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Abstract

Abstract:

The operation of the Belo Monte hydroelectric plant has had significant impacts on

the natural hydrological cycle of the Xingu River. The hypothesis of this work suggests

that the construction of the Belo Monte plant has caused a significant impact on the

ecosystem, mainly through changes in hydrological dynamics, which in turn have induced

alterations in the region’s floodplain vegetation. To test this hypothesis, the study aimed

to determine the existence of a causal relationship between the time series data of the

Normalized Difference Vegetation Index (NDVI) and the river water level (NCA), using the

autoregressive model of Distributed Lags (ARDL). Where a structural causal relationship

between these series was obtained as a result, which indicates a dynamic relationship

between the NDVI and the NCA which can generate long-term effects such as variations

in biodiversity, changes in forest structures and even alterations in the ecosystem around

the Xingu river.

Keywords: time series; ecosystem ;cointegration; dam impact; NDVI
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Chapter 1

Introduction

The implementation of the Belo Monte dam on the Xingu River has been the subject

of intense debate in recent decades, due to its great impact on biodiversity and on the

indigenous population that inhabit the affected area. It is one of the largest hydroeletric

plant in the world, which has been built in one of the most important ecosystems on the

planet, the Amazon forest1. Regardless of the contribution to national economic develop-

ment, the ecological and environmental influence has attracted significant attention from

researchers, due to the damage it has generated in the environment, in the fauna and

flora of the areaJiang, Xiandie and Lu, Dengsheng and Moran, Emilio and Calvi, Miquéias

Freitas and Dutra, Luciano Vieira and Li, Guiying (2018) and Mayer, Adam and Lopez,

Maria Claudia and Moran, Emilio F (2022).

In addition, another study published by Cunha, Denise de Andrade and Ferreira, Lean-

dro Valle (2012) found that the construction of hydroelectric dams can have a far-reaching

negative impact on the biodiversity of rivers and floodplains. This study found that the

construction of dams can alter the habitat of fish and other aquatic organisms, which can

have a cascading effect on the food chain and biodiversity in general 2. In addition to this,

the construction of dams can alter the flow of water and consequently the sedimentation,

which can affect the quality of the water and the health of aquatic ecosystems.

1 https://es.mongabay.com/2018/10/el-legado-de-belo-monte-el-dano-de-la-represa-del-amazonas-no-

acabo-con-su-construccion/
2 https://aida-americas.org/es/haciendo-que-brasil-se-responsabilice-por-los-da-os-de-la-represa-belo-

monte
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Consequently, it is important to note that the construction and operation of said dam

has negative impact on the environment and local communities see Castro-Diaz, Laura

and Lopez, Maria Claudia and Moran, Emilio (2018). Therefore, the hypothesis of this

study states that the construction of the Belo Monte power plant has had a significant

impact on the ecosystem, which is caused by the variation of the hydrological dynamics,

which in turn has induced changes in the flooded vegetation in the region of the Vuelta

Grande of the Xingu River. That is why to test this hypothesis, the existence of a causal

relationship between data from time series of the Normalized Difference Vegetation Index

(NDVI) and the river water level (NCA) will be determined, in a period that covers the

before and after the construction of the plant.

In summary, the hypothesis of this work intends to study the variation in nature after

the alteration of the hydrological dynamics of the Xingu River that was caused by the

implantation of the Belo Monte hydroelectric plant.Therefore, to evaluate this hypothesis,

it is necessary to analyze data from the NCA in the Xingu River and data from the NDVI

in a time series that occupies periods before and after the implementation of hydroelectric

power. To do this, it is intended to evaluate whether there is a short- and long-term re-

lationship between these series, using the autoregressive Distributed Lags (ARDL) model,

through which we seek to estimate a causal relationship between these variables. In addi-

tion, we will work statistically with geolocated data, which involves analyzing and visual-

izing geographic information to identify patterns and frequencies through data collection,

cleaning, and preparation, exploratory analysis, and selection of statistical methods.

1.1 Related literature

There are several studies that have investigated the relationship between NDVI and

NCA. Some of these studies have used remote sensing data, such as satellite imagery, to

analyze the spatial and temporal relationship between NDVI and NCA Xiao, Xiangming

and Zhang, Qingyuan and Braswell, Bobby and Urbanski, Shawn and Boles, Stephen

and Wofsy, Steven and Moore III, Berrien and Ojima, Dennis (2004a). Other studies

have used in situ data, water level measurements, and vegetation sampling, to examine

the relationship between NDVI and river water level at different spatial and temporal

scales Jiang et al. (2015). On the other hand, regarding the short-term relationship, some
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studies have found a positive short-term relationship between NDVI and the water level

in rivers. For example, during flood events, NDVI can increase due to increased soil

moisture and water availability for vegetation Xiao, Xiangming and Zhang, Qingyuan and

Braswell, Bobby and Urbanski, Shawn and Boles, Stephen and Wofsy, Steven and Moore

III, Berrien and Ojima, Dennis (2004b). However, this relationship can vary depending on

the type of vegetation and local environmental conditions. In addition to this, the long-

term relationship between NDVI and NCA in rivers may be more complex, for example,

changes in land use and vegetation cover can affect the flow and quality of water in rivers,

which in turn can influence NDVIJiang et al. (2015). Likewise, factors such as climate

change and interannual variability in precipitation can affect both NDVI and NCA over

time Xiao, Xiangming and Zhang, Qingyuan and Braswell, Bobby and Urbanski, Shawn

and Boles, Stephen and Wofsy, Steven and Moore III, Berrien and Ojima, Dennis (2004a).

In all the cited references above, various statistical models and methods were used,

including linear and non-linear regression models, spatial and temporal correlation analysis.

Unlike these models, however, the model we use in this paper, the ARDL model, leads

to an analytically manageable framework where parameters can be easily estimated from

empirical data, and in turn models time series with different integration orders which is

not possible with conventional cointegration methods.

The utility of this type of model, ARDL, occurs when the variables of interest have

different integration orders, that is, when some are stationary and others are not, which

is mentioned in Pesaran, M Hashem and Shin, Yongcheol and Smith, Richard J (2001).

Because of this, the ARDL model differs from other time series models in several aspects.

First, it allows greater flexibility in modeling the dynamics of adjustment of the variables.

In other words, you can capture how variables respond to changes in other variables over

time. Second, it can be applied even when the time series variables are I(0), I(1) or a

mixture of both, which is not possible in other models such as the vector error correction

model (VECM) which requires all variables to be I(1). Third, it uses a special approach

to estimate the long-run relationship using the cointegration technique and the short-run

relationships using the residuals from the first step. Finally, the ARDL model is capable

of providing robust long-term parameter estimates, even in small samples, which can be

a significant advantage in many research contexts. Next, for a better understanding of

the model, a flowchart was generated with the name of the figure 1.1, which explains the
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dynamics of the ARDL and its main components.

FLOWCHART OF THE OPERATION OF THE
ARDL MODEL

Concept

01. 03.02. 04.

ARDL(p,q)

Bounds

Validation

Strict first difference I(1)
stationary target variable
Regressors can be I(1) or

I(0) but not I(2) 

Optimal lag selection
ARDL lag specificattion

with error correction

Test the existence of
long-run relationship
PSS/KS values and

approximate p-values

Autocorrelation
Heteroskedasticity

Normality

Figure 1.1: ARDL model simulation flowchart

1.2 General objective and specific objectives

Our general objective is to identify the causal relationship, conintegration analysis,

between the time series of the water level in the Xingu River (NCA) and the time series of

the normalized difference vegetation index (NDVI) using the ARDL model. In addition,

using this structural relationship to understand the effects of the variation in the water

level of the Xingu River on the biodiversity and ecosystem of the areas involved.

Specific objectives: i) Organize and compile the spatial and hydrological information

available, building a georeferenced data bank, with free distribution products. ii) Apply

various image processing techniques to data from the Landsat satellite, to obtain NDVI

information. iii) Analyze the temporal characteristics of the NDVI and NCA series; such
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as stationarity, order of integration and autocorrelogram. iv) Modeling the short- and

long-term relationships between both series using the ARDL model.

Outline

Our article is organized as follows. In section 2 we describe the study area as well as the

environments in drought and floods. In section 3we present the materials and methods, in

this chapter you can see the collection and preprocessing of data as well as the analysis of

the ARDL model. In section 4 resents the results of our data after the established analysis,

as well as its discussion and final conclusions.



Chapter 2

Study Area

The study was carried out in the Xingú River, one of the largest tributaries of the

Amazon River, which runs through the states of Mato Grosso and Pará. It lies between

the southern latitude 11° 56’ 19” S and the west longitude 53° 32’ 48” O, see Figure 2.1.

This basin covers an area of 531.25 km2, with an elongated shape 1450 km long and about

350 km in average width.

The Xingu River is home to a diversity of vegetation types that play a crucial role in

the river ecosystem. On its shores, you can find different types of vegetation that adapt

to the unique conditions of this aquatic environment. One of the most outstanding plant

formations is the tropical forest, known for its exuberant biodiversity and its vital role

in regulating the global climate according to Acuña, Isáıas Tobasura (1996). The Xingu

River Rainforest is home to a wide variety of tree, plant and animal species, creating a

vibrant and complex ecosystem.

In addition to the tropical forest, there are also mangroves, which is known to be home

to trees adapted to fluctuations in water level. These Amazonian ecosystems vary con-

siderably with respect to hydrology, water and soil fertility, vegetation cover, diversity of

plant species, and primary and secondary productivity, creating a fascinating landscape

full of life along the river Xingu Junk, Wolfgang J and Piedade, Maria Teresa Fernan-

dez and Schöngart, Jochen and Cohn-Haft, Mario and Adeney, J Marion and Wittmann,

Florian (2011). Another type of vegetation found in the Xingu River is water grasslands.

These meadows, composed mainly of aquatic plants such as duckweed and water lilies, are

essential for the health of the river ecosystem. Because they not only provide shelter and

food for many aquatic species, but also help maintain water quality by filtering nutrients

and reducing shoreline erosion.
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Study area
Brazil

LEGEND

Figure 2.1: Location map of the study area

Another factor that plays an important role is the natural hydrological cycle, which is

a fundamental process in the dynamics of rivers and their environment. In the case of the

Xingu River, its flow, water level and seasonality play a crucial role in the dynamics of the

surrounding vegetation.

The hydrological cycle begins with the evaporation of water at the surface. In the

case of the Xingu River, evaporation occurs mainly in its basin and in the water bodies

that feed it. This vapor condenses to form clouds that are driven by the winds that move

over the Xingu River basin and discharge their contents as precipitation. The amount of

precipitation can vary throughout the year, resulting in different water levels and flow in

the river.

These seasonal variations in the flow and water level of the Xingu River could have

a significant impact on the dynamics of the vegetation, as can be seen in the figure 2.2.

According to Baker, Jessica CA and Garcia-Carreras, Luis and Gloor, Manuel and Mar-

sham, John H and Buermann, Wolfgang and da Rocha, Humberto R and Nobre, Antonio

D and de Araujo, Alessandro Carioca and Spracklen, Dominick V (2021), the variations in
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the flow of the Xingu river are related to the seasonality of rainfall in the basin. For this

reason, it is important to highlight that the natural hydrological cycle can be affected by

external factors, such as climate change and human intervention, which can alter precip-

itation patterns and, consequently, affect the dynamics of vegetation in the Xingu River

and its surroundings1.

Figure 2.2: vegetation zones in the study area when the water level rises (A) and when the water level

falls (B)

1 https://www.socioambiental.org/noticias-socioambientais/solucao-para-o-caos-ambiental-de-belo-

monte-esta-na-mesa-do-ibama
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Material and Methods

3.1 Data collection and Preparation

Using digital analysis techniques on satellite images and the information extracted from

the study area, multiple vegetation units were acquired. for which the normalized difference

vegetation index (NDVI) in wetlands and the river water level (NCA) was concluded. To

determine the NDVI, Landsat images with a resolution of 30 meters were used using the

cit2 platform of Google Earth Engine as a tool1, for which calculation algorithms were

applied to obtain satellite images considering the dates and cloudiness, which is expressed

by the formulation

NDV I =
ρNIR− ρRED

ρNIR + ρRED
, (3.1)

where ρRED is the fraction of the electromagnetic spectrum in the range of 0.6-0.7

µm and ρNIR is the near-infrared portion of the electromagnetic spectrum range from

0.75-1.5 µm, for more detail on the equation (3.1) consult Price, John C (1994); Tucker,

Compton J (1979). This index is based on the absorption of vegetation in the red and

infrared bands of the Landsat satellite.

Once the image has been generated with the NDVI filter in the study area, the process

of extraction, analysis and compilation of georeferenced images begins, which after a data

purification and cleaning process is collected in a data bank. This database generates a

time series of the NDVI where the state and health of the vegetation can be determined

according to its index at a given time, see Fig.3.1.
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NDVI Value Scale

Satellite Spectral Bands NDVI Data Bank
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NDVI Time Series NDVI Maximum
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V
I
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Figure 3.1: It is possible to observe the process of interpreting the various bands of a study area and

then deposit all the information in a database which is used to generate, based on time, a time series of

NDVI with its scale of vegetation values

Although the data obtained generally does not have a regular measurement frequency

set, in addition to the fact that they tend to be noisy, they require optimal pre-processing

where not too much information is lost or too much noise is retained, see Li, Shuang and

Xu, Liang and Jing, Yinghong and Yin, Hang and Li, Xinghua and Guan, Xiaobin (2021).

Therefore, we apply different smoothing methods, such as moving averages which can be

seen in the figure 3.2 and exponential smoothing, see the Appendix. After smoothing out

short-term fluctuations, long-term patterns were observed and factored into the modeling

process. In addition, imputation methods were used for empty observations, generated

by omissions in the Landsat platform, which consist of temporal statistical interpolation,

see Figure 3.3. With the objective of obtaining time series with a monthly frequency of

observations without the presence of omissions.

To finish this section, two monthly time series graphs will be presented, which are

the NDVI, see in figure 3.4 and the NCA see in figure 3.5. These data were subjected

to the statistical processes mentioned above to obtain a more accurate and continuous

representation of trends over time. These data cover a period of twenty years, where

uniform monthly data free of random fluctuations was collected for each year, which allows

us to identify long-term patterns.

1 https://earthengine.google.com/platform/
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Figure 3.2: Data Moving average smoothing
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Figure 3.3: spline interpolation

3.2 Data Analysis

In this study, the normalized difference vegetation index (NDVI) is the dependent vari-

able and the water level in the Xingu River (NCA) is the independent variable. Therefore,

the functional relationship between these two variables can be established as follows

NDV I = f(NCA), (3.2)

where the objective is, based on historical observations of both series, to estimate the

functional relationship f that links both quantities. Since both variables are time series,

the causal relationship has to be of a dynamic nature, otherwise there is a risk of obtaining

a spurious relationship, see Granger, Clive WJ and Newbold, Paul (1974). Therefore, the
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Figure 3.4: NDVI time series monthly for each year

Figure 3.5: NCA time series monthly for each year

verification of the stationary nature of both series is mandatory prior to applying a time

series model Ewing, Bradley T and Sari, Ramazan and Soytas, Ugur (2007). This paper,

the stationarity condition of the variables was verified by using the augmented Dickey-

Fuller tests Dickey, David A and Fuller, Wayne A (1979). As will be detailed later, Section

4.1, the NDVI variable is of a stationary nature, usually denoted by I(0), while the NCA

variable is non-stationary of first order, usually denoted by I(1). This mixed nature of

the integration order of the NDVI and NCA variables leads to selecting the ARDL model

Pesaran, M Hashem and Shin, Yongcheol and Smith, Richard J (2001), which is determined
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as follows

yt = c0 + c1t+

p∑
i=1

ϕiyt−i +

q∑
i=0

β′
ixt−i + ut, (3.3)

where yt are the dependent variables, in this case the NDVI series, xt are the independent

variables, in this case the NCA series, for which p and q are lags of each variable. Fur-

thermore, the coefficients c0 and c1 are the intercept and the trend coefficient respectively,

and in turn, ut is a gaussian white noise error that models the random fluctuations. The

ARDL model has advantages over the traditional cointegration test method, one of them

is that you can mix variables of I(0) and I(1), which is the case with our data. Another

advantage is that you can estimate the short-run and long-run relationship between vari-

ables in parallel using the ARDL limit test technique. For the purposes of this work, since

our variable of interest is the NDVI and our exogenous variable is the NCA, the equation

(3.3) takes the representation

NDV It = α +

n1∑
i=1

γNDV It−i +

n2∑
i=0

β1NCAt−i + εt, (3.4)

where n1 and n2 are optimally selected based on the data. The Bound Test is developed by

converting the equation (3.3) and including the short-term and long-term dynamics. This

approach guarantees us to carry out the F-test on the selected ARDL bound test equation

with lag lengths. In this case, a maximum of 3 lags was selected at the variable level

and then an optimal maximum lag length was selected based on the Akaike Information

Criterion (AIC).

If The F-test confirms the presence of cointegration, we can meaningfully estimate

the long-run equilibrium relationship between the variables. the order of integration of

the variables I(0) and I(1) are assumed by the critical values of Dickey-Fuller test. If

the F-statistic generated by the bound testing equation is above the upper bound, the

null hypothesis of no cointegration is rejected; if it is below the lower limit, the test does

not reject the null hypothesis, for a more detailed consultation see Pesaran, M Hashem

and Shin, Yongcheol and Smith, Richard J (2001). After confirmation of the long-run

relationship of the variables, we can obtain the short-run dynamics by converting the

equation (3.4) in an error correction model (ECM) which is specified as

∆NDV It = α +

n1∑
i=1

γ∆NDV It−i +

n2∑
i=0

β1∆NCAt−i + δECt−1 + εt, (3.5)
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where δ is the speed of adjustment, ECt−1 represents the unbalance or error correction

term and ∆ interprets the first difference the variables. The coefficient of ECt−1 shows

the rate of readjustment to equilibrium in the long run when short-term disturbances

produce disequilibrium. Causality is represented with a negative sign and significant in the

error correction coefficient δ, see Shahbaz, Muhammad and Hye, Qazi Muhammad Adnan

and Tiwari, Aviral Kumar and Leitão, Nuno Carlos (2013). It is important to diagnose

the model specification, as well as the assumptions of independence, heteroscedasticity

and normality of the errors. Therefore, serial independence the errors is verified using

the Breush-Godfrey serial correlation Lagrange multiplier (LM) test, while the ARCH

test will be used to verify the heteroscedasticity problem in the model. The CUSUM of

squares Brown, Robert L and Durbin, James and Evans, James M (1975) and Pesaran e

Pesaran (1999) they are used to detect errors of specification in the model of autoregressive

structures. It is important to mention that these tests are also used to ensure the stability

of certain model parameters.

As was previously mentioned, the ARDL model is not restricted by the integration

order of the variables, this model reveals the existence of a linear relationship between

non-stationary or mixed variables. However, this test has an important disadvantage

since it does not reveal the direction of the relationship between variables. Therefore, to

understand the direction between cause and effect of the variables, i.e., the relationship

between the vegetation index and the water level of the Xingu River, the Bound Test

ARDL must be applied for which one of the five cases must be selected in equation 3.6.

Once the case is selected, which for our study is type I, a candidate model is obtained,

for which, if the calculated F statistic falls beyond the upper critical value, the null hy-

pothesis of no cointegration is rejected. If the value is below the lowest value, the null

hypothesis of no cointegration cannot be rejected. If the value falls within the band of

critical values, the inference is not conclusive and other cointegration procedures such as
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Johansen, Soren and Juselius, Katarina and others (1990) must be verified.

CASE I

c0 = c1 = 0

ECTt = yt−1 − (
k∑

j=1

θjxj, t− 1),

CASE II

c0 = c1 = 0

ECTt = yt−1 − (µ+
k∑

j=1

θjxj, t− 1),

CASE III

c1 = 0

ECTt = yt−1 − (
k∑

j=1

θjxj, t− 1),

CASE IV

c1 = 0

ECTt = yt−1 − (∆t−1 +
k∑

j=1

θjxj, t− 1),

CASE V

ECTt = yt−1 − (∆t−1 +
k∑

j=1

θjxj, t− 1).

(3.6)
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Results and Discussion

4.1 Results

Once the data was processed, the time series analysis of the two variables was carried

out, where the temporal evolution’s in the NDVI and NCA measured monthly are observed.

The figure 4.1 shows the graph of the two time series of both variables in the same time

interval, with the aim of exploratory visualization of the dynamic relationship between

them. In addition, a regime change can be visually observed in the dynamic relationships

between both variables after the inauguration of the Belo Monte hydroelectric plant that

began operating in 2016, which diverts a large part of the flow of the Xingu River.

Figure 4.1: You can see the NDVI time series in pink and the NCA time series in lead during the period

from 2002 to 2022. In addition, you can see its variation before and after the operation of the Belo Monte

Plant, which is marked with a red line ( April 20016)
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The central interest of this work is to estimate the impact of the NCA in the Xingu

river on the NDVI, this impact can be observed through satellite images as can be seen

in figure 4.2, figure 4.3 and figure 4.4 where the NDVI images vary in the study area for

the same hydrological moments over time. For this reason, our objective in particular is to

obtain a dynamic relationship, both in the short and long term, between both magnitudes.

Figure 4.2: satellite image of the study area in 2014

Figure 4.3: satellite image of the study area in 2016
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Figure 4.4: satellite image of the study area in 2018

For this, the descriptive statistics show that in Table 4.2, the p-value is less than 0.5,

which leads to rejecting the hypothesis of non-stationarity for the Dickey-Fuller test (ADF)

for the NDVI variables, which means say of order of integration is I(0), this is equivalent

to saying that the NDVI variable is not a function of time and does not present a trend.

While in table 4.1, which contains values of the stationarity test for the water level (NCA),

it leads to not rejecting the hypothesis of non-stationarity, concluding that the order of

integration of the NCA series is I(1), this means that the NCA systematically tends to

increase or decrease over time. Therefore, the series are of order I(0) and I(1), which

prevents us from working with conventional cointegration methodologies such as those

described in Granger, Clive WJ (1981) and Johansen, Søren (1991). Therefore, a suitable

methodology for our objectives is the ARDL-ECM model described in Pesaran e Pesaran

(1999) and Pesaran, M Hashem and Shin, Yongcheol and Smith, Richard J (2001).

Once the Dickey Fuller test is finished, the ARDL model is shown, with which the lag

number is determined, which was conveniently chosen to later formulate an error correction
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Dickey-Fuller Test Results for Column: River Level

statistical test -1.371771

p-value 0.595732

No Lags Used 15.000000

Number of observations used 220.000000

Critical Value (1%) -3.460428

Critical Value (5%) -2.874769

Critical Value (10%) -2.573821

Conclusions: The null hypothesis cannot be rejected

The data is not stationary

Table 4.1 -

Dickey-Fuller test results for spine: NDVI

statistical test -4.075307

p-value 0.001064

No Lags Used 11.000000

Number of observations used 229.000000

Critical Value (1%) -3.459233

Critical Value (5%) -2.874245

Critical Value (10%) -2.573541

Conclusions: Reject the null hypothesis

The data is stationary

Table 4.2 -

model (ECM), which will be a particular type of model ARDL that removes spurious

regressions. This can be seen in table 4.3 and table 4.4 where the dependent variable will

be the NDVI, in addition it can be seen that the autoregressive order of the dependent

variable is three and the distributed lag of the independent variable is two.

ECM Model Results

Dep. Variable: NDVI No. Observations: 236

Model: ECM(3, 2) Log Likelihood 117.081

Method: Conditional MLE S.D. of innovations 0.622

Date: Mon, 27 Feb 2023 AIC -218.161

Time: 20:59:37 BIC -190.553

Table 4.3 -
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coef std err z P > |z| [0.025 0.975]

const 0.5201 0.072 7.204 0.000 0.378 0.662

NDVI L1 -0.9141 0.088 -10.341 0.000 -1.088 -0.740

NIVEL AGUA L1 0.0218 0.071 0.308 0.758 -0.118 0.162

D. NDVI L1 0.206 0.076 2.711 0.007 0.056 0.357

D. NDVI L2 0.1901 0.063 2.996 0.003 0.065 0.315

D. NIVEL AGUA L0 -0.3760 0.138 -2.731 0.007 -0.647 -0.105

D. NIVEL AGUA L1 -0.4332 0.138 3.134 0.002 0.161 0.706

Table 4.4 -

Once the appropriate delay structure for the ARDL model has been determined, it is

important to ensure that the model errors are serially independent. Because the focus is

on the long-run relationship, the ECM corrects for the imbalance between the variables,

allowing the short-run relationship to be evaluated as well as the long-run cointegration re-

lationship. After the correction, the cointegration vector is determined, which is presented

in table 4.5 with the objective of obtaining the normalized estimates of the cointegration

relationship in addition to the estimated values associated with the relationship between

the NCA and the NDVI.

Cointegrating Vector

coef std err t P > |t| [0.025 0.975]

const -0.5689 0.041 -14.021 0.000 -0.649 -0.489

NDVI L1 1.0000 0 nan nan 1.000 1.000

Nivel agua -0.0239 0.078 - 0.305 0.760 -0.178 0.131

Table 4.5 -

After making sure that the model is dynamically stable, the Bound Test was carried

out, with the objective of observing if there is evidence of a long-term relationship between

variables. This test provides two sets of critical values p. If the test statistic is below

the critical value for the lower bound, then there appears to be no relationship of levels

regardless of order or integration on the variables. If it is above the upper bound, then

again there appears to be a relationship of levels, regardless of the order of integration of

the variables. For this test, case three was used, which is when the constant is included in

the model but not in the test.
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Bounds Test Result

Stat: 29.20969

Upper P value: 3.54e-14

Lower P value: 1.17e-14

Null: No Cointegration

Alternative: Possible Cointegration

Table 4.6-

Percentile Lower Upper

90.0 2.156 3.168

95.0 2.684 3.800

99.0 3.877 5.177

99.9 5.542 7.045

Table 4.7-

The value of our F statistic in Table 4.6 indicates that it is 29.20 and we have (k+1) = 2

variables (NDVI and NCA) in our model. So when we go to the critical value limit test

tables, we have k = 1. Since the value of our F statistic exceeds the upper limit at the 5%

significance level seen in Table 4.7, we can conclude that there is evidence of a cointegration

or also called a period of long-term relationship between the two time series. This means

that they share a common long-term trend, although they may deviate from this trend in

the short term.

This period of relationship could be due to the fact that the flooded vegetation depends

on the river water for its survival, and therefore, changes in the river water level can have a

long-term impact on the vegetation. Furthermore, it is important to note that although the

ARDL model provides evidence of a long-term relationship, there may also be short term

factors that affect the relationship between NDVI and NCA in the Xingu River. These

short-term factors may include seasonal variations in river water level and vegetation, as

well as extreme events such as droughts or floods.

4.2 Discussion

The commissioning of the Belo Monte plant has generated various environmental changes

that have implications for both biodiversity and society in the region. In terms of biodiver-

sity, the construction of the plant has caused the flooding of large areas of tropical forest,

which has resulted in the loss of natural habitats and the fragmentation of ecosystems.

This can have negative consequences for the plant and animal species that depend on

these habitats to survive. In addition, the construction of the plant has altered the natural

patterns of water flow, which can affect water quality and the availability of resources for

aquatic life, since according to Nagendra, Harini (2001), there is a relationship between
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the indices of various types of biodiversity and various NDVI values obtained from satellite

images of different ecosystems. Likewise, according to Freitas, Simone R and Mello, Mar-

cia CS and Cruz, Carla BM (2005) who evaluated the variations of the forest structures

in the vegetation index by fragments of the Atlantic Forest, to determine the existence

of a correlation between the NDVI and the structure of the humid forests. Furthermore,

Chen, T and De Jeu, RAM and Liu, YY and Van der Werf, GR and Dolman, AJ (2014)

who used soil moisture, vegetation productivity and CO2 concentration to understand

ecosystem dynamics and subsequently found a strong positive relationship between these

variables with NDVI.

In terms of society, the construction of the plant has had a significant impact on the

indigenous and local communities that depend on the Xingu River for their livelihood.

Many people have been displaced from their land and homes, leading to social and economic

tensions. In addition, the construction of the plant has led to changes in the traditional

livelihoods of the communities, such as fishing and agriculture, which has affected the food

security and livelihood of these communities, which may have lasting negative effects on

their well-being and quality of life.

Therefore, in the future it is important to consider how these environmental changes

will affect society in the region and implement mitigation and compensation measures to

minimize negative impacts on biodiversity and local communities. In addition, sustainable

practices and alternative energy should be promoted to reduce dependence on projects

that generate major environmental changes.
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Conclusions

In conclusion, the use of the ARDL (AutoRegressive Distributed Lag) cointegration

method to analyze and model NDVI and NCA time series has proven to be a valuable

tool in satellite detection and understanding of changes in vegetation and water resources.

Since, the advantage of this cointegration approach lies in its ability to capture long-term

relationships and provide accurate and consistent estimates. This makes it possible to

analyze the influence of multiple environmental factors, such as weather conditions and

water availability, on the dynamics of the vegetation.

Likewise, satellite detection based on NDVI time series provides invaluable informa-

tion in the management of natural resources, as well as in the evaluation of the impact of

environmental changes on terrestrial ecosystems. This technique allows us to better un-

derstand fluctuations in vegetation cover over time and to identify patterns of ecosystem

change and performance. Furthermore, the interaction between vegetation and water bod-

ies is complex and depends on several factors. For this reason, the use of time series allows

us to discern the direct and indirect effects of environmental variables and understand how

they influence the dynamics of ecosystems.

In summary, the use of the ARDL method in satellite detection through the analysis of

time series of NDVI and NCA is important for the study of water resources and vegetation.

Since this methodology gives us a deeper understanding of environmental changes and

helps us make informed decisions in the management and conservation of our ecosystems.

For this reason, in this study we have presented compelling evidence to affirm that the

construction of the Bello Monte power plant, commissioned in April 2016, has had a

negative impact on the ecosystem of the Volta Grande do Xingu, which is caused by the

alteration of the natural hydrological dynamics, which, in turn, has induced changes in
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the flooded vegetation. These conclusions were inferred from the identification of a causal,

structural, and negative short-term relationship between the NCA and the NDVI, series.

This implies that this dynamic relationship between series can influence a chain of effects

over time.
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Figure 6.1: NDVI time series decomposition in the time period from 2002 to 2022
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Figure 6.2: NCA time series decomposition in the time period from 2002 to 2022
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Figure 6.3: Autocorrelation and partial correlation of NDVI, it can help to check the stationarity of the

variable

Figure 6.4: Autocorrelation and partial correlation of NCA, it can help to check the stationarity of the

variable
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