
 ≤ 373.15, ∀"/, 0′# ∈ 2,               (69e) 

 298 ≤ �,,�U
 ≤ 400, ∀- = 5, 6, ∀"/, 0′# ∈ 2,                (69f) 

 288 ≤ �,,�U
 ≤ 400, ∀- = 7, 8, ∀"/, 0′# ∈ 2,               (69g) 

 0 ≤ �ã,�U
 ≤ 30000, ∀"/, 0′# ∈ 2,                         (69h) 

 ��C,�U
 ≤ 392.15, ∀"/, 0′# ∈ 2,             (69i) 

 0 ≤ ��,�U
 ≤ 30000, ∀"/, 0′# ∈ 2,                       (69j) 

 333.15 ≤ �,,�U
 ≤ 373.15, ∀- = 2, 3, ∀"/, 0′# ∈ 2,              (69k) 

 �]� = �]@ 	-�	�]!"�# = �]!"@#, ∀"/, 0]#, "A, 0′# ∈ 2,                                          (69l) 

 

where H(.) denotes the Heaviside step function. This function is used to define 

conveniently soft constraints for the temperature of the reactor �Ò,�U
  in (69a). 

With the soft constraints, some weight is added to the cost function if �Ò,�U
  lies 

outside the range [358.15 368.15]. 

 

The uncertainties considered in the optimization problem are ��� and ��� with 

uncertainty values [0.999 1 1.001] and [0.99 1 1.01], respectively. Radau 

collocation points have been used as discretization method with second degree 

polynomials and one finite element per control interval. The robust horizon is 

equal to 1 and the period of the optimizer was chosen as To = 5.0 s. 
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4.3.4. Performance assessment module 
 

The benchmark for performance assessment for this case study was computed 

considering a Markov chain model for input disturbances. Assuming that the 

Markov chain that describes one actuator fault can be correctly represented as 

shown in Figure 4.3.4, the entries of the transition probability matrix for the 

system of two independent actuators are given in Table 4.3.4.1. On the other 

hand, the statistical description of ��� and ��� for each scenario is given in 

Table 4.3.4.2.  

 

Figure 4.3.4: Markov chain that describes one actuator fault in batch reactor 

 

Table 4.3.4.1: Transition probability matrix for benchmark computation 

�*��� LL LN LH NL NN NH HL HN HH 

LL 0.9976 0.0012 0 0.0012 0 0 0 0 0 

LN 0.0003 0.9982 0.0003 0 0.0012 0 0 0 0 

LH 0 0.0012 0.9976 0 0 0.0012 0 0 0 

NL 0.0003 0 0 0.9982 0.0012 0 0.0003 0 0 

NN 0 0.0003 0 0.0003 0.9988 0.0003 0 0.0003 0 

NH 0 0 0.0003 0 0.0012 0.9982 0 0 0.0003 

HL 0 0 0 0.0012 0 0 0.9976 0.0012 0 

HN 0 0 0 0 0.0012 0 0.0003 0.9982 0.0003 

HH 0 0 0 0 0 0.0012 0 0.0012 0.9976 
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Table 4.3.4.2: Statistical description of ��� and ��� for performance  

monitoring on the polymerization reactor 

Scenario Distribution for ��� Distribution for ��� 

1 L"0.9992, 0.0001�# L"0.9925, 0.0013�# 
2 L"0.9992, 0.0001�# L"1, 0.0005�# 
3 L"0.9992, 0.0001�# L"1.0075, 0.0013�# 
4 L"1, 0.0001�# L"0.9925, 0.0013�# 
5 L"1, 0.0001�# L"1, 0.0005�# 
6 L"1, 0.0001�# L"1.0075, 0.0013�# 
7 L"1.0008, 0.0001�# L"0.9925, 0.0013�# 
8 L"1.0008, 0.0001�# L"1, 0.0005�# 
9 L"1.0008, 0.0001�# L"1.0075, 0.0013�# 
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5. Results and discussion 
 

In this chapter results obtained with case studies on controller selection and 

performance monitoring are presented and discussed. Results show how 

suitable performance indicators allow systematic comparison of controllers and 

analysis of control performance in normal and abnormal situations. All 

computational tasks were performed on a PC system with following 

specifications: Intel Core i7-6700 CPU @3.40 GHz, 4.00 GB RAM. 

 

5.1. Controller selection for a 4-Tank system 
 

5.1.1. Definition and computation of benchmark 
 

As explained in section 3.3.1, the first step in the controller selection procedure 

is to define a desired target performance 	�� , so that only test controllers that 

perform closely or better than desired can be taken into consideration. Such 

target performance has been established for this case study based on an ideal 

unconstrained MPC controller. 

 

The time response of such a system under the test events shown in Table 4.1.1 

is presented in Figure 5.1.1.1. The results obtained for the ideal case free of 

events are shown only for comparative purposes. The events time window is 

indicated with dashed lines. 

 

At the beginning of the simulation, the tank levels Á� and Á� are above the 

desired equilibrium point, for which both pumps reduce the flow and the valves 

restrict the amount of water that enters the tanks until the equilibrium point is 

achieved. The input disturbance ��� and the parametric disturbance �Í�¢ 

contribute both to a decrease in the level of tank 1, while the parametric 

disturbance �Í�Ò contribute to an increase in the level of tank 2. The response 

of the controller during the presence of disturbances is therefore to increase 

significantly the effective flow to tank 1 and to reduce the flow to tank 2. After 

the events time window, the system converges asymptotically to the equilibrium 

point.   
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Figure 5.1.1.1: Time response of the 4-Tank system with unconstrained MPC 

 

The desired benchmark 	��  may be conveniently defined based on (9) and 

efficiently computed as explained in section 3.2.2.2 for one scenario. Figure 

5.1.1.2 shows the desired model-based benchmark along with the performance 

achieved by the unconstrained MPC controller 	�D . A band of 2 standard 

deviations around the expected value is shown with blue dashed lines. A slight 

difference between 	�D 	and 	��  can be observed during the period with presence 

of disturbances mainly due to estimation errors in the Kalman filter.  
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Figure 5.1.1.2: Desired benchmark for controller selection 

 

Computation results obtained with the theoretical method developed in section 

3.2.2.2 and with the Monte Carlo method are shown in Table 5.1.1.1.  

 

Table 5.1.1.1: Computation results for controller selection benchmark 

Variable � = ��N	��S, Ãw�N	��S� �N�%S ��%N�%S 
Theoretical method  

é∑ �ªh9Q�:�L� ð 
1.2033 0.0990 

Monte Carlo method   

(
∑ �¥ñYQQWV9Q , 100 iterations) 

1.2043 0.0978 

Mean percentage error 

ß �ªh − �y|�ªh 	L�
9Q
�:� �100% 

0.2 -0.8 

Mean absolute percentage error 

ß ��ªh − �y|�ªh 	L� �
9Q
�:� �100% 

1 4 

 



60 

 

Indicators such as the mean percentage error and mean absolute percentage 

error show an agreement between the numerical results obtained with the two 

methods despite the relatively low number of Monte Carlo iterations. 

Computation times are summarized in Table 5.1.1.2, showing the benefits of 

using the theoretical method over Monte Carlo simulations. For the case study, 

any number of iterations greater than 10 will provide statistically a speed-up in 

the computations. 

 

Table 5.1.1.2: Computation times for controller selection benchmark 

Variable Value 

Theoretical method  

(wªh) 
(0.5±0.2) ms 

Monte Carlo method 

(wy|, 1 iteration) 
(0.10±0.05) ms 

Speed-up gain 

� = Ly|wy|wªh  
(0.2±0.1) x Ly| 

 

5.1.2. Comparison of different structures 
 

Once the benchmark is computed, different controller structures can be 

evaluated. For the present study, four structures with different uncertainty 

parameters will be analyzed as shown in Table 5.1.2.1. 

 

Table 5.1.2.1: Controller structures for analysis 

Structure Uncertainty % 

S1 l�Í�¢	�Í�Ò	���n 
S2 l�Í�¢	�Í�Ò	���n 
S3 l�Í�¢	���	���n 
S4 l�Í�Ò	���	���n 

 

The controllers are set up as explained in section 4.1.3 with prediction horizons 

K = 60. Simulation results for each case are shown in Figure 5.1.2.1.  
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Figure 5.1.2.1: Time response of the 4-Tank system with different structures of 

multi-stage MPC 

 

It can be observed that after the initial 10 minutes, in which the tank levels are 

stabilized at their equilibrium point, the performance is deteriorated due to 

disturbances. The control input bounds are active at times in order to satisfy the 

hard constraints for tank level ÁÒ during the events time window. After 

inspecting the time responses, it may be hard to determine which controller 

performed better or according to requirements, for which the proper 

performance measurements should be computed. The achieved performance 	�D  of each structure is presented along with the benchmark in Figure 5.1.2.2. 
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Figure 5.1.2.2: Comparison of achieved performance 

 

The abrupt changes in the control inputs lead to drastic peaks in the achieved 

performance. Once 	�D  is obtained, the performance indicators can be computed 

with (46) and (47). Results are shown in Figures 5.1.2.3 and 5.1.2.4 for the �� 	and �� indices, respectively. For the computation of the indices an averaging 

window of 45 seconds was used.  

 

 

Figure 5.1.2.3: ���- Performance index for different control structures 
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Figure 5.1.2.4: ���- Performance index for different control structures 

 

The figures show that during the period before the events time window, all 

structures perform most of the time better than the benchmark, including the 

first half of such window. After this time point and until the disturbances 

disappeared, the performance of the controllers is slightly worse than the 

benchmark, mainly due to the aggressive input changes. Finally, during the last 

minutes of simulation, the performance obtained is quite similar to the 

benchmark. As mentioned in section 3.3.1, indicators such as (48) and (49) can 

be computed in order to have an overall picture of the controller performance 

and to facilitate the selection process. Additionally, an indicator that penalizes 

only poorer performance than the benchmark may be also conceived to 

complement the comparative analysis. Table 5.1.2.2 shows such an indicator 

along with the performance specifications Ê8 and ÊË for each case.   

 

Table 5.1.2.2: Performance specifications for controller selection 

Indicator � = ¶�, �· �  �! 

∆� = 
∑ �0�YQQWV9Q  1.0 1.0 

∆� = 1 − ∑  1−�0�'� 1−�0�'YQQWV 9Q  0.8 0.9 
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Table 5.1.2.3 shows the results of the computations for each structure. In bold it 

has been indicated the cases that comply with the specifications. According to 

the performance assessment procedure, structures S1 and S2 allow a better 

overall performance than the benchmark with less than 20% of performance 

reduction in average regarding the ��-index and less than 10% regarding the ��-index. Additional considerations should be imposed in order to favor one 

structure over the other. 

Table 5.1.2.3: Aggregate performance for controller structure selection 

Indicator S1 S2 S3 S4 

∆� = 
∑ �0�YQQWV9Q  1.19 1.37 1.77 0.95 

∆� = 1 − ∑  1−�0�'� 1−�0�'YQQWV 9Q  0.83 0.83 0.79 0.78 

∆� = 
∑ �0�YQQWV9Q  1.12 1.18 1.42 0.96 

∆� = 1 − ∑  1−�0�'� 1−�0�'YQQWV 9Q  0.93 0.90 0.87 0.88 

 

5.1.3. Analysis of dependence on the prediction horizon 
 

The same procedure can be used to analyze the controller performance 

dependence on the prediction horizon. For this study the structure S1 has been 

selected and the unconstrained MPC benchmark will be used as before. Table 

5.1.3.1 shows the test controllers and Figure 5.1.3.1, the time response for each 

case. 

Table 5.1.3.1: Controller prediction horizon for analysis 

Controller Prediction horizon K 

C1 10 

C2 20 

C3 40 

C4 80 
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Figure 5.1.3.1: Time response of the 4-Tank system with different  

prediction horizons 

 

In this case it is rather clear that the performance of the controllers with the 

shortest prediction horizon is not as good as the other two. This fact can be 

more clearly seen with the proper performance assessment analysis. Figures 

5.1.3.2 and 5.1.3.3 show the respective performance indices. 
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Figure 5.1.3.2: ���- Performance index for controllers with different  

prediction horizons 

 

 

Figure 5.1.3.3: ���- Performance index for controllers with different  

prediction horizons 

 

Controllers C1 and C2 have a significantly poorer performance compared to the 

benchmark, even though the prediction horizons are quite similar. On the other 

hand, the performance of C3 is quite similar to the one analyzed in the previous 
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section with K = 60. Finally, the performance of C4 is much better than the 

benchmark for significant periods of time, only slightly deteriorated at the end of 

the events time window. These observations are coherent with the common 

notion that a longer prediction horizon would lead to a better performance as 

long as computation delays do not play a major role, which is the case for C4. 

The aggregate performance assessment is shown in Table 5.1.3.2. In this case, 

controller C3 is the only one that complies with the performance specifications 

set in Table 5.1.2.2 for the case study. 

 

Table 5.1.3.2: Aggregate performance for controller prediction horizon selection 

Indicator C1 C2 C3 C4 

∆� = 
∑ �0�YQQWV9Q  0.36 0.56 1.05 1.43 

∆� = 1 − ∑  1−�0�'� 1−�0�'YQQWV 9Q  0.36 0.55 0.82 0.78 

∆� = 
∑ �0�YQQWV9Q  0.44 0.68 1.01 1.23 

∆� = 1 − ∑  1−�0�'� 1−�0�'YQQWV 9Q  0.44 0.68 0.93 0.86 

 

5.2. Performance monitoring on a CSTR 
 

5.2.1. Normal operation 
 

In order to implement a performance monitoring application it is worth having a 

general grasp of what may be considered as normal operation of the system 

under study. For this reason, a simulation under ideal conditions, free of 

disturbances, is performed, which results are shown in Figure 5.2.1. The noisy 

readings from process measurements are shown in black, whereas the 

estimated signals are shown in blue and bounds in red. 
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 Figure 5.2.1: Normal operation of the CSTR  

 

Initially, components A and B are too concentrated in the reactor, for which the 

response of the controller is to reduce the reactor temperature, which would 

lead to a decrease in ��. In order to counteract the resulting increase in �D the 

input flow is also reduced. After this transient stage, it is observed that the 

system continuously cools down the reactor in order to maintain the 

temperature {æ close to 140º C, which would allow suitable reaction rates. 

Concentrations �D and �� are kept as close as possible to their set points taking 

into consideration that the cost for inputs utilization is not significantly increased. 

 

5.2.2. Definition and computation of benchmarks 
 

As explained in section 3.3.2, for performance monitoring it is quite useful to 

define a so-called historical benchmark. For this case study, such benchmark 

may be conveniently defined taking into consideration the results obtained for 

normal operation of the CSTR. From the time response shown in Figure 5.2.1, 

the achieved cost function 	�D  can be computed. Results are shown in Figure 

5.2.2. This 	�D  will be the base to define the historical benchmark for the system 

taking into consideration the time period after the transient stage. The expected 

value and standard deviation will be used to characterize the band of normal 

operation for this continuous process. Results are summarized in Table 5.2.2.1. 
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Figure 5.2.2: Achieved performance during normal operation of the CSTR 

 

Table 5.2.2.1: Historical benchmark for the CSTR 

Variable Value �N	�h S 160.12 Ãw�N	�h S 25.15 giN	�h S = �N	�h S − 2Ãw�N	�h S 109.83 ghN	�h S = �N	�h S + 2Ãw�N	�h S 210.41 

 

On the other hand, the benchmark 	
��� for fault detection was computed using 

the PCET toolbox. Computation results for scenario 5 are shown as an example 

in Table 5.2.2.2. The results obtained with the PCET toolbox show that there is 

no significant difference between the Monte Carlo method with 100 iterations 

and the polynomial chaos expansion of order 1 for this case study. Furthermore, 

the results from Table 5.2.2.3 show that for the configuration employed, any 

simulation case with Ly| É 4	 computed with the Galerkin method will be faster 

than with the Monte Carlo method.  
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Table 5.2.2.2: Computation results for online performance 

monitoring benchmark 	
��� for the CSTR 

Variable � = ��N	��S, Ãw�N	��S� �N��"�S ��%N��"�S 
Theoretical method  

é∑ ��|zª9Q�:�L� ð 
136.8483 57.2905 

Monte Carlo method   

(
∑ �¥ñYQQWV9Q , 100 iterations) 

136.9260 57.2919 

Mean percentage error 

ß ��|zª − �y|�y|	L�
9Q
�:� �100% 

-0.04 -0.003 

Mean absolute percentage error 

ß ���|zª − �y|�y|	L� �
9Q
�:� �100% 

0.3 0.09 

 

Table 5.2.2.3: Computation times for online performance  

monitoring benchmark 	
��� for the CSTR 

Variable Value 

Initialization 

 (w,x,ª, setup compound model) 
(1.5±0.4) s 

Theoretical method  

(w�|zª) (0.30±0.04) s 

Monte Carlo method 

(wy|, 1 iteration) 
(0.12±0.04) s 

Speed-up gain 

� = Ly|wy|w�|zª  
(0.4±0.1) x Ly| 
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5.2.3. Fault detection 
 

Once the benchmarks have been defined, the performance monitoring task can 

take place. Figure 5.2.3.1 shows the time response of the system under the 

process events from Table 4.2.1.  

 

 

Figure 5.2.3.1: Operation of the CSTR under process events 

 

During the cooling power fault between time t = 10 min and t = 15 min, the 

response of the controller is to set tÓ  to the lower bound. This action does not 

prevent the reactor temperature from rising, for which in order to maintain the 

concentrations close to their set points, the flux is increased correspondingly. 

During the flow actuator fault between time t = 20 min and t = 25 min, the mean 

value of the concentration �D is slightly increased, while the reactor temperature 

is not significantly affected. The flux mean value is also not significantly 

modified, while some oscillations are observed mainly due to estimation errors. 

Such errors are also observed during the fault in the inflow concentration 

controller between time t = 30 min and t = 35 min. In this period, tÓ  is 

significantly increased in magnitude in order to maintain the reactor temperature 

level, while å is only slightly increased as the controller determines that an 

increase in the flux would be more detrimental to the system. 
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The achieved cost function is shown in Figure 5.2.3.2 along with the band that 

describes normal performance. The performance indices were computed with 

(52)-(55) considering an averaging window of 10 seconds. Results are shown in 

Figures 5.2.3.3 and 5.2.3.4. 

 

Figure 5.2.3.2: Achieved performance during abnormal operation of the CSTR 

 

 

Figure 5.2.3.3: �-Performance indices for performance monitoring on the CSTR 
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Figure 5.2.3.4: �-Performance indices for performance monitoring on the CSTR 

 

From the figures it is clear that even in a case with considerable noise, it is 

possible to study the health of the system. The ��-index in Figure 5.2.3.3 clearly 

shows the estimation errors that occur during the first two minutes of operation 

and during the last two equipment faults. Furthermore, performance monitoring 

can be accomplished specially taking into consideration the �-indices as shown 

in Figure 5.2.3.4. The oscillations around t = 25 min lead to low values of the �h-index based on the historical benchmark, while the model-based ��-index 

still indicates a normal operation. As explained in section 3.3.2 this may be 

indicated as a minor fault. On the other hand, the fault in the inflow 

concentration would be indicated as a major fault as both indicators register a 

significantly low performance. 

 

5.2.4. Analysis of scenarios 
 

As a corollary from the explanation in section 3.3.3, the degree of agreement of 

each prediction scenario with the actual achieved values in the process can be 

measured by (56). Therefore, it is possible to determine which scenarios 

represent more closely the current state of the process by means of 

performance indicators. Figures 5.2.4.1 and 5.2.4.2 show the averaged results 

computed using (56) for the case of normal operation. 
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Figure 5.2.4.1: Analysis of scenarios for normal operation with �-index 

 

 

Figure 5.2.4.2: Analysis of scenarios for normal operation with �-index 

 

As shown in Table 4.2.4, scenario 5 corresponds to the case free of 

disturbances. Therefore, it is expected that figures 5.2.4.1 and 5.2.4.2 show 

relative high values for this scenario. Eventually, other scenarios may also have 

high values especially considering the randomness in the estimated states and 

all sources of delay in the system. A low weight based on the �-index may give 



75 

 

clear indication of disagreement between the scenario and the real process as 

its prediction cannot statistically explain the observations. On the other hand, 

weights based on �-index may be more precise but also prone to noise. Tables 

5.2.4.1 and 5.2.4.2 summarize the averaged weights for each scenario. The 

darker gray lines indicate the presence of process events during the respective 

time window, while bold numbers appear for the scenarios with the best fit for 

each window. Taking into consideration Tables 4.2.1 and 4.2.4, it can be 

verified that in most of the cases the weights represent correctly the correlation 

between the scenarios and the real status of the process as long as the indices ��� and ��� are close to 1. If such indices are significantly far from 1, the results 

may no longer be reliable. An example of this is shown in the rows concerning 

the time window [30 35] in Table 5.2.4.1, in which a similar weight would be 

assigned to all scenarios.  

 

Table 5.2.4.1: Averaged weights with �-index for CSTR monitoring 

t (min) 1 2 3 4 5 6 7 8 9 

[0 10] 0.04 0.04 0.06 0.10 0.19 0.21 0.11 0.11 0.15 

[10 15] 0.02 0.03 0.03 0.13 0.16 0.23 0.16 0.12 0.13 

[15 20] 0.05 0.04 0.07 0.14 0.13 0.19 0.12 0.14 0.13 

[20 25] 0.11 0.10 0.09 0.14 0.11 0.09 0.11 0.14 0.12 

[25 30] 0.07 0.09 0.08 0.13 0.15 0.16 0.09 0.15 0.10 

[30 35] 0.12 0.12 0.11 0.10 0.10 0.10 0.13 0.11 0.11 

[35 45] 0.04 0.05 0.04 0.13 0.17 0.18 0.11 0.13 0.15 

 

Table 5.2.4.2: Averaged weights with �-index for CSTR monitoring 

t (min) 1 2 3 4 5 6 7 8 9 

[0 10] 0.03 0.05 0.06 0.15 0.14 0.14 0.14 0.15 0.15 

[10 15] 0.01 0.02 0.03 0.15 0.15 0.14 0.17 0.17 0.17 

[15 20] 0.05 0.07 0.06 0.14 0.14 0.13 0.13 0.14 0.14 

[20 25] 0.14 0.12 0.13 0.10 0.09 0.09 0.12 0.10 0.10 

[25 30] 0.07 0.09 0.09 0.14 0.12 0.11 0.12 0.14 0.13 

[30 35] 0.14 0.12 0.12 0.10 0.10 0.10 0.11 0.11 0.11 

[35 45] 0.04 0.05 0.06 0.15 0.14 0.14 0.13 0.15 0.15 
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5.3. Performance monitoring on a polymerization reactor 
 

5.3.1. Normal operation 
 

A simulation of a batch run under ideal conditions is performed and the results 

are shown in Figure 5.3.1.  

 

Figure 5.3.1: Normal operation of the polymerization reactor 
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After an initial peak due to estimation errors, the monomer feed slowly 

increases until it reaches its maximum rate at time t = 60 min. The input 

temperatures oscillate permanently in order to maintain the reactor temperature 

close to the upper soft constraint, as this condition provides the best conversion 

without incurring in significant penalizations. The sudden feed reductions at 

times t = 39 min and t = 53 min allow less oscillation in the input temperatures. 

During the last 20 minutes of operation the benefit for producing polymer 

exceeds the penalization due to the soft constraints, leading to relative high 

values of the reactor temperature. The batch time reported was 90 minutes. 

 

5.3.2. Definition and computation of benchmarks 
 

From the time response shown in Figure 5.3.1, the achieved cost function 	�D  

can be computed. A smoothened version of the achieved performance in 

normal operation along with a band to account for possible random events will 

be considered as the historical benchmark for the polymerization reactor. Figure 

5.3.2 shows −	�D  for better inspection of the maximization results. Furthermore, 

the computation time for the benchmark 	
��B is reported as wy| = "0.21# 0.02#Ã 
for one Monte Carlo simulation. 

 

 

Figure 5.3.2: Achieved performance during normal operation of the 

polymerization reactor 
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5.3.3. Fault detection 
 

Figure 5.3.3.1 shows the time response of the system under the process events 

from Table 4.3.1. 

 

Figure 5.3.3.1: Operation of the polymerization reactor under process events 
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During the feed system fault, the controller is forced to reduce the feed abruptly. 

Contrary to the previous case, the input temperatures keep oscillating to 

maintain the reactor temperature close to the upper soft constraint. Another 

considerable feed reduction is observed during the input temperature {üý9 fault, 

while the fault in {×þ½ý9  had only a minor effect in the time response of the 

system. The batch time reported was 94 minutes. The achieved cost function is 

shown in Figure 5.3.3.2 along with the band that describes normal performance.  

 

 

Figure 5.3.3.2: Achieved performance during abnormal operation of the 

polymerization reactor 

 

The inverse of the performance indices computed with (52)-(55) are shown in 

Figures 5.3.3.3 and 5.3.3.4. As the objective of this case study is to maximize a 

cost function, the inverse of the performance indices relate better to the 

interpretation given before. Initial estimation errors lead to low values of the �h-

index for the test case during the first 30 minutes of operation. However, 

considering the �h-index, this relative low performance can still be considered 

as normal. From time t = 35 min, the performance of the system is slowly 

reduced until t = 50 min. After this time, the performance indices relative to the 

historical benchmark maintain an approximate value of 0.9 until the end of the 

batch. From time t = 43 min, a minor fault in the system can be indicated 

considering the readings from the model-based indices. 
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Figure 5.3.3.3: �-Performance indices for performance monitoring on the 

polymerization reactor 

 

 

Figure 5.3.3.4: �-Performance indices for performance monitoring on the 

polymerization reactor 

 

 

 



81 

 

 

Close observation of these indices will show, however, that they have a small 

permanent positive bias, which can be explained by estimation errors, 

synchronization issues and database access delays. These accumulated delays 

cause a consistent time difference between the estimated states and the 

measurements, which leads to an index bias after performing the predictions. 

This bias is clearly seen in this case as the main component of the cost 

function, the polymer mass, grows continuously and significantly with time as 

shown in Figure 5.3.3.5. Furthermore, in order to perform a proper analysis of 

scenarios, this delay effect should be corrected in the real-time modules taking 

into consideration the time stamps given by the database. 

 

 

Figure 5.3.3.5: Effect of delays on the predictions 
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6. Conclusions 
 

In this thesis some methodologies to evaluate systematically the performance of 

model predictive controllers have been proposed with special consideration for 

applications based on multi-stage NMPC.  

 

After a thorough literature review, a performance measure based on the 

optimizer stage cost was chosen. This represents a natural selection in order to 

conveniently monitor if the controller is doing what it was designed to do. In 

order to draw conclusions from the monitoring, the achieved performance is 

compared with a model-based benchmark, which represents a reference of the 

expected achievable performance of the system by design and which can be 

computed performing simulations of the system considering a full process 

model. The resulting benchmark is in general a stochastic variable 

characterized by its expected value, lower and upper bounds, from which 

performance indices can be defined in order to simplify the interpretation of 

results. In order to avoid noisy readings, it is convenient to define time-averaged 

versions of the performance indices. 

 

In the general case, the design benchmark must be computed by means of 

Monte Carlo simulations. Nonetheless, for some special cases more 

computationally efficient techniques can be proposed. A theoretical procedure 

based on fundamental properties of normal distributions is explained for the 

case of linear systems with normally-distributed uncertainties. Furthermore, the 

use of the polynomial chaos expansion theory by means of the PCET toolbox 

provides an efficient mechanism to solve nonlinear stochastic differential 

equations with polynomial nonlinearities. Both procedures led to significant 

computation speed up gains with respect to the conventional Monte Carlo 

method with similar numerical results. For practical purposes, however, it must 

be taken into consideration, that the polynomial chaos expansion method is not 

easily scalable as the resulting system of equations grows significantly fast with 

the number of uncertain variables, for which only the most relevant ones should 
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be included in the formulation in order to avoid problems related to insufficient 

computing resources. Moreover, the PCET toolbox requires models to include 

only polynomial nonlinearities, which may introduce considerable model-plant 

mismatch if the model conversion is not properly performed. 

 

On the other hand, a procedure based on Markov chains is proposed in order to 

handle cases with complex distributions such as equipment malfunctions. 

Incorporating maintenance information, this technique may be used to provide 

realistic predictions as part of an operators training program. Such technique is 

envisioned to be used especially on cases with slow dynamics and rather long 

prediction horizons, so that the effects of equipment failure are meaningful and 

the computation time requirements of the Monte Carlo method are fulfilled. 

 

The range of possible applications for these methodologies is wide, covering 

not only control performance monitoring tasks, but also providing support in the 

controller design stage. As an example, a performance-based procedure for 

controller selection is presented and illustrated with a quadruple tank system as 

case study. Given performance specifications, this procedure allows a 

systematic comparison of controllers in order to validate only those that comply 

with the desired requirements. Process insight must be provided in order to 

define a reasonable target performance that can be achieved and a sufficient 

number of criteria in order to facilitate the selection procedure. The examples 

presented show cases in which the performance difference between some 

controllers is significant, while relatively small among others, so that it is difficult 

to select one univocally.  

 

A performance monitoring technique is illustrated with two case studies 

regarding a continuous and a batch reactor. Employing a historical and a 

model-based benchmark, it is possible to compute indices that would allow 

operators to distinguish between normal and abnormal operation, as well as to 

classify the type of faults encountered. Considering their robustness to noise, 

the �-indices are especially suitable for this application. Furthermore, a 

procedure for dynamic tuning of the optimizer based on performance indices is 

proposed, for which the �-indices prove to be quite useful considering their 
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sensitivity to the different scenarios. For this application, however, the 

monitoring indices ��� and ��� are required to be close to 1. Some consideration 

must be taken to compensate for noise and delay effects in a real-time 

implementation as these would lead to incorrect predictions, hindering the 

application of the performance indices for a specific case study. 

 

The performance assessment techniques proposed in this thesis are expected 

to contribute towards better understanding of the MPC industrial technology, as 

well as to improve the design and analysis of such advanced controllers.  
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7. Future work 
 

Some progress has been accomplished on the evaluation of model predictive 

controllers. Nonetheless, some issues remain open for further investigation. 

 

Performance indicators that measure predicted violations of soft constraints 

may be quite useful to quantify the stability of a system especially in economic 

applications. Furthermore, an analysis of the computation times of the optimizer 

may shed some light on the current status of the system. 

 

Further methodologies must be explored in order to solve efficiently stochastic 

differential equations such as the Euler-Maruyama and the Milstein method. 

Monte Carlo methods may be further developed by means of parallel computing 

techniques.  

 

Different technologies of industrial databases and networks should be studied. 

Proper mechanisms to compensate for communication and access delays must 

be proposed for each case. 

 

As an extension to the tuning methodology presented, the weights of the 

scenarios may be adjusted according to the user needs. For this purpose, a 

configuration parameter may be defined in the range [0 1], so that robustness 

and performance represent the extreme values. Furthermore, the effects of 

such online tuning should be tested. 

 

Performance deterioration due to common malfunctions such as sensor faults, 

sensor drifts and actuators that temporarily do not react to control signals 

should be studied for industrial case studies.  

 

A natural extension of performance assessment consists in the identification of 

such faults, therefore achieving a fault diagnosis system. Some techniques 

have been proposed for linear systems (Botelho, 2016), which may be extended 

to the nonlinear case.  
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8. Appendix 
 

A. Configuration parameters of case studies 
 

A.1. Controller selection for a 4-Tank system 
 

A.1.1. Process module 
 

Table A.1.1.1: Nominal parameter values for 4-Tank system 

Parameter Description Value Units �E� Cross sectional area of tank 1 2.80x103 cm2 

�E� Cross sectional area of tank 2 3.20x103 cm2 �E¢ Cross sectional area of tank 3 2.80x103 cm2 �EÒ Cross sectional area of tank 4 3.20x103 cm2 Í�� Natural flow coefficient 1 3.15 cm2.5 / s Í�� Natural flow coefficient 2 2.53 cm2.5 / s Í�¢ Natural flow coefficient 3 3.15 cm2.5 / s Í�Ò Natural flow coefficient 4 2.23 cm2.5 / s 0� Ratio flux to voltage in pump 1 12.56 cm3 / V.s 0� Ratio flux to voltage in pump 2 13.16 cm3 / V.s ��� Exponent for natural flow 1 0.50 - ��� Exponent for natural flow 2 0.50 - ��¢ Exponent for natural flow 3 0.50 - ��Ò Exponent for natural flow 4 0.50 - 

 

Table A.1.1.2: Initial values for 4-Tank system 

Variable Value Units ∆�� 0.5 cm ∆�� 0.8 cm ∆�¢ -0.4 cm ∆�Ò -0.7 cm ∆�� 0.4 V ∆�� 0.3 V 
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∆�¢ 0.05 - ∆�Ò -0.05 - 

 

Table A.1.1.3: Equilibrium point for 4-Tank system 

Variable Value Units �E� 201.49 cm �E� 214.77 cm �E¢ 75.68 cm �EÒ 106.02 cm �E� 3.20 V �E� 3.15 V �E¢ 0.43 - �EÒ 0.34 - 

 

Table A.1.1.4: Noise distribution for 4-Tank system 

Variable Distribution Units Â� L"0, 0.005�# cm.s-1 

Â� L"0, 0.005�# cm.s-1 Â¢ L"0, 0.005�# cm.s-1 ÂÒ L"0, 0.005�# cm.s-1 Ñ� L"0, 0.05�# cm Ñ� L"0, 0.05�# cm Ñ¢ L"0, 0.05�# cm ÑÒ L"0, 0.05�# cm 

 

A.1.2. Estimator module 
 

Table A.1.2.1: Initial values for estimator for 4-Tank system 

Variable Value Units ∆�§C� 0.2 cm ∆�§C� -0.1 cm ∆�§C¢ 0.1 cm 
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∆�§CÒ -0.4 cm rsC� 0.01 cm2 

rsC� 0.01 cm2 rsC¢ 0.01 cm2 rsCÒ 0.01 cm2 

 

Table A.1.2.2: Noise covariance matrices for estimator for 4-Tank system 

Variable Value Units t\� 1.25x10-4 cm2 t\� 1.25x10-4 cm2 t\¢ 1.25x10-4 cm2 t\Ò 1.25x10-4 cm2 uv� 5x10-4 cm2 uv� 5x10-4 cm2 uv¢ 5x10-4 cm2 uvÒ 5x10-4 cm2 

 

A.2. Performance monitoring on a CSTR 
 

A.2.1. Process module 
 

Table A.2.1.1: Nominal parameter values for CSTR 

Parameter Description Value Units �D� Corrective factor for �×D� 0.90 - �D� Corrective factor for JCD� 1.00 - JCD� Pre-exponential factor for reaction A�B 1.29x1012 h-1 

JC�| Pre-exponential factor for reaction B�C 1.29x1012 h-1 JCD� Pre-exponential factor for reaction 2A�D 9.04x109 mol-1 h-1 �×D� Activation energy for reaction A�B 9.76x103 kJ.mol-1 

�×�| Activation energy for reaction B�C 9.76x103 kJ.mol-1 �×D� Activation energy for reaction 2A�D 8.56x103 kJ.mol-1 �æD� Enthalpy for reaction A�B 4.20 kJ.mol-1 �æ�| Enthalpy for reaction B�C -11.00 kJ.mol-1 
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�æD� Enthalpy for reaction 2A�D -41.85 kJ.mol-1 ç Density 0.93 kg.L-1 

�� Specific heat capacity 3.01 kJ.kg-1.K-1 

��,B Coolant heat capacity 2.00 kJ.kg-1.K-1 �æ Area of reactor wall 0.22 m2 

�æ Volume of reactor 10.01 L �B Coolant mass 5.00 kg {,x Inflow temperature 130.00 ºC J\ Convection coefficient 4.03x103 kJ.h-1.m2.K-1 

�D,,x Inflow concentration of A 5.10 mol/L 

 

Table A.2.1.2: Initial values for CSTR 

Variable Value Units �� 2 mol/L �� 0.65 mol/L �¢ 145 ºC �Ò 100 ºC �� 200 m3.h-1 

�� -4x103 kJ.h-1 

 

Table A.2.1.3: Noise distribution for CSTR 

Variable Distribution Units Â� L"0, 0.4�# mol.L-1.h-1 

Â� L"0, 0.4�# mol.L-1.h-1 Â¢ L"0, 40�# ºC.h-1 ÂÒ L"0, 40�# ºC.h-1 Ñ� L"0, 0.02�# mol.L-1 Ñ� L"0, 0.02�# mol.L-1 Ñ¢ L"0, 2�# ºC ÑÒ L"0, 2�# ºC 
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A.2.2. Estimator module 
 

Table A.2.2.1: Initial values for estimator for CSTR 

Variable Value Units �§C� 1.9 mol/L �§C� 0.7 mol/L �§C¢ 150 ºC �§CÒ 90 ºC �§Cô 1 - �§Cõ 1 - rsC� 0.05 mol2/L2 

rsC� 0.05 mol2/L2 rsC¢ 2 ºC2 

rsCÒ 2 ºC2 

rsCô 0.01 - rsCõ 0.01 - 

 

Table A.2.2.2: Noise covariance matrices for estimator for CSTR 

Variable Value Units t\� 4x10-5 mol2/L2 

t\� 4x10-5 mol2/L2 t\¢ 0.4 ºC2 

t\Ò 0.4 ºC2 

t\ô 4x10-5 - t\õ 4x10-5 - uv� 4x10-4 mol2/L2 

uv� 4x10-4 mol2/L2 uv¢ 4 ºC2 

uvÒ 4 ºC2 
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A.3. Performance monitoring on a polymerization reactor 
 

A.3.1. Process module 
 

Table A.3.1.1: Nominal parameter values for batch polymerization reactor 

Parameter Description Value Units u Gas constant 8.31 kJ.kmol-1.K-1 

Í�,þ Specific heat capacity of the coolant 4.20 kJ.kg-1.K-1 Í�,� Specific heat capacity of steel 0.47 kJ.kg-1.K-1 

Í�,û Specific heat capacity of the feed 3.00 kJ.kg-1.K-1 Í�,æ Specific heat capacity in the reactor 5.00 kJ.kg-1.K-1 0þ� Heat transfer coefficient water-steel 4.80x103 W.m-2.K-1 

{û Feed temperature 25.00 ºC � Heat exchange area in the jacket 65.00 m2 

�ü,Bþ Mass of coolant in the jacket 5.00x103 kg �� Mass of reactor steel 3.90x104 kg �×þ½ Mass of the product in the heat exchanger 2.00x102 kg �×þ½,Bþ Mass of the coolant in the heat exchanger 1.00x103 kg �Ó ü,Bþ Coolant flow in the jacket 3.00x105 kg.h-1 

�Ó ×þ½,Bþ Coolant flow of the heat exchanger 1.00x105 kg.h-1 �Ó ×þ½ Product flow to the heat exchanger 2.00x104 kg.h-1 �D Activation energy 8.50x103 kJ.kmol-1 

∆�æ Specific reaction enthalpy 9.50x102 kJ.kg-1 

0C Specific reaction rate 7.00 - 0
� Reaction parameter 1 32.00 - 0
� Reaction parameter 2 4.00 - 4þ,û Mass fraction of water in feed 0.33 - 4×,û Mass fraction of monomer in feed 0.67 - 0×� Heat transfer coefficient monomer-steel 1.00x103 W.m-2.K-1 0¨� Heat transfer coefficient product-steel 100.00 W.m-2.K-1 �zs� Experimental coefficient 3.60x106 kJ.h-1.K-1 
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Table A.3.1.2: Initial values for batch polymerization reactor 

Variable Value Units �� 105 kg �� 853 kg �¢ 26.5 kg �Ò 361.15 ºC �ô 363.15 ºC �õ 363.15 ºC �ä 308.15 ºC �÷ 308.15 ºC �ã 300 ºC ��C 378.05 kg �� 0 kg.h-1 

�� 363 ºC �¢ 323 ºC 

 

Table A.3.1.3: Noise distribution for batch polymerization reactor 

Variable Distribution Units Â� L"0, 0.01�# kg Â� L"0, 0.01�# kg Â¢ L"0, 0.01�# kg ÂÒ L"0, 1�# ºC Âô L"0, 3�# ºC Âõ L"0, 3�# ºC Âä L"0, 3�# ºC Â÷ L"0, 3�# ºC Âã L"0, 10�# ºC Â�C L"0, 3�# kg Ñ� L"0, 0.001�# kg Ñ� L"0, 0.001�# kg Ñ¢ L"0, 0.001�# kg ÑÒ L"0, 0.1�# ºC 
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Ñô L"0, 0.3�# ºC Ñõ L"0, 0.3�# ºC Ñä L"0, 0.3�# ºC Ñ÷ L"0, 0.3�# ºC Ñã L"0, 1�# ºC Ñ�C L"0, 0.3�# kg 

 

A.3.2. Estimator module 
 

Table A.3.2.1: Initial values for estimator for batch polymerization reactor 

Variable Value Units �§C� 8000 kg �§C� 1000 kg �§C¢ 50 kg �§CÒ 365 ºC �§Cô 350 ºC �§Cõ 350 ºC �§Cä 350 ºC �§C÷ 350 ºC �§Cã 400 ºC �§C�C 380 kg �§C�� 1 - �§C�� 1 - rsC� 10-5 kg2 

rsC� 10-5 kg2 

rsC¢ 10-5 kg2 

rsCÒ 0.1 ºC2 

rsCô 1 ºC2 

rsCõ 1 ºC2 

rsCä 1 ºC2 

rsC÷ 1 ºC2 

rsCã 1 ºC2 



94 

 

rsC�C 1 kg2 

rsC�� 0.1 - rsC�� 0.1 - 

 

Table A.3.2.2: Noise covariance matrices for batch polymerization reactor 

Variable Value Units t\� 10-7 kg2 

t\� 10-7 kg2 

t\¢ 10-7 kg2 

t\Ò 0.001 ºC2 

t\ô 0.01 ºC2 

t\õ 0.01 ºC2 

t\ä 0.01 ºC2 

t\÷ 0.01 ºC2 

t\ã 0.1 ºC2 

t\�C 0.01 kg2 

t\�� 0.1 - t\�� 0.1 - uv� 10-6 kg2 

uv� 10-6 kg2 

uv¢ 10-6 kg2 

uvÒ 0.01 ºC2 

uvô 0.1 ºC2 

uvõ 0.1 ºC2 

uvä 0.1 ºC2 

uv÷ 0.1 ºC2 

uvã 1 ºC2 

uv�C 0.1 kg2 
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