
Institute of Physics
Fluminense Federal University

Ph.D. Thesis

Spin-Orbit Coupling Effect over

Kondo Temperature and

Thermoelectric Transport Properties

of a Quantum Dot

by

Marco Antonio Manya Suni

Supervisor: Dr. Marcos Sergio Figueira da Silva
Co-Supervisor: Dr. George Balster Martins

November, 2021



Ficha catalográfica automática - SDC/BIF
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Debora do Nascimento - CRB7/6368

M266s Manya suni, Marco Antonio
  Spin-Orbit Coupling Effect over Kondo Temperature and
Thermoelectric Transport Properties of a Quantum Dot : Spin-
Orbit Coupling Effect over Kondo Temperature and
Thermoelectric Transport Properties of a Quantum Dot / Marco
Antonio Manya suni ; Marcos Sergio Da Silva, orientador ;
George Balster Martins, coorientador. Niterói, 2021.
  114 f.

  Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2021.

DOI: http://dx.doi.org/10.22409/PPGF.2021.d.07226885123

  1. Spin-Orbit coupling. 2. Kondo effect. 3. Seebeck effect.
4. Wiedemann-Franz Law. 5. Produção intelectual. I. Da
Silva, Marcos Sergio, orientador. II. Martins, George Balster,
coorientador. III. Universidade Federal Fluminense. Instituto
de Física. IV. Título.

                                      CDD -



CURSO DE PÓS-GRADUAÇÃO EM FÍSICA
RUA GAL MILTON TAVARES DE SOUZA, SN

24210-346 – NITERÓI - RIO DE JANEIRO
TEL: (21)2629-5878 - FAX: 2629-5887

E-MAIL: cpg@ if.uff.br 

Ata dos trabalhos finais da Comissão Examinadora da tese de doutorado apresentada por

Marco Antonio Manya Suni. No terceiro dia do mês de novembro de dois mil e vinte e um, às

quatorze  horas,  reuniram-se  de  forma  remota,  os  membros  da  Comissão  Examinadora

constituída pelos professores doutores Marcos Sergio Figueira da Silva(IF/UFF), Andrea Brito

Latgé (IF-UFF), Antonio Carlos Ferreira Seridonio (UNESP), Caio Henrique Lewenkopf (IF-UFF)

e  Ginetom  Souza  Diniz  (UFJ);  sob  a  presidência  do  primeiro,  para  prova  pública  de

apresentação  de  tese  de  doutorado  intitulada  “Spin-Orbit  Coupling  Effect  over  Kondo

Temperature and Thermoelectric Transport Properties of a Quantum Dot”, tendo em vista

as exigências do Regulamento Específico do curso de Física relacionadas com a conclusão do

Doutorado  em  Física  pela  Universidade  Federal  Fluminense.  A tese  foi  elaborada  sob  a

orientação  do  professor  Marcos  Sergio  Figueira  da  Silva  e  coorientação  do  Prof.  George

Balster Martins.  Após a exposição do trabalho,  o aluno respondeu às questões formuladas

pelos integrantes da Comissão Examinadora, que apresentou parecer no sentido de aprová-lo.

Para  constar,  foi  lavrada  a  presente  ata,  que  vai  assinada  pelos  membros  da  Comissão

Examinadora e pelo doutorando.

Niterói, três de novembro de dois mil e vinte e um.

Dr. Marcos Sergio Figueira da Silva

Dr.ª Andrea Brito Latgé                                

Dr. Antonio Carlos Ferreira Seridonio   

Dr. Caio Henrique Lewenkopf                    

Dr. Ginetom Souza Diniz                            

Marco Antonio Manya Suni



Tukuysonqoymanta, Taytaypaq Mamaypaqwan



iv

Acknowledgements

First of all, I would like to thank God for allowing me this wonderful experience

and meeting people full of charisma during my journey through Brazil. Right away, I

would like to thank my advisor, Prof. Marcos Sergio Figueira, and my co-advisor Prof.

Geroge Balster Martins. Both are truly great people and are a great example for me

of how to be a scientist. I would like to thank them for believing in my potential and

for giving me the opportunity to continue with my study. For their patience on the

way to post-graduation despite my difficulties. It is great luck to have met them, for

having taught me to enjoy science. I would also like to thank professor Zitko, author of

the NRG Ljubljana program for the help whenever there is a difficulty in the program,

professor Edson Vernek for his availability for physical discussions and with the NRG

program, and how not to thank professor Enrique Anda also for the availability for the

physical discussions of the problem.

I thank my family, everyone really, for having made this postgraduate trip possible

outside my country. I thank my parents Dominga and Antonio, for being the main

actors for me to reach this wonderful Brazil, my brother Nilson for his generosity and

unconditional support, sister Maritza for that affection and for having believed in me,

and finally my cousin Manuel, to each and every one of them I am infinitely grateful.

And finally, I would also like to thank the professors and the friends of the university

who have directly or indirectly contributed and are contributing to my formation.

Thank you so much, everybody!



Abstract

Spin-Orbit Coupling Effect over Kondo Temperature and Ther-

moelectric Transport Properties of a Quantum Dot

This thesis presents the research results of a quantum dot coupled to a conduction
band with spin-orbit coupling (SOC), Specifically, a simgle electron transistor (SET).
We study the dependence of the Kondo temperature and the thermoelectric transport
properties with SOC. The problem is modeled as a single impurity Anderson model
in the presence of the conduction band spin-orbit interaction. The SOC mixes the
spins of the conducting electrons, and as a consequence, the SU(2) spin symmetry of
the Anderson Hamiltonian is broken. We recover the Anderson Hamiltonian SU(2)
symmetry through a rotation of the system’s spins along with r̂ axis, where the ground
state of the problem can be considered the Kondo many-body singlet state. On this
quantization axis, the Anderson Hamiltonian can be rewritten in the same way as the
original Anderson Hamiltonian, with which we obtain a continuous density of states of
the conduction band, a diagonal hybridization function on the spin rotated basis, and
that the Haldane formula for the Kondo temperature can be rewritten, renormalized
by the conduction band SOC.

In the study of thermoelectric transport properties, we observe that in both: the
atomic and the numerical renormalization group (NRG) methods, the Kondo temper-
ature decreases with the increasing of the SOC. It is because the Friedel sum rule is
satisfied under conduction band SOC. In the transport properties, we obtain that the
electrical, thermal conductance, and thermopower exhibit universality in the presence
of spin-orbit coupling. Similarly, we observe the violation of the Wiedemann-Franz
law, and the figure of merit ZT increases with the presence of de conduction band
SOC. In short, the SOC interaction drives the system to the Kondo regime.
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Abstract

Efeito do acoplamento spin-órbita sobre a temperatura Kondo e

propriedades de transporte termoelétrico de um ponto quântico

Esta tese apresenta os resultados da pesquisa de um ponto quântico acoplado a uma
banda de condução com acoplamento spin-órbita (SOC). Estudamos a dependência da
temperatura de Kondo e as propriedades de transporte termoelétrico com este tipo de
SOC. O problema é modelado como um modelo de Anderson de impureza única na
presença da interação spin-órbita da banda de condução. O SOC mistura os spins dos
elétrons de condução e, como consequência, a simetria do spin SU (2) do hamiltoniano
de Anderson é quebrada. Recuperamos a simetria SU (2) da hamiltoniana de anderson
por meio de uma rotação dos spins do sistema junto com o eixo r̂, onde o estado
fundamental do problema pode ser considerado como sendo o estado singlete de muitos
corpos de Kondo. Neste eixo de quantização, o Hamiltoniano de Anderson pode ser
reescrito da mesma forma que o hamiltoniano de Anderson original, com o qual obtemos
uma densidade contínua de estados da banda de condução, uma função de hibridização
diagonal com base na rotação de spin, e que a fórmula de Haldane para a temperatura
Kondo pode ser reescrita, renormalizada pela banda de condução SOC.

No estudo das propriedades de transporte termoelétrico, observamos que em am-
bos: o método atômico e o método NRG, a temperatura de Kondo diminui com o
aumento do SOC. Isso ocorre devido a satisfação da regra da soma de Friedel na pre-
sença da banda de condução SOC. Nas propriedades de transporte, obtemos que as
condutâncias elétrica e térmica, assim comoa termopotência exibem universalidade na
presença de acoplamento spin-órbita. Da mesma forma, observamos a violação da lei
de Wiedemann-Franz, e um aumento do ZT com a presença da banda de condução
SOC. Resumindo, a interação do SOC conduz o sistema ao regime de Kondo.
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Chapter 1

Introduction

The enormous growth of technology in the last 20 years has led to the construction of
electronic devices of increasingly smaller sizes, more sophisticated, and efficient. These
reduced-size devices are quantum dots (QD), quantum wires (QW), and the quantum
wells, commonly called nanostructures. The physical properties of the nanoscopic sys-
tems due to their nanometric scale exhibits quantum confinement effects. Moreover,
experimentally, it has been shown that their mechanical, optical, and transport prop-
erties become size dependent [9]. In a correlated QD, it is possible to attain complete
control of all the Kondo impurity problem parameters [10].

Thermoelectricity began with the discovery of the Seebeck and Peltier effects [11]
that evolved slowly in trying to realize the dream of transforming thermal energy
directly into electrical energy in an effective way. The Seebeck effect Figure 1.1a
generates a bias voltage when two different metallic surfaces, at different temperatures,
are put into contact, and the Peltier effect Figure 1.1b is associated with heat absorption
or rejection when an electric current flows through a Seebeck device.

The Peltier and Seebeck effects constitute the basis for many thermoelectric (TE)
generators (TEGs) and cooling (TECs) devices, respectively [12–14]. Since its dis-
covery [15], the narrow-gap layered Bi2Te3 compound, when alloyed with antimony
or selenium, has been employed as the basic material for TEGs and TECs at room
temperature. In the last years, it was experimentally shown that Bi2Te3 is a three-
dimensional topological insulator with a single Dirac cone on its surface [16]. Other
good TE materials are also topological insulators, like Bi2Se3, Sb2Te3, and FeSb2 [17–

1
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20]. The topological nature of these materials can shed some light on their TE proper-
ties because most of their behavior is due to strong spin-orbit coupling [21, 22] or their
conducting surface states [23–25].

Until now, the use of TE devices has been confined to low-power energy generation
applications, where the advantages of not having movable parts, which increases the TE
device lifetime by avoiding maintenance, compensates for their low efficiency and higher
cost [26]. In addition, TE devices can be employed as auxiliary systems to recover the
heat wasted in traditional large-scale electrical energy generation systems that employ
natural gas, fossil fuels, coal, and nuclear power, and thus help to control pollution and
waste of dangerous chemical products, which are hazardous to the environment [27].
The importance of direct conversion between thermal and electrical energy employing
TE devices has increased continuously, and there are some niche applications where
TE devices are dominant. One recent use of TE devices is wearable and implanted
medical devices that exploit body heat as an energy source. Generally, these devices
are composed of two parts: an interface between the skin and the TEG module and
a thermal sink to dissipate heat to the air [27]. Another recent application of TEGs
is to convert the heat wasted in industrial machinery or vehicles into electrical energy.
In a vehicle, this energy could be used to power its electrical devices and improve
engine performance. Another application of TECs is to act as a cooling device for
high-performance CPU processors, where a Bi2Te3 TEC module is placed between the
hot spot of the processor and an air-cooled heat sink [28].

Then, a thermoelectric module is a complex thermoelectric device [1] such as il-
lustrated in Figure 1.1. It consists of many thermocouples connected electrically in
series and thermally in parallel by a metallic contact. A thermocouple is composed of
n-type and p-type semiconductors whose Seebeck coefficients are negative and positive,
respectively. The thermocouple comprises two modes, power generating mode and re-
frigeration mode. In the first case, charge carriers flow from the hot to the cold side
due to the applied gradient temperature, Figure 1.1(a). However, in the second case,
the charge carriers flow due to applied electrical voltage, Figure 1.1(b). Therefore, the
state-of-the-art thermoelectric devices are built containing many thousand thermocou-
ples, whose electrical and thermal properties are controlled by adjusting the number
of thermocouples according to their application [1, 29].

At the beginning of the 1990s, the research field of thermoelectric materials was
expanded into low-dimensional electron systems, and it has been reported the improve-
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Figure 1.1: Thermoelectric couple [1] application in a thermocouple. (a) power
generation mode (Seebeck effect), (b) Refrigeration mode (Peltier effect), (c) is a ther-
mocouple device, and (d) Direction of charge carriers when the ends of p- and n-type
semiconductors are under different temperatures.

ment of the figure of merit ZT in quantum wells [30] and a quantum wires [31]. This
discovery opened a new path in researching high-performance thermoelectric devices
based on quantum structures that make it possible to take advantage of quantum ef-
fects due to their sizes. Nowadays, quantum structures, mainly quantum dots, enjoy
great popularity in the field of thermoelectricity. Since then, in the last years, the
interest in the TE properties of QDs has greatly increased, yielding several papers,
originating from theoretical [8, 32–40] as well as experimental groups [41–49]. Recent
reviews can be found in Refs. [11, 26, 50].

Recently, one system that has attracted particular attention is a three-terminal
TE device that directly transforms thermal into electrical energy [51]. The system is
composed of two QDs capacitively coupled to each other, where one of the QDs is
immersed into two metallic leads, forming a semiconductor electron transistor (SET),
and the other QD is connected to an electronic heat reservoir [51] in such a way
that only thermal energy is exchanged between the heat reservoir and the SET. One
striking characteristic of this geometry is that the electrical and thermal reservoirs
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become isolated from each other. A review of that type of system, in which the heat
reservoir includes bosonic degrees of freedom such as phonons, magnons, or microwave
photons, is presented in Ref. [52]. Another physical system in which has been reported
for the thermoelectric performance and the figure of merit a good result is the BiSb two-
dimensional system under Rashba spin-orbit coupling (SOC). In this work, the SOC
promotes thermoelectric performance and doubles the figure of merit ZT concerning the
spin degenerate case [53]. Therefore, the SOC plays a crucial role when the electron’s
spin degree of freedom are considered, for example, in the spintronic field.

Since 1994, starting with the work by Meir and Wingreen [54], the effect of SOC
over the Kondo state has been studied. After that, close to a dozen different groups
have studied this subject [55–63]. The reason why this issue has attracted so much
interest is reasonably straightforward. As SOC affects the spin degree of freedom of
the conduction electrons (by coupling it to the linear momentum), and since the Kondo
state is a many-body phenomenon that involves the conduction electrons’ spins in a
non-trivial manner, it was only natural to ask what consequences SOC could have over
the Kondo effect.

Another way of approaching that is through symmetry arguments: since SOC
breaks the spin SU(2) symmetry of the conduction band, what effect could this have
over the many-body spin-singlet (formed between the magnetic impurity and the con-
duction electrons) that characterizes the Kondo state? While the work by Meir and
Wingreen [54], using general arguments, concluded that SOC did not suppress the
Kondo effect, many subsequent works [55–63] have shown that the answer to this ques-
tion is quite more nuanced. For example, Žitko and Bonča [56], using NRG to study
the Kondo effect of a magnetic impurity coupled to a two-dimensional electron gas
subjected to Rashba SOC, have shown that the Kondo temperature TK varies with
SOC, having behavior that depends on the parameters of the SIAM (see, for example,
Figure 3 in Ref. [56]). On the other hand, Sousa et al. [61], analyzing a one-dimensional
band subjected to Rashba+Dresselhaus SOC, using NRG arguments, have found that
SOC exponentially increases TK , besides generating a Dzyaloshinskii-Moriya interac-
tion between the impurity and the conduction electrons (caused by the loss of SU(2)

symmetry of the conduction band). For a more detailed discussion of the extensive
literature on Kondo+SOC, see Ref. [63]. Previous works that analyzed the SOC in-
fluence over TE properties of QDs in the Kondo regime [64, 65] have considered SOC
just to coupling the QD to the conduction band, while here it is considered SOC in
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the conduction band itself, and the following question is asked: How is the SOC effect
on the thermoelectric properties of a quantum dot?

In this thesis, employing the numerical renormalization group (NRG) method [66,
67], it is studied the effect of conduction band spin-orbit coupling (SOC) over the SET’s
Kondo effect and TE transport properties. In the first case, viz., spin rotation and
SIAM Hamiltonian in the σr basis, time-reversal and hybridization function, pseudo-
spin SU(2) symmetry, and renormalized Haldane expression. The critical result is that
under spin-rotation, The Hamiltonian, including the SOC, can be expressed similarly
without SOC after a spin rotation about an arbitrary σr axis. Thus the hybridization
function does not have any spin dependence on the new basis, and finally, the Kondo
temperature is renormalized by the parameters of Anderson and spin-orbit. Second,
electrical and thermal conductances, thermopower, Wiedemann-Franz law, and the
dimensionless TE figure of merit. As main results, we show that SOC drives the system
into the Kondo regime, where the universality of those properties is satisfied [8, 68–72],
although we have found the interesting result that the universality of the thermopower
is better fulfilled at the intermediate valence regime than at the Kondo regime. More
importantly, we show that SOC causes a notable increase in the dimensionless figure of
merit of a SET. Our analysis is done at low enough temperatures to warrant the neglect
of the phononic contribution to the SET TE properties [73]. In addition, it is worth
noting that there are also ways of decreasing the detrimental influence of phonons in
the thermal efficiency of SETs by, for example, alloying the SET tunnel barriers to
scatter phonons away from the QD [73–75].

The Thesis is organized as follows: in chapter 1, we contextualize our field of study
and present our objectives. In chapter 2, we present the background necessary to under-
stand about impurity problem from dilute magnetic alloys to confined nanostructures
Evolution of the Kondo Effect. In chapter 3, we introduce the model in the presence
of SOC, and we study the spin rotation, persistent spin helix (PSH). In chapter 4, we
introduce the fundamental equations of thermoelectric transport properties. In chap-
ter 5, we present the atomic approach method. In chapter 6, we present a discussion
about the theory of the NRG method. In chapter 6.2, We discuss the “NRG Ljubljana"
- open-source numerical renormalization group code employed in the calculations. In
chapter 7, we present our results for Kondo temperature using NRG, the thermoelec-
tric transport properties with atomic approach method and NRG method. Finally, in
chapter 8, we present our conclusion and perspectives



Chapter 2

Background theory

2.1 Impurity problem

The magnetic impurities diluted in metallic samples are a long-standing problem. Its
origin can be traced to the thirties when Wander de Haas and colleagues at the Kamer-
lingh Onnes Laboratory in Leiden, The Netherlands, measured the resistance of gold,
copper, and lead as a function of temperature. They reported that the gold sample
(not very pure) resistance was problematic because it presented a minimum at low
temperatures [2] as indicated in Figure 2.1. The primary source of resistance in those
systems is the scattering of electrons by lattice vibrations (phonons). The resistance
should decrease as the temperature is lowered until it attains some residual value, at
very low temperatures, due to impurities and defects present in the samples. This is
what happened with the cooper sample, and just before the lead becomes a supercon-
ductor at around 7.2K [2]. The prime suspect for the scattering process responsible
for the minimum in gold’s resistance samples was the presence of impurities. In the
1960s, it was established that the effect was due to the presence of magnetic impurities
in the metallic matrix that, under certain conditions, allow the formation of magnetic
moments that act as new scatterer centers [76].

Experimentally the formation of magnetic moments in the alloys of the d-orbital
transition elements with impurities does not occur in all cases, as shown in Figure
2.2. The Figure shows a series of susceptibility measurements performed on samples
from zirconium to silver with a 1% impurity of iron by Clogston et al. [3]. The

6
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Figure 2.1: First measurements concerning the Kondo effect: Resistance of Au be-
tween 1◦K and 5◦K [2]

Figure shows the susceptibility as a function of temperature; the elements with zero
susceptibility(Zr,Nb,Re,Ru) have a susceptibility independent of temperature. The
elements for which the susceptibility value is different from zero (Mo,Rh, Pd) have a
temperature-dependent susceptibility. In the alloys, the magnetic susceptibility mea-
surements show the local magnetic moments formation. In addition to the usual Pauli
susceptibility, the system has a susceptibility dependent on the temperature expressed
by the Curie-Weiss term

χ =
µ2
eff

3k(T −Θ)
, (2.1)

where µeff , and Θ are the effective magnetic moment and the Curie temperature,
respectively; the magnetic moment formation in this type of system was accepted for a
long time as an experimental fact, without questioning how and under what conditions
they appear. However, in the fifties, Friedel et al. [76] observed that the conducting
bands of the metals were so large that the energy levels of the impurities were located
inside them. Consequently, these states could not be truly located. To describe these
localized states, Fridel introduced an essential concept of the virtual bound states i.e.,
a state that is obtained from the continuous free electron states. Such states cannot
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stay eternally localized because they return to the continuous conduction band after a
specific time τ . The local moments are determined by the condition in which the virtual
states of the electrons with spin-up are different from the virtual states of spin-down

〈nσ〉 6= 〈nσ̄〉, (2.2)

and the magnetic moment will exist on the impurity state. According to [77], a lo-
calized magnetic moment will be formed if the contribution of the impurity to the
susceptibility follows the Curie-Weiss (2.1). In other ways, there will be no localized
moment formation.

Figure 2.2: The left side Figure is the magnetic moment in Bohr magnetons of an iron
atom diluted in various second-row transitions metals and alloys as a function of the
electron concentration [3]. The Figure on the right side, measured in 1964, shows the
minimum resistivity in alloys with 1% iron impurity concentrations [4], which confirms
the earlier observations of the minimum in Figure 2.1.

Some dilute copper-iron alloys show the local magnetic moment formation and also
the minimum in the electrical resistivity at low temperatures [78]. In Figure 2.2 [4] we
show the local magnetic moment formation of Fe impurities in alloys of Mo−Nb and
Mo−Re with 1% Fe impurities concentrations.

According to Figures. 2.2, the behavior of resistivity decreases monotonically with
temperature up to a minimum that defines a characteristic temperature. Below this
minimum temperature, the resistivity increases again with the logarithm of the tem-
perature ln(T ). J. Kondo [79] was the first to associate the magnetic moment of the
impurity with the occurrence of a minimum in the resistivity. He calculated, through
a second-order perturbation theory, the electrical resistivity produced by the spin-flip
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scattering of the conduction electrons with the localized magnetic moments and ob-
tained the dependence of the resistivity with temperature as J3ln(T ), where J is the
exchange coupling. When the exchange coupling parameter is negative (antiferromag-
netic interaction), below a characteristic temperature known as the Kondo temperature
TK , this term diverges when T → 0. This behavior does not have physical meaning; it
only indicates that the perturbation theory is no longer valid under this temperature.
Nevertheless, the experimental result shows that the resistivity was saturated to a finite
value as shown in Figure 2.3.

Figure 2.3: Temperature dependence of the resistivity and saturation when the T →
0. Figure extracted from the reference [5].

At T < TK , the conduction electrons’ impurity is completely screened and loses
its magnetic moment. Although susceptibility exceeds the Pauli-type contribution
of the host metal, there is no temperature-dependent magnetism. Generally, it is
accepted that the Kondo effect leads to total compensation of the localized moment
by the polarization of the conduction electrons cloud around the impurity through the
antiferromagnetic coupling. This collective effect is destroyed when the temperature
increase. The Kondo transition from the magnetic regime to the nonmagnetic regime
occurs gradually. Of course, such phase transition cannot be drastic after electrons
conductions condense around an impurity in the real space are localized with few
degrees of freedom involved in the process. Thus we should expect smooth variations
in the properties of these systems when the temperature varies.

At the Kondo regime, the impurities are so far apart that their interaction is almost
negligible. When the concentration increases, the interaction between the localized
moments becomes essential, and at the same time, the disordered character of the
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system appears more intensely. In this region, impurities interact strongly via RKKY
interaction (interaction between magnetic moments is mediated by conducting electrons
and tends to zero and are proportional to r−3). At this highly disordered regime a phase
transition occurs known as the “Spin Glass”. In the region of high concentrations, the
impurities are closer and interact via direct exchange coupling, and the system pass to
acquire some magnetic order (ferromagnetic or antiferromagnetic).

2.2 Anderson model

The usual band theory is not able to adequately describe metallic systems with diluted
magnetic impurities; it is because, in a general way, the energies of the localized states
are located inside the conduction band of the host metal, and the band theory is
not able to describe the localization of the impurity state. To solve this theoretical
difficulty, Anderson in 1961 [6] proposed an essential model to study the magnetic
impurity problem of the condensate matter physics. His model was motivated by the
experimental observation that the magnetic moment of a transition metal atom in a
dilute solution of transition metals remains localized [80] and plays a crucial role in the
understanding the physics behind the local magnetic moment.

He assumed that localized moments in metals originated from the Coulomb cor-
relation between electrons from inner orbitals of the magnetic impurity. Under this
assumption, he described the conduction electrons by Bloch states φk(r) at the posi-
tion r

ψrn =
1√
N

∑
k

e−ik·rnφk(r), (2.3)

while the impurity as a local state site represented by an atomic orbital function φd,
and ψrn(r) is the Wannier function at the site rn. The interaction between localized
site and electron conduction is given by hybridization matrix elements Vk,

Vk =
∑
rn

eik·rn〈φd|H|ψrn〉. (2.4)

Additionally, in the localized state, we have a configuration of four states, one
unoccupied with energy εd = 0, two occupied by one electron with spin up or spin
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down and energy εd, respectively and finally the double occupied state with electrons
with spin up and down with an energy εd + U , where U is introduced due to the
interaction between electrons with spin up and spin down in the localized site

U =

∫
φ∗d(r).φ∗d(r

′)
e2

|r − r′|
φd(r)φd(r

′)drdr′. (2.5)

Another point that should be stressed is that the atomic state |d〉 and the Bloch
states are not orthogonal. However, imposing the orthogonality condition 〈d|k〉 = 0

and considering that the orbitals d, f have spheric symmetry, Anderson’s model for the
impurity is described by the Hamiltonian

HA =
∑
σ

εdnd,σ + Und,↑nd,↓ +
∑
k,σ

εkc
†
k,σck,σ +

∑
k,σ

(Vkc
†
d,σck,σ + V †k c

†
k,σcd,σ), (2.6)

where the first two terms describe the impurity energy, with local site energy εd and spin
σ, and the interaction U between electrons with spin up and spin down. The number
operator ndσ = d†σdσ, where d↑, dσ creates and destroys electrons on the local site. The
third term describes the conduction electrons with energy εk and momentum k, the
c†kσckσ operators create and annihilate conduction electrons with k, σ momentum and
spin, respectively. Finally, the last term represents the coupling between conduction
and impurity electrons described by the hybridization Vkd.

To solve the Hamiltonian, Anderson employed the equation of movement method
(EOM) [81], considering the Hartree- Fock approximation, he obtained the Green
function for the localized states, corresponding to the Equation 2.6 as

Gσ
d(ω) =

1

ω − εσ −
∑

(ω)
, (2.7)

where εσ = εd +U〈nd,σ̄〉, with the 〈nd,σ̄〉, representing the average number of electrons
with spin σ̄, and the self-energy term is given by

∑
(ω) =

∑
k

|Vkd|2

ω − εk + iη
, (2.8)

where the small quantity η → 0+ was introduced to turn the Green’s functions retarded.
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The density of localized states is given by

ρdσ(ω) = − 1

π
ImGσ

dd(ω). (2.9)

Substituting Eq. (2.8) in Eq. (2.7), the explicit form of the localized density of
states is given by

ρdσ =
1

π

∆

(ω − εσ)2 + ∆2
, (2.10)

that means the localized density of states is modified by the virual bound state energy
at ω = εσ, and by the width ∆, where

∆(ω) = π〈V 2〉ρk(ω), (2.11)

where ρk(ω) is the density of state of the host metal conduction electrons. At T = 0

the occupation number of the local site is obtained from (2.9)

〈ndσ〉 =

∫ εf

−∞
ImGσ

dd(ω)dω, (2.12)

eliminating the average value representation and specifying the spin up and down as
± respectively, we obtain a system of equations that can be solved selfconsistently

nd± =
1

π
tan−1[y(nd± − x)], (2.13)

where x and y are adimensional parameters given by

x = εF−εd
∆

, (2.14)

y = U
∆
. (2.15)

The transition curve that separates the magnetic from the nonmagnetic region can
be obtained from (2.13), as a relation between the x and y parameters for which the
magnetic solutions degenerate into a single solution nd+ = nd− = n, together with the
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conditions f(n) = 0 and f ′(n) = 0 that gives the cycloid parametric equation

x = 1
2π

(θ − sin(θ)), (2.16)
π

y
= 1

2
(1− cos(θ)), (2.17)

θ = 2πnc, (2.18)

where nc is the critical concentration. The cycloid solution is shown Figure 2.4, where
there is high tendency to magnetism (〈nd+〉 6= 〈nd−〉), when the system is in the strong
correlation regime, when y is large and x is near to the 1/2. This situation corresponds
to the case where the localized level εd and U + εd are symmetric to the Fermi level.

Non-magnetic

Magnetic

Figure 2.4: Phase transition from the magnetic to the non-magnetic region [6].

In this limit just one electron is occupying the local state 〈nd+〉, while the state
〈nd−〉 = 0. The nonmagnetic case (〈nd+〉 = 〈nd−〉 = n), corresponds to the weak
correlation regime, when y is small. The localized site that was initially occupied by
one electron with spin σ is also occupied by another electron with opposite spin, and
thus given the double occupation 〈nd+〉 = 〈nd−〉 = 1/2.



2.3 Kondo effect 14

2.3 Kondo effect

Motivated by the experimental observation of the electrical resistivity minimum that
appears, at low temperatures, in a magnetic impurity diluted in metallic matrix systems
[4, 82, 83], J.Kondo in 1964 [79] introduced a model to describe the scattering of
conduction electrons from a localized magnetic impurity. He calculated the minimum in
electrical resistivity measurements at a low temperature. The initial proposal was made
by Zener [84] to describe the ferromagnetic metal transitions in a sample constituted
of d electrons localized in the ionic site and itinerant electrons s on the crystal. He
considered the exchange interaction between d and s electrons responsible for their
magnetic properties. This model can be applied to rare earth metals due to the 4f

localized states immersed in the large conduction band. Therefore, the corresponding
Hamiltonian can be written as

H = Hc +H′sd, (2.19)

with Hc describing the conduction band of the itinerant electrons

Hc =
∑
k,σ

εkc
†
k,σck,σ, (2.20)

and H′sd represents the interaction of the conduction electrons with the spins of the
localized impurity, with c†kσ(ckσ) being the conduction electron annihilation(creation)
operators with spin σ and momentum k

H′sd =
∑
k,k′

Jk,k′
[
Sz(c†k,↑ck′,↑ − c

†
k,↓ck′,↓) + S+c†k,↓ck′,↑ + S−c†k,↑ck′,↓

]
, (2.21)

where the Sz and S+, S− are the spin operators defined as S± = Sx ± iSy, for a state
of the spin S, Jk,k′ is the exchange coupling constant that characterizes the coupling
between localized spins ions with conduction band electrons. The first term represents
the direct scattering process between conduction electrons with impurity ions. While
the second and the third terms represent the scattering spin-flip process with coupling
Jk,k′ , which according to Kondo [79] produces the unusual resistance electric behavior
at low temperatures. The scattering processes that occur in this model are:
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1. The electron (~k, σ) is scattered to state (~q′, σ) and after suffers a second scatter
to state (~k′, σ).

2. One of the electrons from the state (~q, σ) is scattered to (~k′, σ), then the electron
of the state (~k, σ) occupy the state (~q, σ) that was previously unoccupied.

3. The electron ~k, σ is scattered to state ~q′, σ̄, while the spin component z is of the
nth-impurity atom represented byMn increases fromMn toMn+1. The electron
is scattered again to state ~k′, σ while the z component of the localized electron
returns to the Mn value.

4. One of the two electrons is scattered from occupied state ~q, σ̄ to ~k′, σ and at same
time Mn decrease (Mn → Mn − 1). The electron with (~k, σ) occupy the state
(~q, σ̄) that was unoccupied and the impurity atom returns to the original value
Mn.

In the second order scattering processes the electrons (~k, σ) are scattered to final
state (~k′, σ̄). These intermediate states processes are:

1. The electron (~k, σ) is scattered to state (~q′, σ̄), while the z spin component of the
nth-impurity atom increases from Mn to Mn + 1.

2. One electron from the occupied state indicated by (~q, σ̄), is scattered to the state
(~k′, σ̄) and the z electron localized component Mn remains unaltered. After an
electron with (~k, σ) occupies the state (~q, σ̄) that was unoccupied, the impurity
atom increase to Mn + 1.

3. The electron (~k, σ) is scattered to an unoccupied state (~q′, σ) and the z compo-
nent of the localized electron spin remains Mn. After the conduction electron is
scattered to state (~k, σ̄), and the z spin component of the impurity atom changes
from Mn to Mn + 1.

4. One of the two electrons that occupies the state, indicated by (~q, σ), is scattered
to state (~k′, σ̄) and Mn changes to Mn + 1, subsequently the electron with (~k, σ)
occupies the state (~q, σ̄) that was unoccupied and the z component of the impurity
atom remains Mn + 1.
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To simplify the calculations, Kondo [79] considered just one impurity atom with a
scattered process (~k, σ) → (~k′, σ) and a flat band to the conduction electrons that is

ρ(ε) =

{
ρ −D ≤ ε ≤ D

0 otherside
, (2.22)

where the ρ is a constant and 2D is the bandwidth. Then, considering the scattering
processes with the change of the electron spins in the intermediate states, he calculated
the electrical resistivity until second order on J through the perturbation theory and
obtained the result

R = cρ J2S(S + 1)A

[
1 + 4Jρ ln

(
kBT

D

)]
, (2.23)

where the c and A are the impurity concentrations and a constant, respectively. To
an antiferromagnetic coupling J < 0, the logarithmic term in the Equation 2.23 grows
when the temperature decreases and diverges T → 0. The origin of this divergence
resides in the Pauli principle for intermediate states because the spin operators cannot
commute in the intermediate states. This means that the perturbation theory is not
more valid under a certain temperature called Kondo temperature TK . On the other
hand, the scattering by the spin-flip process must be treated as a many-body prob-
lem because the electron scattered to the state (~k, σ) feel the occupation of the other
electrons that are occupying the state (~q, σ′).

If we add the logarithmic term to the contribution of the phonon resistivity that
is proportional to T 5, and there will be a minimum in resistivity [78] at temperature
TK (dR(T )

dT
= 0). For T > TK the resistivity is describes by R(T ) = A + Bc(lnT ) with

c impurity concentrations while A,B are constants, where the TK is proportional to
c1/5. In this way, the resistivity agrees to the experimental results for T > TK , but for
T < Tk the Equation (2.23) predict a logarithmic divergence which is not confirmed
by the experimental results because it saturates in a finite value when the temperature
goes to zero. This indicates that the perturbation theory does not work properly for
temperatures below TK . This problem was solved by [5, 85] and produced the correct
behavior of the resistivity, according to experimental results, as shown in Figure (2.2),
and the Kondo temperature is given by
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kBTK = De
D
2J , (2.24)

with J being the antiferromagnetic coupling parameter. In this case, it was shown that
the Hamiltonian has a degenerated ground state of the singlet type. The Kondo effect
carries the total compensation of the conduction electrons cloud, which is the polar-
ization around the impurity. Finally, the Kondo problem was solved by the numerical
renormalization group (NRG), introduced by K. Wilson in 1975, [86].

In summary, the Kondo problem:

1. Exhibits a characteristic temperature TK given by the Equation 2.24 that sepa-
rates two physically different regimes.

2. For T > TK , the impurity spin fluctuates freely due to metal thermal agitation.
In this limit, the perturbation theory works without problem.

3. For T < TK , the impurity spin form a singlet state with a complete compensation
of the moments by the conduction electrons cloud.

4. The results corresponding to the crossover region T ≈ TK are obtained by the
numerical renormalization group [86].



Chapter 3

Conduction band spin-orbit coupling

(SOC)

In this section, we propose to study the problem of a quantum impurity interacting
with a Fermi sea of conduction electrons. The impurity models either a quantum dot
or an actual magnetic atom adsorbed into the Fermi sea. We will consider a one-
dimensional Fermi sea that models, for example, a quantum wire (QW). The quantum
impurity coupled to the QW will be modeled by the single impurity Anderson model
(SIAM) [6], whose ‘traditional’ Hamiltonian is SU(2)-symmetric, thus diagonal in the
Sz spin basis. However, since our QW is under the influence of spin-orbit coupling
(SOC), the Hamiltonian is no more diagonal. The SOC is a fantastic phenomenon that
arises from the interaction of the electron spin with self linear momentum. It arises
naturally from the Dirac equation as a correction due to relativistic effects. On the
other hand, from the theory of symmetries in quantum mechanics, the SOC obeys the
time-reversal symmetry. This means that, time-reversal symmetry,when applied over
an arbitrary eigenstate of the Hamiltonian, produces another eigenstate with the same
energy. This pair of states is called a Kramers’ doublet, which is composed by |k, ↑〉
and | − k, ↓〉 states, i.e., states with opposite linear momenta and spin. In the next
section we provide details about SOC.

18
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3.1 Spin-orbit coupling

SOC arises for the first time as an attempt to explain the spectral lines of the anoma-
lous Zeeman effect and the fine structure interaction. It was then that the idea of
the electron spin was introduced, showing that, if the electron had a g factor of 2,
the anomalous effect could be explained consistently, while for the fine structure in-
teraction, it was still necessary to consider g = 1. That was until 1926, when L. H.
Thomas [87] showed that the origin of the discrepancy was a relativistic kinematic effect
and that the proper inclusion of a g-factor could explain both phenomena at once (a
detailed explanation about Thomas’ treatment can be found in Ref. [88]). A complete
comprehension of the spin only came through relativistic quantum mechanics, where
the factor g arises naturally from the Dirac theory of the relativistic electron [89].

The Dirac theory results in an equation that describes the relativistic electron, with
mass m and charge e, moving in an external electric field, by a four-component spinor
wave function. The non-relativistic limit is the so-called Pauli equation, with a two-
component spinor wave function, where a spin-orbit coupling term appears naturally
as a correction of order v2/c2, which can be written as

−e~
4mc2

σ · (E × p), (3.1)

where v is the electron velocity, c is the speed of light, and ~ is the reduced Plank
constant. Then, this term describes the interaction of the electron spin with an effective
magnetic field Bsoc. Thus, the electron moves in the electric field produced by the
nucleus charge, and, in its rest frame it feels an apparent magnetic fieldBsoc ∝ E×v/c,
whereE is the electric field due to the nuclear charge, and σ are the Pauli spin matrices.
The principal ingredient here is the nuclear electric field E, because in Condensed
Matter systems it can be manipulated externally through a potential gradient −∇V .
Thus the typical expression for SOC is obtained

Hso = − ~
4m2

0c
2
σσσ · (ppp×∇V0), (3.2)

where V0 is the atomic potential, which can be modified externally, and σσσ = (σx, σy, σz)

is a vector of Pauli spin matrices. In many semiconductors, the spin degeneracy is the
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combined effect of the inversion symmetry in space and time [90] and, consequently, it
has quadruple energy level degeneracy E(k, ↑↓) = E(−k, ↓↑). Such spin degeneracy can
be lifted by applying an external magnetic field (Zeeman effect). In systems where the
electron is subjected to an electric field produced by an inversion asymmetric potential,
the splitting of the degeneracy can take place even without an external magnetic field,
that is B = 0, through SOC. In other words, we still have that E(k, ↑) = E(−k ↓
) and E(k, ↓) = E(−k ↑), due to time-reversal symmetry, which is not broken by
SOC. However, due to broken spatial inversion, we do not have anymore that E(k) =

E(−k), independently of spin. In quasi-2D quantum wells, the spin-split degeneracy
can appear in two different ways, one is due to bulk inversion asymmetry (BIA) [91],
studied initially in zinc-blende structures, and another way is due to the electric field
produced by an asymmetric potential, called structure inversion asymmetry (SIA) [92,
93]. Thus, because of lack of spatial inversion symmetry in the material, SOC splits
spin degeneracy, and the SOC contribution to the Hamiltonian can be written asHsoc =

HR +HD. Considering only the linear terms on k, the HSOC can be written as,

HR = αR (kyσx − kxσy) , (3.3)

HD = β (kxσx − kyσy) , (3.4)

where αR, β are the Rashba and Dresselhaus SOC constants, respectively, and kx, ky

are the conduction electron wave vector components in the x-axis and y-axis directions.
In materials without an inversion center, the Dresselhaus spin-orbit magnetic field Bsoc

arises purely from microscopic effects [90], where the electric field E and the momentum
p are odd under the parity symmetry-operation, thus, around the Brillouin zone center,
the Γ-point, like in GaAs or InSb [21], the Dresselhaus SOC has the form (3.4). On the
other hand, Rashba-type SOC (which can be manipulated externally) arises because
of an E · r term that appears in the Taylor’s expansion of the V (r) potential.

The effects mentioned until now were limited just to 2D systems, and have been
intensively studied in different areas of Condensed Matter Physics. But we are inter-
ested in the 1D case, due to the current interest in QWs. A quasi-1D system with
SOC was presented in Ref. [94], where the Rashba and Dresselhaus terms are reduced
to HR = −αRσykx, and HD = βσxkx, in a way that Hsoc = HR + HD can be written
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compactly, in real space, as

Hsoc = −
∑
l,σ′σ

c†l+1,σ(iτ)σσ′clσ′ + h.c., (3.5)

where cl,σ annihilates a spin σ electron in site l, c†l+1,σ′ creates a spin σ′ electron in site
l + 1, (iτ)σσ′ is a matrix element of the SOC matrix τ, defined below, and h.c. means
Hermitian conjugate. The τ matrix is given by

τ =

(
0 γ

γ∗ 0

)
, (3.6)

where γ = β+ iαR. In our problem, we also consider that a local SOC interaction τimp

can promote a spin-flip of an electron that hops from the site l = 0 of the linear chain
to the quantum dot

Hhyb−soc =
∑
σ,σ′

c†0σ (iτimp)σσ′ dσ′ + h.c., (3.7)

where τimp is defined in the same way as the matrix τ, with elements γimp = βimp +

iαR,imp, and dσ is the operator that annihilates a spin σ electron in the quantum dot.
Then, applying a Fourier transform to the linear chain second quantization operators,
the Hsoc can be written in k space as

Hsoc =
∑
k

−2 sin(ka)(γc†k↑ck↓ + γ∗c†k↓ck↑), (3.8)

and, as well, Eq. (3.7) can be rewritten as

Hhyb−soc =
∑
k

i(γimp,kc
†
k↑d↓ + γ∗imp,kc

†
k↓d↑ − γimp,kd

†
↑ck↓ − γ

∗
imp,kd

†
↓ck↑), (3.9)

where a is the lattice constant parameter and c†k↑(ck,↓) is an electron creation (annihi-
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lation) operator with momentum k and spin up (down).

3.2 Model

(b)

Figure 3.1: Single SET model. SOC is considered in the left and right conduction
band γ = β + iαR, with β and αR are Dresselahaus and Rashba SOC respectively,
which is coupled to center QD with single εd a double U + εd occupation levels, and Γ
is the hybridization between QD and QW.

The Figure 3.1, the SIAM for our system, including SOC in the left and right side
conduction band, is constituted by a semi-infinte chain with SOC modeled as a QW,
coupled to an embeded QD. The total Hamiltonian is then given by

H = Hwire +Himp +Hhyb, (3.10)

where Hwire describes the QW electrons, Himp describes the quantum dot, while Hhyb

is the coupling between the wire and the quantum dot:

Hwire =
∑
k,σ

(εk + µ)nkσ +
∑
k

−2 sin(ka)(γc†k↑ck↓ + γ∗c†k↓ck↑), (3.11)

Himp =
∑
σ

εdndσ + Und↑nd↓, (3.12)

Hhyb =
∑
k,σ

Vk(c
†
kσdσ + d†σckσ) +Hhyb−soc, (3.13)

where εk = −2t cos(ka) is the dispersion relation, t is the nearest-neighbor hopping
parameter, µ is the chemical potential, nkσ = c†kσckσ and ndσ = d†σdσ are the occupation
number operators for conduction electrons and quantum dot electrons, εd and U are the
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localized energy level and Coulomb repulsion energy in the quantum dot, respectively.
Finally, the hybridization term is given by two contributions, Vk and the elements of
Hhyb−soc. For simplicity’s sake, both hybridization terms are considered k-independent,
and therefore, from now on we can remove their k-indexes, resulting in Vk → V and
γimp,k → γimp.

Because of the spin-flip terms caused by SOC, the conduction electron spin is no
more a good quantum number. It is well-known that in the original SIAM the spin is
a good quantum number, or, in other words, the original SIAM is SU(2)-symmetric.
As shown by Haldane [95], in the SU(2)-symmetric case the Kondo temperature TK
can be expressed using the so-called Haldane formula, which expresses TK in terms of
the SIAM parameters U , D, and Γ = πρ0V

2, i.e., Coulomb repulsion, half band-width,
and hybridization, being ρ0 the conduction band density of states at the Fermi energy.

Therefore, as SOC breaks spin SU(2) symmetry, one may be inclined to assume
that the Kondo temperature probably may not be computed by the Haldane expres-
sion [95]. This is because the Kondo singlet state occurs when the impurity is coupled
to the conduction electrons through a hybridization function which is diagonal in spin
and independent of it. In other words, when the hybridization function is a scalar func-
tion. It turns out that, as will be shown below, because SOC preserves time-reversal
symmetry, the hybridization function for a finite-SOC model like ours is still a scalar
function, despite the loss of SU(2) symmetry.

Now, the 2×2 matrix in Eq. (3.11) is composed by the diagonal elements of its first
term, i.e., 〈k ↑ |Hwire|k ↑〉 = 〈k ↓ |Hwire|k ↓〉 = −2t cos(ka) + µ, and the non-diagonal
elements of its second term 〈k ↑ |Hwire|k ↓〉 = 〈k ↑ |Hsoc|k ↓〉 = −2γ sin(ka), and
〈k ↑ |Hwire|k ↓〉 = 〈k ↓ |Hsoc|k ↑〉 = −2γ∗ sin(ka), i.e., the spin-flip terms caused by
SOC. The eigenvalues of Eq. (3.11) are given by

εk± = −2t cos(ka)∓ 2|γ|| sin(ka)|+ µ, (3.14)

while its eigenvectors are given by

|εk±〉 =
1√
2

(
| ↑〉 ∓ Ske−iφ| ↓〉

)
, (3.15)
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where φ = tan−1(αR/β), and Sk = sign(k) is the signal function, which comes from the
| sin(ka)| term in equation (3.14) and is defined as

Sk =


1 if k > 0

0 if k = 0

−1 if k < 0

, (3.16)
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Figure 3.2: Dispersion relation including the SOC contribution to the energy, the
black curve is the case without SOC while the blue and red curves are with SOC
|γ| = 0.5, with the hopping parameter t as units.

The dispersion relation 3.14 is shown in Fig. 3.2. The black curve is for zero-SOC
and the red and blue curves (defined according to their helicity µ = + (red) and µ = −
(blue), see Appendix A) are for finite-SOC. It can be easily seen, by comparing the black
curve with the red and blue curves in Fig. 3.2, that SOC increases the bandwidth of
the conduction electrons. The study of the density of states using the helicity quantum
number ν is done in Appendix A. As discussed below, the use of the helicity quantum
number ν to diagonalize the conduction bands does not help us once Himp and Hhyb are
taken in account, since this quantum number (as it depends on the conduction electron
spin and the sign of k) cannot be defined for electrons in the quantum dot. The strategy
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to circumvent this problem is to do a change of basis so that the Hamiltonian (3.11)
is still diagonal, but the eigenstates can be defined through the spin quantum number,
however, for a different orientation of the spin z-axis, as shown below.

3.3 Spin rotation and SIAM Hamiltonian in the σr

basis

Let us first analyze the decoupled (no impurity) QW. In Fig. 3.3(a), it is shown the
dispersion when there is no SOC, γ = 0 (solid-red/dashed-blue curve for spin up/down).
In this case, the Hamiltonian has spin SU(2) symmetry, i.e., the spin is a good quantum
number and the energy dispersion does not depend upon it. Thus, due to combined
time-reversal and spatial-inversion symmetries, the eigenstates |k ↑〉 and |k ↓〉 are
degenerate and the spin quantization z-axis can be chosen to point in any direction.
However, for finite-SOC, the spin angular momentum, for an arbitrary quantization
axis, is no longer a good quantum number, because of the spin-mixing term in Eq. (3.8).
Nonetheless, as SOC preserves time-reversal symmetry, we can define a helicity operator
ĥ (see Eq. A.5 in Appendix A) such that [ĥ, Hwire] = 0, and whose eigenvalues ν = ±
are thus good quantum numbers for the eigenstates of Hwire. Indeed, in the helicity
basis (see Eq. A.6 in Appendix A), given by

c†kν =
1√
2

(
c†k↑ + νske

iφc†k↓

)
, (3.17)

where φ = tan−1 (α/β) and sk = sgn(k), the Hamiltonian Hwire =
∑

k,ν εkνc
†
kνckν is

diagonal, with a dispersion relation given by

εkν = −2t cos k − 2ν|γ|| sin k|+ µ. (3.18)

Figure 3.3(b) shows εkν , for |γ| = 0.5, plotted as a function of k for each ν: the lower
band (solid-red curve) is associated to the quantum number ν = +, and the upper band
(dashed-blue curve) is associated to ν = −. As SOC preserves time-reversal symmetry,
i.e., [Θ, Hwire] = 0, where Θ is the time-reversal operator, we have degenerate Kramer’s
doublets [89] in the same helicity band, εkν = ε−kν .

However, as the helicity ν is not defined for the impurity, its coupling to the QW
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Figure 3.3: (a) Quantum wire dispersion εkσ + µ for zero-SOC. Solid/dashed
(red/blue) curve for σ = ↑ / ↓ (b) Dispersion εkν for |γ| = 0.5. Here, the bands
are characterized by the helicity quantum number ν: solid/dashed (red/blue) curve for
ν = +/− (c) Same as in (b), but now the bands are characterized by the quantum
number σr: solid/dashed (red/blue) curve for σr = ↑ / ↓. Wave vector Q, connecting
both bands, is discussed in the text.

mixes helicity channels and ν is no longer a good quantum number once we add the
impurity to the problem. However, we can rewrite Hwire + Hhyb in a more convenient
form by choosing another basis. The key here is to realize that the |kν〉 = c†kν |0〉 (see
Eq. (3.17)) are eigenstates of the Sr component of the spin angular momentum pointing
along the direction r̂̂r̂r ≡ [θ = π/2, φ], for sk = +, and along the opposite direction −r̂−r̂−r̂ ≡
[θ = π/2, φ+ π], for sk = −. Thus, r̂̂r̂r determines the direction of what is conventionally
called the effective “spin-orbit magnetic field” [21], i.e., BBBeff

SOC (k) = |γ| sin (k) r̂̂r̂r [see
Eq. (3.18)], such that when k changes to −k the effective magnetic field points in the
opposite direction, thus conserving time-reversal symmetry. Note that, in this context,
‘up’ and ‘down’ refers to spin quantization ‘along r̂̂r̂r’, where r̂̂r̂r lays on the xy plane,
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somewhere in its first quadrant, depending on the ratio α/β. Thus, as we will see next,
for finite-SOC, the presence of the impurity will make it advantageous to work in the
Sr basis, with spin quantum number σr.

The ground state of the Kondo regime is a singlet formed between the impurity
and the conduction electrons, whose spins in the finite-SOC QW are good quantum
numbers when quantized along the r̂̂r̂r direction. As a consequence, it is natural to expect
that it will be advantageous to choose a quantization axis along r̂̂r̂r for the impurity as
well. Thus, if we take r̂̂r̂r ≡ [θ = π/2, φ] as the spin quantization axis for the impurity,
then the spin up (σr = ↑ ≡ +) and spin down (σr = ↓ ≡ −) impurity states are given
by d†σr = 1/

√
2(d†↑ + σre

iφd†↓), where d†σr(dσr) creates (annihilates) an electron at the
impurity with spin σr, quantized along the r̂̂r̂r direction, with the understanding that
when σr appears as a subscript it means (↑, ↓), and when it appears in an equation it
means (+,−), respectively.

The total Hamiltonian in this new basis is written as

H =
∑
k,σr

εkσrc
†
kσr
ckσr +

∑
σr

εdndσr +
∑
σr

U ndσrndσ̄r +
∑
k,σr

Υ
(
c†kσrdσr + d†σrckσr

)
,

(3.19)

where ndσr = d†σrdσr is the impurity number operator, c†kσr(ckσr) creates (annihilates)
an electron at the Fermi sea with momentum k and spin σr, Υ = (V 2 + |γimp|2)

1/2, and
the QW dispersion is given by

εkσr = −2
√
t2 + |γ|2 cos (k − σrϕ) + µ, (3.20)

where ϕ = tan−1 (|γ|/t). Each one of the bands in the dispersion εkσr , displaced from
each other along the k-axis by Q = 2ϕ, is associated to one of the Sr eigenvalues
σr =↑, ↓, as shown in Fig. 3.3(c).

As mentioned above, it is the choice of r̂, with polar angle φ = tan−1 α/β 1, as the
quantization axis for all spins (conduction electrons and impurity alike), that renders
the SIAM Hamiltonian in a particularly simple form (Eq. (3.19)), almost SU(2) sym-

1Since both α and β are positive definite, then 0 ≤ φ ≤ π/2.
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metric. To understand why is that so, let us look at Fig. 3.4, depicting the dispersion
relation for vanishing α and finite β, thus φ = 0. The SOC effective magnetic field
BSOC (green arrow) seen by k > 0 electrons points along the QW, in the positive
direction. Thus, choosing the Sr basis for the conduction electrons results in two pos-
sibilities: | ↑r〉 electrons (red arrow) will have energy εk−BSOC

2 (red curve in Fig. 3.4,
k > 0 branch) and | ↓r〉 electrons (blue arrow) will have energy εk +BSOC (blue curve,
k > 0 branch). Note that for electrons with k = 0, BSOC = 0, thus the red and blue
curves cross at k = 0. On the other hand, k < 0 electrons see a BSOC pointing in the
negative direction of the QW (as mandated by time-reversal symmetry). Thus, the
situation now is reversed: | ↑r〉 electrons will have energy εk +BSOC (red curve, k < 0

branch) and | ↓r〉 electrons will have energy εk −BSOC (blue curve, k < 0 branch).

Thus, contrary to what was said above, in general terms, viz., that for finite-SOC the
conduction electron spin is not a good quantum number, in 1D this is not the case.
That is so because BSOC points along a single orientation, r̂ (into the positive direction
for k > 0 and the negative direction for k < 0). Thus, choosing a spin quantization
axis along r̂ results in energy states with well defined spin orientation (Figs. 3.3(c) and
3.4). Obviously, one cannot say that SU(2) symmetry was restored by this choice of
basis, because εkσr depends on σr [see Eq. (3.20)], as can be clearly seen in Figs. 3.3(c)
and 3.4. The advantage of this choice of spin basis is that, now, there is no spin-flip
term anywhere in the SIAM Hamiltonian, Eq. (3.19).

In principle, Eq. (3.19) looks very similar to the original SIAM, but, the important
question, regarding the Kondo effect, is ‘how does the hybridization function depend
on the quantum number σr?’ The answer to this question will be discussed below.

3.4 Time-reversal and the hybridization function

It is well known that the hybridization function (which determines the properties of
the Kondo state [66]) for the zero-SOC SIAM is a spin-independent scalar function,
denoted by ∆(ω). As the Hamiltonian shown in Eq. (3.19) is similar to that for the
zero-SOC SIAM, one may be led to assume that this is still the case for the finite-SOC
hybridization function. However, there is an important detail in Eq. (3.19): the QW

2Where we have taken the electron magnetic moment µ = 1.
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Figure 3.4: Dispersion relation (3.20) for quantization axis along the r̂ axis. Here,
σr =↑, ↓ indicates the spin projection along the r̂ axis. The red curve shows εk,↑r , and
the blue color is for εk,↓r . The red and blue arrows represent the spin of the conduction
electrons, the green arrow represents the magnetic field ~Bsoc, the brown arrow is the
spin impurity, and the black arrow indicates r̂. Ezeem gives the corresponding Zeeman
energies.

dispersion εkσr is spin dependent [see Eq. (3.20) and Fig. 3.3(c)], which may imply
that the hybridization function is spin dependent. A simple numerical calculation
shows that this is not the case [see Fig. 3.5].

A general argument shows that time-reversal symmetry requires the finite-SOC
SIAM hybridization matrix ∆̃σσ′(ω) to be diagonal and spin-independent for any spin
orientation σ along an arbitrary quantization axis, like the one for the zero-SOC
SIAM [66] (we add a ~ to the hybridization function to indicate that we are treating the
finite-SOC case). Indeed, the matrix elements of the 2× 2 hybridization matrix can be
written as ∆̃σσ′(ω) =

∑
k Σσσ′(k, ω), where Σσσ′(k, ω) = Υ 2Gwire

σσ′ (k, ω), and Gwire
σσ′ (k, ω)

is the single-particle Green’s function for the QW. An analysis of the expressions for
the matrix elements Σσσ′(k, ω) indicates that their parity, in relation to k, can be
readily obtained from Eq. (3.11): no-spin-flip terms Σσσ(k, ω), produced by the first
term in Hwire, which is associated to the kinetic energy p2/2m, are even in k and spin
independent, while non-diagonal spin-flip terms Σσσ̄(k, ω) are produced by the (SOC)
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Figure 3.5: DOS ρ (ω) = −Im∆σσ(ω)/ (πΥ 2) with and without SOC. The dotted
black curve corresponds to zero-SOC (|γ| = 0) and the solid/dashed (red/blue) curves
correspond to |γ| = 0.5, for σ =↑ / ↓, for an arbitrary spin quantization axis. All
results are shown for µ = 0.

second term in Hwire, which, to preserve time-reversal symmetry, has to be odd in k.
Thus, integrating Σσσ′(k, ω) in k to obtain ∆̃σσ′(ω) results in ∆̃↑↑(ω) = ∆̃↓↓(ω) = ∆̃(ω)

and ∆̃↑↓(ω) = ∆̃↓↑(ω) = 0. Therefore, as previously advertised, the spin indepen-
dence of the hybridization function for the finite-SOC SIAM (despite the broken spin
SU(2) symmetry) is guaranteed by the time-reversal symmetry. To illustrate these
results, −Im∆σσ (ω) / (πΥ 2) = ρ(ω) is plotted in Fig. 3.5 for finite-SOC (solid/dashed
(red/blue) curve for an arbitrary spin orientation σ = ↑ / ↓), and, as expected, it does
not depend upon the spin orientation.
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3.5 Pseudo-spin SU(2) symmetry

Due to the fact that the dispersion relation in Eq. (3.20) satisfies the identity εkσr =

εk+Qσ̄r , which guarantees that a 2D Fermi sea has a pseudo-spin SU(2) symmetry (when
α = β) [96], we have analyzed if this is the case too for our system. To accomplish that,
we generalize the problem to treat the Anderson model by introducing the spinor oper-
ators (in the σr basis) ccc†kQ = {c†k↑ c

†
k+Q↓} and ddd†r = {d†↑r d†↓r}, and with them construct

the operators 2SSSiQ =
∑

k ccc
†
kQσσσ

iccckQ + ddd†rσσσ
idddr, where the σσσi are the Pauli matrices and

Q = 2ϕ [see Eq. (3.20)]. These operators obey the angular momentum commutation
relations [SSSiQ,SSS

j
Q] = iεijlSSSlQ, where εijl is the Levi-Civita symbol. It can be shown

that the SSSiQ (for i = x, y, z) commute with the finite-SOC SIAM Hamiltonian. Note
that, as in Ref. [96], the commutation [SSSiQ, H] = 0 is satisfied because of the equality
εk+Qσr = εkσ̄r , when Q = 2ϕ [see Eq. (3.20) and Fig. 3.3(c)] showing that our Hamilto-
nian is pseudo-spin SU(2) symmetric. Thus, the operators SSSiQ are the generators of the
symmetry operations connected to the PSH states [96], which the authors believe may
be associated with the structure of the Kondo cloud formed in our system, as observed
in a previous work on Topological Insulators (see Fig. 10(a) in Ref. [97]).



Chapter 4

Thermoelectric properties

To calculate the TE transport properties of a QD in a steady-state condition, we
apply a small external bias voltage ∆V = VL − VR and a small temperature difference
∆T = TL − TR between the left (hot) and the right (cold) leads. In linear response
theory, a current Jα′ will flow through the system under the action of a temperature
gradient ~∇T and/or an electric field ~E = −~∇V , where α′ = e indicates a charge
current Je, while α′ = Q indicates a heat current JQ. The TE properties calculations
follow standard textbooks [98, 99]. The electrical and thermal conductances, G(T ) and
Ke(T ), respectively, as well as the thermopower S(T ) (Seebeck coefficient) are given
by [100]

G(T ) = − lim
∆V→0

(Je/∆V )|∆T=0
= e2L0(T ), (4.1)

Ke(T ) = − lim
∆T→0

(JQ/∆T )|Je=0
(4.2)

=
1

T

(
L2(T )− L

2
1(T )

L0(T )

)
,

S(T ) = − lim
∆T→0

(∆V/∆T )|Je=0
=

(
−1

eT

)
L1(T )

L0(T )
, (4.3)

where, to calculate the transport coefficients L0(T ), L1(T ), and L2(T ), we follow
Ref. [101], where expressions for the particle current and thermal flux, for a QD, were
derived within the framework of Keldysh non-equilibrium Green’s functions. Thus, the
TE transport coefficients were obtained under temperature and voltage gradients, with

32



33

the Onsager relations automatically satisfied, in the linear regime. The TE transport
coefficients (for n = 0, 1, 2) consistent with the general TE formulas derived above are
given by

Ln(T ) =
2

h

∫ (
−∂f(ω, T )

∂ω

)
ωnτ(ω, T )dω, (4.4)

where τ(ω, T ) is the transmittance for electrons with energy ε = ~ω and temperature
T , while f(ω, T ) is the Fermi-Dirac distribution function.

For ordinary metals, the Wiedemann-Franz law states that the ratio between the
electronic contribution to the thermal conductance Ke(T ) and the product of temper-
ature T and electrical conductance G(T ),

L =
Ke(T )

TG(T )
, (4.5)

is independent of temperature and takes a universal value given by the Lorenz number
Lo = (π2/3)(kB/e)2, where kB is the Boltzmann constant and −e is the electron charge.
Note that, in the calculations that follow, we present the Wiedemann-Franz law in
units of Lo,

WF =
L

Lo
, (4.6)

so that it is easy to spot deviations from what is expected for ordinary metals, i.e.,
WF = 1.

The slow evolution of Thermoelectricity is related to the difficulties to find TE
materials that exhibit higher dimensionless TE figure of merit ZT and power factors
PF0, at the same time [8, 50]. These quantities give a measure of the efficiency of the
device as a function of the temperature T and are defined by

ZT = S2TG/K PF0 = S2G, (4.7)

In ordinary metals, both G(T ) and K(T ) are related to the same electronic scatter-
ing processes, with only weak energy dependence, and satisfying the Wiedemann-Franz
law, which is the main reason why metals show lower ZT values. However, higher ZT
alone is necessary but not sufficient to define the usefulness of a TE device. In addition
to this, the power factor S2G, which is a measure of the maximum power that a TE
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device can produce [50], should be higher. Both quantities act as guides to the exper-
imental work in the area. We could have a good TE system when the power factor
is maximized, and the K is minimized. However, it is not easy to maximize the heat
conversion because those TE properties are closely related.

Employing Eqs. (4.5) to (4.7), we can write ZT as a function of the thermopower
S and the Wiedemann-Franz law WF [expressed in units of Lo, as in Eq. (4.6)]

ZT =
S2

WF
. (4.8)

This equation shows that violations of the Wiedemann-Franz law can lead to an ef-
fective increase of ZT in regions where WF < 1, as long as there is no concomitant
decrease in the thermopower S.

The behavior of the TE coefficients is governed by the transmittance τ(ω, T ) [see
Eq. (4.4)]. For a QD in an immersed (or embedded) geometry, it can be written in
terms of the QD Green’s function as

τ(ω, T ) = Γ=[Gd(ω, T )], (4.9)

where Γγ = πV 2ρc(µ), with ρcσr(µ) being the spin-orbit dependent leads’ DOS at the
Fermi energy, and = indicates the imaginary part.



Chapter 5

Atomic approach method

The main objective of this chapter is to present the atomic approach [7, 102] as an
alternative to study nanoscopic systems that exhibit the Kondo effect. Due to the
simplicity of its implementation (practically all the method is analytical) and very
low computational cost (a density of states curve can be obtained in few seconds or
less), the atomic approach is a good candidate to describe strongly correlated impurity
systems that exhibit Kondo effect, like the quantum dots. Although the Kondo tem-
perature obtained by the present method shows a considerable deviation from the exact
exponential behavior, the results obtained for both the localized density of states at
the chemical potential and dynamical properties (like the conductance) agree very well
with those obtained by the numerical renormalization group formalism [8]. This result
is a consequence of the satisfaction of the Friedel sum rule by the atomic approach in
the Kondo limit.

Another point that should be stressed is that the present method, due to its sim-
plicity is not able to take into account all the Kondo physics behind the Anderson
impurity as it is done by other powerful and complex methods, like the numerical
renormalization group (NRG) [8]. The present method is a simple and semi-analytical
technique that should be used as the first choice to calculate the dynamical properties
of the Anderson impurity systems, because it can describe the emergence of the Kondo
peak at low temperatures in the Kondo regime qualitatively.
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5.1 Model and theory
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Figure 5.1: (a) Schematic picture of the SET. A quantum dot embedded into conduc-
tion leads and (b) Details of the eigenstates structure of the atomic solution generated
through the atomic approach in the Kondo regime [7].

In Figure 5.1a, we present a pictorial view of a quantum dot for the immersed case.
In Figure 5.1b, we represent the eigenstates of the atomic solution, which are the “seed"
employed to calculate the Green’s functions of the atomic approach (in this chapter,
we are working on the base σr at all time, that is σr → σ). Those Green’s functions
have the general form [7]:

gf,atσ (ω) = eβΩ

16∑
i=1

mi

ω − ui
, (5.1)

where Ω is the thermodynamic potential, the poles ui in the denominator, are the energy
eigenvalues associated with the energy levels, and the residues mi in the numerator are
the occupation numbers associated with the atomic transitions. In the diagram, we
indicate transitions with null residues (mi = 0), with dashed lines and transitions
with non-null residues (mi 6= 0) with solid lines, but as the temperature or the other
parameters of the model change, the residues of the Green’s functions change as well,
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and the dotted lines can become solid lines and vice-versa. The resultant eigenstate
structure of the QD corresponds to the atomic solution of the periodic Anderson model
(PAM), (For more details cf. Figure 20 and the appendix of Ref. [7]).

This particular eigenstate structure corresponds to the Kondo limit at a temper-
ature T , below the Kondo temperature TK . The Kondo singlet ground state is given
by the level 11, and the transitions represented by the complete lines produce non-null
residues for the atomic Green’s functions, which give rise to the Kondo peak. The tran-
sitions represented by dashed lines vanish in the Kondo region. This QD eigenstate
structure is not static but instead changes with temperature, and the QD localized
energy level Efσ, follows the different regimes of the SIAM: empty dot, intermediate
valence, Kondo, and double occupation.

The Hamiltonian of the system can be written as

H =
∑
k,σ

∑
s=L,R

(Es
k,σ − µ)cs†k,σc

s
k,σ

+
∑
σ

[(Efσ − µ)Xσσ + (2Efσ + U − 2µ)Xdd]

+
∑
s=L,R

∑
k,σ

Vs

(
X†0σc

s
k,σ + cs†k,σX0σ

)
, (5.2)

where the first term represents the leads, characterized by an electronic (c-electrons)
conduction band, where the spin-orbit coupling is taken into account and is included
inside the Es

k,σ electrons to the right (R) and the left (L) of the QD (Figure 5.1a). The
second term describes the QD defined by a two-level structure: one localized bare level
Efσ = EQD − µ and the local Coulomb interaction of the QD, characterized by the
double occupation level at 2EQD + U − 2µ, where µ is the chemical potential [7, 102].
These localized levels are expressed in the representation of Hubbard operators, which
are convenient for working with correlated local states and are defined in general by
Xp,ab =| p, a >< p, b |. We would like to mention that the atomic approach “dresses"
this simple two-level QD, incorporating into it the “eigenstate structure" represented
in Figure 5.1b.

Finally, the third term corresponds to the tunneling between the embedded dot
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and the left (L) and right (R) semi-infinite leads. The amplitude Vs is responsible for
the tunneling between the QD and the lead s. For simplicity, we assume symmetric
junctions (i.e., Vs = VL = VR = V ) and identical leads connecting the QD to the
quantum wire.

The identity relation in the reduced space of the localized states at the QD site,
expressed in terms of the Hubbard operators, is

X00 +Xσσ +Xσσ +Xdd = I, (5.3)

where I is the identity operator. Associated with this relation, the occupation numbers
for the QD are calculated by

na = 〈Xaa〉 =

(
−1

π

)∫ ∞
−∞

dωIm(Gf
oσ(z))nF (ω), (5.4)

where Gf
oσ(z) is the localized QD Green function and nF = 1/(1 + exp(βω)) is the

Fermi-Dirac distribution, with z = ω + iη. In the numerical calculations, we employ
η = 10−4. The QD occupation numbers satisfy the “completeness” relation.

n0 + nσ + nσ + ndd = 1. (5.5)

where no represents the empty states, (nσ, nσ) are the singly occupied states, and nd
represents the double occupied states.

5.2 The atomic approach for the single impurity An-

derson model (SIAM)

The exact GF for the f electrons, which is valid both for the PAM and the SIAM, can
be written in the form of a Dyson equation [7]

Gf
σ = Mσ· (I−Aσ)−1 , (5.6)
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where Aσ = Wσ ·Mσ and Mσ are the exact effective cumulants. Inverting Eq. 5.6, we
obtain

Mσ=
(
I + Gf

σ ·Wσ

)−1 ·Gf
σ, (5.7)

and for an impurity located at the origin Wσ is given by

W↑ (z) = |V |2 ϕ↑(z)I, (5.8)

W↓ (z) = |V |2 ϕ↓(z)I′, (5.9)

where

I =

(
1 1

1 1

)
, I′ =

(
1 −1

−1 1

)
. (5.10)

For a tight-binding one-dimensional chain we have the unperturbed conduction
band

ρσ(ω) =
1

π
√

4(t2 + |γ|2)− ω2
, (5.11)

where µ is the chemical potential and γ is the spin-orbit coupling strength.

Since the calculation of the exact effective cumulant Mσ is equivalent to obtaining
the exact Green’s functions [7, 102], we introduce an approximation that consists of sub-
stituting the exact effective cumulant in the Green’s functions with the approximated
ones, obtained from the atomic solution of the model, which is associated with the
transitions described by the Hubbard operators. We employ the index Ix = 1, 2, 3, 4,
defined in Table I, to characterize these X operators:

Ix 1 2 3 4

α = (b, a) (0, ↑) (0, ↓) (↓, d) (↑, d)
(5.12)

Table I: Representation of the possible transitions present in the finite U atomic SIAM
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Hamiltonian. Ix = 1, 3 destroys one electron with spin up, and Ix = 2, 4 destroys one
electron with spin down.

In the atomic approach, those approximated GF’s become

Gf
↑(iω) =

Mat
13(iω)− |V |2 ϕ↑(iω)R13I′

1− |V |2 ϕ↑(iω)S13
, (5.13)

with R13 = m11m33 −m13m31 and S13 = m11 +m33 +m13 +m31, and

Gf
↓(iω) =

Mat
24(iω)− |V |2 ϕ↓(iω)R24I

1− |V |2 ϕ↓(iω)S24
, (5.14)

with R24 = m22m44 −m24m42 and S24 = m22 +m44 +m24 +m42, and

Mat
13(iω) =

(
mat

11 mat
13

mat
31 mat

33

)
, (5.15)

Mat
24(iω) =

(
mat

22 mat
24

mat
42 mat

44

)
, (5.16)

are the atomic cumulants calculated from the atomic Green’s functions (For more
details cf. section III and the appendix of our Ref. [7]). In the same way, we can
obtain the conduction Gcc

σ (k,k′, iω) and the cross Gcf
σ (k, iω) Green’s functions.

The exact atomic Green’s function gf,atσ (z) of the atomic problem satisfies a Dyson
equation of the same form as Eq. 5.6, but now in terms of the atomic cumulants given
by Eqs. 5.15 and 5.16

gf,atσ = Mat
σ ·
(
I−Wo

σM
at
σ

)−1
. (5.17)

It should be stressed that gf,atσ is known and it is obtained from the exact analytical
diagonalization of a 16×16 matrix, which represents the atomic solution of the periodic
Anderson Hamiltonian (For more details cf. the appendix of our reference [7]) . From
this equation we obtain the exact atomic cumulant
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Mat
σ =

(
I + gf,atσ ·Wo

σ

)−1 · gf,atσ , (5.18)

where
Wo
↑ (z) = |Γ|2 ϕo↑(z) ; Wo

↓ (z) = |Γ|2 ϕo↓(z)I, (5.19)

and
ϕoσ(z) =

−1

z − εo − µ
. (5.20)

This equation corresponds to the zero-width band located at ε0, namely the bare
conduction Green’s function. The atomic cumulant Mat

σ , (Eq. 5.18) is obtained by
replacing Eqs. 5.19-5.20 in Eq. 5.18. The full Green’s functions Gf

σ are calculated by
substituting the cumulants obtained in this way in Eqs. 5.13 and 5.14. This procedure
overestimates the contribution of the c electrons, because we concentrate them at a
single energy level εo, and to moderate this effect we replace V 2 in Eq. 5.19, with
the Anderson parameter Γ = πV 2ρc(µ), with ρc(µ) being the density of states of the
spin-orbit conduction band given by Eq. 5.11.

We should stress that in the low temperature regime the atomic approach imposes
the fulfillment of the Friedel sum rule, but for temperatures above the Kondo temper-
ature TK , as happens in the present paper for T ' Γ, we do not apply this procedure;
we only put the conduction atomic level of Eq. 5.20 at the chemical potential position,
ε0 = µ.



Chapter 6

Numerical renormalization group

(NRG)

Introduction

After Jun Kondo’s initial work in the magnetic impurity problem [79] (see the first
section of Chap. 2 for details), it was shown that perturbation theory fails at energy
scales lower than the Kondo temperature. Another method that tried to solve the
so-called ‘Kondo problem’ was Anderson’s Poor man’s scaling approach [103], which
was also unsuccessful, although it showed a new direction to be explored (scaling and
renormalization ideas). The method that successfully solves the Kondo problem is the
Numerical Renormalization Group (NRG) method [86]. The NRG method was built on
the basis of Anderson’s scaling and renormalization ideas, and later it was generalized
to other quantum systems, as well as to the Anderson impurity model [104], and
impurities immersed in bosonic baths [105]. With the NRG method, one can calculate
the dynamic and thermodynamic properties at zero temperature, as well as at finite
temperatures, for strongly correlated Kondo-type systems.

In this chapter, we will describe the general concepts of the NRG method for the
Anderson impurity model. Starting with the continuous representation of Anderson’s
Hamiltonian, it is followed by a discretization procedure and a mapping to a chain
Hamiltonian, the so-called ‘Wilson chain’, which is then diagonalized iteratively. De-
tails of the method can be found in the Refs. [66, 104, 106].

42
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6.1 NRG strategies

Conventionally, the description of the NRG method is made on the Anderson impurity
model, and here it is no exception. Let us consider Anderson’s model for a single
impurity. This model describes a free-fermion bath, which is coupled to a quantum
magnetic impurity (a quantum dot, for example). We copy here the Hamiltonian from
Eq. (3.19) (but replace σr by σ)

H =Hd +
∑
k,σ

εkσc
†
kσckσ +

∑
k,σ

Vk

(
c†kσdσ + d†σckσ

)
. (6.1)

The first term, Hd, corresponds to the quantum magnetic impurity, while the second
term describes a free fermion conduction band, and the last term describes the coupling
between them. The quantum impurity term Hd is given by

Hd =
∑
σ

εdndσ +
∑
σ

U ndσndσ̄. (6.2)

The full description of Eq. 6.1 can be found in section 3.3, where here, for simplicity’s
sake, we make γimp = 0, keeping only the Vk coupling. The integral form of the
Hamiltonian, according to Bulla et al. [66], is written as

H = Hd +
∑
σ

∫ 1

−1

g(ε)nε,σ +
∑
σ

∫ 1

−1

h(ε)(d†σaεσ + a†εσdσ). (6.3)

In the above, g(ε) is the generalized dispersion and h(ε) is the generalized hy-
bridization [66]. The annihilation and creation operators aεσ and a†εσ, defined in energy
space, obey the usual fermionic anticonmutation relation {a†εσ, aεσ} = 1 as long as they
are normalized by the density of states of the conduction band (the explicit relation
between the creation and annihilation operators in the energy space ε and the corre-
sponding k-space operators can be found in Ref. [104]). The generalized dispersion and
the generalized hybridization are related by
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∂g−1
σ (ε)

∂ε
[hσ(g−1

σ (ε))]2 = ρσ[Vσ(ε)]2. (6.4)

Equation 6.4 allows a generalization of the NRG method to a non-constant density
of states [107]. This ‘trick’ is important when the conduction band density of states
presents van-Hove singularities close to the Fermi energy.

Panel (a) in Fig. 6.1 shows a schematic representation of the Hamiltonian in Eq. (6.1),
where the box Hd represents the quantum impurity, ρ(εk) is the conduction band den-
sity of states, and the red region in the figure represents the hybridization V between
Hd and ρ(εk). As depicted in panel (a), the entire width of the energy spectrum in-
teracts with the impurity. Thus, applying the NRG method to a strongly correlated
system involves considering the following: (i) As discussed in Ref. [86], all energy scales,
up to the band-width D = 1, contribute to the properties of the ground state. (ii) As
discussed in Ref. [79], all the physics of the system is governed by the low cut-off en-
ergy scale kBTK/D. This is typical of Renormalization Group problems. A clear example
of which is the Kondo effect, where the Kondo temperature (kBTK), being exponen-
tially smaller than the ratio of the Coulomb repulsion and the hybridization strength,
requires a high energy-resolution in the vicinity of the Fermi energy.

Because of its implementation of a logarithmic discretization (see below), the NRG
method allows one to obtain a high energy-resolution in the neighborhood of the Fermi
level. The NRG method consists of a series of steps, as depicted in Fig. 6.1: In panel (a)
we show an appropriate continuous representation of the Hamiltonian, in panel (b) we
show a discretization of the continuum into logarithmic intervals, in panel (c) we show
that the impurity properties can be described quite faithfully by keeping just a single
state in each logarithmic interval, and in panel (d) we finally show the (exact) mapping
of the problem to a one-dimensional chain, called Wilson chain. The renormalization
calculation starts here in panel (d). Next, we are going to describe each of these steps
qualitatively, since a detailed description can be found in the references cited in the
introduction to this chapter.

Once the Hamiltonian is properly rewritten in the continuum, the next step is
the logarithmic discretization of the conduction band in intervals [−xn,−xn+1 >, for
negative energies, and < xn+1, xn], for positive energies. Λ is the discretization pa-
rameter that determines the position of the xn = DΛ−n points in the conduction
band, where n = 0, 1, 2, . . .. The width of each interval is given by dn = xn − xn+1 =
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(d)

(a) (b) (c)

Figure 6.1: The NRG steps for the SIAM: the Hd square in (a) represents the im-
purity coupled to a continuous conduction band. (b) Logarithmic discretization of the
conduction band. (c) Representation by a single state in each interval of the contin-
uum. (d) Mapping of the model to a semi-infinite chain, so that the impurity is coupled
just to the first site of the chain

D(Λ−n+Λ−(n+1)) = D(Λ−1)
Λn+1 . The following step is to define a complete set of orthogonal

functions within each interval

ψ±np(ε) =

{
1√
dn
e±iωnpε xn+1 < ±ε < xn

0 else
, (6.5)

where the signs + and − mean that the orthogonal functions are defined for positive
and negative energies, respectively, the integers p ∈ 〈−∞,∞〉, and the fundamental
frequency of each interval is ωn = 2π

dn
= 2πΛn+1

D(Λ−1)
.

After that, the conduction band annihilation operators aεσ are expressed in the
basis functions defined in Eq. (6.5), for each interval
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aεσ =
∑
np

[anpσψ
+
np(ε) + bnpσψ

−
np(ε)]. (6.6)

It can be shown that the impurity couples directly only to the p = 0 state in each
interval, i.e., ψ±np=0(ε). Thus, here, the most severe approximation in NRG is done, viz.,
all the p 6= 0 states are discarded, since they couple to the impurity only indirectly
(through the p = 0 states). Thus, each interval now contains a single state, and this is
depicted in panel (c) of Fig. 6.1.

Thus, the Hamiltonian 6.1 has been transformed from the continuous representation
to the discrete representation, from which the mapping of the system to the Wilson
chain can be performed easily. It is well known that one can always tridiagonalize any
sparse matrix using, for example, the Lanczos algorithm [108]. On the other hand, a
tridiagonal matrix represents a Hamiltonian for a tight-binding chain with only nearest-
neighbor hoppings. The important point to realize here is that, in our case, the first
element of the tridiagonal (Lanczos) basis is given by the hybridization term in the
discretized Hamiltonian (i.e., the orbital that couples to the impurity). Then, the
Lanczos algorithm will create the rest of the basis, together with all the hoppings and
orbital energies for each site of the Wilson chain. This is depicted in Fig. 6.1(d) and
the tight-binding expression of the Hamiltonian for the Wilson chain is as follows

H = Hd +

√
ξ0

π

∑
σ

(d†σc0σ + h.c) +
∞∑

σ,n=0

[εnc
†
nσcnσ + tn(c†nσcn+1σ + h.c)], (6.7)

where

ξ0 =

∫ 1

−1

dε∆(ε). (6.8)

Thus, the second term of Eq. 6.7 describes the coupling of the orbital in the first site
of the Wilson chain (denoted c0σ) to the impurity, and the third term is the Wilson
chain itself, with n = 0, 1, 2, 3 . . . being the index of the Wilson chain sites. The
hoppings of the Wilson chain decrease exponentially as Λ−n/2.

This is where truly the renormalization group process begins, through an iterative



6.2 NRG Ljubljana 47

diagonalization process of the Hamiltonian. Within the ideas of the renormalization
group, the Wilson chain Hamiltonian is interpreted as a series of Hamiltonians, where
the next Hamiltonian in the series is obtained from the previous by adding an extra
site to the Wilson chain. Thus, we have, for example, H1, H2, . . . HN are Wilson chain’s
Hamiltonians for 1 site, 2 sites, . . . , and N sites. We recover the initial Hamiltonian
in the limit of N →∞

H = lim
N→∞

Λ−(N−1)/2HN , (6.9)

where the full expression for HN is given by

HN = Λ(N−1)/2

(
Hd +

√
ξ0

π

∑
σ

(d†σc0σ + h.c) +
N−1∑
σ,n=0

[εnc
†
nσcnσ + tn(c†nσcn+1σ + h.c)]

)
,

(6.10)

and the recursive relation that relates HN+1 to HN is given by

HN+1 =
√

ΛHN +

(∑
σ

[εN+1c
†
N+1σcN+1σ + tN(c†NσcN+1σ + h.c)

)
. (6.11)

In each of these iteration steps an N + 1 new site is added, and the Hamiltonian is
diagonalized in this new enlarged Hilbert space.

6.2 “NRG Ljubljana” open-source numerical renor-

malization group code

The NRG-Ljubljana is a sophisticated open-source program designed to study quantum-
impurity problems using the NRG method. It was developed by Prof. Rok Žitko from
the Jožef Stefan Institute in Ljubljana, Slovenia. It is a highly cost-effective code
in terms of computational cost and flexibility, which can be integrated with other
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programming languages without losing computational efficiency. The NRG iteration
calculations are performed in C++, the diagonalization is done through specialized
libraries, and the processing of the results can be done in any other high-level lan-
guage [109], or in any language one prefers. By default, the package has a library of
Perl commands and functions that facilitate the handling of files, whether these files are
text or numerical. Depending on the complexity of the problem to be studied, it allows
the parallelization of the program. It allows us to study a great variety of problems
besides the Kondo problem and the SIAM, which are the best known ones. For exam-
ple, we can also study the periodic SIAM, the Hubbard model, Density Matrix NRG,
superconductivity, and others. It also implements different ‘flavors’ of conduction band
discretizations [110–112].



Chapter 7

Numerical Results

7.1 NRG result: Kondo Temperature under spin-orbit

coupling

7.1.1 Renormalized Haldane expression

Through the application of Anderson’s poor man’s scaling approach [103] to the SIAM,
different expressions for the Kondo temperature TK can be found for a variety of
parameter regimes [67]. All of them, collectively known as Haldane expression [95, 113],
are proportional to an exponential exp (πε0(ε0+U)/2∆U) multiplied by a function of ∆, D,
ε0 and U , whose form depends on these parameters relative values. In the wide-band
limit, i.e., D � U,∆, |ε0|, Haldane obtained (see Eq. [37] in Ref. [95])

TK = 0.364 (2∆U/π)
1
2 exp

[
ε0 (ε0 + U)

2∆U/π

]
, (7.1)

where ∆ = πV 2ρ (εF ) and ρ (εF ) is the band DOS at the Fermi energy εF . As our
Hamiltonian [Eq. (3.19)] is formally equivalent to the zero-SOC SIAM Hamiltonian
used to obtain Eq. (7.1), the Haldane expression should be valid for our finite-SOC
SIAM as well, but with band parameters renormalized by SOC (an SOC renormalized
parameter will be denoted with a ∼ on top of it). Indeed, as illustrated in Figure 3.5,
which compares the DOS for γ = 0.0 (dotted black line) with that for |γ| = 0.5

(solid/dashed (red/blue) for σ = ↑ / ↓), the bulk SOC γ increases the bandwidth and
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thus decreases the DOS ρ̃ (εF ), at εF = 0. Thanks to the analytical expression for
εkσr [Eq. (3.20)], obtained through the spin rotation, we can derive a simple analytical
expression for the renormalized semi-bandwidth

D̃ = 2
√
t2 + |γ|2, (7.2)

as well as for the band DOS at the Fermi energy ρ̃ (0) = 1/
(

2π
√
t2+|γ|2

)
. Therefore,

the renormalized hybridization function at half-filling ∆̃ = ∆̃ (0) can be written as

∆̃ = πΛ2ρ̃ (0) =
V 2 + |γimp|2

2
√
t2 + |γ|2

. (7.3)

Finally, replacing ∆̃ for ∆ in Eq. (7.1), the renormalized finite-SOC SIAM Kondo
temperature T̃K , in the wide-band limit, is given by

T̃K = 0.364
(

2∆̃U/π
) 1

2 exp

[
ε0 (ε0 + U)

2∆̃U/π

]
. (7.4)

In particular, if one takes the U →∞ limit, one obtains [67]

T̃K ∝
√

∆̃D̃ exp (πε0/2∆̃) , (7.5)

where it should be noticed that, differently from the wide-band limit [Eq. (7.4)], the
multiplicative constant in Eq. (7.5) is unknown. Through the renormalized infinite-U
Haldane expression in Eq. (7.5), one can easily analyze the SOC impact over the Kondo
temperature T̃K for a fixed value of ε0. First, T̃K ’s prefactor depends on the local SOC
term (γimp), but not on the bulk SOC (γ). Second (keeping in mind that, in the Kondo
regime, ε0 < µ, since εF = µ), Eq. (7.3), for the renormalized hybridization ∆̃, implies
that the local SOC γimp, by increasing ∆̃, exponentially increases T̃K , while the bulk
SOC term γ exponentially decreases it, by decreasing ∆̃.

Next, using NRG, we will numerically validate the analytical results obtained for
the wide-band regime. In addition, we will compare our NRG results with the QMC
results in Ref. [62], for the intermediate regime, U = D > ∆, with the Fermi energy
close to the bottom of the band.
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Figure 7.1: Log-linear plot of T̃K vs U/∆̃, deep into the Kondo regime. Comparison of
NRG results [(red) squares curve] with the analytical results obtained from Eq. (7.4)
[(blue) circles curve], for U = 1.0× 10−3, V = 5.5× 10−3, 0.0 ≤ |γ| ≤ 0.5, γimp = 0.0,
µ = 0.0, and ε0 − µ = −U/2. The very good agreement indicates that the renormalized
Haldane expression [Eq. (7.4)] describes the dependence of the Kondo temperature
with SOC to high accuracy.

7.1.2 Discussion of the NRG and analytical results for finite-

SOC

In Figure 7.1, we show Kondo temperature results for finite-SOC, T̃K (in log10 scale),
as a function of U/∆̃, for U = 1.0 × 10−3, V = 5.5 × 10−3, 0.0 ≤ |γ| ≤ 0.5, γimp = 0.0,
µ = 0.0, at the particle-hole symmetric point ε0−µ = −U/2. The (red) squares curve was
obtained using NRG, while the (blue) circles curve was obtained analytically through
Eq. (7.4). We used this set of parameters for two reasons: first, the wide-band limit,
i.e., D � U, ∆̃, |ε0|, allows for a very precise determination of the prefactor to the
exponential [see Eq. (7.4)]. Thus, in this regime, the Haldane expression is supposed
to be the most accurate. This can be confirmed by its very good agreement with NRG,
as shown in the figure. Second, for U � ∆̃, and in the particle-hole symmetric point
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ε0−µ = −U/2 and µ = 0, one is deep into the Kondo regime, therefore, NRG is probing
the properties of the SIAM very close to its strong coupling fixed point. The very good
agreement shown by the results in Figure 7.1 imply that the SOC-induced reduction of
the Kondo temperature is directly tied to the suppression of the hybridization ∆̃ at the
Fermi energy, which is caused by the widening of the band [see Figure 3.5], and this
effect is very accurately described by the Haldane expression, Eq. (7.4), giving strong
support to the analytical results presented in the previous section.

Figure 7.2: (a) NRG results for T̃K(Eγ)/TK(0) vs Eγ (SOC energy, see main text) in the
intermediate regime, for U = 1.0, V = 0.396, 0.0 ≤ |γ| ≤ 0.5, γimp = 0.0, µ = −0.8
(thus, the Fermi energy is 0.2 above the bottom of the band), and two different values of
ε0−µ: −0.3 [(red) squares curve] and −0.7 [(blue) circles curve]. (b) Same parameters
as in (a), except for the chemical potential, now at half-filling (µ = 0.0). In addition,
the horizontal axis is now U/∆̃, instead of Eγ, and the vertical axis is in log10 scale,
showing that the Kondo temperature has an almost exponential behavior dependence
on U/∆̃, similar to the results for the wide-band limit, Figure 7.1.

The situation is more involved for the second regime we analyzed, which we call
intermediate regime, i.e., U = D > ∆, where, in addition, we have moved the Fermi
energy close to the bottom of the band. Recent results [62], for a model very similar
to ours, obtained using QMC, have reported a polynomial dependence of the Kondo
temperature with SOC for this intermediate regime (see Figure 3(a) in Ref. [62]). Their
conclusion is similar to the one we obtained for the wide-band regime, namely, that the
reduction of the hybridization at the Fermi energy, caused by SOC, is responsible for the
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decrease in the Kondo temperature. In Figure 7.2(a), to compare our NRG results with
the QMC ones in Ref. [62], it is shown T̃K(Eγ)/TK(0) vs Eγ [where Eγ = 2[

√
t2 + |γ|2− t]

is the so-called SOC energy, indicated in Figure 3.3(b)], for U = 1.0, V = 0.396,
0.0 ≤ |γ| ≤ 0.5, γimp = 0.0, µ = −0.8, and two different values of ε0 − µ = −0.3 [(red)
squares curve] and −0.7 [(blue) circles curve]. For this value of chemical potential, the
Fermi energy is just 0.2 above the bottom of the band. The contrast to the results
shown in Figure 7.1 is striking. Note that we have plotted (not shown) the two curves
in panel (a) in log10 scale for the vertical axis (vs U/∆̃) and the behavior is clearly
not Haldane-like. In Figure 7.2(b), we show NRG results for T̃K(γ)/TK(0) vs U/∆̃ for the
same parameters as in Figure 7.2(a), but for µ = 0.0 (i.e., at half-filling), using a log10

scale. It is very clear that, for the particle-hole symmetric point, contrary to what
happens when the Fermi energy is close to the bottom of the band [Figure 7.2(a)],
T̃K(γ)/TK(0), plotted against U/∆̃, shows a very-close-to exponential behavior. We do not
plot results for the Haldane expression [Eq. (7.4)] because, as already mentioned above,
that expression compares well with the NRG results just for the wide-band limit [67].
Nonetheless, the contrast between the results at half-filling [µ = 0.0, panel (b)] and
those for the Fermi energy close to the bottom of the band [µ = −0.8, panel (a)],
indicates that the polynomial behavior reported in Ref. [62] is caused by the proximity
of the Fermi energy, and thus the Kondo peak, to the singularity at the bottom of
the band. Indeed, as γ changes, the singularity moves [see Figure 3.5], altering its
effect over the impurity’s local density of states (LDOS), thus over its Kondo peak,
and, by extension, over its Kondo temperature. A similar effect was observed for a
related 2D model [56]. Indeed, as shown in detail in Ref. [56] [see its Figure (2)], for
U = D and with the Fermi energy sitting close to the bottom of the band, as it is the
case for the intermediate regime analyzed here and in Ref. [62], the broad ε0 − µ peak
in the impurity’s LDOS is strongly affected by the singularity at the bottom of the
band, and this has an effect on the width of the Kondo peak, thus in the associated
Kondo temperature, resulting in the behavior seen in Fig 7.2(a). None of that is seen
in Figure 7.1 and very little of it in Figure 7.2(b), because both the Kondo and the
ε0 − µ peaks are far from the singularity and are not affected by its movement (more
so in the case of the results in Figure 7.1, where, in addition, U � D). It is not
noticeable in Figure 7.2(b), but the first two points (|γ| = 0 and 0.1), for both values
of ε0, slightly deviate from the exponential behavior followed by the rest of the points
(at higher |γ| values). This is consistent with our interpretation of the non-exponential
behavior present for µ = −0.8 being caused by the proximity of the bottom of the band
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singularity to the Kondo peak, as the singularity moves away from it as SOC increases.
Thus, in summary, the QMC results in Ref. [62], reporting a polynomial behavior of
the Kondo temperature with SOC, in qualitative agreement with our results obtained
through NRG [see Figure 7.2(a)], do not contradict our main conclusion regarding
the suitability of using Haldane’s expression [Eq. (7.4)] to understand the SOC effect
on the Kondo regime. The reason is clear: the influence of any structures in the
hybridization function (like the singularity at its bottom), which only manifests itself
in the very specific regime analyzed in Figure 7.2(a), where the Fermi energy is close
to the bottom of the band and U = D, is irrelevant in the wide-band (or flat-band)
regime, µ = 0.0 and D � U,∆, |ε0|, for which Eq. (7.4) was derived. Finally, we agree
with Chen and Han [62] in their assessment that the poor man’s scaling results [61],
pointing to an exponential increase of TK with SOC in a 1D system similar to ours, is
a high temperature effect, which does not describe the properties of the Kondo ground
state under the influence of SOC, at least in regards to the Kondo temperature. The
NRG approach was performed using Wilson’s discretization parameter set to Λ = 2.0,
2000 many-body states were kept after each NRG iteration (except for the calculations
near the bottom of the band, where it was necessary to keep 20000), and we made
use of the z-trick averaging in the discretization procedure. In addition, the Kondo
temperature was obtained through Wilson’s criterion [67]. We have used the NRG
Ljubljana open-source code [109] for all NRG calculations.

7.2 Atomic approach: Thermoelectric transport prop-

erties of quantum dots

7.2.1 Density of states

In this section, we present preliminary results for the thermoelectric properties taking
into account the SOC of the conduction band over the Kondo resonance. The results
obtained here lead us to solve the problem employing the NRG approach.

In the calculations, we employed the energy unit Γo = 0.001t, where t is the tight-
binding hopping parameter, and D = 2t is the half-width of the conduction band
in the absence of SO coupling; the chemical potential is always located at µ = 0.
We considered the following values of the correlation: U = 20.0Γo, U = 50.0Γo and
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U = 80.0Γo corresponding to the symmetric limit of the Anderson model, where EQD =

−U/2. The hybridization is calculated from the Anderson parameter Γ = πV 2ρc(µ =

0). We show results corresponding to the universality of the electrical and thermal
conductance as well as the thermopower [8], in the presence of the conduction band
spin-orbit coupling, which varies from γ = 0.0t to γ = 4.0t.
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Figure 7.3: The localized density of states for different values of the electronic cor-
relation U . Formation of the Kondo peak, starting from the U ' 0 limit to the Kondo
limit, U = 80.0Γo.

In Figure 7.3 we show the localized density of states ρf (ω), corresponding to
the symmetric limit of the SIAM, for different values of the electronic correlation U

and spin-orbit coupling γ = 0. The figure shows the effect of the formation of the
Kondo peak as the correlation U is varied from the U ' 0 limit to the Kondo limit,
U = 80.0Γo. For U = 0.01Γo, as indicated in the black curve, we have a broad peak
centered at around Ef = −0.005Γo and two asymmetric satellites peaks; the particle-
hole symmetry does not exist. However, as we increase the correlation to U = 10.0Γo

(dark green curve), the particle-hole symmetry is established, but the Kondo peak is
only completely formed for U = 50.0Γo (indigo curve), as indicated in the inset of the
figure.

In the inset, the process of the formation of the Kondo peak, as the electronic
correlation increases, is shown more clearly: For U = 0.01Γo, there is an uncorrelated
peak centered at around µ = 0, as the U increases to U = 1.0Γo, the broad peak
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is displaced to the left, and after to the right at U = 10.0Γo, finally the peak goes
to the chemical potential at µ = 0 for U = 50.0Γo, where now, the Kondo peak is
completely formed. During this process the width of the peak diminishes, indicating
that the Kondo temperature is varying from TK = 0.34Γo (U = 20.0Γo); TK = 0.092Γo

(U = 50.0Γo) and TK = 0.039Γo (U = 80.0Γo).

t is important to emphasize that the atomic method calculations that we have done
here obey Friedel’s sum rule. Therefore, the results that we obtain here show us the
trend of the exact results that we will look for with the NRG method.
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Figure 7.4: Conduction density of states for different values of the spin-orbit coupling.

In Figure 7.4, we show the conduction density of states ρc(ω), corresponding to the
symmetric limit of the SIAM. We consider the electronic correlation U = 50Γo, and
different values of spin-orbit coupling γ, whose main effect is to enlarge the density of
states, decreasing its value at the chemical potential µ.

In Figure 7.5 we plot the localized density of states ρf (ω), for different values of
the spin-orbit coupling γ and the electronic correlation U = 50.0Γo. The main result
of the SO interaction is to increases the height of the Kondo peak, which leads to
a decreases of the Kondo temperature, which is given by: TK = 0.5288Γo(γ = 0.0),
TK = 0.3149Γo(γ = 1.0t), TK = 0.1385Γo(γ = 2.0t), TK = 0.06095Γo(γ = 3.0t), and
TK = 0.03089Γo(γ = 4.0t). So, we see that the main effect of SOC is to improve the
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Figure 7.5: The localized density of states ρf (ω), for different values of the spin-orbit
coupling γ.

Kondo regime, because the Kondo resonance peak becomes finer with SOC, this is like
as to tune the system into the Kondo regime.
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Figure 7.6: The transmittance τ(ω), for different values of the spin-orbit coupling, γ
in the case of the immersed quantum dot.



7.2 Atomic approach 58

In Figure 7.6, we plot the transmittance τ(ω), for the case of the immersed quantum
dot, considering different values of the spin-orbit coupling γ. To get reliable results to
the thermoelectric properties, we must guarantee that the transmittance, for different
spin-orbit strengths, goes to the right unit value at low temperatures.
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Figure 7.7: The universality of the conductance for the cases of the dot immersed
and side coupled to the leads.

In Figure 7.7, we plot the universality of the electrical conductance, in the particle-
hole symmetric case, for the dot immersed and side coupled to the leads. In the
Kondo regime, the conductance presents a universal character; it is invariant under the
variation of the electronic correlation and the spin-orbit coupling. We consider the spin-
orbit coupling γ = 0 and different values of the electronic correlation U . Figure 7.3
shows that, for U = 20.0Γo, the Kondo peak is not yet formed, and as a consequence
the electrical conductance here is located apart from the other universal curves. On
the other hand, for U = 50.0Γo, U = 80.0Γo and for (U = 50.0Γo − γ = 1.0t), the
system is in the Kondo regime, the Kondo peak is present in the density of localized
states, and the electrical conductance exhibits universal behavior.

The important point that should be stressed here is that the thermoelectric proper-
ties do not depend on the absolute value of the Kondo temperature, but only depends
on the T/TK relation [8]. As indicated in the figure, although the atomic approach does
not produce the correct absolute Kondo temperature, as given by the Haldane’s rela-
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tion, the method produces a correct ratio T/TK and its results satisfy the universality
requirements.
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Figure 7.8: Electrical conductance tuned to the Kondo limit by the increase of the
spin-orbit coupling, for the cases of the dot side-coupled and immerse.

In Figure 7.8 we vary the spin-orbit coupling in the interval γ = [1 − 4]t to tune
an electrical conductance far from the Kondo regime the electronic correlation, with
(U = 10.0Γo − γ = 0), to the extreme Kondo limit with (U = 80.0Γo − γ = 0).
Those huge SOC do not appear in real compounds, and we employed them here only
to stress the situation and reveal the potentiality of the effect. However, we believe
that it is possible to realize the simulation of Figure 7.8, with the SOC in the interval
γ = [0− 0.5]t in real quantum dots or optical lattices systems.

In Figure 7.9 we plot the universality of the thermal conductance, in the particle-
hole symmetric case, for the case of the dot immersed and side coupled to the leads.
As happens with the electrical conductance, discussed in Figure 7.7, the thermal
conductance, in the Kondo regime, is also invariant under the variation of the electronic
correlation [8], and the SOC. Here, we consider the SOC γ = 0 and different values of
the electronic correlation U . For U = 20.0t, the Kondo peak is not formed, and this
is reflected in the absence of universal behavior. On the other hand, for U = 50.0Γo,
U = 80.0Γo and for (U = 50.0Γo − γ = 1.0t), the system is lead to the Kondo limit by
increasing the SOC, the Kondo peak is present in the density of localized states, and
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Figure 7.9: The universality of the thermal conductance for the cases of the dot side
coupled to the leads. The thermal conductance is invariant under the variation of the
electronic correlation in the Kondo regime.

the thermal conductance exhibits universal behavior.
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Figure 7.10: The thermal conductance tuned to the Kondo limit by the increase of
the spin-orbit coupling, for the cases of the dot side-coupled and immerse.

In Figure 7.10 we vary the SOC in the interval γ = [1 − 4]t to tune the thermal
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conductance far from the Kondo regime, with the electronic correlation (U = 10.0Γo−
γ = 0), to the extreme Kondo limit with (U = 80.0Γo − γ = 0). The electrical
and thermal conductances are closely related between each other, and as shown in
Figure 7.7, this could indicate that those conduction processes can be considered as
different aspects of the same physical phenomena.
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Figure 7.11: The universality of the thermopower for the case of the dot immersed
to the leads.

In Figure 7.11, we plot the thermopower for the case of the dot immersed in
the leads. The thermal conductance exhibits universality, being invariant under the
variation of the electronic correlation in the Kondo regime [8].

As in the case of the electrical and thermal conductances discussed in Figs. 7.7 and
7.9, we consider the spin-orbit coupling γ = 0 and different values of the electronic
correlation U . But here, we start with a low electronic correlation U = 5.0Γo and
increase it until U = 60.0Γo. For all of these U values, the thermopower exhibits
universal behavior, which contrasts with the earlier results of the electrical and thermal
conductances, where the universality is manifested only for the QD into the Kondo
regime. However, when we increase the electronic correlation to U = 80.0Γo, the
thermopower separates from the bunch of the universal, at around the Kondo limit.
We also consider the SO interaction γ = 1.0t over the U = 50.0Γo curve, and it goes
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close to the Kondo limit curve.

7.3 NRG results: Thermoelectric transport proper-

ties of quantum dots

All the results in this section onwards are results of the article sent to PRB, where the
preprint version is available at [114].

7.3.1 Spin-orbit effects over the density of states

In Kondo physics, the hybridization function at the Fermi energy is an important quan-
tity. When SOC is included in the conduction band, we obtain that the hybridization
function at the Fermi energy is given by

Γγ = πΛ2ρc (0) =
V 2

2
√
t2 + |γ|2

. (7.6)

In all the calculations that follow, we employed Γ0 = 0.007 [115], in units of D0,
which is the half-width of the conduction band in the absence of SOC [116] (i.e., for
γ = 0), and the chemical potential is always located at µ = 0. In addition, we will
vary SOC in the interval 0.0 ≤ |γ| ≤ 0.5, which will make Γγ vary in accordance with
Eq. (7.6). Finally, for the calculation of the thermoelectric (TE) properties, following
standard procedure, we take the electron charge as e = 1 and Planck’s constant as
h = 1. Thus, the results in Figure 7.18(b) (for Ke), and Figs. 7.20 and 7.25(b) (for
S), are presented in arbitrary units, while all other figures, studying the universality
of the TE properties, are presented in dimensionless units.

In Figure 7.12, we show the QD’s LDOS ρd(ω) at the particle-hole symmetric (PHS)
point (εd = −U/2) of the SIAM for several different values of the Coulomb repulsion
Γ0 ≤ U ≤ 20.0Γ0, for vanishing SOC, |γ| = 0.0. For this range of variation of U/Γ0, it is
well know that the system passes from weak correlated system (for the smaller values of
U/Γ0) to the strongly correlated system (Kondo state, for the larger values of U/Γ0). The
passage from the former to the latter is a crossover, thus it does not occur for an specific
value of U/Γ0. Nonetheless, the results show the gradual formation of the Kondo peak as
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Figure 7.12: QD’s LDOS ρd(ω) for different values of the electronic correlation U
and |γ| = 0.0, showing the formation of the Kondo peak, starting from U = Γ0, when
the system is weakly correlated, to U = 20.0Γ0, when the system is deep inside the
Kondo regime when the system is strongly correlated. Inset: Details of the formation
of the Kondo peak. Note that all curves are at the PHS point εd = −U/2. Comparing
with the result shown in Figure 7.3 with the atomic method, this is the exact version.

the correlation U is varied from U = Γ0 to U = 20.0Γ0, where the system is already deep
into the Kondo regime [very low Kondo temperature TKγ—see Eq. (7.4)]. For U = Γ0,
we have a broad peak centered around the chemical potential, located in ω = 0 (black
curve); in addition, the two symmetric Hubbard satellite peaks characteristic of the
PHS point cannot be discerned. However, as we increase the correlation to U = 10.0Γ0

(purple curve), the Hubbard satellites are already well established, but the Kondo peak
is only completely formed above U = 15.0Γ0 (cyan curve). In the inset, the formation
of the Kondo peak, as the electronic correlation increases, is shown more clearly. Along
this process, the peak diminishes its width, indicating the establishment of the Kondo
regime characterized by a Kondo temperature TKγ, which is proportional to the width
of the Kondo peak, thus, the narrower the peak, the lower is the Kondo temperature
and the deeper is the system into the Kondo regime.

In Figure 7.13, we show the DOS of the conducting leads ρc(ω), corresponding to
different values of SOC, 0.0 ≤ |γ| ≤ 0.5. The main effect of the SOC is to produce a
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Figure 7.13: Density of states of the 1D conducting leads ρc(ω) for different values
of SOC, 0.0 ≤ |γ| ≤ 0.5. Notice the sizable broadening of the band, as well as the
decrease of the DOS at the Fermi energy. This figure as well as the previous one, was
also shown by the atomic method Figure 7.4.

broadening of the band, and, as a consequence, a decrease of the DOS at the chemical
potential µ = 0, which, see Eq. (7.3), results in the decrease of the value of the SOC-
renormalized hybridization function at the Fermi energy.

In Figure 7.14, we plot the QD’s LDOS ρd(ω), for different values of |γ|, for a
PHS situation. We do all the calculations for U = 6.0Γ0, thus, at |γ| = 0.0, not deep
into the Kondo regime (see green curve in Figure 7.12). However, by the evolution of
ρd(ω), due to the increase of SOC from |γ| = 0 to |γ| = 0.5, it can be clearly seen
that the increase of SOC drives the system deep into the Kondo regime. Indeed, the
height of the Kondo peak increases while its width decreases, indicating a lowering of
the Kondo temperature. This striking effect is directly related to the decreasing value
of the SOC-renormalized hybridization function at the Fermi level, since, according to
Friedel’s sum rule, this should cause an increase of ρd(µ = 0) and, according to Eq. (7.4),
a decrease of the Kondo temperature, with an accompanying reduction of the Kondo-
peak half-width. It is also possible to discern a slight increase in the separation between
the satellite Hubbard peaks, pointing to an increase of the effective Hubbard on-site
repulsion, which accounts for an increase in the electronic correlations. It should also
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Figure 7.14: QD’s LDOS ρd(ω), for different SOC values, 0.0 ≤ |γ| ≤ 0.5, at the PHS
point, for U = 6.0Γ0. Note that the black curve (|γ| = 0.0) corresponds to the green
curve in Figure 7.12, thus inside the moderately correlated regime, clearly showing that
SOC drives the system deep into a strongly correlated (deep into the Kondo state).
Notice the very well formed Kondo peak for |γ| = 0.5 (red curve). Inset: zoom close
to ω = 0, showing details of the evolution of the Kondo peak.

be noted that the results in Figure 7.14 agree with Refs. [62, 63].

7.3.2 Thermoelectric properties maps

In this section, we plot the TE properties for different values of εd, from the Kondo to
the empty-orbital regime, as a function of T/Γ0, for different values of SOC, |γ| = 0.0,
0.25, and 0.5. For all the results in this section, we consider the electronic corre-
lation U = 7.0Γ0, and, to characterize the different regimes of the system (at low
temperature), we follow the definitions in Ref. [8], viz., (i) nd values in the interval
|nd−1|T≈0 ≤ 0.25 (red curves) correspond to the Kondo regime, (ii) |nd−0.5|T≈0 ≤ 0.25

(blue curves) correspond to the mixed-valence regime, (iii) |nd|T≈0 ≤ 0.25 (green
curves) correspond to the empty-orbital regime. The borders between different regimes
occur as crossovers. Although these regime definitions are more appropriate to the low
temperature region, we extend them to the higher temperature regions as well.
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Figure 7.15: QD occupation-number map, for |γ| = 0.0, indicate the temperature
variation of nd for varying εd in the interval −U/2 ≤ εd ≤ 8.71Γ0. The definition of the
different regimes follows Ref. [8], i.e., Kondo (red), |nd − 1|T≈0 ≤ 0.25, intermediate-
valence (blue), |nd− 0.5|T≈0 ≤ 0.25, empty-orbital (green), |nd|T≈0 ≤ 0.25. The dotted
curves, with corresponding εd values indicated in the legends, demarcate the crossover
from one regime to the next. All results for U = 7.0Γ0

In Figs. 7.15, 7.16, and 7.17 we plot the QD occupation number nd as a function of
temperature for different values of εd (−U/2 ≤ εd ≤ 8.71Γ0). These figures correspond
to different SOC values |γ| = 0.00, 0.025 and 0.50, respectively. The εd values shown in
the legend represent the values at which, according to the definitions above, there is a
crossover between different regimes, indicated by dotted curves. By comparing differ-
ent panels, it is clear that SOC affects the overall spread of each region. Indeed, as |γ|
increases from 0.0 to 0.5, the empty-orbital and Kondo regions expand, at the expense
of the mixed-valence region. This makes sense, as the decrease of the hybridization
between the QD and the conduction band, caused by SOC, should enhance spin fluc-
tuations (enhancing Kondo and empty-orbital) at the expense of charge fluctuations
(weakening intermediate valence). As we shall see next, this will be reflected in the
results for the TE properties.
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Figure 7.16: Same as in Figure 7.15, but now for |γ| = 0.25.
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Figure 7.17: Same as in Figs. 7.15 and 7.16, but now for |γ| = 0.5.

Electrical and thermal conductances

In Figure 7.18, we have similar plots to the ones in Figs. 7.15, 7.16, and 7.17, but
this time for the electrical conductance G(T )/G0, in panels (a), (b), and (c), and for the
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thermal conductance Ke(T ), in panels (d), (e), and (f). G0 = 2e2/h is the quantum of
conductance (taking spin into account). The arrows indicate the direction of increasing
values of εd, where the values of εd for each curve are the same as in Figs. 7.15, 7.16,
and 7.17. Following Ref. [10], the Kondo temperature, TKγ, can be calculated, from
each curve in the three panels (a), (b), and (c), by computing the temperature value
where the electrical conductance attains G(TKγ) = G0/2 = e2/h. By using that criterion
to define TKγ, it is easy to see that the average TKγ of the red curves (Kondo regime, as
defined by Costi et al. [8]) in panel (c) is more than an order of magnitude lower than
the average TKγ in panel (a). Taking in account the universally accepted concept that,
the lower is TKγ, the deeper we are into the Kondo regime, leads us to assert that an
increase in SOC drives the SIAM deeper into the Kondo regime, as already observed
through the LDOS results in Figure 7.14.

In the right column of Figure 7.18, we have similar plots to the ones in the left
column, but this time for the thermal conductance Ke, as a function of temperature
(in units of Γ0). The arrows have the same meaning as in the electrical conductance
column. Comparing the three panels (d), (e) and (f), we observe again the SOC’s
tendency to reduce the intermediate valence region and to increase the Kondo and the
empty-orbital regions. The three panels (d), (e), and (f), for |γ| = 0.0, 0.25, and 0.5,
respectively, exhibit a crossing point, slightly below T = Γ0 (and weakly dependent on
γ). This crossing point appears as the convergence of all the red and blue curves to
a very narrow window interval at T ≈ Γ0 [8]. It is interesting to note that the width
of this window becomes increasingly narrower as γ increases, basically collapsing to a
single point for |γ| = 0.5. These crossing points are characteristic signatures of strongly
correlated systems, like it was observed for the specific heat in the Hubbard model in
Ref. [117].

In Figure 7.19, we can see G(εd)/G0, as a function of εd (scaled by Γ0), for different
values of temperature (5.7 × 10−5 ≤ T/Γ0 ≤ 1.14). Panels (a) and (b) are for |γ| =

0.25 and 0.5, respectively. It is easy to see that, in both panels, as the temperature
increases above a certain value (the Kondo temperature for εd = −U/2), there is an
overall suppression of the conductance, which is more pronounced at the PHS point
(εd = −U/2). The regime located between the two peaks, symmetrically positioned
around the PHS point, constitutes the so-called Coulomb blockade regime, where the
QD (or impurity) is approximately single-occupied, and Coulomb repulsion suppresses
the conductance. Since we are above TK (its value at the PHS point), there is no
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Figure 7.18: Same parameters as in Figure 7.15, 7.16, and 7.17, but now showing the
electrical conductance G(T ) (in units of the quantum of conductance G0) in the left
column, and the thermal conductance Ke(T ) (in arbitrary units) in the right column;
both conductances are plotted as a function of temperature. The arrows indicate the
direction of increasing values of εd, where the values of εd for each curve are the same
as in Figs. 7.15, 7.16, and 7.17. The temperature is in units of Γ0 and U = 7.0Γ0.

Kondo peak anymore at the Fermi energy and perfect conductance (around the PHS
point) is lost. As already observed above through other properties, these results show
that the Kondo temperature decreases with γ, since the conductance suppression in
the right panel (higher γ = 0.5) starts at a lower temperature, T ≈ 0.00057Γ0, than in
the left panel (lower γ = 0.25), T ≈ 0.0057Γ0.
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Figure 7.19: Electrical conductance G(εd)/G0 as a function of εd/Γ0 for different tem-
peratures (as indicated in the legend). Panel (a) is for |γ| = 0.25, and panel (b) for
|γ| = 0.5. Both panels are for the same temperatures.

Thermopower S(T )

In panels (a), (b), and (c) in Figure 7.20, we show plots similar to the ones in Figs. 7.15
to 7.18, but this time for the thermopower S(T ), as a function of temperature. There
are three peaks in the Kondo regime (red curves), viz., two minima satellite peaks
located at left and right of a maximum central peak located at T ≈ Γ0, which is inside
the interval [T1 : T2]. Temperatures T1 and T2 represent energy scales associated to
the Kondo regime that characterize the changes in who are the S(T ) heat carriers,
from electrons to holes to electrons, from left to right. In the PHS point, i.e., εd =

−U/2, S(T ) = 0. However, away from the PHS point, S(T ) acquires a temperature
dependence. Comparing the three panels, for |γ| = 0.0, 0.25 and 0.5, when the system
is not in the PHS point, there is a strong increase in the height of the maximum Kondo-
related peak (red curves) and in the depth of the minimum empty-orbital-related peak
(green curves), as |γ| increases from 0.0 to 0.5, which is the most striking characteristic
of the thermopower shown here. That will contribute to the sizable ZT increase seen
in Figure 7.26(b) and (c), at finite γ, when compared to zero-SOC [Figure 7.26(a)].

7.3.3 Universal behavior

In this section, we present a study of the universal behavior of the electrical and thermal
conductances, as well as of the thermopower, as a function of temperature, for different
values of εd, for |γ| = 0, and how this universal behavior changes for varying SOC.
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Figure 7.20: Same parameters as in Figs. 7.15 to 7.18, but now showing the ther-
mopower S(T ) as a function of temperature. Notice the sizable change in the interval
of variation of S(T) (increase in the maximum and minimum values) as a function of
γ. This will be relevant to the TE figure of merit results in Figure 7.26. Again, the
arrows indicate the direction of increasing values of εd.

In Figure 7.21(a), we plot the electrical conductance G(T )/G(0) as a function of the
scaled temperature T/TKγ, for several εd values, for |γ| = 0.0, where G(0) is given by
Eq. (10) in Ref. [8]. As expected, the curves for the first four values of εd, which
fall inside the Kondo regime, collapse into a single curve. On the other hand, the
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Figure 7.21: (a) Universal behavior of the electrical conductance G(T )/G(0) for different
values of εd and |γ| = 0.0 as a function of the scaled temperature T/Tkγ. The universality
occurs inside the Kondo regime, since the magenta curve, which does not collapse, falls
already inside the intermediate valence regime. (b) Universal behavior of G(T )/G(0), as
a function of the scaled temperature T/TKγ, where all curves for different SOC (0.0 ≤
|γ| ≤ 0.5) collapse into a single curve f(T/TKγ) for temperatures up to T & TKγ. In
panel (c), like in panel (a), we show the universal behavior of the thermal conductance
Ke(T )/αT as a function of the scaled temperature T/T θKγ, for several values of εd (inside the
Kondo regime), for |γ| = 0.0. The single curve inside the intermediate valence regime
(εd = −0.71Γ0, magenta curve) does not collapse into the Kondo regime universality
function. (d) Universal behavior of Ke(T )/αT , as a function of the scaled temperature
T/T θKγ, where all curves for different SOC (0.0 ≤ |γ| ≤ 0.5) collapse into a single curve
g(T/T θKγ). In both insets we show the values of α that produce the collapse.

cyan curve, for εd = −0.71Γ0, which is inside the intermediate valence regime [see
Figure 7.15(a)], does not collapse into the other curves. The situation is similar if we
stay at the PHS point and vary γ. In Figure 7.21(b) we plot G(T )/G(0) in the PHS point,
εd = −U/2, as a function of the scaled temperature T/TKγ, for different values of SOC,
0.0 ≤ |γ| ≤ 0.5. In the Kondo regime, the electrical conductance presents a universal
character: G(T )/G(0) = f(T/TKγ), with a functional form that is independent of SOC.
Note that the larger is |γ|, the further above TKγ remains the invariance of f(T/TKγ)

with γ.

We just saw that a quite interesting characteristic of electronic transport through
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QDs is the universal behavior in the Kondo regime when the temperature is scaled by
a characteristic temperature, such as TKγ for G(T ), as just shown above, or by T θKγ for
Ke(T ). The temperature T θKγ is the equivalent of TKγ for Ke(T ) and can be computed
using the Wiedemann-Franz law, Eq. (4.5), Ke/T ≈ Lo×WF ×G(T ), being defined by
the relation [8]

Ke(T = T θKγ)

T θKγ
=
α

2
, (7.7)

where α is obtained through

α = lim
T→0

Ke(T )

T
. (7.8)

In Figure 7.21(c), we plot the thermal conductance Ke(T )/αT as a function of the
scaled temperature T/T θKγ, for several −U/2 ≤ εd ≤ −0.71Γ0 and |γ| = 0.0. In the
inset to panel (a), we plot the rescaling parameter α as a function of εd, in Γ0 units.
It is clear from the results that the rescaling by T θKγ and α collapses all the Ke(T )

curves, for different εd, for T . T θKγ, onto a single universal curve. The exception, as
in the case of the electric conductance, was for εd = −0.71 (magenta curve), which is
inside the intermediate valence regime. In Figure 7.21(d) we plot Ke(T )/αT at the PHS
point, for different values of |γ|. In the Kondo regime, the thermal conductance thus
presents a universal character: Ke(T )/αT = g(T/T θKγ), showing its invariance with SOC.
In addition, in the PHS point, the thermal conductance obeys, by construction [see
Eqs. (7.7) and (7.8)], Ke(T )/αT = 1.0, at low temperatures. In the inset to panel (d), we
plot the rescaling parameter α as a function of |γ|.

As pointed out by Costi et al. [8], in the Fermi liquid regime [118], S(T )/T , for a
range of different values of εd in the Kondo regime, scales as

S(T )

T
= −πζ

e
cot(

πnd
2

), (7.9)

where −e is the electron charge, and the factor ζ can be obtained from the numerical
value of limT→0 |S(T )/T | and the occupation number nd.

As done for the electric and thermal conductances Figs. 7.21, we will employ this
procedure to rescale the temperature dependence of S(T ) to check the universality
for varying εd (at |γ| = 0.0) and for varying γ at fixed εd. In Figure 7.22, we plot the
thermopower S(T ), in units of πζT cot(πnd/2)/e, as a function of the scaled temperature ζT ,
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Figure 7.22: Temperature dependence of the thermopower S(T ), plotted in units of
πζT cot(πnd/2)/e for −3.0Γ0 ≤ εd ≤ −0.5Γ0 and |γ| = 0.0. Universality is achieved for
T . ζT . As it happened for the electric and thermal conductances, the curve for the
first value inside the intermediate valence regime (εd = −0.5, magenta curve) does not
collapse into the universal curve.

for several εd and |γ| = 0.0. In agreement with what we obtained for the electric and
thermal conductances, S(T ) attains universality if we stay inside the Kondo regime,
i.e., −3.0Γ0 ≤ εd ≤ −1.5Γ0. For εd = −0.5 (magenta curve) the universality is lost.
In addition, since the sign of S(T ) is determined by the charge of the heat carriers
(S(T ) > 0↔ holes, and S(T ) < 0↔ electrons), for temperatures below ζT ' 2.0 (see
black dotted lines in Figure 7.22), the carriers are electrons, and, in a region above
ζT ' 2.0 the carriers are holes. In the limit of high temperatures, S(T )→ 0.

Something curious, however, occurs when we analyze the universality at fixed εd

and 0.0 ≤ |γ| ≤ 0.5. As shown in Figure 7.23, where panels (a) to (i) show the
scaling of S(T ) for different values of εd in the interval −3.2Γ0 ≤ εd ≤ Γ0 (spanning
the Kondo and intermediate valence regimes), the universality is achieved only deep
into the intermediate valence regime (panels (c) and (d), for εd = 0.0Γ0 and −0.5Γ0,
respectively). This is in contrast to what was observed for the electric and thermal
conductances Figure 7.21, where the universality was observed inside the Kondo regime.

In Figure 7.24, we re-plot Figure 7.23(d) (S(T ) for εd = −0.5Γ0) to study the
variation of TKγ with γ (top inset), the dependence of the Fermi liquid parameter
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Figure 7.23: (a) to (i): Comparison of thermopower universality in the Kondo and
intermediate valence regimes. Each panel contains the scaled thermopower (for 0.0 ≤
|γ| ≤ 0.5) for different values of εd. Notice how the universality is more complete in the
intermediate valence regime. Indeed, panels (c) and (d), for εd = 0.0Γ0 and −0.5Γ0,
present the more complete collapse of the thermopower results for different values of
γ. These two values of εd are deep into the intermediate valence regime, for all values
of γ [see Figure 7.17].

ζ with γ (bottom-left inset), and the dependence of the QD occupancy nd with γ

(bottom-right inset). As expected, since the increase in γ moves the system in the
Kondo regime direction, we see that there is a non-monotonic increase in nd as γ
increases (bottom-right inset), while, as expected too, TK decreases with γ (top inset).
In addition, there is a corresponding increase in ζ with γ (bottom-left inset).

Thus, we have analyzed two types of universalities for the quantities G(T ), Ke(T ),
and S(T ): (i) zero-SOC and varying εd, for which we found that there is universality
for G(T ), Ke(T ), and S(T ) in the Kondo regime [see Figs. 7.21(a), 7.21(c), and 7.22];
(ii) fixed εd and varying γ, for which both G(T ) and Ke(T ) show universality in the
Kondo regime [see Figs. 7.21(b) and 7.21(d)], while, unexpectedly, S(T ) shows univer-
sality in the intermediate valence regime (Figure 7.23). Additional theoretical and/or
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experimental research is needed to clarify the reason for this unexpected behavior.
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Figure 7.24: Same as in Figure 7.22, but for 0.0 ≤ |γ| ≤ 0.5 and εd = −0.5Γ0. Top
inset: TKγ as a function of γ; bottom-left inset: ζ as a function of γ; bottom-right
inset: QD occupation nd as a function of γ.

In panels (a) and (b) in Figure 7.25, we show the Wiedemann-Franz law, in units
of the Lorenz number Lo, and the thermopower S, respectively, as a function of εd
(in units of Γ0), at various temperature values (also in units of Γ0), for |γ| = 0 and
U = 7.0Γ0. At the lowest temperature (T = 0.011Γ0, cyan curve), the Wiedemann-
Franz law is satisfied, aside from a small region around the PHS point (εd = −3.5Γ0),
where WF . 1. As the temperature increases, the width of this region increases, as
well as the departure of WF from 1. In addition, two broad peaks appear farther away
from the PHS point (on the left and right of it), whose violation of the Wiedemann-
Franz law (now, WF > 1) becomes more severe, as the temperature increases. In
addition, the maxima of the left and right peaks gradually move away from the PHS
point with increasing temperature.

A somewhat similar picture describes the results for S(εd) in Figure 7.25(b), with
the difference that now S(εd) is odd in relation to the PHS point. In addition, left
and right broad peaks emerge away from the PHS point, similarly located and with
similar temperature dependence as the ones shown for WF in Figure 7.25(a). As a
consequence, given that ZT = S2/WF , and since S & WF at and around those broad
peaks, this determines the relatively high values attained by ZT in the peaks region,
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Figure 7.25: (a) Wiedemann-Franz law (in units of the Lorenz number, Lo) and (b)
Thermopower S, as a function of εd, for several values of temperature (in units of Γ0),
for U = 7.0Γ0 and |γ| = 0.0.

as shown in Figure 7.26(a), for |γ| = 0.0 and several temperatures.

In panels (b) and (c) in Figure 7.26, we show the dimensionless TE figure of merit
ZT as a function of εd, at various temperatures, for finite SOC, |γ| = 0.25 and 0.5,
respectively. When compared to Figure 7.26(a), for |γ| = 0.0, we observe a sizable
enhancement of ZT with SOC, which results from the increase of S(T ) with SOC, as
indicated in the S(T ) maps in Figure 7.20. We notice that, compared to the |γ| = 0.0

maximum value of ZT ≈ 4.0 in Figure 7.26(a) (T = 1.14Γ0), the ZT ≈ 10.0 obtained
for |γ| = 0.5, for the same temperature, represents an improvement in ZT of ≈ 2.5

times.

Finally, we should note that, as previously mentioned, in the calculation of these
ZT results, we do not consider any phononic contribution, which tends to compete with
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the electronic contribution to decrease the ZT values as the temperature is increased.
However, note that we kept the maximum temperature studied at a low enough value
that justifies the neglect of phonons.
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Chapter 8

Conclusions

8.1 Summary of thesis achievements

• Based on the results presented in Chap. 3 and Sec. 7.1, we have shown, through a
physically motivated change of basis, that the 1D finite-SOC SIAM Hamiltonian
is similar to that for the zero-SOC SIAM. The form of the 1D finite-SOC SIAM
Hamiltonian (for both the Sz and helicity bases) seems to be inappropriate to deal
with Kondo physics, since conduction channels with opposite quantum numbers
(either σ =↑↓ or ν = ±) are mixed (either by SOC, or by the impurity itself). This
issue can be circumvented if one exploits the fact that time-reversal symmetry is
not broken. Indeed, it is the time-reversal symmetry that renders the finite-SOC
hybridization matrix diagonal and spin-independent (in any spin basis), thus a
scalar, like the zero-SOC hybridization function. This can be seen in a more clear
way once both the impurity and the conduction electrons are rotated to the σr
basis, where it becomes clear that the spin channels are not mixed neither by SOC,
nor by the impurity, allowing a simple analytical treatment of the renormalized
T̃K , through the use of the Haldane expression, which is corroborated by NRG
calculations in the wide-band regime (D � U,∆, |ε0|). In addition, NRG results
for the intermediate regime (U = D > ∆, with Fermi energy close to the bottom
of the band), in qualitative agreement with QMC results presented in Ref. [62],
indicate that it is the proximity of the Fermi energy to the structure at the
bottom of the hybridization function (a singularity) that causes the deviation of
the results from what one expects from Haldane’s expression. Finally, it is shown
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that the 1D SOC-SIAM Hamiltonian, for arbitrary values of αR and β, has a PSH
SU(2) symmetry, in contrast to the 2D SOC Fermi sea, where the PSH state is
restricted to the αR = β case.

• We have studied the effect of 1D conduction band SOC over the TE transport
properties of an SET. This was done, using NRG, through the calculation of
temperature maps of the TE properties. We have shown that SOC drives the
system deeper into the Kondo regime. We also showed that the Kondo regime
universality of thermal and electrical conductances is maintained in the presence
of SOC. We also show the interesting result that S(T ), which is universal in the
Kondo regime at zero-SOC, presents a more universal behavior (for different γ)
in the intermediate valence regime, when compared to the Kondo regime. More
importantly, we have shown that the large increases in the thermopower, caused
by SOC (see Fig. 7.20), translate into notable SOC-caused enhancements of the
TE figure of merit ZT (see Fig. 7.26) for an embedded SET coupled to 1D leads.
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8.2 Perspectives

• Interesting points to consider in future research are (i) application of the present
work formalism to a three-terminal TE device that directly transforms thermal
into electrical energy [51]; (ii) determining what is the role played by the leads
dimensionality in the sizable increase of the figure of merit observed for 1D leads;
(iii) the Rashba and Dresselhaus conduction band SOC results obtained here can
be extended to study two-dimensional (2D) systems, like the surface states of the
Kondo insulators SmB6 and FeSb2 [17–20]. Some recent experimental results
point out that a combination of Rashba- and Dresselhaus-like SOC [119–122]
can describe the states around the X point of the Brillouin zone; (iv) finally, we
would like to study the TE properties of an SET embedded in a 2D electron gas
at the Persistent Spin Helix point (αR = β) [96].



Appendix A

Density of state in the helical space

The change on the energy band leads us to think and to do the question, how the
density of states of the conduction electrons is modified by the SOC presence in the
base Sz?.

Then, to answer the previous question, the density of states is the imaginary part
of the Green function to free conduction electrons such as defined (A.1). The quantum
wire Hamiltonian is diagonal in quantum number ν with eigenvalues (3.14) and eigen-
states (3.15), and as consequence, ν is a good quantum number to the system without
impurity. In this new basis each states |kν〉 are a linear superposition of the states
|kσ〉 such as observed in the equation (3.15). Then, the SOC effect changes the spin
direction through a phase φ, which we will analyze later together with space ν. So, the
retarded Green function to the free electron at the state |kν〉 can be defined as

Gν
kk′(ω) =

δkk′

ω − ενk + iη
, (A.1)

as can be noticed from (A.1), the Green function of one particle without interaction
has its singularity poles at the eigenvalues of the Hamiltonian, and the density of states
is

ρν(ω) = − 1

π
Im{Gν

kk(ω)}. (A.2)

To integrate the imaginary part of Gν
kk(ω), the relation dispersion (3.14) we have
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expressed as −2|z| cos(ka− νϑk), where ϑk = (− |γ|
t

; k < 0), and ϑk = ( |γ|
t

; k > 0), the
number z is a complex number defined as t + i sgn(k)|γ|, in this integration process
we change the integral variable k to the energy variable dk → [

∂ενk
∂k

]−1dενk, from where
we obtained

ρ−(ω) =


2

π
√

4|z|2−ω2
, 2t < ω < 2|z|

1

π
√

4|z|2−ω2
, −2t ≤ ω ≤ 2t

0, −2|z| < ω ≤ −2t

, (A.3)

ρ+
(ω) =


0, 2t < ω ≤ 2|z|
1

π
√

4|z|2−ω2
, −2t < ω ≤ 2t

2

π
√

4|z|2−ω2
, −2|z| ≤ ω ≤ −2t

. (A.4)

This results can be seen in figure A.1 further of the ρ±(ω) we graphics the ρ0(ω) for
the physical system without SOC, the ρ0(ω) is defined within the interval [−2t : 2t].

The change observed in the dispersion relation (3.14) also can be observed in the
density of state ρν(ω), where to the case ρ−(ω) the energy states was moved to the top
edge band, in this interval region [2t : 2|z|〉 the density of states is two times ρ0(ω) and
the ρ+(ω) = 0; by the other hand ρ+(ω) shown that the energy states has been moved
to bottom edge band, where ρ+(ω) is two times ρ0(ω) interval where ρ−(ω) becomes
zero; while in the interval [−2t : 2t] both densities ρ+(ω) and the ρ−(ω) shown the same
behavior and they are same. Then, the SOC effect for conduction electrons rearranges
the energy states to the edge band, ( be it bottom or top of the band) in the space
ν, that, due to this rearrangement of the states the density of states is zero on the
opposite edge of the band respect to the edge where the rearrangement occurs, which
is showed in the figure A.1.

A.1 Helicity operator

The helicity operator, in a system with spin-full relativistic particles, describes the spin
projection in the momentum ~k direction. In the Dirac equation, the operator is given
simply by p̂·σ [123]. But, in the non-relativistic limit, for a system with finite SOC,
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Figure A.1: Density of states in the space ν showing the SOC effect to |γ| = 0.5. The
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interval.

the spin does not necessarily is projected into the direction of the momentum. It is
projected instead into a direction orthogonal to p̂, dependent on the specific type of
SOC interaction the electron is subjected to.

In the specific case of having both Rashba and Dresselhaus SOC, we define the
helicity operator [124], as

ĥ = sk (cos(φ)σx + sin(φ)σy) = sk

(
0 e−iφ

eiφ 0

)
, (A.5)

where σx and σy are Pauli’s matrices, the Sk is defined by the equation (3.16). The
helical operator satisfy the relations [H0; ĥ] = 0, [Hsoc; ĥ] = 0, and its eigenstates are

|h±〉 =
1√
2

(
| ↑〉 ± skeiφ| ↓〉

)
. (A.6)
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We can notice that the expression (A.6) is the same spin wave function of the
eigenstates (3.15), and consequently we defined the states |kσ〉 and |k±〉 are creates
by the operators c†kσ and c†k±, respectively, therefore we can write |kσ〉 = c†kσ|0〉 and
|k±〉 = c†k±|0〉. Then, the operator ĥ in the second quantization can be

ĥ = sk(e
−iφc†k↑ck↓ + eiφc†k↓ck↑). (A.7)

The operators c†k±, creates conduction electrons with momento k and quantum
number ν, while c†kσ is the creation electron operator in the base Sz. Then, the helicity
space and the spin space are related by an unitary transformation U defined as

U =
1√
2

(
1 Ske

iφ

1 −Skeiφ

)
(A.8)

where UU † = 1, and the operators c†k± and c†kσ are related by

(
c†k+

c†k−

)
=U

(
c†k↑

c†k↓

)
. (A.9)

The expression (A.7) under transformation (A.9) the helicity operator can be write
as

ĥ =
∑
ν

νSknkν . (A.10)
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