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Abstract

State-of-the-art control and robotics problems have been solved for years using model-based

control methods such as model predictive control (MPC) and reinforcement learning (RL). Both

have shown promising results in easily handling complex dynamic domains, such as manipula-

tion tasks. However, there is the issue that real-world systems are often subject to effects such

as wear-and-tear, uncalibrated sensors, misspecifications, heteroscedasticity and so on. Such

effects effectively perturb the system dynamics and can cause a learned controller to perform

poorly in the real world. That and other factors lead to a well-known issue in robotics known as

the reality gap, which comes up when transferring the robot from a simulator to the real-world

environment. This work focuses on model-based methods with which the system can learn and

adapt its own parameters to the environment. The main motivation of this thesis is to take ad-

vantage of both RL and control and propose a learning framework to deal with the reality gap

and sequentially optimise robot performance by adapting MPC to the robot’s decisions, simul-

taneously learning and finding an optimised controller under uncertainty in dynamics model

parameters.

The first contribution is a reward-based framework for fine-tuning stochastic MPC, which in

turn presents challenges in real-life situations concerning expensive evaluations and stochas-

ticity. In order to deal with the data availability problem, fine-tuning is realised via a data-

efficient Bayesian optimisation (BO) method that can handle the heteroscedastic noise across

the MPC hyperparameter space to optimise the controller. The BO surrogate model is a GP

that maps controller hyperparameters to the expected cumulative reward. The proposed opti-

misation framework is evaluated in simulated control problems and a robotic task.
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ABSTRACT v

In order to deal with the reality gap problem, the second contribution addresses the controller’s

ability to maximise rewards due to dynamics model misspecification. It extends the optimisa-

tion framework from the first contribution to obtain an adaptive stochastic MPC optimisation

framework corresponding to optimising hyperparameters while jointly estimating probability

distributions of physical parameters. The adaptation to the real world is performed by using a

randomised dynamics model where the randomisation consists of the use of distribution-based

physical parameters. The proposed optimisation framework is evaluated in simulated control

problems and robotic manipulators.

Finally, this thesis explores the limitations of BO and how we can achieve improvements by

using an alternative surrogate-based optimisation method to best adjust control hyperparam-

eters to the current task in the presence of model parameter uncertainty and heteroscedastic

noise. It proposes an adaptive optimisation framework that can automatically estimate control

and model parameters by leveraging ideas from BO and supervised classification. The BO re-

formulation optimises expensive black-box functions by training a binary classifier. The final

proposed framework is used to solve simulated control problems and simulated manipulators.
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CHAPTER 1

Introduction

The field of robotics has grown substantially with regard to its use in real-life settings, from

industrial to healthcare applications. From a general perspective, robots are machines that per-

form a task that can be thought of as an arrangement of connected or related components that

form a robot system. As opposed to manual control where a person decides actions for con-

trolling the machine, a robotic system is aimed to perform the task autonomously using sensors

and actuators as the way to interact with the real world, depending on its design and the en-

vironment surrounding it, e.g. manipulators as shown in Figure 1.1. Such an environment is

known as the controlled system in the context of control theory, and automatic controllers are

simply referred to as controllers (DiStefano III et al. 2014). In modern robotics, designing

control systems is a complex task due to the dynamic and ever-changing nature of the real

world. Addressing these challenges, a notable control method that has gained prominence is

Model Predictive Control (MPC), particularly in its stochastic form. Stochastic MPC effec-

tively incorporates probabilistic models to navigate real-world uncertainties, offering improved

adaptability and intrinsic robustness (Fontes and Magni 2003). This approach demonstrates

(a) Jaco Manipulator (b) Humanoid (c) Self-Driving Car (d) Quadruped Robot

FIGURE 1.1. Robots in their environments. Source: IEEE ROBOTS catalogue.
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how advanced control methods can autonomously manage the complexities of real-world envi-

ronments, reducing the need for constant human oversight while enhancing the robot’s ability

to make independent decisions based on changing conditions.

The appealing idea is to develop autonomous robots in simulators before transferring them to

the real world. A physics simulator or physics engine is a program that simulates the move-

ment or interactions of objects in a virtual world. For example, physics simulators such as

OpenAI and MuJoCo aim to provide robotics-focused physics simulations that serve as virtual

playgrounds for robots (Collins et al. 2021). A mathematical model known as dynamics model

mimics the behaviour of the robot dynamics in the simulator. Simulators are essential in robot-

ics for designing physical parameters, prototyping algorithms, and in general, solving robotic

tasks. Robotic systems developed in inaccurate simulators can produce incorrect results when

deployed on real robots, emphasising the importance of precise simulators.

In the context of reinforcement learning (RL), the robot is seen as an autonomous decision-

making agent. That decision-making is based on learning an input-output decision function

based on trial and error. Rather than learning with the real robot, learning can be done using a

dynamics model of the robotic system. The dynamics model is usually a probabilistic model

known as Markov decision process (MDP), where, given an action, a performance measure

known as reward is obtained as well as the next state (R. Sutton and Barto 2018). In an MDP, the

robot is a decision-making agent that gets to observe the ground-truth state of the environment.

This thesis assumes a fully-observable MDP to represent the robot’s behaviour where it can

fully observe the state of the environment at each timestep.

The intersection of control theory and RL is particularly evident in the application of stochastic

MPC. In RL, the primary goal is to learn a policy that maximises a certain notion of cumulative

reward, and stochastic MPC complements this by its ability to anticipate future states and adjust

actions accordingly. Both control theory and RL areas of research have proposed approaches to

tackle robotic tasks. Part of the objective of this thesis is to design a control system for robotics

that resides in both control theory and RL. Control-theory solutions are usually model-driven,

which means that they leverage the dynamics model, giving convergence guarantees at the
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known operating conditions (Brunke et al. 2022). RL approaches are data-driven, which can

make controllers adaptable to new contexts since only data can allow the controller to learn

new behaviours.

Another point is regarding model-based optimisation. Modelling a Bayesian belief over the dy-

namics model is a way to model uncertainty arising from new contexts. Optimising a controller

corresponds to fine-tuning it to fit the system behaviour, and it can be done by minimising the

long-term reward of robot behaviours. For example, when RL and control are combined, a

long-term reward can serve as a target output to be optimised, as it was done for car racing

(Oliveira et al. 2018). Gaussian processes (GPs) are a state-of-the-art approach for Bayesian

nonparametric regression of noisy functions. The regression method is known as Bayesian

optimisation (BO) and is a well-known data-efficient method for black-box optimisation (X.

Wang et al. 2023). GPs are also a popular choice for learning representations of dynamical

systems (Scannell 2022) in the context of RL.

1.1 Motivations

1.1.1 The Reality Gap

The first motivation has to do with transferring controllers trained in simulators to the real

world. The robot dynamics may not be perfectly modelled by an expert due to sensor measure-

ment noise, disturbances being represented incorrectly, and the environment not being well-

characterised, which leads to suboptimal controller designs when used in the real robot. Be-

cause simulators do not fully replicate real hardware behaviour, there is a problem known as

sim-to-real transfer, which is still a very active area of research (Muratore et al. 2021b). The

mismatch between simulation and reality is often called reality gap. Even though simulated

data can result in a perfect controller in the simulator, there is no guarantee for an optimal

solution in the real world, which raises the question of how to design controllers to overcome

the mismatch between simulation and reality? It must be understood that by a simulator, one
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FIGURE 1.2. Data-driven control flow

can refer to the physics simulator or simply the dynamics model since, either way, a dynamics

model is used for representing the robot’s behaviour and interaction with the system.

1.1.2 Low Data Availability

The hope is that rather than needing to spend a lot of time understanding the environment the

robot operates in, one should only collect a lot of experience and let the learning component

handle the rest. In a data-driven approach Figure 1.2, lots of data can be collected and then

used to learn a controller with highly effective approaches such as deep learning, but doing so

requires the existence of millions of examples (Sünderhauf et al. 2018). Data availability is a

common problem in robotics since collecting real data is needed to reduce the reality gap, but

the issue is that real data is expensive and time-consuming. Real data is expensive and time-

consuming due to the use of a real robot, as opposed to simulated data. That brings a second

question: how to get around the data availability problem in robotics? Since the problem is

that there is not enough data, a solution is to scale up data collection by collecting shared expe-

riences from many robots, which can still be expensive due to mechanical system limitations.

Another way is to use a more efficient learning algorithm. By following a model-based RL ap-

proach, learning can be done by simulations from an internally maintained dynamics model of

the robot. Despite the well-known issues of simulation, model-based methods can cover more

possible states of the robot without needing to use the actual robot.
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1.1.3 Optimisation with Simulated Data

Given the advantages of working with simulated models, the question is how to use simulated

data to approximate real data and improve sim-to-real transfer? Designing the world that

the robot is going to interact with requires making assumptions about the environment, such

as the physics parameters. That may bring the idea of updating the environment to make the

simulator a better match for reality. If there is a mismatch between physics from the real

world and physics from the simulator, a way to update the simulator can be to find the exact

physics parameters from reality, which is a process known as system identification. However, a

single best version of the environment can still be suboptimal. Considering there is a real data

domain and a simulated data domain, an alternative solution can be domain randomisation,

where instead of collecting the training data from a single simulated environment, the model

is exposed to several variations of the environment, for example, for estimating the position

and orientation of an object in a scene (Andrychowicz et al. 2020) by randomising parameters

concerning those variables. As with any other optimisation problem, some parameters are more

relevant than others. In general, randomising environments or robot parameters prepares the

robot to adapt to different unknown scenarios.

1.2 Problem Statement

The problem in this thesis corresponds to a main research question:

How to properly optimise stochastic MPC to learn and adapt to the

dynamics in real deployments?

Solving this question requires addressing two problems. The first sub-problem is about opti-

mising the control system considering the expensive robot-environment interactions. A data-

efficient approach can overcome the data availability problem. Besides using a simulated en-

vironment to cover more of the state space, a global optimisation method can be used. Then,

the challenge is what parameters to explore and how to explore them to reduce the number of

robot interactions with the real world.
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The second sub-problem is about designing a controller that can deal with the sim-to-real trans-

fer. The challenge is to find a way to optimise simulated data and real data together. The op-

timisation has to deal with the data availability problem while also minimising the reality gap.

Preparing the robot for different scenarios has to be done efficiently.

1.3 Contributions

This thesis is composed of three contributing chapters, whose main contributions are sum-

marised below.

The first contribution involves the development of a reward-based framework for fine-tuning

stochastic MPC. This framework is directly applicable to RL, as it focuses on optimising the

MPC strategy to maximise rewards, which is a core objective in RL. However, implementing

such a framework in real-life scenarios introduces challenges, particularly concerning costly

evaluations and inherent stochasticity. In order to deal with the data availability problem,

fine-tuning is realised via a data-efficient Bayesian optimisation method that can handle the

heteroscedastic noise across the MPC hyperparameter space to optimise the controller. The

Bayesian optimisation surrogate model is a GP that maps controller hyperparameters to the

expected cumulative reward. The proposed optimisation framework is evaluated in simulated

control problems and a robotic task.

In order to deal with the reality gap problem, the second contribution addresses the controller’s

ability to maximise rewards due to dynamics model misspecification. It extends the optimisa-

tion framework from the first contribution to obtain an adaptive stochastic MPC optimisation

framework corresponding to optimising hyperparameters while jointly estimating probability

distributions of physical parameters. The adaptation to the real world is performed with the use

of a randomised dynamics model where the randomisation consists of the use of distribution-

based physical parameters. The proposed optimisation framework is evaluated in simulated

control problems and robotic manipulators.
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Finally, this thesis explores the limitations of Bayesian optimisation and how we can achieve

improvements by using an alternative surrogate-based optimisation method to best adjust con-

trol hyperparameters to the current task in the presence of model parameter uncertainty and

heteroscedastic noise. It proposes an adaptive optimisation framework that can automatically

estimate control and model parameters by leveraging ideas from Bayesian optimisation and

supervised classification. The Bayesian optimisation reformulation optimises expensive black-

box functions by training a binary classifier. The final proposed framework is used to solve

simulated control problems and simulated manipulators.

1.4 Thesis Outline

An overview of the following chapters presented in this thesis is presented below:

Chapter 2 presents necessary background concepts used throughout the thesis. Starting with

control for robotics until the MPC formulation. Then supervised learning, optimisation, and

Bayesian learning are introduced since they are essential concepts for learning from data and

designing data-driven controllers under uncertainty. Finally, reinforcement learning concepts

are introduced to allow reward-based optimisation. Concepts from all the background sec-

tions are used throughout the thesis. Next, the three contributing chapters (3 through 5) follow

the same structure. After a motivating introduction that summarises the chapter’s contribu-

tions, each chapter proceeds to describe related work, the methodology used to construct the

proposed framework, and the experiments conducted. Chapter 3 presents the first contribu-

tion of this thesis: heteroscedastic optimisation for stochastic MPC, which addresses the data

availability problem. Then, as a second contribution, Chapter 4 addresses the reality gap prob-

lem by extending the optimisation framework from the previous chapter to design a controller

that adapts the controller simulated dynamics to the real world. Chapter 5 uses an alternative

surrogate-based optimisation for the framework proposed in the previous chapter. Each chapter

performs and analyses experiments in control and robotic tasks. This thesis closes in Chapter 6

with a review of the robotics problems addressed and a review of each chapter’s contribution.

Finally, some directions for future research are provided.



CHAPTER 2

Background

This chapter presents a review of the necessary background that forms the basis for the methods

used in this thesis. As stated in the previous chapter, the problem has to do with optimising

control systems, specifically stochastic model predictive control, for which control theory and

optimisation concepts are needed. Then, the problem is also about designing a controller that

can learn and adapt the robot dynamics to the real world, for which machine learning concepts

are needed, specifically supervised learning, Bayesian learning, and reinforcement learning.

First of all, this chapter starts by describing concepts from the control component. Section 2.1

introduces the areas of feedback control and optimal control focused on robotics. Starting

from the concept of system dynamics until model predictive control. Secondly, for the learn-

ing component, supervised learning concepts are described in Section 2.2, and optimisation

concepts are presented next in Section 2.3. Supervised learning is the basis for understanding

machine learning, and it inherently depends on function optimisation concepts. Next, a proba-

bilistic perspective to learning is presented as Bayesian learning in Section 2.4 in order to deal

with real-world uncertainty, which leads to Bayesian optimisation described in Section 2.5. Fi-

nally, reinforcement learning is described in Section 2.6, which is presented as another type

of learning, but since it is oriented toward data efficiency in robotics, it is mainly centred on

model-based methods. All the concepts presented contribute to understanding the proposed

framework.

9
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2.1 Control for Robotics

In order to understand control theory, it is useful to understand what controlling means in the

context of robotics. First of all, instead of manually controlling a system, plant, or process to

perform some task for building a robotic system, it is helpful to think of a control system for

automatic control. An example of a system that performs automatic control can be a thermostat,

whose purpose is to maintain the temperature in a room. A system can be an arrangement,

set, or collection of things connected or related in such a manner as to form an entirety or

whole (DiStefano III et al. 2014). Therefore, a control system is an arrangement of components

connected with the purpose of regulating another system or itself by regulating the system

according to a desired behaviour sref by applying a control signal or control a to the system

(Astrom and Murray 2008). The system’s output is a controlled output signal o. A controlled

system can be represented as a block diagram as the ones in Figure 2.1.

(a) Open-loop control system

(b) Closed-loop or Feedback control system

FIGURE 2.1. Open-loop and closed-loop control systems. (a) The output u of
the controller is used as the control signal for the controlled system. (b) The
output o of the system, in this case, is the state s so that the controller computes
an error sref − s and corrects the system behaviour.

2.1.1 Feedback Control

There are open-loop and closed-loop control systems. Figure 2.1a is an example of an open

control system where the desired output is planned beforehand, and the controller sends a cor-

responding control signal. An example of an open-loop control system is a microwave oven that
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FIGURE 2.2. Typical components and variables in control system design.

operates for a given amount of time and then stops. Meanwhile, if the controlled output signal

o is measured and fed back for use in the control computation, the system is called closed-loop

or feedback control system. A closed-loop control system is shown in Figure 2.1b where s is

known as the state of the system. An example would be a microwave oven that senses the

temperature and takes it as feedback. Another example is an autonomous car that regulates its

speed. The reference is the desired behaviour of the system represented as a desired state sref.

A desired state can be a steady state, which refers to a condition where the system variables

have reached a constant value and remain unchanged over time (Edelstein-Keshet 2005). Then

the error sref − s is known as steady-state error. In most cases, the desired state of the system

is assumed to be 0.

Feedback control systems are widely used in automation and robotics to enable the system

itself to sense these malfunctions and to correct them in some manner with a control signal

a without human intervention. In robotics, the environment, which is where the system is

operating, does not have fully predictable behaviour because of external disturbances that can

perturb the dynamics of the system as in Figure 2.2. When the wind is light, and visibility is

good, the autonomous car’s primary concern is to update its desired position in order to follow

the road. However, a strong wind can blow the car off the course. To compensate for external

disturbances, the car must make some adjustments to correct its position errors. Now, suppose

the wind is accompanied by snow. Snow constitutes a visual noise that corrupts the position

measurements taken by a sensor. Measurement noise is usually found in sensor reading. The car

may not be able to see the road very well, so it may end up changing its course to compensate

for the measurement noise.
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Motion planning and state estimation are essential components for robotic systems that interact

with the real world. In the field of artificial intelligence (AI), "planning" usually refers to

finding a sequence of logical decisions or actions that transform an initial state of the system

to the desired goal state where the system dynamics is often neglected or simplified (Russell

and Norvig 2021). In this thesis, the motion planning problem is referred to as the problem

of computing a feasible reference motion plan, trajectory or path, which is a sequence of

states and controls that guide the robot from its initial state to the desired goal state. Such a

trajectory must satisfy the robot’s physically imposed constraints as well as constraints imposed

by surrounding obstacles while at the same time minimising a specified performance measure.

This thesis makes use of motion plans that are computed and updated in real time.

At the core of probabilistic robotics is the idea of state estimation, which is about estimating

the robot state from sensor data since determining the exact pose of a robot is not feasible

(Thrun et al. 2005). For example, moving a mobile robot is relatively easy if the exact location

of the robot and all nearby obstacles are known. Unfortunately, these variables are not directly

measurable. Instead, a robot has to rely on its sensors to gather this information. Sensors

carry only partial information about those quantities, and their measurements are corrupted

by measurement noise. This thesis does not deal explicitly with state estimation, although

it emphasises the importance of taking state uncertainty into account by handling uncertain

physical parameters and sources of uncertainty that can affect state estimation.

2.1.2 System Dynamics

Much of the impressive results in robotics in recent years have been achieved through the ap-

plication of state space control in conjunction with rigid body mechanics and motion planning

(Lynch and Park 2017). State space control refers to using a mathematical model known as

dynamical system that specifies the temporal evolution of the behaviour or state of the system

(R. C. Bishop 2011). The state of physical systems can be described with equations of motion,

which are also dynamical systems. For example, the motion of a car in uniform rectilinear

motion can be described as a system with linear dynamics. An equation of motion is usually

denoted as a system of linear ordinary differential equations (ODE) with the form dst
dt

= As
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where A is some constant matrix, s0 is some initial state, and dst
dt

corresponds to a vector of

first-order time derivatives of the state at time t. Meanwhile, a discrete-time state-space model

can be obtained as a result of the discretisation of a continuous-time system, which creates a

correspondence of a next state st+1 with dst
dt

. To simplify the analysis, such a system is usually

assumed to be time-invariant, meaning that the output does not depend on when an input was

applied. A linear time-invariant (LTI) discrete-time system has the standard form:

st+1 = Ast +Bat

ot = Cst +Dat ,
(2.1)

where s, a, and o are indexed by time. The vector st is the state of the system at time

t. We denote the state space dimension by n so that st ∈ Rn. In general, there are mul-

tiple inputs to the system. We can define the control signal as a vector at ∈ Rp, so that

at = [ at1 at2 · · · atp ]T , and the output signal ot = [ ot1 ot2 · · · otq ]T . Each of these

outputs represents a sensor measurement of some of the states of the system. The state (or

system) matrix A is an n×n matrix representing how the states of the system affect each other.

The input matrix B is an n × p matrix representing how the inputs to the system affect the

states. The output matrix C is a q × n matrix representing the portions of the states that are

measured by the outputs. Finally, the feedthrough (or feedforward) matrix D, which is usually

not considered, is a q × p matrix representing the portions of the control signal that are mea-

sured by the outputs. A, B, C, and D are constant matrices. C is usually the identity, making

ot = st.

2.1.3 Optimal Control

Optimisation refers to the problem of choosing a set of parameters that maximise or minimise

a given function. In optimal control, we seek to optimise a given specification, choosing the

parameters that maximise the performance (or minimise the cost) (Liberzon 2011) since, in

most cases, simply achieving the desired objective of moving a robot to a desired final state

stf is insufficient. For example, the velocity and trajectory taken to reach the final state, the

obstacles encountered along the way, and the energy consumed are all additional factors that
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FIGURE 2.3. Optimal trajectory shown in red for an autonomous car in a single-
obstacle environment. The dashed line in the reference path.

can be considered to fully evaluate the robot’s performance. In robotics, optimal control refers

to the optimisation of trajectories for a system over a period of time [t0, tf ], obtaining optimal

trajectories. Trajectories are expressed as a sequence of states and controls{
st0 , at0 , st1 , at0 , . . . , stf−1, atf−1, stf

}
, (2.2)

where {at0 , . . . , atf−1} is called a control trajectory that will be denoted as ā, which in turn

determines the state trajectory {st0 , . . . , stf} that will be denoted as s̄. There are two essential

concepts in optimal control: the dynamical system and the cost function. The controller decides

optimal controls for the trajectory. Following the state-space notation, in control theory, the

system behaviour is usually described by a dynamical system known as dynamics model

st+1 = f(st, at), t ∈ [t0, tf ]

st0 : initial state ,
(2.3)

where f is a function that depends on both the state and the control (st, at) and describes the

mechanism by which the state is updated from time t to time t+ 1. The admissible control tra-

jectories are control sequences ā = {ai}
tf
i=t0

, and the objective is to allow numerical solutions

to trajectory optimisation so as to harness the power of computational optimisation theory to

solve analytically intractable control problems and find an optimal trajectory ā∗ = {a∗
i }

tf
i=t0

.

An example of trajectory optimisation is shown in Figure 2.3. The fundamental idea in optimal
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control is to formulate the goal of control as the long-term optimisation of a scalar cost function

J(ā). This cost function associates the cost to each possible behaviour parameterised by states

s̄ and controls ā, which are both functions of time. It turns out that the optimisation problem

often becomes a lot more tractable (both analytically and computationally) if we are willing to

design the cost with an additive form. The cost function takes the form

J(ā) = q
(
stf
)
+

tf−1∑
t=t0

c(st, at) , (2.4)

where c denotes an instant cost function and q denotes a terminal cost function. tf is the termi-

nal time. stf is the terminal state. The optimal control problem consists of finding the optimal

controls that minimise J(ā). Some control problems have a duration called time horizon or

horizon length T . For example, imagine a robot working on an assembly room floor and being

allocated a fixed amount of time to complete each assembly (or pick-and-place) task. In gen-

eral, finite horizon problems define a finite time interval, t ∈ [0, T ]. The time horizon T can be

given or left as a free variable to be optimised. Also, it is often wanted to achieve this objective

at the lowest cost possible. The cost minimisation problem is defined as

ā∗ = argmin
ā

J(ā) . (2.5)

2.1.4 Model Predictive Control

A modern optimal control scheme widely used for robot motion planning is model predic-

tive control (MPC), which is used for finding optimal trajectories over a finite time horizon

(Ljungqvist 2020). Its definition can be understood by splitting the term "Model-based predic-

tive control" into its meaningful parts: model-based and predictive control. The model-based

aspect implies the necessity of a system model, while predictive control refers to the prediction

of future system outputs and states.

In MPC, future values of the system outputs, denoted as ot, and the states, denoted as st, are

predicted. Specifically, a discrete-time MPC approach involves defining a mathematical model

of the system as a discrete-time dynamical system, as described by Equation 2.3. Given the
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current state st, MPC seeks an optimal control trajectory {a∗
t , . . . , a

∗
t+T−1} over a finite time

horizon T , formulated as the following optimisation problem:

min
at,...,at+T−1

(planning horizon T )

q (sT ) +
t+T−1∑
i=t

c (si, ai)

subject to si+1 = f(si, ai) ∀i = t, t+ 1, . . . , t+ T − 1

si ∈ X ∀i = t, t+ 1, . . . , t+ T

ai ∈ A ∀i = t, t+ 1, . . . , t+ T − 1

si : initial state ,

(2.6)

where the states and controls can be constrained by X and A, e.g. magnitude constraints.

The dynamics model in MPC can be either linear or nonlinear, with the latter case known as

nonlinear MPC.

When the dynamics are linear, represented as st+1 = Ast + Bat, and the cost function is

quadratic, the optimisation problem can be solved using a Linear Quadratic Regulator (LQR)

(Liberzon 2011). LQR is commonly available as a built-in routine in many computational

packages and provides an analytical solution. However, the computational cost of solving the

Riccati equation, central to LQR, scales with the cube of the state space dimension. This

cubic scaling makes LQR computationally expensive for real-time applications in robotics,

particularly for systems with high-dimensional state spaces, relegating its use mostly to offline

calculations. Unlike MPC, LQR does not inherently accommodate constraints, making it a

specific, less flexible instance of MPC.

2.1.5 Practical Application of MPC

Building upon the theoretical foundations of MPC, its practical application involves computing

feasible optimal trajectories iteratively. This process involves continually solving the optimal

control problem from the current state st. In this way, MPC is capable of generating open-loop

control trajectories in real time. Upon computation, the first control element a∗
t is immediately

applied to the system.
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FIGURE 2.4. Example of MPC applied to an autonomous car in an environment
with obstacles. The optimal trajectories are shown in red.

The dynamics model within MPC can be an estimate f̂ of the real dynamics model f , allowing

the control system to perform only simulations to find optimal controls. f̂ can be called sim-

ulated dynamics model since it allows simulated interactions with the system. An example is

shown in Figure 2.4, where the autonomous car should avoid the obstacles following an MPC

procedure with a horizon of T = 5. The trajectory optimisation method has to be computa-

tionally cheap and fast to run in real time. Long simulation times necessarily lead to reducing

the number of computer experiments obtained, which affects the system performance. Plan-

ning trajectories ahead in real time is possible when dealing with a closed-form optimisation

scheme, such as with LQR or with GPU-based trajectory sampling (Williams et al. 2018).

A block diagram for an MPC method can be seen in Figure 2.5, and the way it is usually

implemented is shown in Algorithm 1. The algorithm receives the simulated dynamics model,

a finite length horizon, and instant and terminal cost functions to use them iteratively until some

stopping condition is met, which in some cases is reaching T iterations or achieving a specific

desired state. An MPC method starts by getting the current state of the system. Then, it plans

a trajectory optimised with a method that can be LQR.

Besides linear and nonlinear MPC, there are also some data-driven MPC formulations for un-

known dynamical systems and for disturbance adaptation. Data-driven control refers to the use

of experimental data to learn algorithms that can adapt and improve control systems. Machine

learning methods, which will be seen in Section 2.2, are used to extract patterns from data and
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FIGURE 2.5. MPC diagram where the controller component makes use of an
optimisation procedure plus the simulated dynamics model.

to learn components of the control system (Brunton and Kutz 2019). The main requirement for

data-driven methods in robotics is to work well in real-world applications as they depend on

data efficiency: how long it takes to learn. One of the main reasons for using data comes from

some challenges of control systems that include unknown nonlinear dynamical systems since

most real systems do not have well-defined equations of motion. Among the ways data is used

in control, there is data-driven modelling that refers to learning the simulated dynamics model

f̂ using measurements of the input and output signals of the system, which can be thought of

as system identification (Muratore 2021). An effective way is to also learn the controller, which

is also known as machine learning control, besides the system dynamics. There is learning-

based MPC for which most research has focused on the automatic data-based adaptation of the

dynamics. Also, there are learning-based control methods that deal with the rest of the optimi-

sation problem formulation that mostly constrain or regularise the controller favourably with

respect to the underlying task, e.g. the cost function or the constraints (Hewing et al. 2020).

2.1.6 Model Predictive Path Integral Control

The methods discussed previously assumed the nonexistent external uncertainty in the system,

and they are part of what is known as deterministic optimal control, e.g. deterministic MPC.
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Algorithm 1: Model Predictive Control
input : f̂ – Simulated dynamics model

T – Finite horizon length
c, q – Instant and terminal cost functions

1 while stopping condition not met do
2 st ← GetCurrentState()
3 (at, . . . ,at+T−1)← PlanTrajectory(f̂ , st, c, q) // Plan a trajectory as with LQR
4 a∗ ← at
5 SendToActuators(a∗) // Execute first planned control signal

Stochastic optimal control, on the other hand, deals with uncertainty in system dynamics due

to external disturbances, which makes it a more realistic approach. Disturbances can include

inaccurate sensor measurements, inherent noise in the resultant state or imperfect control sig-

nals (Jacob Mathew 2020). It can be understood that since the dynamical system is subject to

stochastic disturbances, described as wt, it is represented as a stochastic dynamical system

st+1 = f(st, at,wt), t ∈ [t0, tf ]

st0 : initial state ,
(2.7)

where the disturbance parameter can be additive. For example, an LTI stochastic dynamical

system can be st+1 = Ast + Bat + Ewt where E is constant. Such disturbance input is a

noise term with unknown current and future values, and it is defined as a random variable with

a known probability distribution. It is a random vector in a probability space with support Rnw .

The noise term has the role of real disturbance acting on the system or can be used to represent

an unmodeled dynamics (Giulioni 2015).

Moreover, since deterministic MPC allows constraint satisfaction and the trajectories are gener-

ated by optimising some criterion in a closed-loop scenario, deterministic MPC possesses some

desirable intrinsic robustness properties (Fontes and Magni 2003). The term robust control is

associated with the class of techniques that try to guarantee some worst-case performance or

a worst-case bound by preserving performance and stability for each possible realisation of

bounded disturbances or uncertainty (Tedrake 2023). However, MPC does not necessarily pro-

vide strict robustness guarantees. There are robust MPC methods that are beyond the scope of

this work since the objective is not to design a robust controller. Anyhow, when the intrinsic

robustness of deterministic MPC is not enough, stochastic MPC methods have been developed
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to take into account uncertainties. Among the methods for stochastic optimal control, there is

Model Predictive Path Integral (MPPI), which is a gradient-free trajectory optimisation method

that solves stochastic optimal control problems based on the (stochastic) sampling of the system

trajectories. MPPI is also known as a sampling-based MPC algorithm (Williams et al. 2016). It

has proven its potential in robotics due to its ability to handle uncertainty with minimal assump-

tions on the dynamics and cost function, which has to be dense. Also, due to its parallelisable

sampling via Graphics Processing Unit (GPU) programming, it has been useful for complex

robotic tasks from manipulators to autonomous vehicles (Kim et al. 2022; Manuelli 2020).

Since MPPI is an MPC method, it is a variation to Algorithm 1 where the trajectory optimisation

is sampling-based. Algorithm 2 shows how MPPI works in detail. First of all, the algorithm

receives the current state st, which comes from the system, and we define the timestep t as

the current feedback-control loop iteration. The controller receives an initial control trajectory

ā = (at, . . . , at+T−1) which is defined as 0 at t = 0 as well as anew. Such a trajectory is

updated and becomes the nominal control trajectory of size T at the end of the algorithm. It is

called nominal control trajectory because it is an ideal or intended trajectory but not necessarily

optimal since it is updated again at the next timesteps. The main feature of MPPI is that it

performs Monte Carlo importance sampling to weight and optimise trajectories. It samples M

sequences of perturbed control trajectories {ai + ϵi}t+T−1
i=t , where ϵi is an additive Gaussian

noise ϵi ∼ N (0,Σ). Σ is a covariance matrix hyperparameter defined as a scalar matrix

Σ =


σ2
ϵ 0 . . . 0

0 σ2
ϵ . . . 0

...
... . . . ...

0 0 . . . σ2
ϵ

 ,Σ ∈ Rp×p , (2.8)

where p is the control vector size and σ2
ϵ is called the control variance, which leads to more

varying and forceful actions when its value is high. The sampling of each control trajectory is

known as a rollout. The rollout and evaluation of trajectory m from M trajectories correspond

to lines 4 to 8. Next, it obtains the minimum cost β from all trajectories. β is used to com-

pute the perturbation weights w from line 12 and the normalisation constant η from line 10.

The computed weights are used for the importance sampling of trajectories. The temperature
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hyperparameter λ ∈ R+ is also part of the calculation, and it corresponds to the Boltzmann

distribution calculation from lines 10-12. Finally, the nominal control trajectory ā is created

using the weights in line 14. The optimal action that is sent to the system actuators is the first

element of ā. As the last step, the new initial control trajectory for the next iteration is set in

line 15. Finally, the first optimal control signal a∗ is to be sent to the system actuators in line

17. The resulting controller is not only model-based but also sampling-based since it samples

trajectories by generating control signals from a normal distribution.

MPPI performance is determined by its hyperparameters. For the temperature hyperparameter,

λ → 0 leads to a single trajectory having a higher probability of occurrence, and the control

variance σ2
ϵ results in more varying and forceful actions as it increases (Williams et al. 2018).

In this way, both λ and σϵ can be considered to be balancing the exploration and exploitation of

Algorithm 2: Model Predictive Path Integral
input : f̂ – Simulated dynamics model

M – Number of trajectories
T – Finite horizon length
λ – Temperature parameter for the sampling
Σ – Covariance of the noise ϵi for the perturbed actions
ā = (at, . . . ,at+T−1) – Initial control trajectory
c, q – Instant and terminal cost functions
anew – Control input for initialization

1 while stopping condition not met do
2 st ← GetCurrentState()
3 for m← 0 to M − 1 do
4 Sample

{
ϵ
(m)
t , ϵ

(m)
t+1, . . . ϵ

(m)
t+T−1

}
ϵ
(m)
i ∼ N (0,Σ)

5 for i← t to t+ T − 1 do
6 si+1 = f̂

(
si,ai + ϵ

(m)
i

)
7 c(m) += c(si+1) + λaTi Σ

−1ϵ
(m)
i

8 c(m) += q(st+T )

9 β ← minm
[
c(m)

]
10 η ←

∑M−1
m=0 exp

(
− 1

λ

(
c(m) − β

))
11 for m← 0 to M − 1 do
12 w(m) ← 1

η exp
(
− 1

λ

(
c(m) − β

))
13 for i← t to t+ T − 1 do
14 ai +=

∑M
m=1 w

(m)ϵ
(m)
i

15 a∗ ← at
16 ā← (at+1, . . . ,at+T−2,anew )

17 SendToActuators(a∗) // Execute first planned control signal
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trajectories. Finally, the feedback-control loop can run until the system task is completed, e.g.

a robot can run the cycle for a certain number of timesteps or until reaching a target position.

2.2 Supervised Learning

First of all, machine learning (ML) consists of building algorithms that learn some behaviour

based on a collection of examples of some phenomenon. ML has countless important applica-

tions, including robotics, speech recognition, computer vision, and more. Within the field of

ML, there is supervised learning, which starts with gathering data from a population of objects.

Objects selected from the population are called samples, and each sample presented to a system

returns some output associated with the sample. This makes data a collection of pairs (input,

output). The inputs or input features can be, for example, email messages, pictures, or sensor

measurements. The outputs are usually real numbers or labels (e.g. spam, cat, dog, mouse,

and so on) (Burkov 2019). The learning problem can be either supervised if the true output is

known or unsupervised if it is not. The purpose of learning (or training) is to use these outputs

of the samples to build an output predictor or estimator. To formalise, the training data comes

in pairs of input-output observations (x, y):

D = {(x1, y1) , . . . , (xn, yn)} ⊆ Rd × C , (2.9)

where x ∈ Rd is an input instance from a d-dimensional input space and y ∈ C its output. C is

the target or output space. There are multiple scenarios for the output space, including binary

classification, multi-class classification, and regression as in Table 2.1. In regression, the goal

is to learn an unknown function that relates the input x to the output and predict its value over

some domain. In classification, the goal is to learn to identify the class or category y of input

data. This work uses supervised learning to improve the performance of a robotic system for

both regression and binary classification.

The input space can contain discrete or continuous elements. For example, if it were a diagnosis

dataset of patients in a hospital, the input can consist of d features xi = [xi1, xi2, · · · , xid],

where xi1 ∈ 0, 1 refers to patient i’s gender, xi2 his height i, xi3 his age, and so on. The output
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Learning type Output

Binary classification C = {0, 1} or C = {−1,+1}

Multi-class classification C = {1, 2, · · · , cn} where cn ≥ 2

Regression C = R

TABLE 2.1. Types of learning in ML

yi would be then 0 or 1, depending on whether the person needs to be diagnosed or not. The

dimensionality of such input space is highly relevant since the problem becomes more complex

as it increases.

2.2.1 Learning Model

Supervised learning is not only about making predictions from data, but more formally, it is the

construction of a predictive model h : Rd → C that maps the input to the output based on the

collected dataset D. In this work, the predictive model h used is either a classification model

or a regression model that maps inputs to outputs as follows:

yi ≈ h (xi) for all (xi, yi) ∈ D . (2.10)

A predictive model for regression is usually modelled by also assuming inherent additive sta-

tistical noise known as prediction noise νi:

yi = h (xi) + νi , (2.11)

where ν1, . . . , νn are tipically assumed to be independent and normally distributed νi ∼ N (0, σ2
ν)

for i = 1, . . . n. Notice that here, the variance σ2
ν is considered constant throughout the domain

of the function, which is known as the homoscedasticity assumption. Then, there is a learning

step, also known as predictive model training. We can consider that there is a set of suitable

predictive models, and we want to find the best h(·) for the dataset D. The way to quantify

best is by introducing the concept of a loss function. A loss function measures how wrong

the predictive model h is. A simple loss function for regression problems is the squared loss

ℓ(x, y, h) = (h (x)− y)2 that compares two real-valued inputs. Since there are many instances,
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(a) (b)

FIGURE 2.6. Decision boundaries. (a) The linearly separable case where a
linear decision boundary can be found. (b) Non-linearly separable case where a
polynomial function can separate both classes.

a good measure is the average of all possible losses, which is known as the empirical expected

loss

L(h,D) =
1

n

n∑
i=1

ℓ (xi, yi, h) . (2.12)

Other similar losses are different in how they give penalties to mistakes if |h(xi)− yi| is large.

For example, the absolute loss ℓ(x, y, h) = |h (x)− y| gives fewer mistake penalties than the

squared loss where mistake penalties are magnified. Regarding classification, the loss measures

the difference between a true output and a predicted output. A logistic loss is usually used for

binary classification problems, while a cross-entropy loss can be used for more general cases

such as multi-class classification. Some examples of loss functions are shown in Table 2.2.

Loss type Usage Loss function ℓ(x, y, h)

Squared loss Regression (h (x)− y)2

Absolute loss Regression |h (x)− y|

Logistic loss Classification log
(
1 + e−h(xi)yi

)
Cross-entropy loss Classification yi log h(xi) + (1− yi) log(1− h(xi))

TABLE 2.2. Loss functions for binary classification
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2.2.2 Predictive Model Optimisation and Complexity

The predictive model has to fit the input data x to the output, and it can be any function. For

example, a straight line h(x) = 9x−7 or a polynomial h(x) = 5x3−31x2+3x. That brings the

concept of predictive model complexity, which refers to the number of parameters or variables

included in a given predictive model, as well as whether the model is linear or non-linear. The

polynomial is more complex than the straight line. The predictive model can be generalised as

hw(xi) = w⊤xi + b , (2.13)

where a vector of predictive model parameters w is introduced, and b is a bias parameter that al-

lows the model to fit patterns that do not pass through the origin. b is usually included in w as an

extended parameter vector. In binary classification, hw is usually a hyperplane called decision

boundary that tries to separate the dataset into two groups as in Figure 2.6a. Then, the learning

problem consists of estimating optimal predictive model parameters w∗. Finally, the predictive

model optimisation problem corresponds to the empirical expected loss minimisation:

w∗ = argmin
w

1

n

n∑
i=1

l (xi, yi, hw)︸ ︷︷ ︸
Loss function

(2.14)

w∗ = argmin
w

L(hw,D) . (2.15)

In ML, predictive model training corresponds to finding w∗. After training, the predictive

model hw produces some generalisation error when inferring labels for unseen data. Such error

can be decomposed into bias, variance, and irreducible error as

Generalization error = bias 2 + variance + irreducible error , (2.16)

where bias denotes an average error of the predictive model across different possible training

datasets (C. M. Bishop 2006). As the term suggests, it also refers to how the predictive model

can be biased to a particular solution that is one of many. Bias can be problematic in robotics

since a robot has to learn and act with less data while the set of possible predictive models is

vast. An example of a biased predictive model is shown in Figure 2.6b where the true decision

boundary is substantially non-linear, so no matter how many training observations we are given,
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FIGURE 2.7. Bias and variance trade-off, and the behavior of training error
(blue curve) and test error (red curve) as the predictive model complexity in-
creases. The training and test errors correspond to the errors obtained by evalu-
ating training and test data with the predictive model respectively.

it will not be possible to produce accurate output estimates using a linear predictive model. In

other words, a linear predictive model results in high bias in this example. Meanwhile, in

Figure 2.6a, the true decision boundary is very close to linear, and then a linear predictive

model is low-biased. Generally, less complex predictive models result in less bias. Secondly,

variance refers to how much the predictive model hw sensitivity to small variations in the

training dataset (Geron 2019), which means that if a predictive model has high variance, then

small changes in the training data can result in large changes in the predictive model. In general,

less complex predictive models have higher variance. For example, for the predictive model in

Figure 2.6b, the decision boundary would vary more as the polynomial degree increased than

if it were decreased until being linear. The irreducible error is related to the inherent noise ν,

which can be due to missing variables or limited training data, and it cannot be removed with

any predictive model.

The relationship between bias and variance is shown in Figure 2.7. A predictive model has

lower bias and higher variance as its complexity increases. Bias and variance are strictly related

to overfitting and underfitting. While overfitting is when the predictive model fits exactly the

training data, underfitting is the opposite. The objective of training a predictive model is to have
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both no bias and no variance or at least low bias and low variance. Selecting the complexity of

a predictive model corresponds to a well-known problem called bias-variance trade-off.

2.2.3 Feature Mapping

When having to model non-linear decision boundaries, a concept that comes up often is fea-

ture mapping. A feature map is a transformation for turning low-dimensional input into high-

dimensional Φ : x ∈ Rd → Φ(x) ∈ H where H can be an m-dimensional space where

m >> d. Higher dimensions capture more non-linear interactions between the features, and it

leads to more predictive model complexity. The example below would capture interactions by

performing non-linear operations between input values.

x =


x1

x2

...

xd

→ Φ(x) =



1

x1

...

xd

x1x2

...

xd−1xd

...

x1 . . . xd



. (2.17)

A transformation can be, for example, [x1, x2] 7→ [z1, z2, z3] :=
[
x2
1,
√
2x1x2, x

2
2

]
, which

corresponds to Φ : R2 → R3 and is shown in Figure 2.8. However, the problem with using

these transformations is that features may live in very high dimensional space, possibly infinite.

Also, some learning algorithms make use of the inner product, dot product in a Euclidean

Space, such as the large-margin classifier known as support vector machine (SVM) (Mohri

et al. 2018). Determining the hyperplane decision boundary requires multiple inner product

computations in high-dimensional spaces, which makes Φ (xi)
T Φ (xj) become expensive to

evaluate. However, usual implementations of SVM do not depend on the dimension d of the

feature space but only on the margin and size n of the training data by applying what is known
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(a) (b)

FIGURE 2.8. The effect of considering a feature map in a two-dimensional
space. (a) The data is non-linearly separable. (b) A feature mapping is able
to find a hyperplane decision boundary but in a higher dimensional space.

as kernel trick (Schlkopf et al. 2018). The concept of a kernel k is usually introduced as a

function corresponding to the similarity measure between input features:

k (xi,xj) = Φ (xi)
T Φ (xj)

k : Rd × Rd → R .
(2.18)

Kernel-based learning algorithms make use of kernel functions that can even be constructed

without knowing the feature mapping Φ associated with them as long as it is possible to prove

that such a mapping exists.

2.2.4 Non-linear Classification with Neural Networks

A supervised learning algorithm that makes use of feature transformations is an artificial neural

network (Montavon et al. 2011). Artificial neural networks (ANNs) were first suggested in the

40’s (McCulloch and Pitts 1943). ANNs are inspired by biological neural networks and the

way neurons in the brain function together to understand inputs from human senses. An ANN

consists of neuron units and connections between them. The connections have weights that

function as predictive model parameters that adjust to fit the data during learning. Neurons are

usually divided into several groups, which are called layers, such as in a multilayer perceptron

(MLP), which is one of the most common ANN. Figure 2.9 shows the structure of an MLP.

It considers only one output for the binary classification case, and it is a feed-forward ANN
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FIGURE 2.9. Fully-connected artificial neural network with a single output for
binary classification and one hidden layer.

in which information passes from the input units to the output unit through the hidden units

without forming cycles.

The computation flows from left to right. The nodes are units or neurons. The first left-most

layer is called the input layer, the last right-most layer is the output layer, and any other layer is

referred to as hidden layer. The dimensionalities of the input and output layers are determined

by the predictive model hW(l),...,W(1) : Rd → C, which corresponds to d input units and one

output unit for the case of binary classification (Goodfellow et al. 2016).

Each hidden layer can have different numbers of hidden units. The number of hidden layers,

the numbers of hidden units, and the ANN hyperparameters are to be defined a priori. Note

that in the diagram, there are shaded bias units that have the purpose of fitting patterns that do

not pass through the origin as in the linear predictive model from Equation 2.13. Also, each

non-input layer has the following property: every node in a layer is connected to every node in

the previous layer. A layer with such a property is called dense or fully connected. Each edge

in the graph has an associated weight as follows:

W(1) =


w

(1)
00 w

(1)
01 · · · w

(1)
0m

w
(1)
10

. . . ...
...

w
(1)
d0 · · · w

(1)
dm

 . . . W(l) =


w

(l)
00 w

(l)
01 · · · w

(l)
0e

w
(l)
10

. . . ...
...

w
(l)
p0 · · · w

(l)
pe

 , (2.19)
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where W(j) is a matrix containing the weights of the edges connecting to layer j, and each

matrix contains the weight of each edge, e.g. w
(1)
md is the weight of the edge connecting the

d-th unit from the input layer to the m-th unit of the first hidden layer. Each weight represents

the importance of a corresponding feature since each node computes a weighted sum of its

inputs, e.g. W(1)x. An ANN applies a non-linear function called activation function activ(·).

For example, z(1) = activ(1)(W(1)x) would be a vector of values of the first hidden layer

units. Since the output of each layer is passed as input to the next layer, the predictive model

corresponding to the ANN can be written as a composition of transformations:

hW(l),...,W(1)(x) = activ(l)
(
W(l) activ(l−1)

(
. . . activ(1)

(
W(1)x

)))
= Φl (Φl−1 (. . .Φ1 (x)))

= Φl ◦ Φl−1 ◦ . . . ◦ Φ1(x) ,

(2.20)

where the repeated composition of non-linear functions makes the structure a deep NN, and it

is what gives deep neural networks their remarkable expressive power. The neural network can

be as deep as having l layers where l is the number of transformations Φj for j = {l, . . . , 1}. If

only a few hidden layers are used, then it is called shallow NN or wide NN. It can be proven that

there is no function that can be learned with a deep NN that cannot be learned with a shallow

NN (Poggio et al. 2017). However, under the same number of resources, deep neural networks

can implement functions with higher complexity than shallow ones (Bianchini and Scarselli

2014) since one also has to define the number of hidden units, which could be exponential. The

layer-dependent learning allowed deep NNs to solve more and more complex tasks in areas

such as computer vision, speech recognition, and signal processing. In general, the number

of hidden layers has to be defined according to the task. The activation function is usually an

element-wise function that has to be non-linear since many layers of linear activation functions

will only represent linear functions (Goodfellow et al. 2016). Some activation functions are

shown in Table 2.3.

Since the weights are the predictive model parameters, they can be collectively denoted as W ={
W(l),W(l−1), . . . ,W(1)

}
. Then the empirical expected loss minimisation corresponding to
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an ANN can be written as follows:

W
∗
= argmin

W

1

n

n∑
i=1

l (xi, yi, hW) (2.21)

W
∗
= argmin

W

L(hW,D) . (2.22)

For classification, the usual output activation function activ(l) is a logistic activation, while for

regression, it is a linear activation (Goodfellow et al. 2016).

The exploration of neural networks for non-linear classification sets a foundation for their ap-

plication in a complex control system discussed in "Adaptive Model Predictive Control by

Learning Classifiers" (Chapter 5). This subsequent chapter will highlight how neural network

classifiers are essential in optimising stochastic MPC, particularly in handling complex, non-

linear relationships and improving model adaptability in varied scenarios.

Activation type Equation

Linear activ(x) = x

Binary step activ(x) =

 0 x ≤ 0

1 x > 0

Logistic activ(x) = 1
1+exp(−x)

TanH activ(x) = tanh(x)

Rectified linear unit (ReLU) activ(x) = max(0, x)

TABLE 2.3. Examples of activation functions

2.2.5 Optimising Predictive Models

In order to train a predictive model, there are traditional methods such as gradient descent,

which is a gradient search for function minimisation. More details about optimisation methods

will be seen in Section 2.3. In supervised learning, the commonly used optimisation methods

are mainly gradient-based, where the empirical expected loss is the objective function (C. M.

Bishop 2006). Then, the empirical expected loss minimisation problem from Equation 2.15 can

be solved as long as the derivative of the empirical expected loss function with respect to the
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Algorithm 3: Mini-Batch Gradient Search
input : l – Loss function

b – Batch size
γ – Learning rate

output : w∗ – Optimal predictive model parameters
1 while stopping condition not met do
2 j1, . . . , jb ← random indices between 1 and n

3 ∇wL(hw,D)← ∇w
1
b

∑b
i=1 l (xji , yji , hw) // Find direction to move to

4 wt+1 ← wt − γ∇wL(hw,D) // Move to the next possibly optimal
parameters

parameters can be computed. Then, new possibly optimal solutions can be found by calculating

wt+1 ← wt − γ∇w
1

n

n∑
i=1

l (xi, yi, hw) , (2.23)

which is commonly known as batch gradient descent since all the n data points from the train-

ing set D = {(x1, y1) , . . . , (xn, yn)} are utilised. γ is a step length hyperparameter known

as learning rate that determines how fast to move towards an optimal solution. Meanwhile, a

less computationally expensive method consists of using subsets of the training dataset at each

iteration as described in Algorithm 3, which, because of the random component, is known as a

type of stochastic gradient descent.

An ANN can be trained the same way by optimising W instead of w, but to determine the

search direction, instead of the gradient, a chain of derivatives is computed by using the chain

rule since there can be many layers. Then, minimising the empirical expected loss is known as

back-propagation since to calculate the derivative, a chain of derivatives is computed from the

last layer to the first layer. Alternative optimisation methods for supervised learning include

Adagrad (Duchi et al. 2011) and adaptive moment estimation (Adam) (Kingma and Ba 2015),

which automatically adapt the learning rate γ to the predictive model parameters.
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2.3 Optimisation

In general terms, an optimisation algorithm compares solutions to a problem over multiple

iterations until a satisfactory solution is found. Such a problem is usually modelled as a math-

ematical function that receives problem variables as parameters. Moreover, the analytical form

of the function to be optimised is often unknown and acts like a black box, which leads to

black-box optimisation. This concept finds a parallel in the domain of supervised learning and

optimising predictive models where the optimisation of complex, often non-explicit objective

functions (such as loss functions) is crucial for adjusting predictive model parameters to min-

imise the error.

This thesis considers black-box optimisation problems since robotic tasks are too complex to

have an analytical form. Ideally, the objective is to perform global optimisation, which refers

to locating the global minimum (or maximum) of a function over a given set of solutions, where

multiple locally optimal solutions might be present. The issues that come up when searching

for a global optimum in a black-box function are usually high dimensionality and the topology

of the search space, which makes global optimisation computationally demanding, and even so,

global optimisation algorithms do not guarantee a global optimum. However, finding a solution

close to an optimum within a short time is usually sufficient in real-time applications, such as

robotics. The challenges in this domain are akin to those encountered in MPC hyperparameter

optimisation, a key focus in the contributing chapters.

Consider the following black-box minimisation problem

x∗ = argmin
x∈X

g(x) , (2.24)

where g : Rd → R is a noise-free objective function that is continuous on the feasible domain

X . A maximum can be obtained by minimising −g(x). We use the term optimum to mean

either a maximum or a minimum. For instance, a global optimum is either a global maximum

or a global minimum. A global optimiser is any point x∗ that satisfies the optimisation problem.

It is assumed that X ⊆ Rd is continuous and high-dimensional. The search space is a set or

domain of feasible solutions through which the optimisation algorithm searches, which in this
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Algorithm 4: Gradient Search for Local Optimisation
input : g – Function to optimise

xt – Initial solution
γ – Learning rate

output : x∗ – Optimal solution in the search space
1 while stopping condition not met do
2 Compute∇xg // Find a direction to move to
3 xt+1 ← xt − γ∇xg // Move to the next possibly optimal solution

case would be the objective function domain. Such search space increases exponentially as the

dimension d grows (Weise 2009, June). A local maximum is at x∗ if g(x) ≤ g(x∗) for all x

in some neighborhood of x∗, and a local minimum at x∗ if g(x) ≥ g(x∗) for all x in some

neighborhood of x∗. If the objective function has many local optima in the search space, then

the objective function is multimodal.

2.3.1 Gradient-based Optimisation

A classic optimisation algorithm is gradient-descent for continuous differentiable functions.

The objective function g is continuous if it does not break at any point c in its domain. Formally,

it is said to be continuous if g(c) is defined, and limx→c g(x) = g(c) from both the left and from

the right. The function is differentiable if its derivative exists at any point in its domain.

Suppose xt is a point sampled from X . The objective function value g(xt) can be improved

by applying several iterations of any local search method. A local search method comes from

the idea of moving between configurations by performing local moves as in the gradient search

for continuous functions shown in Algorithm 4, which belongs to a set of methods known as

gradient-based optimisation. xt ∈ R is a point in the t-th iteration of the local search method,

∇xg is the gradient with respect to x corresponding to the search direction, and here γ also

determines how fast to move towards an optimal solution. The concept of a learning rate, γ,

is a critical hyperparameter in training neural networks, affecting the convergence rate and the

quality of the trained model.

Finally, the stopping condition can be simply a maximum number of iterations or some con-

vergence condition such as xt+1 − xt < δ, where δ is some convergence threshold. All in all,
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Algorithm 5: Multi-Start Gradient Search
input : g – Function to optimise

γ – Learning rate
m – Number of starts
w X – Search space

output : x∗ – Optimal solution in the search space
1 for i← 1 to m do
2 Sample xt with uniform distribution on X
3 while stopping condition not met do
4 Compute ∇xg

5 xt+1 ← xt − γ∇xg

gradient search can be considered deterministic local optimisation since it can be done when

information like exact function values and derivatives are available. It is referred to as "local"

since it does not require to provide rigorous theoretical guarantees that the optimal solution is

indeed global. If derivatives are unavailable as in black-box optimisation problems, numerical

differentiation is used to approximate the derivatives empirically. Another method commonly

used in deep learning is automatic differentiation, which decomposes the derivative into simpler

operations, and it is aimed at computationally intensive tasks.

2.3.2 Stochastic Optimisation

Stochastic optimisation is a class of algorithms that employ some degree of randomness when

selecting the search direction to find an optimal solution. This stochastic nature is pivotal in

Bayesian optimisation, a central theme in the contributing chapters. Bayesian optimisation,

which is detailed in Section 2.5, effectively uses randomness to efficiently explore and exploit

the search space. The application of randomness in determining the search direction varies,

including approaches such as pure random search and multi-start strategies. The latter consists

of starting from multiple initial points in the search space as in the multi-start gradient search

from Algorithm 5. Multi-start methods characteristically sample starting points which in some

sense cover the search space assuming all of the best local minima can be detected (Salhi et al.

2000).
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Algorithm 6: Multi Level Single Linkage
input : g – Function to optimise

γ, ζ – Sample reduction hyperparameters
X – Search space

output : x∗ – Optimal solution in the search space
1 X ∗ ← ∅
2 k ← 0

3 while stopping condition not met do
4 k ← k + 1

5 Sample x1, . . . ,xn with uniform distribution on X
6 Xr ← ReducedSample(x1, . . . , xn; γ)

7 rk ← 1√
π

[
GammaFunction

(
1 + d

2

)
m(X ) ζ log(kn)

kn

]1/d
8 foreach x ∈ Xr do
9 if x /∈ X ∗ and ∄xj ∈ Xr : ||xj − x|| ≤ rk and g(xj) < g(x) then

10 x∗ ← LocalSearch (x)
11 X ∗ ← X ∗ ∪ {x∗}

12 return x∗ ← BestLocalOptimum(X ∗)

A multi-start method used for global optimisation in robotics is multi level single-linkage

(MLSL) (Rinnooy Kan and Timmer 1987), which is detailed in Algorithm 6. It is used to

tune optimisation hyperparameters for the experiments in Section 4.6 and Section 5.8. MLSL

enables the exploration of the whole search space through random sampling and the use of a

local optimisation method. It consists of two phases: a global and a local search. In the global

phase, random points are sampled from a probabilistic distribution on X . In the local phase,

selected points from the global phase are used as starting points for local searches. In line 5, n

data points are sampled with uniform distribution on X . Line 6 obtains a reduced sample Xr

that consists of the kn best points in the sample according to 0 < γ ≤ 1. Then, line 7 computes

a critical distance, which is based on clustering. Higher rk leads to few local optimisations,

thus increasing the risk of missing the global optimum, and lower rk does the opposite. The

critical distance rk is reduced at each iteration. The critical distance calculation makes use of

the gamma function GammaFunction, a Lebesgue measure of the search space m(X ), the π

constant, and a hyperparameter ζ > 0 that also regulates the reduced sample size. The reduc-

tion hyperparameters are defined as constants ζ = 2, γ = 0.3 in global optimisation libraries

such as NLopt1. Finally, a local search can be initiated from a reduced sample point if there

1NLopt: https://nlopt.readthedocs.io

https://nlopt.readthedocs.io
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is no other reduced sample point that has a lower function value within the distance rk. The

algorithm continues repeating the global and local phases until a stopping condition is satisfied.

2.3.3 Hyperparameter Optimisation

Since this thesis makes use of optimisation methods for optimising hyperparameters and model

parameters, it is essential to briefly know about their difference and what it consists of. First

of all, as it can be understood from Section 2.2, model parameters are automatically estimated

from data, while model hyperparameters are typically set manually to help estimate the model

parameters. Generally, hyperparameter optimisation or hyperparameter tuning is the process

of searching for optimal hyperparameters defined as x for an algorithm with a performance

function denoted as g. For example, two common trivial hyperparameter optimisation methods

are grid search and random search, which consist of going through a set of d sampled hyper-

parameter values x = [x1, . . . , xd]. Manual hyperparameter optimisation is clearly difficult

since it requires a lot of data collection and data analysis. A trivial way to search hyperpa-

rameters automatically is to go through all possible combinations, which is usually infeasible.

Grid search optimisation corresponds to exhaustively searching through a search space X of

hyperparameters. Each hyperparameter is usually constrained. For example, the learning rate γ

has to be positive (0,+∞]. Grid search extracts a set of equally spaced hyperparameter values

Dx from the search space and evaluates each input.

Algorithm 7: Random Search Optimisation
input : g – function to optimise

X – Search space
output : x∗ – Optimal solution in the search space

1 Dx ← GetInitialDataset(X )
2 D← ∅
3 foreach x ∈ Dx do
4 y ← g(x)

5 D← D ∪ {(x, y)}
6 x∗ ← GetOptimum(D)
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(a) Grid search (b) Random search

FIGURE 2.10. Search space coverage for grid search and random search.

Another method is a random search method shown in Algorithm 7, where the data points Dx

are uniformly distributed across the search space. Random search is more asymptotically ef-

ficient for hyperparameter optimisation than grid search (Bergstra and Bengio 2012). Then,

as with multi-start methods, the search space coverage is essential for increasing the chance

of getting to an optimal configuration. Random search can cover the search space better as in

Figure 2.10 where the hyperparameter space consists of two elements x = [x1, x2], and the

dashed line intersection is where the global optimum is. Random search involves uniformly

sampling hyperparameter combinations through the search space. In random search, the trials

are i.i.d., so there is no need to know about previous trials. This means that the same trials will

probably not be repeated if starting over with the search for new data points is required.

The literature includes comprehensive comparisons of various hyperparameter optimisation

strategies, akin to those used in black-box optimisation, but primarily tailored for enhanc-

ing the performance of supervised learning algorithms (Bergstra et al. 2011; Shekhar et al.

2021). Among other hyperparameter optimisation methods that will be useful for MPC hyper-

parameter optimisation, there is Bayesian optimisation and other surrogate-based optimisation

methods, including its variations (Tiao et al. 2021). These methods adeptly handle complex

optimisation landscapes, making them highly suitable for MPC hyperparameter tuning, a key

focus in this thesis.
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2.4 Bayesian Learning

This section introduces Bayesian learning and Bayesian inference for Gaussian processes,

which lays the foundation for Bayesian optimisation, which will be introduced in Section 2.5.

Bayesian learning is a statistical approach to machine learning that is based on probability the-

ory and the Bayes’ theorem, and one of its main advantages is that it provides a framework

for dealing with uncertainty and ambiguity in the data (C. M. Bishop 2006). As explained in

Section 2.2, the learning goal is to obtain a predictive mathematical model that maps inputs to

desired outputs, and this is done via parameter optimisation. In order to introduce uncertainty

in the modelling process, it is worth mentioning that there are two different approaches for

building a predictive model: discriminative and generative learning.

Discriminative learning consists of directly learning the mapping between inputs x and outputs

y in a regression problem, and it directly learns boundaries in classification, so it discriminates

with respect to the inputs. An example of a discriminative method is the neural network de-

scribed in Section 2.2.4. Meanwhile, generative learning consists of building a probabilistic

model of the mapping in regression and a probabilistic model for the categories in classifica-

tion (Jebara 2003). A probabilistic model is a mathematical model that uses probability theory

to model uncertainty. From a statistical point of view, the input x and the output y are con-

sidered random variables. Random variables are a way to measure uncertainty. Dealing with

uncertainty occurs when we are doubtful about some situation that may happen because of the

presence of partial observability and non-determinism, which are both characteristics of real-

life robotic environments. In machine learning (ML), the outcomes observed from a random

variable are known as observations, realisations or samples. The support of a random variable

is the set of possible values that the observations can take. A dataset can provide observations

that can be used to determine the value of a variable y, for example. If we cannot be com-

pletely sure about its value, we can consider it as a random variable and provide a degree of

belief known as probability. The probability density function (PDF) of a single variable is de-

noted as p(y), which is a function that maps the support of the variable to probability densities.

The PDF completely characterises the distribution of a continuous random variable.
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2.4.1 Bayes’ Rule

Considering a multivariate random variable x, probabilistic modelling usually consists of learn-

ing p(y|x), which describes a conditional probability distribution of the output y given the

input x, and such probability distribution p(y|x) can be learned either discriminatively or gen-

eratively. In this section, we care about estimating p(y|x) using a generative predictive model.

From a Bayesian perspective, the probability distribution p(y|x) is the quantity of interest called

the posterior, and it can be estimated through the application of Bayes’ rule, considering the

variable dependency where p(y) is the prior that encapsulates the subjective prior knowledge

FIGURE 2.11. Vari-
able dependency. The
output y depends on
the input x.

p(y | x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x | y)

prior︷︸︸︷
p(y)

p(x)︸︷︷︸
evidence

, (2.25)

of the variable y. The likelihood p(x | y) describes how x and y are related given y. Once data

becomes available, the likelihood allows us to update the posterior. The denominator quantity

is the marginal likelihood or evidence

p(x) =

∫
p(x | y)p(x)dx . (2.26)

2.4.2 Bayesian Modelling

Consider a linear regression problem where the objective is to learn an input-output mapping

that consists of optimising predictive model parameters w given a dataset of size n

yi = wTxi + νi, i = 1, · · · , n , (2.27)

where the prediction noise νi is assumed to be Gaussian νi ∼ N (0, σ2
ν), and w ∈ Rd. The

Bayesian approach can be applied to parameter learning, which is called parameter estimation

from a statistical inference perspective, and since it requires defining a probabilistic predictive
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model, it can also be called Bayesian learning. By considering variable dependencies, a prob-

abilistic model can be defined by describing the parameters w as a random variable for the

function dependency between x and y. This distribution of parameters can be interpreted as

uncertainty due to insufficient knowledge about the generative process. Then, a probabilistic

model can be formulated as a dependency between w and the training data D, which is also

considered a random variable consisting of the data points (yi,xi). To make statements about

the interaction of the parameters w and the observations D = {(x1, y1) , . . . , (xn, yn)}, we con-

sider their joint probability distribution p(w|D), where the Bayesian approach can be applied.

The assumptions formulated via the generative model allow the evaluation of the likelihood

p(D | w) = p(X,y|w) where D consists of a vector of input multi-dimensional random vari-

ables X = [x1, . . .xn] and a vector of output random variables y = [y1, . . . yn]. The prior p(w)

is a distribution over all possible parameters w, which usually assumes a normal distribution.

Then, the posterior is formulated as

p(w | D) =
p(D | w)p(w)

p(D)
, (2.28)

where p(D) =
∫
p(D | w)p(w)dw can be calculated because it is a combination of the

likelihood and prior, although it is usually intractable because it has to integrate over all possible

parameters w. When all terms on the right-hand side are known, the posterior can be evaluated.

Bayesian inference in the context of ML can be performed by computing the posterior p(w |

D). However, finding the posterior usually entails a combination of modelling assumptions and

observations. If enough assumptions are considered, then the posterior can have a closed-form

solution. If there is no closed-form solution, approximation techniques such as sampling or

variational inference (Zhang et al. 2019) can be used.

Finally, with the posterior found, a predictive posterior distribution for new inputs can be de-

fined as p (y∗ | x∗,D) as shown in Equation 2.29. x∗ and D are both shaded, indicating that

both variables are observed, and the others are latent (or unobserved). Such posterior integral

is intractable if no assumptions are made. A parametric method known as Bayesian linear re-

gression takes advantage of the convenience of normal distribution operations and solves the

inference problem analytically. Bayesian linear regression assumes a Gaussian prior p(w|D),
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FIGURE 2.12. Vari-
able dependency for
computing a predictive
posterior.

p (y∗ | x∗,D) =

∫
w

p (y∗ | x∗,w) p(w | D)dw .

(2.29)

and since the noise is Gaussian, a Gaussian likelihood p(yi|xi,w) = N (wTxi, σ
2
ν) is also as-

sumed. The integral becomes tractable with such assumptions. More details on Bayesian linear

regression can be found in C. M. Bishop (2006).

2.4.3 Gaussian Processes

Before introducing Bayesian inference for Gaussian processes, it is helpful to elaborate on the

Gaussian uncertainty. As it was seen in previous sections, a common probability distribution in-

troduced in modelling is the noise variable ν ∼ N (0, σ2
ν) where σ2

ν is known as noise variance.

To understand what a Gaussian process does, it is helpful to give more details on the Gaussian

distribution. First and foremost, a Gaussian or normal distribution is widely used across the

many algorithms for ML, including BO, to represent uncertainty. Its PDF is parameterised by

a mean µ ∈ R and a variance σ2 ∈ R>0. We say that if a one-dimensional random variable x

follows a Gaussian distribution x ∼ N (µ, σ2), its PDF is denoted as p (x;µ, σ2) = N (µ, σ2)

and defined as follows:

p
(
x;µ, σ2

)
=

1√
2πσ

exp

(
− 1

2σ2
(x− µ)2

)
, (2.30)

where its support is the real numbers: supp(x) = R. The mean µ of the random variable is a

measure of centrality that reflects the midpoint probability distribution in a single measure. It

can also be described as the weighted average of its possible values i, which turns out to be the

expectation or expected value E[x] =
∑

i∈supp(x) i p (i) if x is a discrete random variable. For a

Gaussian-distributed random variable, the support is continuous. In that case, the expectation is
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defined as E[x] =
∫∞
−∞ xp(x)dx. Meanwhile, the variance is a measure of how spread out the

distribution is. The squared root of the variance is called standard deviation σ, and it is usually

used to measure the spread from the mean. For example, for Gaussian-distributed variables, it is

known that 95% of its observations lie within two standard deviations from the mean (Blitzstein

and Hwang 2019).

A multivariate random variable can be expressed in vector notation as an ordered set of d

random variables x = [x1, x2, . . . , xd] with a joint PDF p(x) = p(x1, x2, . . . , xd). If x follows

a multivariate Gaussian distribution, its PDF is defined as follows:

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.31)

where the distribution is parameterized by a mean µ ∈ Rd and a positive-definite covariance

matrix Σ ∈ Sd
++, which means that

Sd
++ =

{
M ∈ Rd×d : M = MT and zTMz > 0 for all z ∈ Rd such that z ̸= 0

}
. (2.32)

The mean µ is now multi-dimensional, representing a vector containing the expected values of

the elements E[x] = (E[x1], . . . ,E[xd]) = (µ1, . . . , µd), and the covariance matrix

Σ =


Σ11 · · · Σ1d

... . . . ...

Σd1 · · · Σdd

 (2.33)

is a square matrix that gives the covariance for every pair (xi, xj), denoted as Σij . Every ele-

ment in x is normally distributed according to xi ∼ N (µi,Σii), and every linear combination

of xi is normally distributed (Kaiser 2021). The covariance is a single-number summary of the

joint distribution of two random variables. It can also be seen as a measure of their tendency

relative to their means (Blitzstein and Hwang 2019).
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This thesis mostly uses multivariate random variables to represent predictive model variables

and parameters in order to build probabilistic models. Probabilistic models incorporate proba-

bility distributions into the model.

Gaussian Process Regression

A Gaussian process (GP) is a stochastic process that generalises multivariate Gaussian distribu-

tions over finite dimensional vectors to infinite dimensionality (Sammut and Webb 2011). As

a stochastic or random process, a GP involves a state that changes in a random way over time,

which is why it can be seen as a sequence of random variables {x0,x1,x2, . . .}. The subindex

is often interpreted as time, and each element xτ is known as the state of the process at time τ .

For example, xτ+1 = xτ +N (0, 1) is an example of a stochastic process where the change in

the state depends on the previous one and a random number. The time can also be continuous,

but the main focus in this thesis is discrete-time stochastic processes. A GP is used for mod-

elling distributions over functions (Rasmussen and Williams. 2006). Therefore, it can be used

for regression. For a given training dataset, there are potentially infinitely many functions that

can fit. With Bayesian linear regression, a posterior over the parameters can be derived, which

leads to several potentially optimal linear functions. Meanwhile, a GP can directly represent a

posterior over the functions.

An advantage of GP regression is that it is a non-parametric way of approximating nonlinear

functions. The previously seen predictive learning models were parametric models since they

assumed a mapping function with a fixed number of parameters w as in y ≈ wTx. A GP

is a non-parametric model that does not define an explicit parameterised formula for function

modelling.

First of all, a probability distribution over functions consists of a set H of all possible func-

tion mappings X = {x1, . . . ,xn} → R. A function can be compactly represented as an

n-dimensional vector g = [g (x1) , . . . g (xn)]. Then, we can specify a Gaussian PDF for each

function inH as

g ∼ N (µ,K) , (2.34)
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FIGURE 2.13. Gaussian process example with four initial observations and a
set of potential function fits. In regions with fewer observations, there is greater
uncertainty in the predicted functions.

which is used as a prior distribution for g since a GP performs Bayesian inference to approxi-

mate a posterior. The covariance matrix K is now the matrix

K =


k (x1,x1) · · · k (x1,xn)

... . . . ...

k (xn,x1) · · · k (xn,xn)

 , (2.35)

which contains kernel or covariance functions k(·, ·) that represent similarity measures be-

tween input features as explained in Equation 2.18. The kernel functions have to be defined

beforehand. Examples of kernel functions will be described in Section 2.4.4.

The next quantity of interest is the likelihood. As with Bayesian linear regression, a Gaussian

likelihood p(yi|xi,w) = N (wTxi, σ
2
ν) where g (xi) = wTxi is also assumed. Therefore, the

evaluation yi at the point xi satisfies the GP likelihood

yi | g (xi) ∼ N
(
g (xi) , σ

2
ν

)
i = 1, . . . , n

vectorized as

y | g ∼ N
(
g,σ2

νI
)
.

(2.36)
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Finally, a posterior distribution can be derived by applying a Gaussian distribution property

known as conditioning (Murphy 2012). Since the output vector y and the function g are jointly

normal, their joint distribution is given by y

g

 ∼ N
 µ

µ

 ,

 K+ σ2
νI K

K K

 , (2.37)

where the posterior distribution for the function g is computed as follow

g | y ∼ N (mean(g), cov(g))

mean(g) = µ+KTK−1(y − µ)

cov(g) = K−K(K+ σ2
νI)

−1K .

(2.38)

As a means of demonstrating a Gaussian fit, Figure 2.13 shows a Gaussian process example

with four initial observations. The shaded region represents the confidence interval, which is

determined by the Gaussian process variance and is typically set as twice the standard deviation,

serving to quantify the uncertainty around the true function. Alongside the confidence interval,

you can observe possible functions generated from the posterior distribution, showcasing a

range of potential function fits. When aiming to approximate the true function, it is desirable

for the mean, denoted as mean(g), to closely align with the true function.

Since the regression model can infer new functions given some dataset, we can define train

and test data. During training, the GP learns by using a dataset D = {X,y}. The test data

will be used as prior knowledge composed of also inputs X∗ = [x∗1, . . .x∗m] and outputs

g∗ = [g∗1, . . . , g∗m]. Then, the goal is to formulate and infer a posterior distribution that can be

defined as
p (g∗ | X∗,D)

p (g∗ | X∗,X,y) .
(2.39)
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As well as with Equation 2.37, the joint distribution of the output vector y and the test function

vector g∗ is given by the GP prior y

g∗

 ∼ N
 µ

µ∗

 ,

 KXX + σ2I KXX∗

KX∗X KX∗X∗

 , (2.40)

and using the conditioning property again, we can get the GP predictive posterior

g∗ | X∗,X,y ∼ N (mean(g∗), cov(g∗)) (2.41a)

mean(g∗) = µ∗ +KX∗X[KXX + σ2
νI]

−1(y − µ) (2.41b)

cov(g∗) = KX∗X∗ −KX∗X(KXX + σ2
νI)

−1KXX∗ (2.41c)

where
KXX ∈ Rn×n such that (KXX)ij = k(xi,xj)

KXX∗ ∈ Rn×m such that (KXX∗)ij = k(xi,x∗j)

KX∗X ∈ Rm×n such that (KX∗X)ij = k(x∗i,xj)

KX∗X∗ ∈ Rm×m such that (KX∗X∗)ij = k(x∗i,x∗j) .

(2.42)

2.4.4 Model Selection

Approximating the true function is a hard problem because the possibilities are essentially un-

limited. A GP can approximate the true function by fitting a normal distribution. Since the GP

is used for black-box optimisation problems, there is often no prior knowledge for selecting the

function structure. The GP is usually assumed to start with a prior function 0 = (01, . . . 0n)

as µ, which does not produce any loss of generality in case the mean is unknown (Rasmussen

and Williams. 2006). The GP posterior can be computed analytically, but as in most ML algo-

rithms, there are hyperparameters to optimise. The GP formulation allows us to consider sets

of function structures determined according to the GP hyperparameters. Model selection is

usually referred to as GP training, and it corresponds to finding the set of hyperparameters that

can best describe the function to approximate (Mchutchon and Rasmussen 2011). Those hyper-

parameters can be selected by analysing some sample dataset if expert knowledge is available,

but they are usually fit to sample dataset D = {X,y} collected a priori.
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FIGURE 2.14. Typical components and variables in control system design.

The first and most common GP hyperparameter is the noise variance σν from the noise variable

ν ∼ N (0, σ2
ν). The noise variance σν specifies how much noise is expected to be present in

the data. Other hyperparameters depend on the choice of kernel function for the GP covariance

matrix. There are several kernel functions k(·, ·) in the literature, starting with the squared

exponential, also known as radial basis function or Gaussian kernel. The figure Figure 2.14

shows sampled functions f ∼ N (0,K) where f : R → R and (K)ij = kSE(xi, xj). The

squared exponential kernel is defined as follows:

kSE(xi, xj) = σ2
n exp

(
−(xi − xj)

2

2ℓ2

)
, (2.43)

where its hyperparameters are a signal variance σ2
n and a lengthscale ℓ. The signal variance

σ2
n can increase or decrease the variance of the function approximation without affecting the

function smoothness. The lengthscale ℓ can regulate the smoothness of the function approxi-

mation. Small ℓ values would make the function approximation less smooth, characterising a

function that changes quickly. It also determines how far it can reliably extrapolate from the

training data. Large ℓ values produce a smoother function approximation, and that would make

sure that training points that are far away remain strongly correlated. The squared exponen-

tial kernel function from Equation 2.43 can be extended to multi-dimensional input vectors by

replacing the squared difference by ||xi − xj||2 = (xi − xj)
T (xi − xj).
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The squared exponential kernel described can only be used if a unique lengthscale is used

for all the input features. Automatic relevance determination (ARD) is an extension to such a

kernel. The ARD kernel from Equation 2.44 is able to implicitly determine the relevance of

each feature by using a lengthscale ℓm per input feature xm where m ∈ {1, . . . , d}. A large

lengthscale ℓm makes the covariance almost independent of the corresponding input feature

xm, which makes the feature less relevant for inference (Rasmussen and Williams. 2006). All

features do not have the same relevance in a real dataset, so the optimal solution should consist

of only strong relevant features.

kSE-ARD(xi, xj) = σ2
n exp

(
−1

2

d∑
m=1

(
xim − xjm

)2
ℓ2m

)
. (2.44)

The kernel functions can be classified into stationary and non-stationary. They are known as

stationary if they depend on the distance separating the two input vectors xi and xj , but not

on the input themselves (Duvenaud 2014). They are non-stationary if they do not depend on

the distance. Table 2.4 shows a list of other kernel functions commonly used for a GP, their

mathematical expressions, and their corresponding hyperparameters. The linear and polyno-

mial kernel functions are examples that do not depend on the distance. To compute kernel

functions for multi-dimensional inputs, a diagonal matrix L ∈ Rd×d is used where L(i,i) =
1
ℓ2i

.

The covariance matrix is often defined as a diagonal matrix. Also, the distance is defined as

dist(xi,xj) = (xi − xj)
⊤ L (xi − xj) . (2.45)

We can define a set of GP hyperparameters as Ω = {σν , σn, ℓ1, ℓ2, . . . , ℓd}. Then, there are two

main approaches to training the GP using a sample dataset: the first one is a purely Bayesian

approach where a prior is placed on the hyperparameters p(Ω), and then the posterior p(Ω |

X,y) is inferred using Bayesian inference algorithms (Svensson et al. 2015). The other one is

the empirical Bayes approach, where the optimal hyperparameters are optimised by maximising

the marginal likelihood (Ganjali 2016), which is the one discussed in this section. The marginal
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Kernel name Expression k (xi,xj) Hyperparameters

Linear σ2
n

(
σ2
0 + xT

i Lxj

)
Ω = {σn, σ0, ℓ}

Matern σ2
n(1 +

√
3 dist(xi,xj)) exp(−

√
3 dist(xi,xj)) Ω = {σn, ℓ}

Polynomial σ2
n

(
σ2
0 + xT

i Lxj

)p
Ω = {σn, σ0, ℓ, p}

Squared Exponential σ2
n exp

(
−dist(xi,xj)

2

)
Ω = {σn, ℓ}

TABLE 2.4. A list of typical kernel functions taken from (Marchant Matus
2015). All kernel functions shown, but the linear and polynomial kernel func-
tions depend on the distance between input vectors, p is the degree of the poly-
nomial, and ℓ = {ℓ1, ℓ2, . . . , ℓd}.

likelihood of the GP is given by

p(y | X) =

∫
p(y | g,X)p(g | X)dg , (2.46)

where p(y | g,X) = N (g, σ2
νI) is the likelihood and p(g | X) = N (0,K) is the prior,

considering the observed data X. Then, instead of maximising the marginal likelihood directly,

the negative logarithm of the marginal likelihood (Rasmussen and Williams. 2006) is known as

log-marginal likelihood and is the objective function to be optimised:

L(Ω) = − log p(y | X; Ω)

= −1

2
y⊤ (K+ σ2

νI
)−1

y − 1

2
log
∣∣K+ σ2

νI
∣∣− n

2
log 2π ,

(2.47)

where π is the mathematical constant, the covariance matrix K is calculated using X and the

hyperparameters Ω. The maximum likelihood estimate is the solution to the problem

Ω⋆ ∈ argmin
Ω

L(Ω) , (2.48)

which can be calculated using some black-box optimisation approach. The result is a set of

suitable hyperparameters for the GP model.
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2.5 Bayesian Optimisation

This section describes Bayesian optimisation (BO) as a GP-based and surrogate-based method

for solving stochastic optimisation problems. One of the uses of the GP described in Sec-

tion 2.4.3 is to act as an approximation model that mimics the behaviour of some unknown

function since it is used to perform regression, starting from some prior assumptions. A par-

ticular method that uses GPs is BO, which has been widely applied in robotics and control to

optimise expensive black-box functions (Marco-Valle 2020, July). The way this is done is by

sequentially optimising an approximated model of the true function, which corresponds to a

class of optimisation methods known as surrogate-based methods.

Sequential-based Model Optimisation

BO is part of a class of sequential optimisation methods known as sequential model-based

optimisation (SMBO) that consists of using an approximated function model known as surro-

gate model (Jiang et al. 2020) to optimise costly-to-evaluate black-box functions. The general

idea of dealing with expensive functions due to resources of some kind is also related to ac-

tive learning, which is optimisation oriented to classification for supervised learning but done

sequentially. Also, since a surrogate model is used, BO is also a surrogate-based optimisation

method. An SMBO method consists of the following main components

• BO sequentially fits a surrogate model denoted asM to the current set D of evaluated

data points.M is assumed to be cheaper to evaluate, such as a GP.

• A utility measure uses the surrogate modelM to select the next input xt, which may

get better performance. That selection is made with some black-box optimisation

algorithm.

As in Algorithm 8, an SMBO algorithm starts with defining the dataset of evaluated points D

can start as empty D = ∅, but it also can start with the points already evaluated used to train the

GP, for example. In line 3, the surrogate model is fit to the dataset. In line 4, a utility measure is

maximised, which gives the next point to evaluate xt. Then in line 5, the function to optimise
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is evaluated at such a point xt. Finally, the dataset is updated with the new input-output pair

(xt, yt). The whole procedure can be done n times, in which n new data points are found.

Algorithm 8: Sequential-based Model Optimisation
input : y – Function to optimise

n – Number of iterations
M – Surrogate model
X – Search space

output : x∗ – Optimal solution in the search space
1 D← InitialiseDataset()
2 for t← 1 to n do
3 FitModel(M,D)

4 xt ← argmaxx∈X UtilityMeasure(x,M,D)

5 yt ← y(xt)

6 D← D ∪ {(xt, yt)}
7 x∗ ← GetOptimum(D)

2.5.1 Bayesian Optimisation Formulation

As an optimisation algorithm, BO’s objective is to choose points to evaluate in order to locate

global optimisers, but with some more advantages, starting with the robustness to noisy objec-

tive function evaluations. A noisy function corresponds to an objective function g under some

external noise ν. The optimisation problem is defined as

y = g(x) + ν (2.49)

x∗ = argmin
x∈X

g(x) , (2.50)

where g(x) : Rd → R, and ν ∼ N (0, σ2
ν) as seen before. The BO algorithm is shown in Algo-

rithm 9. It is assumed that a set of random observations was collected (e.g. using the random

search seen in Section 2.3.3) to obtain optimal GP hyperparameters Ω. The method starts by

initialising a dataset D that can also be empty in line 2. Then a GP prior is obtained by fitting the

GP model in line 3. Both previously evaluated points and new points x∗ are denoted as x from

now on. The method returns the optimal input xt if the function y were noiseless. However,

it corresponds to the point with the largest GP posterior mean x∗ = argmaxx∈Dmean(g(x))

since we can only observe the function g through noisy point-wise observations y (Shahriari

et al. 2016).
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Algorithm 9: Bayesian Optimisation
input : y – function to optimise

n – Number of iterations
M – Surrogate model
X – Search space
α – Acquisition function
Ω – GP hyperparameters

output : (x∗)
1 D← GetInitialDataset(X )
2 for t = 1 to n do
3 Fit a GP modelMΩ with the data D
4 xt ← argmaxx∈S α(x,MΩ,D)
5 yt ← y(xt)

6 D← D ∪ {(xt, yt)}
7 x∗ ← GetOptimum(D)

Evaluating new points x in a search space S can be done by using the utility measure α known

as acquisition function, which is maximised to give the next input xt, which is not necessarily

the optimum so far since BO follows the exploration-exploitation paradigm. In the context

of function optimisation, the exploration-exploitation paradigm consists of either exploring

new unseen function regions or exploiting regions where the optimal is so far (Luke 2013).

Hence, there is a trade-off between exploring and exploiting. For example, Figure 2.15 shows

a function with homoscedastic noise σ2
ν = 1. The objective is to minimise the true function

in yellow, and this is done by running BO for n iterations. Figure 2.16 shows the first two

iterations where the regions with higher variance are observed first since it uses an acquisition

function that does more exploration. At the last iteration, BO tends to converge to an optimal

region.

FIGURE 2.15. Noisy Forrester

g(x) = (6x− 2)2 sin(12x− 4) +N
(
0, σ2

ν

)
σ2
ν = 1 .

(2.51)
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FIGURE 2.16. BO iterations starting with a single initial observation

2.5.2 Acquisition Functions for Bayesian Optimisation

The acquisition function is typically an inexpensive function since it has to be maximised at

each iteration. In an ideal situation, it is approximately the true function and minimising it

returns a point close to the optimal, but it is done by taking into account previously evaluated

data points. Since the function parameter is a single input and not a matrix, given an input x,

the mean mean(g(x)) and variance var(g(x)) are obtained analytically by computing the GP

posterior from Equation 2.41. The standard deviation is defined as std(g(x)) =
√
var(g(x)).

The acquisition functions described next assumed a noiseless setting as BO is commonly de-

scribed, but when the objective function is noisy, BO considers an approximation ĝ ≈ g where

ĝ(x∗) = mean(x∗).



2.5 BAYESIAN OPTIMISATION 55

Probability of Improvement

Assuming a noiseless function y = g(x), the function evaluation at the best point so far is

denoted as g(x∗). The acquisition function is able to measure the improvement of a point x to

be evaluated by computing

αImp(x) = max(g(x∗)− g(x), 0) . (2.52)

A probability of improvement (PI), introduced in Kushner (1964), can be expressed as the

probability

αPI(x) = p(αImp(x) > 0)⇔ p(g(x) > g(x∗)) . (2.53)

Then to express αPI(x) it in terms of variables already seen and knowing that the function

evaluated at a single input is expressed as g(x) ∼ N (mean(g(x)), var(g(x))), the probability

of improvement is

αPI(x) = Φ

(
mean(g(x))− g(x∗)

std(x)

)
, (2.54)

where Φ is the cumulative distribution function of the standard normal distribution. The acqui-

sition function does not balance exploration and exploitation automatically. For that reason, an

extra hyperparameter δ ≥ 0 is added, which allows more exploitation as it decreases and more

exploration as it increases:

αPI(x) = Φ

(
mean(x)− g(x∗)− δ

std(x)

)
. (2.55)

Expected Improvement

Adding functionality to PI, there is another acquisition function known as expected improve-

ment (EI) (Bull 2011) that additionally considers the expected magnitude of the improvement.

The expected improvement αEI(x) := E[αImp(x)] is then defined as

αEI(x) =

∫ ∞

−∞
αImp(x)φ(z)dz =

∫ ∞

−∞
max (g(x∗)− g(x), 0)︸ ︷︷ ︸

αImp(x)

φ(z)dz , (2.56)
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where φ is the PDF of the standard normal distributionN (0, 1). To solve the integral, it breaks

into two components: one where g(x∗) − g(x) is positive and one where it is negative. The

point where the switch happens is z0 =
g(x∗)−mean(g(x))

std(g(x))
. Then the integral becomes

αEI(x) =

∫ z0

−∞
αImp(x)φ(z)dz︸ ︷︷ ︸

Zero since αImp(x)=0

+

∫ ∞

z0

αImp(x)φ(z)dz . (2.57)

The resulting expected improvement can be calculated by reducing the expression in terms of

mean(g(x)) and std(g(x)) and doing integration by parts:

αEI(x) =

∫ ∞

z0

max (g(x∗)− g(x), 0)Φ(z)dz

=

∫ ∞

z0

(mean(g(x)) + std(g(x))z − g(x∗)) Φ(z)dz

= (mean(g(x))− g(x∗)) Φ

(
mean(g(x))− g(x∗)

std(g(x))

)
+ std(g(x))φ

(
mean(g(x))− g(x∗)

std(g(x))

)
.

(2.58)

Then αEI(x) takes high values when mean(g(x)) > g(x∗), which is when the mean value of

the GP is high at x. An extra hyperparameter δ ≥ 0 can allow more exploitation as it decreases

and vice versa:

αEI(x) = (mean(g(x))− g(x∗)− δ) Φ

(
mean(g(x))− g(x∗)− δ

std(g(x))

)
+ std(g(x))φ

(
mean(g(x))− g(x∗)− δ

std(g(x))

)
.

(2.59)

Upper Confidence Bound

The acquisition function known as upper confidence bound (UCB) was proposed in Cox and

John (1992), and it explicitly deals with the exploitation–exploration trade-off with a hyperpa-

rameter δ ≥ 0 that also allows more exploitation as it decreases and vice versa. In a function

minimisation case, it is defined as

αUCB(x) = mean(g(x))− δ std(g(x)) . (2.60)
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The way δ is optimised depends on the task, and it can only be determined via data analysis.

Nevertheless, in most cases, a higher δ is usually more advantageous since it makes use of the

GP, and more regions with higher uncertainty will be explored. Meanwhile, as δ → 0, it does

more exploitation, which leads to converging into a local minimum.

UCB’s ability to explore more thoroughly reduces the risk of missing global optima, a sig-

nificant advantage over PI and EI that might converge prematurely to local optima. Further-

more, the flexibility offered by the δ hyperparameter in UCB allows more adaptation to the

specific characteristics of the MPC parameter space. Finally, in terms of time performance,

UCB’s computational simplicity, compared to more complex acquisition functions, translates

into faster evaluations, beneficial in the context of MPC, where time efficiency is often as crit-

ical as achieving optimal performance.

2.5.3 Bayesian Optimisation Alternatives

Despite the non-parametric advantages of Bayesian inference for optimisation, BO is hindered

by the GP surrogate model, which has limitations such as a cubic computational cost when

training and does not directly handle variable noise structures such as heteroscedasticity. BO

extensions are focused on addressing the several issues of BO, and they are mainly restrained

by the necessity to ensure analytical tractability of the predictive posterior distributions and

typically make strong and oversimplifying assumptions. For example, (Kuindersma et al. 2012)

proposed a heteroscedastic BO approach that uses a variational approximation that is expensive

to compute.

Tree-Structured Parzen estimator

Some BO alternatives bypass the challenges of analytical tractability in GP-based approaches

by selecting points according to a density ratio. One alternative is called tree-structured Parzen

estimator (TPE), which was proposed in Bergstra et al. (2011). TPE also assumes a noiseless
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function y = g(x). TPE uses a quantile hyperparameter 0 < γ < 1 that provides a threshold

τ = Φ−1(γ) , (2.61)

for splitting the data into a first group that gave the best scores and a second group containing

the rest as in Figure 2.17. Then, the goal is to find the next inputs that are more likely to be

in the first group, which will serve as a utility measure. In order to propose a new input x,

TPE computes a density ratio between the probability a(x) of being in the first group and the

probability b(x) of being in the second group. Unlike BO, TPE models p(x | y,D) instead of

p(y | x,D) as Equation 2.62.

FIGURE 2.17. Observations divided
two groups: the red data points where
y < τ and the blue data points where
y ≥ τ .

p(x | y < τ) = a(x)

p(x | y ≥ τ) = b(x) .
(2.62)

(a) Ordinary density ratio Γ(x) (b) γ-relative density ratio
Γγ(x)

FIGURE 2.18. Density ratio example



2.5 BAYESIAN OPTIMISATION 59

Algorithm 10: Tree-Structured Parzen Density Estimator
input : y – Function to optimise

n – Number of iterations
X – Search space
γ – Quantile hyperparameter

output : x∗ – Optimal solution in the search space
1 D← InitialiseDataset()
2 for t← 1 to n do
3 τ ← SplitData(D, γ)

4 Γγ ← GetDensityRatio(D, τ)

5 xt ← argmaxx∈X Γγ(x)

6 yt ← y(xt)

7 D← D ∪ {(xt, yt)}
8 x∗ ← GetOptimum(D)

Then, the utility measure for selecting a new input is a ratio between the probabilities a(x) and

b(x):

Γ0(x) = a(x)/b(x) , (2.63) Γγ(x) =
a(x)

γa(x) + (1− γ)b(x)
. (2.64)

A relative density ratio parameterised by γ was proven to be proportional to the expected im-

provement αEI (Bergstra et al. 2011). For example, Figure 2.18b shows that optimal regions

are the ones where the density ratio is higher, and the exploration-exploitation trade-off can be

regulated by γ. The whole TPE optimisation method is shown in Algorithm 10.

Bayesian Optimisation by Density Ratio Estimation

As well as TPE, another approach that makes use of the density ratio is called Bayesian opti-

misation by density ratio estimation (BORE) (Tiao et al. 2021). Unlike TPE, BORE trains a

probabilistic classifier to obtain a utility measure. Based on a reformulation of the αEI acquisi-

tion function from Equation 2.58, BORE approximates the γ-relative density ratio to a binary

class posterior probability as

Γγ(x) := γ−1Π(x) , (2.65)

where Π(x) computes the probability of x belonging to a positive class Π(x) = p(z = 1 |

x). The binary label z ∈ {0, 1} introduced here denotes a negative or positive class, and its

meaning corresponds to whether the point should be selected or not. Then given a maximisation
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objective, BORE sets z := I[y ≥ τ ], indicating whether the corresponding observation y at a

point x is above the γ-th quantile τ of the (empirical) observations distribution, i.e., γ = p(y ≥

τ). In the end, computing the acquisition function h from the classical BO method is reduced

to classification, as shown in Algorithm 11.

Algorithm 11: Bayesian Optimisation by Density Ratio Estimation
input : y – function to optimise

n – Number of iterations
M – Surrogate model
X – Search space
γ – Exploration-exploitation hyperparameter
Πclassif – Probabilistic binary classifier to train

output : (x∗)
1 D← GetInitialDataset(X )
2 for t = 1 to n do
3 τ ← SplitData(D, γ)

4 Π← TrainBinaryClassifier(D, τ,Πclassif)

5 xt ← argmaxx∈X Π(x)

6 yt ← y(xt)

7 D← D ∪ {(xt, yt)}
8 x∗ ← GetOptimum(D)

As it can be seen, BORE also follows the steps from SMBO paradigm Algorithm 8 steps

where the utility measure is the probability distribution Π(x). The optimisation depends on the

hyperparameter γ ∈ (0, 1), which influences the exploration-exploitation trade-off. A smaller γ

encourages exploitation. Intuitively, it leads to fewer modes and sharper peaks in the acquisition

function. Figure 2.19 shows an example of minimising Figure 2.15 where the class probability

Π(x) is shown at the right, starting with a single observation. The observations are divided into

blue and red markers. The optimal region is exploited as more iterations are run.

2.6 Reinforcement Learning

In simple terms, reinforcement learning (RL) is learning through reinforcement. Reinforcement

is the act of strengthening whatever causes the frequency of a given behaviour to increase.

That desired behaviour can be interpreted as the desired state of a decision-maker. From a

learning perspective, the decision-maker learns how to choose particular actions a to achieve
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FIGURE 2.19. BORE iterations starting with a single initial observation. The
horizontal dashed line represents the threshold τ .

that desired state s by reinforcing optimal actions. In RL, the decision-maker is known as agent,

which can be a robot, and the thing it interacts with, comprising everything outside the agent,

is called the environment (R. Sutton and Barto 2018). RL and optimal control researchers have

been studying very similar problems for intelligent devices from thermostats to autonomous

cars to robotic manipulators (Antsaklis and Rahnama 2018), which is why it has connections

with control systems. The controlled system can be a robot, e.g. an autonomous car. Then there

is the control signal that regulates the car speed, which is the corrective action a, and the state

s of the system is still its current state defined by its sensor readings. Moreover, as in optimal

control, where an action or state has a cost associated, in RL, they have a reward associated
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that measures the agent’s performance. Then, instead of minimising costs, RL problems are

usually formulated as maximising rewards.

RL’s connection with supervised learning resides in how the output is presented. In supervised

learning, there is an output y and a predictive model that is trained based on input features

x = [x1, . . . , xp] from a given observation. That observation is analogous to a given state s of

the environment. The difference is that RL does not receive the right output. The robot must

learn how to obtain that output by trial and error, and it must do it by performing actions a.

Regarding the learning process, in general, RL consists of learning an optimal policy, which is

a function that maps from states of the environment to actions.

2.6.1 Markov Decision Process

As a stochastic process, a Markov process (MP) or Markov chain involves a state s that changes

in a random way over time according to a Markov property, which is the assumption that the

future depends only on the present and not on the past (R. Sutton and Barto 2018). For example,

if the objective is about predicting rainy days, the state space can be S = {raining, not raining}

and a state s ∈ S. With the Markov property, raining in the present can lead to rain in the

future, which is desired since rainy days come in sequences. The simplest and most common

formulation assumes the environment can be modelled as a discrete-time Markov process where

t ∈ 0, 1, 2, . . ., the Markov property can be represented as

p(st+1|st) = p(st+1|s1, . . . , st) , (2.66)

where moving from one state s to st+1 is called a transition, and the probability of moving

to such a state p(st+1|st) is called transition probability or state-transition probability. Then,

achieving a state can have a reward known as immediate reward r in order to evaluate the

agent’s behaviour. That leads to an extension called Markov reward process (MRP). While an

MP consists of states and transition probabilities, an MRP consists of states, transition proba-

bilities, and also a reward function r(s).
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FIGURE 2.20. Agent-environment interaction. The policy ϱ is deterministic.

In an RL environment, the agent makes decisions known as actions a in order to reach the

desired state, and it does it sequentially in time, for which the problem is known as sequential

decision making. Since it follows the Markov property, such a decision-making process is

known as Markov decision process (MDP). The dynamics of the MPD is defined by

p(st+1, rt+1|st, at) = p(st+1, rt+1|s1, a1, r1 . . . , st, at, rt) , (2.67)

where at each timestep t, the agent reaches a state st ∈ S and executes an action at ∈ A

according to a policy ϱ. The environment then provides a feedback signal in the form of a

reward r ∈ R. The agent’s interaction with the environment is shown in Figure 2.20. Interacting

with the environment gives rise to a sequence or trajectory from time t0 to tf :{
st0 , at0 , rt1 , st1 , at1 , rt2 , . . . stf−1, atf−1, rtf , stf

}
. (2.68)

This thesis considers only finite-horizon problems where the main objective is to maximise

the cumulative reward known as return for a trajectory starting at timestep t up to timestep

t + T . An episode is known as the whole set of trials (agent-environment interactions) that

return the trajectory. The return for the current episode can also be called episodic reward and

is computed as Jt = rt+1 + rt+2 + rt+3 + . . . + rt+T . The states, actions, and rewards can be

sampled as in Figure 2.21.

Moreover, given the MDP framework, the probability of reaching st+1 can be marginalised,

giving the transition probability from Equation 2.69a. The expected reward for rt+1 can be
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FIGURE 2.21. States and interactions sampled by an MDP. V ϱ(st) is the value
at state st, and ϱ(at|st) is a stochastic policy.

calculated as follows:

p(st+1|st, at) (2.69a)

r(st, at) = E [rt+1 | st, st+1, at] . (2.69b)

2.6.2 Policy and Value Function

Two related concepts in RL are the policy and the value function. While the policy helps the

robot decide the next action, the value function or state-value function depends on the policy

to evaluate states. The value function V (s) estimates the goodness of the state s so as to select

between actions. Value-based methods are those algorithms that only learn the value function

for policy optimisation. Formally, a policy is any state-action mapping function ϱ : S → A

that can be either a deterministic policy at = ϱ(st) or a stochastic policy ϱ(at|st) = p(at|st). A

policy can be a set of rules that the robot can use to determine which action at to take from a

current state st. In the case of the stochastic policy, there is a probability distribution for actions

to take, so actions can be sampled from it at ∼ ϱ(at|st) as in Figure 2.21. Future states are

evaluated to compute the value function of a policy ϱ, which is defined as

V ϱ(st) = Eϱ [Jt | st] = Eϱ

[
T−1∑
i=0

ζ irt+i+1 | st

]
, (2.70)
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where 0 ≤ ζ ≤ 1 determines the rate at which future rewards are discounted relative to imme-

diate outcomes. Optimising the value function V ϱ∗(s) = maxϱ V
ϱ(s) corresponds to finding

the best possible cumulative reward that can be obtained with respect to ϱ, which also leads to

finding the optimal policy ϱ∗ = argmaxϱ V
ϱ(s). Value optimisation is done by evaluating a

recursive structure known as Bellman’s equation efficiently. Assuming a discrete state space

S, the Bellman’s equation for the value function is defined as

V ϱ(s) = Ea∼ϱ(s)

∑
s′∈S

p(s′|s, a) [r(s, a) + ζV ϱ(s′)]

V ϱ(s) =
∑
s′∈S

p(s′|s, a) [r(s, a) + ζV ϱ(s′)] for a fixed policy .
(2.71)

Optimisation problems that satisfy Bellman’s equation can be solved with dynamic program-

ming (DP), which is an approach that transforms a complex problem into a sequence of sub-

problems so as to avoid repeated computations (Nayak 2021). Given the Bellman’s equation,

the optimal value function and the optimal policy are defined as

V ∗(s) = max
a∈A

{∑
s′∈S

p(s′|s, a) [r(s, a) + ζV ∗(s′)]

}
(2.72a)

ϱ∗(s) = argmax
a

V ∗(s) , (2.72b)

where the transition probability p(st+1 = s′|st = s, at = a) and the reward function r(s, a) are

the only elements that remain to be defined.

2.6.3 Model-Based and Model-Free Reinforcement Learning

When an agent interacts with a real-world environment, it encounters an unknown real tran-

sition model where physical interactions can be both expensive and time-consuming. For in-

stance, in a robotic manipulator reaching task, the mechanical system can suffer wear and tear

from extensive action trials, in addition to the processing time required for sampling trajec-

tories (M. P. Deisenroth et al. 2011). In this context, two primary approaches emerge in RL:

model-based and model-free methods.
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(a) Model-based RL (b) Model-free RL

FIGURE 2.22. Model-based and model-free RL. In Model-based RL, a simu-
lated transition model is used.

A model-free method, as illustrated in Figure 2.22b, learns an optimal policy primarily through

direct interactions with the environment. This approach does not rely on an explicit model of

the environment. Instead, it focuses on learning from the rewards and consequences of actions

taken. For example, in temporal difference learning, a model-free method, the value of a state

V ϱ(s) is updated based on the rewards received and the estimated values of future states. The

update rule in such a scenario is given by:

V ϱ(s)← V ϱ(s) + γ · (r(s, a) + ζV ϱ(s′)− V ϱ(s)) , (2.73)

where γ represents the learning rate, and ζ is the discount factor.

Conversely, a model-based approach, depicted in Figure 2.22a, employs an approximation of

the real transition model known as the simulated transition model. This model approximates

the robot-environment interactions via p(st+1|st, at). By using a simulated transition model,

thousands of simulated trajectories can be generated, potentially covering more of the state

space. As a result, fewer real interactions with the environment are needed to learn an effective

policy (R. S. Sutton and Barto 2018).
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Algorithm 12: Model-Based Reinforcement Learning
input : pθ – Simulated transition model

ϱw – Base policy (e.g. random policy)
T – Horizon or trajectory size

output : p∗θ, ϱ∗w,Dp

1 Dp ← GetInitialDataset() // Get an initial supervised dataset of (s,a, s′, r)
2 while stopping condition not met do
3 st ← GetCurrentState()
4 pθ ← LearnTransitionModel(Dp)

5 ϱw ← LearnPolicy(Dp)

6 (at, . . . ,at+T−1)← PlanTrajectory(pθ, ϱw, st)

7 a∗ ← at
8 Dϱ ← SendToActuators(a∗) // Execute first planned control signal
9 Dp ← {Dp ∪Dϱ}

In a model-based RL approach, the simulated transition model is defined a priori or learned

iteratively. Two classic model-based methods that are also value-based methods are value-

iteration and policy-iteration. They receive a simulated transition model and instant reward

function and compute a table that maps states to values V ∗(s), and a table that maps states

to actions ϱ∗(s) in the whole state space S. Those kinds of methods are known as tabular

methods. Tabular methods are used when the possible number of states and actions are small

enough (small S and A) to form a state-action table, which is the policy.

In robotics, however, states are usually continuous, such as a state consisting of sensor mea-

surements like the position and velocity of a robot. In fact, probabilistic trajectories mainly

consist of a continuous state space S consisting of real-valued state vectors s and also a con-

tinuous action space A consisting of real-valued vector actions a. When the state space S is

too large, it can be transformed via the feature mapping Φ : s ∈ S → Φ(s) ∈ H, which,

in this particular case, is used for reducing the state space size: |H| < |S|. The transformed

state space is then used for approximating the value function with a parameterised value func-

tion V̂ (s,w) ≈ V̂ (s). The parameterised value function at a single state can be defined as

V̂ (s,w) = sTw if a linear model approximation of the value function is reasonable. Such a

method is known as function approximation, and it can also work for continuous state spaces

(van Hasselt 2012) since the parameterised value function value is not used as a lookup table.
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As with the value function, the policy can also be parameterised and defined as ϱw. Pol-

icy search methods are an alternative to value-based methods. In a value-based method, the

policy is derived indirectly by finding actions that maximise the value function. A policy

search method examines different policy parameterisations, bypassing value function assign-

ment (Peshkin 2002). From a supervised learning approach, we can obtain a dataset of states

and actions from real data to empirically compute p(st+1|st, at). Following usual model-based

RL algorithms proposed in the literature (Oliveira et al. 2018; Scannell 2022), a general model-

based RL approach follows the steps in Algorithm 12 where the agent incrementally explores

its environment, collecting states and actions to improve its simulated transition model. Line

1 collects some initial data using the base policy ϱw. The initial data Dp can consist of n tu-

ples (s, a, s′, r), where s is the current state, a is the next action, and s′ is the next state. Line

2 obtains the current state. Then, line 3 is a simulated transition model learning step where

Dp = {(s, a, s′, r)i}
n
i=0 is used to update the simulated transition model pθ by optimising θ.

The policy learning step corresponds to optimising the policy parameters w for ϱw in line 5.

Considering T timesteps, a trajectory of size T is planned using ϱw and pθ in line 6. A first

optimal action is obtained and sent to the real robot actuators in lines 7 and 8. Finally, the

new data Dϱ obtained from the single trial is appended to Dp, which is then used in the next

iteration.

2.6.4 Policy Learning and Connection with Optimal Control

Learning a simulated transition model can be done with a GP or any other supervised learning

method, such as a deep neural network (Gal et al. 2016), which is capable of scaling to high di-

mensional state spaces. The policy weights can be optimised using a gradient-based approach.

For example, there is probabilistic inference for learning control (PILCO) (M. Deisenroth and

Rasmussen 2011), which handles uncertainty requiring few data points to learn a parameterised

policy. PILCO learns the simulated transition model with a GP, which yields normally dis-

tributed predictions about the state of the robot. The GP models the difference between the

current st+1 and the previous one st−1 given the action at−1. Then a difference function is de-

fined as ∆t = st+1 − st + ν where ν ∼ N (0, σ2
νI). The GP yields one-step predictions via the
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predictive posterior distribution

p (st | st−1, at−1) = N (µt,Σt)

µt = st +mean(∆t)

Σt = cov(∆t) ,

(2.74)

where mean and cov are the mean and covariance for the GP for ∆t as in Equation 2.41c. The

authors define a parameterized policy ϱ(s,w). Having an instant cost function c(s) defined

beforehand, policy learning can be done by minimizing the expected return:

J(w) =
T∑
t=0

Jt =
T∑
t=0

Est [c (st)] (2.75)

w∗ = argminwJ(w) , (2.76)

where Est [c (st)] =
∫
c (st)N (st | µt,Σt) dst. The minimisation can be computed by apply-

ing the chain rule dJt
dθ

= dJt
dp(st)

dp(st)
dθ

, and a gradient-based approach to optimise the policy

parameters w.

Some methods do not include the simulated transition model learning step. For example, a BO

approach can be used to update parameters for car racing in a model-free way (Oliveira et al.

2018). Other related methods include using trajectory optimisation methods from other areas,

such as optimal control. The first connection is how the robot’s behaviour is modelled. The

dynamics model from Equation 2.3 st+1 = f(st, at) has the same interpretation as the transition

model p (st+1 | st, at).

The second connection between optimal control and RL is that in the context of RL, a prediction

problem has the goal of estimating the value function V ϱ for a given policy ϱ, while in a control

problem, the goal is to find an optimal policy (R. Sutton and Barto 2018). The other connection

has to do with what is known as data-driven control and learning-based control. As described

in Section 2.1.4, planning a trajectory can be done with LQR, MPPI, or any other algorithm

from optimal control. The controller is part of the agent in RL. In fact, the policy itself is often

called control policy in surveys of RL-based solutions for optimal control (Buşoniu et al. 2018;

Kiumarsi et al. 2018).
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2.7 Summary

This chapter provided the necessary background used as a foundation for developing a frame-

work for optimising MPC. Each section presented only specific concepts. Control for robotics

was introduced from an RL perspective since both areas are highly related. Then, supervised

learning, optimisation, and Bayesian learning were presented. The optimisation section fo-

cused on optimising noiseless functions, while the Bayesian learning section introduced BO as

a way to handle noisy observations. Finally, RL concepts focused on model-based RL were

described.



CHAPTER 3

Heteroscedastic Optimisation for Stochastic Model Predictive Control

3.1 Introduction

This chapter aims to build a framework for optimising stochastic model predictive control

(MPC) methods for robotic systems. The challenge is the usually insufficient real data available

for learning controllers since the system is to be used in the real world. The way this chapter

deals with a real-world environment is by making use of reinforcement learning (RL), control

theory and Bayesian learning to develop a framework that performs controller optimisation

while handling both expensive and noisy observations. The method proposed in this chapter

and experiments are part of a research paper published at RA-L1.

Aiming at solving the data availability problem, experiments on hyperparameter optimisation

for stochastic MPC lead to not only noisy observations but also heteroscedastic noise, which

brings the objective of proposing a BO-based method that can be robust to such type of noise.

In general, this chapter investigates the effect of heteroscedasticity on finding an optimal con-

troller. Bayesian optimisation (BO) was chosen among all the optimisation methods in the

literature because it was widely used for optimising robotic tasks with few interactions with the

real world (Marco-Valle 2020, July). Taking into account the aforementioned peculiarities, this

chapter makes the following contributions:

• a framework to optimise stochastic MPC via heteroscedastic BO;

1Guzman, R., Oliveira, R., & Ramos, F. (2021). Heteroscedastic bayesian optimisation for stochastic model
predictive control. IEEE Robotics and Automation Letters, 6(1), 56–63

71



3.2 RELATED WORK 72

• a class of parametric models for the heteroscedastic noise in the controller’s perfor-

mance; and

• experimental results on benchmark continuous control problems in simulated and real

scenarios.

The remainder of this chapter is structured as follows. Section 3.2 reviews relevant prior work

in the areas of stochastic MPC and BO. Section 3.3 introduces cumulative reward computation

due to interactions with the real-world environment, which allows a formulation for modelling

reward-based problems. This is done by following an RL approach to designing learning-

based controllers. Section 3.4 visually shows and describes the heteroscedastic behaviour of

the cumulative reward with respect to the controller hyperparameters and formulates a way to

optimise the robot performance by optimising the expected cumulative reward. Section 3.5

describes the Gaussian process (GP) formulation as a surrogate model for inferring controller

hyperparameters.

The first main contribution is described in Section 3.6 where a parametric heteroscedastic noise

model for the expected cumulative reward is described. Next, given the formulation described

before, the controller optimisation framework is detailed in Section 3.7. A heteroscedastic GP

regression model is used as a surrogate model for the hyperparameter search space. BO allows

the optimal selection of search space locations to be evaluated by following an exploration-

exploitation paradigm. Finally, Section 3.8 presents experimental evaluations of the proposed

framework in simulated classic control environments and a real robot. Finally, Section 3.9

summarises the results obtained and the chapter’s contributions.

3.2 Related Work

This section reviews some relevant work from RL for control, stochastic MPC and BO-based

optimisation focused on robotics applications.



3.2 RELATED WORK 73

3.2.1 Model Predictive Control

Within the areas of control and RL, model-based control and model-based RL have a noticeable

similarity, mainly in the use of a dynamics model of the robot as noted in Görges (2017). In

an RL context, the tendency to produce an optimal action is reinforced, which is related to

the objective of classic feedback control by cleverly exploiting information from interactions.

However, due to the data availability problem, model-based approaches are preferable for real-

world applications (T. Wang et al. 2019) since they make use of a simulated dynamics model

to simulate interactions with the real world.

Regarding controllers, there is classical control where PID controllers are common in applica-

tions such as heating, ventilation, and air conditioning (HVAC) (Fiducioso et al. 2019). Within

what is known as modern control, methods such as model-based control, learning-based control

and data-driven control are related and are commonly used in robotics applications due to ad-

vancements concerning physics simulators and data processing (Collins et al. 2021). The MPC

problem solved with classic optimal control methods such as a linear quadratic regulator (LQR)

usually becomes inefficient when dealing with highly non-linear dynamics and non-convex re-

ward functions (T. Wang et al. 2019; Williams et al. 2017a). Meanwhile, state-of-the-art ap-

proaches can efficiently adapt to challenging stochastic environments with the introduction of

sampling-based approaches for trajectory optimisation such as a flexible data-driven sampling-

based MPC method known as model predictive path integral (MPPI) (Williams et al. 2016) with

applications from autonomous driving (Williams et al. 2018) to manipulators (Bhardwaj et al.

2022) where trajectories are determined by optimising gaussian distributed controls. Among

the MPPI variations, some realise variations in the weighting of trajectories (Williams et al.

2016, 2017b).

Like any other optimisation algorithm, MPPI has hyperparameters for which some hyperparam-

eter optimisation method is essential. Hyperparameters often have to be optimised according to

the task and learning behaviours, leading to settings that are not necessarily transferable across

tasks (Mahmood et al. 2018). To exemplify, online MPPI hyperparameter optimisation can
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be done by learning the dynamics offline and adjusting to disturbances online by varying an

adaptive temperature hyperparameter (Liang et al. 2019).

3.2.2 Bayesian Optimisation

In order to perform policy search, the reward function can be defined as a direct function of

policy parameters. A parametric policy can be defined to allow policies of different shapes

depending on the kernel function (Oliveira et al. 2018). Another way is to use a model-based

policy search method where the dynamics is modelled with a GP to deal with inherent dynam-

ics model errors, which helps achieve a data-efficient framework (M. P. Deisenroth et al. 2015).

Other methods use BO not only for dealing with dynamics model learning. Bayesian optimi-

sation has been widely applied to hyperparameter tuning (Shahriari et al. 2016; Snoek et al.

2012). Essentially, any global optimisation method from evolutionary-based methods such as

evolutionary strategies (Hansen et al. 2003) to surrogate-based optimisation methods like BO

can be used for hyperparameter tuning. A framework similar to the one described in this chap-

ter is proposed in Lu et al. (2020), where BO is used to identify the optimal hyperparameters

of an MPC controller for HVAC systems.

A common choice for a Bayesian surrogate model is a GP that assumes that the observation

noise is i.i.d. Gaussian across the search space. However, such an assumption is unrealis-

tic because the noise can also be input-dependent, which leads to heteroscedastic noise. The

heteroscedastic noise with parametric noise models can be learnt via maximum likelihood as

in Wilson and Williams (2017), which makes use of less computational resources than other

approaches in the literature. For example, one approach is to add a second GP prior to the

log-variance of the noise model (Goldberg et al. 1997), which results in a stochastic process

that is no longer Gaussian and requires Markov chain Monte Carlo for inference (Andrieu et al.

2003).

Approximate inference methods have also been proposed to reduce the computational overhead

by using variational inference to compute the GP posterior distribution (Kersting et al. 2007;

Kuindersma et al. 2012; Lázaro-Gredilla and Titsias 2011), which can still be expensive. One
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of the objectives of this chapter is to take a simpler approach and use a flexible parametric noise

model to encode prior knowledge about the noise.

3.3 Episodic Reward Formulation

Following the very popular paradigm known as sense-plan-act, a robotic system receives input

sensor measurements and produces output signals that are sent to the actuators. For example, an

autonomous vehicle may have position sensors and servomotors as actuators for rotary motions.

An action a might produce changes in the state of the robot s, which can consist of sensor

measurements. The robot planning is done internally in a control component that must be able

to regulate itself according to a desired state. The robot’s desired state can be reinforced by

following an RL approach. As opposed to a cost function used in usual controllers described in

Section 2.1, an instant reward function is used: r(s, a) where s ∈ S is a continuous state space,

and a ∈ A a continuous action space. The reward can be thought of as the output signal coming

from the system due to the controller-system interaction as in Figure 3.1. To realise trajectory

optimisation, the proposed framework also measures a cumulative reward or episodic reward y

that consists of accumulating instant rewards over episodes:

y =
ns∑
i=1

r(si, ai) , (3.1)

where ns is the number of timesteps, which is considered fixed. The proposed framework

consists of improving the system performance by only observing the cumulative rewards, hence

FIGURE 3.1. MPC controller diagram where the output signal is the reward.
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Algorithm 13: Reward-Based MPC
input : f̂ – Simulated dynamics model

ns – Number of timesteps
T – Finite horizon length
x – Controller hyperparameters

output : y – Cumulative Reward
1 y = 0

2 for i← 1 to ns do
3 st ← GetCurrentState()
4 a∗ ← MPC(f̂ , st,x)
5 ri ← SendToActuators(a∗) // Execute first planned control signal
6 y += ri // Accumulate rewards

the name reward-only optimisation. At each timestep, the controller returns an optimal next

action a∗ that is then sent to the system actuators. Considering the dynamics model notation

from Section 2.1.4, the system corresponds to the actual robot that has its real dynamics model

f , and to allow few controller-system interactions, we make use of a simulated dynamics model

f̂ for simulated trajectories.

3.4 Hyperparameter Optimisation and Heteroscedasticity

The controller we choose to optimise is an MPC controller described in Section 2.1.4 and

treated as a black-box system that receives hyperparameters x, a simulated dynamics model f̂ ,

and a time horizon ns to plan trajectories. As a black-box system, we deal with hyperparameter

optimisation by considering f̂ and ns fixed. We also consider a control perspective for the

policy. The parameterised policy from Algorithm 12 can be seen as a control policy πx, but

we consider the controller as a black box. Then, the controller function MPC(f̂ , st,x) outputs

the next optimal action. The resulting controller optimisation is learning-based and follows the

steps from Algorithm 13 to compute the episodic reward.
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FIGURE 3.2. Heteroscedastic behaviour in classic control tasks and across a
range of values for the control variance σϵ of an MPPI controller.

Considering a realistic noisy cumulative reward function, the noisy black-box function y is

defined as follows:

y(x) = g (x) + ν(x) (3.2)

g : X → R , (3.3)

where the input to optimise is the hyperparameters x. The input-dependent noise formulation

is used due to initial experiments seen in Figure 3.2 regarding the cumulative reward with

the MPPI stochastic controller. For each classic control problem, the plots show the obtained

cumulative reward as a function of the control variance hyperparameter σϵ. The cumulative

reward variance across the range of control variance values is not uniform. The noise in the

highest regions tends to be significantly higher than elsewhere, evidencing an input-dependent

noise known as heteroscedasticity.

Then, the problem there is to find the actual hyperparameters that maximise the cumulative

reward, which is noisy and heteroscedastic. The objective should be to maximise the noise-

less cumulative reward g as a function that depends on x. This problem corresponds to noisy

optimisation as seen in Section 2.5. The way we deal with that situation is by maximising
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the function corresponding to the actual expected cumulative reward g := E[y], which is in-

tractable as it requires marginalising over many variables, including the stochastic behaviour of

the controller itself. A way to approximate g is by empirically averaging cumulative rewards

over a certain number of episodes: ĝ := 1
ne

∑ne

j=1 yj(x) based on a finite number of episodes

ne.

Another way is to use a method that can deal with noisy functions such as BO, which was seen

before in Section 2.5. ĝ will be called expected cumulative reward from now on. Then, the

noisy black-box optimisation problem is defined as

x∗ = argmax
x∈X

ĝ(x) . (3.4)

3.5 Gaussian Process Formulation

The optimisation method we use is BO since it is data-efficient and can handle the uncertainty

of noisy functions. By using a GP as a surrogate model, we are given a design matrix of n

training data points X. Then we can have a normally distributed function g that evaluated in X

results in g(X) = [g(x1), . . . , g(xn)]
T where each input belongs to a search space {xi}ni=1 ⊂ X .

The prior for g can be defined with the zero-mean assumption since the mean is unknown, as

explained in Section 2.4.4. Then, the GP is trained with observed data to obtain the GP prior: y

g∗

 ∼ N
0,

 KXX + σ2I KXx∗

Kx∗X Kx∗x∗

 , (3.5)

where KXX, KXx∗ , Kx∗X, and Kx∗x∗ are covariance matrices defined as in Equation 2.42. By

denoting a test point as x∗, we condition g∗ = g(x∗) on the observations as y = g(X) + ν,

where ν ∼ N (0,Σν) represents the observation noise. Then, considering the zero-mean GP

prior, the GP predictive posterior from Equation 2.41c can be computed analytically as follows:
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g∗ | x∗,X,y ∼ N (mean(g∗), cov(g∗)) (3.6a)

mean(g∗) = Kx∗X[KXX +Σν ]
−1y (3.6b)

cov(g∗) = Kx∗x∗ −Kx∗X(KXX +Σν)
−1KXx∗ . (3.6c)

Under a homoscedastic noise assumption, Σν = σ2
νI. In this chapter, however, we use a

heteroscedastic, i.e. input-dependent, noise formulation where [Σν ]ij = kν(xi,xj) and kν :

X × X → R is a positive-definite kernel function that needs to be formulated.

3.6 Heteroscedastic Noise Model

In order to handle noisy heteroscedastic observations x, we make use of a variation to the tra-

ditional GP known as heteroscedastic GP. The main issue is how to model the external noise

ν(x). We consider that the cumulative reward evaluation is corrupted by a jointly Gaussian

noise ν ∼ N (0,Σν). The way to compute Kν for the heteroscedastic case can go from mod-

elling it with another GP as in Kersting et al. (2007) to variational inference (Kuindersma et al.

2012), but this chapter proposes to obtain Σν by introducing a kernel function kν that fits the

empirical noise given the data. Then, both the covariance matrix kernel k and the noise kernel

kν can be summed up as follows:

k(xi,xj) + kν(xi,xj) . (3.7)

The kernel function k should be chosen according to the task, and it should preferably be

one with the fewest kernel hyperparameters. Some possible kernel functions were shown in

Table 2.4. Now, to define kν , we use a flexible parametric form for the noise model with the

assumption that episodes are executed independently, which leads to kν(x,x
′) = 0. Then the

main concern is to model kν(x,x) ≈ σ2
ν(x).

The standard deviation can be computed given observed data. Using the MPPI controller from

Section 2.1.6, Figure 3.3a was obtained by experimenting with a control task where cumulative
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(a) Expected cumulative reward function (b) Noise function

FIGURE 3.3. Example of a 10-degree polynomial regression model ĝ fitting
the expected cumulative reward function in (a), while an estimate for the noise
model σν is represented as the blue curve in (b).

rewards y were obtained for several values of x := σϵ. The expected cumulative reward is

computed with a 10-degree polynomial regression. In this context, the noise corresponds to the

difference between the observed cumulative reward y and the expected cumulative reward for a

given setting x, i.e. ν(x) := y − ĝ(x). The noise function ν(x) is modeled with kν(x,x). The

parametric model for the noise function is defined as:

σν(x) = z · exp
(
βTΦ(x)

)
, (3.8)

where β ∈ Rm and Φ : X → Rm is a feature map. Similar to what the error noise σν

does for homoscedastic BO Section 2.5, a scalar factor z is added in case of variations of the

cumulative reward around its expected value. Small values of z produce expected cumulative

reward functions that are close to their mean, and larger values allow more variation. If z

is large, the modelled expected cumulative reward function will be able to account for more

outliers. A smooth feature map Φ allows the noise model to fit the gradually changing noise

variance, as in Figure 3.3, with no sharp changes across the search space. The exponential

term ensures the positive-definiteness of kν , according to the covariance matrix definition, and

it includes a generalised linear model βTΦ(x) that allows it to vary the noise distribution as a

function of the input. β are regression model parameters to be learned. The feature mapping is

used to transform the input x into a higher dimensional space so as to capture more non-linear

interactions. The choice of the feature map Φ is arbitrary.
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Having a parametric form for kν , the problem is how to learn a suitable noise model from

data. The way σν is learned for traditional homoscedastic BO is by optimising the GP log-

marginal likelihood seen in Equation 2.47. The noise model is learned in a two-stage regression

problem. From a set of randomly sampled inputs xi ∈ S , we can approximate the expected

cumulative reward ĝ with a flexible generalised linear regression model based on the feature

map Φ : X → Rm and learn weights w ∈ Rm as

ĝ(x) ≈ wTΦ(x) . (3.9)

With the estimate ĝ we then fit the residuals |g(x)− ĝ(x)| with (3.8) as a regression problem.

3.7 Bayesian Controller Optimisation

Optimising the controller with BO is realised via hyperparameter optimisation in a procedure

described in Algorithm 14. The search spaceX input is essential since it requires expert knowl-

edge about the task by considering how each controller hyperparameter affects the result. The

search space can be defined as intervals for each hyperparameter. A reward function r is also re-

ceived as input. The other important input is the GP modelM. Beforehand, a collected dataset

D can be used as initial observations for optimising the GP hyperparameters by optimising the

GP log-marginal likelihood Equation 2.47, which results in optimal GP hyperparameters Ω.

The algorithm loops through n iterations corresponding to the number of evaluations performed

by BO. Then it receives the current state of the robot in line 3. The GP model is trained with

the collected dataset D in line 4. Since the objective is for the control component to decide

which hyperparameters to try next in the real robot, an acquisition function received as input

is maximised in line 5. The predictive posterior distribution from Equation 3.6c is used by the

acquisition function, which allows us to balance exploration and exploitation of the objective

function regions as explained in Section 2.5.2. Then, the input to try next is xt. The loop that

starts at line 6 is for collecting ne episodic or cumulative rewards. The loop that starts at line 8

is for collecting a single episodic reward after interacting with the real robot ns times.



3.7 BAYESIAN CONTROLLER OPTIMISATION 82

Algorithm 14: Bayesian Controller Optimisation
input : f̂ – Simulated dynamics model

M – GP model
Ω – GP hyperparameters
x – Controller hyperparameters
α – Acquisition function
r – Dense reward function
n – Number of BO iterations
ns – Number of timesteps in an episode
ne – Number of episodes to average the cumulative reward
T – Finite horizon length
X – Controller hyperparameter search space

output : (x∗, ĝ∗)
1 D← GetInitialDataset() // Get an initial supervised dataset consisting of (x, ĝ)
2 for t← 1 to n do
3 st ← GetCurrentState()
4 Fit a GP modelMΩ with the data D
5 xt ← argmaxx∈X α(x,MΩ,D)

6 for j ← 1 to ne do
7 yj(xt) = 0

8 for i← 1 to ns do
9 a∗i ← MPC(f̂ , st,xt, r)

10 ri ← SendToActuators(a∗i , r)
11 yj(xt) += ri

12 ĝt = 1/ne

∑
j [yj(xt)]

13 D← D ∪ {(xt, ĝt)}

Inside the innermost loop, the controller with updated hyperparameters xt performs trajectory

optimisation and executes the next optimal action a∗
i in lines 9 and 10. It goes without saying

that the controller performs simulations with the simulated dynamics model f̂ , starting from

the current state st. The controller receives the reward function r to optimise trajectories, but

since MPC minimises a cost function, it can minimise the negative reward function.

Next, applying the action a∗
i returns a reward that is accumulated in y in line 11. Finally,

since the cumulative rewards y are noisy, either mean(g∗) or an averaged cumulative reward

can be used as a performance measure, as in line 12. In this work, we use the second option

since, after experimenting with control tasks, the mean obtained by the GP does not necessarily

reflect noiseless function evaluations. It is also done so as to fairly compare the proposed

heteroscedastic BO framework against other optimisation methods that will be seen in the next
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TABLE 3.1. Reward functions used in the experiments. The Cartpole and Pen-
dulum reward functions were taken from experiments in Gardner et al. (2017),
and the rest from T. Wang et al. (2019).

Control Problem Instant Reward

Cartpole −(s21,t + 500 ∗ sin s3,t2 + s22,t + s24,t)

Half-Cheetah ṡt − 0.01 |at|22 − inclinationt

Pendulum −(50(cos st − 1)2 + ṡ2) + 4000

Reacher −(distancet − |at|22)

section. The final output of the Bayesian controller optimisation method is both the optimised

controller hyperparameters x∗ and the approximated optimal noiseless function value ĝ∗.

3.8 Experiments in Control and Robotic Problems

Considering the proposed heteroscedastic controller optimisation framework. This section

presents experiments to assess the effectiveness of performing cumulative reward evaluations.

We evaluate the framework by optimising the stochastic MPC controller known as MPPI for

continuous control problems in both simulated problems and a physical robot platform. We

address two main questions: (Q1) Is there a gain over homoscedastic BO denoted as BOhomo?

(Q2) How does heteroscedastic BO (BOhetero) perform against a non-BO baseline that does not

take heteroscedasticity into account?

3.8.1 Control Problems

Starting with control problems, there are several simulated environments used in the literature.

Two of the most commonly used simulators for RL are OpenAI Gym2, and Mujoco (Todorov

et al. 2012). Some of the most representative problems were selected to conduct experiments.

The benchmark control problems used in this section are Cartpole, Pendulum, Half-Cheetah,

and Reacher, which are shown in Figure 3.4. We used the instant reward functions r(s, a) to

measure the performance of each control problem. Each one has a particular instant reward

2OpenAI Gym: https://gym.openai.com

https://gym.openai.com
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(a) Cartpole (b) Pendulum

(c) Half-Cheetah (d) Reacher

FIGURE 3.4. Control problems from OpenAI Gym and Mujoco.

function used in benchmark model-based RL method comparisons (T. Wang et al. 2019). The

instant reward functions used in this section are listed in Table 3.1. Some slight modifications

were made for Reacher and Half-Cheetah. We reduced the effect of actions and gave more

priority to the distance to the target in the case of the Reacher problem. For Half-Cheetah, we

added more priority to the inclination since Half-Cheetah would tend to turn upside down as

its speed increases. The actuation is then set to finish when such inclination is greater than π/2

or lower than −π/2. These modifications make the rewards more informative for MPPI. Each

control problem is described as follows:

• Cartpole consists of a pushable cart with a pole attached to it. The goal is to keep

the pole in an upright position. The state space consists of the cart position from the

centre s1,t, the cart velocity s2,t, the pole angle away from the upright vertical position

s3,t, and the pole velocity at the tip s4,t. The reward function measures how far the

pole angle is from a straight position.
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• Pendulum is similar to Cartpole, but the cart is fixed, and the pole starts in a downright

position. The state space consists of the joint angle ϑ and the pole velocity at the tip ϑ̇.

The reward function also measures how far the pole angle is from a straight position.

• Half-Cheetah is a robot with the shape of half of a cheetah. The state space consists

of 3 values representing the root joint position, 6 angular positions, and 9 velocities

(ṡt is a joint angular velocity). The goal is to move forward as fast as possible. The

reward function measures how fast and forward Half-Cheetah moves without turning

upside down plus a penalty for control inputs at.

• Reacher is a 2-joint arm fixed at one end. The state space consists of 4 values repre-

senting joint angles, 2 values for the target position, 2 values for the velocity at the tip

of the arm, and 3 more values denoting a vector to the target. The goal is to reach a

target randomly positioned in a 2D plane. The reward function measures the distance

from the tip of the arm to the target plus a penalty for control inputs at.

The expected cumulative reward represents the expected time the pendulum stays in an upright

position for the Cartpole and Pendulum problems. It represents the distance traversed in Half-

Cheetah, and the speed to reach the target in Reacher. High expected cumulative rewards are

the result of motions that increase the reward accordingly, e.g. Half-Cheetah would be expected

to reach farther distances.

3.8.2 Optimisation Settings

To evaluate the expected cumulative rewards for each problem, the time horizon T and the

number of trajectory rollouts M are set as fixed for the controller. The two hyperparameters

to optimise are the temperature λ and the control variance σϵ, which means that the variable

to optimise is x = [λ, σϵ]. We can use grid search to find search intervals for each hyperpa-

rameter. Figure 3.5 shows examples of evaluated expected cumulative rewards ĝ for several

hyperparameters values. Smaller search spaces can be found by first evaluating a grid of values

within large enough intervals and then manually narrowing it down.
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FIGURE 3.5. Search space in classic control tasks for varying control variance
σϵ and temperature λ values. The cross denotes the minimum location, while
the star denotes the maximum location.

TABLE 3.2. MPPI hyperparameter search spaces and optimal values within the
intervals per control problem.

Problem ne T M λ interval σϵ interval

Cartpole 40 10 100 [10−10, 1.2] [10−10, 3.0]

Pendulum 15 10 10 [10−10, 1.2] [10−10, 3.0]

Half-Cheetah 25 14 10 [10−10, 0.1] [10−10, 2.5]

Reacher 20 10 15 [10−10, 0.1] [10−10, 2.5]

The search spaces for each MPPI hyperparameter and the other hyperparameter values consid-

ered as fixed are shown in Table 3.2. The number of timesteps considered for every task is

ns = 200. These were found by taking into account usual values for the hyperparameters that

tend to be close to 0 in other control problems (Liang et al. 2019; Williams et al. 2016). The

table also shows optimal values found within these narrowed intervals via grid search.
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(a) Degree 1 (b) Degree 5 (c) Degree 10

FIGURE 3.6. Noise model with different polynomial degrees.

3.8.3 Gaussian Process Training and Data Scaling

For better comparison, both BOhomo and BOhetero were implemented using the same squared

exponential kernel from Equation 2.43 and UCB acquisition function from Equation 2.60 with

δ = 1.2. For the optimisation of the acquisition function h, we used L-BFGS-B (Byrd et al.

1995), which is a variation of the multi-start gradient search method for global optimisation.

The GP log-marginal likelihood was also maximised to find optimal GP hyperparameters Ω :=

{σ, σn, ℓ} for BOhomo and Ω := {z, σn, ℓ} for BOhetero also using L-BFGS-B. Ω was kept

fixed after it was optimised. Both BO variations were optimised with 100 previously observed

sample points that were generated from the defined hyperparameter intervals from Table 3.2

for each control problem.

A polynomial basis function Φ was used for BOhetero and evaluated for different degrees. A

polynomial degree of 1 as in Figure 3.6a and 5 as in Figure 3.6b would result in a noise model

ignoring small variances, while a higher degree would not. We then set a 10-degree polynomial

model Figure 3.6c because it is the first high degree that correctly handles the increasing vari-

ance. The noise model was computed using the regression model in Equation 3.9. Something

else to note about the GP hyperparameters is that their values have to be proportional to the

range of the expected cumulative reward function in order to model for standard comparison

among functions. The expected cumulative rewards were scaled to [0, 100] and the input vari-

able x values were scaled to [0, 5] so as to make the GP training easier and also allow the use

of the squared exponential kernel with a single lengthscale ℓ.
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3.8.4 Heteroscedastic Noise Evaluation

FIGURE 3.7. Expected cumulative rewards for hyperparameters sampled via
grid search. A homoscedastic GP approximated the expected cumulative reward
in the upper row, and a heteroscedastic GP in the lower row. The red dashed lines
indicate the maximum expected cumulative reward found by the GP. The shaded
regions correspond to two standard deviations from the mean.

To demonstrate how BOhomo and BOhetero fit the expected cumulative reward function, Fig-

ure 3.7 shows the varying noise behaviour of the expected cumulative reward for intervals of

the MPPI hyperparameter σϵ. We can see that the noise around the mean increases with the

x-axis hyperparameter. The noise heteroscedasticity is evident in all the control problems, so

we can answer to Q1. There is a gain over BOhomo as more noise is captured, which means that

the hyperparameter optimisation would be able to sample more hyperparameters from noisy

regions without over-exploring. However, in Half-Cheetah and Pendulum, the noise is quite

skewed around the mean, which means that the expected cumulative reward may not be Gauss-

ian in those cases. The framework still captures a Gaussian noise for the rest of the control

problems.
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FIGURE 3.8. Optimisation performance. These results were averaged over 50
episodes with shaded areas and error bars corresponding to two standard devia-
tions. Each method started at the same predefined point in the search space.

3.8.5 Method Comparison

To answer Q2, in Figure 3.8, we compare BOhetero, BOhomo, and covariance matrix adaptation

evolution strategy (CMA-ES) (Arnold and Hansen 2010), which is a non-BO baseline that does

not take heteroscedasticity into account. In all experiments, only continuous search spaces were

utilised. Discretisations were applied solely for visualisation purposes as in Figure 3.5. Now, to

allow for proper comparison, each method started at a single defined point in the search space

where there is a minimum. We use CMA-ES with σ0 = 1 and a population size of 2. CMA-

ES has been used for hyperparameter tuning and is considered to be a data-efficient black-box

optimisation method that is also used in the robotics literature (Golovin et al. 2017; Loshchilov

and Hutter 2016).
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FIGURE 3.9. Performance for Half-Cheetah in 200 iterations.

As expected, BOhetero overcomes BOhomo and CMA-ES. For BOhomo, the standard deviation

reflects incorrect noise modelled in some regions as also shown in Figure 3.7. BOhomo ends

up with a higher standard deviation in most cases. For the Reacher task, there was not much

improvement due to mostly homoscedastic regions in the sample collected. To assess long-term

performance, we let the optimisation continue for 200 iterations for Half-Cheetah in Figure 3.9.

In general, since BOhetero describes the noise behaviour, it finds optimal regions faster than

CMA-ES.

Another aspect was the computational time required for each episode across different environ-

ments. In simpler tasks such as Pendulum, Cartpole, and Reacher, all methods, including BO

and CMA-ES, demonstrated relatively low computational times, reflecting the lower complex-

ity of these environments. However, it’s important to highlight that in more complex tasks

such as Half-Cheetah, the BO methods, particularly BOhetero required the longest computa-

tional time. This increased time demand is attributed to the intrinsic complexity of BO, which

requires more computational resources for effective modelling and optimisation.

It is important to note that CMA-ES does not run inference from prior data, so it has to start

without knowing anything about the search space. Meanwhile, because the GP hyperparam-

eters were optimised beforehand, BO is able to apply prior knowledge encoded in the noise

model to outperform CMA-ES in fewer iterations. BO approaches do global optimisation in

fewer trials, which is the desired behaviour to deal with the data availability problem.

We experimented optimising Half-Cheetah and Reacher with their unmodified reward functions

in Figure 3.10. The unmodified reward functions make the tasks challenging to optimise by all
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(a) Unmodified Half-Cheetah (b) Unmodified Reacher

FIGURE 3.10. Performance using the unmodified reward functions.

the methods used, which suggests MPPI has difficulties in solving these tasks. A possible

reason is that the unmodified reward function is too uninformative for the MPPI controller.

3.8.6 Experiments with a Physical Robot

To assess the effects of real heteroscedastic noise in a physical system, some experiments are

performed concerning MPPI controller optimisation for a physical robot. The four-wheel-drive

skid-steer robot from Figure 3.11a was tasked with following a circular path at a set speed.

The cost function was formulated as c(st) =
√
d2t + (vr − vt)2, where dt represents the robot’s

distance to the edge of the circle, vr = 0.2 m/s is a reference linear speed, and vt is the current

speed. The robot was localised using a particle filter on a prebuilt map. Internally, MPPI

employed a simulated dynamics model f̂ of the robot (Kozłowski and Pazderski 2004) for

trajectory optimisation. The controller was configured with M = 50 rollouts and a time horizon

T = 400. The episodes lasted 20 seconds, with the robot starting from a fixed initial position.

The search space S for BO was defined by the intervals σϵ ∈ [0.3, 0.5] and λ ∈ [0.01, 0.21].

Figure 3.11b shows the learnt heteroscedastic noise model. Data from preliminary runs re-

vealed that the noise in the episode rewards had a concentrated region of high variance in

roughly the middle of the search space. As previously discussed, both the temperature λ and

the control variance σ2
ϵ influence MPPI’s exploration-exploitation trade-off. For this experi-

ment, the bounds for σϵ were chosen as settings that lead to acceptable performance in practice,
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(a) Robot (b) Noise model

(c) Results

FIGURE 3.11. (a) Experiments with a physical robot known as Wombot, (b) the
learnt heteroscedastic noise model and (c) the resulting performance for each
BO method. The results were averaged over 3 independent trials for each algo-
rithm, totalling 60 runs of MPPI in 20-second episodes on the robot.

but we allowed for a λ range that could cause instability. In the real robot, high temperatures λ

cause excessive exploration in the action space of MPPI, which leads to an almost-sure failure

in execution. Conversely, low temperatures force MPPI to take actions that are close to optimal,

leading to mostly high rewards. The region at the centre appears to be optimal. However, that

is the region where the robot’s behaviour is unstable. MPPI’s control variance σ2
ϵ contributes

to this behaviour in a similar fashion by determining the spread of the exploration.
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(a) Heteroscedastic GP

(b) Homoscedastic GP

FIGURE 3.12. GP models fit with data from one of the trials in the experiments
with a physical robot.

To appropriately model the aforementioned noise concentration behaviour, we set the GP noise

model from Equation 3.8 as a mixture of stationary kernels by defining the following:

Φ(x) := [kq(x,x1), . . . , kq(x,xm)]
T , (3.10)

where the weights β ∈ Rm, the hyperparameters xi ∈ S , alongside the other GP hyperparam-

eters, were optimised offline by maximum a posteriori estimation. As reasonable choices for

the priors, we set log-Gaussian priors for positive GP hyperparameters and Gaussian priors for

the rest. As kernel kq, we used a rational quadratic kernel (Rasmussen and Williams. 2006).
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Performance results are presented in Figure 3.11c. We compared BOhetero against BOhomo.

As the results show, both algorithms are eventually able to find regions of high reward. How-

ever, due to its uniform noise model, BOhomo is led to a more exploratory behaviour instead of

concentrating on promising regions, as evidenced by the query locations in Figure 3.12. Con-

sequently, we observe a significant drop in performance during the optimisation, as shown in

Figure 3.11c. In contrast, the heteroscedastic noise model allows BOhetero to maintain steady

performance improvements, which means lower tracking error with respect to the circular path

specified by the cost function.

3.9 Summary

This chapter presented a framework for optimising stochastic MPC hyperparameters using

BO with a parametric heteroscedastic noise model. A reward-based controller optimisation

was proposed according to an expected cumulative reward formulation from RL. Then, a het-

eroscedastic noise behaviour was notably usual in the studied control problems when searching

for optimal controller hyperparameters. Such heteroscedastic behaviour raised the question

of how to model the noise. A heteroscedastic BO method was proposed using a parametric

noise model that allowed the GP to correctly model the uncertainty that homoscedastic BO

cannot handle. In the experiments section, The proposed approach was seen to outperform ho-

moscedastic BO and non-BO approaches in most of the classic control and robotics problems

considered. The experimental results were obtained using a flexible polynomial noise model

and MPPI as a stochastic MPC controller. The experiments were only empirical and showed

the effectiveness of Bayesian hyperparameter optimisation due to the significant performance

improvement of the MPC control system and, therefore, in the robotic system.



CHAPTER 4

Adaptive Model Predictive Control under Model Parameter Uncertainty

4.1 Introduction

The previous chapter described a reward-based framework for optimising stochastic model pre-

dictive control (MPC) hyperparameters and also introduced a way to handle the heteroscedastic

noise found in benchmark control problems. This chapter extends the framework by also ad-

dressing the reality gap problem with a type of domain randomisation. This chapter makes use

of reinforcement learning (RL), control theory and Bayesian learning to build an adaptive MPC

controller where the trajectory optimisation part is done through the randomisation of physical

parameters. Due to the randomised setting, the controller is able to adapt to the real world, ap-

proximately solving the reality gap problem. Part of this chapter has been previously published

and presented at ICRA1.

Aiming to solve the reality gap problem when learning stochastic MPC controllers, this chapter

derives a BO framework to obtain an optimal controller using a randomised dynamics model.

This is done by defining distribution-based physical parameters. Therefore, the optimisation

framework automatically estimates probability distributions over dynamics model parameters

for optimal control solely based on performance data. This chapter makes the following con-

tributions:

• a framework for optimising stochastic MPC while jointly estimating probability distri-

butions of the dynamics model parameters, which is based only on observing rewards;

1Guzman, R., Oliveira, R., & Ramos, F. (2022b). Bayesian optimisation for robust model predictive control
under model parameter uncertainty. 2022 International Conference on Robotics and Automation (ICRA), 5539–
5545

95
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• an analysis on whether capturing the uncertainty of dynamics model parameters leads

to better performance;

• experimental results on benchmark simulated classic control and robotic problems.

The remainder of this chapter is structured as follows. Section 4.2 reviews relevant prior work

in the areas of domain randomisation for robotics and stochastic MPC optimisation. Next, Sec-

tion 4.3 establishes the difference between simulated data and real data and how randomisation

helps overcome real uncertainties. Then Section 4.4 describes the dynamics model randomisa-

tion and the use of distribution-based physical parameters. Section 4.5 describes the adaptive

MPC optimisation framework, considering that both the controller hyperparameters and dy-

namics model parameters are jointly optimised. The optimisation is reward-based, given that

the expected cumulative reward is established as the performance measure. Then experiments

in control and robotics problems are described in Section 4.6. The experimental results are

analysed according to the expected cumulative reward, considering the uncertainty handled

by the distribution-based physical parameters. Finally, Section 4.7 conveys a summary of the

results obtained and the contributions of the chapter.

4.2 Related Work

This section reviews some relevant work on stochastic MPC and the reality gap problem in

robotics applications.

4.2.1 Stochastic Model Predictive Control

To define an adaptive MPC controller, it is essential to know its use in a robotics context to

relate it to the reality gap problem. Stochastic MPC methods have been successfully used in

applications, from steady-state control to path planning in robotics (Pravitra et al. 2020). For

example, in Carron et al. (2019), stochastic MPC, together with Gaussian processes, allows

the system to adapt to disturbances using the GP to model uncertainty where little data is

available for a robotic manipulator. This is because MPC is model-based, which means it
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relies on a model of the system dynamics, which will be called simulated dynamics model.

The main advantage of using physics and robotic simulation tools is undeniable because they

make it possible to generate large amounts of data without much interaction with the real world

(Cranmer et al. 2020; Todorov et al. 2012). Unfortunately, such a simulated dynamics model

has to deal with the reality gap or sim-to-real problem because its robustness degrades when it

is different from the true dynamics (Muratore et al. 2021a; Peng et al. 2018).

4.2.2 Domain Randomisation

Domain randomisation is a concept that comes from the machine learning (ML) area of transfer

learning. However, in the context of robotics, two domains are taken into account: a simulated

domain and a real-world domain (Forsberg 2022). Domain randomisation became a common

alternative to deal with the reality gap since it consists of randomising simulators to expose the

robot to different scenarios. For a manipulator grasping problem, (Tobin et al. 2017) performs

domain randomisation regarding visual data for pose prediction, allowing deep neural networks

to handle pose ambiguity for real-world scenarios. Conditions such as camera poses, scene

layout, and wall textures can be randomised (Hsu et al. 2023).

Dynamics randomisation has been applied to find approximations for robust dynamics in com-

mon control and robotics problems. For example, there are adaptive dynamics models that

address environment contexts where a robot’s dynamics could change due to some robotic part

malfunctioning (Lee et al. 2020). Other approaches propose inferring simulation parameters

based on data instead of uniform parameter randomisation (Peng et al. 2018; Ramos et al.

2019).

Bayesian learning has also been applied to adapt distribution-based dynamics model parameters

during learning, improving sim-to-real transfer for classic control problems (Oliveira et al.

2021). Domain randomisation has been used to adapt physics parameters to the real world

as in Muratore et al. (2021a), where a Bayesian domain randomisation (BayRn) method was

proposed as a way to adapt parameter distributions during learning. Semage et al. (2022) uses
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BO to craft robust policies for simulated environments. None of the aforementioned adaptive

methods directly account for heteroscedasticity in the reward function.

4.3 Real Data and Randomised Simulated Data

It can be understood that simulators do not precisely reflect reality, but simulated data is neces-

sary to deal with the data availability problem. We start by describing the common assumptions

in robotics and then introduce modifications to the simulated dynamics model previously de-

noted as f̂ . This chapter assumes that the state is fully-observable, so the robot can fully

observe the state of the environment. Then, by following the model-based RL approach, the

robot maintains a simplified model of the environment f̂ . The traditional way to describe the

robot behaviour is with a deterministic dynamics model that follows the Markov decision pro-

cess (MDP) assumption seen in Equation 2.67, but here we also use the usual control systems

notation. The simulated dynamics model of the robot is defined as

st+1 = f̂(st, at) , (4.1)

where the state of the robot s ∈ S lies in a continuous state space S, and a ∈ A is an action

specified by a continuous action space A. Upon the execution of an action, the system tran-

sitions to the next state st+1, producing an instant reward measured by r : S × A → R that

measures the system performance at a given state and action.

In order to improve sim-to-real transfer from the simulated domain to the real-world domain,

the proposed framework considers approximating the simulated dynamics model f̂ to the real

dynamics model f by making the controller observe data from randomised versions of f̂ . Such

data can be thought of as the data coming from interactions with the environment, which are

data tuples (s, a, s′). Real data can be collected due to real robot interactions coming from f ,

while simulated data is collected from a robotics simulator or from the simulated dynamics

model f̂ . As briefly mentioned in Section 1.1.3, there are two main domains: one that outputs

real data and one that outputs simulated data, as shown in Figure 4.1. Now, simulated data are
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FIGURE 4.1. Data domains. Random simulated data are able to approximate
real data.

considered unrandomised and would only cover a very small portion of the space. However, by

using randomised data, the robot would cover more data from the real data domain.

4.4 Dynamics Model Randomisation

Randomised data is obtained by introducing a randomised parameter θ to f̂ . The proposed

framework follows a domain randomisation approach (Peng et al. 2018) where randomised

dynamics are used to train policies in simulation. Randomising dynamics corresponds to ran-

domising physical parameters. For instance, in the Pendulum problem from OpenAI Gym that

consists of swinging the pole up as in Figure 4.2, two main physical parameters are the pole

mass with true value m = 1.0 and its length with true value 1.0. In order to deal with uncertain-

ties regarding the physical parameters, each one is defined as a random variable. For example,

the parameter mass θ = m could be beta-distributed then m ∼ Beta(α, β) with a probability

distribution from Figure 4.3b. Considering gamma-distributed mass and length. Figure 4.4

FIGURE 4.2. Pendulum problem where the goal is to swing up a pole from
ϑ = 3.14 degrees to ϑ = 6.28 or ϑ = 0 according to the swing direction.
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(a) Gamma distributions (b) Beta distributions

FIGURE 4.3. Examples of probability distributions for different distribution pa-
rameters. α and β are the parameters for gamma and beta-distributed variables.

shows expected cumulative rewards for several possible distribution mean µ and standard de-

viation σ. The regions where µ = 1 and σ ≈ 0 are where the mass and length are close to their

true values. Notice how those regions in red tend to obtain the highest expected cumulative

rewards.

In the context of the MPC controller, randomisation can be done when optimising trajectories

since it is where the interaction with the simulated dynamics model is done. We define a ran-

dom vector of b dynamics model parameters θ = [θ1, . . . , θb] to be used at each interaction with

the simulated dynamics model. Each dynamics model parameter follows a probability distri-

bution parameterised by certain parameters denoted as ψi for i = 1, . . . , b. For example, the

pendulum mass is parameterised by ψ = {µm, σm}. Then at state st the following calculations

are performed:

θ1 ∼ pθ1(θ1;ψ1) (4.2)

... (4.3)

θb ∼ pθb(θb;ψb) (4.4)

st+1 = f̂ (st, at, [θ1, . . . , θb]) . (4.5)
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FIGURE 4.4. Expected cumulative rewards for different model parameter distri-
butions. The regions in red correspond to regions where the controller achieved
the highest expected cumulative rewards.

FIGURE 4.5. Expected cumulative rewards for MPPI hyperparameter combi-
nations.

4.5 Adaptive Model Predictive Control

As mentioned before, in this chapter, the proposed framework does not directly aim at finding

parameters that match the observed dynamics as it is done for system identification (Romeres

et al. 2016). Instead, it adapts model parameter distributions to the controller, which means

that those resulting distributions may not be close to their true values. They are used for op-

timising the controller. We make sure that we are using the right MPC hyperparameters by

optimising them together with the dynamics model parameters. In the case of the MPPI con-

troller described in Section 2.1.6, the hyperparameters are the temperature λ, control noise σϵ,

horizon T , and the number of rollouts M . They can be collectively described as ϕ. In this

chapter, we only work with λ and σϵ as in Chapter 3. The hyperparameter search spaces can be

seen in Figure 4.5, which shows expected cumulative rewards for grid search hyperparameter

combinations after running the controller for the Pendulum and Reacher problems.
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FIGURE 4.6. Overview of the adaptive MPC optimisation framework proposed.

Considering a realistic noisy cumulative reward function as previously seen in Chapter 3, the

noisy black-box function y is defined as

g : X → R (4.6)

y(x) = g (x) + ν(x) , (4.7)

where we can only maximise an approximation of the expected cumulative reward ĝ ≈ g,

where y is a cumulative reward variable, and the input x consists of the collection of distribution

parameters Ψ that parameterise the model parameters θ, and the controller hyperparameters ϕ.

Therefore, we define x = {Ψ,ϕ}, and the optimisation problem is described as follows:

Ψ⋆,ϕ⋆ = argmax
{Ψ,ϕ}

ĝ(Ψ,ϕ) . (4.8)

In order to handle noisy heteroscedastic observations, we maximise the expected cumulative

reward as performance measure ĝ with the heteroscedastic BO method described in Chapter 3.

The framework computes the BO posterior inference g∗ | x∗,X,y ∼ N (mean(g∗), cov(g∗))

where X and y are observations , and (x∗, g∗) are new optimal points inferred by BO. This way,

we are able to find optimal MPC hyperparameters adapted to the simulated dynamics model.

A general overview of the adaptive MPC framework is shown in Figure 4.6. It shows how BO

optimises x by receiving the accumulated reward y, which is averaged to obtain the expected
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cumulative reward ĝ. The robotic task presented in the figure is a manipulator called Franka,

which will be described in the experiments section.

4.6 Experiments

In order to test the performance of the proposed adaptive MPC framework, some experiments

are evaluated from simulated control problems and to robotic tasks. The first subsection spec-

ifies the tasks, the randomised dynamics model, and the controller settings used in the exper-

iments. Next, the framework is evaluated by comparing it with other optimisation methods to

support the use of adaptive MPC. Finally, some experiments with robotic tasks are presented.

4.6.1 Simulators and Parameterisation

The proposed adaptive MPC was evaluated by solving OpenAI Gym benchmark tasks: Cart-

pole, Pendulum, Half-Cheetah, Reacher, and Fetchreach with the dense reward functions shown.

The same reward functions used in previous chapters are used to compute instant rewards. The

additional simulated environment is Fetchreach shown in Figure 4.7. Fetchreach consists of a

robotic manipulator with seven degrees of freedom and a paddle gripper as the end effector.

The objective is to move the gripper to a 3-dimensional target position, and the dense reward

function measures the Euclidean distance from the gripper to the target position. First of all,

FIGURE 4.7. Fetchreach. Manipulator reaching task.

different tasks have different constraints for model parameters θ. Some parameters have to be
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positive, like the mass and length, and others can be defined only within a specific range. We

considered using a probability distribution with positive support. The beta distribution’s sup-

port is [0, 1], which is inconvenient since one has to scale sampled model parameters if values

outside the range are needed. We also need to specify ranges for each distribution parameter

ψ. For example, if we define dynamics model parameters as gamma-distributed, we need to

specify ranges for their parameters α and β as in Figure 4.3.

Rather than using the distribution parameters α and β for better visualisation and interpretabil-

ity, the distribution mean µ and standard deviation σ are used to represent each distribution-

based variable. α and β can be derived given µ and σ. We use gamma distributions for the

simplicity of such conversion. Each model parameter is assumed to be gamma-distributed, and

the following calculation is applied:

θ ∼ Gamma(α, β) (4.9)

α =
µ2

σ2
(4.10)

β =
µ

σ2
. (4.11)

The stochastic controller used here was MPPI Section 2.1.6, where the dynamics randomisation

was done at each rollout when interacting with the simulated dynamics model. Considering that

there are distribution parameters ψi for each dynamics model parameter θi for i = 1, . . . , b,

dynamics model randomisation is performed as follows

θ1 ∼ pθ1(θ1;ψ1) (4.12)

... (4.13)

θb ∼ pθb(θb;ψb) (4.14)

sj+1 = f̂
(
sj, aj + ϵ

(m)
j , [θ1, . . . , θb]

)
, (4.15)

where j is the current timestep when sampling a trajectory, m is the current sampled trajectory,

and aj + ϵ
(m)
j is a vector of perturbed actions. After performing MPPI’s trajectory optimisation

steps, the next optimal action found by MPC is sent to the system actuators.
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Next, a search space can be defined for each parameterisation ψi, and the controller hyper-

parameters ϕ = {λ, σϵ} by narrowing down large enough intervals until noticeable optimal

regions are found. Then, BOhetero can be used to perform the expected cumulative reward opti-

misation from Equation 4.8 where Ψ and ϕ are jointly optimised. Therefore, the optimisation

method consists of processing data tuples (x, ĝ) where the input is defined as x = {Ψ,ϕ}, and

the output is the expected cumulative reward ĝ.

4.6.2 Experiments in Classic Control Tasks

The objective is to find optimal hyperparameter settings ϕ together with model distribution

parameters Ψ. For Cartpole and Pendulum, µl and µm are the mean pole length and mass. For

Half-Cheetah and Reacher, we consider the scaling factor κ as a random variable with mean

and standard deviation denoted by subscripts. κ multiplies the model parameters, e.g. κ with

mean µ = 1.0 and σ → 0 means that the model parameter corresponds exactly to its true

value. κm and κd are the scaling factors for the masses and damping ratios for Half-Cheetah

and Fetchreach, and κd1 and κd2 are scaling factors for two Reacher damping ratios. Regarding

the true parameter values, for Cartpole, the true mass and pole length were both 0.5, and for

Pendulum, they were 1.0. For the rest, a scaling factor of 1.0 corresponds to the parameter’s

true value.

Problem ne T M Distribution parameter range

Cartpole 40 10 250
µl ∈ [0.2, 1.5]
µm ∈ [0.1, 1.5]

σl ∈ [1e− 5, 0.1]
σm ∈ [1e− 5, 0.1]

Pendulum 15 20 400
µl ∈ [0.2, 2.0]
µm ∈ [0.2, 2.0]

σl ∈ [1e− 5, 0.1]
σm ∈ [1e− 5, 0.1]

Half-Cheetah 25 14 10
κm,µ ∈ [0.6, 1.2]

κd,µ ∈ [0.6, 1.4]

κm,σ ∈ [1e− 5, 0.1]

κm,σ ∈ [1e− 5, 0.1]

Reacher 20 12 18
κd1,µ ∈ [0.1, 8.0]

κd2,µ ∈ [0.1, 8.0]

κd1,σ ∈ [0.001, 0.6]

κd2,σ ∈ [0.001, 0.6]

Fetchreach 120 3 12 κd,µ ∈ [1.0, 50.0] κd,σ ∈ [0.001, 0.6]

TABLE 4.1. Search spaces for the control tasks. Intervals for the dynamics
model parameters and scaling factors.
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FIGURE 4.8. Expected cumulative rewards per iteration. The shaded areas de-
note two standard deviations. Each method started at a point with a minimum
expected cumulative reward.

For the controller hyperparameters, search spaces within λ ∈ [1e − 5, 2.5], σϵ ∈ [1e − 5, 4.0].

The search spaces for the distribution parameters are shown in Table 4.1. The number of

timesteps was ns = 200 for every task. Results in Figure 4.8 show expected cumulative re-

wards for 50 iterations by running both BO versions and covariance matrix adaptation evolu-

tion strategy (CMA-ES) (Arnold and Hansen 2010), which was configured as in the previous

chapter. Each BO method has a GP model trained by optimising the log-marginal likelihood

Equation 2.47 with a batch of 150 observations (x, ĝ) to obtain optimal kernel settings. We

used an exponential kernel for both BO versions. The log-marginal likelihood optimisation

was done by using the multi-start method known as multi-level single-linkage (MLSL) Algo-

rithm 6. For both BO versions, we used the exponential kernel defined in Equation 2.43. The

expected cumulative rewards were scaled to [0, 100], and the input variable x values were scaled

to [0, 5] in order to make the GP training easier and allow the use of the squared exponential

kernel with a single lengthscale ℓ. We set Ω := {σν , σn, ℓ} for homoscedastic BO (BOhomo)
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FIGURE 4.9. Mass parameter scaling factor κm for Half-Cheetah.

FIGURE 4.10. Optimised scaling factor κd for Fetchreach.

and Ω := {z, σn, ℓ} for heteroscedastic BO (BOhetero). For both BO versions, we used a UCB

acquisition function defined in Equation 2.60 with δ = 2.0 optimised with the same MLSL

method.

We can see that BOhetero can outperform the others due to the noisy nature. Each optimisation

starts at points that give a minimum reward. On average, adaptive MPC with BOhetero can find

optimal Ψ and ϕ in fewer iterations and, in most cases, with less variance.

4.6.3 Adapted Parameter Distributions

For Half-Cheetah, the optimised distribution of the scaling factor of the mass κm yields an

expected cumulative reward of 701.29, which is higher than the reward obtained with the true

value. This can be explained because we optimise the reward to optimise the controller and not

for system identification. In Figure 4.9, we show the expected cumulative reward of using the

true parameters and the optimised distribution. The estimated optimal parameter distribution

shows the approximation to the true value. In the case of Fetchreach, the damping ratio plays
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a major role. Even wrong dynamics model parameters can lead to better performance. In

Figure 4.10, we start at an initial parameter distribution denoted in blue for the damping ratio

κd that gives a maximum reward found via random search. Then, we use adaptive MPC with

BOhetero to optimise the parameter distribution. We found that a high damping ratio allows

faster movements, improving reward performance with the true model. That is because, for an

overdamped model, the controller would be prone to apply higher torques by choosing a larger

control variance σϵ. However, that leads to uncertain arm movements when the gripper is close

to the target. Similar behaviour occurs for Reacher, but it is not so noticeable since the task is

simpler.

4.6.4 Experiments in a Robotic Simulator

We used a simulated Franka robotic arm2 with the task of reaching a yellow target with a gripper

in a single-obstacle environment shown in Figure 4.11, which was implemented only for exper-

iments with control systems. The MPPI-based motion planning framework from Bhardwaj et

al. (2022) was used. MPPI trajectory optimisation performed GPU-based trajectory sampling

since we used the STORM3 simulator adapted to have only one obstacle and be reward-based

as in the proposed adaptive MPC framework. We defined the number of episodes ne = 6,

number of timesteps ns = 480, horizon length T = 20, number of trajectories to sample

M = 150, and the control variance σϵ = 0.5. Having defined the reaching task and the simula-

tor, the variables to be randomised need to be defined. In this case, the obstacle dimension sizes

are randomised for the simulated dynamics model f̂ . We adapt the controller hyperparameter

ϕ = λ ∈ [0.01, 2.0] to the environment by defining distribution-based length x, width y and

height z defined by Ψ = {(xµ, xσ), (yµ, yσ), (zµ, zσ)} with true values (0.3, 0.1, 0.6) respec-

tively. The distribution parameters for the dynamics model parameters are shown in Table 4.2.

2IssacGym: https://developer.nvidia.com/isaac-gym
3STORM: https://github.com/NVlabs/storm

https://developer.nvidia.com/isaac-gym
https://github.com/NVlabs/storm
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FIGURE 4.11. Franka manipulator reaching task in a single-obstacle environ-
ment.

Length Width Height

xµ ∈ [0.3, 0.32]

xσ ∈ [0.001, 0.05]

yµ ∈ [0.1, 0.12]

yσ ∈ [0.001, 0.01]

zµ ∈ [0.6, 0.62]

zσ ∈ [0.001, 0.03]

TABLE 4.2. Search spaces for the Franka manipulator. Intervals for the dynam-
ics model parameters and scaling factors.

A starting point for the parameter distributions was set at a point where the expected cumula-

tive reward was minimum, using collected observations. As with the control problems, each

BO method has a GP model trained by optimising the log-marginal likelihood with 500 col-

lected observations (x, ĝ), but with a squared exponential kernel from Equation 2.44 that allows

optimising a lengthscale for each input feature without needing to do scaling. Then in order

(a) Learning curves (b) Heteroscedastic behavior

FIGURE 4.12. Learning curves when optimising Franka (a), and the het-
eroscedastic behaviour of the search space (b).
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to observe the performance of the adaptive MPC framework, BOhomo, BOhetero, and CMA-ES

were compared. Figure 4.12a shows the expected cumulative rewards obtained against the num-

ber of iterations for each method. Each method was run for 80 iterations. The heteroscedastic

behaviour for λ is shown in Figure 4.12b, which is what is exploited by BOhetero. CMA-ES

was able to optimise the noisy optimisation problem as in the previous chapter. However, it

is still outperformed by BOhomo and BOhetero by doing more exploration but still getting stuck

in local optima. Using the BO methods, the expected cumulative reward is maximised while

exploiting and exploring new regions, so the optimal dynamics model parameter distributions

are not necessarily found at the last iteration.

FIGURE 4.13. Initial distributions for Franka (left) and best inference found by
BOhetero (right).

To evaluate if the optimisation proposed converges to an optimum, Figure 4.13 shows the op-

timum setting found by BOhetero, starting from initial distributions until convergence, which

in this case is where distributions are close to the true values. This happens because a greater

obstacle width presents a more challenging scenario for the robot to maneuver around, while a

lower width increases the risk of collisions. Consequently, more accurate knowledge of the ob-

stacle’s width is essential for devising effective trajectories. Meanwhile, the length x and height

z of the obstacle are often less critical for path planning, as they do not typically constrain the

robot’s immediate movement space in the same way. The results imply that, by maximising the

expected cumulative reward, better optimal regions can be found by randomising the dynamics

model parameters as proposed.
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FIGURE 4.14. Jaco manipulator reaching task.

FIGURE 4.15. Jaco
arm components.

Arm Length Front Arm length

d1,µ ∈ [0.3100, 0.5100]

d1,σ ∈ [0.001, 0.03]

d2,µ ∈ [0.1073, 0.3073]

d2,σ ∈ [0.001, 0.03]

TABLE 4.3. Search spaces for the Jaco
manipulator. Intervals for the dynamics
model parameters.

4.6.5 Experiments with a Real Robot

We configured a reaching task using a Kinova Jaco2 manipulator shown in Figure 4.14. Jaco4

has 6 degrees of freedom because of 6 joints connecting rigid links that allow versatile arm

movements. The objective is to reach the red target in a fixed location, always starting at the

predefined initial position. Assuming a fully-observable environment, we define a state space

that consists of the 6 joint angles, the gripper location, and the target location, while the action

space consists of the 6 joint angles.

The same adaptive MPC framework used for the control tasks was used in this case. We defined

the number of episodes ne = 8, number of timesteps ns = 1, horizon length T = 20, number

4Specification guide: https://assistive.kinovarobotics.com/uploads/EN-UG-007-Jaco-user-guide-R05.pdf

https://assistive.kinovarobotics.com/uploads/EN-UG-007-Jaco-user-guide-R05.pdf
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FIGURE 4.16. Expected cumulative rewards by running the Jaco reaching task
for several dynamics model parameter values.

of trajectories to sample M = 150, control variance σϵ = 1.0, and temperature λ = 0.01.

The reward was computed as the negative distance from the gripper to the target. The gripper

position was obtained via forward kinematics, given the joint angles. The experiments with

the Jaco robot consider uncertainty about the length of the arm and the front arm shown in

Figure 4.15. The arm length d1 and the front arm length d2 with true values (0.4100, 0.2073)

are defined as randomised variables parameterised by Ψ = {(d1,µ, d1,σ), (d2,µ, d2,σ)}. The

objective now is to adapt them to the fixed MPC hyperparameters {λ, σϵ}. The search space was

defined as intervals of±0.10 the true lengths, and standard deviations d1,σ, d2,σ ∈ (0.001, 0.03).

The search spaces for each distribution-based variable can be seen in Figure 4.16, which shows

expected cumulative rewards for grid search combinations after running the MPPI controller

with other variables fixed. The regions in red correspond to optimal distributions. Each BO

method has a GP model trained by minimising the log-marginal likelihood with 400 collected

observations (x, ĝ), and with the squared exponential kernel from Equation 2.44. In order to

compare the optimisation methods, Figure 4.12a shows the expected cumulative rewards ob-

tained against the number of iterations for each method. Each method was run for 50 iterations.

The noisy behaviour of d1,µ and d1,σ is shown in Figure 4.17b, which is what is exploited by

BOhetero. In this case, both BO methods optimise the controller similarly but still better than

CMA-ES. The proposed optimisation converges to an optimum as in Figure 4.18. It shows the

optimum setting found by BOhetero for the Jaco reaching task. The distributions get close to the

true values in this case. Optimising point estimates is out of the scope of this work. Both BO

versions inferred similar optimal distributions.
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(a) Learning curves (b) Noisy behaviour

FIGURE 4.17. Learning curves when optimising Jaco (a), and the heteroscedas-
tic behaviour of the search space (b).

FIGURE 4.18. Initial distributions for Jaco (left) and best inference found by
BOhetero (right).

4.7 Summary

This chapter presented an extension to the heteroscedastic BO framework proposed in Chap-

ter 3 for dealing with the reality gap problem in robotics. It started by separating real data and

simulated data in order to come up with a solution to make simulated data closer to real data.

Then, a randomised dynamics model is formulated by introducing distribution-based physical

parameters to the dynamics model. The optimisation framework is introduced as reward-based,

where the expected cumulative reward is the performance measure. Finally, the proposed adap-

tive MPC optimisation framework was utilised where heteroscedastic BO was able to perform
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as well or better than the traditional BO in simulated environments and a real robotic manipula-

tor. The manipulator tasks optimised made use of two robots: Franka and Jaco. Results showed

that having parameter and object dimension distributions can lead to improved performance in

a few iterations.



CHAPTER 5

Adaptive Model Predictive Control by Learning Classifiers

5.1 Introduction

In the previous chapter, a robust framework optimising MPC was developed where robust-

ness comes from robustness to noisy heteroscedastic observations and robustness in terms of

adaptability to real-world settings. This chapter deals with the data availability problem but

regarding the optimisation method. The adaptive model predictive control (MPC) framework

described in Chapter 4 used Bayesian optimisation (BO) to perform controller hyperparameter

optimisation because of its data efficiency advantage. However, BO’s main problem was that

its Gaussian process (GP) surrogate model needed to be optimised with a dataset collected from

interactions with the real robot. This chapter proposes a way to optimise the controller without

needing to train the surrogate model. The method and experiments are part of a research paper

published at L4DC1.

An alternative to reducing interactions with the real world is to make use of a simulated dy-

namics model for trajectory optimisation. However, modelling an accurate dynamics model

inevitably leads to errors. Even so, by using data-driven approaches, it is possible to reduce

the error produced in a real-world setting. This chapter is focused on the optimisation method

to help solve the data availability problem. Instead of using BO, this chapter evaluates the use

of alternative surrogate-based optimisation methods, specifically, one that makes use of data

classification to build a surrogate model: Bayesian optimisation by ratio estimation (BORE).

This chapter makes the following contributions:

1Guzman, R., Oliveira, R., & Ramos, F. (2022a). Adaptive model predictive control by learning classifiers.
Proceedings of The 4th Annual Learning for Dynamics and Control Conference, 168, 480–491

115
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• a framework to optimise stochastic MPC by learning classifiers;

• evaluations of the proposed framework when there is heteroscedastic noise; and

• experimental results on benchmark continuous control problems in simulated environ-

ments.

The remainder of this chapter is structured as follows. Section 5.2 reviews relevant prior work

in the areas of stochastic MPC, MPC optimisation, and surrogate-based optimisation. Sec-

tion 5.3 provides a comparison between BO-based methods and alternative surrogate-based

optimisation methods. Next, Section 5.4 introduces the BORE as the surrogate-based method

used for optimisation. A way to deal with the noise is also proposed. Section 5.5 focuses on the

classification problem and lists the problems regarding classification. This is done to correctly

choose a binary classifier. Then Section 5.6 presents the MPC optimisation problem that con-

sists of optimising both the controller hyperparameters and the dynamics model parameters.

Section 5.7 introduces the classification part to the optimisation framework. The experiments

are described in Section 5.8. Finally, Section 5.9 conveys a summary of the results obtained

and the contributions of the chapter.

5.2 Related Work

This section reviews some relevant work on stochastic MPC and the reality gap problem in

robotics applications.

5.2.1 Stochastic Model Predictive Control

As mentioned in Chapter 4, the proposed framework is particularly focused on a particular sto-

chastic MPC controller known as model predictive path integral control (MPPI), which was

introduced in Williams et al. (2016) as a sampling-based controller. There is a recent ro-

bust variation denominated robust model predictive path integral control (RMPPI) proposed

in Gandhi et al. (2021), which alleviates issues of MPPI related to the lack of robustness to

unknown external disturbances. Besides MPPI’s use for autonomous vehicle driving, it has
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also recently been used for dexterous manipulation tasks such as the task of learning to spin a

pen between the fingers of a robotic hand (Charlesworth and Montana 2021), and for Franka

manipulation tasks where online control and adaptation is necessary (Abraham et al. 2020).

5.2.2 Model Predictive Control Optimisation

Among the recent research on MPC optimisation, there is Sorourifar et al. (2021), where a

constrained variant of BO is used to optimise stochastic MPC formulations dependent on dy-

namics model parameters. That approach is able to satisfy state and output constraints such as

robot physical limitations and visibility constraints. Edwards et al. (2021) proposes a method

to jointly optimise the data-driven system identification, task specification, and control synthe-

sis of unknown dynamical systems for automatic MPC tuning. MPPI hyperparameters such

as the horizon and the number of trajectories are optimised using a BO-based method known

as sequential model-based algorithm configuration (SMAC) (Hutter et al. 2011), which uses

tree-based models forest to predict the performance of configurations.

5.2.3 Surrogate-Based Optimisation

Regarding surrogate-based optimisation methods, tree-structured parzen estimator (TPE) as a

tree-based method has been compared against BO for black-box optimisation (Turner et al.

2021). TPE has been used for optimising CMA-ES hyperparameters in a noiseless setting

(Zhao and Li 2018), and it has also been used for multi-objective optimisation in computation-

ally expensive optimisation problems in Ozaki et al. (2020). Something particularly important

about it is that the quantile hyperparameter is empirically investigated, and results in bench-

mark problems indicate that a quantile hyperparameter close to zero provides more optimal

results. Meanwhile, Bayesian optimisation by density ratio estimation (BORE), which is an

optimisation problem highly related to TPE, has been proposed and compared against other

optimisation methods in Tiao et al. (2021), where it performs decently against the traditional

BO. More research on BORE includes Oliveira et al. (2022), where a variation denoted as

BORE++ addressed BORE’s suboptimal performance by quantifying uncertainty.
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5.3 Surrogate-Based Optimisation Problem

This chapter provides a variation to the adaptive MPC framework proposed in Chapter 4. The

main issue to solve about the framework is the need for an initial dataset to train the GP hy-

perparameters, which goes against the data availability problem in robotics. The proposed

variation has the objective of dealing with such an issue while also handling a search space

with heteroscedastic behaviour.

As in Chapter 3, we start by defining the noisy minimisation problem

y = g(x) + ν where ν = σν(x) (5.1)

x∗ = argmin
x∈X

E[g(x)] , (5.2)

where only an expectation of the true function can be approximated, which is denoted as

ĝ = E[g(x)]. In Chapter 4, the method used for solving such an optimisation problem was

BO, which is a surrogate optimisation method described in Section 2.5. BO possesses major

advantages when used to optimise costly objective functions. BO places a prior over the space

of functions and combines it with noisy samples to produce an approximation to the unknown

function g. BO can also approximate ĝ by using the GP predictive posterior mean.

The key component for the effectiveness of BO is the use of an acquisition function α that

guides the search for the optimum. That acquisition function acts like a surrogate model that

receives the GP modelM that fits the true function mean and is maximised as follows:

xt ← argmax
x∈S

α(x,MΩ,D) , (5.3)

which corresponds to the step where the method selects the input to evaluate at the current

iteration t. The GP hyperparameters Ω are received as input and are obtained by optimising

the log-marginal likelihood from Equation 2.47 with respect to the hyperparameters. Misspec-

ifying the GP hyperparameters commonly leads to a suboptimal choice of GP and potentially

slower convergence rates (Bull 2011). Methods for correctly learning the GP hyperparameters

correspond to an active subfield of research. Some methods propose robustness with respect to

the hyperparameters by handling model misspecification (Wynne et al. 2021) or by introducing
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adaptive bounds on the hyperparameter values (Z. Wang and de Freitas 2014). Considering al-

ternative surrogate-based optimisation methods, there are two that were discussed before: Tree-

structured Parzen estimator (TPE), which was detailed in Algorithm 10 and BORE, which was

detailed in Algorithm 11. Unlike BO, TPE and BORE are not kernel-based, which means they

are not hindered by hyperparameter misspecification. For TPE, the surrogate model is specified

by

τ := SplitData(D, γ) (5.4)

Γγ := GetDensityRatio(D, τ) (5.5)

xt := argmax
x∈X

Γγ(x) , (5.6)

where τ is a threshold that results from the TPE quantile hyperparameter 0 < γ < 1 and is

obtained by calculating τ = Φ−1(γ). Γγ is a relative density ratio from Equation 2.64, and D is

the data observed so far. BORE’s surrogate model comes from a probability distribution Π(x)

obtained by training a probabilistic binary classifier Πclassif as follows:

τ := SplitData(D, γ) (5.7)

Π := TrainBinaryClassifier(D, τ,Πclassif) (5.8)

xt := argmax
x∈X

Π(x) , (5.9)

where Π(x) = p(z = 1 | x). Both methods depend on an exploration-exploitation hyperparam-

eter γ. While TPE is a widely known ML method for hyperparameter optimisation, obtaining

decent performance when optimising classification tasks (Bergstra et al. 2011), there has not

been research concerning hyperparameter optimisation for controllers with BORE, which is

why this chapter is focused on BORE.
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5.4 Search Space Exploration

BORE’s exploration-exploitation trade-off is balanced by γ, with small γ encouraging more

exploitation. As expected, a fixed γ brings up some issues regarding exploration. These chal-

lenges become pronounced when BORE is applied to robotic tasks where heteroscedastic noise

is a prevalent factor, as seen in the experiments from Chapter 3. To see how γ affects BORE’s

optimisation when dealing with heteroscedastic noise, a heteroscedastic toy function shown in

Figure 5.1 will allow a better understanding of the issue.

FIGURE 5.1. Heteroscedastic function
where the optimal value is at x = 0.6635.

g(x) = sin(7x) + x2 − 0.85x+N
(
0, σ2

ν(x)
)

σ2
ν(x) = (0.3 ∗ (x+ 4.3))4/4 .

(5.10)

A low γ would lead to considering only the region where it finds the current optimal as in

Figure 5.2 where, after 20 iterations, BORE does only exploitation as expected. The BORE

optimisation example uses a random forest classifier Πclassif. If γ is too large, BORE would

realise more exploration, but a simple example from Figure 5.3 with γ = 0.99 shows that the

method can also get stuck in a certain region. This happens because BORE reaches a point

where almost all observations are considered optimal (red markers) due to the fixed threshold

τ represented by the black dashed line. The threshold appears to be increasing because BORE

divides the evaluations into two groups. In this division, a higher γ results in approximately

99% of the evaluations being concentrated near the region where the local optimum is located.

Moreover, BORE does not consider uncertainty, so unseen regions may never be explored.

Therefore, BORE keeps jumping through locations within the same region, which in this case,

leads to only local optima. It is required to find an ideal value of γ that would do less and less

exploration throughout the iterations.
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FIGURE 5.2. BORE iteration when γ = 0.2.

FIGURE 5.3. BORE iterations when γ = 0.99.

This chapter uses a decaying γ throughout BORE iterations. An example is shown in Fig-

ure 5.4, where γ is linearly decayed from 0.99 to 0.05, which means that the values of γ are

equally spaced. The linearly decaying value of γ per iteration t is defined as

γt = γ1 −
t− 1

n− 1
(γ1 − γn) (5.11)
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FIGURE 5.4. BORE iterations when linearly decaying γ.

where γ1 and γn are an initial value an final value of γ, and n is the number of iterations.

Linear decay performs decently for controller optimisation, as will be shown in the experiments

section.

5.5 Classification Problem

As it can be seen in Figure 5.4, the noisy observations are separated by a decision boundary

denoted as a black dashed line at τ ← Φ−1(γt). The observations are labelled according to the

threshold. An observation x is assigned a positive label if the observation obtained an expected

cumulative reward higher than τ and negative otherwise. Therefore, the classification problem
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is supervised. Then the main issues regarding classification for controller optimisation are as

follows:

• In a one-dimensional setting, the observations can be very close to the decision bound-

ary, which could produce wrongly classified inputs since the two classes are not well

defined.

• Observations are noisy with heteroscedastic behaviour. That can be more evident

when classifying observations in higher dimensional spaces, having to obtain non-

linear decision boundaries. The binary classifier chosen would have to be robust to

outliers.

• Since the number of observations to classify corresponds to the current iteration t,

there are few data points representing each class, which might produce high-bias clas-

sifiers.

5.6 Model Predictive Control Tuning

Having defined the optimisation method, the next objective is to establish the controller opti-

misation problem. As in Chapter 4, we can only maximise an approximation of the expected

cumulative reward ĝ ≈ g, where y is a cumulative reward variable, and the input x consists of

the collection of distribution parameters Ψ and the controller hyperparameters ϕ. Ψ parame-

terises the distribution-based dynamics model parameters θ. The input variable is defined as

x = {Ψ,ϕ}, and the black-box heteroscedastic optimisation problem is described as follows:

y = g(Ψ,ϕ) + ν where ν = σν(Ψ,ϕ) (5.12)

Ψ⋆,ϕ⋆ = argmax
{Ψ,ϕ}

ĝ(Ψ,ϕ) . (5.13)

where the simulated dynamics model f̂ depends on b physical parameters θ = [θ1, . . . , θb]

to be randomised at each interaction with the simulated dynamics model. Each distribution-

based dynamics model parameter is parameterised by ψi for i = 1, . . . , b. Then at state st the
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following calculations are performed:

θ1 ∼ pθ1(θ1;ψ1) (5.14)

... (5.15)

θb ∼ pθb(θb;ψb) (5.16)

st+1 = f̂ (st, at, [θ1, . . . , θb]) . (5.17)

The uncertainty of the physical parameters of the dynamics model allows the controller to adapt

under different environment circumstances or characteristics, such as the size of an obstacle or

the length of a robot component.

5.7 Stochastic Model Predictive Control Optimisation by

Learning Classifiers

BORE is used for iteratively optimising the controller. The whole proposed method is described

in Algorithm 15. The goal is to estimate the optimal x∗ = {Ψ∗,ϕ∗} using a binary classifier.

Following the approach used in Chapter 3, we define the cumulative reward y =
∑ns

i=1 ri,

where ns is the number of timesteps in an episode, and set our goal as maximising an expected

cumulative reward ĝ := 1
ne

∑ne

j=1 yj(x) based on a finite number of episodes ne. The classifier

Πclassif is trained by first assigning labels {zk}t−1
k=1 to the data observed so far until the current

iteration t. For training, the classifier uses an auxiliary dataset that consists of observed data

until the previous iteration t− 1 denoted as

{(Ψk,ϕk, zk)}t−1
k=0 , (5.18)

where the labels are obtained by separating the observed data according to γ ∈ (0, 1) by com-

puting the γth quantile of {ĝk}t−1
k=0 as follows:

τ ← Φ−1(γ), zk ← I[ĝk ≥ τ ] for k = 0, . . . , t− 1 . (5.19)
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The exploration-exploitation trade-off is balanced by γ, where small γ encourages more ex-

ploitation. Instead of keeping γ fixed, we use the strategy of the quantile hyperparameter γ1

that decays linearly across the iterations until a final γn. Inputs predicted as positive labels

z = 1 are considered to have a higher reward, and one of them is selected by maximising the

classifier probability of belonging to the positive class:

Ψt,ϕt = argmax
{Ψ,ϕ}∈X

Πt−1(Ψ,ϕ) . (5.20)

Note that this is equivalent to the acquisition function maximisation in the traditional BO. For

better performance, the maximisation can be carried out with a global optimisation method like

the ones detailed in Section 2.3.

Algorithm 15: Adaptive MPC by Learning Classifiers
input : f̂ – Dynamics model

M – GP model
Ω – GP hyperparameters
ϕ – Controller hyperparameters
α – Acquisition function
r – Dense reward function
n – Number of BORE iterations
ns: Number of timesteps in an episode
ne – Number of episodes to average the cumulative reward
T – Finite horizon length
X – Optimisation search space
γ1, γn – Initial and final quantile hyperparameter value
Πclassif : X → [0, 1] – Probabilistic binary classifier

output : (Ψ∗,ϕ∗, ĝ∗)
1 D← GetInitialDataset() // Get an initial supervised dataset, e.g. (Ψ0,ϕ0, ĝ0)

2 for t← 1 to n do
3 st ← GetCurrentState()
4 γt ← γ1 − t−1

n−1 (γ1 − γn) // Linear γ decay
5 τ ← Φ−1(γt) // Compute the γt-th quantile of {ĝk}t−1

k=0

6 zk ← I [ĝk ≥ τ ] for k = 0, . . . , t− 1 // Assign labels to the observed data points
7 Πt−1 ← TrainBinaryClassifier({(Ψk,ϕk, zk)}t−1

k=0 ,Πclassif) // BORE’s acquisition function
8 Ψt,ϕt = argmax{Ψ,ϕ}∈X Πt−1(Ψ,ϕ) // Estimate new input
9 for j ← 1 to ne do

10 yj(Ψt,ϕt) = 0

11 for i← 1 to ns do
12 a∗i ← MPC(f̂ , st, r,ϕt, pθ(θ;Ψt)) // Use parameter distributions
13 ri ← SendToActuators(a∗i , r) // Evaluate the optimal action
14 yj(Ψt,ϕt) += ri // Accumulate rewards

15 ĝt = 1/ne

∑
j [yj(Ψt,ϕt)]

16 D← D ∪ {(Ψt,ϕt, ĝt)}
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5.8 Experiments

Given the optimisation problem described in Equation 5.13, surrogate-based optimisation meth-

ods were evaluated in control and robotic tasks. The proposed adaptive MPC framework was

evaluated in several experiments described below.

5.8.1 Simulation Experiments

The optimised control and robotics tasks were carried out only in simulated environments: Pen-

dulum, Half-Cheetah, and Fetchreach from OpenAI Gym with the same dense instantaneous

reward functions used in Section 4.6. We also experimented with the reaching task for the

Franka robot environment from Bhardwaj et al. (2022) with a single obstacle, a fixed target

location, and a fixed initial robot position. The stochastic MPC controller used was MPPI for

trajectory optimisation, and it used GPU processing, which helped overcome efficiency issues.

The goal of the Franka task shown was the same as in the previous chapter: reaching a yellow

target while avoiding obstacle collision. We assume partial observability for the obstacle di-

mension sizes and attempt to infer them as part of the dynamics model parameters for which we

define search spaces shown in Table 5.1. Some search spaces are different from the ones used

in the previous chapter. Each episode consisted of ns = 480 timesteps for Franka and ns = 200

timesteps for the other tasks. The dynamics model parameter l is the rod length for Pendulum,

κm is the mass scaling factor for all the links in Half-Cheetah, and κd is a damping ratio scaling

factor for all components in Fetchreach. For Franka, we optimise the obstacle dimensions x,

y, and z. Each dynamics model parameter is a random variable parameterised by ψ. For ex-

ample, ψ = {κd,µ, κd,σ} are damping ratio mean and damping ratio standard deviation for the

Fetchreach.



5.8 EXPERIMENTS 127

Environment ne T M Control hyp. Distribution parameter range True parameter

Pendulum 1 10 10
λ ∈ [0.01, 50]

σϵ ∈ [1.0, 10]
µl ∈ [0.5, 1.6] σl ∈ [0.001, 0.1] l = 1.0

Half-Cheetah 18 15 10
λ ∈ [0.01, 1.0]

σϵ ∈ [0.05, 2.0]
κm,µ ∈ [0.2, 2.0] κm,σ ∈ [0.001, 0.1] κm = 1.0

Fetchreach 90 12 3
λ ∈ [0.01, 0.03]

σϵ ∈ [0.001, 0.5]
κd,µ ∈ [1.0, 50] κd,σ ∈ [0.001, 0.6] κd = 1.0

Franka 10 150 20 λ ∈ [0.01, 2.0]

xµ ∈ [0.3, 0.32]

yµ ∈ [0.1, 0.12]

zµ ∈ [0.6, 0.62]

xσ ∈ [0.001, 0.05]

yσ ∈ [0.001, 0.01]

zσ ∈ [0.001, 0.03]

x = 0.3
y = 0.1
z = 0.6

TABLE 5.1. Search spaces for the control and robotic tasks. Intervals for the
dynamics model parameters and scaling factors.

5.8.2 Method configuration

We compare the proposed adaptive MPC framework against other surrogate-based methods

used in robotics. The configuration for the optimisation and the compared methods are de-

scribed below.

Adaptive MPC Configuration

In configuring our adaptive MPC framework, a key component is the implementation of Bayesian

Optimisation by Ratio Estimation (BORE), which leverages a probabilistic binary classifier to

perform optimisation. The classifier, denoted as Πclassif should be able to deal with the stochas-

ticity of robotic tasks. Within this scope, we explore several classifier options as detailed in Tiao

et al. (2021), including XGBoost (Chen and Guestrin 2016), multi-layer perceptron (MLP) de-

scribed in Section 2.2.4, and random forest (RF) (Breiman 2001). For example, as an ensemble

method, RF combines decision trees via bagging. The number of decision trees should be

sufficiently large to reduce classification variance without increasing the bias. We compare

two probabilistic classifiers: RF with 50 decision trees denoted as BORE-RF, and Multi-layer

Perceptron (MLP) classifier denoted as BORE-MLP with 2 hidden layers, each with 32 units,

ReLU activations and sigmoid for the output layer. The weights were optimised for 1000
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FIGURE 5.5. Some evaluations using different starting values γ1

epochs using the mini-batch gradient descent described in Algorithm 3, cross-entropy loss, and

ADAM optimiser (Kingma and Ba 2015) with a batch size of 32.

Next, we start by exploring with a γ1 = 0.5 that decays linearly across the iterations until a

reasonable final γn = 0.05. With a low γ1, BORE could stay stuck in some local minimum,

and with a higher γ1, BORE would do more exploration first before exploiting some region.

A reasonable initial value is γ1 = 0.5, corresponding to the median, which has shown an

optimal performance according to the preliminary results in Figure 5.5 for the Franka reaching

problem. Specifically, in these results, γ1 = 0.5 consistently outperformed other values in

terms of convergence speed and stability, indicating its effectiveness in balancing exploration

and exploitation. Finally, we set a parameter distribution pθ with positive support since we

deal with physics variables (mass, damping ratio) and sizes. We choose the gamma distribution

Γ(α, β), and the provided mean µ and standard deviation σ are transformed by computing

α = µ2

σ2 and β = µ
σ2 .

BO-Based Methods

The proposed method is compared against the traditional homoscedastic BO (BOhomo) and the

heteroscedastic BO (BOhetero) detailed in Chapter 3. We collected 400 data points via random

search for the control and robotic tasks over the search spaces shown in Table 5.1. Then, using

such data, optimal GP hyperparameters are found by optimising the GP log-marginal likelihood
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using MLSL Algorithm 6. We used a UCB acquisition function αUCB(x) from Equation 2.60

with balance factor δ = 3.0. An anisotropic squared exponential kernel from Equation 2.44

was used to optimise separate lengthscales for each component of x.

Other Optimisation Methods

Other methods for hyperparameter optimisation used for these experiments are TPE optimi-

sation, which was detailed in Algorithm 10 with quantile value 0.5 since it is what BORE

is based on, and finally, we use covariance matrix adaptation evolution strategy (CMA-ES)

(Arnold and Hansen 2010) as a non-BO baseline set with σ0 = 10 and population size 2. This

choice is driven by several considerations. Firstly, the focused search strategy afforded by a

smaller population is beneficial in our context, where the search space is not overly complex.

Secondly, CMA-ES’s efficiency in adapting its search distribution with fewer samples makes it

well-suited for scenarios with costly evaluations. CMA-ES has been widely used for hyperpa-

rameter tuning in robotics (Modugno et al. 2016; Sharifzadeh et al. 2021).

Optimisation Assessment

To quantitatively assess optimisation performance, we report averaged cumulative rewards,

defined as 1
t′

∑t′

i=1 ĝi from t′ = 1 to t′ = n. To obtain the uncertainty about the mean, we repeat

those 50 iterations 5 times. The result of repeating gives averaged cumulative rewards with their

respective standard deviations. We compare the averaged cumulative reward against the number

of iterations. Figure 5.6 shows that BOhomo and BOhetero perform similarly mainly in the

Pendulum problem because of homoscedastic noise across the search space. However, BOhomo

tends to converge to a local minimum in the other problems, which is expected since BOhomo

does not account for heteroscedasticity. It is possible to achieve better or equal results with TPE,

although it also seems to get stuck since it only divides observations based on the output and

chooses the best next point without considering unseen regions. Both BO versions are being

outperformed by BORE-MLP and BORE-RF. Interestingly, the standard deviations observed

in the results indicate that the performance consistency of BORE-MLP and BORE-RF varies

across different domains. In some cases, BORE-MLP shows much tighter bounds, potentially
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BORE-MLP BORE-RF BOhetero BOhomo TPE CMA-ES

FIGURE 5.6. Expected cumulative rewards ĝ per iteration where the shaded
areas correspond to 1.5 standard deviations. Each method started at a point with
minimum expected cumulative reward obtained via random search.

due to its ability to model complex, non-linear relationships more effectively in those specific

domains. Conversely, BORE-RF exhibits lower variation in other domains, which could be

attributed to its robustness against overfitting and its effectiveness in handling diverse data

types.

This variability in performance consistency underscores the importance of domain-specific

characteristics when selecting an optimisation method. It highlights that while BORE-MLP

and BORE-RF generally outperform the BO versions, their relative effectiveness can vary de-

pending on the specific nature of the problem being addressed. BORE-MLP converges faster to

an optimum in most tasks. In the Franka environment, the difference is higher, and it suggests

that the proposed framework performs better in higher-dimensional problems.
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Method ĝmax ĝσ λ xµ xσ yµ yσ zµ zσ

BORE-MLP -21106.36 724.10 1.65 0.3104 0.0010 0.1000 0.0010 0.6000 0.0058
BORE-RF -21891.82 291.64 1.67 0.3036 0.0431 0.1001 0.0013 0.6145 0.0234
BOhetero -23025.47 162.22 1.73 0.3185 0.0500 0.1200 0.0028 0.6145 0.0118
BOhomo -22870.14 158.46 2.00 0.3200 0.0010 0.1000 0.0010 0.6200 0.0010

TPE -23438.34 121.26 1.63 0.3124 0.0159 0.1152 0.0045 0.6047 0.0067
CMA-ES -23779.35 481.55 1.47 0.3200 0.0010 0.1200 0.0010 0.6200 0.0142

TABLE 5.2. Maximum reward found at the last iteration for the Franka task.

5.8.3 Evaluating the Optima

The previous section emphasised the proposed MPC framework and its ability to explore effi-

ciently compared to other optimisation methods. This section describes the optima found by

the methods in the Franka environment, where the improvement is more noticeable. The results

obtained with the methods taken into account are shown in Table 5.2, we show the control hy-

perparameters ϕ = {λ} and the dynamics model parameters Ψ = {(xµ, xσ), (yµ, yσ), (zµ, zσ)}

that give the maximum reward ĝmax at the last iteration after running each method for 50 iter-

ations. ĝσ is the observed standard deviation of the reward at the respective iteration. BORE-

MLP is able to find an optimum close to the one found by BORE-RF. ĝσ is higher for BORE-

MLP as the method is still exploring new unseen regions at the end, and it can still improve

its current maximum. The table also shows the optimised parameters for the distribution-based

sizes: violet for the length x, yellow for the width y, and cyan for the height z. To better vi-

sualise the optimised distribution-based parameters obtained by the methods, Figure 5.7 shows

the initial and final distributions found by each method. There is improvement with respect to

the BOhetero proposed in Chapter 4. Besides, it is worth mentioning again that both TPE and

BORE do not have to optimise their hyperparameters, unlike BO.

It is also shown that BORE-MLP and almost all the other methods found that considering more

uncertainty in the obstacle height z would provide a higher reward, which is understandable

considering that the gripper could find convenient trajectories by moving over the obstacle. The

most relevant dimension size is the width y since a wrong y would result in obstacle collision.

Meanwhile, all methods can allow more uncertainty about the length of the obstacle as it does

not affect the collision. Most methods converge to a similar controller hyperparameter λ.
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(a) Dynamics model parameters inferred by BORE-MLP.

(b) Dynamics model parameters inferred by BORE-RF.

(c) Dynamics model parameters inferred by BOhetero.

FIGURE 5.7. Initial Franka parameters and best inference at the last iteration.
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5.9 Summary

This paper described an adaptive variant of MPC that automatically estimates model parameter

distributions and optimises MPC hyperparameters within a BORE optimisation framework. In

contrast to previous approaches, the proposed framework shows that global optimisation can

be accomplished by learning a binary classifier as a surrogate model of the true function. After

evaluating the use of BORE as a surrogate-based optimisation method, this chapter formulated

an adaptive MPC framework that deals with the data availability problem better than with BO

and also handles heteroscedastic noise settings.

Performance evaluations were realised with the proposed framework with different classifiers

and against benchmark BO versions. BORE was able to surpass the performance of the tra-

ditional BO and a heteroscedastic BO variation. The experiments were only empirical and

showed the effectiveness of BORE hyperparameter optimisation due to significant performance

improvement of simulated control and robotic tasks.



CHAPTER 6

Conclusions and Future Work

This thesis addressed the problem of optimising stochastic model predictive control (MPC)

while learning and adapting the robot dynamics to the real world. An optimisation framework

proposed in the last contributing chapter was built up according to research and experiments

from the previous contributing chapters. The subproblems considered were the reality gap

problem, which consisted of the error produced when transferring a simulated robot to the real

world and the low data availability for designing robotic systems. Since simulated data were

used to optimise trajectories, the framework developed handled both a data-efficient optimisa-

tion method and a controller that can be adapted to real-world scenarios.

6.1 Contributions

The following is a review of the contributions of this thesis organised by topic.

6.1.1 Heteroscedastic Bayesian Optimisation

Chapter 3 proposed a framework for optimising stochastic MPC hyperparameters based only

on observed rewards using Bayesian optimisation (BO). In particular, this thesis makes use

of the stochastic MPC method known as model predictive path integral (MPPI). The problem

addressed in this chapter was the low data availability in robotics, for which a data-efficient

method had to be used. In general, the method that outperformed the rest was heteroscedastic

BO due to the input-dependent noise behaviour in various search spaces selected. Since the

BO proposed used a GP as a surrogate model, a noise model for the variance was introduced.
134
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A simple but flexible parametric noise model was used to model uncertainty, which led to

exploiting the right optimal regions rather than getting stuck in local optima. Experiments

against the traditional homoscedastic BO and non-BO methods were realised. Also, simulated

control problems that were used throughout the thesis were introduced.

6.1.2 Model Predictive Control Under Parameter Uncertainty

Chapter 4 addressed the reality gap problem by optimising stochastic MPC with randomised

simulated data. Therefore an adaptive stochastic MPC optimisation framework that adapts to

real-world scenarios was proposed. It consisted of randomising the dynamics model due to

the use of distribution-based physical parameters. Both the dynamics model parameter distri-

butions and the controller hyperparameters were jointly optimised in a reward-based objective

function. The heteroscedastic noise model used in Chapter 3 was used here. The experiments

showed that heteroscedastic BO also outperforms the other methods, and some solutions do not

necessarily find the true optimal dynamics model parameters to be optimal. Robotic manipula-

tors (Franka and Jaco) with reaching tasks were also introduced.

6.1.3 Controller Optimisation by Learning Classifiers

Chapter 5 addressed the data availability problem by modifying the surrogate-based optimi-

sation method. A surrogate model that depends on learning a probabilistic binary classifier

was used. Bayesian optimisation by ratio estimation (BORE) was introduced with a variation

that allowed better handling of exploration and exploitation. An adaptive MPC optimisation

framework was also used in similar control and robotic problems. The difference here was

that BORE hyperparameters did not need to be optimised with real data evaluations: BORE al-

lowed better data efficiency. The experiments showed that the proposed framework also works

decently in similar settings with heteroscedastic noise. Simulated environments were used to

empirically test the performance and convergence of the proposed framework.
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6.2 Future work

This section presents a few areas for future work to which the methods in this thesis can con-

tribute.

6.2.1 Modeling Uncertainty

There are few theoretical guarantees for BORE’s optimality, and it is evident that BORE does

not consider uncertainty. The density ratio obtained with a probabilistic classifier does not

model the variance as the predictive posterior distribution in BO. Therefore, BORE tends not

to explore unseen locations. It would rather exploit regions where a local optimum is found.

Another point is that BORE is meant for noiseless objective functions. For example, in a

noisy minimisation problem, BORE may consider regions where the noise is high as optimal

instead of optimising an approximation of the true function, which also leads to issues regarding

heteroscedastic noise. Meanwhile, BO approaches can approximate the true function with

the posterior mean. Some future work may include proposing a variation that accounts for

uncertainty and analysing it for controller optimisation.

6.2.2 Optimising the Horizon and Number of Trajectories

Although MPPI’s performance depends on two main hyperparameters: the control variance

and the temperature, the horizon length and the number of trajectories affect the controller’s

performance in terms of processing efficiency. In most of the applications that use MPPI, both

hyperparameters are determined as fixed with high values, such as 10000 trajectories, in order

to cover much of the state space. BO for discrete search spaces can be used to optimise both

hyperparameters online, lowering the horizon length and the number of trajectories in order to

obtain an optimised controller that would perform more efficiently. BORE can be adapted to

discrete inputs since it is based on TPE, which can handle discrete data.
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6.2.3 Distribution-Based Actions

MPPI samples control signal perturbations from a normal distribution parameterised by the

control signal. With the purpose of minimising the reality gap, such a distribution can become

dependent on physical limitations. For example, in a manipulator task with action space corre-

sponding to joint angles, the perturbation distribution can be optimised according to them. By

defining beta-distributed perturbations, the action signals produced would be limited to the in-

terval [0, 1], which can be mapped to manipulator joint angles. This will produce more realistic

action signals if the perturbation distribution is optimised iteratively.
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