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Abstract

Discovering important patterns in data can help cities to plan, monitor, and

assign resources more efficiently, converting them in smart cities with more or-

ganized communities. Machine learning models can take advantage of this large

amount of data to improve and scale these cities’ duties. In this work, we explore

machine learning approaches to solve different problems in the smart cities domain

related to water consumption, energy consumption and emergency events. More

specifically, our work sheds light on the design of ensemble learning, sequential

models and the combination of probabilistic graphical and deep learning models

to this type of problems. Moreover, we carefully compare, adapt and implement

methods to address the particular characteristics of the data and the problems of

smart cities.

We focus on four specific problems: i) classifying the water pump operation

status, quality and quantity, ii) predicting the future water consumption based on

historical consumption, iii) time resolution prediction for emergency events and iv)

disaggregating energy signals into their component appliances. To address these

problems, we develop, compare and combine three families of machine learning

models: ensemble learning, probabilistic graphical and deep learning. For the clas-

sification problem, we develop ensemble-learning models which outperform a Sup-

port Vector Machine approach. We identify the most relevant individual and group
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features from two African countries datasets, where the management of this re-

source is fundamental. For the water consumption prediction problem, we develop

a probabilistic graphical model such as an sparse Gaussian Conditional Random

Field model and a deep learning model such as an LSTM-based encoder-decoder,

to perform structured prediction. Besides, we introduce additional features at

each time step and find that in most of the cases they improve the multi-step

prediction performance. We continue exploring the suitability of the LSTM-based

encoder decoder to the time resolution prediction for emergency events in New

York City, a challenging dataset with no discerning temporal patterns. Finally,

for the energy disaggregation problem, we build a deep latent generative model

that disaggregates the total energy consumption of a house by jointly generating

and predicting the continuous values of the disaggregated signals. We evaluate

the performance of all our models on real-world data and show their effectiveness

through extensive experimentation. Our models and analysis have the potential

to positively impact the development of smart cities and communities.
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1 Introduction

Cities around the world are producing large amounts of data every day. Ma-

chine Learning models are suitable to tranform this data in useful outputs that

can leverage decision-making for public services. Moreover, they can contribute

to the understanding of population behaviour to better shape public policies. By

understanding the patterns of consumption and mobility, public servers can design

better solutions and optmize resources in their cities and countries. Problems ad-

dressed with machine learning in this thesis belong to a variety of domains such as

demand and management of water or energy and forecasting of emergency events.

1.1 Contributions

In this section, we present the problems and the main contributions of this

thesis. We start by addressing the water availability and management problem,

specially in least developed countries. Many factors including geographic, political,

management, and environmental ones affect the availability of water in these re-

gions. For this reason, we develop an ensemble-learning based predictive-analytics

framework for smart water management to predict water pump operation status

(e.g., functional, non functional), water quality and quantity. First, we perform

feature engineering to select relevant features, use them to develop the XGBoost

and Random Forest ensemble learning models, and then perform extensive fea-

ture analysis to identify the most predictive features, for each prediction problem

mentioned above. We evaluate our framework on two publicly available smart

water management datasets pertaining to Tanzania and Nigeria and show that

our proposed models outperform a Supper Vector Machine approach in most of

metrics such as precision, recall and F1 score. We also demonstrate that our

models are able to achieve a superior prediction performance for predicting water

pump operation status for different water extraction methods. We conduct a de-

tailed feature analysis to investigate the importance of the various feature groups

(e.g., geographic, management) on the performance of the models for predicting

water pump operation status, water quality and quantity. We then perform a

fine-grained feature analysis to identify how individual features, not just feature

groups, impact performance. We identify that among individual features, location
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(x, y, z coordinates) has the maximum impact on performance. Our analysis is

helpful in understanding the types of data that should be collected in future for

accurately predicting the different water problems.

Complementary to water related problems in rural areas, consumption predic-

tion in residential and commercial can help identify possible leaks, minimize water

wastage, and pave the way developing initiatives for a sustainable future. For this

reason, we implement SWaP, a Smart Water Predicion system that forecasts

hourly water consumption based on historical data. To perform this prediction

task, we design discriminative probabilistic graphical (PG) and deep learning mod-

els (DL), in particular, sparse Gaussian Conditional Random Fields (GCRFs) and

Long Short Term Memory (LSTM) based deep Recurrent Neural Network (RNN)

models, to successfully encode dependencies in the water consumption data. We

evaluate our system on water consumption data collected from multiple buildings

in a university campus and demonstrate that both the GCRF and LSTM based

deep models are able to accurately predict future hourly water consumption in

advance using just the last 24 hours of data at test time. SWaP achieves superior

prediction performance for all buildings in comparison to the linear regression and

ARIMA baselines in terms of Root Mean Squared Error (RMSE) and Mean Ab-

solute Error (MAE), with the GCRF and LSTM models providing 50% and 44%

improvements on average, respectively. We also demonstrate that augmenting our

models with temporal features such as time of the day and day of the week can

improve the overall average prediction performance. Additionally, based on our

evaluation, we observe that the GCRF model outperforms the LSTM based deep

learning model, while simultaneously being faster to train and execute at test

time. The computationally efficient and interpretable nature of GCRF models in

SWaP make them an ideal choice for practical deployment.

Next, we adapt a similar LSTM-based encoder-decoder used for water con-

sumption prediction to resolution time prediction problem for emergency events

in New York City, USA. Due to the lack of obvious temporal patterns in the time

series, this dataset provides a unique opportunity. Accurately predicting resolution

time for emergency incidents is crucial for public safety and smooth functioning of

cities as it helps in planning resources that will be available for immediate assis-

tance. For this reason, we implement DeepER, a deep learning based emergency

resolution time prediction system that predicts future resolution times based on

past data. We effectively preprocess the data to deal with uneven distribution

of resolution times, outliers, and missing values. We compare the performance of

the model with ARIMA and Linear Regression using two metrics— Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE). DeepER achieves an

average performance improvement of 3% and 16% with respect to RMSE and 10%

2



and 27% with respect to MAE over ARIMA and Linear Regression, respectively.

Analagous to water management, designing machine learning models for smart

energy consumption is an important research problem, having a tremendous im-

pact on sustainable societies. A crucial sub-problem in facilitating smart energy

consumption is to accurately disaggregate energy signals into their component ap-

pliance signals. This process is also known as energy disaggregation/non-intrusive

load monitoring (NILM). This exercise provides residents with an accurate view

and understanding of their energy consumption and can potentially help in re-

ducing the peak energy consumption and facilitating efficient usage and conser-

vation of energy. Recent advances in variational inference for DL have resulted

in more expressive deep generative models such as variational autoencoders and

variational recurrent neural networks that possess the ability to encode continuous

latent variables. These latent variables provide the models with a powerful layer

of abstraction that captures the variations in the input data and helps in gen-

erating the output data. These models map the input sequence into continuous

latent variables using an inference network (referred to as an encoder), and then

use the generative network (referred to as a decoder) to reconstruct the input se-

quence by sampling from the latent variables. Chung et al. [5] propose variational

recurrent neural networks (VRNNs), which extend VAEs to model sequences by

introducing high-level latent variables in RNNs. Deep generative models such

as VRNNs and VAEs have implemented for many sequence-to-sequence language

tasks such as machine translation, paraphrase generation, and textual entailment,

but have not been explored for the problem of energy disaggregation. Following

the contributions of this thesis, we present a novel deep generative architecture for

disaggregation that leverages and adapts VRNNs to jointly disaggregate the total

energy consumption into individual component appliance signals. Our proposed

approach learns the abstraction of the aggregated energy consumption over latent

variables at training time and then generates all the individual appliance signals

jointly by sampling from the latent variables at test time. Hence, at test time our

model only depends on the aggregated signal and the latent variable abstractions

learned during training and does not depend on contextual information and ap-

pliance data from previous time steps, making it a meaningful model for energy

disaggregation.

1.2 Future Challenges

Machine learning models see and train over historic data or training set to

predict results in new data. The error and precision of a model are reported based

on the results over the testing set. Usually, the data collected for problems in
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smart cities belong to at least couple of months to be able to recognize interesting

patterns. In our models, data is collected with a granularity of at least minutes

which allows us to focus in the planning and decision making process. However,

for the nature of some domains in smart cities, models might need to process and

infer some results at the granularity of seconds or microseconds in real time. To

attend such approaches is what could really make a difference in productionizing

and scaling machine learning models for smart cities. We acknoledge that to fulfill

such goal, machine learning models would have to be combined with the more

proper networking and behaviour knowledge. That is what we could call the real

future challenge of the application of machine learning models for smart cities

from a computer science perspective.

1.3 Thesis Organization

This thesis is structured as follows. Chapter 2 aims to explain the neccesary

background and general concepts to understand more specific models in the rest

of the work. Chapter 3 presents the work for water management pump operation

status, quality and quantity classificaiton. Chapter 4 continues with SWaP, a

predictive framework for water consumption. Chapter 5 explains the details of

our work on time resolution prediction for emergency events. Chapter 6 shows the

details on our variant of the Variational Recurrent Neural Network for the energy

disaggregation problem. Finally, chapter 7 summarizes the conclusions and the

future research paths provided by this thesis work.
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2 Background

In this chapter, we aim to give more theoretical background to the machine

learning models used to address our smart city problems. The first section explains

more details of two of the more general types of ensemble models implemented in

3.4.3, for water pump classification: boosting and boostrap. The second section

provides details on sequential models from the probabilistic graphical approach

as in Conditional Random Fields (CRF), and from the deep learning approach

with the seq2seq and encoder-decoder architecture. In 4.5, we compare sparse

Gaussian Conditional Random Fields (GCRF) and a seq2seq model to address

the water consumption prediction problem. This type of model is a variant of

CRF for continuos values. In 5.7, we focus on a seq2seq approach as based of

our framework to adress the Emergency Resolution Time prediction. Finally, in

the third section of this chapter, we aim to introduce more background on Deep

Probabilistic Graphical Models (DPGM) and Variational Inference. These two

concepts are key to understand the adaptaion of the Variational Recurrent Neural

Networks (VRNN) implemented in 6.4.

2.1 Ensemble Models

Ensemble models leverage the accuracy of single supervised learning methods

by considering the results of several classifiers. These classifiers or learners can

be base on the same approach or they could be different approaches. Among

these approachs, we can find ensemble types such as Bayes optimal classifier,

Bayesian model averaging, Bayesian model combination, Bucket of models, Stack-

ing, Boosting and Boostrap aggregating (bagging). In 3.3.2, we compare two

ensemble models, XGBoost and Random Forest, which implements Boosting and

Boostrap aggregating respectively.

2.1.1 Boosting

As the name suggest, this approach boost the performance of weak learners by

converting it into a strong learner. This is achieved when identifying instances that

are misclassified, re-weight to favorite them and passing them to subsequent learn-

ers. One of the first examples of this approach is AdaBoosting [6], whose authors

5



claim do not tend to over-fit, followed by algorithms such as AnyBoosting and

XGBoost, among others. It’s worth to mention that this type of ensemble model

has its root in the PAC (Probably Approximately Correct) learning framework.

2.1.2 Boostrap aggregating (bagging)

In contrast to Boosting, learners are training on m resample sets, with replace-

ment, and their results are then averaged or aggregated. Leo Breiman coined the

term bagging from Boostrap aggregating in his work [7] and was also the creator

of Random Forests algorithm [8].

2.2 Sequential Models

From probabilistic graphical models to deep learning, sequential modeling

states several challenges when analysing data types such as time series, signal

processing, language generation, etc. We give a brief overview of a probabilistic

graphical approach such as CRF and a deep learning approach such as Recurrent

Neural Networks (RNN) as the base componente of encoder-decoder for seq2seq

architectures.

2.2.1 Conditional Random Fields

Conditional Random Fields (CRF) were proposed by [9] in 2001. They are

a type of undirected and discriminative probabilistic graphical model used for

structured prediction, which work with more than one prediction dependent on

each other. It was created as an alternative to the dependency of only the previous

state as in the generative models, hidden Markov model (HMM) and maximum-

entropy Markov model (MEMM), to better fit sequential modeling and address the

label bias problem. Besides, CRF deals with the disadvantage of biased prediction

when there are few discrete states. As defined in [9], (X, Y ) is a conditional random

field when, conditioned in X, the random variable Yv obeys the Markov property,

where, Y = (Yv)vεV in the graph G = (V,E) and X can follow any other natural

graph structure. As many other probabilistic models, the learning is performed by

maximizing the likelihood. Figure 2.1 shows the comparison between structures

of HMM, MEMMs and CRFs.

Figure 2.1: HMMs (left), MEMMs (center), CRFs (right) by [9]

6



Several works have used or adapted CRF to other type of problems such as

in semantic image segmentation in computer vision [10] and combined with deep

learning for entity recognition and word recognition in natural language processing

[11], [12], respectively.

2.2.2 Recurrent Neural Networks

The temporal dependence between the data instances in a sequence prediction

problem makes recurrent neural networks (RNNs) an appropriate fit for forecasting

problem in smart cities. For example, to address water consumption prediction

and emergency resolution time prediction, respectively, our frameworks in 4.3

and 5.3 make use of seq2seq RNN-based models. In this section we describe the

main architecture of such frameworks, as well as the RNN component. An RNN

consists of a hidden state h and an output Y that operates on input X. At each

time step t, the hidden state of the RNN is given by, ht = f(ht−1, xt) where,

f is any non-linear activation function and 1 ≤ t ≤ n. In this work, f follows

a neural network architecture comprising of a network of nodes organized into

sequential hidden layers with each node in a given layer being full connected to

every other node in the next successive layer. Each hidden state serves as memory

and its output is calculated using the output of the previous hidden state and

the input xt as shown in Equation 5.1. Since RNNs are known to suffer from the

vanishing or exploding gradient problem [13] when sigmoid functions are used, our

architecture uses LSTM cells that use memory cells to store relevant information

needed to learn long range temporal dependencies in the data. We refer the reader

to Goodfellow et al. for more details on RNN [14].

2.2.3 Seq2seq Models

Seq2seq Models were created to perform machine translation based on recur-

rent neural networks (RNN). We describe here the general process followed by

these type of models. First a representation of a word is feeded to every step of an

encoder, that can be a recurrent neural network, and all the words are encoded in

a vector c. Then, the vector c is feeded to a decoder, that can also be a recurrent

neural network, which will output a sequence of words which can be consider a

sentence. Two variants were proposed around 2014 by [15], [16] where the encoder

and the decoder correspond to the same or different recurrent neural networks,

respectively. In other words, having different recurrent neural networks, allows to

have different type of RNN such as Long Short Term Memory (LSTM) or Gated

recurrent unit (GRU) cells, as well as different parameters to be learned. Seq2seq

models have lately been used in multistep forecasting. Figure 2.2 shows the type
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of model where an LSTM works as an encoder and an RNN works as a decoder.

Although an encoder-decoder architecture can be implemented in several forms

(autoencoders, CNNs and other deep learning settings), we explain here in the

description of seq2seq encoder-decoder context. As we can observe from Figure

2.2, the encoder takes an input sequence x1, x2, ...., xn that corresponds to the

resolution time of events for the last n time steps. The encoder then generates a

hidden encoded vector C. After the entire input has been processed, the summary

C is provided as input to the decoder. The decoder then generates ŷ1, ŷ2, ...., ŷk,

the predicted resolution times for the future k events. The loss function used is

the sigmoid activation function and it is applied to the output of the decoder.

This ensures that the predicted values are in the [0-1] range.

The basic cell structure used in the encoder is LSTM that captures the impor-

tant dependencies in the data. LSTM cells also possess the ability to ‘forget’ that

enables them to overcome well-known vanishing/exploding gradient. To achieve

this an LSTM cell has three main gates—input, output, and forget. The input

gate receives the pertinent information in the current step and the output gate

determines the hidden state for the next step. The forget gate is responsible for

discarding unimportant information so that the model can capture the relevant

long-term dependencies. We refer the reader to [15], [16] for additional details.

…"

x1# x2# xn#

c"

…"

ŷn+1# ŷn+2" ŷn+k"

Encoder"

Decoder"

Figure 2.2: Encoder-decoder based RNN (figure taken from [2])

2.3 Deep Probabilistic Graphical Models

Recent works are identifying the potential of the combination of deep learning

and probabilistic graphical models, leading to the Deep Probabilistic Graphical

Models (DPGM) [17]. In other words, the combination of these types of models

bring together the best of two worlds. On one hand, DL has the capacity of
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learning a more flexible representation of abstract and complex relations of data.

On the other, PG models bring to the table, a more controlable and explainable

framework. Moreover, this is a valuable characteristic for AI systems that need

to provide more reasons on their results in order to be more interpretable and

subject of fair analysis. We consider variational models subject of improvement

when combined with DL to estimate the parameteres of its family distributions

and learning by optimization of great amounts of data. Our work in 6.4 also

adapts a variational approach, which can be considered a kind of DPGM, over a

recurrent neural network to address the energy disaggregation problem. For that

reason, we provide more background on this kind of models by explaining one of

the most simple examples such as variational autoencoders.

2.3.1 Variational Inference (Variational Bayesian Methods)

Variational Inference (VI) helps to learn intractable posterior distribution

through an approximated distribution. To learn this proxy distribution, VI opti-

mizes the distance between these distributions through KL divergence and makes

use of the marginal loglikelihood of observable data to establish a lower bound.

VI is an alternative to classical methods, such as Markov Chain Monte Carlo sam-

pling due to its power and speed. However, it still has open problems and more

understanding is missing on how to levarege its potential [18]. In the context of a

DPGM, the proxy could be learned with neural networks.

Figure 2.3: Variational Autoencoder by [19]

2.3.2 Variational Autoencoders

Variational autoencoders (VAE) [19] transform the encoded hidden vector of

an autoencoder architecture in a latent variable to learn the parameters of a family

of distributions. As seen in figure 2.3, there are three sets of probability distri-

butions parameters to learn: a variational approximation (or encoder) of P (z|x),

a prior distribution for the latent variable z P (z); and the decoder distribution

of P (x|z). As mentioned before, the approximated and other distributions can
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be learned thorugh neural networks of different depth. Several variants of VAE

has been used in computer vision, natural language and signal processing, to be

able to generate images, text and time series data. Some of the recent work

in computer vision include models such as PixelCNN, PixelRNN; for language

generation, we have seen variants such as Variational Attention; and Variational

Recurrent Autoencoders [20] and Variational Recurrent Neural Networks [5] for

signal processing.
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3 Water Pump Features Classification

Water availability and management is an important problem plaguing many

developing and under-developed countries. Many factors including geographic, po-

litical, management, and environmental factors can affect the availability of water

in these regions. In most developing regions, the primary means of extracting

water is water pumps (e.g., manual, hand pump, solar pump). While significant

initial capital is needed to install these pumps, a sustained long-term effort and

investment is also required to maintain these pumps. For example, nearly 1.42

billion dollars have been donated to address the water access crisis in Tanzania

[21]. Though significant strides were undertaken in installing pumps across the

country, many of these pumps are in a condition of decay, primarily due to the

lack of adequate maintenance.

Therefore, in this section, we adopt a data-driven approach to investigate im-

portant questions related to the water availability: water pump operation status,

water quality and quantity by exploring two publicly available datasets related to

the operation of pumps in Tanzania and Nigeria respectively [22], [23]. Specifi-

cally, we answer the following questions. i) How do individual or groups of features

impact the water availability problem? ii) Can we accurately predict water pump

operation status, water quality and quantity from the data?

Answering these questions is essential for the well being and economic growth

of communities in these regions. They provide valuable information that can be

used by the authorities to identify and effectively allocate scarce resources (e.g,

money, personnel) to places most in need. For example, they provide insight into

where to install new pumps depending on the water availability and which pumps

are in need of immediate maintenance. Additionally, our analysis helps identify

the most important features that influence the operation of a pump and thus can

be extremely beneficial and used as a reference by other nations who plan to collect

similar data in the future.

Specifically, our contributions are as follows:

1. We start with developing a predictive analysis framework that incorporates

the different features to predict different problems related to water availabil-

ity: i) pump operation status, ii) quality, and iii) quantity.
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2. We then perform a two-pronged fine-grained feature analysis to understand

the contribution of different features in predicting the different water prob-

lems. First, we group similar features into groups and drop/include fea-

ture groups individually and measure the corresponding effect on prediction

performance. Geographic features and source-related features emerge as

the most important feature groups across the different prediction problems.

Next, we rank the individual features in order of importance to also under-

stand their contribution toward prediction performance. This endeavor helps

in understanding the importance of the different features/feature groups in

the various water prediction problems.

3.1 Related Work

In this section, we outline existing work related to smart water management

and contrast it with our work. Due to the lack of open datasets, there is limited

research in this space. In [24], the authors study a relatively small dataset from

Ghana’s GAP region. They perform a Bayesian Network analysis and observe

strong dependencies between pump functionality and features such as pump type

and management. Jimenez et. al analyze the relationship between the function-

ality and the technology of the water points [25].

Another study focusing on Liberia, Sierra Leone, and Uganda [26] analyzes

the risk factors associated with non-functionality of hand pumps. They apply a

logistic regression model to a dataset of community-managed hand pumps and

observe that age of the pump, distance from district/country capital, and absence

of user fee collection all contribute significantly toward pump non-functionality.

In [27] the authors investigate the performance of demand-driven, community-

managed water supply systems in rural areas of developing countries through a

large-scale study.

Water quality and quantity have also been investigated in prior work [28],

[29]. The author in [30] build a multi-task, multi-view learning framework to

predict urban water quality by combining a number of data sources including

water hydraulic data, weather, pipe networks, structure of road networks, and

point of interests (POIs). In another work, the authors report results from water

quality measurement studies carried out in the rural districts of Tanzania [29].

Our work is closest to [23], where the authors explore the same two datasets

and investigate the factors influencing the water pump functionality using regres-

sion and Bayesian Network analysis. From their analysis, they identify that hand

pumps of a particular make have higher functionality in comparison to others. The

find strong correlation between management type and functionality. In contrast
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to existing work, we design a framework to predict water pump operation status,

water quality, and quantity. We then use these models to identify the most impor-

tant features that influence functionality. We note that similar machine learning

techniques have been used to predict other environmental factors (e.g., air, river

water quality, landslide) for enabling a smarter world [31]–[33].

3.2 Dataset

We work with two datasets from Africa: Tanzania and Nigeria. Both of them

have been made publicly available by Taarifa and the Tanzanian and Nigerian

Ministry of Water, respectively [22], [23]. The Tanzania dataset was collected

using hand-held sensors, paper reports, and feedback from people using cellular

phones. This dataset has 59, 401 instances and contains information such as the

pump operation status, water quality, water quantity, pump location, source type,

extraction technique, and population demographics in the region where the pump

is installed. The Nigeria dataset has 132, 542 instances and has features similar

to, but less in comparison to the Tanzania dataset.

The primary difference between the datasets is that the Nigeria dataset does

not contain information regarding the water quality and quantity. Therefore,

we present significantly more results for Tanzania in comparison to Nigeria. For

the Tanzania dataset, the pump operation status is described using three values

namely functional, functional needs repair and non-functional, while for Nigeria

the pump operation status is described using only two values functional and non-

functional. The water quality for the Tanzania dataset is described using the

values good, milky, salty, colored and fluoride while the water quantity takes the

values dry, enough, insufficient and seasonal.

Figures 3.1a, 3.1b, and 3.1c show the normalized distribution of the water

pump operation status, the water quality, and quantity for the different regions

for Tanzania and Figure 3.2 shows the normalized distribution of the water pump

operation status for Nigeria. The width of the bars in the figures denote the

number of instances that correspond to a particular region or state. We make

multiple important observations from these figures - i) the total number of in-

stances vary with region/state, ii) there is a significant portion of pumps that are

non-functional, and iii) there is an uneven distribution of the values for water

quality and quantity. For example, if we consider water quality, a large fraction

of instances have good value.

The pump operation status, water quality, and quantity all vary considerably

with the different attribute types. To provide the reader a better understand of

the data, we next compare the counts of the pipe operation status with respect to
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Figure 3.1: Tanzania: Comparison of pump operation status, water quality and
water quantity for different regions

method used for extracting water for Tanzania and Nigeria in Figures 3.3 and 3.4

respectively. Note that the methods used for water extraction vary between the

two countries.
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Figure 3.2: Nigeria: Comparison of pump operation status for different states
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Figure 3.3: Tanzania: Comparison of pump operation status for different water
extraction types

3.3 Smart Water Management Prediction Framework

Having provided an overview of the datasets in the previous section, we first

describe the problems and then present predictive modeling approaches to address

them. Our goal is to design a smart water management framework that can

accurately predict the pump operation status, water quality and quantity. Our

models can be potentially extended for addressing water-related issues in other

developing and under-developed regions.

3.3.1 Feature Engineering

In order to design effective models for the problems studied in this section, we

remove irrelevant features from the entire feature set. For example, we remove

features such as the name of the water point or village name as they are either
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Figure 3.4: Nigeria: Comparison of pump operation status for different water
extraction types

unique or shared between few instances in the dataset. We use Pearson correlation

coefficient (PCC) and Spearman’s rank correlation coefficient (SCC) to determine

the correlation between features and class variables. The correlation values are

used to eliminate features from the dataset that may not be useful. Additionally,

we also convert few features to relevant units. For example, we convert the latitude

and longitude values in the datasets to x, y, and z coordinates. Similarly, we use

the year in which the pump was manufactured to determine the age of the pump.

Missing values in the dataset are replaced by a measure of central tendency (i.e.,

mean, median) or not applicable (NA) depending on the appropriateness.

3.3.2 Predictive Models

We leverage two ensemble learning models, namely Random Forest and a re-

cently developed ensemble model, XGBoost, to address the smart water manage-

ment problem. Ensemble learning methods leverage multiple learning algorithms

to obtain better prediction performance than what could be obtained from the

respective individual learning algorithms in the ensemble.

Random Forest

It constructs multiple decision trees based on bootstrapping and random at-

tribute selection during the training phase. The algorithm uses them to predict

the the class during the test phase, and then outputs the result by carefully com-

bining the results from the different trees [8]. Random Forest avoids overfitting by

randomly selecting a set of attributes instead of taking all the available attributes
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into consideration for constructing the trees.

XGBoost

In contrast to Random Forest, XGBoost uses dependent but smaller decision

trees. It uses a gradient boosting algorithm to improve the results of the previous

trees to predict the next tree. The final output is decided on the basis of a voting

algorithm that is applied on the results obtained from all the trees [34].

3.4 Experimental Results

We conduct experiments to answer the following questions:

� How good are our models in predicting different attributes of water manage-

ment: pump operation status, quality, and quantity in Tanzania, and pump

operation status in Nigeria?

� What features/feature groups are most predictive of pump operation status,

quality, and quantity?

In all our experiments, we use 5-fold crossvalidation, where we divide the data

into 5 partitions, iteratively train on four partitions and report the prediction

performance on the fifth partition. We report standard performance metrics of

precision, recall, and F1 score for all the models. Precision is defined as a ratio of

the true positives to the sum of the true positives and false negatives and recall is

the ratio of the true positives to the true instances in the dataset (i.e., the sum of

true positives and the false negatives). The F1 score is calculated as the harmonic

mean of the precision and recall. We compare our models with several baseline

approaches such as Support Vector Machines (SVM), Logistic Regression, Mul-

tilayer Perceptrons, and Naive Bayes. We report results for SVM, the baseline

model that performs the best on our dataset. Statistically significant differences

evaluated at a rejection threshold of p = 0.05 are typed in bold in all the ta-

bles below. We measure statistical significance between XGBoost and Random

Forest, wherever relevant. For scores where we cannot establish statistical sig-

nificance between XGBoost and Random Forest, we report statistical significance

with SVM. We observe that our proposed models achieve superior performance

across all prediction tasks and across all the performance metrics.

3.4.1 Pump Operation Status Prediction

In this subsection, we report performance results for pump operation status

for Tanzania and Nigeria. Tables 3.1 gives the performance results for the pump
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operation status for Tanzania. We observe that Random Forest and XGBoost

perform better than SVM across all performance metrics. Our models achieve a

78% performance improvement in F1 score over SVM for non-functional, 75% for

functional needs repair, and 13% for functional, respectively. Looking closely at the

results for individual class values, we observe from Table 3.1 that the performance

of the proposed models is better for the functional and non-functional classes in

comparison to the functional needs repair class for the Tanzania dataset. The

main reason behind the lower performance for the functional needs repair class is

the lack of enough instances pertaining to this class in our dataset (as shown in

Figure 3.1a).

Similarly, we observe that XGBoost and Random Forest perform better than

SVM on the Nigeria dataset. From Table 3.2, we observe that the F1 score perfor-

mance is higher for the non-functional class in the Nigeria dataset in comparison

to the functional class for all the three models. We observe that our proposed

models achieve a performance improvement of 36% in the functional class when

compared to SVM.

Model Class F1 Score Precision Recall

SVM
Functional 0.75 0.62 0.94
Functional
needs repair

0.24 0.62 0.14

Non Functional 0.46 0.79 0.32

XGBOOST
Functional 0.85 0.81 0.91
Functional
needs repair

0.42 0.63 0.31

Non Functional 0.82 0.85 0.78

Random Forest
Functional 0.85 0.81 0.88
Functional
needs repair

0.43 0.54 0.36

Non Functional 0.81 0.84 0.79

Table 3.1: Tanzania: F1 scores, Precision and recall, and for predicting pump
operation status

Model Class F1 Score Precision Recall

SVM
Functional 0.38 0.49 0.31
Non Functional 0.74 0.68 0.82

XGBOOST
Functional 0.52 0.57 0.47
Non Functional 0.76 0.73 0.80

Random Forest
Functional 0.53 0.50 0.32
Non Functional 0.74 0.68 0.78

Table 3.2: Nigeria: F1 scores, Precision and recall for predicting pump operation
status
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Extraction Type Accuracy
XGBOOST Random Forest

Gravity 86.65% 79.21%
Hand pump 86.67% 72.88%
Motor pump 93.79% 90.86%
Rope pump 95.37% 85.64%
Submersible 93.31% 84.07%
Wind 84.31% 72.54%

Table 3.3: Tanzania: Accuracy of predictions across different extraction types

Extraction Type Accuracy
XGBOOST Random Forest

Animal 65.57% 63.92%
Diesel 65.06% 68.85%
Electric 64.47% 63.96%
Hand pump 64.70% 64.96%
Manual 65.03% 65.64%
Solar 63.70% 63.92%
Wind 86.66% 66.67%

Table 3.4: Nigeria: Accuracy of predictions across different extraction types

In Tables 3.3 and 3.4, we compare the accuracy of our XGBoost and Random

Forest models in predicting pump operation status for the different extraction

methods. Accuracy is defined as percentage of instances predicted correctly by

our models in the total number of instances. We observe that both our proposed

models can accurately predict the pump operation status for the different water

extraction methods.

Model Class F1 Score Precision Recall

SVM
Good 0.94 0.90 0.99
Bad 0.33 0.83 0.20

XGBOOST
Good 0.95 0.92 0.99
Bad 0.49 0.84 0.35

Random Forest
Good 0.96 0.95 0.97
Bad 0.69 0.78 0.62

Table 3.5: Tanzania:Precision, recall, and F1 scores for predicting quality

3.4.2 Quality and Quantity Prediction

Recall that water quality and quantity measurements are only available for the

Tanzania dataset. From Figure 3.1b, we observe that majority of data instances

correspond to good water quality, while for the remaining data instances the water

quality is spread across salty, fluoride, colored, and milky. As the number of
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Model Class F1 Score Precision Recall

SVM

Dry 0.49 0.87 0.34
Enough 0.77 0.64 0.97
Insufficient 0.35 0.76 0.23
Seasonal 0.46 0.83 0.31

XGBOOST

Dry 0.84 0.90 0.79
Enough 0.89 0.85 0.94
Insufficient 0.77 0.82 0.72
Seasonal 0.73 0.82 0.66

Random Forest

Dry 0.85 0.86 0.82
Enough 0.89 0.87 0.92
Insufficient 0.77 0.80 0.74
Seasonal 0.72 0.79 0.66

Table 3.6: Tanzania: Precision, recall, and F1 scores for predicting quantity

instances in salty, fluoride, colored, and milky classes is limited, we group them

into bad water quality class. In comparison, from Figure 3.1c, we observe that

there are sufficient data points in all classes for predicting quantity. Hence, in our

quantity prediction models, we consider all the four different quantity classes.

Table 3.5 shows the performance results for water quality. We observe that

predicting bad quality is a more challenging prediction problem as there are lesser

number of instances for bad quality as opposed to number of instances for good

quality. Here, our ensemble models achieve a significant improvement in the F1

score when compared to the SVM model, giving a performance improvement of

109% for the bad class.

Table 3.6 shows the performance results for predicting water quantity. Here

again, we observe that our ensemble models achieve a superior prediction perfor-

mance in F1 score when compared to SVM, significantly improving the prediction

performance for insufficient and dry classes by 120% and 71%, respectively.

3.4.3 Fine-grained Feature Analysis

In this section, we perform a fine-grained feature analysis by: i) leaving groups

of features out and including specific feature groups and examining the correspond-

ing effect on performance, and ii) ranking features based on their contribution in

the prediction problem. Our feature analysis is especially useful when extending

the prediction models to new datasets/regions where only a subset of the features

are available.
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Figure 3.5: Tanzania: Performance scores for functional, functional needs repair
and non-functional when a group of features are dropped or only when a group of
features is included.

Feature Group Analysis

Next, we examine the effectiveness of different feature groups in the above-

mentioned prediction problems. We first conduct a fine-grained feature analysis

to investigate the impact of the contribution of features groups on prediction per-
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Figure 3.6: Tanzania: Performance scores for good and bad water quality when a
group of features are dropped or only when a group of features is included.
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Figure 3.7: Tanzania: Performance scores for dry, enough, insufficient and sea-
sonal water quantity when a group of features are dropped or only when a group
of features is included.
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Figure 3.8: Nigeria: Performance scores for functional and non-functional when
a group of features are dropped or only when a group of features is included.

formance and then extend this to identify the most important individual features

affecting performance in each of the prediction problems. To conduct this analysis,

we group similar features into features groups. For Tanzania, we identify three

feature groups: i) geographic features (GF), ii) management features (MG), iii)

source related features (SR). The GF group includes features such as location (x,

y, z coordinates) and the GPS height. The MG group includes features such as the

installer of the pump and the entity responsible for maintaining the pump. The

SR group contains features related to the water source including quality, quantity

and water extraction method. We do a similar grouping of features in the Nigeria

dataset. The Nigeria dataset only contains geographic (GF) and source related

(SR) groups.

We investigate the predictive power of the various feature groups by adopting

a two-pronged approach - i) dropping a particular feature group, ii) including only

a particular feature group and examining the effect on performance. Dropping a

particular feature group helps us understand how excluding it can adversely impact

performance. In comparison, only including a particular feature group helps us

appreciate the predictive power of the feature group when applied alone. Figures

3.5a, 3.5b, and 3.5c capture the performance impact of leaving feature groups out

and including only a single feature group for pump operation status for the three

classes: functional, functional needs repair, and non-functional, respectively. We

observe that dropping the SR feature group has a greater performance impact for

the functional and functional needs repair classes in comparison to dropping the

other two feature groups, while the GF feature group has the highest impact for the

non-functional class. Similarly, including only the SR feature group achieves the

highest prediction performance for functional and functional needs repair classes,

while including the GF feature gives the highest prediction performance for the
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non-functional class. On average, we observe that the SR and GF individual

feature groups have the highest impact on the functional and functional needs

repair classes and the non-functional classes respectively.

Figures 3.6a and 3.6b capture the effect on prediction performance when spe-

cific feature groups are dropped/included in water quality prediction for good and

bad class values. Again, we observe that dropping the SR group features have the

highest impact on average on the water quality. We also observe that including

only one of the feature groups provides poor performance for the bad class in com-

parison to the good class as predicting the bad class is a more challenging prediction

problem. We observe that the prediction performance drops the most when SR

feature group is excluded. Another interesting observation is that including just

the SR group features does not give a high prediction performance, even though

excluding them affects the performance the most. We conclude that GF features

(which emerge as the strongest group of features individually) together with SR

features are two most helpful feature groups for this prediction problem.

We observe a similar phenomena for quantity prediction in Figures 3.7a, 3.7b,

3.7c, and 3.7d. Overall, we observe that dropping SR features has highest affect

on performance across most quantity class values. But, including just geographic

features gives the highest performance when compared to including SR or MG

feature groups. From this we conclude that GF and SR features are the two most

helpful feature groups for this prediction problem and including them both is

essential to achieve a good prediction performance. Across all the feature analysis

experiments for Tanzania, we observe that the contribution of MG group in the

prediction performance is more prevalent when the GF and SR feature groups are

not available (i.e., including only MG feature group).

Figure 3.8 shows the leave one group out and include only a single group

analysis for the pump operation status for the Nigeria dataset. We observe from

the figure that the GF feature group plays a crucial role in predicting functional

class for the Nigeria dataset. In comparison, it is hard to pick a winner for the

non-functional group.

Feature Importance Ranking

Having studied the impact of the different feature groups on performance, we

next investigate the contribution of individual features across pump operation

status, quality, and quantity prediction in Tanzania and pump operation sta-

tus prediction in Nigeria in Table 3.7. We observe that x coordinate (denoted

by position x), y coordinate (denoted by position y), z coordinate (denoted by

position z), gps height are the most predictive features across all the prediction
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problems. This helps us in understanding the most important features and thus

can be used as a reference for collection of similar data in future.

Rank Tanzania Nigeria
Pump Status
Class

Quantity
Class

Quality
Class

Pump Status
Class

1 position x position z position z gps height
2 position y position x position x position x
3 position z position y position y position y
4 gps height days recorded days recorded position z
5 days recorded gps height gps height lga
6 population funder funder city
7 funder installer installer waterpoint type
8 installler population population extraction type
9 age lga lga -
10 lga age age -

Table 3.7: Feature Importance Ranking for Tanzania and Nigeria across prediction
problems.
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4 Multi-step water consumption prediction

With climate change exacerbating extreme weather conditions including droughts

and famines [35], understanding and predicting human water consumption is crit-

ical for ensuring a sustainable future. For example, the state of California, USA

experienced one of its longest droughts from December 2011 to March 2019 [36].

Similarly, in recent times, the city of Capetown, South Africa was faced with a

severe water crisis, where it was about to run out of drinking water for its citizens

[37]. Therefore, predicting future water consumption in residential and commercial

buildings has become an extremely important problem, particularly to efficiently

monitor water consumption, identify possible leaks, minimize wastage, and match

demand and supply. However, despite this need to design intelligent solutions to

facilitate smart water usage, there is limited prior research from the computing

community in this research area [38], [39].

Therefore, we design SWaP, a Smart Water Predict-ion system, which pre-

dicts future hourly water consumption based on historical data. The water con-

sumption prediction problem can be viewed as a classic time series prediction

problem, thus making it amenable to statistical methods such as ARIMA as well

as recently developed machine learning methods. To enable SWaP make effective

predictions, we explore two classes of discriminative machine learning models, PG

models and DL models, that have been shown to be effective for multiple time-

series prediction problems [4], [40]. We design a structured regression graphical

model, Gaussian Conditional Random fields (GCRFs), to successfully encode de-

pendencies between historical and future water consumption [9]. Specifically, we

leverage and adapt a recently developed sparse and computationally efficient vari-

ant of GCRFs [41]. We also design a Long Short-Term Memory (LSTM) based

recurrent neural network (RNN) model that captures the underlying patterns in

water consumption data.

The proposed GCRF model is parsimonious in nature and captures the under-

lying dependencies between the input (i.e., the past water consumption data) and

output variables (i.e., the future water consumption predictions) as well as those

between the output variables. As we construct a sparse GCRF model, the model

only learns the necessary dependencies among the input and output variables that

are helpful in the prediction. In comparison, the proposed DL model consists of
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an encoder and a decoder, each of which separately is an RNN. The encoder takes

past water consumption data and computes a state vector that encodes the un-

derlying dependancies in the data. The decoder then utilizes this state vector to

generate water consumption predictions.

To evaluate the performance of SWaP, we collect hourly water consumption

data for 14 buildings from a university campus for the Fall 2018 semester (ap-

proximately 4.5 months). We classify these buildings into 4 categories—academic

building, dining hall, gym and residence hall. The buildings in the dataset com-

prise of 6 academic buildings, 1 dining hall, 1 gym and 6 residence halls. We

compare the performance of SWaP with linear regression and ARIMA baselines

with respect to the Root Mean Squared Error (RMSE) and Mean Absolute Er-

ror (MAE) and demonstrate that SWaP significantly outperforms the baselines.

The GCRF and LSTM based deep learning models in SWaP provide an average

improvement of 50% and 44%, respectively. Additionally, we demonstrate that

augmenting our models with temporal features such as time of the day and day

of the week can improve the overall average prediction performance.

We note that both the GCRF and deep models only require the past 24 hours

of water consumption data to predict future water consumption at test time, thus

making SWaP an attractive system that can be readily deployed in practice. Ad-

ditionally, our experiments also show that the GCRF model provides overall better

performance than the LSTM-based deep model. Therefore, based on our experi-

ments, we recommend using a GCRF-based SWaP for the hourly water consump-

tion prediction problem. The superior performance of GCRF models along with its

low computational requirement during the training and execution phases makes

SWaP a highly desirable and practically feasible prediction framework. More-

over, the sparse GCRF model only captures the necessary dependencies between

the input and output variables, thus making the GCRF-based SWaP inherently

interpretable.

4.1 Related Work

In this section, we first outline research related to addressing water manage-

ment problems, and then review literature related to forecasting applications in

the ubiquitous computing domain.

To mitigate the negative impacts of climate change, a number of recent re-

search initiatives have focused their attention on water management related prob-

lems [38], [39], [42]–[44]. Short-term forecasting of water consumption based on

water meter readings is conducted in [45], while neural network based models for

daily water demand forecasting on a touristic island is proposed in [43]. Assem
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et al. use DeepCNN to predict urban water flow and water level based on input

features such as maximum temperature, minimum temperature and run-off [39].

Bejarano et al. design a random forest and SVM based framework to investigate

the availability of water pumps in developing and under-developed regions [46].

Similarly, logistic regression and Bayesian analysis have been applied to under-

stand the factors associated with the non-functionality of hand pumps [24], [26].

Prior work has also investigated the interaction and use of water with other re-

sources such as energy and food, popularly known as the water-energy-food nexus

[47]–[50]. In comparison to existing research, we propose GCRF and LSTM based

deep learning models for water consumption prediction and validate the efficacy of

the models using real-world data collected from multiple buildings in a university

campus.

Recently, a variety of different models including statistical models such as

ARIMA [51], [52], evolutionary algorithms [53] and data-driven approaches [4],

[54], [55] have been applied to variety of forecasting and smart computing tasks.

Arjunan et al. design a framework called OpenBAN for electricity demand fore-

casting leveraging algorithms such as decision tree, neural networks, SVM, naive

bayes and k-NN [54]. Deep learning models for crime prediction from multi-modal

data and spotting garbage from images has been proposed in [56] and [57], respec-

tively. Mobility and traffic flow modeling at the city level has been explored in

[58]–[60]. Similarly, model-based and machine learning techniques have also been

proposed for solar power and irradiance forecasting [61], [62].

4.2 Problem Statement and Data

In this section, we discuss the water consumption prediction problem and pro-

vide an overview of the data collected to validate the performance of our model.

4.2.1 Problem Statement

Our goal is to design a system to predict hourly water consumption based on

real-world data collected from multiple buildings in a university campus. Water

consumption forecasting can be modeled as a classic univariate time series fore-

casting problem, where at any time T , the goal is to predict water consumption k

steps into the future (i.e., ŷT+1, ŷT+2 ..... ŷT+k) based on data available for the past

n time steps (i.e., xT , xT−1..... xT−n). Note that ŷT+i denotes the predicted value

of the actual water consumption yT+i at time T + i. As the problem studied here

can be cast as a time series forecasting problem, both statistical techniques such

as ARIMA and recently developed data-driven and machine learning approaches

can be leveraged and adapted to address this problem. In this section, we de-
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Figure 4.1: Trends in datasets (daily consumption)

velop sequence-to-sequence probabilistic graphical and deep learning models for

the water consumption prediction problem and demonstrate empirically that they

perform better than ARIMA models. We discuss our rationale for choosing the

above-mentioned models and the details of our system in Section 4.3.

4.2.2 Data

We collect hourly water consumption data for 14 buildings in a university cam-

pus. These buildings fall into 4 categories— academic building, dining hall, gym,

and residence hall. The buildings in the dataset comprise of 6 academic buildings,

1 dining hall, 1 gym and 6 residence halls. We collect data for approximately

4.5 months when the university is in session, beginning from August 1, 2018 to

December 8, 2018 (i.e., Fall 2018 semester). Therefore, we have approximately

3000 data points for each building. Table 4.1 shows the median hourly and daily

water consumption for all buildings.

We discuss the general trends in water usage for buildings in each category.

Figure 4.1 shows the daily water usage for one representative building in each

category for the entire time period. We observe that during the last two months,

the total water consumption decreases for the dining hall and gym (Figures 4.1a

and 4.1b). While the exact reason is unknown, based on the timing, we hypothesize
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Figure 4.2: Trends in datasets (hourly consumption)

Table 4.1: Median Water Consumption

Building Category Median Median
(Hourly) (Daily)

EB Academic Building 33 1765
FA Academic Building 49 2478
LH Academic Building 72 4029
S2 Academic Building 43 1148
S3 Academic Building 357 12413
SN Academic Building 243 6455
C4 Dining Hall 304 7029
GE Gym 280 8420
BN Residence Hall 380 10180
BR Residence Hall 220 5920
DE Residence Hall 500 12910
DG Residence Hall 410 11230
JS Residence Hall 520 13510
RA Residence Hall 490 13490
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that this could be related to air-conditioning, cooling/heating. We also observe

that residence halls have lower water consumption for the first 20 days (Figures

4.1c). This is because residence halls open from 20th August after the student

orientations. In comparison, as academic buildings are in use throughout the year,

we observe that the water consumption remains in the same range throughout the

year (Figures 4.1d).

Figure 4.2 shows the hourly water usage for 48 hours (September 6 and 7)

where hour 1 and hour 25 correspond to the time between 12 am and 1 am for

two consecutive days. We observe that gym and dining hall have highest water

usage from 9 am to 9 pm (which approximately corresponds to the time dura-

tion for which these facilities are open). Water consumption for residence halls

drops at night for around 5 hours when most students are asleep. In compari-

son, academic buildings have water consumption in the same range throughout

the day. We hypothesize long/late working hours of graduate students and cool-

ing needs for equipment to be the main reason for this behavior. We note that

most utilities including water and electricity are shut down during Thanksgiving

week for all campus buildings. As water consumption values mostly correspond

to zeroes during this week, we remove the Thanksgiving week values to prevent

possible misrepresentation in the model due to this data. Additionally, the dataset

has around 0.3% missing values. We use linear regression to fill in these missing

values.

4.3 SWaP: Smart Water Prediction

In this section, we provide an overview of SWaP, a Smart Water Prediction

system that takes as input historical water consumption data and outputs fu-

ture water consumption predictions. Figure 4.3 shows the different components

of our system. SWaP comprises of a data pre-processing component, which pre-

processes the water consumption data and a prediction component consisting of

the proposed models that takes the pre-processed data to generate the desired

predictions. We design two models, a discriminative PG model and a DL model

for the prediction component in SWaP. Specifically, we design i) sparse Gaussian

Conditional Random Fields (GCRFs) and ii) Long Short Term Memory (LSTM)

based deep Recurrent Neural Network (RNN) models to successfully encode de-

pendencies in the water consumption data. At time T , both models accept an

input sequence X = [xT , xT−1, ...., xT−n], which corresponds to amount of water

consumed in the last n time steps and generate predictions Y = [ŷT+1, ŷT+2, ....,

ŷT+k] for the next k time steps. We note that the input and output sequences can

be of different lengths.
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4.3.1 Why Sequence-to-Sequence Models?

Traditional model-based and statistical approaches (e.g., ARIMA models, fil-

tering techniques) provide valuable insights into data, and are highly desirable

when limited computational resources and data are available to make decisions.

The increase in computational power, the availability of large amounts of data, and

growth in the field of machine learning presents the opportunity to design data-

driven techniques capable of providing superior prediction performance in real-

world settings. This provides us the opportunity to explore sequence-to-sequence

models that are well suited for time-series data problems requiring mapping input

sequences to output sequences. Sequence-to-sequence models possess the ability

to predict an entire sequence of data points based on past data, thus being able

to predict further into the future. To this end, we identify sequence-to-sequence

probabilistic graphical (i.e., sparse GCRFs) and deep learning models that have

been extensively used for a number of forecasting and prediction tasks [4], [39].

Both GCRF and deep models elegantly learn and capture non-linear dependencies

as the encoded signal passes through the network, thus having a positive impact

on prediction.

  

Raw
data

Preprocessing
LSTM

GCRF

Preprocessed 
Files

(buildings)

Prediction building 1

Prediction building N
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Figure 4.3: System Architecture

4.3.2 Sparse GCRF Model

In any machine learning model, a careful tradeoff between model complexity

and prediction performance needs to be made to avoid overfitting and achieve

good prediction performance. Hence, it is important to capture the dependencies

that are important to the prediction, specially the ones in a structured output.

As mentioned in 2.2.1, the discriminative approach of Conditional Random Fields

are a perfect fit for this kind of prediction. Moreover, the regression version of

CRF, GCRF, allows us to model the multi-step water consumption in the future,

given previous water consumption. In our problem, we leverage a recent version

32



of CRF extended to structured regression, sparse Gaussian Conditional Random

Fields (SGCRF) [41], for predicting future consumption.

The GCRF distribution is given by

P (Y |X; Λ,Θ) = (1/Z(X)) ∗ exp(−Y ′ΛY − 2X ′ΘY ) (4.1)

where, X = [x1, x2, ..., xn] represents historical hourly consumption, n is the num-

ber of hours in the past, Y = [ŷn+1, ŷn+2, ...., ŷn+k] represents predicted hourly

consumption, and k indicates the number of hours in the future. We need to esti-

mate Θ and Λ that are parameters/regression coefficients of the GCRF model. As

also explained in [40], [41], Θ is an nxm matrix, containing the edges between X

and Y and Λ is the mxm inverse covariance matrix, containing the edges amongst

the y’s. The CRF is a Gaussian distribution with mean −Λ−1Θ′X and variance

Λ−1, N (−Λ−1Θ′X,Λ−1). Z(X) in Equation 4.1 is the partition function, which

ensures that the posterior is integrated to 1.

At training time, we estimate the parameters Θ and Λ by maximizing the

probability of the data given the parameters using maximum likelihood,

max
(Λ,Θ)

P (Y |X; Λ,Θ)

This is equivalent to minimizing the log-likelihood,

min
(Λ,Θ)
−log(P (Y |X; Λ,Θ))

Regularization is a way to avoid overfitting by penalizing high-valued regres-

sion coefficients and helps in making models generalize better at test time. L1 and

L2 are two popularly used regularization norms that add a penalty term corre-

sponding to the absolute value of the magnitude of the coefficients and square of

the magnitude of the coefficients, respectively. The total number of parameters in

this problem for n historical time steps given by X and predicting k future time

steps for Y is nk + k(k+1)
2

, where nk edges are given by Θ, and k(k+1)
2

by Λ. Even

for k = 12 ( as is the case in our setting), it is possible that the model can overfit

due to the large number of parameters.

To retain only meaningful dependencies, this sparse variant of GCRFs incorpo-

rates L1 regularization. L1 regularization reduces the parameter values of depen-

dencies that do not contribute to the prediction to zero, thus creating sparsity in

the graphical model structure. As part of L1 regularization, a penalty term equal

to the absolute value of the magnitude of the coefficients is added to the GCRF

objective to penalize high-valued regression coefficients and avoid overfitting due

to large number of parameters. L1 is more preferred than L2 here as it drives
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less contributing parameter values to zero, thus completely removing their effect

on the prediction. Thus, L1 learns a model that is appropriately complex for the

prediction problem.

We use the optimization method developed by Wytock et al. [41] to solve the

GCRF with the L1 regularization term. They develop a second-order active set

method that iteratively produces a second-order approximation to the objective

function without the L1 regularization term, and then solve the L1 regularized

objective function using alternating Newton coordinate descent. For additional

details, we refer the reader to [41]. Figure 4.4 gives the structure of the GCRF

ŷn+1% ŷn+2% ŷn+k%

x1% x2% x3% xn%

…"

…"

Figure 4.4: GCRF water consumption prediction model showing connections be-
tween historical consumption, x1,...,xn and yn+1, ...,yn+k, and among yn+1, ...,yn+k.
Note that our model is sparse, learning only edges between variables that matter.
In the graphical model, we illustrate this by leaving out some edges.

model. We can see that there are edges showing the dependencies between the

inputs X and outputs Y . Also note that some edges in the graphical model have

been left out to illustrate sparsity in the learned model.

Implementation Details

The GCRF training and test setup is given in Figure 4.5. We implement

our models using SGCRFPy, a Python toolkit for sparse GCRFs1. We split

the datasets into two parts—the first part consisting of 75% of the data is used

for training and the remaining 25% is used for testing. At training time, our

GCRF models use past n hours as input and next k hours as output. As water

consumption patterns typically are likely to follow a 24-hour cycle, we use n = 24

and k = 12 in our experiments. The parameter Λ is initialized to the identity

matrix and Θ is initialized to all zeros. We use regularization constant λ = 0.1

and train the model for 10, 000 iterations to converge on a set of dependencies

learned from the training data. For each building, we train a separate GCRF

model.

1Sparse GCRF implementation: https://github.com/dswah/sgcrfpy.
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The parameter values Λ and Θ learned at training time are plugged into each

test sequence of length n to generate a prediction for the next k hours. To com-

pute the prediction performance scores, the predicted values Ŷ are compared with

the ground truth water consumption values Y . For a particular configuration of

parameter values, the training time for GCRF is less than 5 minutes on a stan-

dalone lab machine. The RAM requirement for training is also low. The testing

phase only takes a couple of minutes.

  

Buildings

BN

BR

SN

75%
training

25%
testing

GCRF
Model
Test

GCRF
Model

Predictions

Estimate 
Parameter

. . .

Regularization

Figure 4.5: GCRF Training and Test Setup

4.3.3 RNN Encoder-Decoder Model

We develop an LSTM-based RNN encoder-decoder sequence-to-sequence model

as as explained in 2.2. The architecture of both the encoder and decoder is an

RNN. The basic cell in both the encoder and the decoder is an LSTM. The encoder

accepts an input sequence and generates a hidden encoded vector c encapsulating

the information for the input sequence. This encoded vector is given as an input

to the decoder, which then generates the predictions. The input X is transformed

into the output Ŷ using the hidden layers and the weight matrices. The weight

matrices essentially capture the information needed to generate the output pre-

dictions based on the input data. The LSTM cell used in our model consists of

a number of interconnected gated units. The three gates in an LSTM cell are

namely, the input gate, the output gate, and the forget gate that lets it handle

long-term dependencies. To prevent prediction of negative water consumption

values, a ReLU activation function is used after each decoder output.
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Implementation Details

We use TensorFlow2 for implementing the deep learning models. As mentioned

in Section 4.3.2, we similarly split the datasets into two parts—the first part

consisting of 75% of the data is used for training and the remaining 25% is used

for testing. Similar to the GCRF models, we use water consumption of past

24 hours (i.e., n = 24) and predict 12 hours into the future (i.e., k = 12). These

settings ensure that the results from both these models are directly comparable. As

deep models are computationally expensive, we train our models on a shared high

performance computing cluster available at our university. Using this cluster, we

are able to execute 10 to 15 experiments in parallel. Each experiment is allocated 4

cores and 10 GB of RAM. For the datasets considered in this work, for a particular

configuration of parameters, training the deep models (i.e., a single experiment)

can take in the order of 1 - 12 hours, which is typical of deep learning models.

We experiment with different number of stacked layers, different numbers of

hidden units in each layer as well as the lengths of the input and output sequences.

We observe that depending on the dataset, different parameter configurations pro-

vide the best performance. However, we empirically observe that overall 1 stacked

layer with 200 hidden units generalizes better across all the buildings. We use a

learning rate of 0.01 and train the model for 1000 epochs. At training time, the

encoder and decoder are trained jointly using the backpropagation algorithm. We

use unguided training as the training scheme, where the decoder uses previous

predicted output value as an input to the next step of the decoder. Unguided

training enables the model to better explore the state space, which usually re-

sults in superior prediction performance at test time. Additionally, to minimize

overfitting, we incorporate L2 regularization in the models.

In comparison to training, the testing phase of a model takes only a couple

of minutes for each experiment. The learned weight values for the different con-

nections in the neural network are used to generate a prediction for the test data

instances.

4.4 Performance Evaluation

We compare the performance of GCRF and deep learning models with two

baselines—linear regression and Auto-Regressive Integrated Moving Average (ARIMA)

models. The code for our models, the pre-processed data, and the experiments is

available in [63].

Linear Regression: It is a simple statistical model that fits the best straight

line based on the input data.

2https://www.tensorflow.org/
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ARIMA(p, d, q): It is a statistical model that has three components — AR

(autoregressive term), I (differencing term) and MA (moving average term), which

are specified by p, d and q respectively. p represents the past values used for pre-

dicting the future values, d represents the degree of differencing (i.e., the number

of times the differencing operation is performed to make a series stationary), and

q represents the number of error terms used to predict the future values. At any

time T , the equation of ARIMA used for prediction is given by,

(1−
p∑
i=1

φiL
i)(1− L)dxT = (1−

q∑
i=1

θiL
i)eT (4.2)

where xT corresponds to the water consumption values, φi and θi are the

auto-regressive and moving average parameters, eT are the error terms and L is

the lag term. The error terms eT are assumed to be independently and identically

distributed according to normal distribution. In our experiments, we use the Auto-

ARIMA toolkit3 in python that searches through a combination of the parameters

p, d, and q, and picks the optimal combination for the data in consideration. As

both linear regression and ARIMA are statistical baselines, they do not require

any explicit training. They use water consumption for the past 24 hours to predict

12 hours into the future.

We use root mean squared error (RMSE) and mean absolute error (MAE) as

the main evaluation metrics, which are given by Equations 4.3 and 4.4 respectively.

RMSEj =

√∑h
i=1 (ŷij − yij)2

h
(4.3)

MAEj =

∑h
i=1 |ŷij − yij|

h
(4.4)

where yij is the ith test sample for jth hour, ŷij is the predicted value of yij,

and h is the total number of test samples.

4.4.1 RMSE

In this subsection, we discuss RMSE results for all models. Figure 4.6 shows

the performance of the models for one building in each category. From Figure 4.6,

we observe that GCRF and LSTM outperform the baselines significantly. We also

observe that RMSE values for linear regression and ARIMA increase considerably

with each predicted hour into the future. In comparison, the RMSE values increase

gradually for the GCRF and LSTM models, which demonstrates that our models

are able to predict considerably better into the future. We attribute this to the

3https://pypi.org/project/pyramid-arima/
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Table 4.2: RMSE

(a) Hour 1

Building GCRF LSTM ARIMA LR
BN 130.69 140.08 175.71 314.12
BR 68.62 65.44 92.6 166.06
C4 101.64 99.56 123.83 233.66
DE 151.17 169.45 192.74 330.34
DG 141.86 168.11 200.16 330.06
EB 59.16 58.64 63 89.36
FA 48.48 57.91 63.27 85.49
GE 119.88 128.27 140.88 184.78
JS 127.04 173.75 183.13 361.19
LH 80.55 83.2 109.29 180.39
RA 161.22 178.15 230.01 400.57
S2 18.78 22.19 24.12 32.88
S3 196.37 259.56 269.45 400
SN 112.79 116.23 119.68 125.89

(b) Average

Building GCRF LSTM ARIMA LR
BN 151.2 154.95 345.31 406.11
BR 88.28 84.89 171.29 206.36
C4 148.26 164.81 256.28 316.19
DE 184.95 201.96 364.89 418.18
DG 168.83 190.53 329.99 398.63
EB 70.5 75.46 103.09 114.35
FA 58.17 81.93 107.35 111.26
GE 138.81 145.61 195.25 237.16
JS 162.15 190.96 380.72 461.5
LH 116.77 122.53 249.26 242.29
RA 188.31 203.88 412.93 488.15
S2 23.26 26.01 40.23 44.11
S3 238.64 313.26 516.58 536.86
SN 124.43 134.13 144.42 155.8
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Table 4.3: MAE

(a) Hour 1

Building GCRF LSTM ARIMA LR
BN 98.51 105.04 138.36 254.13
BR 52.5 49.44 73.14 132.17
C4 68.52 67.05 82.81 185.04
DE 105.55 121.29 147.45 266.17
DG 108.11 122.9 158.01 262.01
EB 26.48 30.02 33.07 58.62
FA 28.08 36.51 38.51 64.97
GE 77.25 94.86 97.35 144.4
JS 98.73 134.3 146.78 291.42
LH 51.54 52.84 65.61 129.14
RA 124.78 132.38 179.4 316.81
S2 13.54 16.32 17.18 25.11
S3 134.77 165.3 179.33 295.57
SN 66.02 70.38 77.5 87.94

(b) Average

Building GCRF LSTM ARIMA LR
BN 112.94 115.82 257.6 341.42
BR 65.84 63.82 132.02 169.25
C4 101.38 111.46 181.42 259.52
DE 133.9 147.14 266.29 345.39
DG 129.51 145.06 259.23 327.47
EB 37.09 41.76 63.51 81.45
FA 36.21 51.58 71.64 89.36
GE 93.48 99.01 147.34 194.71
JS 125.53 149.52 291.68 383.13
LH 74.62 77.7 150.07 178.77
RA 149.31 153.18 304.59 401.4
S2 16.87 18.94 28.13 34.16
S3 161.37 203.31 325.96 414.75
SN 80.42 89.05 100.92 115.11
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Figure 4.6: Average RMSE of 4 buildings through 12 predicted time-steps
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Figure 4.7: Average MAE of 4 buildings through 12 predicted time-steps

sequence-to-sequence modeling aspect of these models.

Table 4.2 shows RMSE results for hour 1 and the average over the 12 predicted

hours for all buildings. We observe from the table that for all the buildings, GCRF

and LSTM outperform the baselines. The overall performance improvement of

GCRF over ARIMA and linear regression is in the range of 14% to 65%, while

the gains of LSTM over ARIMA and linear regression is in the range of 7% to
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62%. We also see that for most buildings GCRF performs better than LSTM.

We believe that the sparse nature of the L1-regularized GCRF model helps in

learning the dependencies that positively affect the prediction performance, while

excluding those that do not matter. This helps in yielding a model that is better

suited to the data.

4.4.2 MAE

In this subsection, we discuss the MAE results for all models. Figure 4.7 shows

the performance of the models for one building in each category. In comparison,

Table 4.3 shows the 1 hour and the average (taken over predictions for the next 12

hours) MAE results. We observe that the GCRF and LSTM models outperform

the baselines for all buildings with respect to MAE. The performance improvement

of GCRF over ARIMA and linear regression is in the range of 20% to 67%, while

improvement of LSTM over ARIMA and linear regression is in the range of 12% to

66% with respect to the average MAE. Once again, we see that for most buildings

GCRF achieves a better performance than LSTM. The performance improvement

of GCRF over LSTM is approximately 10%.

4.4.3 Qualitative Results

In this subsection, we compare the qualitative prediction performance of the

GCRF and LSTM models with the baselines to help the reader appreciate the

superior performance of our models. Figures 4.8a and 4.8b show the 1 hour and

12 hour predictions for GCRF and linear regression, while Figures 4.9a and 4.9b

show the 1 hour and 12 hour predictions for LSTM and ARIMA for residence hall

RA. For the 1 hour prediction, we observe that as linear regression tends to closely

follow the actual values in the previous time step, it provides poor prediction

performance as the recent past may not mirror the future. In comparison, GCRF

generates smoothened predictions as it is trained on entire input sequences and

thus provides superior performance. Additionally, we observe from Figure 4.8b

that the 12 hour prediction for linear regression is notably worse than its 1 hour

prediction. In comparison, as GCRF takes entire sequences into account and

captures the underlying variations in the data, its 12 hour prediction performance

does not deteriorate significantly. Similar to GCRF, as LSTM is also a sequence-to-

sequence model and elegantly capture the dependencies in the data, its prediction

performance does not decrease with larger time steps (Figures 4.9a and 4.9b).
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Figure 4.8: Qualitative Results: GCRF vs Linear Regression

4.4.4 Adding Temporal Features

In the experimental results reported so far, we have only used the previous

water consumption data to predict future water consumption. In this subsection,

we investigate the performance improvement of augmenting our GCRF and LSTM

models with temporal features. To this end, we add two features— i) day of the

week and ii) hour of the day in our model. Day of the week takes values from 1

to 7, where 1 denotes Sunday. Hour of the day take values from 1 to 24, where

1 denotes the time period from 12 am to 1 am. Table 4.4 shows the average

performance improvement over 12 predictions obtained by our augmented models

over their respective baseline GCRF and LSTM models. We observe from the table

that including the temporal features improves performance for most buildings for

both GCRF and LSTM. The average performance improvement for GCRF and

LSTM are 8.42% and 10.31%, respectively. The highest improvement is observed

in academic buildings where the performance is enhanced by around 15% for

building S3 in GCRF and 24% for building LH in LSTM.
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Table 4.4: Percentage improvement after adding features

Building GCRF LSTM
BN 6.68% 10.49%
BR 8.36% 10.54%
C4 5.01% -
DE 7.66% 6.67%
DG 7.6% 15.6%
JS 8.34% 7.51%
LH - 24.34%
RA 6.43% 5.92%
S2 11.13% 6.57%
S3 14.58% 5.21%

Table 4.5: RMSE Varying Sequence Length

Building GCRF LSTM
12 18 24 12 18 24

BN 252.71 175.74 151.2 176.83 165.27 154.95
BR 134.87 101.33 88.28 95.81 80.69 84.89
C4 184.67 151.78 148.26 173.33 158.43 164.81
DE 272.67 208.73 184.95 220.61 217.21 201.96
DG 264.93 198.56 168.83 221.84 189.84 190.53
EB 79.56 72.18 70.5 80.91 80.37 75.46
FA 71.76 60.57 58.17 90.91 87.39 81.93
GE 163.67 142.03 138.81 226.45 148.29 145.61
JS 283.89 194 162.15 244.38 187.51 190.96
LH 135.44 118.01 116.77 126.84 138.97 122.53
RA 312.18 225.17 188.31 259.07 204.04 203.88
S2 28.77 24.11 23.26 31.65 28 26.01
S3 316.76 247.7 238.64 330.36 326.43 313.26
SN 130.51 125.12 124.43 135.75 133.03 134.13
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Figure 4.9: Qualitative Results: LSTM vs ARIMA

4.4.5 Varying Sequence Length

In this subsection, we discuss the impact of varying sequence length and the

rationale behind choosing 24 time steps as the input sequence length. Table 4.5

shows the average RMSE results for input sequence lengths 12, 18 and 24. We

observe that for both models RMSE values are the worst for all buildings when the

sequence length is 12. We also see that for most buildings having sequence length

of 24 provides better performance than sequence length of 18. This is because

a sequence length of 24 captures water consumption behavior for all hours of

the day. Having sequence lengths greater than 24 does not significantly improve

performance as longer sequences only reinforce previously learnt structure in the

data.

4.4.6 Discussion on SWaP’s practicality

The above experiments demonstrate that the GCRF-based SWaP overall out-

performs the LSTM-based SWaP. Therefore, we recommend using the GCRF-

based SWaP due to its superior prediction performance. Employing the GCRF-
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based SWaP also provides the system with greater interpretability as GCRF is a

probabilistic graphical model and it is easy to understand and appreciate which

inputs/past outputs are instrumental in arriving at the predictions. These in-

sights can help in understanding the inherent patterns in the data and explain the

predictions, when necessary.

Additionally, in comparison to DL models, GCRF models require significantly

less time (around 5 minutes when compared to few hours for deep learning mod-

els) and limited computational resources to train. This further means that in a

deployed system, as new data becomes available, it is relative easy to re-train the

model. Also, we observe that both the models perform well during test time on

> 30 days of consecutive data without the need for re-training. Thus, it is only

required to re-train both the models at comparatively infrequent intervals, aiding

in practical deployment.

Another attractive aspect of SWaP is its low data and computational power

requirement at test time. A well-trained SWaP system only requires 24 prior data

points at test time to make strong predictions. Moreover, both GCRF and deep

models are highly computationally efficient at test time, which means that it can

generate the predictions quickly, a desired attribute in a practical system. These

characteristics of SWaP, in particular the GCRF-based one, make it a useful

system for managing water consumption. These qualities also make the system

potentially extensible to other water management scenarios.

4.5 Conclusion

In this chapter, we investigated the hourly water consumption prediction prob-

lem using data collected from multiple buildings in a university campus. We de-

signed SWaP, a Smart Water Prediction system to accurately predict future

hourly water consumption based on historical data. To enable SWaP make good

predictions, we designed discriminative probabilistic graphical and deep learning

models, in particular sparse GCRF and LSTM based deep models that successfully

capture dependencies in the water consumption data. Our experimental evaluation

shows that SWaP achieves superior prediction performance for all buildings, when

compared to linear regression and ARIMA baselines in terms of RMSE and MAE.

Additionally, we observed that a GCRF-based model provides better performance

than an LSTM based deep learning model. Therefore, we recommend adopting

the computationally efficient and interpretable GCRF-based SWaP, which makes

our model practically attractive.
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5 Resolution Time Prediction of Emergency

Events

A number of emergency incidents (e.g. fire, building collapse, etc.) are reported

on a regular basis in cities around the world. It is important that city officials

are able to allocate sufficient resources to ensure public safety, smooth functioning

of cities and address such incidents in a timely manner. To engage the public in

coordinating these emergency response services smoothly, governments and city

officials have made such data openly available to everyone. By adopting a data-

driven approach, cities can efficiently allocate resources, plan prudently, and thus

minimize the loss to human life and property and improve resolution time.

One of the major challenges in this regard is estimating the resolution time for

emergency events in the future. While emergencies are unpredictable by nature

and often happen unexpectedly, it is possible to leverage past resolution time data

to predict the resolution time of future events. This is because the nature of the

event (e.g., fire), the extent of damage, and the number of personnel and equipment

available on site are keys factors that dictate the total time needed to address the

issue. For example, if multiple emergencies occur in a colocated manner, then it

is likely that the time needed to address each of these issues will be higher than

usual because of the division of resources. Therefore, if a data-driven analysis

suggests that resolution time for future events will be higher than a desired value

for a particular incident type, then this analysis can provide insights into budget

spending, personnel hiring, and resource allocation.

Hence, we design DeepER, a deep learning based emergency resolution time

prediction system that predicts the future resolution time of incidents based on

historical data. We consider three important emergency incident types, namely,

Fire, Law and Structural. We model emergency resolution time prediction as a

time series prediction problem. At the core of DeepER there is a sequence-to-

sequence encoder-decoder neural network architecture. Both the encoder and the

decoder in DeepER are Recurrent Neural Networks (RNNs) and the basic cell is

an LSTM cell. The encoder receives the previous resolution times as input and

encodes them into a hidden context vector. This hidden vector is given as an input

to the decoder, which generates future resolution times.

To evaluate the performance of DeepER, we perform extensive experiments on
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the publicly available NYC Emergency Response Incidents dataset [64]. We use

the data for a period of approximately eight years for the three incident types. This

dataset is challenging from the perspective of time series analysis and prediction

because emergency events by nature occur at random times (i.e., lack periodicity),

have limited correlation to each other and may not follow seasonal trends. Because

of this reason, we design DeepER as a sequence-to-sequence model so that it can

unearth the dependencies among the data points in the sequence even though the

time period between two consecutive events in the sequence is varying. DeepER

leverages these hidden patterns in data to make superior predictions.

We compare the performance of DeepER with two widely used baselines—

Linear Regression and Auto Regressive Integrated Moving Average (ARIMA).

We use two metrics to evaluate the models— Root Mean Squared Error (RMSE)

and Mean Absolute Error (MAE). DeepER achieves an average performance im-

provement of 3% and 16% with respect to RMSE and 10% and 27% with respect to

MAE over ARIMA and Linear Regression, respectively. Our results demonstrate

that DeepER is a practically viable system that provides superior prediction per-

formance and can be used to aid city planning and management. We conclude the

chapter with a discussion of some of the insights we obtain while conducting this

investigation.

The rest of the chapter is organized as follows. In section 5.1, we present related

work. We present the dataset and discuss the problem investigated in section 5.2.

We then describe the DeepER system in section 5.3 and the implementation details

in section 5.4. We present experimental results in section 5.5 and discuss some of

our insights from this work in Section 5.6.

5.1 Related Work

With the growth and development of smart cities and cyber-physical systems,

a variety of machine learning approaches have been adopted to address different

problems in these domains [65]–[70]. In this section, we first present work related

to assisting the operations of emergency and non-emergency services and then

discuss prior research related to smart cities.

In the recent years, a number of research papers have adopted data-driven

approaches to aid the functioning of emergency and non-emergency services in

cities. For example, DeFazio et al. use Gaussian Conditional Random Fields

(GCRFs) to predict response times of non-emergency 311 calls in NYC [40]. The

authors in [71] adopt a rolling forecast model to predict the number of emergency

calls based on the number of 911 calls in NYC. Similarly, the authors analyze

NYC non-emergency call requests and present a Random Forest model to predict
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Figure 5.1: Trends in datasets

the number of requests [72].

In [73], authors analyze the intra-region temporal correlation and the inter-

region spatial correlation of data collected from NYC and build a framework to

predict the number of crimes for certain regions. Similarly, the authors propose a
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Figure 5.2: Incident Types

neural network based continuous conditional random field model for fine-grained

crime prediction in Chicago and NYC [74]. The potential of DL models for a

variety of time series prediction tasks has also been explored recently. For example,

deep learning models have been adopted for emergency event prediction in [75].

Similarly, the authors use LSTM based deep models for gas consumption and

occupancy detection using WiFi beacons in [76] and [77], respectively. Recurrent

Neural Network (RNN) based encoder-decoder models similar to the one designed

in this chapter have also been used for prediction problems in a variety of different

domains. For example, such models have been used for water consumption, gym

center occupancy, wireless channel quality and air pollution prediction SWaP,

[78]–[80].

In contrast to existing work, we design DeepER, a deep learning model to

predict the resolution time of emergency services and validate the efficacy of the

model using the emergency incidents response data from NYC collected over a

period of approximately eight years.

5.2 Data

We use the emergency response incidents data from NYC Open Data provided

by the Office of Emergency Management [64]. We use around 8 years of data

starting May 2011 to December 2019. The dataset consists of 13 incident types

with 7 attributes each. We use three attributes from the dataset — Incident

type, Creation date, and Close date. In this study, we focus on three of the

most important and frequent emergency types — Fire, Law, and Structural. We

calculate the resolution time for each incident by subtracting the creation date

from the close date and converting it to minutes. Figure 5.1 shows the resolution

times for these incidents. We observe that the time required to resolve events

related to Law is the least followed by Fire and Structural, respectively. We also

observe from Figure 5.1 that there is significant variation in resolution time for

events belonging to the same incident type.
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Additionally, we observe from the data that each of these three incident types

have multiple subtypes, which we extract from the type description. Fire, Law, and

Structural have 52, 29, and 73 subtypes, respectively. Figure 5.2 shows the incident

subtypes that contribute the most events for each of the most general incident

types. We observe that 2nd alarm, Suspicious Package (denoted as Package), and

Collapse are the subtypes that account for the highest number of events in Fire,

Law, and Structural, respectively.

5.2.1 Preprocessing

As is the case with most data-driven solutions to real-world problems, the first

step involves pre-processing the data to identify missing values and outliers. We

observe that the dataset contains non-trivial number of missing values for events.

A missing value is encountered when an event does not have a valid close date.

In the entire dataset, we observe that Fire, Law, and Structural have 32%, 12%,

and 23% missing values, respectively. For each incident type, we replace these

missing points by sampling from the actual distribution of the remaining points.

To determine the actual distribution for each incident type, we fit the data to more

than 80 different distributions. We perform the Kolmogorov-Smirnov goodness of

fit test (KS test) and use the p-value of the KS test to pick the best distribution

for the dataset under consideration.

We also observe that the dataset contains some outliers—values that are signifi-

cantly different from the rest of the data points. By studying the values, we believe

that such values might be the result of manually closing some unfinished entries

at a later date. For example, we observe some extreme outliers in the dataset

(greater than 100,000 minutes). We identify outliers as those points whose reso-

lution time is greater than the quantile 90 of that incident type. For Fire, Law,

and Structural, we observe that there are 7%, 9%, and 8% outliers, respectively.

Figure 5.3 shows the distribution of the three different incident types before and

after preprocessing. We observe from the figure that the raw dataset has a large

number of outliers. We once again replace these outliers by sampling from the

distribution of the valid data points. In comparison to Figure 5.3a, we observe

that Figure 5.3b presents a significantly refined distribution.

We observe some other interesting issues in the dataset. We observe that for

Fire and Structural most of outliers are located in the first few years of the dataset.

In comparison, most of the missing points are located during the last few years.

Additionally, for Fire and Structural we observe larger resolution times during the

initial years than the last few years. However, the opposite is true for Law, where

the resolution times during the initial years is lower than the resolution times in

the later years.
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Figure 5.3: Datasets before and after preprocessing

5.3 Model

In this section, we first discuss the future resolution time prediction problem

studied in this chapter and then describe DeepER, a deep learning based system

that predicts future resolution time based on past data.

5.3.1 Problem Statement

Our aim is to design a system that accurately predicts future resolution times

of incidents from historical data. For this purpose, we cast the problem as a time

series prediction problem. We consider a sequence of n events with resolution

times X = x1 , x2 ..... xn, and predict the resolution time of the next k events Y=

y1, y2, ..... yk. What makes this problem challenging and different from classic

time series prediction problems is that though these events occur chronologically,

the actual time elapsed between two consecutive events varies. This is because

each event corresponds to an emergency (i.e., unplanned) and thus the time when

it occurs is completely random. Hence, in some cases one may have considerable

time between two consecutive events, whereas in other cases multiple events can

occur in a short duration of time. Therefore, our goal is to design a flexible model

that examines the resolution time of a sequence of prior events and predicts the

resolution time of future events and does not depend on the actual time frame in

which the events occurred.

5.3.2 DeepER System Details

In this subsection, we describe DeepER, a sequence-to-sequence based encoder-

decoder model that considers the resolution times of a sequence of prior events to

predict the resolution time of future events. Figure 5.4 provides an overview of

the DeepER system. DeepER consists of a data preprocessing block that splits
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the data by incident types and prepares the training, validation, and test datasets

(details in Section 5.4). The preprocessing block also replaces the outlier and

missing values according to the steps outlined in Section 5.2.1. The system then

presents the data sequences as input to the deep learning model that uses them

to generate the predictions.

Sequence-to-Sequence Models

Before delving into the system details, we discuss the appropriateness of sequence-

to-sequence models for the emergency resolution time prediction problem studied

here. In comparison to classic statistical regression models, sequence-to-sequence

models are better suited for this problem as they map entire input sequences to

output sequences and do not just focus on capturing simple trends in the data.

Additionally, as the points in the dataset are not equally spaced in time and the

events lack a seasonal and periodic behavioral pattern, we design deep learning

based sequence-to-sequence models because such models are capable of learning

the underlying dependencies and correlations in the data using an interconnected

neural network architecture during the training phase and are especially useful

when the dependencies are not apparent and cannot be easily defined. The trained

model leverages this knowledge to make accurate predictions at test time by con-

sidering the current input sequence.

Encoder-decoder based RNN Model

DeepER consists of two components, an encoder and a decoder as explained

in Figure 2.2. Both the encoder and the decoder comprise of recurrent neural

networks (RNN). An RNN is a network of neural nodes that are arranged in

layers. Internally, the RNN has a hidden state ht that is updated at each time

step t using the input xt and the previous hidden state ht−1. At each time step t,

the hidden state of the RNN is given by,

ht = φ(ht−1, xt) (5.1)
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Sequence Length Learning Rate Units in Hidden Layer
10-3 0.01 10
10-3 0.001 50
10-3 0.0001 100
15-5 0.01 10
15-5 0.001 50
15-5 0.0001 100

Table 5.1: Hypararameter combinations for experiments

where, φ is any non-linear activation function and 1 ≤ t ≤ n.

5.4 Implementation Details

In this section, we discuss implementation details regarding training, valida-

tion, and testing as well as important design decisions (e.g., hyper-parameter

selection).

From our discussion in the Section 5.2.1, we observe that missing points and

outliers are not spread uniformly throughout the duration of the dataset. Addi-

tionally, the entire duration of the dataset is approximately nine years and there-

fore, we observe gradual changes in the average resolution times of events for the

same incident type. We attribute these variations to possible changes adopted

by the different emergency management agencies. These issues inherent to the

dataset necessitate some important design decisions. As the underlying charac-

teristics of the data change over time, if we adopt a simple approach and split the

data chronologically into training and test, then we will end up training solely on

the data for the initial few years and testing on the last few years. This is unlikely

to provide good performance because the distribution of the test data sequences

are different from the distribution of the training sequences. Hence, we adopt a

more careful approach where we ensure representation of data from each year in

training, validation, and test datasets.

To do so, we divide the entire dataset into eight periods: seven periods of

one year each and one period of approximately one and half year, approximately.

We split each of these years in training, validation, and test sets following the

usual percentages of 50%, 25%, and 25%, respectively. This ensures that the

training, validation, and test sets contains data from all the years. Additionally,

to remove any form of seasonal dependencies that may exist in the dataset, we

permute the split order of training, validation and test within each year. Such

permutation ensures that the training, validation, and test data contain samples

from all months of the year; in the absence of such reordering the training data
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will be confined to primarily the first few months, the validation confined to the

middle months, and test containing data from the last few months of each year.

In addition to helping in achieving good prediction performance across the entire

duration of the dataset across the years, this important pre-processing step also

makes our model more readily extensible to real-world deployment as the model

is trained on the different variations that may be present in the data.
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Figure 5.5: MAE Results for the 15-5 setting
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Figure 5.6: RMSE Results for the 15-5 setting

5.4.1 Training, Validation, and Testing

We use Pytorch to implement the deep learning model. We train our models on

a Linux machine with 8-core Intel i7 processor and 64 GB RAM. We use a sliding

window approach with a stride of 1 to transform the time series into instances of

sequences of length n and prediction of length k. We use unguided training as the

training methodology. In this approach, the previous predicted output is used by

the decoder as an input to the next step of the decoder during both training and

test. Unguided approach is likely to provide better results at test time because

it allows greater exploration of the state space during training. The loss function

used to guide the training is the mean squared error.

During the training phase, we experimented with various hyperparameters and

then finally decided upon 6 hyperparameter combinations that are best suited for

our dataset (Table 5.1). A sequence length of 10-3 in Table 5.1 means that the
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model takes 10 points are input and predicts 3 points into the future. For each

hyperparameter combination, we iterate over 100,000 epochs, saving the state

of the model after every 5000 iterations. We then select the particular model

combination that provides the best performance on the validation set.

For quantifying the best performance, we do not simply pick the model with

the lowest loss. Such an approach usually works well when the data has overall

less variation and exhibits seasonality. However, in our dataset, events occur at

random times and are of varying intensity (as each event is an emergency), thus

resulting in higher variation among the values. This makes our dataset challeng-

ing to predict, resulting in the model adopting a safe approach and predicting

values close to the mean value. Therefore, in addition to the loss function, we

also consider another heuristic, the magnitude of the standard deviation among

the predictions on the validation set, to select the best model. This approach

ensures that the trained model provides superior quantitative and qualitative per-

formance. Additionally, testing on a validation set and selecting from the myriad

of combinations ensures that we do not overfit the model to the training dataset.

5.5 Results

In this section, we compare the performance of DeepER with two baselines: i)

Linear Regression and ii) Auto-Regressive Integrated Moving Average (ARIMA).

Linear Regression is a statistical model that fits the best straight line to the

given data.

ARIMA is a statistical model that has three components — AR (autoregressive

term), I (differencing term), and MA (moving average term), specified by the

parameters p, d, and q, respectively. We use the pmdarima toolkit in python for

our experiments, which picks the optimal combination of the parameters for the

input data.

We use two well-known metrics for evaluation, Root Mean Squared Error

(RMSE) and Mean Absolute Error (MAE). Equations 5.2 and 5.3 show how they

are calculated, where yij is the ith test sample for jth time step, ŷij is the predicted

value of yij, and h is the total number of test samples.

RMSEj =

√∑h
i=1 (ŷij − yij)2

h
(5.2)

MAEj =

∑h
i=1 |ŷij − yij|

h
(5.3)
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5.5.1 RMSE and MAE

In this section, we discuss the RMSE and MAE results for all the models.

Table 5.2 shows the average RMSE and MAE results for sequence lengths 10-3

and 15-5, where the average performance is calculated over 3 and 5 time steps,

respectively. Recall that a sequence length 10-3 means that the model takes 10

events as input and predicts 3 events as output into the future. We see that

DeepER outperforms the baselines for all incident types on average for the 15-5

setting. For the 10-3 setting, DeepER outperforms both baselines for Fire and

Law. However, for Structural, it outperforms Linear but not ARIMA. Therefore,

from Table 5.2, we observe that DeepER provides overall better performance for

the 15-5 setting.

Incident Model 10-3 15-5
Type MAE RMSE MAE RMSE

Fire
Linear 786 1256 769 1204
Arima 660 1087 657 1071

DeepER 584 1069 564 1019

Law
Linear 186 381 226 407
Arima 133 323 159 338

DeepER 116 309 119 315

Structural
Linear 965 1504 900 1436
Arima 818 1299 806 1300

DeepER 839 1307 794 1296

Table 5.2: Average MAE and RMSE

Figures 5.5 and 5.6 shows the MAE and RMSE results for the three incident

types for the 15-5 sequence setting as it provides the best predicitons. We observe

that DeepER significantly outperforms the baselines with respect to both MAE

and RMSE. Interestingly, from the figures, we observe that DeepER is able to

better predict the resolution time of events further into the future. This is in

contrast to most time series prediction problems where the prediction performance

deteriorates as the model predicts further into the future. The primary reason

behind this behavior is that the data points in our dataset correspond to emergency

events and hence lack seasonality, strong correlation, and trends. DeepER is still

able to generate better predictions for our challenging problem than the baselines

because of its sequence-to-sequence behavior that maps entire input sequences to

output sequences and ability to glean complex underlying dependencies in the

data that are not apparent.
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5.6 Discussion

In the previous section, we demonstrated that DeepER provides superior pre-

diction performance than the baseline models. In this section, we discuss some

additional learnings from our exploration of this dataset.

5.6.1 Qualitative Results

We next discuss the qualitative prediction performance of DeepER as well as

the baselines. Figure 5.7 shows the 1-step prediction performance for DeepER,

ARIMA, and linear regression for Fire. From the figure, we observe that all

models struggle to predict the values accurately. From our experience of working

with similar models in the past SWaP, [78], [79], we have observed that sequence-

to-sequence models are generally able to make really superior predictions. This

does not appear to be the case always for this prediction task primarily because

of the challenging non-periodic and non-seasonal nature of the emergency events

dataset.

We observe from Figure 5.7 that the resolution times for some events is signifi-

cantly higher in comparison to majority of the points. Because of this pattern, any

prediction model will find it difficult to accurately predict such high peaks. But,

despite this challenging nature of the dataset, we observe that DeepER provides

a significantly smoothened prediction performance in comparison to the baselines

and accurately predicts the underlying pattern. If we overlook the peaks, we can

see that the prediction performance of DeepER for the remaining data points is

good.

In comparison, we observe that the next step predictions for both ARIMA and

Linear Regression closely mirror the actual resolution time of the previous time

step. This occurs because both these baselines only use the past trend to predict

the future. This is the root cause behind their poor performance because the

resolution time of the current request is significantly different from the previous

one.

5.6.2 Further Insights into Data Preprocessing

As mentioned in Section 5.2.1, we ensure that the training, validation, and

test data include sequences from all years of the dataset. While cross-validation

is commonly used to establish the significance of the results, we design this well-

crafted split of the dataset to render greater credibility to our results primarily

because of the fairly limited number of data points. Additionally, as noted earlier,

the dataset contains a non-trivial number of outliers and missing values. Table

5.3 shows the number and percentage of missing and outlier points in each of
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the training, validation and test sets if the data is split chronologically. This

uneven distribution of the outlier and missing values further necessitates a carefully

constructed split to ensure that training, validation, and test sets contain a more

uniform distribution of such points. We note that while the dataset is relatively

small in size, each event corresponds to an emergency and therefore, it is crucial

to use all available data points and generate superior predictions because such

predictions are critical to improving human safety.

Incident Type Training Validation Testing

Fire
Total 1529 764 764

Outliers 8% 6% 5%
Missing 14% 47% 53%

Law
Total 519 260 260

Outliers 8% 6% 13%
Missing 2% 17% 27%

Structural
Total 754 377 377

Outliers 8% 6% 13%
Missing 2% 17% 27%

Table 5.3: Statistics of Outliers and Missing values in a Chronological Split

5.6.3 Limitations of Enriching DeepER

We observe from Section 5.2 that each incident type consists of multiple sub-

types. We attempt to perform resolution time prediction at the subtype level,

but realize that because this is an emergency events dataset, the number of data

points is not sufficient for training, validation, and testing of deep learning models

for each subtype separately. We also use these subtypes as features in DeepER,

but observe that this enhanced model did not improve prediction performance.

We believe that dearth of data at the subtype level is the primary reason behind

it not contributing to DeepER’s prediction performance.
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5.6.4 Practicality of DeepER

With the increase in computational power over the last decade, deploying deep

learning based systems to solve real-world problems is becoming relatively easy.

As is the case with most deep learning models, DeepER requires some computa-

tional time for training. However, once trained, DeepER requires limited amount

of time to generate predictions, a desired attribute in a practical system. Ad-

ditionally, as more data becomes available, DeepER can be easily retrained thus

enabling it to adapt to changing situations. We anticipate DeepER to be retrained

at comparatively infrequent intervals (i.e., only when significant number of new

emergency events have been resolved).

5.7 Conclusion

In this chapter, we presented DeepER, a deep learning based emergency reso-

lution time prediction system that predicts future resolution times based on past

data. We performed experiments on the NYC Emergency Response Incidents data

provided by NYC Open Data. Missing values and outliers make the dataset chal-

lenging and thus necessitate effective preprocessing of the data before executing

our experiments. We compared the performance of DeepER with ARIMA and

Linear Regression using two metrics— Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE). DeepER achieved an average performance improve-

ment of 3% and 16% with respect to RMSE and 10% and 27% with respect to

MAE over ARIMA and Linear Regression, respectively. We also draw upon im-

portant learnings and insights from the data, which can be utilized for designing

deep learning models for data in the emergency response domain and other related

domains where the data can lack an overt predictable trend. As part of our future

work, we plan to extend this analysis to other cities so that it gives greater validity

to our results. We want to also engage with city officials so that DeepER can be

adopted to aid the planning and preparation of city emergency response systems.
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6 Joint disaggregation and prediction for

energy consumption

Designing machine learning models for smart energy consumption is an im-

portant research problem, having a tremendous impact on society. A crucial sub-

problem in facilitating smart energy consumption is being able to accurately disag-

gregate energy signals into their component appliance signals. This process is also

known as energy disaggregation/non-intrusive load monitoring (NILM). This ex-

ercise provides residents with an accurate view and understanding of their energy

consumption and can potentially help in reducing the peak energy consumption

and facilitating efficient usage and conservation of energy. Recent advances in

variational inference for deep learning have resulted in more expressive deep gen-

erative models such as variational autoencoders and variational recurrent neural

networks that possess the ability to encode continuous latent variables. These

latent variables provide the models with a powerful layer of abstraction that cap-

tures the variations in the input data and helps in generating the output data.

These models map the input sequence into continuous latent variables using an

inference network (referred to as an encoder), and then use the generative net-

work (referred to as a decoder) to reconstruct the input sequence by sampling

from the latent variables. Chung et al. [5] propose variational recurrent neu-

ral networks (VRNNs), which extend VAEs to model sequences by introducing

high-level latent variables in RNNs. Deep generative models such as VRNNs and

VAEs have achieved state-of-the-art performance in many sequence-to-sequence

language tasks such as machine translation, paraphrase generation, and textual

entailment, but have not been explored for the problem of energy disaggregation.

In this work, we present a novel deep generative architecture for disaggre-

gation that leverages and adapts VRNNs to jointly disaggregate the total energy

consumption into individual component appliance signals. Our proposed approach

learns the abstraction of the aggregated energy consumption over latent variables

at training time and then generates all the individual appliance signals jointly by

sampling from the latent variables at test time. Hence, at test time our model

only depends on the aggregated signal and the latent variable abstractions learned

during training and does not depend on contextual information and appliance data

from previous time steps, making it a meaningful model for energy disaggregation.
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Specifically, we make the following contributions:

1. We present a novel deep generative architecture for performing sequence-to-

many-sequence prediction (aggregated consumption to appliance consump-

tions) needed for energy disaggregation by leveraging and adapting varia-

tional recurrent neural networks (VRNNs). Our model generates continuous

power consumption signals as opposed to state-of-the-art approaches that

model consumption through discrete appliance states.

2. We model the structure among the different appliances in a household by

jointly predicting each of them at the same time from the aggregated signal.

We cast the different appliance energy signatures as a structured prediction

problem, modeling the structure among the different appliance energy con-

sumption signals over time, to effectively represent and reason about their

dependence.

3. Our model achieves a performance improvement of 29 % and 41 % for the

REDD and Dataport datasets, respectively, when compared to two recent

state-of-the-art energy disaggregation approaches that use extensive addi-

tional past temporal and contextual information [81], [82]. Further, our

model achieves a superior prediction performance on low power consum-

ing appliances, which are harder to predict and are often ignored by most

existing approaches.

4. Through qualitative analysis, we demonstrate that our models can achieve a

superior disaggregation for both high and low energy consumption states and

accurately discerns which appliance(s) contribute to the aggregated power

consumption, thus providing a more useful and meaningful disaggregation

model.

5. We demonstrate the extensibility of our model in predicting individual ap-

pliance consumption on previously unseen data by testing on a building that

is left out while training. We observe that our model achieves a superior pre-

diction performance on two buildings in REDD, thus making it potentially

extensible to new datasets.

6.1 Related Work

Hart et al. [83] was the first to introduce the problem of energy disaggre-

gation. Perhaps the most popular approach for energy disaggregation is using

factorial hidden Markov models (FHMMs) [84], which generalize HMMs by us-

ing a distributed representation and its variants [85]–[88]. Shaloudegi et al. [82]
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propose a scalable algorithm for this problem that extends FHMMs. Supervised

machine learning models such as Support Vector Machines (SVMs) and k-Nearest

Neighbors (k-NNs) and unsupervised models that use prior appliance models have

also been applied to this problem [89]–[92]. Some other models have relied on

other information apart from the aggregated consumption to model relationships

with user’s behavior and climate [81], [93], [94]. Tomkins et al. [81] propose a

structured probabilistic framework for energy disaggregation. Recent advances

in deep learning have spurred deep-learning based energy disaggregation models

[95]–[101].

In this work, we propose a deep latent generative model based on VRNNs that

combines the advantages of the modeling complexity of deep neural networks and

the rich representational power of latent variables in probabilistic models such as

FHMMs. Our model learns to predict all individual appliance signals jointly from

the aggregated signal. We compare our approach to two recent state-of-the-art ap-

proaches for energy disaggregation: a) ADMM-RR, a scalable variant of FHMMs

[82], and b) Tomkins et al.’s [81] joint probabilistic approach to energy disaggre-

gation, and show that our approach achieves superior prediction performance.

6.2 Deep Latent Generative Models for
Energy Disaggregation

In this section, we describe the energy disaggregation problem and the suitabil-

ity of VRNNs for the same. Then, we present our deep latent generative energy

disaggregation architecture.

6.2.1 Energy Disaggregation Problem

The problem of disaggregation is to calculate the energy consumption of indi-

vidual component appliances given the total aggregated power consumption. Let

x = (x1, x2, ..., xT ) be the aggregated energy consumption of a house over T time

steps, where xt ∈ R+. Let I be the number of appliances. The individual energy

consumption of appliance i is denoted by yi = (yi1, y
i
2, ..., y

i
T ), where yit ∈ R+. Con-

sequently the aggregated energy signal at a given time can also be expressed as

xt =
∑I

i=1 y
(i)
t . We use yt to denote the consumption time t for all the appliances:

yt = {y1
t , y

2
t , ..., y

I
t }. Our goal in this work is to develop a deep latent genera-

tive energy disaggregation framework that can learn to infer the continuous-valued

appliances’ consumption given the aggregated energy consumption.
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6.2.2 Variational Recurrent Neural Networks

Variational Recurrent Neural Networks (VRNNs) [5] are a recently developed

deep neural network architecture that introduce latent variables and temporal de-

pendencies between them in the different time steps in the RNN architecture. The

core of a VRNN is a VAE [19], [102]. VAEs and VRNNs are variants of autoen-

coders (AE) and recurrent neural networks (RNNs) that encode latent variables

and probabilistic transition functions. The principal difference between VAE and

VRNN is that VRNN models the dependencies between latent variables across

subsequent time steps, thus providing us with the ability to accurately abstract

highly non-linear dynamics in sequential data. Since the prior distribution at

timestep t is dependent on all the preceding inputs via the RNN hidden state

ht−1, the introduction of temporal structure in the prior distribution is expected

to improve the representational power of the model. We first discuss the suitabil-

ity of VRNNs for the energy disaggregation problem and then present our deep

generative architecture.

Why are VRNNs suitable for the energy disaggregation problem?

As Chung et al. [5] note, VRNNs are best suited for modeling highly variable

and highly structured (having a high signal-to-noise ratio) sequential data. Highly

variable data exhibits high sudden variations that vanilla RNNs do not accurately

represent. The deterministic nature of transition functions in RNNs limit their

capability in modeling variability in the outputs. The presence of latent variables

in VRNNs allows them to represent latent state spaces similar to models such

as hidden Markov models (HMMs) and Kalman filters in a deep neural network

architecture such as RNNs, thus achieving the combined benefits of both these

classes of models.

Energy consumption signals are highly structured, i.e., they have a high signal

to noise ratio; the variations in the data are due to signal itself rather than noise.

Thus, the presence of structured output functions in VRNNs along with their

ability to represent complex non-linear data make them ideal for modeling this

domain.

The structured output functions present in VRNNs aid the joint prediction

of disaggregated appliance signals from the aggregated consumption. Kelly et al.

(2015) use RNNs for the energy disaggregation problem, but their model does not

disaggregate all appliance signals at once. Instead, they train a separate model for

each appliance. Due to the lack of probabilistic transitions between latent variables

and structured output functions, this approach fails to capture the dependencies

between the different appliance signals and thus lacks the ability to accurately
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identify the contributing appliance signals in an aggregated signal.

In the energy disaggregation problem, usually power consumption is mapped

to discrete appliance states [81], [82]. This, however, ignores the fine-grained

variations in the signals. The deep structured construction of our model and

the presence of latent variable abstractions and probabilistic transitions between

them provide us with the ability to model the exact consumption of appliances as

continuous values and detect fine-grained variations in the signals. Since we do

not approximate signals into consumption states and model the exact continuous

values, our approach requires minimal pre-processing and is able to model these

minute variations.

6.2.3 VRNN-DIS-ALL: A Deep Generative Energy Disaggregation
Framework

We bring out the modeling power of VRNNs by adapting them to disaggregate

individual appliance signals jointly from the aggregated power consumption signal.

In the following sections, we present the generative process, inference, and learning

in our model, VRNN-DIS-ALL. We also highlight the adaptations to the original

VRNN for the energy disaggregation problem.

Generation

The VRNN contains a VAE in each time step but the prior on the latent

variable follows a distribution that is conditioned on the hidden state at time

t − 1, ht−1. We augment the prior distribution to include both ht−1 and the

aggregated consumption at time t, denoted by xt. Hence, the random variable zt

follows the distribution:

zt ∼ N(µ0,t, diag(σ2
0,t)) (6.1)

where, [µ0,t, σ0,t] denote the parameters of the distribution

φpriorτ (ht−1, xt). While for the generation task described in Chung et al. [5], the

prior distribution only depends on ht−1, we adapt it to include the aggregated

signal as we are interested in generating the disaggregated appliance signal from

the aggregated signal. Next, yt (disaggregated signal) is generated given zt and

ht−1 from the distribution:

yt|zt ∼ N(µy,t, diag(σ2
y,t)) (6.2)

where, [µy,t, σy,t] = φdecτ (φzτ (zt), ht−1). Chung et al. [5] note that φpriorτ and φdecτ

can be any highly flexible functions and are essential for learning complex depen-

dencies. In our models, φpriorτ and φdecτ are neural networks with one-hidden layer
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with standard activation functions. The hidden layer has a hyperbolic tangent

(tanh) and the output layers for µy,t and σy,t have linear and softplus activations,

respectively. The RNN hidden state calculation is given by

ht = f(φxτ (xt), φ
y
τ (yt), φ

z
τ (zt), ht−1) (6.3)

where, f is the transition function between hidden states. The feature extrac-

tors, φxτ , φ
y
τ (yt), and φzτ , can be any expressive function. We use a 1-hidden layer

neural network for the same. The learning problem is to learn the prior distri-

bution, φpriorτ (ht−1, xt), to be as close as possible to the approximate posterior

φencτ (φxτ (xt), φ
y
τ (yt), ht−1).

Inference

At training time, VRNN works as an encoder, learning the approximate pos-

terior as a function of xt, yt and ht−1.

zt|xt, yt ∼ N(µz,t, diag(σ2
z,t)) (6.4)

where, [µz,t, σz,t] denote the parameters of the distribution

φencτ (φxτ (xt), φ
y
τ (yt), ht−1). In addition to the feature extractors from xt and zt,

we also include φyτ (yt) that extracts the features of the disaggregated signal yt

at training time. Inference at training time is done by sampling zt from this

approximated posterior distribution. At test time, zt is sampled from the learned

prior distribution that is learned during training. This difference in the zt can be

appreciated in Figure 6.1 where we can see how the distribution φpriorτ replaces the

encoder distribution φencτ .

Learning

Learning is performed by minimizing the sum of two components: distance

between the posterior and the prior distribution and the log-likelihood of the out-

put. In the first term in Equation 6.5, we minimize the Kullback-Leibler divergence

distance (KL divergence) between the approximate posterior in Equation 6.4 (de-

noted by q in Equation 6.5) and the prior distribution (denoted by p in Equation

6.5), where zt depends only on aggregated signal (x ≤ t) and the latent variable

states at previous time steps (z < t). The second term captures the negative

log-likelihood of the output distribution from which we sample yt.

KL(q(zt|x ≤ t, y ≤ t, z < t)||p(zt|x < t, z < t)) + logp(yt|z ≤ t, x < t) (6.5)

65



Training

At training time, our goal is to learn an approximate function that is very

similar to the conditional distribution p(z|y) by minimizing the KL divergence be-

tween the prior distribution (φpriorτ ) and the approximate posterior or the encoder

distribution (φencτ ) (Figure 6.1a). We follow a curriculum learning strategy as pro-

posed by Bengio et al. [103] that involves gradually migrating during training

from considering the ground truth to the output predicted by the model in the

previous step in order to bridge the gap in inference between training and testing.

The scheduled sampling algorithm used by this learning strategy will decide at

training time whether to sample from the ground truth (yt) or from the predic-

tions generated by the model (ŷt). In our models, we use an inverse sigmoid decay.

It is defined as: pi = k/(k + exp(i/k)) where, pi is the sampling probability and

k >= 1 gives the speed of convergence. This probability is calculated at each time

step.

Testing

At test time, we only input the aggregated energy consumption information

xt. We no longer use the encoder distribution but the parameters of the learned

prior distribution to sample the latent variables zt, i.e., zt ∼ N(µ0,t, diag(σ2
0,t)).

Then, we calculate the parameters of the distribution of each appliance using

yit|zt ∼ N(µiy,t, diag(σiy,t
2
)), where [µiy,t, σ

i
y,t] is now calculated from the learned

prior distribution. We calculate the next recurrent hidden layer ht as a function of

feature extractor neural networks for xt, ŷt, and zt, and previous hidden state ht−1,

i.e., f(φxτ (xt), φ
z
τ (zt), φ

y
τ (ŷt), ht−1). Note that here we use the predicted ŷ instead

of the actual y (Figure 6.1b).

Implementation Details

We develop our model1 on the original VRNN implementation [5] in Theano.

Figure 6.2 captures the model architecture. It shows the different hidden layers,

number of nodes in the hidden layers, identifies the components corresponding to

the hidden layer, and captures the interactions between them for one iteration of

training from time t − 1 to t. The name of each component and the activation

function applied to nodes in that hidden layer is mentioned at the top and the

number of nodes is indicated in the bottom of each hidden layer. The architec-

ture shows the distribution from where zt will be sampled at training time (from

the encoder, marked in green) and at inference/test time (from the prior, marked

1https://bitbucket.org/gissemari/disaggregation-vrnn
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...

(a) VRNN-DIS-ALL at training

  

...

(b) VRNN-DIS-ALL at test

Figure 6.1: Graphical illustrations of VRNN-DIS-ALL training to reconstruct
disaggregated appliance signals from the aggregated and disaggregated signals and
as a generative model of disaggregated appliance signals from only the aggregated
signal at test time.

in red). The weight matrices of all layers are randomly initialized using a uni-

form distribution. The LSTM-cell diagonal matrix that captures the interaction

between the recurrent states ht−1 and ht is initialized randomly from a normal
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Figure 6.2: Architecture of the VRNN-DIS-ALL model. Solid lines represent fully
connected layers and dashed lines represent the sampling process.
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distribution ensuring its orthogonality. The initial hidden state of the recurrent

neural network is initialized to 0.

We experiment with different activation functions for θµ and find that ReLU

activation function for θµ works better for some buildings while for others the

linear activation function works better. For θσ and coef 1, we apply a softmax and

softplus activation functions, respectively. These parameters are calculated for

each appliance, so the final layer has as many Gaussian mixture models (GMMs)

as appliances.

6.3 Experimental Evaluation

We conduct experiments to answer the following questions:

1. How well do our deep generative models perform in energy disaggregation?

2. Are our models able to effectively identify which appliance(s) are contribut-

ing to the aggregated consumption?

Model Disaggregation
Representation

Temporal
Dependencies

Context /
Heuristics

admm-rr
(Shaloudegi et al. 2016)

Discrete states Encoded X

interval
(Tomkins et al. 2017)

Discrete states Encoded X

instance
(Tomkins et al. 2017)

Discrete states Encoded X

context
(Tomkins et al. 2017)

Discrete states Encoded X

vrnn-dis-all
(our approach)

Continuous Learned 7

Table 6.1: A comparison table between our model and the state-of-the-art energy
disaggregation approaches

In this section, we present results from our experimental evaluation to answer

the above-mentioned questions on two well-known real-world energy disaggrega-

tion datasets. We demonstrate the efficacy of our models by comparing them

with two recent state-of-the-art energy disaggregation approaches: a) ADMM-RR

[82], and b) Interval, Instance, and +Context models from Tomkins et al. [81].

Table 6.1 gives a comparison of our approach with the state-of-the-art energy dis-

aggregation models. Our approach uses a continuous value representation, does

not explicitly encode any domain-specific variables or capture any dependencies

among them, and does not require any additional contextual information (such as
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temperature of the day, day of the month/year, user-specific contextual informa-

tion). Our model automatically learns these dependencies from training data. In

our experiments, we demonstrate that our models outperform ADMM-RR across

most appliances in both the datasets and outperforms Tomkins et al.’s best model

on one dataset and achieves comparable performance on another despite using no

temporal, domain-related, or contextual information.

We present two metrics of evaluation for both the datasets: i) mean absolute

error (MAE), and ii) percentage of total energy estimated by each appliance com-

pared to percentage of total energy in the original data. The MAE is calculated

by computing the absolute value of the difference between the predicted disaggre-

gated appliance consumption (ŷt) and the actual consumption (yt). Percentage of

energy estimated is calculated by taking the ratio of predictions associated with

the appliance to original aggregated signal. This percentage is compared with the

actual percentage of energy consumption of the appliance in the aggregated en-

ergy consumption. We evaluate our percentage predictions in the following ways:

i) first, we compare the actual percentage numbers between our predictions and

the actual data, ii) second, we compute the percentage/range of error between the

predicted and the actual by taking the ratio of the difference in the percentages

with the actual percentage, and iii) third, we compare our deviation in percent-

ages (percentage of error) to the deviation in percentages reported for the same

building by Tomkins et al.

6.3.1 Datasets

We evaluate our model on two real-world energy datasets: i) Pecan Street

Inc. Dataset (DataPort) [104], and ii) Reference Energy Disaggregation Dataset

(REDD) [105]. These datasets have been used in several previous works [81], [82],

[92].

DataPort

The Pecan Street dataset (DataPort) consists of energy consumption read-

ings at 1-minute and 1-hour intervals. We evaluate on the finer-grained 1-minute

readings. As there are missing values, we work on the same subset of buildings

(2859, 3413, 6990, 7951, 8292) that Tomkins et al. [81] use in their work. We

consider data for the following appliances: air conditioner, furnace, refrigerator,

dishwasher, kitchen outlet, dryer, microwave, and clothes washer.
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REDD

The REDD dataset contains data for 10 houses from the greater Boston area

for approximately two months. We again consider the same five houses (houses 1,

2, 3, 4, and 6) that Tomkins et al. [81] and Makonin et al. [92] consider so that we

can make a fair comparison. We also consider the same four appliances for houses

1, 2, and 3: refrigerator, dishwasher, light, microwave. For house 6 we exclude

microwave as the data for that appliance is unavailable. We use the non-intrusive

load monitoring toolkit [106] to get a sampling rate of every 6 or 60 seconds.

6.3.2 Data Preprocessing

To preprocess the data for our model, we first determine the minimum activa-

tion threshold for each appliance in each dataset. Then, we use a non-overlapping

sliding window on the entire original time series data to construct sequences of

fixed length from them. From these sequences, we filter the ones where at least

one data point in the sequence is greater than the minimum threshold activation

for each appliance. We treat each sequence as one data instance. We split the

total number of instances into training, testing, and validation sets in the ratio

50%:25%:25%, respectively. We record the performance metrics in the validation

set every ten epochs to detect and prevent overfitting.

We construct batches of instances (which we refer to as mini-batch) and train

the model for many epochs for each mini-batch. This enables the model to see

a smaller number of instances for a longer training period, enabling it to model

the structural dependencies in the data. We use 5-30 mini-batches. We report the

average scores from three different train-test-validation splits across both datasets.

Note that our approach uses very minimal pre-processing and domain knowledge

when compared to the existing state-of-the-art approaches.

6.3.3 Energy Disaggregation Results on DataPort

Table 6.2 shows the MAE of each appliance in each building in DataPort

dataset. Our model is able to achieve low MAE for appliances that consume higher

energy in average such as clothes washer and air conditioner. The first one shows

a MAE of 1.5, 6, 8.5, and 2.5 in buildings 2859, 6990, 8292 and 3413, respectively

and the air conditioner obtains a MAE of 9.5 for building 2859. In addition to

that, appliances which consume less energy on average such as dishwasher, kitchen

appliance, and microwave show an average MAE of less or equal than 15.5 among

all buildings. It is interesting to note that Tomkins et al.’s prediction performance

of appliance states for appliances that consume lesser power on average and are

intermittent is lower as indicated by their lower values of precision, recall and F1
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Building
Appliance 2859 6990 7951 8292 3413 AVG/Appliance

Air 9.50 199.50 152.50 98.50 64.00 104.80
Furnace 40.50 110.50 59.00 56.50 32.50 59.80

Refrigerator 32.50 70.00 77.50 60.00 71.50 62.30
Clothes washer 1.50 6.00 24.00 8.50 2.50 8.50

Dryer 4.00 52.00 33.00 78.50 35.50 40.50
Dish washer 1.00 8.00 14.50 25.00 9.50 11.60
Kitchenapp 1.00 3.00 14.00 17.50 1.00 7.30
Microwave 10 .00 12.50 40.00 9.00 6.00 15.50

AVG/Building 12.50 57.69 51.81 44.13 27.81 38.79

Table 6.2: VRNN-DIS-ALL results on DataPort showing the MAE for each
appliance for the five buildings.

scores. Thus, our model is able to discern patterns of consumption in both kinds

of appliances and hence perform a more accurate disaggregation.

Figure 6.3a shows the comparison of average MAE value across the buildings

and appliances between our model VRNN-DIS-ALL and two existing state-of-

the-art approaches. Since we consider the same set of buildings and appliances,

we make a direct comparison to the results presented by Tomkins et al. [81].

We observe that our model achieves 29% performance improvement in MAE over

the +context model (Tomkins et al.’s best model) and 41% improvement over

ADMM-RR. It is important to note that our model achieves this performance

improvement without any contextual information. The deep nature of the model

and the presence of neural network feature extractors help in extracting complex

features and learning structural dependencies among them. This eliminates the

necessity to encode domain-specific information and their relationships as in exist-

ing probabilistic energy disaggregation approaches. Hence, our approach requires

less manual effort and can scale easily to new datasets without the need for careful

encoding of graphical structure among variables.

Figure 6.4 gives the percentage of total energy consumed by the appliance

as predicted by our model compared with the actual percentage of total energy

consumed by the appliance in the original data. We group the appliances into

air conditioner (air), furnace, refrigerator, dryer, and others, to enable an easy

comparison to Tomkins et al.’s percentage calculations. Comparing the predicted

percentage of total energy with the actual for air conditioner across all buildings,

we observe that our model predicts within 4% of the actual percentage of energy

consumed by the appliance for 4 out of 5 buildings. Similarly, for dryer, our

model’s predictions lie within 11% for 4 out of 5 buildings, and for furnace, our

model’s predictions lie within 6% for 3 out of 5 buildings. Comparing the percent-
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Figure 6.3: MAE comparing our proposed model VRNN-DIS-ALL with existing
state-of-the-art models (Interval, Instance, +Context, and ADMM-RR)

ages for building 3413 with the percentages reported by Tomkins et al., we observe

that our model’s percentage prediction for air conditioner deviates by only 3.6%

from the actual percentage, while theirs deviates by 7.3%. Similarly, comparing

the percentages for furnace we observe that ours deviates by 1.5% while theirs

deviates by 10%. For the rest of the appliances, our model achieves comparable

differences in percentages between the predicted and the actual values to their

model.

6.3.4 Energy Disaggregation Results on REDD

Figure 6.3b gives the comparison for average MAE of each appliance across

buildings between VRNN-DIS-ALL and existing state-of-the-art approaches.

Here, we only compare against interval and Instance models from Tomkins

et al. as the +context model cannot be used due to absence of contextual

information in the dataset. We observe that our model achieves superior per-

formance on dishwasher and lights, which are harder to predict due to their un-

predictability. We get performance improvements of 69% and 68%, respectively,

over ADMM-RR and 56% for dishwasher over Tomkins et al. For the other appli-

ances: microwave and refrigerator, we achieve comparable performance to one of

the existing approaches. Comparing our overall MAE averaged over all buildings
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Figure 6.4: Percentage of total energy consumption of each appliance for Dataport
homes

and all appliances with ADMM-RR, we observe that VRNN-DIS-ALL achieves

a performance improvement of 41%. Our overall MAE is comparable to Tomkins

et al.’s models, despite having no careful encoding of domain-specific temporal,

contextual, and structural dependencies using graphical templates, paving the way

for a model that can be extended easily to other settings.

Figure 6.5 compares the percentage of energy consumption by each appliance

with the actual energy consumption percentages. Our actual percentage values for

refrigerator differ by less than 1% for buildings 1 and 6. We observe a similar trend

for light, where VRNN-DIS-ALL’s predictions achieve the exact same percentage

for building 6 and only an actual difference in percentage values of < 4% for

building 1. Again, comparing the percentages for building 3 with the percentages

reported by Tomkins et al., we observe that our model’s percentage prediction for

refrigerator deviates by 13% from the actual percentage, while theirs deviates by

16.5%. Similarly, for dishwasher, our predictions deviate by 30% while Tomkins
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Figure 6.6: Figures showing an example disaggregation by VRNN-DIS-ALL in
REDD using aggregated and disaggregated ground truth and predicted signals.

et al.’s deviate by 49%.

Further, the latent variable abstractions help our model discern which appli-

ance(s) contribute to the aggregated power consumption and distinguish between

appliance signatures, demonstrating the ability to perform blind source separation

[107]. In Figure 6.6, we show an example of disaggregation for REDD. We observe

that the aggregated energy consumption (first subfigure from top) is significantly

contributed by light and refrigerator. Our model accurately detects both these

phenomena in the predictions by identifying the presence of two peaks in this

time period and the respective appliances responsible for them. These qualita-

tive results demonstrate that our model is indeed learning to split the aggregated

energy consumption into its component appliance signals.
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Building
Training 1 2 3 6 AVG

Same building 32.00 31.63 25.00 7.50 25.17
Unseen building 40.00 25.25 17.75 71.33 35.54

Table 6.3: VRNN-DIS-ALL MAE results on different data seen for training the
REDD dataset

Testing on Unseen Data

We evaluate the performance of our model training on all buildings leaving one

building out and testing on that building. From Table 6.3, we can see that the

MAEs for buildings 2 and 3 improve while building 1 gets a comparable MAE.

The overall MAE across all buildings and appliances is also comparable to the

result obtained when training on the same building with a difference of only ∼ 10

in MAE and still achieving a superior prediction performance than ADMM-RR,

illustrating the ability of our models to be extensible across buildings of the same

dataset.

6.4 Discussion

In this chapter, we presented a novel deep generative framework that adapts a

very recently developed generative model, VRNNs for energy disaggregation. We

demonstrated that our model is capable of performing sequence-to-many-sequence

prediction to disaggregate the aggregated energy consumption into individual ap-

pliance consumption signals. We further demonstrated that our models are capa-

ble of achieving superior performance in two well-known real-world energy disag-

gregation datasets DataPort and REDD, achieving 29% and 41% improvement

in MAE from the existing state-of-the-art approaches. We also demonstrated

the capability of our framework in accurately predicting energy consumption of

appliances that consume less power and have no discernible repeating pattern,

thus paving the way toward a fine-grained and informed energy disaggregation.

Further, the latent variable abstractions help in achieving good prediction perfor-

mance on previously unseen data. There are many exciting future directions. The

generative nature of our models facilitates generating synthetic data that captures

the minute variations in the signal. The latent variable abstractions can poten-

tially be tuned to achieve good prediction performance across energy signals from

different locations.
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7 Conclusions and Future Work

Due to the enormous amount of data that is being created at different rates

in cities, there is a great opportunity for machine learning models to transform

solutions to improve the quality of life of residents in the cities. This thesis pre-

sented several machine learning (ML) models for different problems for smart

cities. We compared and combined different machine learning approaches, which

we adapted carefully for problems such as classification, prediction and disaggre-

gation. Moreover, we analyzed and provided insightful results for the comparison

and the combination of two machine learning approaches such as probabilistic

graphical models and deep learning. In this section, we summarize the key con-

tributions, present future directions that our research can take in the short and

long term and explain the future challenge on productionizing machine learning

models for smart cities.

7.1 Key Takeaways

We started implementing ensemble learning models to predict pump operation

status from two countries in Africa. Our XGBoost and Random Forest models

are compared to Super Vector Machine (SVM) and Linear Regression models. We

found that in most of the metrics, Precission, Recall and F1, our ensemble models

perform better than the base lines. Besides, we identified the individual and group

features that contribute the most in improving the results in spite of some class

imbalances.

Then, we explored two multi-step prediction model for hourly water consump-

tion forecasting in fourteen buildings at Binghamton University campus. Although

these models correspond to two different approaches such as PG and DL models,

both of them are discriminative and suitable for prediction tasks. We found that

our two models perform better than baselines such as ARIMA and Linear Regres-

sion. Moreover, our probabilistic approach, SGCRF, presented better results than

a sequence-to-sequence LSTM-based model in most of the buildings from campus.

We also tested the LSTM-based encoder-decoder for another problem such as the

time resolution prediction for emergency events, which can help improve assign-

ment of resources. This work was especially interesting as we show how to adapt
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a sequence-to-sequence deep learning model to a non-equidistant dataset..

Finally we developed a variational model that combines the best qualities of

two types of models to perform energy disaggregation. For this task, we trained

our model on previous total energy house consumption in a period of time and its

respective disaggregated signals, which represent different appliances’ consump-

tion. In this case, we combined the best of PG and the DL models through the

use of latent variables. This latent space contributed to the disaggregation and

generation jointly while allowing variability in the output and learning the essence

of the signals.

7.2 Inmediate Work Extensions

As future work, we plan to continue adapting our prediction models to other

smart cities problems, to work with more variables in a sequential manner and to

extend our disaggregated model can be applied to other signal processing areas.

The following subsections explain with more detail the inmediate extensions of our

work and other works addressing the same problems and using similar approaches.

7.2.1 Sequential Models for Other Domains

Models in this thesis work with equidistant and unequidistant sequential datasets

for prediction of more than one time step in the future. For all this variants of

inputs, our models, representational learning and preprocessing stages can be tai-

lored in order to obtain impactful results. For example, multi-step prediction

can help monitor quality air measuarements, waste volumen generation, flood and

traffic alerts, wind speed and other smart city problems [108]–[110]. These moni-

toring results can suggest updates design and planning of systems such as utilities

production in smart grids or schedules for public transportation routes. In other

words, this type of learning can also be supported by reinforcement learning mod-

els. Reinfocement Learning can optimize the performance of a system thorugh

the selection of the most convenient actions to change its status over time, such

as the work of [111] to control traffic signal.

7.2.2 Joint Prediction

We test our sequential models encoder-decoder to do prediction of water or

energy consumption based on historic consumption of both resources. Our hy-

pothesis was that an attention mechanism can improve the performance of the

seq2seq model used in 4.5. In our initial experiments, we did not observe a sig-

nificant performance improvement compared to an approach without attention.
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However, we believe that this problem is worth investigating as energy and wa-

ter have an underlying connection via the appliances that use them both such as

washing machine or dishwasher. For example, recent work [112] showed interest-

ing results when implementing an attention mechanism based on a bi-directional

long short-term memory model and testing it in five multivariate datasets.

7.2.3 Other Disaggregation Problems

Disaggregation models can be applied to many other signals that need to be

split to know what are their specific sources or components. For example, water

consumption can also be disaggregated to know the spots or appliances inside a

house that are using it the most. From a larger perspective, environment water

flows can be measured in specific spots to learn the stream and confluences con-

tribution in certain water reservoirs. On the other hand, this model can be useful

in other domains and for a larger number of aggregated signals such as the very

well known cokctail party or blind source problem. In this type of problem, there

exist several microphones receiveing more than one voice or sound signal. The

task consists on disaggregating the sources signals using the different aggregated

input values. We believe this problem presents the next challenge in the speech

recognition field and other related signal processing problems such as in [113],

[114].

7.3 Long Term Extensions

Our machine learning models have proved to work well in individual tasks for

smart cities. However, smart homes data collection can improve the solutions for

this individual tasks and benefit from one another to solve larger problems. For ex-

ample, when being able to predict the demand of water, energy and other utilities,

there are possibilities to optimize their use in-house. Moreover, prediction might

rely not only on one or two signal, as in our joint water and energy consumption

prediction, but on several other variables that can contribute to one another in

different periods of time. On the other hand, utilities market decision makers that

access this type of information have more tools to optimize their services delivery

and to better forecast the price of the a service, such as electricity in this work

[115].

The cost of collecting the amount of data for certain type of models might be

too high. For that reason, a future challenge is to develop models which can work

well with limited datasets. Moreover, transfer learning have started to make avail-

able more opportunities to work with limited data in smart cities [116]. Transfer

learning takes advantage of the model learned for one task to perform well in a
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related second task, which can also include testing our models on previously un-

seen data. Other approaches to work with small datasets are few-shot learning

and one-shot learning, which can contribute tremendously to escenarios where not

enough data has not been collected yet [117].

Finally, more and more applications require to have explanations of the results

of the models, and smart cities might need them too. As previously mentioned,

probabilistic graphical models imply more interpretable models. However, some-

times they are not able to scale to solve some problems in a production level

environment. This type of model still have room to improve computational calcu-

lations for training and inference time. At the same time, the combination with

deep learning model is paving the way in new approaches known as deep proba-

bilistic graphical models, which we notice are being explored more and more.

7.4 Future Challenge

As in many other domains, smart cities present optimization challenges at

both levels, macro or for strategic planning and micro or for real time operation,

routing and scheduling. Our work focuses in the first group due to the availability

of the data to train models off-line. However, we acknowledge that most of the

productionizing challenge focuses on the second group of problems. These kind of

problems require an specific approach from a networking and behavioral perspec-

tive of the consumption or demand of utilities at a finer granularity. For example,

some works are working on real-time problems such as detection of fires and com-

bustion in forests [118], [119], energy-efficienty scheduling [120] and detection of

emergency sounds for deaf people [121]. Moreover, one of the most popular ap-

plication is the control of mobile traffic which are a natural problem for real-time

approaches [122]. To improve, monitor and recognize patterns in the delivery of

content and services in the smart cities grids, represent a great contribution and

the future challenge on machine learning models for smart cities.
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[29] A. J. F. de Palencia and A. Pérez-Foguet, “Quality and year-round avail-

ability of water delivered by improved water points in rural tanzania: Effects

on coverage,” Water Policy, vol. 14, no. 3, pp. 509–523, 2012.

[30] Y. Liu, Y. Liang, S. Liu, D. S. Rosenblum, and Y. Zheng, “Predicting ur-

ban water quality with ubiquitous data,” arXiv preprint arXiv:1610.09462,

2016.

[31] S. Deleawe, J. Kusznir, B. Lamb, and D. J. Cook, “Predicting air quality

in smart environments,” Journal of Ambient Intelligence and Smart Envi-

ronments, vol. 2, no. 2, pp. 145–154, 2010.

84



[32] D. Tien Bui, B. Pradhan, O. Lofman, and I. Revhaug, “Landslide suscepti-

bility assessment in vietnam using support vector machines, decision tree,

and naive bayes models,” Mathematical Problems in Engineering, vol. 2012,

2012.

[33] B. B. Gulyani, J. A. Mangai, and A. Fathima, “An approach for predicting

river water quality using data mining technique,” in Industrial Conference

on Data Mining, 2015.

[34] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in

Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, ACM, 2016.

[35] Executive summary of the national climate assessment, 2014. [Online]. Avail-

able: https://nca2014.globalchange.gov/highlights/report-findings/

extreme-weather.

[36] Drought.gov,us drought portal, 2019. [Online]. Available: https://www.

drought.gov/drought/states/california.

[37] Wikipedia: Cape town water crisis, 2019. [Online]. Available: https://en.

wikipedia.org/wiki/Cape_Town_water_crisis.

[38] H. Kwon, J. E. Fischer, M. Flintham, and J. Colley, “The connected shower:

Studying intimate data in everyday life,” Proceedings of the ACM on Inter-

active, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 4, p. 176,

2018.

[39] H. Assem, S. Ghariba, G. Makrai, P. Johnston, L. Gill, and F. Pilla, “Urban

water flow and water level prediction based on deep learning,” in Joint

European Conference on Machine Learning and Knowledge Discovery in

Databases, Springer, 2017.

[40] D. DeFazio, A. Ramesh, and A. Seetharam, “Nycer: A non-emergency re-

sponse predictor for nyc using sparse gaussian conditional random fields,”

in Proceedings of the 15th EAI International Conference on Mobile and

Ubiquitous Systems: Computing, Networking and Services, ser. MobiQui-

tous ’18, Association for Computing Machinery, 2018, pp. 187–196.

[41] M. Wytock and Z. Kolter, “Sparse gaussian conditional random fields: Al-

gorithms, theory, and application to energy forecasting,” in International

conference on machine learning, 2013, pp. 1265–1273.

[42] C. Tull, E. Schmitt, and P. Atwater, “How much water does turf removal

save? applying bayesian structural time-series to california residential water

demand,” in KDD Workshop on Data Science for Food, Energy and Water.

85



[43] D. Kofinas, E. Papageorgiou, C. Laspidou, N. Mellios, and K. Kokkinos,

“Daily multivariate forecasting of water demand in a touristic island with

the use of artificial neural network and adaptive neuro-fuzzy inference sys-

tem,” in Proceedings of the 3rd International Workshop on Cyber-Physical

Systems for Smart Water Networks (CySWater), IEEE, 2016.

[44] A. Jabbari and D.-H. Bae, “Application of artificial neural networks for

accuracy enhancements of real-time flood forecasting in the imjin basin,”

Water, vol. 10, no. 11, p. 1626, 2018.

[45] A. Candelieri, D. Soldi, and F. Archetti, “Short-term forecasting of hourly

water consumption by using automatic metering readers data,” Procedia

Engineering, vol. 119, pp. 844–853, 2015, Computing and Control for the

Water Industry (CCWI2015) Sharing the best practice in water manage-

ment, issn: 1877-7058. doi: https://doi.org/10.1016/j.proeng.2015.

08.948.

[46] G. Bejarano, M. Jain, A. Ramesh, A. Seetharam, and A. Mishra, “Predic-

tive analytics for smart water management in developing regions,” in The

4th IEEE International Conference on Smart Computing (SMARTCOMP),

2018.

[47] A. Endo, I. Tsurita, K. Burnett, and P. M. Orencio, “A review of the

current state of research on the water, energy, and food nexus,” Journal of

Hydrology: Regional Studies, vol. 11, pp. 20–30, 2017.

[48] B. Ali, “Forecasting model for water-energy nexus in alberta, canada,”

Water-Energy Nexus, vol. 1, no. 2, pp. 104–115, 2018.

[49] K. A. Rambo, D. M. Warsinger, S. J. Shanbhogue, J. H. L. V, and A. F.

Ghoniem, “Water-energy nexus in saudi arabia,” Energy Procedia, vol. 105,

pp. 3837–3843, 2017, 8th International Conference on Applied Energy,

ICAE2016, 8-11 October 2016, Beijing, China.

[50] H. Hoff, Understanding the nexus; background paper for the bonn2011 con-

ference: The water, energy and food security nexus; stockholm environment

institute: Stockholm, sweden, 2011, 2011.

[51] Q. Wang, S. Li, and R. Li, “Forecasting energy demand in china and in-

dia: Using single-linear, hybrid-linear, and non-linear time series forecast

techniques,” Energy, vol. 161, pp. 821–831, 2018.

[52] G. Borowik, Z. M. Wawrzyniak, and P. Cichosz, “Time series analysis for

crime forecasting,” in 2018 26th International Conference on Systems En-

gineering (ICSEng), IEEE, 2018.

86



[53] K. Mason, J. Duggan, and E. Howley, “Forecasting energy demand, wind

generation and carbon dioxide emissions in ireland using evolutionary neu-

ral networks,” Energy, vol. 155, pp. 705–720, 2018.

[54] P. Arjunan, M. Srivastava, A. Singh, and P. Singh, “Openban: An open

building analytics middleware for smart buildings,” in Proceedings of the

12th EAI International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services on 12th EAI International Conference

on Mobile and Ubiquitous Systems: Computing, Networking and Services,

2015.

[55] Z. Zhang and K. P. Lam, “Practical implementation and evaluation of deep

reinforcement learning control for a radiant heating system,” in Proceedings

of the 5th ACM Conference on Systems for Energy-Efficient Built Environ-

ments (BuildSys), 2018.

[56] H.-W. Kang and H.-B. Kang, “Prediction of crime occurrence from multi-

modal data using deep learning,” PloS one, vol. 12, no. 4, e0176244, 2017.

[57] G. Mittal, K. B. Yagnik, M. Garg, and N. C. Krishnan, “Spotgarbage:

Smartphone app to detect garbage using deep learning,” in Proceedings of

the 2016 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, ACM, 2016.

[58] R. Bhandari, A. Nambi, V. Padmanabhan, and B. Raman, “Deeplane:

Camera-assisted gps for driving lane detection,” in Proceedings of the 5th

ACM Conference on Systems for Energy-Efficient Built Environments (BuildSys),

2018.

[59] T. Yabe, K. Tsubouchi, and Y. Sekimoto, “Cityflowfragility: Measuring the

fragility of people flow in cities to disasters using gps data collected from

smartphones,” Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies, vol. 1, no. 3, p. 117, 2017.

[60] R. Bhardwaj, G. K. Tummala, G. Ramalingam, R. Ramjee, and P. Sinha,

“Autocalib: Automatic traffic camera calibration at scale,” in Proceedings

of the 4th ACM International Conference on Systems for Energy-Efficient

Built Environments (BuildSys), 2017.

[61] D. Chen, J. Breda, and D. Irwin, “Staring at the sun: A physical black-box

solar performance model,” in Proceedings of the 5th ACM Conference on

Systems for Energy-Efficient Built Environments (BuildSys), 2018.

[62] F. N. Melzi, T. Touati, A. Same, and L. Oukhellou, “Hourly solar irradiance

forecasting based on machine learning models,” in 15th IEEE International

Conference on Machine Learning and Applications (ICMLA), 2016.

87



[63] Paper: Code and data, 2019. [Online]. Available: https://bitbucket.

org/gissemari/water-consumption-prediction.

[64] Nyc open data, https://data.cityofnewyork.us/Public- Safety/

Emergency-Response-Incidents/pasr-j7fb.

[65] I. Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens, “Deep multi-output

forecasting: Learning to accurately predict blood glucose trajectories,” in

Proceedings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery &#38; Data Mining, ser. KDD ’18, ACM, 2018, pp. 1387–

1395.

[66] Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic flow prediction

with big data: A deep learning approach,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 2, pp. 865–873, 2015.

[67] L. Peng, L. Chen, Z. Ye, and Y. Zhang, “Aroma: A deep multi-task learning

based simple and complex human activity recognition method using wear-

able sensors,” Proceedings of the ACM on Interactive, Mobile, Wearable

and Ubiquitous Technologies, vol. 2, pp. 1–16, Jul. 2018.
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