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ABSTRACT 

 

This research work studies the fundamentals of the Hybrid Frequency-Time Domain (HFTD) method 

for dynamic analysis of structures, applied to the seismic analysis of dam-reservoir interaction 

systems. 

The theoretical consistency and accuracy of the HFTD method, based on the frequency domain 

Fourier analysis, is demonstrated through all the parts of the thesis, but particularly in Chapter 5 for 

linear and highly non-linear single degree of freedom (SDOF) models subject to several types of 

loading, and in Chapter 7 for a 2D dam-reservoir interaction finite element model subject to an 

earthquake ground acceleration loading. 

On the other hand, a Finite Element Method (FEM) formulation of dam-reservoir interaction problems 

is presented, being demonstrated the frequency-dependence nature of this type of systems. The fluid 

compressibility and boundary conditions of the reservoir are analytically identified as the frequency 

dependent properties of the system. 

In this context, the HFTD method is proposed as an ideal method for the dynamic analysis of 

frequency dependent systems with non-linear behavior, being the dam-reservoir interaction problem 

taken as a case study to prove this hypothesis. 

Therefore, one important part of the research work is the programming and implementation of the 

HFTD method in MATLAB for SDOF models, and in DIANA Finite Element Software for multi degree of 

freedom (MDOF) general models. In both cases, the results obtained with the HFTD method are 

compared with the solutions of analytical or numerical methods in the time domain, like the well-

established Newmark method. 

Through the entire thesis, special attention is given to the study of the following topics: 

 Fluid-structure interaction between the dam and the reservoir. 

 Wave differential equation of a fluid fulfilling the following hypothesis: inviscid, compressible, 

small amplitude motion. 

 Influence of fluid compressibility and reservoir boundary conditions assumptions (f.e: bottom 

absorption) in the seismic response of the system. 

 Soil-structure interaction between the dam and the rock foundation. 

 Modeling of the far field non-reflecting boundary conditions for the underground and reservoir 

(radiation effect). 

 Modeling of earthquake forces using base acceleration load (earthquake accelerogram). 

 Numerical implementation issues of Discrete Fourier Transform (DFT) and HFTD (segmenting 

approach, time steps, period duration, pseudo force convergence).  

 Fluid finite elements. 

 Interface finite elements for fluid-structure interaction analysis. 

For MDOF systems the HFTD method is compatible with the Mode Superposition method, which 

reduces considerable the size of the problem and therefore the computational time of analysis. 

However, the Mode Superposition method also showed to have a great influence in the accuracy of 

the results, especially when the HFTD method is applied to non-linear MDOF systems. 
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Additionally, the influence in the HFTD performance of other important implementation issues, like the 

time segmentation approach, the time step size and the Fourier Transform period, is explained and 

numerically demonstrated. 

One important conclusion of the research work is that the best performance of the HFTD method, in 

combination with the Mode Superposition method, is obtained when it is applied to MDOF systems 

with frequency dependent properties and linear or mild non-linear behavior. 

From the research work it can also be concluded that these frequency dependent properties actually 

have an impact in the response of the dam-reservoir interaction system. However, it was not possible 

to outline any definitive conclusion about the relative importance of their inclusion in the system’s 

response. 

Further case studies, especially 3D dam-reservoir interaction models, should be analyzed using the 

HFTD implementation in DIANA developed in this research work, with the objective of describing more 

clearly the relative importance of the frequency dependent properties in the linear and non-linear 

response of this type of structures. 

Finally, it is concluded that the HFTD method shows promising perspectives for its application in the 

academic and professional practice, especially for the seismic analysis of fluid-structure and soil-

structure interaction systems, or any other area for which the research of dynamic non-linear behavior 

of frequency dependent systems becomes every time more important. 
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1. INTRODUCTION 

 

1.1. Research project background and motivation 

Dynamic analysis of structures can be performed in frequency or in time domain. However both 

approaches have the following advantages and drawbacks that should be taken into account when 

facing fluid-structure interaction problems: 

 Frequency domain analysis methods are restricted to harmonic loading input. Besides, it is 

only possible to obtain the steady state response of a linear elastic system. 

 Time domain analysis can be applied with any type of loading input. Besides, it is possible to 

obtain the transient response of a system including several types of non-linearities. 

 However, time domain analysis cannot be applied directly in dam-reservoir interaction 

problems taking into account fluid compressibility or radiation boundary conditions. These 

kinds of systems are frequency dependent, and therefore, their equation of motion in the time 

domain is defined in terms of convolution integrals. Due to their complexity, these differential 

equations with convolution integrals are not directly solved by the classical time domain 

methods. 

 One indirect way of dealing with frequency dependent properties in time domain analysis is 

following a weakly coupled approach between the solid and fluid equations of motion, by 

combining both of them in a global iterative procedure. Nevertheless, this also means a large 

computational effort. 

 On the other hand, dam-reservoir interaction problems, including fluid compressibility and 

radiation boundary conditions, are naturally solved in the frequency domain by means of a 

decoupled solution procedure of the solid and fluid equations of motion. In general, this is the 

case for any system with frequency dependent properties. 

 Furthermore, frequency domain decoupled solution procedure can be applied in combination 

with the mode superposition method, attaining a remarkable reduction of the computational 

effort. 

For these reasons, hybrid methods that combine advantages of both approaches and diminish their 

drawbacks are proposed to solve dynamic dam-reservoir interaction problems, including compressible 

fluid and radiation boundary conditions. 

In this sense, the research work consists of the study and implementation of the Hybrid Frequency 

Time Domain (HFTD) method, applied to the numerical modeling of the linear and non-linear response 

of concrete dams under seismic loading, including dynamic dam-reservoir interaction, compressible 

fluid and radiation boundary conditions. 

The thesis includes programming, codification and implementation of the HFTD method in DIANA 

finite element software. The transient results obtained with the HFTD method for a realistic model of a 

high concrete dam is studied and compared with the results obtained with other time domain analysis 

methods available in DIANA. 

Through the entire thesis, special attention is given to the study of the following topics: 

 Fluid-structure interaction between the dam and the reservoir. 

 Wave differential equation of a fluid fulfilling the following hypothesis: inviscid, compressible, 

small amplitude motion. 
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 Influence of fluid compressibility and reservoir boundary conditions assumptions (f.e: bottom 

absorption) in the seismic response of the system. 

 Soil-structure interaction between the dam and the rock foundation. 

 Modeling of the far field non-reflecting boundary conditions for the underground and reservoir 

(radiation effect). 

 Modeling of earthquake forces using base acceleration load (earthquake accelerogram). 

 Numerical implementation issues of Discrete Fourier Transform (DFT) and HFTD (segmenting 

approach, time steps, period duration, pseudo force convergence).  

 Fluid finite elements. 

 Interface finite elements for fluid-structure interaction analysis. 

 

 

1.2. Thesis objectives and research questions 

The global objective is to study the HFTD method for the seismic analysis of dam-reservoir interaction 

problems, determine its performance, and compare the results obtained with the transient response of 

time domain analysis methods. In this way, the feasibility of an extended and generalized use of the 

HFTD numerical method for dam’s seismic response analysis in engineering professional practice will 

be evaluated. 

A second objective is to study the relevance that frequency dependent properties (fluid 

compressibility, reservoir boundary conditions) and far field boundary conditions have in the dam-

reservoir seismic response. 

A third objective is to study simplified and ideal models of dams (for example, one dimensional single 

degree of freedom systems) which make it possible to have an analytical insight of the results 

obtained. The results obtained from these simplified models should provide additional information 

related with the topics mentioned in the second objective. 

A fourth objective is to program, codify and implement the HFTD method for linear and nonlinear 

dynamic analysis of fluid-structure interaction problems in DIANA finite element software.  

A fifth objective is to use this implementation for the modeling and analysis of a complex real large 

scale case study. 

Finally, the last objective is to show that HFTD numerical method provides most of the advantages 

offered separately by time and frequency domain methods, and therefore it is an ideal approach for 

the solution of dam-reservoir interaction seismic problems. 

Based on the five objectives previously presented, the following research questions constitute the 

guidelines of the thesis: 

 What is the influence of the frequency dependent properties (fluid compressibility, radiation 

boundary conditions) in the seismic response of dam-reservoir interaction systems? 

 Which are the most important numerical implementation issues the HFTD method? 

 What is the general performance (accuracy, stability and convergence) of the HFTD method 

for the seismic analysis of dam-reservoir interaction problems? 
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 Which are the most relevant advantages and drawbacks of the HFTD method for seismic 

analysis of dam-reservoir interaction systems when compared with time domain analysis 

methods? 

 How feasible is the extended and generalized use of the HFTD numerical method in 

engineering practice for the computational modeling and seismic analysis of real high dams? 

 

 

1.3. Methodology of work and organization of the thesis 

First, the research methodology starts with the literature review of the theoretical background with 

special attention to the following topics: 

 Theory of wave propagation dynamics 

 Frequency domain analysis 

 Fourier analysis (DFT and FFT) 

 Fluid-structure interaction (Mixed displacement-pressure Finite Element Method formulation) 

 Dam-reservoir interaction (boundary conditions) 

 HFTD method implementation 

 Time domain analysis 

 SDOF linear and non-linear dynamic response 

 Base acceleration dynamic load 

 Soil-structure interaction 

 Finite Element modeling of real scale dam-reservoir interaction problems 

 

Second, as a sensitivity exercise, the response of a single degree of freedom model of a dam on rigid 

foundation is studied. HFTD and Newmark methods are implemented and applied in these models and 

the results obtained are compared and interpreted. In the case of the HFTD method, compressibility 

and radiation boundary conditions are taken into account in some cases, whereas in others they are 

neglected. The effects of these properties in the seismic response of this simple model are analyzed.  

Third, the programming, codification and implementation of the HFTD method in DIANA are carried 

out. A real scale two dimensional dam-reservoir-foundation interaction case study is modeled in 

DIANA in order to test the HFTD implementation and compare the results obtained with the Newmark 

time domain method available in the software. 

Finally, conclusions about the influence and importance of compressibility, boundary conditions and 

the method of analysis in the seismic response of dam-reservoir interaction problems are elaborated. 

The relevance of HFTD method for this type of problems is evaluated. 

The case study is a 100 m. height concrete dam, which foundation material is a flexible soil. In 

DIANA, 2D (plane strain) models of this case study are elaborated, putting special attention to the 

modeling details and results interpretation. In addition to the seismic time history ground acceleration 

loading in the horizontal translational direction, hydrostatic water pressure and gravity loads are 

considered as initial conditions. 

The contents of the thesis are organized in six chapters. Chapter 2 presents a succinct theory 

background review of the frequency domain analysis in single degree of freedom (SDOF) and multi 
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degrees of freedom (MDOF) systems. The frequency domain analysis theory is developed using 

complex numbers notation. Topics like mode superposition method, direct method and Fourier 

analysis are presented. 

Chapter 3 develops the Finite Element Method (FEM) formulation of dynamic fluid-structure interaction 

(FSI) applied to MDOF dam-reservoir interaction systems. The discrete fluid-structure coupled 

equations of motion are obtained and the influences of the fluid compressibility and the reservoir 

boundary conditions are analytically demonstrated. In addition, the modified equation of motion for 

base acceleration loading, together with its underlying assumptions and simplifications, are explained. 

Chapter 4 develops the HFTD method formulation applied to the MDOF FEM formulation of the dam-

reservoir interaction system presented in Chapter 3. This comprehensive chapter contains the 

background theory of the method, and a detailed description of the method procedure, 

implementation issues and input parameters. 

In Chapter 5 the dynamic response of SDOF systems is studied. For this purpose, the HFTD and 

Newmark methods are developed and programmed in MATLAB especially for these SDOF systems. 

The MATLAB routines are used to test several types of linear and non-linear examples, and compare 

the results obtained with both methods. 

Chapter 6 presents the formulation of a simplified one dimensional dam-reservoir interaction system 

including considerations like fluid compressibility and radiation boundary condition. The frequency 

dependent terms introduced by the hydrodynamic pressure are added to the SDOF formulation 

developed in Chapter 5. Again, the modified HFTD method is used to test a particular example of a 

simplified dam-reservoir interaction system, and evaluate the influence of compressibility and radiation 

boundary in its linear and non-linear response. 

Finally, Chapter 7 presents the results of the HFTD method implementation in DIANA finite element 

software. A comprehensive study of the seismic response of 2D foundation-dam-reservoir interaction 

case study modeled with DIANA is performed. The modeling process, as well as the analysis results, is 

presented in detail for linear elastic behavior and dam’s concrete cracking non-linear behavior. In 

addition to the HFTD method, different types of dynamic analysis, like eigen-analysis, frequency 

domain analysis (Direct Method) and time domain transient analysis (Newmark method), are also 

carried out. 

The conclusions and recommendations of the thesis are presented in Chapter 8. Besides, important 

information about the HFTD implementation in DIANA, the MATLAB routines developed for SDOF 

systems, and the DIANA HFTD command file for the analysis of the 2D foundation-dam-reservoir 

interaction case study, is contained in Appendix A, B and C, respectively. 
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2. FREQUENCY DOMAIN ANALYSIS 

 

2.1. Complex frequency response1 

The equation of motion of a viscous damped SDOF system subject to a harmonic excitation is 

expressed in its complex form by Eq. (2.1). The excitation force, defined in Eq. (2.1) in terms of its 

amplitude (  ) and excitation frequency ( ), is a rotating vector force in the complex plane which two 

components are real (cosine) and imaginary (sine). 

  ̂̈( )    ̂̇( )    ̂( )   ̂( )     
      (2.1) 

 

The solution of Eq. (2.1) (particular solution) is denominated the steady state response of the system, 

which in combination with the free vibration solution (complementary solution) and the initial 

conditions, provides the total response of the system. 

The steady state response of the viscous damped SDOF system defined in Eq. (2.1) is also defined in 

the complex plane as expressed in Eq. (2.2). Furthermore, the complex steady state response of the 

system can be expressed in terms of the excitation frequency   and the complex amplitude  ̂, as 

defined in Eq. (2.3). 

 ̂( )             (2.2) 

 ̂( )   ̂          (2.3) 

 

Eq. (2.3) is differentiated with respect to time to obtain the expressions for the velocity and 

acceleration expressed in Eqs. (2.4) and (2.5), respectively. Both responses can be expressed in terms 

of the displacement. 

 ̂̇( )     ̂        ̂( )     (2.4) 

 ̂̈( )      ̂         ̂( )     (2.5) 

 

The magnitude of the displacement ( ̂) is a complex quantity defined in Eq. (2.6) in terms of the real 

amplitude ( ) and the phase angle or phase lag ( ) with respect to the excitation force. Different 

expressions for the displacement, velocity and acceleration are obtained in Eqs. (2.7) to (2.9), 

respectively, after replacing the complex amplitude given by Eq. (2.6) into Eqs. (2.3) to (2.5). 

 ̂              (2.6) 

 ̂( )     (    )      (2.7) 

 ̂̇( )       (    )     
 (     

 

 
)
    (2.8) 

                                                           
1 Based on Craig and Kurdilla (2006). 
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 ̂̈( )        (    )       (      )   (2.9) 

 

The system’s response and excitation force in the complex plane at time “t” are illustrated in Fig. 2.1, 

which presents a graphical representation of the phase angle between the force and the response, the 

magnitude of velocity and acceleration with respect to displacement, and the 
 

 
 and   rad out-of-phase 

angles of velocity and acceleration, respectively, with respect to displacement. 

 

Figure 2.1: Rotating force, displacement, velocity and acceleration vectors in the complex 

plane. 

 

The substitution of Eqs. (2.3) to (2.5) into Eq. (2.1) results in the expression of the displacement’s 

complex amplitude  ̂ given by Eq. (2.10). From this equation, the expressions for the phase angle 

and the real displacement amplitude are determined in Eqs. (2.11) and (2.12). 

 ̂  
  

(     )    
     (2.10) 

 ( )  
  

     
      (2.11) 

 ( )  
  

√(     )  (  ) 
    (2.12) 
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2.2. Direct method2 

The equation of motion of a SDOF in the frequency domain defined in Eq. (2.13) is obtained after 

replacing Eqs. (2.3) to (2.5) into Eq. (2.1). The solution of Eq. (2.13) provides the complex 

displacement amplitude ( ̂) of the steady state response for each excitation frequency ( ). 

(         ) ̂        (2.13) 

 

The extension of Eq. (2.13) to MDOF systems is expressed in Eq. (2.14) in terms of the stiffness 

matrix ( ), the damping matrix ( ) and the mass matrix ( ). The displacement amplitude and force 

amplitude are defined by the complex vectors  ̂ and  ̂, respectively. Usually, when the excitation 

force is defined in the frequency domain, the imaginary part of the force amplitude vector is equal to 

zero. However, if the excitation force is defined in the time domain, then a direct Fourier Transform is 

required to be expressed in the frequency domain (See Section 2.4), and therefore the force 

amplitude vector is complex. 

(         ) ̂   ̂    (2.14) 

 

One way of solving Eq. (2.14) is by means of the Direct solution method which converts a n x n 

complex system of equations into the 2n x 2n system with real coefficients given by Eq. (2.15). This 

double-sized system is obtained as a consequence of splitting the displacement and force amplitude 

vectors into their real and imaginary components. 

[   
    

        
]{
  
  
}  {

  
  
}    (2.15) 

 

The steady state response of the system, given by the real (  ) and imaginary (  ) parts of the 

displacement amplitude vector, is obtained from the solution of Eq. (2.15) for each excitation 

frequency  . 

 

 

2.3. Mode superposition method3 

For linear systems in which  ,  , and   remain constant, the principle of mode superposition is 

applicable. This method requires the previous execution of an eigen-analysis from which a number of 

important modes of vibration are selected. Then, the solution of the system is approximated to the 

superposition of the solutions corresponding to each selected mode of vibration. 

Eq. (2.16) presents the mode shape matrix ( ) containing the “m” vibration mode shape vectors (  ) 

selected for the execution of the mode superposition method. The complex displacement amplitude 

                                                           
2 Based on TNO DIANA (2011). 
3 Based on TNO DIANA (2011). 
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vector ( ̂) is expressed in terms of the complex generalized displacement amplitude ( ̂) and the mode 

shape matrix by means of Eq. (2.17). 

     [        ]     (2.16) 

 ̂         ̂        (2.17) 

 

Eq. (2.17) is substituted in Eq. (2.14) to obtain the equation of motion in terms of the generalized 

system given by Eq. (2.18). The system of equations is reduced to a m x m system (m < n) by 

multiplying Eq. (2.18) times the transpose of the mode shape matrix, as expressed in Eq. (2.19) in 

terms of the generalized stiffness (  ), mass (  ) and damping (  ) matrices defined in Eqs. (2.20) 

to (2.22), respectively. 

(         )  ̂   ̂    (2.18) 

(    
        ) ̂   

  ̂    (2.19) 

     
          (2.20) 

     
          (2.21) 

     
          (2.22) 

 

The generalized displacement vector ( ̂) is determined from the solution of the reduced equation of 

motion defined in Eq. (2.19), which can be solved for each excitation frequency using the direct 

method [Eq. (2.15)]. Then  ̂ is replaced into Eq. (2.17) to obtain  ̂. 

A more simplified procedure is possible for a special type of damping matrix  . Due to the 

orthogonality property of the mass and stiffness matrices with respect to the modal shape matrix,    

and    are diagonal matrices. On the other hand, the damping matrix   is usually not orthogonal with 

respect to the modal shape matrix and therefore    is not diagonal. However, when   is proportional 

to    or    the generalized damping matrix is also diagonal and the system defined by Eq. (2.19) is 

uncoupled. 

For this particular uncoupled system the solution with the mode superposition method for each 

excitation frequency is given by Eqs. (2.23) and (2.24), which are derived from Eqs. (2.17) and 

(2.19), respectively. 

 ̂  ∑  ̂   
 
         (2.23) 

 ̂  
  
  ̂

  
      

   
         

    
     (2.24) 
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2.4. Fourier analysis4 

 

2.4.1. Complex Fourier series for periodic excitation 

The periodic loading function  ( ) of a SDOF system is expressed in terms of its harmonic 

components by means of the complex Fourier series expansion (also denominated Inverse Fourier 

Transform) defined in Eq. (2.25). 

 ( )  ∑ [ ̂ ( ) 
 (    )] 

         (2.25) 

 

The fundamental frequency    is related to the longest period (  ) of the harmonic components 

contained in the loading function  ( ) as expressed in Eq. (2.26). The complex magnitude  ̂ ( ) of 

the loading is defined for each harmonic component by the Direct Fourier Transform expressed in Eq. 

(2.27). 

   
  

  
      (2.26) 

 ̂ ( )  
 

  
∫  ( )   (    )  
    
 

    (2.27) 

 

2.4.2. Fourier integral for non-periodic excitation 

If the loading function  ( ) is not periodic, it can be expressed in the frequency domain by means of 

a Fourier integral. For doing this the fundamental period    is extended to infinity [Eq. (2.28)] and 

therefore the fundamental frequency    becomes a differential term [Eq. (2.29)] and the discrete 

frequencies become a continuous variable [Eq. (2.30)]. 

           (2.28) 

           (2.29) 

           (2.30) 

 

Furthermore, in order to obtain complex loading magnitude  ̂ ( ) different than zero when applying 

the Direct Fourier Transform defined in Eq. (2.27) (  ) in the denominator tends to infinity), the 

change of variable expressed in Eq. (2.31) is introduced. 

 ̂(  )     ̂ ( )     (2.31) 

 

                                                           
4 Based on Craig and Kurdilla (2006). 
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After replacing Eqs. (2.28) to (2.31) into Eqs. (2.25) and (2.27), and substituting the summatory 

operators by integrals, the Direct and Inverse Fourier Transform for non-periodic loading functions are 

defined by Eqs. (2.32) and (2.33), respectively. 

 ̂( )  ∫  ( )   (  )  
 

  
     (2.32) 

 ( )  
 

  
∫  ̂( )  (  )  
 

  
     (2.33) 

 

2.4.3. Discrete Fourier Transform (DFT) 

The Fourier integral expressions given by Eqs. (2.32) and (2.33) are used in the determination of the 

transient response of a system. However these analytical expressions should be numerically 

implemented by means of their discrete counterpart, namely, the Discrete Fourier Transform (DFT). 

The formulation of the DFT starts with the sampling of the loading function in   points which uniform 

separation is defined by the time step size   . Therefore, the fundamental period (  ) and the 

frequency interval (  ) are defined in Eqs. (2.34) and (2.35), respectively. 

             (2.34) 

   
  

  
      (2.35) 

 

The continuous time ( ) and circular frequency ( ) variables of Eqs. (2.32) and (2.33) have to be 

transformed to their equivalents discrete variables for the DFT formulation. In this sense, the discrete 

time points (  ) and frequencies (  ) are defined in Eqs. (2.36) and (2.37), respectively. Similarly, the 

differential time (  ) and frequency (  ) is expressed in terms of the time step and frequency interval 

by Eqs. (2.38) and (2.39), respectively. 

               (2.36) 

                   (2.37) 

            (2.38) 

              (2.39) 

 

Finally, the substitution of Eqs. (2.34) to (2.39) into Eq. (2.32) and (2.33), and the replacement of the 

integrals by summatory operators, provide the expression for the Direct and Inverse DFT defined by 

Eqs. (2.40) and (2.41), respectively. 

 ̂(  )    ∑ [ (  ) 
  (

    

 
)]   

       (2.40) 

 (  )  
 

    
∑ [ ̂(  ) 

 (
    

 
)]   

       (2.41) 
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3. FINITE ELEMENT METHOD (FEM) SEISMIC ANALYSIS OF DAM-

RESERVOIR INTERACTION PROBLEMS 

 

3.1. FEM formulation of dynamic fluid-structure interaction (FSI) 

 

3.1.1. Dynamic FSI in dam-reservoir interaction 

Dynamic FSI problems consist of coupled systems which usually describe different physical 

phenomena connected one to the other through a common surface called fluid-structure interface. 

The coupling of the systems is produced through this interface where unknown interaction forces are 

produced. 

Each physical domain is described by its corresponding differential equations of motion, which in most 

of the cases are expressed in terms of different dependent variables. These equations are coupled 

through the boundary conditions imposed in the fluid-structure interface, making the motion of one 

domain dependent on the motion of the others. 

For the seismic analysis of dam-reservoir interaction problems, although the fluid displacement 

remains small, the interaction with the structure is considerable. The base acceleration load is applied 

in the rock foundation, and as a consequence, the soil seismic waves propagate and produce the 

structural vibration of the dam. The structural motion of the dam generates pressures and wave 

propagation in the reservoir. Consequently, the reservoir waves interact with the dam generating 

pressure loads on the dam’s surface. For this reason, none of the two equations of motion (structure 

and fluid) can be solved independently of the other. 

 

3.1.2. Eulerian pressure formulation of the fluid wave equation1 

One way to formulate the coupled FEM equations of motion for FSI problems is using a mixed 

displacement – scalar potential approach, which defines the solid variables in terms of displacement 

degrees of freedom (DOF), and the fluid variables in terms of pressure DOF. This is called the Eulerian 

pressure formulation. 

One of the advantages of this type of formulation is the simple description of the fluid domain using a 

single scalar pressure variable. This reduces considerably the number of variables of the system since 

only one DOF per node is required to describe the motion of the fluid domain. 

Taking into account that for dam-reservoir interaction problems the fluid motion is not substantial but 

small, considerable simplifications can be made in its equation of motion formulation. Those 

simplifications are a consequence of the following assumptions only valid for this type of problems: 

 Small displacement amplitudes 

 Small velocities (convective effects are omitted) 

 Inviscid (viscous effects are neglected) 

 Small compressibility (variation of density is small) 

                                                           
1 Based on Zienkiewicz et al. (2005), Rizos and Karabalis (2000), and Zienkiewicz and Bettes (1978). 
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Therefore, for this type of problems, the linearized Navier-Stokes dynamic equation of the fluid in 

terms of density (ρ), velocity (v), pressure (p) and constant body force of gravity (b), is defined in the 

vectorial Eq. (3.1). 

 (  )

  
                     (3.1) 

 

Considering that a small variation of density is assumed, in Eq. (3.1) ρ can be taken out of the 

derivative operator and be replaced by the constant hydrostatic density (ρ0). Furthermore, if the body 

gravity force is neglected the dynamic equation of fluid is reduced to Eq. (3.2). 

   ̇                     (3.2) 

 

On the other hand, the linearized continuity or mass conservation equation of the fluid based on the 

same assumptions is given by the scalar Eq. (3.3). 

  (   )  
  

  
                (3.3) 

 

Density variation is a consequence of elastic deformability and therefore it involves a change in 

pressure. Under the previously stated assumptions, and considering that elastic deformability in fluids 

depends on the bulk modulus (β), Eq. (3.4) holds. 

 
  

  
 

 

  

  

  
                (3.4) 

 

If Eq. (3.4) is replaced into Eq. (3.3) and then it is differentiated with respect to time, the continuity 

equation is expressed in terms of pressure by Eq. (3.5). 

   ̇   
 

 

   

                   (3.5) 

 

Eq. (3.2) is differentiated with respect to space and transformed into a scalar equation by applying the 

divergence operator. Then it is combined with Eq. (3.5), eliminating the fluid velocity vector variable 

(v) and obtaining the classical scalar wave equation given by Eq. (3.6), that governs the fluid domain 

motion. The wave speed (c) is defined in terms of the fluid density and bulk modulus, as shown in Eq. 

(3.7). 

    
 

   ̈               (3.6) 

  √
 

 
               (3.7) 
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3.1.3. Reservoir boundary conditions2 

The fluid domain which motion is governed by Eq. (3.6) requires some boundary conditions that 

complete the system definition. The boundary conditions describe the coupling of the reservoir with 

the dam at the interface and the radiation condition of infinite extent in the upstream direction. The 

effect of surface waves in the top of the reservoir and the reflection of pressure waves in the bottom 

can also be described by the boundary conditions. 

In summary, for a reservoir mass of fluid four types of boundary conditions3 are generally defined as 

shown in Fig. 3.1. 

 

Figure 3.1: Fluid and solid domains, fluid-structure interface and boundary conditions 

(TNO DIANA BV, 2011). 

 

3.1.3.1. Fluid-structure interface (ΓI) 

The expressions describing the boundary conditions should be expressed in terms of pressure (p) 

(essential boundary condition) or pressure gradients in the normal direction to the boundary surface 

(
  

  
) (natural boundary condition). 

Taking this into account, the boundary condition for the fluid-structure interface is obtained by 

multiplying the transpose of the normal vector to the boundary surface (nT)4 by Eq. (3.2). Then, the 

time derivative of the fluid normal velocity ( ̇  ) is prescribed in relation with the pressure gradient in 

the normal direction (
  

  
), as shown in Eqs. (3.8) and (3.9). 

        ( 
  ̇ )     (3.8) 

  

  
     ̇        (3.9) 

                                                           
2 Based on Zienkiewicz et al. (2005), Fenves and Chopra (1983), Fenves and Chopra (1984) and TNO DIANA BV 
(2011). 
3 Generally, for 2D models one of these four boundary conditions belongs to each side of the fluid region. 
4 The normal vector n points outward of the fluid domain. 
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The coupling between the fluid and the structure is achieved through the motion continuity of both 

physical domains. In this sense, the prescribed fluid normal velocity ( ̇  ) is coupled with the structure 

normal displacement (   ) as expressed in Eq. (3.10). 

     ̇      ̇       (3.10) 

 

The final expression of the fluid-structure interface boundary condition is given by Eq. (3.11), after 

replacing Eq. (3.10) into Eq. (3.9). 

  

  
   ( 

  ̈ )     on  ΓI  (3.11) 

 

3.1.3.2. Free surface waves (Γs) 

It is possible to specify two types of boundary conditions for the free surface of the reservoir. The first 

and simplest one is a consequence of neglecting the effect of the surface waves, prescribing a 

pressure equal to zero in the horizontal top free surface, as expressed in Eq. (3.12). This is an 

essential or Dirichlet type of boundary condition. 

      on  Γs  (3.12) 

 

The second option for the free surface boundary condition is to use Eq. (3.13) as an approximated 

expression to determine the pressure caused by the surface gravity waves. In this case,     is the 

vertical elevation (Z-direction) of the fluid relative to the mean surface. 

              (3.13) 

 

Eq. (3.14) is obtained from Eq. (3.9) after defining z as the normal direction (n). 

  

  
     ̇       ̈       (3.14) 

 

The combination of Eqs. (3.13) and (3.14) allows the elimination of     obtaining the linearized 

surface wave condition given by Eq. (3.15) 

  

  
 

 

 
 ̈     on  Γs  (3.15) 

 

3.1.3.3. Radiation boundary of infinite extent (Γe) 

Considering only the fluid wave propagation in X-direction, the general solution of the wave equation 

given by Eq. (3.6) is expressed in Eq. (3.16). 
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   (    )   (    )            (3.16) 

 

On the radiation boundary, which is theoretically located at an infinite distance from the dam in the X-

direction, no incoming waves are entering into the system (only outgoing waves), and therefore Eqs. 

(3.17) and (3.18) describe the pressure wave propagation on this boundary. 

 (    )                (3.17) 

   (    )             (3.18) 

 

Eqs. (3.19) and (3.20) are obtained after differentiate Eq. (3.18) with respect to space (x) and time 

(t), respectively. 

  

  
                 (3.19) 

  

  
                  (3.20) 

 

After eliminating F’ from Eqs. (3.19) and (3.20), the radiation boundary condition of infinite extent 

given by Eq. (3.21) is obtained. 

  

  
 

 

 
 ̇     on  Γe  (3.21) 

 

3.1.3.4. Bottom absorption (Γb) 

Similarly to Eq. (3.6), the wave equation that describes the movement of the bottom materials in 

terms of the normal displacement to the bottom surface (   ) and wave speed (cr) is defined by Eqs. 

(3.22) and (3.23). 

      
 

  
  ̈         (3.22) 

   √
  

  
        (3.23) 

 

Taking into account that in the reservoir bottom only outward propagating waves in the normal 

direction are considered, and that there is no incoming propagation waves due to the radiation 

condition assumed for the thick layer of bottom materials, the general solution of Eq. (3.22) is given 

by Eq. (3.24). 

     (     )            (3.24) 
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On the other hand, the equilibrium equation is obtained in terms of the fluid pressure (defined positive 

for compression) and the normal stresses in the bottom materials surface, as expressed by Eq. (3.25). 

     
    

  
        (3.25) 

 

Eq. (3.26) is obtained after replacing Eq. (3.24) into Eq. (3.25), whereas its derivative with respect to 

time is given by Eq. (3.27). 

      
         (3.26) 

 ̇       
          (3.27) 

 

The interaction and continuity between the fluid and the bottom materials is ensured by the 

compatibility of displacements, required to derive Eq. (3.28) from Eq. (3.14). Eq. (3.29) is obtained 

after replacing Eq. (3.24) into Eq. (3.28). 

  

  
     ̈          (3.28) 

  

  
      

          (3.29) 

 

After combining Eqs. (3.27) and (3.29), the term F’’ is eliminated to obtain Eq. (3.30). Finally, the 

bottom absorption boundary condition defined by Eqs. (3.31) and (3.32) is obtained after eliminating 

Er through the combination of Eqs. (3.23) and (3.30). 

  

  
  

    

  
 ̇      (3.30) 

  

  
   ̇     on  Γe  (3.31) 

  
  

    
      (3.32) 

 

To determine the constant q in terms of the wave reflection coefficient ( ), the harmonic pressure 

wave propagating in the normal direction of the bottom surface is defined as the summation of a 

outward incident wave (pi) and an inward reflected wave (pr), as expressed by Eqs. (3.33) to (3.35). 

             (3.33) 

      ( 
 

 
  )

      (3.34) 

       (
 

 
  )

      (3.35) 

 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

3. Finite Element Method (FEM) Seismic 
Analysis of Dam-Reservoir Interaction Problems 

 

17 

 

After the substitution of Eqs. (3.33) to (3.35) into Eq. (3.31), the relation given by Eq. (3.36) is 

obtained for the bottom boundary (n=0). The expression of q in terms of α is given by Eq. (3.37), 

obtained after the cancellation of the exponential terms of eq. (3.36). 

 
  

 
(          )      (          )   (3.36) 

  
   

 (   )
      (3.37) 

 

Eq. (3.37) is replaced into Eq. (3.31) to obtain the bottom absorption boundary condition expressed 

by Eq. (3.38) in terms of the wave reflection coefficient ( ). 

  

  
 

   

 (   )
 ̇     on Γb  (3.38) 

 

3.1.4. FEM formulation: weak form of the coupled system5 

The equation of motion of the solid part of the system (dam and foundation) is given by Eq. (3.39), 

whereas the natural or Neumann boundary condition is given by Eq. (3.40)6. 

   ̈    ̇               (3.39) 

           on  Γh  (3.40) 

 

The weak form of the solid part of the system is expressed in Eq. (3.41). Besides, Eq. (3.42) is 

obtained after applying integration by parts and the Green’s theorem over the term containing the 

stress tensor (    ) in Eq. (3.41). 

∫    
 [   ̈    ̇        ]

  
   ∫    

 [      ]
  

      (3.41) 

∫    
 [   ̈    ̇   ]

  
   ∫          

   ∫    
  

  
      (3.42) 

 

The interaction between the fluid and the structure is introduced in the weak form of the solid 

equation of motion [Eq. (3.42)] as a Neumann boundary condition in the interface (ΓI), by relating the 

surface traction stresses applied in the fluid-structure interface of the solid domain with the 

hydrodynamic pressure (p) defined positive in compression. This interaction boundary condition for 

the solid domain is expressed in Eq. (3.43). 

              (3.43) 

 

                                                           
5 Based on Zienkiewicz et al. (2005) and Zienkiewicz and Bettes (1978). 
6 The normal vector nS points outward of the solid domain. 
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After replacing Eq. (3.43) into Eq. (3.42) the final expression of the weak form of the solid part of the 

system is obtained in Eq. (3.44). This expression is valid for linear and nonlinear analysis. The most 

common nonlinearities, like material or geometric nonlinearities, can be introduced in the terms      

and   . 

∫    
 [   ̈    ̇   ]

  
   ∫          

   ∫    
   

  
      (3.44) 

 

With the objective to determine the weak form of the fluid part of the system, its wave equation and 

boundary conditions previously defined are reproduced below. 

 

   ̈             (3.6) 

  

  
   ( 

  ̈ )     on ΓI  (3.11) 

  

  
 

 

 
 ̈        on Γs  (3.15) 

  

  
 

 

 
 ̇      on Γe  (3.21) 

  

  
 

   

 (   )
 ̇     on Γb  (3.38) 

 

The weak form of the fluid part of the system is expressed in Eq. (3.45). Eq. (3.46) is obtained after 

applying integration by parts and the Green’s theorem over the term     of Eq. (3.45). 

∫   [
 

   ̈     ]
  

   ∫   [
  

  
   ( 

  ̈ )]  
   ∫   [

  

  
 

 

 
 ̈]

  
   ∫   [

  

  
 

 

 
 ̇]

  
   

∫   [
  

  
 

   

 (   )
 ̇]

  
            

 (3.45) 

∫   
 

   ̈
  

   ∫      
  

   ∫   [  ( 
  ̈ )]  

   ∫   [
 

 
 ̈]

  
   ∫   [

 

 
 ̇]

  
   

∫   [
   

 (   )
 ̇]

  
            (3.46) 

 

3.1.5. Discrete coupled problem definition: Galerkin method7 

The displacement and pressure fields are discretized using the approximated expressions given by 

Eqs. (3.47) and (3.48), respectively.  ̅ and  ̅ are the vectors containing the nodal values for each 

degree of freedom of the solid and fluid part of the system, respectively, whereas Nu and Np are the 

corresponding shape function matrices. 

      ̅              (3.47) 

                                                           
7 Based on Zienkiewicz et al. (2005) and Zienkiewicz and Bettes (1978). 
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     ̅              (3.48) 

 

After replacing Eqs. (3.47) and (3.48) into Eq. (3.44), the standard Galerkin discretization applied to 

the weak form of the solid equation is defined by Eq. (3.49). For the particular case of linear structural 

systems, the discrete equation of motion is transformed as shown in Eq. (3.50). 

   ̈̅     ̇̅    
   ( ̅)     ̅    

   ( )    (3.49) 

   ̈̅     ̇̅     ̅     ̅    
   ( )    (3.50) 

 

The mass (MS), damping (CS), stiffness (KS) and interaction (R) matrices, as well as the external 

(  
   ) and internal (  

   ) force vectors appearing in Eqs. (3.49) and (3.50), are directly obtained from 

Eqs. (3.44), (3.47) and (3.48). For instance, the expression of the interaction matrix is reproduced 

below in Eq. (3.51). 

  ∫   
       

        (3.51) 

 

On the other hand, after replacing Eqs. (3.47) and (3.48) into Eq. (3.46), the standard Galerkin 

discretization applied to the weak form of the fluid equation is defined by Eq. (3.52). The expressions 

defining the matrices MF, CF and KF are given by Eqs. (3.53) to (3.55), respectively. 

   ̈̅     ̇̅     ̅      ̈̅       (3.52) 

   
 

  ∫   
     

   
 

 
∫   

     
      (3.53) 

   
 

 
∫   

     
   

   

 (   )
∫   

     
     (3.54) 

   ∫    
      

        (3.55) 

 

3.1.6. Solution of the coupled system in the time domain8 

The coupled system of equations defined in the general case by Eqs. (3.49) and (3.52) can be solved 

in time domain using time stepping procedures. Both equations have to be first discretized in time 

separately and then combined, with the objective of eliminating one of the variables ( ̅) and solve the 

resulting equation for the remaining variable ( ̅). However, the computational effort required to solve 

large coupled systems with time stepping procedures is high due to the unsymmetrical characteristics 

of the matrices appearing in the combined equation. Furthermore, unconditional stability of the time 

integration algorithms is limited even for linear elastic analysis.  

                                                           
8 Based on Zienkiewicz et al. (2005). 
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For this reason, staggered solution procedures are used as a more efficient alternative to solve fluid-

structure problems in the time domain. In this type of procedure both equation are solved 

independently by means of an artificial uncoupling. This is achieved introducing an assumed or 

predicted value of the vector  ̅ in Eq. (3.49) and solving this equation independently with time 

stepping procedures. Consequently, the solution obtained for the vector  ̅ is then replaced in Eq. 

(3.52) and this equation is solved to obtain a new value of  ̅. The iterative procedure is repeated until 

convergence for both vectors  ̅ and  ̅ is achieved.  

The advantage of using staggered process is the reduction of the size of the problem and the 

computational effort due to the fact that two smaller and uncoupled (instead of one larger and 

coupled) systems of equations are solved separately. However, it is important to mention that in most 

of the cases staggered solution procedures are only conditionally stable. 

In a staggered solution procedure the modified solid domain equation for nonlinear problems is given 

by Eq. (3.56) after replacing the predicted nodal pressure vector ( ̅   
 

) into Eq. (3.49). 

   ̈̅       ̇̅      
   ( ̅   )    

   
   

( )     ̅   
 

  (3.56) 

 

An incremental iterative scheme (f.e. Newton-Raphson method) and a time integration scheme (f.e. 

Newmark method) have to be chosen in order to solve Eq. (3.56) and find an approximated solution 

for the nodal acceleration vector in the structure ( ̈̅   
 

), which is introduced in Eq. (3.52) to obtain 

the modified fluid domain equation for linear behavior given by Eq. (3.57). 

   ̈̅       ̇̅       ̅         ̈̅   
 

    (3.57) 

 

Due to linear behavior of the fluid, the solution of Eq. (3.57) only requires the election of a time 

integration method, not being required to follow an iterative procedure. A new vector  ̅   
 

 is 

obtained to be introduced again in Eq. (3.56), and the iterative process is continued until convergence 

is achieved. Finally, the whole procedure is repeated for the next time step. 

 

3.1.7. Solution of the coupled system in the frequency domain9 

A solution in the frequency domain is only valid for linear behavior of the structure. The coupled 

system defined by Eqs. (3.50) and (3.52) can be compactly expressed by Eq. (3.58). 

[
   
     

] {
 ̈̅
 ̈̅
}  [

   
   

] {
 ̇̅
 ̇̅
}  [

     

   
] {

 ̅
 ̅}  {  

   ( )
 

}   (3.58) 

 

It is possible to determine the steady state solution of this coupled system of equations in the 

frequency domain by expressing the nodal pressure vector ( ̅) in terms of the nodal structural 

                                                           
9 Based on TNO DIANA BV (2011). 
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displacement vector ( ̅). First, the external force vector should be expressed or transformed into the 

harmonic form shown in Eq. (3.59). 

  
   ( )   ̂ 

            (3.59) 

 

Considering that both, the structural displacements and the fluid pressures, are produced by the 

external force, the steady state solution of both responses will exist in the same harmonic form as 

expressed in Eqs. (3.60) and (3.61). 

 ̅( )   ̂          (3.60) 

 ̅( )   ̂          (3.61) 

 

After replacing Eqs. (3.59) to (3.61) into Eq. (3.58), the system of equations shown in Eq. (3.62) is 

obtained, where the complex amplitudes of the nodal structural displacements ( ̂) and pressure ( ̂) 

vectors are the unknown variables. 

[
                

                   

] {
 ̂
 ̂
}  { ̂ 

   

 
}  (3.62) 

 

From the second row of Eq. (3.62) the amplitude of the nodal pressure vector can be expressed in 

terms of the amplitude of the nodal displacement vector as defined in Eqs. (3.63) and (3.64). 

 ̂          ̂      (3.63) 

  ( )  [             ]
      (3.64) 

 

After replacing the expression of  ̂ given by Eq. (3.63) into the first row of Eq. (3.62), the uncoupled 

equation to determine the steady state response of the structure in the frequency domain, in terms of 

the complex amplitudes of the nodal displacement vector ( ̂), is given by Eqs. (3.65) to (3.67). The 

effect of the reservoir interaction in the dam’s equation of motion is represented by  ̃  and  ̃ , called 

added mass and added damping, respectively.  

[   (    ̃ )    (    ̃ )    ] ̂   ̂ 
      (3.65) 

 ̃     (     )     (3.66) 

 ̃       (     )     (3.67) 

 

Eqs. (3.65) to (3.67) can be solved in the frequency domain using the Direct or the Mode 

superposition methods (see Chapter 2). 
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3.1.8. Special case for incompressible fluids10 

If compressibility and surface gravity waves boundary condition are neglected, a simplified uncoupled 

equation describing the fluid-structure interaction is obtained instead of the coupled system of 

equations defined by Eqs. (3.49) and (3.52).  

Incompressible fluid assumption (   ) combined with a prescribed pressure equal to zero in the 

horizontal top free surface [Eq. (3.12)], produce null matrices MF and CF, as expressed by Eqs. (3.68) 

and (3.69), respectively. 

          (3.68) 

           (3.69) 

 

Replacing Eqs. (3.68) and (3.69) into Eq. (3.52) results in the simplified explicit discrete equation 

given by Eq. (3.70), which describes the incompressible fluid motion. 

 ̅       
    ̈̅             (3.70) 

 

In turn, the substitution of Eq. (3.70) into Eq. (3.49) generates a fully uncoupled equation for the 

structural part of the system. This simplified structural equation of motion, based on the disregard of 

compressible fluid and surface gravity waves, is expressed in Eq. (3.71). It is interesting to note that 

the only difference between Eq. (3.71) and the isolated structural system [Eq. (3.49)] is the presence 

of the added mass matrix ( ̃ ), which expression is given by Eq. (3.72). The simplified Eq. (3.71) for 

incompressible fluids can be solved directly in time domain using direct integration or mode 

superposition methods, without the necessity of staggered solution procedures. 

(    ̃ ) ̈̅     ̇̅    
   ( ̅)    

   ( )   (3.71) 

 ̃     
   

         (3.72) 

 

It is not completely clear when it is recommendable to neglect compressibility effects and assume this 

simplified special case. One criterion for taking a decision is to estimate the order of magnitude of the 

fundamental compressible period of the structure in terms of the dam’s height (H) and the fluid wave 

speed velocity (c), using the expression H/c. If this period is close to the magnitude of the earthquake 

acceleration period, then the compressibility effects play an important role and therefore should not 

be neglected. This is generally the case for high flexible dams containing a long range of modal 

vibration periods. On the other hand, compressibility can be less important in the case of low height 

stiffer dams with a compressible fundamental period far smaller than the excitation period. 

 

 

                                                           
10 Based on TNO DIANA BV (2011) and Zienkiewicz et al. (2005). 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

3. Finite Element Method (FEM) Seismic 
Analysis of Dam-Reservoir Interaction Problems 

 

23 

 

3.1.9. Free vibration of FSI systems11 

If a mode superposition method is used to solve Eqs. (3.65) or (3.71), then first it is required a free 

vibration eigen-analysis. Numerous procedures and assumptions can be followed in order to find the 

eigen-vectors (or mode shape vectors) and eigen-values (or modal frequencies) of the fluid-structure 

interaction system. Nevertheless, several authors, like Fenves and Chopra (1983) and Darbre (1996), 

coincide in disregarding the influence of the fluid interaction to determine the mode shapes of the 

structure. 

It is understood that the shape modes of a structure, like an arch dam, is almost the same no matter 

if it is with a full or an empty reservoir. For this reason Eq. (3.50) is used for deriving the free 

vibration problem described by Eq. (3.73) and calculating the mode shape vectors of the structure in a 

fluid-structure interaction system. 

   ̈̅     ̅        (3.73) 

 

This approach, known as “dry dam” eigen-analysis, is accurate enough for the calculation of the mode 

shape vectors, but not for the calculation of the modal frequencies, which require the consideration of 

the fluid effects. One way of doing this is using the full coupled equation defined in Eq. (3.58) to 

obtain the free vibration problem expressed in Eq. (3.74). 

[
   
     

] {
 ̈̅
 ̈̅
}  [

     

   
] {

 ̅
 ̅
}  {

 
 
}   (3.74) 

 

However, the matrices of Eq. (3.74) are neither symmetric nor positive definite, which make the 

classical computational methods for eigenvalue analysis not directly applicable. Some manipulations 

and variable symmetrizing procedures can be followed to solve the eigen-value problem defined by 

Eq. (3.74), yet making the process too complicated. 

Another approach known as “wet dam” eigen-analysis consists in assuming that the interacting fluid is 

incompressible. Then, the simplified equation of motion given by Eq. (3.71) can be used to determine 

the modal frequencies of the fluid-structure interaction system through the solution of Eq. (3.75). The 

influence of the fluid is concentrated in the added mass term ( ̃ ) given by Eq. (3.72). 

(    ̃ ) ̈̅     ̅       (3.75) 

 

 

 

 

 

 

                                                           
11 Based TNO DIANA BV (2011), Zienkiewicz et al. (2005), Fenves and Chopra (1983) and Darbre (1996). 
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3.2. Modified equation of motion for base acceleration loading12 

 

3.2.1. Partitioned discrete equation of motion 

In earthquake analysis the input load is defined as a base acceleration which is multiplied by the mass 

of the structure, generating an inertial load applied through all the structure. Due to the prescribed 

movement applied to the base, the response of the other part of the structure (superstructure) can be 

classified as absolute or relative to the base motion. 

Generally, earthquake analysis requires the relative displacements, velocities and accelerations for the 

design and evaluation of the structure. Therefore, in this section the classical equation of motion for 

seismic analysis, in terms of the relative displacement, velocity and acceleration vectors, is derived 

and the assumptions relying on this formulation are explained. 

When an acceleration load is applied in the base of the structure, the dynamic equation of motion of 

this system can be partitioned into known DOF located in the base (  ) (where accelerations are 

prescribed) and unknown DOF located in the superstructure (  ). The partitioned equation of motion 

is expressed in Eq. (3.76), which right-hand side has no additional external loads in the 

superstructure, taking into account that the load is generated by the base motion (  ), and that    is 

the associated unknown reaction force vector in the base. 

[
      

      
] {

 ̈ 

 ̈ 
}  [

      

      
] {

 ̇ 

 ̇ 
}  [

      

      
] {

  

  
}  {

 
  

}  (3.76) 

 

3.2.2. Superstructure absolute equation of motion 

After taking from Eq. (3.76) the first partition belonging to the superstructure, the equation of motion 

in terms of the absolute response is defined by Eqs. (3.77) and (3.78). 

    ̈      ̇               (3.77) 

        ̈      ̇           (3.78) 

 

It can be noticed from Eq. (3.78) that the “external force” in the absolute equilibrium equation is 

produced by the base displacement, velocity and acceleration. However, there are two assumptions 

that simplify the force vector given by Eq. (3.78). The first assumption is that in the mass matrix there 

is no coupling between the base and superstructure DOF, and therefore Eq. (3.79) holds. The second 

assumption, expressed in Eq. (3.80), is to disregard the damping term contribution due to its not 

completely clear physical meaning (Wilson, 2002). 

           (3.79) 

           (3.80) 

 

                                                           
12 Based TNO DIANA BV (2011) and Wilson (2002). 
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After replacing the assumptions expressed in Eqs. (3.79) and (3.80) into Eq. (3.78), the force vector 

of the absolute equilibrium equation is expressed by Eq. (3.81) in terms of base displacement only. 

               (3.81) 

 

3.2.3. Rigid base movement 

If the base of the structure is rigid, then the displacements, velocities and accelerations are uniform 

through all the base points in the three directions of analysis. This uniform motion is defined by the 

ground displacement vector (  ) as expressed in Eq. (3.82). 

   [         ]     (3.82) 

 

The matrices  ( ) and  ( ) represent the unitary rigid body displacements of the superstructure and 

the base, respectively, in the three translational directions (X, Y, Z). Eqs. (3.83) and (3.84) show that 

each of these rigid body motion matrices is composed by three vectors (one per translational 

direction) which values vary between 0 and 1, depending on the cosine direction of each DOF with 

respect to the XYZ coordinate system. 

 ( )  [  
( )

  
( )

  
( )

]     (3.83) 

 ( )  [  
( )

  
( )

  
( )]     (3.84) 

 

Eq. (3.85) shows the superstructure absolute displacement expressed in terms of the rigid body 

motion matrix, the ground displacement and the relative displacement (  ). Similarly, Eq. (3.86) 

shows a similar expression for the base, with the obvious difference that in this case there is no 

relative displacement. 

       ( )       (3.85) 

    ( )        (3.86) 

 

3.2.4. Superstructure relative equation of motion 

The relative equation of motion is obtained by rewriting the absolute equation of the superstructure in 

terms of the relative displacements. Therefore, Eqs. (3.85) and (3.86) are replaced into Eqs. (3.77) 

and (3.78) to obtain the full relative equilibrium equation of motion given by Eq. (3.87). 

   ( ̈   ( ) ̈ )     ( ̇   ( ) ̇ )     (    ( )  )       
( ) ̈      

( ) ̇      
( )  

     (3.87) 
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Taking into account that internal forces are only proportional to relative displacements (stiffness force) 

and velocities (viscous damping force), the multiplication of the stiffness (K) and damping (C) 

matrices by the rigid body displacements (I) is equal to zero13, as expressed in Eqs. (3.88) and (3.89). 

    
( )      

( )        (3.88) 

    
( )      

( )        (3.89) 

 

After inserting Eqs. (3.79), (3.88) and (3.89) into Eq. (3.87), the dynamic equilibrium equation given 

by Eq. (3.90) is obtained in terms of the superstructure displacements relative to the base motion 

(  ). This approximate form of the relative equation of motion is the classic equation used in seismic 

analysis. 

    ̈      ̇             
( ) ̈     (3.90) 

The base acceleration load can be expressed for each of the three translational directions as shown in 

Eq. (3.91), after replacing Eqs. (3.82) and (3.83) into Eq. (3.90). 

    ̈      ̇            ( ̈    
( )   ̈    

( )   ̈    
( )

)   (3.91) 

 

It is interesting to notice that in the approximate absolute equation of motion [Eqs. (3.77) and 

(3.81)], the force vector is proportional to the prescribed base displacements, and it is applied only in 

the superstructure nodes close to the base (      ). On the other hand, the force vector of the 

approximate relative equation of motion [Eq. (3.90)] is proportional to the prescribed base 

accelerations, and it is applied in the superstructure nodes not linked with the base (     
( ) ̈ ). 

 

 

 

 

                                                           
13

 For the stiffness matrix this statement is always correct. However, in the case of the damping matrix the statement does not 

fulfill if Rayleigh damping definition (aM+bK) is used. The multiplication of the mass proportional term (a≠0) by the rigid body 
motion matrix results in a damping forces different than zero. Nevertheless, this artificial mass proportional damping energy 
added to the system is usually ignored (TNO DIANA BV, 2011). 
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4. HYBRID FREQUENCY-TIME DOMAIN (HFTD) METHOD SOLUTION 

PROCEDURE 

 

4.1. Description of the HFTD method1 

The HFTD method is generally applied in the solution of dynamic problems of systems with frequency 

dependent properties and non-linear behavior. Frequency dependent properties, which are present in 

soil-structure and fluid-structure interaction systems, are properly taken into account by frequency 

domain solution methods. 

Nevertheless, this type of analysis methods is only applicable in linear systems. When some kinds of 

non-linearities (f.e.: material, geometrical, contact, friction, sliding) are required to be included in the 

analysis, frequency domain methods are not applicable anymore and a time-domain solution 

(generally by means of time-stepping algorithms) should be used. 

Time domain analysis methods allow tracking the development of the non-linear response and 

evaluating its magnitude in each time step. However, it is not possible to consider frequency 

dependent properties directly and consistently. 

It is under these circumstances that HFTD method is proposed as an alternative to study the non-

linear dynamic response of frequency-dependent systems, by means of a hybrid formulation that 

combines the advantages of both, time and frequency domain analysis methods, and diminish their 

corresponding drawbacks. 

In general terms, the HFTD method transforms the non-linear equation of motion defined in the time 

domain into a pseudo-linear equation of motion defined in the frequency domain. For this to be 

achieved, the internal force vector is divided into linear and non-linear components. 

The linear component of the internal force is the summation of the linear elastic stiffness and damping 

forces. The non-linear component is an unknown vector denominated pseudo force. Besides, the 

linear component of the internal force is kept in the left hand side of the equation of motion, whereas 

the pseudo force vector is moved to the right hand side. In this way, the left-hand side is composed 

exclusively by linear terms, whereas the right-hand side contains the applied external forces and the 

pseudo force vector which unknown value is determined iteratively. 

As mentioned before, the HFTD method solves iteratively the pseudo-linear (or linearized) equation of 

motion in the frequency domain. However, the dynamic external force applied to the system is defined 

by a signal in the time domain. In the same way, the pseudo force vector representing the nonlinear 

behavior of the system can only be evaluated in the time domain. Therefore, the HFTD method 

requires the transformation of both time dependent components of the right-hand side of the 

equation (time-dependent loading and pseudo force) into a series of harmonic forces by means of a 

Direct Fourier Transform (transformation to the frequency domain). 

As a consequence the linearized equation of motion in the frequency domain can be solved for a 

range of loading frequencies, using the Direct or Mode superposition methods (see Chapter 2). The 

next step is to transform the solution obtained (displacements, velocities and accelerations) back to 

the time domain by means of the Inverse Fourier Transform. 

                                                           
1 Based on Darbre (1996) and Fenves and Chavez (1990). 
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With the response in the time domain it is possible to use the constitutive laws ruling the non-linear 

behavior of the system and evaluate the internal forces. Then, a new value of the pseudo forces is 

computed as the difference between the linear elastic force and the nonlinear internal force. 

Finally, the new value of the pseudo force vector is transformed again to the frequency domain to 

solve one more time the linearized equation in the frequency domain. The process is repeated until 

convergence is achieved. 

 

 

4.2. Formulation of the HFTD method for the seismic analysis of a dam-reservoir 

dynamic interaction system2 

A general non-linear equation of motion of the solid part of a fluid-structure interaction problem can 

be derived from Eq. (3.49). This equation of motion in absolute coordinates is shown in Eq. (4.1). 

   ̈    
   (     ̇)        

   ( )    (4.1) 

 

For the particular case of earthquake analysis of dam-reservoir interaction systems, the seismic load 

can be applied as a base acceleration loading in the three translational directions, defined by the 

ground acceleration vector ( ̈ ). This approach is conveniently formulated in relative coordinates 

without necessity of the application of an external force (  
   ( )   ). Based on Eqs. (3.90) and 

(4.1), the non-linear equation of motion in relative coordinates for the seismic analysis of a dam-

reservoir interaction system is given by Eq. (4.2). 

   ̈    
   (      ̇ )      

( ) ̈ ( )   
      (4.2) 

 

In the HFTD method, the internal force (  
   ) of the dam (structural part of the coupled system) is 

decomposed into a linear and a nonlinear components, as expressed in Eq. (4.3). The linear 

component is expressed in terms of the initial tangent stiffness and damping matrices of the dam 

(     ), and the displacement and velocity vectors relative to the base (    ̇ ). On the other hand, 

the nonlinear component is treated as a general remaining force depending on time ( ). 

  
   (      ̇ )          ̇   ( )     (4.3) 

 

After replacing Eq. (4.3) into Eq. (4.2), and bringing the nonlinear component ( ) to the right-hand 

side of the equation, a pseudo linear system described by Eq. (4.4) is obtained. The left-hand side of 

Eq. (4.4) is completely defined by linear terms, whereas the nonlinearities are concentrated in the 

pseudo force vector ( ) located in the right-hand side.  

   ̈     ̇           
( ) ̈ ( )   

    ( )   (4.4) 

                                                           
2 Based on Darbre (1996), Fenves and Chavez (1990), Mansur et al. (2000) and Aprile et al. (1994). 
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The most consistent way of taking into account the frequency-dependent properties of the reservoir’s 

compressible fluid, defined by the hydrodynamic force vector (   ), is by means of solving the 

pseudo linear system described by Eq. (4.4) in the frequency domain. By doing this, in the more 

general case, frequency-dependent damping can also be included in the system as shown by Eqs. 

(4.5) and (4.6).    and    indicate the constant stiffness and damping matrices, respectively, 

whereas    ( ) is the frequency dependent damping matrix,  ( ) is a general frequency dependent 

matrix, and    is the hysteretic damping ratio. 

       
 

  
∫    ( ) 

 (  )  
 

  
    (4.5) 

   ( )   ( )            (4.6) 

 

In order to solve Eq. (4.4) in the frequency domain, the excitation force given by the ground 

acceleration vector is expressed in the harmonic form shown in Eq. (4.7). Consequently, the harmonic 

form of the relative displacement, the hydrodynamic pressure and the pseudo force vectors are 

expressed in Eqs. (4.8) to (4.10), respectively. 

 ̈ ( )   ̂̈ ( ) 
         (4.7) 

    ̂ ( ) 
         (4.8) 

   ̂( )           (4.9) 

 ( )   ̂( )          (4.10) 

 

After replacing Eqs. (4.7) to (4.10) into Eq. (4.4), the exponential common terms are eliminated, and 

as a result, the equation of motion of the dam-reservoir system in the frequency domain is defined by 

Eq. (4.11) in terms of the complex-valued amplitudes of the ground acceleration [ ̂̈ ( )], the relative 

dam’s displacement [ ̂( )], the hydrodynamic pressure [ ̂( )] and the pseudo force vector [ ̂( )]. 

[             ] ̂ ( )      
( ) ̂̈ ( )   

  ̂( )   ̂( )  (4.11) 

 

Based on Eq. (3.52), the complex-valued frequency dependent expression of the hydrodynamic 

pressure amplitude is determined from the fluid equation of motion given by Eq. (4.12). 

   ̈     ̇          ̈       (4.12) 

 

Eq. (4.12) is transformed into Eq. (4.13) after expressing the dam absolute acceleration vector ( ̈) in 

terms of the ground ( ̈ ) and relative ( ̈ ) acceleration vectors. 

   ̈     ̇         ( 
( ) ̈   ̈ )      (4.13) 
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After replacing Eqs. (4.7) to (4.9) into Eq. (4.13), the complex-valued frequency dependent 

expression of the hydrodynamic pressure amplitude is defined by Eqs. (4.14) and (4.15). 

 ̂( )        [ 
( ) ̂̈ ( )   

  ̂ ( )]   (4.14) 

  ( )  [  
           ]

      (4.15) 

 

Eq. (4.16) is obtained by inserting the expression of the hydrodynamic pressure amplitude given by 

Eq. (4.14) into the equation of motion of the coupled dam-reservoir system defined by Eq. (4.11). The 

hydrodynamic mass matrix (  ) that appears in both sides of Eq. (4.16) is a complex-valued 

frequency-dependent term defined by Eq. (4.17), which represents the “added mass” effect in the 

dam provided by the reservoir. 

[   (     )         ] ̂ ( )   [     ] 
( ) ̂̈ ( )   ̂( )  (4.16) 

  ( )     
          (4.17) 

 

Another possibility of expressing the effect of the reservoir on the dam is to split    in its real (“added 

mass”) and imaginary (“added damping”) components, as shown in Eq. (4.18). The expressions for 

the added mass ( ̃ ) and damping ( ̃ ) are given by Eqs. (4.19) and (4.20), respectively. 

[   (    ̃ )    (    ̃ )    ] ̂ ( )   [    ̃   
 

 
 ̃ ]  

( ) ̂̈ ( )   ̂( ) 

 (4.18) 

 ̃   (  )      (4.19) 

 ̃     (  )      (4.20) 

 

The mode superposition method can be employed by introducing the variable defined by Eq. (4.21). 

Consequently, the pre-multiplication of Eq. (4.18) by the matrix of modal vectors transposed (  ) 

results in the equation of motion, defined by Eqs. (4.22) to (4.28), in terms of the generalized modal 

coordinates vector ( ̂). 

 ̂ ( )    ̂( )     (4.21) 

[   (     )    (     )    ] ̂( )    
    

( ) ̂̈ ( )   
  ̂( )  (4.22) 

    
          (4.23) 

  ( )   
  ̃       (4.24) 

  ( )   
         (4.25) 
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  ( )   
  ̃       (4.26) 

    
          (4.27) 

  ( )      ̃   
 

 
 ̃     (4.28) 

 

The equation of motion in the generalized modal coordinates constitutes a condensed system of 

equations in which the unknowns are reduced to a number of chosen modes of vibration. In the 

general case only the frequency independent matrices    and    are diagonal, which means that the 

system is not uncoupled. 

One way of uncouple numerically Eq. (4.22) is to express the full matrices   ,    and    as the 

summation of a diagonal (d) and an off-diagonal (od) terms as shown in Eqs. (4.29) to (4.31). 

     
    

       (4.29) 

     
    

       (4.30) 

     
    

       (4.31) 

 

Replacing Eqs. (4.29) to (4.31) into Eq. (4.22), and bringing the off-diagonal terms to the right-hand 

side, results in an uncoupled system of equations defined by Eq. (4.32) which matrices in the left-

hand side are diagonal. The uncoupled system can be solved iteratively by treating the off-diagonal 

terms as a second set of pseudo forces dependent of the generalized modal coordinates vector and 

defined by Eq. (4.33). 

[   (     
 )    (  

    
 )    ] ̂

   ( )        
( ) ̂̈ ( )   

   ̂ ( )     ̂ ( )

  (4.32) 

   ( )       
     (  

     
  )    (4.33) 

 

Nevertheless, the introduction of additional pseudo-force vectors to impose the uncoupling of the 

system of equations could lead to a cumbersome numerical process, especially in large models with 

high amount of DOF.   
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4.3. Implementation issues3 

 

4.3.1. Solution procedure sequence of the HFTD method 

The HFTD method can be summarized in the following general steps, graphically schematized in the 

flowchart of Fig. 4.1. 

1. Select the number of modes to be included in the response calculation. 

2. Do the eigenvalue analysis of the dam with empty reservoir and calculate the generalized 

mass (BS), damping (DS) and stiffness (ES) matrices. 

3. Determine the range of excitation frequencies to be used in the solution of the linearized 

equation [Eq. (4.22)]. 

4. Determine for each excitation frequency the generalized added mass (BF), added damping 

(DF) and load (Fg). If applicable, the frequency dependent part of the generalized 

structural damping matrix (DS) should be calculated for each excitation frequency. 

5. Initialize the pseudo force vector in time domain [ ( )]. Only for the first iteration, the 

pseudo force vector should be set equal to zero. 

6. Perform the Fourier transformation of the ground acceleration signal from the time 

domain [ ̈ ( )] to the frequency domain [ ̂̈ ( )]. 

7. Set up the current generalized pseudo force vector in the time domain [   ( )]. 

8. Perform the Fourier transform of the generalized pseudo force vector to the frequency 

domain [   ̂( )]. 

9. Solve the linearized Eq. (4.22) for each excitation frequency and determine the 

generalized displacement in the frequency domain [ ̂( )]. 

10. Perform the inverse Fourier transform of the generalized displacement ( ), velocity ( ̇) 

and acceleration ( ̈) to the time domain. 

11. Expand the generalized response in the time domain to the natural system of coordinates 

(  ,  ̇  and  ̈ ) using Eq. (4.21).  

12. Perform the state determination in the time domain: Calculation of the nonlinear internal 

force of the system using the appropriate constitutive law and the response obtained in 

step 11. 

13. Determine the linear restoring force (        ̇ ) based on the response calculated in 

step 11. 

14. Evaluate the new pseudo force vector using Eq. (4.3) and the results obtained in steps 12 

and 13. 

15. Check the convergence of the displacement and pseudo force. If convergence is not 

achieved, go to step 7 and perform a new iteration. 

 

 

 

 

                                                           
3 Based on Darbre and Wolf (1988), Fenves and Chavez (1990), Darbre (1990), Chavez and Fenves (1993), 
Chavez and Fenves (1994) and Veletsos and Ventura (1985). 
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Figure 4.1: Flowchart of the HFTD method general solution procedure 
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4.3.2. HFTD method time segmentation approach 

The HFTD procedure converges in a time progressive manner, which means that “convergence at any 

time is reached only after the solution has converged at all previous times” (Darbre and Wolf, 1988). 

If the procedure described above is executed directly along the whole time span of interest, 

convergence and stability problems are likely to occur. 

For this reason, the HFTD method is performed following a time segmentation approach in which the 

displacements and pseudo forces are evaluated for a limited number of consecutive time steps 

contained in time segments. Once convergence is achieved in all the time steps within a segment, the 

iterative procedure is repeated for the next time segment, until the total time span of interest is 

covered. 

The minimum number of time segments required depends on stability conditions4. When a system is 

highly stable, the number of time segments and iterations required to obtain convergence diminish. 

Nevertheless, the minimum number of iterations required to obtain convergence is more sensitive to 

the degree of stability than the minimum number of time segments. This means that two different 

systems can converge with the same number of time segments, but the system which is less stable 

will always require a higher number of iterations. 

In conclusion, the time span of interest has to be divided into time segments containing one or 

several time steps. It is important to mention that the length of time segments does not affect the 

accuracy of the results obtained but leads to convergent (small length) or divergent (very large 

length) solution. When stability or convergence problems occur, then the number of time segments 

should be increased by reducing their size (less number of time steps contained in one segment). The 

extreme case is given by segments consisting in just one time step. 

On the other hand, the number of iterations and the computational effort are proportional to the 

number of segments used. If many segments consisting of a few time step each are defined for the 

iterative procedure, then the computational effort and the total number of iterations required to 

achieve convergence is high. However, this proportional dependence is not critic unless a considerably 

higher number of segments than the optimal are used. 

 

4.3.3. Fourier transform period 

The period of time used in the Discrete Fourier Transform (Section 2.4) indicates the period of the 

periodic loading function (ground acceleration or pseudo force) acting on the system. Therefore, if the 

loading (earthquake) duration (t0) is used to transform the ground acceleration and pseudo force to 

the frequency domain, the results obtained from the HFTD method would be the steady-state 

response of the system subject to a periodic loading with a period equal to to, which harmonic 

components are given by its Fourier transform. 

The purpose of the HFTD method is to determine the actual transient response of the system subject 

to an arbitrary ground acceleration loading, and not the steady-state response of the system subject 

to a periodic loading. Therefore, to obtain an accurate approximation of the transient response, the 

period used in the Fourier transform should be extended sufficiently long that the effects of the 

steady-state response and the loading periodicity become negligible (Veletsos and Ventura, 1985). 

                                                           
4 For a detailed discussion of HFTD method stability criteria see Darbre and Wolf (1988). 
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The Fourier period (Tp) should be defined as the summation of the ground acceleration duration (to) 

plus an additional extended period called quiet zone (Tq). The quiet zone is a band of zeros added at 

the end of the ground acceleration signal, which length depends on the free vibration properties of 

the system (fundamental period of vibration and viscous damping ratio of the structure). 

Steps 6, 8 and 10 of the HFTD solution procedure outlined in Section 4.3.1 indicate that the Fourier 

transform is applied to the earthquake ground acceleration (direct), the pseudo force (direct) and the 

response of the system (inverse), respectively. All these transformations should always be performed 

over the same Fourier period (Tp), which is calculated using Eqs. (4.36) and (4.37), in terms of the 

fundamental vibration period (  ) and the viscous damping ratio of the system ( ) (Chavez and 

Fenves, 1984). 

              (4.36) 

       
  

 
      (4.37) 

 

Eq. (4.37) shows that for long oscillation periods (low frequency systems) and low damping ratio, the 

quiet zone (Tq) is longer. In the extreme case of a damping ratio equal to zero Tq tends to infinity, 

which means that the HFTD method is not applicable for undamped systems (Veletsos and Ventura, 

1985). 

As mentioned before, the quiet zone is necessary to satisfy the initial conditions and consequently 

obtain a better approximation of the transient response instead of the steady state response. On the 

contrary, “the use of Fourier transformation period which is too short provides inaccurate results, no 

matter that they be stable and apparently reasonable” (Darbre and Wolf, 1988). In conclusion, the 

insertion of a quiet zone should be understood as a numerical representation of what theoretically 

should be an infinity period in the analytic Fourier integral (See Section 2.4). 

Fig. 4.2 shows a ground acceleration signal which Fourier Transform is calculated twice, one using a 

Fourier period equal to the ground acceleration duration (            ), and the other using an 

extended Fourier period that includes the quiet zone (               ).  

 

Figure 4.2: El Centro N-S earthquake ground acceleration signal. 
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The spectrums of the ground acceleration amplitudes obtained in both cases are shown in Figs. 4.3 

and 4.4, respectively. It can be noticed that both spectrums have similar shapes, with the difference 

that the one obtained with the extended Fourier period (Fig. 4.4) is smoother due the higher number 

of points used in its definition. 

The extended period is ten times the loading duration, and therefore, the number of points used in 

both cases holds the same relation. This is the reason why the magnitudes of the ground acceleration 

amplitudes of Fig. 4.4 are around ten times the amplitudes of Fig. 4.3. 

In order to obtain the transient response of the system, the HFTD method uses the ground 

acceleration spectrum shown in Fig. 4.4. 

 

Figure 4.3: Spectrum of the ground acceleration amplitude for Fourier period equal to the 

loading duration (            ) 

 

 

Figure 4.4: Spectrum of the ground acceleration amplitude for extended Fourier period 

including quiet zone (               ) 
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4.3.4. Details of the HFTD method solution procedure using the time 

segmentation approach 

Using a time segmentation approach implies the repetition of the HFTD solution outlined in Section 

4.3.1 (from step 6 to step 15) for all the segments defined in the time span of interest. It is important 

to realize that the time span of interest (Tr) is not the same as the Fourier period (Tp), but the time 

for which the calculation of the system response is desired. 

Logically, the time span of interest (Tr) is shorter than the period used for the Fourier transform (Tp). 

As shown in Eq. (4.38), the minimum value of Tr includes the ground acceleration duration (to) plus 

and additional free vibration time equal to one half of the fundamental period of vibration, during 

which a maximum peak response could still be attained. The time segmentation should be performed 

only over Tr, and the HFTD solution procedure is concluded when the last segment of Tr has 

converged. 

      
 

 
        (4.38) 

 

Fig. 4.5 shows the kth time segment and the time steps contained inside. The initial points of time 

segments “k” (Tk) and “k+1” (Tk+1), the last converged time step (tc) of the previous iteration, the 

time step size (Δt), and the time segment size (ΔTs) can also be identified from Fig. 4.5. The initial 

time step of segment “k” is calculated with Eq. (4.39). 

   (   )        (4.39) 

 

Figure 4.5: Graphic representation of the kth time segment. 

 

The HFTD procedure outlined in Section 4.3.1 indicates that, for the first iteration of the first time 

segment only, the pseudo force vector is set equal to zero (step 5) and transformed to the frequency 

domain (step 8) using the Fourier transformation period (Tp). Once the pseudo linear system has been 

solved in the frequency domain (step 9), the generalized response is transformed back to the time 

domain (step 10). 
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For the subsequent iterations, the segmentation approach requires that the pseudo forces and 

displacements in the time domain are calculated and updated (step 11 to step 14) only for the not 

converged time steps belonging to the current time segment (tc < t ≤ Tk+1 - Δt). The iterative process 

(step 7 to step 14) is repeated until the convergence criteria (step 15) are fulfilled for all the time 

steps inside the current segment of analysis (tc = Tk+1 - Δt). 

When all the time steps inside the current segment have converged (tc = Tk+1 - Δt), the next segment 

is investigated. However, in the first iteration of the new segment (step 6) the values of the pseudo 

forces belonging to the previous converged time segments are maintained (the pseudo force values of 

the converged previous time steps are not modified nor updated anymore), whereas for the current 

and subsequent segments, the values of the pseudo forces are set to zero (the definition of a 

decaying appended function is also possible as explained in the next section). 

In this way, the iterative procedure is continued until the last segment of the time span of interest is 

covered, doing always the Fourier transformation through all the period Tp, but updating progressively 

the displacement and pseudo force vectors only for the non-converged time steps inside the current 

segment of analysis. The modified version of the HFTD method flowchart, including time 

segmentation approach in the solution procedure, is shown in Fig. 4.6 

As a final point, special attention should be given to the fact that the equation of motion of the 

pseudo linear system (not the real non-linear system) is the one solved in the frequency domain. 

Therefore, the eigenvalues, eigenvectors and critical damping ratios, required to perform the mode 

superposition method and to determine the length of the Fourier transformation period (Tp) [Eqs. 

(4.36) and (4.37)], should be based on the properties of the pseudo linear system defined in Eq. 

(4.22). 
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Figure 4.6: Flowchart of the modified HFTD method solution procedure including the time 

segmentation approach 
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4.3.5. Definition of the appended decaying functions for the ground acceleration 

loading and the pseudo force 

Due to the segmentation approach for solving the linearized equation in the frequency domain, both 

load vectors in the right-hand side of Eq. (4.22), ground acceleration [ ̈ ( )] and pseudo force 

[ ( )], are filled with zeros for all the time steps belonging to the time segments coming after the 

current. Therefore, the expressions defining  ̈ ( ) and  ( ), for the time segment “k” and iteration 

“j”, are given by Eqs. (4.40) and (4.41), respectively, in terms of the Heaviside function (H). 

 ̈ 
 ( )   ̈ ( )[ ( )   (      )]                  (4.40) 

    ( )        ( )[ ( )   (      )]                 (4.41) 

 

This means that both time load vectors die out suddenly between the time steps “Tk+1 – Δt” and 

“Tk+1”. In order to avoid this sudden unloading and consequent inaccurate results, a decaying function 

may be appended to both load components. The decaying function must start in the last point of the 

current time segment (Τk+1 – Δt) and its extension (ΔTd) is recommended not to be longer than one 

segment length (ΔTs), due to implementation more than performance or accuracy reasons (Darbre, 

1990). 

One type of decaying function that can be used for this purpose is the sinusoidal function proposed by 

Darbre (1990), which is defined by Eqs. (4.42) and (4.43). This decaying function matches the value, 

slope and curvature of the loading signal in the time step “Τk+1 – Δt”. 

 ( )  [ ( )    ̇( )  
  

 
 ̈( )] [  

 

   
 
   (      

⁄ )

  
]               (4.42) 

             (4.43) 

 

As expressed in Eq. (4.40), the ground acceleration signal is taken from 0 to “Tk+1 – Δt”, neglecting 

the subsequent part. Instead, the decaying function [Eq. (4.42)] is appended to the signal in the time 

point “Tk+1 – Δt”, followed by a band of zeros until the Fourier period (Tp) is completed. 

Therefore, the modified ground acceleration signal for the time segment “k” is expressed in Eq. 

(4.44), where the definition of    is given by Eq. (4.45). Fig. 4.7 is a graphical representation of Eq. 

(4.44) applied to the ground acceleration loading shown in Fig. 4.2. 

 ̅̈ 
 
( )   ̈ ( )[ ( )   (      )]    ̈ (  )                 (4.44) 

                 (4.45) 
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Figure 4.7: Modified excitation load with appended decaying function for the HFTD 

analysis of the kth time segment. 

 

On the other hand, for the first iteration the pseudo force vector is set equal to zero for all the time 

steps between 0 and Tp. For the next iterations, the values of the pseudo force vector corresponding 

to the converged time steps (from 0 to tc) are kept fixed, whereas for the other not converged time 

steps inside the current segment (from tc to Tk+1 – Δt), the pseudo force values corresponding to the 

last iteration are assigned. 

Similarly as in the case of the earthquake ground acceleration, the pseudo force values of the 

following time segments correspond to the appended decaying function, continuing with a band of 

zeros until completing the Fourier period (Tp). The modified pseudo force vector for the time segment 

“k” and iteration “j” is expressed in Eq. (4.46). 

 ̅     ( )   ̅ ( )[ ( )   (      )]    ( )                 (4.46) 

 

4.3.6. Convergence criteria 

The convergence criteria check is performed for both, the pseudo force vector and the displacement 

vector in natural or generalized coordinates. For each time step inside the current segment, the 

convergence criteria verification after iteration “j” is given by Eqs. (4.47) and (4.48). 

|  
 ( )   

   ( )|

|  
 ( )|

                                         (4.47) 

|  ( )     ( )|

|  ( )|
                                          (4.48) 
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4.4. HFTD method input parameters5 

 

4.4.1. Number of modes included in the mode superposition method 

The number of modes to be included in the analysis can be determined from the percentage of 

effective mass in the direction of analysis, which is obtained from the eigen-analysis of the system 

(Section 3.1.9). The general criterion is to include the minimum number of modes which effective 

masses in the direction of analysis provide 90% of the total mass of the structure6. 

The effective masses in the three translational directions of analysis corresponding to each mode of 

vibration are part of the output results of the eigen-analysis. For example, the effective mass in the X-

direction for the mode of vibration “i” is defined by Eqs. (4.49), (4.50) and (4.51). 

         
   

 

  
      (4.49) 

      
     

( )
      (4.50) 

     
           (4.51) 

 

4.4.2. Range of excitation frequencies for the frequency domain solution 

The range of frequency samples used in the Fourier analysis goes from 0 to F, which is the maximum 

sampling frequency. Taking into account that the Discrete Fourier Transformation (DFT) considers 

only positive frequency samples (one-sided expansion), the maximum signal frequency effectively 

processed is one half of the maximum sampling frequency (Section 2.4). This relation between the 

highest harmonic component of the signal included in the analysis (Nyquist frequency) and the 

maximum sampling frequency (F), expressed in Eq. (4.52), is called the Nyquist sampling theorem 

(Craig and Kurdila, 2006). 

     
 

 
      (4.52) 

 

The value of the maximum sampling frequency (F) is inversely proportional to the time step size (Δt). 

This means that once Δt is defined, F is determined using Eq. (4.53). 

     ⁄       (4.53) 

 

 

 

                                                           
5 Based on Chavez and Fenves (1994), Veletsos and Ventura (1985), Craig and Kurdila (2006) and TNO DIANA 
BV (2011). 
6 In case of analysis including dam-foundation interaction, the mass of the soil should not be taken into account 
in the calculation of the effective mass. 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

4. Hybrid Frequency-Time Domain (HFTD) 
Method Solution Procedure 

 

43 
 

4.4.3. Time step size 

The time step size should be small enough when compared to the more significant oscillation periods 

of the loading harmonic components and to the fundamental free vibration period of the structural 

system. The first condition ensures the correct representation of the forced or steady-state component 

of the system’s total response, whereas the second condition allows obtaining a correct representation 

of the transient free vibration component (Veletsos and Ventura, 1985). 

If high frequency systems subject to long duration loading are analyzed, then the first condition based 

on the loading period of oscillation rules the size of the time step. On the other hand, in the case of 

low frequency systems subject to short duration loading (f.e. earthquake analysis of high dams), the 

second condition based on the fundamental free vibration period is the most relevant criterion. 

The time step size which takes into account both criteria fulfills the conditions stated in Eq. (4.54), in 

terms of the fundamental vibration frequency (F1), the vibration frequency of the highest mode 

included in the analysis (Fq), and the greater frequency usually contained in earthquake ground 

acceleration records (25 Hz) (Chavez and Fenves, 1994). 

      

{
 

 
    

  
⁄

   
  
⁄

      

      (4.54) 

 

When the problem to be solved with the HFTD method is highly nonlinear (f.e. problems including 

contact or base sliding nonlinearities), it is recommended that in addition the time step size fulfills Eq. 

(4.55) (Chavez and Fenves, 1994). 

               (4.55) 

 

4.4.4. Parameters for the Discrete Fourier Transform (DFT) 

As explained before, the total period for the Fourier Transform (Tp) is calculated using Eqs. (4.36) and 

(4.37). Additionally, it is recommended that Tp fulfills the condition stated by Eq. (4.56) (Chavez and 

Fenves, 1994). However the very long value of Tp obtained with Eq. (4.56) may not be manageable, 

in terms of computational time and storage memory capacity, for large multi degree of freedom 

(MDOF) systems. Then in those cases the use of a reduced Fourier period should be evaluated 

without prejudice of the accuracy of the results obtained. 

              (4.56) 

 

The number of time point samples (N) given by Eq. (4.57) is obtained from the Fourier period (Tp) 

and the time step size (Δt). The frequency increment (  ) is calculated using Eq. (4.58), whereas the 

maximum sampling frequency (F) is calculated with Eq. (4.59), which is equivalent to Eq. (4.53). 

  
  

  
       (4.57) 
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      (4.58) 

           (4.59) 
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5. SINGLE DEGREE OF FREEDOM (SDOF) DYNAMIC SYSTEMS 

  

5.1 Solution procedure of the HFTD method for SDOF non-linear systems 

The HFTD method, which was previously explained in detail for seismic analysis of dam-reservoir 

dynamic interaction multi degree of freedom (MDOF) systems (Chapter 4), is developed here for the 

particular case of SDOF dynamic linear and nonlinear systems. 

It was previously stated that the HFTD method was developed to analyze systems with frequency 

dependent properties and nonlinear behavior. Therefore, the formulation of the HFTD method for 

SDOF systems also considers the inclusion of frequency dependent terms, no matter that in most of 

the SDOF numerical examples developed in Section 5.3, these frequency dependent systems are not 

taken into account. This is because to evaluate the soundness, precision and stability of the HFTD 

method, the results obtained for the SDOF systems have to be compared with other analytical 

solutions or established numerical methods (f.e.: Newmark method) in the time domain, which are 

naturally capable of dealing with nonlinearities, but not with frequency dependence. 

The SDOF system considered is expressed by Eq. (5.1). As it can be noticed, this equation of motion 

constitutes a general case with nonlinear behavior [        ̇ ] and frequency dependent terms 

[      ]. Therefore, it is not possible to directly solve Eq. (5.1) in the time domain. 

  ̈  [
 

  
∫               

 

  
]  ̇          ̇          (5.1) 

 

Assuming that additive decomposition between linear and nonlinear terms is possible, the internal 

nonlinear restoring force is expressed by Eq. (5.2) in terms of the pseudo force [    ], the constant 

stiffness ( ) and the constant damping ( ) (Aprile et al., 1994). 

        ̇    ̇              (5.2) 

 

After replacing Eq. (5.2) into Eq. (5.1) and passing the pseudo force to the right hand side, Eq. (5.3) 

is obtained. This equation of motion contains only linear terms in the left hand side, whereas all 

sources of nonlinearities are concentrated in the pseudo force term located in the right hand side of 

Eq. (5.3). 

  ̈  [
 

  
∫               

 

  
  ]  ̇                 (5.3) 

 

Obviously, the value of the pseudo force is not known a priori, and for that reason Eq. (5.3) (known 

as pseudo linear or linearized equation) has to be solved iteratively until convergence is achieved for 

both, the displacement solution ( ) and the pseudo force ( ). Based on Eq. (5.2), Eq. (5.4) shows the 

expression to calculate the value of the pseudo force in iteration j. 

        ̇          ( 
   ̇ )     (5.4) 
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If there were no frequency dependent terms, the pseudo linear equation could be solved in both, 

frequency and time domains. However, frequency dependent terms are considered in Eq. (5.3) and 

therefore, the HFTD method solves the pseudo linear system in the frequency domain. 

Accordingly, the excitation force is expressed in terms of its harmonic components defined in Eq. 

(5.5). As a consequence, the displacement and the pseudo force are defined in the same terms by 

Eqs. (5.6) and (5.7), respectively. N is the number of excitation frequencies (  ) contained in the 

force function (or signal)     . 

  ∑ [ ̂         ]   
        (5.5) 

  ∑ [ ̂         ]   
        (5.6) 

  ∑ [ ̂         ]   
        (5.7) 

 

Eq. (5.8) is the pseudo linear equation of motion in the frequency domain, which is solved for each 

excitation frequency (  ). Eq. (5.8) is obtained in terms of the complex valued amplitudes of the 

excitation force [ ̂    ], displacement [ ̂    ] and pseudo force [ ̂    ], after replacing Eqs. (5.5) 

to (5.7) into Eq. (5.3). 

[   
       (         )   ] ̂      ̂      ̂       (5.8) 

 

Prior to solve Eq. (5.8), the complex right hand side amplitudes [ ̂      ̂    ] have to be 

determined. Then, the equation is solved and the complex amplitude of the displacement [ ̂    ] is 

obtained. The HFTD method uses the Discrete Fourier Transform (DFT) defined in Eqs. (5.9) and 

(5.10) to determine  ̂     and  ̂    , respectively. 

 ̂     
 

 
∑ [          

    

 
 ]   

        (5.9) 

 ̂     
 

 
∑ [          

    

 
 ]   

        (5.10) 

 

The number of excitation frequencies (N) considered in the analysis depends on the period used for 

the Fourier transform (Tp) and the time step size (Δt) that determines the separation of the discrete 

time points in which the response of the system is computed. Eq. (5.11) presents the expression to 

determine N, whereas Eq. (5.12) the expression to calculate   . 

  
  

  
⁄       (5.11) 

   
   

  
      (5.12) 
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In Chapter 4 it was explained that in the HFTD method the Fourier period (Tp) is not equal to but 

longer than the duration of the excitation force (t0). The reason for this is to obtain the transient 

response of the system instead of the steady state response (Section 4.3.3). The expression to 

calculate the ideal value of the Fourier period is given by Eq. (5.13), where the natural period of the 

undamped system (T1) and the viscous damping ratio ( ) are defined by Eqs. (5.14) and (5.15), 

respectively. For the SDOF systems treated in this chapter, the very long value of Tp obtained with Eq. 

(5.13) is totally manageable in terms of computational time and memory capacity. 

      {       
  

 
        }    (5.13) 

     √ 
 ⁄        (5.14) 

   
   ⁄  

 

 √   
      (5.15) 

 

The fundaments and procedure of the time segmentation approach followed by the HFTD method to 

achieve convergence when solving nonlinear systems have already been explained in Section 4.3. This 

procedure consists in dividing the time span of interest (not the total Fourier period) in time segments 

over which the iterative solution is found sequentially for each of these segments. 

The time span of interest (Tr) is the time for which the user desires to obtain the response of the 

system. Usually, Tr is equal or longer than the load duration but much smaller than the Fourier period 

(t0 ≤ Tr << Tp). 

On the other hand, all the time segments are generally composed of a constant number of time steps. 

Therefore, the size of each time segment (ΔTS) is calculated with Eq. (5.16), in terms of the number 

of samples (or time points) per segment (NS) and the time step size (Δt), whereas the starting time 

point of segment k (Tk) is calculated using Eq. (5.17). 

               (5.16) 

                (5.17) 

 

Fig. 5.1 shows an example of the excitation load      with duration equal to t0 and Fourier period 

equal to Tp. In this particular case the time span of interest (Tr) is divided in six time segments. For 

each time segment,  ̂     and  ̂     should be calculated by means of the DFT expressed in Eqs. 

(5.9) and (5.10), respectively. 

If the kth time segment of a system subjected to the load shown in Fig. 5.1 is being analyzed, the 

segmentation approach of the HFTD method requires modifying the excitation load      before doing 

the DFT. The required modifications of load      are shown in Fig. 5.2. The original force signal is 

replicated until the kth segment currently analyzed. Subsequently, an appended decaying function that 

develops a smooth transition to load values equal to zero is added. Finally, the zero load values are 

extended until covering all the time points contained by the Fourier period (Tp). 
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Figure 5.1: Excitation load, segmentation approach, time span of interest and Fourier 

period. 

 

 

Figure 5.2: Modified excitation load with appended decaying function for the HFTD 

analysis of the kth time segment. 

 

The use of a decaying function avoids a sudden unloading of the system, and consequent inaccuracy 

and artificial oscillations in the obtained response. Taking into account that in the pseudo linear 

equation of motion solved by the HFTD method, the frequency dependent complex amplitude terms 

located in the right hand side of Eq. (5.8) do not only consist in the Fourier transform of the load 
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[    ], but of the pseudo force [    ] as well, a similar modification shown in Fig. 5.2 for      has to 

be accomplished for      before the DFT defined in Eq. (5.10) is applied. 

The modifications of the excitation load and the pseudo force for the analysis of the kth time segment 

are analytically expressed in Eqs. (5.18) and (5.19), respectively, by means of the Heaviside function 

[    ]. 

                                                  (5.18) 

                                                  (5.19) 

 

Several types of decaying functions can be used for the load [      ] and pseudo force [      ]. 

Nevertheless, the simplest decaying function defined by Eqs. (5.20) and (5.21) is selected for both of 

them. This is a linear decaying function defined in terms of its time variable (  ) and its duration 

(   ).    starts in the last point of the time segment k, whereas by definition     should be smaller 

than the time segment length (   ).  

          (  
  

   
)                 (5.20) 

                 (5.21) 

 

Going back to the solution of Eq. (5.8), the complex amplitude of the displacement ( ̂) is determined 

in the frequency domain for each excitation frequency (  ). The complex amplitudes of the system’s 

velocity and acceleration in the frequency domain are determined for each excitation frequency using 

Eqs. (5.22) and (5.23).  

 ̂̇          ̂         (5.22) 

 ̂̈        
   ̂         (5.23) 

 

From the amplitudes of the system response in the frequency domain, the response in the time 

domain is obtained by means of the inverse DFT, expressed in Eqs. (5.24) to (5.26) for the 

displacement, velocity and acceleration, respectively.  

      ∑ [ ̂        
    

 
 ]   

       (5.24) 

 ̇     ∑ [ ̂̇        
    

 
 ]   

       (5.25) 

 ̈     ∑ [ ̂̈        
    

 
 ]   

       (5.26) 
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Due to the segmentation approach followed in the HFTD method, the response in the time domain is 

only required to be calculated for those time points located inside the current segment being 

analyzed, for which convergence has not been achieved yet. This means that if the last time point in 

the segment k for which convergence has been achieved in the previous iteration is denominated   , 

then the time points   , for which Eqs. (5.24) to (5.26) have to be evaluated, fulfill the condition 

expressed in Eq. (5.27). 

                     (5.27) 

 

Finally, with the response obtained for the time points   , the pseudo force for iteration j is obtained 

after replacing        and  ̇      in Eq. (5.4). Then, the convergence criteria check is performed for 

both, the pseudo force and the displacement. The convergence criteria verification for iteration j is 

presented in Eqs. (5.28) and (5.29). 

|                 |

|       |
         (5.28) 

|                 |

|       |
         (5.29) 

 

If one of the time points    does not fulfill the convergence criteria defined by Eqs. (5.28) and (5.29), 

then a new iteration is initiated with the DFT of the pseudo force obtained in the previous iteration. 

The last time point for which convergence has been achieved (  ) should be updated, being the 

process repeated until    coincides with the time span of interest (     ). Tables 5.1 and 5.2 show a 

schematic summary of the HFTD method for SDOF non-linear systems. 
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Table 5.1: Summary of the HFTD method for SDOF non-linear systems 

1. Initial calculations 

1.1 Select the time step size (Δt) 

1.2 Determine the duration of the excitation load (  ) 

1.3 Calculate the fundamental period of the system (  ) 

     √ 
 ⁄  

1.4 Calculate the damping ratio ( ) 

  
 

 √   
 

2. Fourier period 

2.1 Calculate the Fourier period (  ) 

      {       
  

 
        } 

2.2 Calculate the number of time points ( ) for the Fourier transform 

   
  

  
⁄  

3. Frequency dependent properties 

3.1 Calculate the excitation frequencies (  ) 

   
   

  
 

3.2 Evaluate the frequency dependent damping [       ] for each excitation frequency    

4. Number of time segments 

4.1 Select the time span of interest (  ) 

4.2 Select the number of samples (time points) per segment (  ) 

4.3 Calculate the size of the time segment (   ) 

          

4.4 Calculate the number of time segments (  ) 

   
  

   
⁄  

5. Set up the initial the value of the pseudo force equal to zero 

        

6. Calculations for each time segment k 

6.1 Determine the modified excitation load for time segment k (  )  

                                  

6.2 Calculate the DFT of the excitation load [ ̂    ] 

 ̂     
 

 
∑ [          

    
 

 ]

   

   

 

6.3 Follow the HFTD iterative procedure to determine the system response and pseudo forces of the 

time points of segment k (See Table 5.2) 
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Table 5.2: Iterative procedure of the HFTD method for SDOF nonlinear systems 

1. Calculations for each iteration j 

1.1 Determine the modified pseudo force for time segment k and iteration j-1 [         ] 

                                         

1.2 Calculate the DFT of the pseudo force [ ̂    ] 

 ̂     
 

 
∑ [               

    
 

 ]

   

   

 

1.3 Determine the modified pseudo force for time segment k and iteration j-1 [         ] 

                                         

1.4 Calculate the DFT of the pseudo force [ ̂    ] 

 ̂     
 

 
∑ [               

    
 

 ]

   

   

 

1.5 Calculation for each excitation frequency    

1.5.1 Solve the pseudo linear equation to determine displacement amplitude in the frequency 

domain  ̂     

  [   
       (         )   ] ̂      ̂      ̂     

1.5.2 Calculate the velocity [ ̂̇    ] and acceleration [ ̂̈    ] amplitudes in the frequency 

domain 

 ̂̇          ̂                 ̂̈        
   ̂     

1.6 Calculate the inverse DFT of the displacement, velocity and acceleration 

      ∑ [ ̂        
    

 
 ]

   

   

 

  ̇     ∑ [ ̂̇        
    

 
 ]   

    

 ̈     ∑ [ ̂̈        
    

 
 ]

   

   

 

1.7 Calculation of the internal force [    ( 
   ̇ )] for the time points    between    and      

1.8 Calculation of the pseudo force for the time points    between    and      

         ̇          ( 
   ̇ ) 

1.9 Convergence criteria verification for the time points    between    and      

|                 |

|       |
              

|                 |

|       |
     

1.10 Update    

1.11 Repeat the iterative process until            

 

 

5.2 Time domain analysis of SDOF systems  

The accuracy of the results obtained with the HFTD method previously described for SDOF systems 

has to be compared with analytical solutions or other well established methods of analysis in the time 
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domain. This permits to evaluate the HFTD method performance and generate confidence about the 

results obtained when frequency dependent properties are actually required to be included. 

Nevertheless, it is obvious that the numerical examples tested in the section 5.3 cannot have 

frequency dependent properties, due to fact that the benchmark solutions are obtained from time 

domain analysis methods. 

This section is divided in two parts. The first part covers the analytic solution in the time domain of 

SDOF linear systems. Two particular types of loading are considered: harmonic and general. The 

second part develops the well-established Newmark method in the time domain for SDOF non-linear 

systems. 

 

5.2.1 Analytic solution in the time domain for SDOF linear systems1 

 

Figure 5.3: Single degree of freedom damped system 

 

The equation of motion of the damped SDOF linear system shown in Fig. 5.3 is expressed by Eq. 

(5.30) in terms of the relative displacement (  ). The initial conditions expressed in Eqs. (5.31) and 

(5.32) complete the definition of the governing equations. 

  ̈    ̇         ̈              (5.30) 

              (5.31) 

 ̇             (5.32) 

 

                                                           
1 Based on Craig and Kurdila (2006) and Paz and Leigh (2004). 
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Eq. (5.30) can be expressed as shown in Eq. (5.33). The definition of the natural frequency of 

vibration (  ) and the viscous damping ratio ( ) is presented in Eqs. (5.34) and (5.15), respectively. 

 ̈        ̇    
       ̈     

    

 
    (5.33) 

   √ 
 ⁄       (5.34) 

 

If the right hand side of Eq. (5.33) is denominated 
    

 
 and the subscript “r” of relative movement is 

omitted, a general equation valid for relative and absolute coordinates is expressed in Eq. (5.35). 

 ̈        ̇    
   

    

 
     (5.35) 

 

5.2.1.1 Response of SDOF systems subjected to harmonic loading 

When the excitation force acting in the right-hand side of Eq. (5.35) is harmonic in the form      

           , then Eq. (5.35) can be expressed as shown in Eq. (5.36). 

 ̈        ̇    
   

  

 
             (5.36) 

 

The solution of Eq. (5.7) is given by the summation of the general homogeneous solution and the 

particular solution. For under-damped systems (   ), the general solutions is defined by Eqs. (5.37) 

and (5.38). 

                                          (5.37) 

     √          (5.38) 

 

On the other hand, the particular solution or steady state response is given by Eq. (5.39) in terms of 

the displacement amplitude ( ) and the phase angle ( ), defined by Eqs. (5.40) and (5.41), 

respectively. 

                             (5.39) 

  
  

 ⁄  
 

√[  (   
⁄ )

 
]
 

 [  (   
⁄ )]

 

    (5.40) 

      
  (   

⁄ )

  (   
⁄ )

       (5.41) 
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Therefore, the total solution of the SDOF under-damped linear system subjected to the harmonic load 

            is given by the sum of Eqs. (5.37) and (5.39), as expressed in Eq. (5.42). The derivative 

of Eq. (5.42) provides the expression of the velocity of the system, shown in Eq. (5.43). The 

acceleration can be obtained from the equation of motion, after the substitution of Eqs. (5.42) and 

(5.43) into Eq. (5.36). The values of    and    are obtained from the initial conditions defined in Eqs. 

(5.31) and (5.32). 

                                                 (5.42) 

 ̇                                                                    

(5.43) 

 

5.2.1.2 Response of SDOF systems subjected to general loading by the 

Convolution Integral method 

If the loading is not harmonic but a general dynamic excitation     , the particular solution is 

obtained by the Convolution (or Duhamel) integral method, which is expressed in Eq. (5.44). The total 

solution is given therefore by Eq. (5.45). 

            
 

    
∫                  (       )   

 

 
  (5.44) 

     
 

    
∫                             

 

 
                                

 (5.45) 

 

5.2.1.3 Response of SDOF systems subjected to general loading by the 

Direct Integration method 

In many applications, the excitation force      cannot be expressed by a mathematical function (f.e: 

ground acceleration signal records) and therefore, the convolution integral of Eq. (5.45) cannot be 

obtained in a continuous closed form. 

One way to deal with these kind of problems without losing accuracy and theoretical consistency is to 

evaluate the convolution integral in a discrete form by dividing the loading in small linear segments, as 

shown in Fig. 5.4. 

In this way, if the time step size (Δt) that determine the position of the discrete points in the force 

function is small enough, the solution of the system can be calculated for the time step i, using as 

initial conditions the solution obtained for the time step i-1. This approach is known as the Direct 

Integration Method and provides the “exact” analytical solution of the system, provided that the time 

step size is small enough to describe accurately the force function. 
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Figure 5.4: Discretization of the force the function 

 

The force for the time interval between ti and ti+1 is approximated to a linear function by Eqs. (5.46) 

and (5.47). Therefore, the equation of motion (only valid for the time interval between t i and ti+1) is 

expressed in Eq. (5.48). 

     (  
 

  
)   (

 

  
)          (5.46) 

             (5.47) 

 ̈        ̇    
   

 

 
[(  

 

  
)   (

 

  
)    ]   (5.48) 

 

The general and particular solutions of the system for the interval i are given by Eqs. (5.49) and 

(5.50), respectively. The constants Ci and Di of the general solution are obtained based on the initial 

conditions of the interval (i.e.    and  ̇ ). On the other hand, the constants Ai and Bi are obtained 

after replacing the particular solution in the equation of motion defined in Eq. (5.48). 

                                          (5.49) 

                         (5.50) 

 

The total solution for displacement and velocity is given respectively by Eqs. (5.51) and (5.52), 

respectively. 

                                              (5.51) 

 ̇                                                           (5.52) 
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After replacing Eq. (5.50) into Eq. (5.48), the expressions defined in Eqs. (5.53) and (5.54) are the 

solution for Ai and Bi, respectively. 

   
       

    
    

      (5.53) 

   
           

    
      (5.54) 

 

At the beginning of interval i, the initial conditions are    and  ̇ . After replacing both conditions in 

Eqs. (5.51) and (5.52), respectively, the constants Ci and Di are obtained with the expressions given 

by Eqs. (5.55) and (5.56). 

              (5.55) 

   
 ̇          

  
     (5.56) 

 

Finally, the solution of interval i is completely defined and therefore it is possible to determine the 

response of the next time step i+1, by replacing the time      in Eqs. (5.51) and (5.52), to obtain 

     and  ̇    respectively. The acceleration ( ̈   ) is obtained from Eq. (5.48). 

After substitution and simplification, the following final recurrence formulas for displacement, velocity 

and acceleration of the time step i+1 are presented in Eqs. (5.57) to (5.59). The expressions to 

calculate the coefficients of the recurrence formulas are summarized in Table 5.3. 

                        ̇     (5.57) 

 ̇                           ̇    (5.58) 

 ̈              ̇      
       

    

 
   (5.59) 
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Table 5.3: Coefficients for the recurrence formulas of the Direct Integration Method 

      

  
 

     
{     [(
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{         

                               } 
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        [          
 

  
         ] 

 

5.2.2 Solution procedure of the Newmark method for SDOF non-linear systems2 

The equation of motion for nonlinear systems solved by the HFTD method [Eq. (5.1)] is modified in 

such a way that no frequency dependent terms are taken into account, as it is expressed in Eq. 

(5.60). This general equation for nonlinear SDOF systems is valid for absolute and relative 

coordinates, and therefore, the force vector      can include a ground acceleration excitation. 

  ̈          ̇          (5.60) 

 

One of the most stable and accurate time domain methods for nonlinear analysis of structural 

dynamics systems is the Newmark method. Due to implementation purposes of Newmark method, it is 

desirable to split the nonlinear internal force [        ̇ ] in stiffness [      ̇ ] and damping 

[      ̇ ] nonlinear forces. This is expressed in Eq. (5.61). 

  ̈        ̇        ̇          (5.61) 

 

Eq. (5.61) can be discretized so it is valid at discrete time instants ti. Therefore, the nonlinear equation 

of motion is satisfied in the time instants ti and ti+1, as it is expressed in Eqs. (5.62) and (5.63). 

  ̈         ̇          ̇             (5.62) 

  ̈             ̇              ̇               (5.63) 

                                                           
2 Based on Chopra (2007). 
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The difference between Eqs. (5.63) and (5.62) gives the incremental equilibrium equation expressed 

in Eq. (5.64), for which the time step is defined by Eq. (5.65) 

   ̈           
         (5.64) 

                 (5.65) 

 

The incremental stiffness and damping internal restoring forces can be expressed as shown in Eqs. 

(5.66) and (5.67), respectively. This approximation is valid for small step sizes (Δt) and for tangent 

stiffness and damping coefficients defined by Eqs. (5.68) and (5.69), respectively. 

         ̇       (5.66) 

    
            (5.67) 

   
   

  ̇
     ̇       (5.68) 

   
   

  
     ̇       (5.69) 

 

After replacing Eqs. (5.66) and (5.67) into Eq. (5.64), the incremental equilibrium equation is 

reformulated and presented in Eq. (5.70). This equation has the same form of the equation for linear 

systems, and this is the reason for splitting the restoring force in Eq. (5.61). 

   ̈      ̇                (5.70) 

 

Now, the Newmark method can be applied in the same fashion as it is done for linear systems. The 

only differences are that the tangent stiffness and damping have to be updated for each time step, 

and that an iterative procedure has to be included to avoid the error accumulation of pure incremental 

procedures (modified Newton-Raphson iterative method)3. 

The Newmark method approximates the displacement and velocity of the system in the time instant 

ti+1 via the recurrence algorithms presented in Eqs. (5.71) and (5.72), respectively. The values of the 

parameters γ and β determine the stability and accuracy of the method. The two most used cases due 

to their high accuracy are the linear (γ=1/2, β=1/6) and average (γ=1/2, β=1/4) acceleration 

methods. 

            ̇  (
 

 
  )       ̈         ̈      (5.71) 

 ̇     ̇           ̈        ̈        (5.72) 

 

                                                           
3 See section 5.7 of Chopra (2007), for a detailed explanation of the modified Newton-Raphson iterative 
procedure applied to nonlinear dynamic analysis of SDOF systems. 
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After rearranging Eqs. (5.71) and (5.72), the incremental velocity and acceleration are expressed in 

Eqs. (5.73) and (5.74), respectively, in terms of the incremental displacement and the response of the 

time instant ti. 

  ̇  
 

    
    

 

 
 ̇  (  

 

  
)    ̈      (5.73) 

  ̈  
 

       
    

 

    
 ̇  

 

  
  ̈      (5.74) 

 

Eqs. (5.73) and (5.74) are substituted into Eq. (5.70) to obtain the incremental equilibrium equation, 

defined by Eqs. (5.75) to (5.77). The only unknown of Eq. (5.75) is the incremental displacement 

(   ), which is calculated based on the solution of the previous time instant t i, and following the 

modified Newton-Raphson iterative procedure in order to obtain accurate results. 

 ̂        ̂         (5.75) 

 ̂     
 

    
   

 

       
       (5.76) 

  ̂      (
 

    
  

 

 
  )  ̇  [

 

  
  (

 

  
  )     ]  ̈   (5.77) 

 

The incremental displacement found after solving Eq. (5.75) can be replaced into Eq. (5.73) to find 

  ̇ . Then, the displacement, velocity and acceleration of the time instant t i+1 are calculated using 

Eqs. (5.78) to (5.80), respectively. 

                 (5.78) 

 ̇     ̇    ̇       (5.79) 

 ̈    
                

 
      (5.80) 

 

The internal restoring forces in the time instant ti+1 are calculated incrementally, as it is expressed in 

Eqs. (5.81) and (5.82). The definition of the restoring forces increment is given by Eqs. (5.66) and 

(5.67). 

                       ̇     (5.81) 

     
    

     
    

          (5.82) 

 

Table 5.4 shows a schematic summary of the Newmark method for SDOF nonlinear systems, whereas 

Table 5.5 shows the procedure of the Newton-Raphson iterative procedure. 
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Table 5.4: Summary of the Newmark method for SDOF nonlinear systems4 

Special cases: 

(1) Average acceleration method (  
 

 
   

 

 
) 

(2) Linear acceleration method (  
 

 
   

 

 
) 

1. Initial calculations 

1.1 Select the time step size (Δt) 

1.2 Determine the initial acceleration ( ̈ ) 

 ̈  
      

    

 
 

2. Calculations for each time step i = 1,2,3, … 

2.1 Determine the load increment (   ) 

            

2.2 Determine the tangent stiffness (ki) and damping (ci) 

   
   

  
     ̇   ;         

   

  ̇
     ̇   

2.3 Determine the effective stiffness coefficient ( ̂ ) 

 ̂     
 

    
   

 

       
  

2.4 Determine the effective load increment (  ̂ ) 

  ̂      (
 

    
  

 

 
  )  ̇  [

 

  
  (

 

  
  )      ]  ̈  

2.5 Determine the displacement increment (   ) using modified Newton-Raphson iterative 

procedure to solve the following equation (Table 5.5) 

 ̂        ̂  

2.6 Determine the velocity increment (  ̇ ) 

  ̇  
 

    
    

 

 
 ̇  (  

 

  
)     ̈  

2.7 Determine the displacement (    ) and velocity ( ̇   ) of time step i+1 

            ;        ̇     ̇    ̇  

2.8 Determine the internal restoring forces (     
      

) of time step i+1 

     
    

     ̇  ;           
    

       

2.9 Determine the acceleration of time step i+1 ( ̈   ) 

 ̈    
          

      

 
 

 

 

 

 

                                                           
4 Based on Table 5.7.2 of Chopra (2007) 
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Table 5.5: Summary of the Modified Newton-Raphson iterative procedure 

1. Initial calculations 

1.1 Initial estimation of the displacement for the time step i+1 (    
   

) 

    
   

    

1.2 Initial estimation of the nonlinear stiffness (     
   ) and damping (     

   ) force for time step i+1 

     
       

                         
       

 

1.3 Initial residual force for iteration 1 (     ) 

        ̂  

2. Calculations for each iteration j = 1, 2, 3, …  

2.1 Solve the equation to determine the displacement increment (     ) between iteration j and 

iteration j-1 

 ̂              

2.2 Determine the total displacement of iteration j for time step i+1 (    
   

) 

    
   

     
     

        

2.3 Determine the total displacement increment of iteration j between time steps i and i+1 (   
   

) 

   
   

     
   

    

2.4 Determine the total velocity increment of iteration j between time steps i and i+1 (  ̇ 
   

) 

  ̇ 
   

 
 

    
   

   
 

 

 
 ̇  (  

 

  
)     ̈  

2.5 Determine the total velocity of iteration j for time step i+1 ( ̇   
   

) 

 ̇   
   

  ̇    ̇ 
   

 

2.6 Determine the internal restoring forces of iteration j for time step i+1 (     
         

   ) based on 

the nonlinear relations force, displacement and velocity 

2.7 Determine the variation of the external force after iteration j (     
   

) 

     
   

 {
    

 

    
  ̇  

 

  
  ̈              

                             

 

2.8 Determine the variation of the internal force after iteration j (     
   

) 

     
   

 (     
         

     )  (     
         

     )  
 

       
        

2.9 Determine the residual force for the next iteration j+1 (       ) 
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5.3 HFTD method numerical test examples for SDOF systems 

The HFTD (Tables 5.1 and 5.2), the Direct Integration (Table 5.3) and the Newmark (Tables 5.4 and 

5.5) methods presented in Sections 5.1 and 5.2, were programmed in MATLAB5 (The Mathworks, Inc., 

2012) to be used in the solution of the examples developed in this section.  

 

5.3.1 Test examples for SDOF linear systems 

Four examples of SDOF linear systems are solved with the HFTD method and compared with the 

analytic solution for harmonic loading or the Direct Integration method for general loading. Each of 

these examples represents different types of loading that cover a wide range of possibilities. 

 

5.3.1.1 Harmonic loading6 

The SDOF system is subject to the harmonic load                  . The numerical data defining 

the characteristics of the system is shown in Table 5.6. 

Table 5.6: Numerical data of Example 4.2 (Craig and Kurdila, 2006) 

k m ξ p0 Ω t0       

40 0.1 0.2 10 10 2 0 0 

 

Based on the information given in Table 5.6, the parameters of the SDOF system shown in Table 5.7 

are determined. The analytical solution for harmonic loading developed in section 2.1 is used to solve 

this example. Table 5.8 shows the displacement amplitude (U), phase angle ( ) and constants A1 and 

A2, which are obtained using Eqs. (5.40) to (5.43), as well as the information shown in Tables 5.6 and 

5.7. 

Table 5.7: Parameters of the SDOF linear system subject to harmonic loading 

Tr T1       

2 0.314 20 19.60 

 

Table 5.8: Analytic solution of SDOF linear system subject to harmonic loading 

U         

0.322 0.261 -0.311 -0.1059 

 

Finally, Eqs. (5.83) and (5.84) present the analytic displacement and velocity, obtained from Eqs. 

(5.42) and (5.43), respectively. The acceleration response is indirectly determined by replacing the 

displacement and velocity values into Eq. (5.36). 

                                                                    (5.83) 

                                                           
5 The MATLAB routines can be found in Appendix B. 
6 Example 4.2 of Craig and Kurdila (2006). 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

5. Single Degree of Freedom (SDOF) 
Dynamic Systems 

 

64 

 
 

 ̇                                                                                     

 (5.84) 

 

On the other hand, Table 5.9 shows the values of the parameters required to perform the HFTD 

method schematized in Tables 5.1 and 5.2. It is important to mention that for linear systems the 

HFTD method does not require segmentation approach or iterative procedure. For that reason only 

one time segment (NT =1) is used in all the examples corresponding to linear systems. 

Table 5.9: HFTD parameters for the SDOF linear system subject to harmonic loading 

Δt Tp N 
   

   

  

 
NT 

0.02 15.72 786 0.0636   1 

 

The comparison between the analytic and the HFTD solutions for the displacement, velocity and 

acceleration is presented in Figs. 5.5 to 5.7. 

For the displacement and velocity responses, the major differences of the HFTD solution with respect 

to the analytical solution are found during the first 0.5 s. For the acceleration, this range is extended 

until the time 0.75 s. After this initial period, the HFTD response gets stable and matches almost 

exactly the analytical solution thenceforth. 

The reason for this initial inaccurate range is that the magnitude of the cosine harmonic load does not 

start in zero, but in p0 equal to 10. The HFTD is not capable to exactly trace the response generated 

by this sudden loading at the initial time t=0. Once the effect of the sudden initial loading is 

diminished, the response obtained with the HFTD method gradually matches the analytical solution. 

 

Figure 5.5: Harmonic loading example. Displacement response for Analytic and HFTD 

solutions. 
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Figure 5.6: Harmonic loading example. Velocity response for Analytic and HFTD solutions. 

 

 

Figure 5.7: Harmonic loading example. Acceleration response for Analytic and HFTD 

solutions. 

 

5.3.1.2 Blast loading7 

The SDOF system is subject to the blast load schematized in Fig. 5.8. The numerical data defining the 

characteristics of the system is shown in Table 5.10. 

                                                           
7 Example 4.2 of Paz and Leigh (2004). 
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Figure 5.8: Blast loading. 

 

Table 5.10: Numerical data of Example 4.2 (Paz and Leigh, 2004) 

k m ξ t0       

100 000 100 0.2 0.06 0 0 

 

Based on the information given in Table 5.10, the parameters of the SDOF system shown in Table 

5.11 are determined. The recurrence formulas of the Direct Integration method developed in Section 

5.2.1.3 are used to calculate the exact analytic response of the SDOF linear system. Table 5.12 shows 

the values of the coefficients for the recurrence formulas of the Direct Integration method. They were 

calculated based on the information given in Tables 5.10 and 5.11, as well as the expressions of Table 

5.3. 

Table 5.11: Parameters of the SDOF linear system subject to blast loading 

Tr T1       

0.20 0.20 31.62 30.92 

 

Table 5.12: Direct Integration method coefficients for the SDOF linear system subject to 

blast loading 

Δt β A B C D A’ B’ C’ D’ 

0.005 6.32 8.1x10-8 4.1x10-8 0.9878 0.0048 2.4x10-5 2.4x10-5 -4.825 0.9268 

 

On the other hand, Table 5.13 shows the values of the parameters required to perform the HFTD 

method (Tables 5.1 and 5.2). Similarly as in the previous example, for linear analysis the 

segmentation approach is not required (only one time segment is required to be defined). 

Table 5.13: HFTD parameters for the SDOF linear system subject to blast loading 

Δt Tp N 
   

   

  

 
NT 

0.005 9.935 1987 0.1007   1 
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The comparison between the analytic Direct Integration and the HFTD solutions for the displacement, 

velocity and acceleration is presented in Figs. 5.9 to 5.11. The accuracy obtained in the three 

responses is remarkable. The variations are so small that are almost no perceptible. This means that 

when the loading starts in zero (see Fig. 5.8) the HFTD method shows a great performance. 

 

Figure 5.9: Blast loading example. Displacement response for Direct Integration and HFTD 

solutions. 

 

 

Figure 5.10: Blast loading example. Velocity response for Direct Integration and HFTD 

solutions. 

 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

5. Single Degree of Freedom (SDOF) 
Dynamic Systems 

 

68 

 
 

 

Figure 5.11: Blast loading example. Acceleration response for Direct Integration and 

HFTD solutions. 

 

5.3.1.3 Impulsive loading8 

The SDOF system is subject to the impulse load schematized in Fig. 5.12. The numerical data defining 

the characteristics of the system is shown in Table 5.14. 

 

Figure 5.12: Impulsive loading. 

 

 

                                                           
8 Example 4.7 of Paz and Leigh (2004). 
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Table 5.14: Numerical data of Example 4.7 (Paz and Leigh, 2004) 

k m ξ t0       

10 000 10 0.1 0.10 0 0 

 

Based on the information given in Table 5.14, the parameters of the SDOF system shown in Table 

5.15 are determined. Table 5.16 shows the values of the coefficients for the recurrence formulas of 

the Direct Integration method [Eqs. (5.57) to (5.59)]. 

Table 5.15: Parameters of the SDOF linear system subject to impulsive loading 

Tr T1       

0.22 0.20 31.62 31.46 

 

Table 5.16: Direct Integration method coefficients for the SDOF linear system subject to 

impulsive loading 

Δt β A B C D A’ B’ C’ D’ 

0.01 3.16 3.2x10-6 1.6x10-6 0.9514 0.0095 4.7x10-4 4.9x10-4 -9.53 0.8912 

 

On the other hand, Table 5.17 shows the values of the parameters required to perform the HFTD 

method. Similarly as in the previous example, for linear analysis only one time segment is required. 

Table 5.17: HFTD parameters for the SDOF linear system subject to impulsive loading 

Δt Tp N 
   

   

  
 

NT 

0.01 9.94 994 0.1006   1 

 

The comparison between the analytic Direct Integration and the HFTD solutions for the displacement, 

velocity and acceleration is presented in Figs. 5.13 to 5.15. The accuracy obtained in the three 

responses is as good as in the previous example. 
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Figure 5.13: Impulsive loading example. Displacement response for Direct Integration 

and HFTD solutions. 

 

 

Figure 5.14: Impulsive loading example. Velocity response for Direct Integration and 

HFTD solutions. 
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Figure 5.15: Impulsive loading example. Acceleration response for Direct Integration and 

HFTD solutions. 

 

5.3.1.4 Ground acceleration record loading9 

The SDOF system is subject to the ground acceleration correspondent to the North-South component 

of the El Centro earthquake shown in Fig. 5.16. The numerical data defining the characteristics of the 

system is shown in Table 5.18. 

 

Figure 5.16: El Centro N-S earthquake ground acceleration. 

 

 

 

                                                           
9 Example 4.9 of Paz and Leigh (2004). 
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Table 5.18: Numerical data of Example 4.9 (Paz and Leigh, 2004) 

K m ξ t0       

2136 38.86 0.05 4.5 0 0 

 

Based on the information given in Table 5.18, the parameters of the SDOF system shown in Table 

5.19 are determined. Table 5.20 shows the values of the coefficients for the recurrence formulas of 

the Direct Integration method. On the other hand, Table 5.21 shows the values of the parameters 

required to perform the HFTD method. 

Table 5.19: Parameters of the SDOF linear system subject to earthquake ground 

acceleration 

Tr T1       

4.38 0.85 7.414 7.405 

 

Table 5.20: Direct Integration method coefficients for the SDOF linear system subject to 

earthquake ground acceleration 

Δt β A B C D A’ B’ C’ D’ 

0.02 0.37 3.4x10-6 1.7x10-6 0.9891 0.0198 2.5x10-4 2.5x10-4 -1.09 0.9744 

 

Table 5.21: HFTD parameters for the SDOF linear system subject to earthquake ground 

acceleration 

Δt Tp N 
   

   

  
 

NT 

0.02 42.38 2119 0.0236   1 

 

The comparison between the analytic Direct Integration and the HFTD solutions for the displacement, 

velocity and acceleration is presented in Figs. 5.17 to 5.19. The accuracy obtained in the three 

responses is as good as in the previous example. 
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Figure 5.17: Ground acceleration loading example. Displacement response for Direct 

Integration and HFTD solutions. 

 

 

Figure 5.18: Ground acceleration loading example. Velocity response for Direct 

Integration and HFTD solutions. 
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Figure 5.19: Ground acceleration loading example. Acceleration response for Direct 

Integration and HFTD solutions. 

 

5.3.2 Resonance case study: SDOF linear systems subject to harmonic loading 

with exponential amplitude 

The SDOF linear system is subject to a harmonic sinusoidal load which amplitude varies exponentially, 

as expressed by Eq. (5.85). In order to test the stability of the HFTD method, the influence of load 

excitation frequencies close to the resonance condition (Ω = ωo) is studied for systems with low 

damping ratios (ξ ≤ 0.05)10. In addition, the loading duration (t0) is expressed in Eq. (5.86) as a 

number “n” of load excitation periods (T) or peaks. 

         
     

⁄       
             (5.85) 

        
  

 
       (5.86) 

 

The numerical data of the SDOF system to be studied is shown in Table 5.22. As it can be noticed, 

three different low damping ratios are taken into account. 

Table 5.22: Numerical data of the SDOF system for resonance case studies 

k m    ξ       

2136 38.86 7.414 (0.01 ; 0.03 ; 0.05) 0 0 

 

First, four load excitation frequencies close to the natural vibration frequency of the system are 

considered with a damping ratio equal to 0.05. The characteristics of these four case studies are 

summarized in Table 5.23. 

                                                           
10 As explained in Section 4.3, the HFTD method is not applicable to undamped systems. 
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Table 5.23: Numerical data of case study A: Excitation frequencies close to resonance 

Case ξ             

A-1 0.05 0.80   1.06 2500 25 26.49 

A-2 0.05 0.95   0.89 2500 25 22.31 

A-3 0.05 1.05   0.81 2500 25 20.19 

A-4 0.05 1.20   0.71 2500 25 17.65 

 

The harmonic load      given by Eq. (5.85) is shown in Fig. 5.20 as example for the particular case A-

4. Fig. 5.20 shows the maximum amplitude   , the number of peaks or load periods   and the load 

duration   . Similar graphics can be presented for the other three cases. 

 

Figure 5.20: Harmonic sinusoidal load with exponential amplitude for the case study A-4. 

 

Like in the previous examples, the results obtained with the HFTD method (Tables 5.1 and 5.2) are 

compared with the analytical solution provided by the Direct Integration method described in Section 

5.2.1.3, and summarized by Eqs. (5.57) to (5.59) and Table 5.3. 

The HFTD parameters for each of the four case studies are summarized in Table 5.24. Due to lack of 

space, only the results obtained for the displacement response of the SDOF linear system are 

presented and compared with the Direct Integration method. The analysis of velocity and acceleration 

results revealed as good performance as the displacement results, presented in Figs. 5.21 to 5.24 for 

the cases A-1, A-2, A-3 and A-4, respectively. 

Table 5.24: HFTD parameters for case study A 

Case Δt Tp N 
   

   

  
 

NT 

A-1 0.025 53.00 2120 0.0189   1 

A-2 0.025 44.68 1787 0.0224   1 

A-3 0.025 42.38 1695 0.0236   1 

A-4 0.025 42.38 1695 0.0236   1 
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Figure 5.21: Resonance case study A-1. Displacement response for Direct Integration and 

HFTD solutions. 

 

 

Figure 5.22: Resonance case study A-2. Displacement response for Direct Integration and 

HFTD solutions. 
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Figure 5.23: Resonance case study A-3. Displacement response for Direct Integration and 

HFTD solutions. 

 

 

Figure 5.24: Resonance case study A-4. Displacement response for Direct Integration and 

HFTD solutions. 

 

From the analysis of Figs. 5.21 to 5.24, the first conclusion is that the accuracy of the HFTD method is 

not affected due to load excitation frequencies close to natural vibration frequency of the system 

(resonance condition). 

Second, there is a remarkable similarity between the responses of the case studies with excitation 

frequencies which are symmetric with respect to the resonance frequency. This is the situation of case 

studies A-1 and A-4 on the one hand, and case studies A-2 and A-3 on the other hand, which time 

history displacements have similar forms and amplitudes. The only small difference, besides the 

obvious fact that the responses of the cases with higher load excitation frequencies have a higher 
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number of peaks too, is that the amplitudes of the cases with excitation frequencies below resonance 

are slightly greater than its correspondent symmetric cases above resonance. 

Finally, it is remarkable the increase of the displacement magnitude for the case studies closer to the 

resonance frequency. The maximum displacement magnitude increases from 3 (A-1, A-4) to 8 (A-2, A-

3), approximately. 

Then, based on the good performance shown by the HFTD method in the previous case study, more 

critical situations of very lightly damped SDOF linear systems close to resonance condition are 

considered. Table 5.25 shows three additional case studies with load excitation frequencies equal to 

the resonance frequency and three low damping ratios equal or smaller than 0.05. 

Table 5.25: Numerical data of case study B: Resonance excitation frequency with very low 

damping ratios 

Case ξ             

B-1 0.05    0.85 2500 25 21.19 

B-2 0.03    0.85 2500 25 21.19 

B-3 0.01    0.85 2500 25 21.19 

 

The HFTD parameters for each of the three case studies are summarized in Table 5.26. Similarly than 

in case study A, Figs. 5.25 to 5.27 only present the results obtained for displacements, which are 

compared with the Direct Integration method response. The analysis of velocity and acceleration 

results revealed as good performance as displacement results. 

Table 5.26: HFTD parameters for case study B 

Case Δt Tp N 
   

   

  
 

NT 

B-1 0.025 42.43 1697 0.0236   1 

B-2 0.025 42.43 1697 0.0236   1 

B-3 0.025 84.78 3391 0.0118   1 

 

 

Figure 5.25: Resonance case study B-1. Displacement response for Direct Integration and 

HFTD solutions. 
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Figure 5.26: Resonance case study B-2. Displacement response for Direct Integration and 

HFTD solutions. 

 

 

Figure 5.27: Resonance case study B-3. Displacement response for Direct Integration and 

HFTD solutions. 

 

From the analysis of Figs. 5.25 to 5.27, it is clear that the HFTD method remains accurate with very 

low damped systems in resonance conditions. In addition, the comparison between Fig. 5.25 (ξ = 

0.05) and Fig. 5.27 (ξ = 0.01) shows the notorious effect of damping in the amplitude and stability of 

motion. The displacement of case study B-3 (system with extremely low damping) growths in time 

without bound, until reaching a maximum amplitude equivalent to two and four times the maximum 

amplitude of case studies B-2 and B-1, respectively. 
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5.3.3 Test examples for SDOF non-linear systems 

Three examples of SDOF non-linear systems are solved with the HFTD method (Section 5.1) and 

compared with the time domain solution of the Newmark method (Section 5.2.2). The first two 

examples present the response of SDOF systems with two different types of hysteretic stiffness non-

linearity. The third test example is equal to the second example with the addition of damping non-

linearity. 

 

5.3.3.1 Linear elasto-plastic non-linear stiffness behavior subject to a half 

cycle sine pulse11 

The SDOF system described in Table 5.27 is subject to the half cycle sine pulse 

                
   ⁄   shown in Fig. 5.28. The linear elasto-plastic non-linear stiffness force 

[      ̇ ] of the system is shown in Fig. 5.29. Based on the information given in Table 5.27, the 

parameters of the SDOF system shown in Table 5.28 are determined. 

Table 5.27: Numerical data of Example 5.5 (Chopra, 2007) 

k m ζ       Rt Rc 

10 0.2533 0.05 0 0 7.5 -7.5 

 

Table 5.28: Parameters of the SDOF system with stiffness non-linearity subject to sine 

pulse loading 

Tr T1       

0.90 1.0 6.283 6.275 

 

 

Figure 5.28: Half cycle sine pulse loading. 

                                                           
11 Example 5.5 of Chopra (2007) 
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Figure 5.29: Linear elasto-plastic stiffness non-linearity. 

 

Newmark and HFTD methods are applied in the system using two different time steps in order to 

evaluate the improvement of the HFTD accuracy, when reducing the time step size. For the Newmark 

method, the Average Acceleration special case was performed, according to the procedure outlined in 

Tables 5.4 and 5.5. The parameters required for the execution of Newmark method are shown in 

Table 5.29. 

Table 5.29: Newmark method (average acceleration) parameters for the SDOF system 

with stiffness non-linearity subject to sine pulse loading 

γ β Δt1 Δt2 

 
 ⁄   

 ⁄  0.1 0.01 

 

On the other hand, Table 5.30 shows the values of the parameters required to perform the HFTD 

method, outlined in Tables 5.1 and 5.2, for each of the two time step sizes taken into account. In this 

case more than one time segment (NT) is required in order to achieve convergence. The number of 

time segments required increases for smaller time steps due to the higher amount of time points and 

excitation frequencies (N) included in the analysis. 

Table 5.30: HFTD parameters for the SDOF system with stiffness non-linearity subject to 

sine pulse loading 

Δt Tp N 
   

   

  

 
NT 

0.1 50.00 500 0.02   10 

0.01 50.00 5000 0.02   13 
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The comparison between the Newmark time domain method and the HFTD method solutions for the 

displacement, velocity and acceleration is presented in Figs. 5.30 to 5.32. In addition, the non-linear 

hysteretic relation between the stiffness force and the displacement is presented in Fig. 5.33. 

The most remarkable observation is that all the responses obtained using both methods are almost 

identical when a time step (Δt) equal to 0.01 s is used. On the other hand, when the time step is 

equal to 0.1 s, the accuracy of both methods diminishes, being possible to identify small drifts with 

respect to the more accurate solution (Δt = 0.01 s). However this is a shortcoming of the selected 

time step size, and not of the particular characteristics of the methods applied. This can be clearly 

appreciated in Fig. 5.33, where the non-linear hysteretic elasto-plastic relation between the stiffness 

force and the displacement is shown. When an abrupt change of the tangent stiffness is produced, the 

proper description of the nonlinear relation is only possible when small time steps are used. 

 

Figure 5.30: Linear elasto-plastic stiffness force non-linearity. Displacement response for 

Newmark and HFTD solutions. 

 

 

Figure 5.31: Linear elasto-plastic stiffness force non-linearity. Velocity response for 

Newmark and HFTD solutions. 
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Figure 5.32: Linear elasto-plastic stiffness force non-linearity. Acceleration response for 

Newmark and HFTD solutions. 

 

 

Figure 5.33: Linear elasto-plastic stiffness force non-linearity. Hysteretic stiffness force-

displacement relation for Newmark and HFTD solutions. 
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5.3.3.2 Cubic elasto-plastic non-linear stiffness behavior subject to a blast 

loading12 

The SDOF system described in Table 5.31 is subjected to the blast loading shown in Fig. 5.34. 

Table 5.31: Numerical data of Example 8.15 (Humar, 2002) 

k m ζ       Rt Rc 

8 0.10 0.1118 0 0 8 -8 

 

 

Figure 5.34: Blast loading. 

 

The non-linear stiffness force-displacement relation [      ̇ ] of the system is expressed and shown 

in Eq. (5.87) and Fig. 5.35, respectively. Eq. (5.88) shows the initial tangent stiffness equal to 8 which 

is obtained through the evaluation of the initial displacement (  ) in the derivative of the force-

displacement relation. 

         
  

  
       (5.87) 

  
   

  
             (5.88) 

 

The nonlinear stiffness diminishes from 8 to 0, which is the point where the stiffness force reaches its 

maximum tensile strength equal to 8. After this, the plastic part of the nonlinear relation starts, the 

displacement increases and the velocity diminishes until zero. The negative velocity makes the system 

going back in the direction of the equilibrium position following a straight line path with a slope equal 

to the initial stiffness (see Fig. 5.35). After the stiffness force is reduced to zero, the system enters in 

the compression zone under the same cubic elastic relation given by Eq. (5.87). The hysteretic cycle is 

repeated until the whole time span of interest is covered. 

                                                           
12 Example 8.15 of Humar (2002). 
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Figure 5.35: Cubic elasto-plastic stiffness non-linearity. 

 

Based on the information given in Table 5.31, the parameters of the SDOF system shown in Table 

5.32 are determined. 

Table 5.32: Parameters of the SDOF system with stiffness non-linearity subject to blast 

loading 

Tr T1       

0.90 0.702 8.950 8.894 

 

Two different time steps are also used in this test example. For the Newmark method, the Average 

Acceleration special case was performed using the parameters shown in Table 5.33. On the other 

hand, Table 5.34 shows the values of the parameters required to perform the HFTD method for each 

of the two time step sizes taken into account. 

Table 5.33: Newmark method (average acceleration) parameters for the SDOF system 

with stiffness non-linearity subject to blast loading 

γ β Δt1 Δt2 
 

 ⁄   
 ⁄  0.1 0.01 

 

Table 5.34: HFTD parameters for the SDOF system with stiffness nonlinearity subject to 

blast loading 

Δt Tp N 
   

   

  

 
NT 

0.1 35.2 352 0.0284   9 

0.01 35.13 3513 0.0285   9 
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The comparison between the solutions of the Newmark and the HFTD methods for the displacement, 

velocity and acceleration responses is presented in Figs. 5.36 to 5.38. In addition, the nonlinear 

hysteretic relation between the stiffness force and the displacement is presented in Fig. 5.39. 

 

Figure 5.36: Cubic elasto-plastic stiffness force non-linearity. Displacement response for 

Newmark and HFTD solutions. 

 

 

Figure 5.37: Cubic elasto-plastic stiffness force non-linearity. Velocity response for 

Newmark and HFTD solutions. 
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Figure 5.38: Cubic elasto-plastic stiffness force non-linearity. Acceleration response for 

Newmark and HFTD solutions. 

 

 

Figure 5.39: Cubic elasto-plastic stiffness force non-linearity. Hysteretic stiffness force-

displacement relation for Newmark and HFTD solutions. 

 

From the analysis of Figs. 5.36 to 5.39, it is clear that using a time step equal to 0.1 s does not 

generate accurate results. The accuracy of the HFTD method is more affected by the time step size 

due to the relation that this parameter has with the range of frequencies included in the Fourier 

analysis. When the time step is large, the maximum excitation frequency included in the HFTD 

analysis is small, and as a consequence, the results obtained are less accurate. 

However, similarly than in the previous example, a sufficiently small time step (Δt = 0.01 s) ensures 

the high precision of the results obtained, not only for the HFTD method, but also for the time domain 

Newmark method. 
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Finally, Fig. 5.39 shows that the use of a time step equal to 0.01 s makes it possible to trace the cubic 

elastic stiffness force-displacement relation with good precision, which is not possible when using a 

larger time step. Furthermore, both Newmark and HFTD methods show that the last two time points 

calculated are located in the cubic elastic compression zone. This information is not identified with the 

larger time step. 

 

5.3.3.3 Cubic elasto-plastic non-linear stiffness and displacement dependent 

non-linear damping behavior subject to a blast loading 

The SDOF system is exactly the same of the previous example (Table 5.31) with the only difference 

that the damping force is neither linear nor exclusively proportional to velocity, but also displacement 

dependent, as expressed in Eq. (5.89). The initial tangent damping is defined by Eq. (5.90), whereas 

the value of the constant damping coefficient (c) is calculated with Eq. (5.15). The blast loading used 

in this example is also the same as the previous example (Fig. 5.34). 

      ̇    ̇            (5.89) 

   

  ̇
              (5.90) 

 

Eq. (5.90) shows that the initial tangent damping can be positive or negative. Both cases are 

calculated using Newmark and HFTD methods, but considering just one time step equal to 0.01 s, for 

which it has been shown in the previous examples that the more accurate results are obtained. The 

values of the parameters c and α for the definition of the damping force in Eq. (5.89) are shown in 

Table 5.35. 

Table 5.35: Parameters for the definition of the nonlinear damping force 

c α 

0.20 1 

 

On the other hand, the hysteretic nonlinear stiffness force-displacement relation [      ̇ ] of the 

system is the same of the previous example, which is defined by Eq. (5.87) and Fig. 5.35. The 

parameters used with the Newmark (average acceleration) method are shown in Table 5.36, whereas 

the HFTD parameters are shown in Table 5.37. 

Table 5.36: Newmark method (average acceleration) parameters for the SDOF system 

with stiffness and damping nonlinearity subject to blast loading 

γ β Δt 
 

 ⁄   
 ⁄  0.01 
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Table 5.37: HFTD parameters for the SDOF system with stiffness and damping 

nonlinearity subject to blast loading 

Δt Tp N 
   

   

  

 
NT 

0.01 35.13 3513 0.0285   9 

 

It is important to state that for both cases (negative and positive initial tangent damping) studied in 

this example, the parameters of both methods are the same. What is more, the pseudo linear 

equation in the frequency domain of the HFTD method (step 1.5.1 of Table 5.2) is always solved using 

a positive value of c, no matter the sign of the initial tangent damping given in Eq. (5.90). Therefore, 

the difference between one case and the other is concentrated in the expression for calculating the 

nonlinear internal damping force in step 1.7 of Table 5.2 (HFTD) and step 2.6 of Table 5.5 

(Newmark). 

For both cases (positive and negative initial tangent damping), the comparison between the Newmark 

time domain method and the HFTD method solutions is presented in Figs. 5.40 to 5.42, for the 

displacement, velocity and acceleration, respectively. As in the previous cases, it is shown that using 

an adequate time step size (Δt = 0.01) makes the HFTD method as precise as the Newmark method, 

even for this type of highly non-linear systems defined by Eqs. (5.87) and (5.89). 

Moreover, the nonlinear hysteretic relations stiffness force-displacement and damping force-velocity 

are presented in Figs. 5.43 and 5.44. Both figures confirm that the precision of the HFTD method is 

not affected by the type (stiffness or damping non-linearity) and degree (quadratic or cubic) of non-

linearity, neither by the sign of the initial tangent stiffness or damping. 

 

Figure 5.40: Cubic elasto-plastic stiffness force and displacement-dependent damping 

non-linearity. Displacement response for Newmark and HFTD solutions. 
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Figure 5.41: Cubic elasto-plastic stiffness force and displacement-dependent damping 

non-linearity. Velocity response for Newmark and HFTD solutions. 

 

 

Figure 5.42: Cubic elasto-plastic stiffness force and displacement-dependent damping 

non-linearity. Acceleration response for Newmark and HFTD solutions. 

 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

5. Single Degree of Freedom (SDOF) 
Dynamic Systems 

 

91 

 
 

 

Figure 5.43: Cubic elasto-plastic stiffness force and displacement-dependent damping 

non-linearity. Hysteretic stiffness force-displacement relation for Newmark and HFTD 

solutions. 

 

 

Figure 5.44: Cubic elasto-plastic stiffness force and displacement-dependent damping 

non-linearity. Hysteretic damping force-velocity relation for Newmark and HFTD 

solutions. 

 

 

5.4 Effect of non-linearity in the response of SDOF systems 

The example 8.15 of Humar (2002) was selected to show a comparison in the responses of a SDOF 

system with linear elastic, non-linear elasto-plastic stiffness and nonlinear displacement dependent 

damping behaviors. The linear response of the system is presented together with the non-linear 
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response (previously shown) for the displacement, velocity and acceleration in Figs. 5.45 to 5.47, 

respectively. In this section only the HFTD solutions are displayed, taking into account that in the 

previous section it was demonstrated that HFTD provides the same results as Newmark method. 

In general terms, Fig. 5.45 shows that non-linear behavior increases the magnitude of the 

displacement response. The effect of damping non-linearity described by Eq. (5.89) depends on the 

sign of the initial tangent damping. If it is positive, the damping force increases since the beginning 

and therefore the magnitude of the displacement response is reduced. On the other hand, if the initial 

damping is negative, the initial damping force has the same direction of the movement and the 

displacement magnitude is amplified. 

Figs. 5.46 and 5.47 show that for velocity and acceleration responses, the first positive peak value is 

higher for damping non-linearity with negative initial tangent damping. Nevertheless, once the effect 

of the initial damping is vanished, the linear elastic behavior provides the higher peaks. 

 

Figure 5.45: Effect of non-linear behavior. Displacement response for HFTD solution. 

 

 

Figure 5.46: Effect of non-linear behavior. Velocity response for HFTD solution. 
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Figure 5.47: Effect of non-linear behavior. Acceleration response for HFTD solution. 
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6. SIMPLIFIED ONE-DIMENSIONAL DYNAMIC MODELS FOR DAM-

RESERVOIR INTERACTION SYSTEMS 

 

6.1. Description of the one-dimensional system 

The dam-reservoir interaction system shown in Fig. 6.1 can be modeled in a very simplified way by 

just taking into account the one dimensional motion in the horizontal direction. 

 

Figure 6.1: Scheme of a dam-reservoir interaction system. 

 

The structural part of such a one-dimensional model can be represented by a one DOF mass-spring-

dashpot system which reflects its inertial, stiffness and damping properties. On the other hand, the 

fluid part can be modeled as a rod which longitudinal motion is described by the one-dimensional 

wave equation, the boundary conditions in both ends of the rod, and the physical and geometric 

properties of the fluid domain. 

This simplified one-dimensional model of a dam-reservoir interaction system excited by a ground 

acceleration loading is shown in Fig. 6.2. 

 

Figure 6.2: Simplified one-dimensional model for dam-reservoir interaction systems 
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The system shown in Fig. 6.2 is solved using two approaches. The first one is the displacement 

approach in the time domain (Section 6.2), whereas the second one is the hydrodynamic pressure in 

the frequency domain (Section 6.3), which follows the same formulation explained in Chapter 3 for 3D 

MDOF dam-reservoir interaction systems. 

In Section 6.4 some dam-reservoir interaction examples are modeled and analyzed with both 

approaches. Due to the fact that the accuracy of HFTD method for SDOF systems is proven in Chapter 

5, all the simulations developed in Section 6.4 are carried out using this method. 

 

 

6.2. Displacement approach: non-reflective boundary element 

In Fig. 6.2 the fluid part of the system is represented as a one-dimensional continuum medium (rod) 

attached to the structure. The movement of the structure interacts with this continuum medium 

generating waves that travel longitudinally through all its extension. 

One common assumption for the infinite extent boundary condition of the fluid continuum medium is 

a radiation or non-reflective condition (See Section 3.1.3.3), which absorb all the energy produced by 

the incident waves. This means that at the boundary location no reflective wave traveling in direction 

to the structure is generated. 

It has been demonstrated that this boundary condition for longitudinal waves can be equivalently 

represented by a dashpot (non-reflective boundary element) which viscous damping coefficient (   ) 

depends on the geometric and physical characteristics of the continuum medium, specifically, on the 

rod impedance ( ) (Metrikine and Vrouwenvelder, 2006). 

The expression to determine the damping coefficient of the non-reflective boundary element is given 

by Eq. (6.1). Therefore, using this approach, the interaction between the fluid and the structure can 

be reduced to the effect that the non-reflective boundary condition has in the structural response. 

This is achieved by replacing the fluid rod shown in Fig. 6.2 for the dashpot shown in Fig. 6.3, which 

damping coefficient is calculated as expressed in Eq. (6.1), in terms of the wave velocity ( ), the fluid 

density ( ) and the interaction surface area ( ). 

                       (6.1) 

 

Finally, the HFTD equation of motion of the SDOF model shown in Fig. 6.3 is given by Eq. (6.2) in 

terms of the relative displacement amplitude of the dam ( ̂ ), the ground displacement amplitude 

( ̂̈ ), the pseudo force ( ̂) containing the system’s non-linearity, and the non-reflective viscous 

damping (   ) due to the interaction with the reservoir1.  

[         (      )   ] ̂ ( )   (    
   

 
) ̂̈ ( )   ̂( )  (6.2) 

                                                           
1 It is important to notice that in Eq. (6.2) the damping force generated by the non-reflective boundary is 

proportional to the absolute velocity, whereas the damping force of the structure is proportional only to the 

velocity relative to the ground. 
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Figure 6.3: Simplified one-dimensional model. Displacement approach with radiation 

boundary. 

 

 

6.3. Pressure approach: Frequency dependent hydrodynamic pressure 

The one-dimensional wave equation governing the behavior of the continuum fluid medium shown in 

Fig. 6.2 is defined by Eq. (6.3) in terms of the hydrodynamic pressure. 

   

   
 

 

  
 ̈               (6.3) 

 

In order to solve this equation and find the analytic expression of the pressure wave propagation, two 

boundary conditions (one per each end of the rod) have to be defined. The first boundary condition is 

given by the interaction between the structural mass and the fluid, whereas the second one is given 

by the hypothesis of the reservoir length (finite or infinite) extension. 

The pressure wave equation approach to model the one-dimensional dam-reservoir interaction system 

is graphically described in Fig. 6.4. Depending on the assumption for the far extent boundary 

condition two different cases can be developed (Sections 6.3.1 and 6.3.2), whereas, if the fluid is 

assumed to be incompressible, a third case (Section 6.3.3) is obtained for this approach. 
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Figure 6.4: Simplified one-dimensional model. Hydrodynamic pressure approach. 

 

In any of the three particular cases the interaction between the fluid and the structure is reduced to a 

frequency dependent pressure or surface load [ ̂( )] applied to the structural mass-spring-dashpot 

system2, as it is shown in Fig. 6.5. For this reason, the one-dimensional model under the pressure 

approach is ideal to be solved with the HFTD method. 

 

Figure 6.5: Simplified one-dimensional model. Frequency dependent hydrodynamic 

pressure load. 

 

The HFTD equation of motion of the SDOF model shown in Fig. 6.5 is given by Eq. (6.4) in terms of 

the relative displacement amplitude of the dam ( ̂ ), the ground displacement amplitude ( ̂̈ ), the 

pseudo force ( ̂) containing the system’s non-linearity, and the hydrodynamic pressure load ( ̂) due 

to the interaction with the reservoir. 

[             ] ̂ ( )      ̂̈ ( )   ̂( )    ̂( )  (6.4) 

 

                                                           
2 This is the same approach used in Chapter 3 for MDOF systems. 
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The analytic expressions of  ̂( ) for each of the three particular cases previously mentioned are 

derived in the next sections. 

 

6.3.1. Case I: Compressible fluid with radiation boundary of infinite extent 

The first boundary condition of Case I is expressed by Eq. (6.5). This equation describes the fluid-

structure interaction at the interface (   ), being derived from Eq. (3.11) for one-dimensional 

motion. Eq. (6.5) denotes the horizontal force equilibrium between the fluid pressure gradient and the 

structure inertial force3 per volume.   

  

  
   ( ̈   ̈ )     on       (6.5) 

 

The second boundary condition is expressed by Eq. (6.6) which defines the radiation boundary at 

infinite extent (   ). This boundary condition, known as the Sommerfeld’s radiation condition, was 

previously presented in Eq. (3.21). 

  

  
 
 

 
 ̇     on       (6.6) 

 

The HFTD method solves in the frequency domain the system shown in Fig. 6.4. Consequently, it is 

convenient to express the excitation force (ground acceleration) and the response (relative 

displacement) of the system in their harmonic form, as shown in Eqs. (6.7) and (6.8), respectively. 

 ̈   ̂̈ ( ) 
        (6.7) 

    ̂ ( ) 
        (6.8) 

 

In the same way, the pressure wave generated in the fluid domain due to the excitation force in the 

structural domain is given by the summation of the incident and reflected harmonic waves. Eq. (6.9) 

expresses both harmonic waves in terms of their frequency dependent complex amplitudes and the 

wave velocity of propagation.  

         ̂ ( ) 
  (  

 

 
)
  ̂ ( ) 

  (  
 

 
)
    (6.9) 

 

The expression of the harmonic wave defined in Eq. (6.9) fulfills the wave equation of motion defined 

in Eq. (6.3). Therefore, in order to calculate the unknown amplitudes of the incident and reflected 

waves, it is required to use both boundary conditions previously defined. After replacing Eq. (6.9) into 

the infinite extent radiation boundary condition given by Eq. (6.6), the relations expressed in Eqs. 

(6.10) and (6.11) are obtained. 

                                                           
3 Notice that in Eq. (6.5) the total acceleration is expressed as the sum of ground and relative acceleration. 
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  ̂ ( ) 

  (  
  
 
)
      (6.10) 

          (6.11) 

 

From Eq. (6.10) it can be concluded that the amplitude of the reflected pressure is equal to zero 

[ ̂ ( )   ], which is expected due to the non-reflective nature of Sommerfeld’s radiation boundary 

condition. Therefore, the pressure wave is only composed by the incident wave, and Eq. (6.9) is 

reformulated as expressed in Eq. (6.12). 

      ̂ ( ) 
  (  

 

 
)
    (6.12) 

 

After replacing Eqs. (6.7), (6.8) and (6.12) into the second boundary condition at     given by Eq. 

(6.5), the expression of the incident pressure wave amplitude is obtained in Eq. (6.13). The frequency 

dependent amplitude of the hydrodynamic force [ ̂( )] is obtained in Eq. (6.14) after multiplying the 

pressure times the interaction surface area ( ). 

 ̂ ( )    
  

 
[ ̂̈ ( )   

  ̂ ( )]    (6.13) 

 ̂( )    
   

 
[ ̂̈ ( )   

  ̂ ( )]    (6.14) 

 

The HFTD equation for the particular Case I is obtained in Eq. (6.15) by replacing the hydrodynamic 

force amplitude given by Eq. (6.14) into Eq. (6.4). It is important to notice that Eq. (6.15) is identical 

to Eq. (6.2). This is because that, in spite of being derived by different formulations, both equations 

responds to the same hypothesis for the fluid domain, namely, compressible with radiation boundary 

of infinite extent. 

[         (      )   ] ̂ ( )   (    
   

 
) ̂̈ ( )   ̂( )  (6.15) 

 

Eq. (6.15) shows that for Case I the reservoir interaction with the structure provides additional 

damping and frequency dependent loading terms in the left and right-hand sides of the equation, 

respectively. 

 

6.3.2. Case II: Compressible fluid with zero pressure boundary of finite extent 

The zero pressure boundary condition of finite extent is defined in Eq. (6.16) for a reservoir with finite 

length equal to   . After replacing Eq. (6.9) into Eq. (6.16) the relation between the incident and 

reflected pressure amplitudes is obtained in Eq. (6.17). 

      on        (6.16) 
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 ( 
   
 
 )

     (6.17) 

 

The substitution of Eqs. (6.7) to (6.9) and Eq. (6.17) into the fluid-structure interface boundary 

condition, given by Eq. (6.5), provides the expression of the incident pressure amplitude in Eq. (6.18). 

The reflected pressure amplitude is obtained in Eq. (6.19) after replacing Eq. (6.17) into Eq. (6.18). 

 ̂ ( )    
  

 

 

   
 ( 

   
 
 )
[ ̂̈ ( )   

  ̂ ( )]    (6.18) 

 ̂ ( )   
  

 

 

   
 (
   
 
 )
[ ̂̈ ( )   

  ̂ ( )]    (6.19) 

 

The summation of both amplitudes given by Eq. (6.20) provides the total amplitude of the pressure 

wave acting at the fluid-structure interface. The frequency dependent hydrodynamic force amplitude 

[ ̂( )] is obtained in Eq. (6.21) after multiplying the pressure times the interaction surface area ( ) 

and simplify the Euler notation complex numbers division. 

 ̂( )    
  

 

   
 ( 

   
 
 )

   
 ( 

   
 
 )
[ ̂̈ ( )   

  ̂ ( )]    (6.20) 

 ̂( )  
   

 

   (
   
 
 )

     (
   
 
 )
[ ̂̈ ( )   

  ̂ ( )]    (6.21) 

 

The HFTD equation for the particular Case II is obtained in Eq. (6.22) by replacing the hydrodynamic 

force amplitude given by Eq. (6.21) into Eq. (6.4). Due to the finite extent reflexive boundary 

condition, the fluid interaction with the structure provides exclusively frequency dependent additional 

mass to the left and right-hand side of Eq. (6.22). 

[    (   
   

 

   (
   
 
 )

     (
   
 
 )
)        ]  ̂ ( )   (   

   

 

   (
   
 
 )

     (
   
 
 )
) ̂̈ ( )   ̂( ) 

           (6.22) 

 

6.3.3. Case III: Incompressible fluid 

For the incompressible fluid case (   ), Eq. (6.3) is transformed into Eq. (6.23). This means that 

the fluid is not anymore a medium where harmonic pressure waves propagate, but a vibrating body 

which amplitudes varies in space. The harmonic form of the hydrodynamic pressure for the 

incompressible fluid case is given by Eqs. (6.24) and (6.25).  

   

   
                 (6.23) 

   (   )                  (6.24) 
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 (   )                      (6.25) 

 

Due to the lack of fluid’s compressibility, radiation boundary condition of infinite extent is not possible 

to be considered. Therefore, Eqs. (6.24) and (6.25) are introduced in the boundary condition of finite 

extent at     , given by Eq. (6.16). The relation between the constants    and    is obtained in 

Eq. (6.26). 

 
  

  
                  (6.26) 

 

Replacing Eqs. (6.7), (6.8), (6.24) and (6.25) into the fluid-structure interface boundary condition 

given by Eq. (6.5), and then using the relation of Eq. (6.26), provide the expressions of    and   , 

given by Eqs. (6.27) and (6.28), respectively. 

     [ ̂̈ ( )   
  ̂ ( )]    (6.27) 

      [ ̂̈ ( )   
  ̂ ( )]    (6.28) 

After replacing Eqs. (6.27) and (6.28) into Eq. (6.25), the space and frequency dependent amplitude 

of the hydrodynamic pressure is obtained in Eq. (6.29). However, it is of interest to know what is the 

pressure amplitude at    , where the mass of the structure is located. This pressure acting in the 

fluid-structure interface [ ̂( )], as well as its associated force [ ̂( )], is defined in Eqs. (6.30) and 

(6.31), respectively. 

 (   )    (    )[ ̂̈ ( )   
  ̂ ( )]            (6.29) 

 ̂( )     [ ̂̈ ( )   
  ̂ ( )]             (6.30) 

 ̂( )      [ ̂̈ ( )   
  ̂ ( )]             (6.31) 

 

The HFTD equation for the particular Case III is obtained in Eq. (6.32) by replacing the hydrodynamic 

force given by Eq. (6.31) into Eq. (6.4). Eq. (6.32) shows that the hydrodynamic force for the 

incompressible fluid case is an additional inertial force provided by the mass of the fluid body (    ). 

This means that under this assumption, the mass of the fluid behaves like a rigid body oscillating 

attached to the structure and introducing no damping to the system, like in the previous particular 

cases. 

[    (       )        ] ̂ ( )   (       ) ̂̈ ( )   ̂( )  (6.32) 
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6.4. HFTD method numerical examples 

A modified version of the HFTD method programmed in MATLAB (The Mathworks, Inc., 2012)4 for the 

solution of the SDOF system examples developed in Chapter 5 is used in this section to obtain the 

response of the simplified dam-reservoir interaction system. 

 

6.4.1. Description of the simplified dam-reservoir interaction system 

The numerical data describing the characteristics of the one-dimensional dam model shown in Fig. 6.2 

is given in Table 6.1. The dam’s damping coefficient (  ) is calculated with Eq. (6.33), the reservoir 

infinite extent non-reflective damping coefficient (   ) is calculated with Eq. (6.34), the time that the 

incident and reflected pressure wave takes to reach the back of the reservoir and go back to the dam-

reservoir interface (
   

 
) is calculated with Eq. (6.35), and the mass of water contained in the reservoir 

(    ) is calculated in Eq. (6.36).  

The ground acceleration loading applied to the base of the dam corresponds to the first 4.5 s of the 

“El Centro” earthquake North-South component shown in Fig. 6.6. 

Table 6.1: Numerical data of the one-dimensional dam-reservoir system 

Dam Reservoir 

                  

(N/m)  (kg) (m) (m) (kg/m3) (m/s) 

6.6 x 109 0.05 3.6 x 107 2500 200 1000 1440 

 

     √            
          (6.33) 

                
           (6.34) 

   

 
               (6.35) 

                  
         (6.36) 

 

Figure 6.6: El Centro N-S earthquake ground acceleration. 

                                                           
4 The MATLAB routines can be found in Appendix B. 
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6.4.2. Dam’s linear behavior: Influence of dam-reservoir interaction frequency 

dependent properties 

The first numerical examples correspond to a linear-elastic behavior of the dam, which is generally the 

case for frequency-dependent systems. The information given in Table 6.1 and Eqs. (6.33) to (6.36) is 

used by the HFTD method to solve the pseudo-linear equations defined in Eqs. (6.15), (6.22) and 

(6.32) for the cases I, II and III, respectively. Additionally, the corresponding SDOF system without 

taking into account the hydrodynamic force [ ( )] is also solved as a fourth case which simulates the 

analysis of a dam with empty reservoir (“dry dam”). 

Figs. 6.7 to 6.9 show the time history responses for the displacement, velocity and acceleration, 

respectively, relative to the base motion. Fig 6.10 presents the variation in time of the base reaction 

force, defined as the summation of the dam’s stiffness and damping forces (     ). 

Considering that these one-dimensional models constitute a substantial simplification of reality, it is 

not possible to obtain general conclusions of the linear behavior of dam-reservoir interaction systems 

from Figs. 6.7 to 6.10. However, this information is very illustrating to have an insight of the influence 

that frequency dependent properties have in the response of dynamic equations of motion like Eqs. 

(6.15), (6.22) and (6.32). 

As explained in Section 6.2 and demonstrated in Section 6.3.1, the radiation boundary of infinite 

extent (Case I) acts like a dashpot in the system. For that reason, the peak values of all the responses 

of Case I are smaller than the corresponding peak values of the dry dam case. For this particular 

example, the magnitude of the non-reflective dashpot coefficient [Eq. (6.34)] is so high that one the 

earthquake time is finished (4.5 s), the system goes back to the equilibrium position without 

oscillations and extremely slow. 

The incompressible fluid case (Case III) presents very high peaks for displacement and base reaction 

responses. The reason for that is the higher flexibility of the system compared to the dry dam due to 

the additional mass provided by the fluid [Eq. (6.32)]. This produces an increment of the length of the 

natural vibration period of the system. 

One interesting feature of the zero pressure reflexive boundary (case II) is that for all the responses 

presented its peak values occur after the earthquake loading has finished. This fact confirms the 

reflective characteristic of this boundary condition which does not takes out but introduces energy to 

the system. This is the only case which responses do not damp out in time when the loading is not 

present anymore. 

These observations based on the response of frequency dependent SDOF systems (Figs. 6.7 to 6.10) 

provide a general overview of the importance that the reservoir compressibility and boundary 

conditions assumptions can have in the seismic analysis of dams. 

In the next section the effect that non-linear behavior has in this type of frequency dependent 

systems is assessed. 
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Figure 6.7: Dam-reservoir interaction SDOF systems. Displacement response for linear-

elastic behavior. 

 

 

Figure 6.8: Dam-reservoir interaction SDOF systems. Velocity response for linear-elastic 

behavior. 
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Figure 6.9: Dam-reservoir interaction SDOF systems. Acceleration response for linear-

elastic behavior. 

 

 

Figure 6.10: Dam-reservoir interaction SDOF systems. Base reaction response for linear-

elastic behavior. 

 

6.4.3. Dam’s cracking non-linearity: Stiffness softening 

The dam’s concrete cracking non-linearity is represented by the softening cubic relation given by Eq. 

(6.37) and schematically shown in Fig. 6.11, between the stiffness force (  ) and the relative 

displacement (  ). 

  (  )           
      (6.37) 
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Figure 6.11: Cubic stiffness softening force-displacement relationship for concrete 

cracking non-linear behavior 

 

As explained before, Cases I and II are frequency dependent systems which take into account the 

reservoir compressibility. Therefore, it is of interest to study the effect of the non-linear behavior in 

these two frequency dependent systems. Additionally, the non-linear response of the “dry dam” case 

(no frequency-dependence) is also presented as a reference. 

For the three cases the initial tangent stiffness is assumed to be equal to the linear elastic stiffness of 

the dam (  ), as expressed in Eq. (6.38). However, the values of the cubic coefficient (  ) in Eq. 

(6.37) are assigned for each case as shown in Table 6.2. 

   

   
( )              

          (6.38) 

 

Table 6.2: Values assigned to the cubic coefficient    of Eq. (6.37) for each analysis case 

Dry dam 
Compressible water with radiation 

boundary of infinite extent   
(Case I) 

Compressible water with 
reflective boundary of finite 

extent (Case II) 

2.40 x 1012 2.40 x 1012 1.05 x 1012 

 

The previous analysis of Figs. 6.7 to 6.10 demonstrates that the reflective boundary condition (Case 

II) generates higher linear-elastic responses, and therefore a stiffer and more resistant non-linear 

behavior is required for this particular system. This is the reason why a smaller value of    is assigned 

to this case in Table 6.2. 

Finally, the pseudo force in the time domain for the cubic stiffness softening non-linearity is calculated 

using Eq. (6.39). Then, the non-linear behavior is completely defined and the HFTD method can be 

applied in the solution of the SDOF dam-reservoir interaction models. 

 ( )         (  )     (6.39) 
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First, the nonlinear behavior of the dry dam case is studied as a reference of a non frequency 

dependent system. Figs. 6.12 and 6.13 present the effect of non-linear behavior in the displacement 

and stiffness internal force of the SDOF system, respectively. 

 

Figure 6.12: “Dry dam” case. Effect of non-linearity in the displacement response. 

 

 

Figure 6.13: “Dry dam” case. Effect of non-linearity in the stiffness force response. 

 

Fig 6.12 shows that the major effects of non-linear behavior occur between 2 s and 4 s. As expected, 

the system including softening non-linearity generates the higher displacement peak value after the 

time 2 s. Fig 6.13 shows that this is the most far-away point located in the plastic regime (horizontal 

branch), where the displacement of the system increases with no additional resisting stiffness force. 

After the time 4.5 s the ground acceleration loading ends and the system comes back in free vibration 

to the linear elastic regime, where both linear and non-linear responses damp-out with a small phase 

and the same magnitude. 
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Second, the nonlinear behavior of the frequency dependent Case I, representing a dam-reservoir 

interaction system with a radiation boundary of infinite extent, is studied. Figs. 6.14 and 6.15 present 

the effect of non-linear behavior in the displacement and stiffness internal force, respectively, of this 

SDOF frequency dependent system. 

 

Figure 6.14: Dam-reservoir interaction with infinite extent radiation boundary (Case I). 

Effect of non-linearity in the displacement response. 

 

 

Figure 6.15: Dam-reservoir interaction with infinite extent radiation boundary (Case I). 

Effect of non-linearity in the stiffness force response. 

 

Due to the additional damping introduced to the system by the infinite extent boundary condition [Eq. 

(6.15)], the influence of non-linear behavior is less important in this case than in the dry dam case. 

Certainly, Fig. 6.14 shows that there are increments of the displacement response peak values around 

time 2 s, however these are not as significant as in Fig. 6.12. The same can be concluded from Fig. 
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6.15 which shows that the displacements produced are not large enough to reach the horizontal 

yielding branch and develop a more important non-linear behavior. 

Finally, the nonlinear behavior of the frequency dependent Case II, representing a dam-reservoir 

interaction system with a reflective boundary of finite extent, is studied in Figs. 6.16 and 6.17 which 

present the effect of non-linear behavior in the displacement and stiffness internal force, respectively. 

 

Figure 6.16: Dam-reservoir interaction with finite extent reflective boundary (Case II). 

Effect of non-linearity in the displacement response. 

 

 

Figure 6.17: Dam-reservoir interaction with finite extent reflective boundary (Case II). 

Effect of non-linearity in the stiffness force response. 

 

In this case the non-linear behavior is more important than in the radiation boundary case. As 

explained before, the reflective boundary condition introduces energy in the system generating large 

displacements even after the loading duration. Fig. 6.16 shows that all the peak values of the 

displacement are considerable higher for the non-linear behavior. It is important to notice that the 
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yielding branch of the stiffness force is reached only after time 5 s where the ground acceleration 

loading is not present anymore. 

One final observation valid for the three cases presented is that for this type of loading the non-linear 

behavior of the system influences only the magnitude but not the profile of the time history response. 

Figs. 6.12, 6.14 and 6.16 prove that this is true no matter if the system is frequency dependent or 

not. 
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7. IMPLEMENTATION OF THE HFTD METHOD IN DIANA FOR THE 

SEISMIC ANALYSIS OF FOUNDATION-DAM-RESERVOIR 

INTERACTION PROBLEMS 

 

7.1. Definition of foundation-dam-reservoir interaction models in DIANA1 

 

7.1.1. Flow finite elements 

Flow finite elements are used in DIANA for solving all types of convection-diffusion problems. For this 

particular case, general flow elements are used to model the water of the reservoir. 

The basic variable of a general flow element are scalar potentials in their nodes, which for fluid-

structure interaction models are pressure potentials (p). The derivative of these pressure potentials in 

each direction of analysis produces fluxes (qx, qy, qz) which are located in the integration points. 

Different types of 2D, 3D and axisymmetric flow elements can be defined depending on the 

characteristics of the model. For each type of fluid element a particular boundary element should be 

assigned to the fluid domain in order to define the boundary conditions. 

Quadrilateral flow elements Q4HT and CQ8HT shown in Fig. 7.1 are presented and used in the 

modeling of two-dimensional dam-reservoir interaction modeling. The pressure field inside the flow 

presents a linear variation for Q4HT and quadratic for CQ8HT. 

 

Figure 7.1: DIANA 2D flow finite elements.2 

 

For each type of 2D flow element a specific flow boundary element should be attached in the edges of 

the fluid domain. A particular flux (or pressure derivative) in the direction perpendicular to the 

reservoir edge is assigned to the flow boundary element, depending on the type of boundary 

condition required to be modeled. As explained in Chapter 3, for the dam-reservoir interaction 

problem these boundary conditions are bottom absorption, radiation boundary of infinite extent and 

surface waves (See Section 3.1.3). 

                                                           
1 Based on TNO DIANA (2011). 
2 Figures taken from TNO DIANA (2011). 
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Straight and curved 2D flow boundary elements, B2HT and BC3HT, respectively, are shown in Fig. 

7.2. The flux qy perpendicular to the boundary presents a linear variation along its length for B2HT 

and a quadratic variation for BC3HT.  

 

Figure 7.2: DIANA 2D boundary flow finite elements.3 

 

Similarly than for the two-dimensional models, Fig. 7.3 shows two types of flow finite elements for 

three-dimensional models, namely HX8HT and CHX20H, respectively. BQ4HT and BCQ8HT are their 

corresponding flow boundary elements which are shown in Fig. 7.4. 

 

Figure 7.3: DIANA 3D flow finite elements.4 

 

 

                                                           
3 Figures taken from TNO DIANA (2011). 
4 Figures taken from TNO DIANA (2011). 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

7. Implementation of the HFTD Method in 
DIANA for the Seismic Analysis of Foundation-Dam-Reservoir Interaction Problems 

 

115 

 

 

Figure 7.4: DIANA 3D boundary flow finite elements.5 

 

Two material parameters should be defined for the flow elements in a fluid-structure interaction 

model. The first one is the conductivity (cF) of the fluid which in this type of analysis is a “dummy” 

parameter which definition allows the calculation of the fluid domain conductivity matrix   . If in 

addition the compressible effects are desired to be taken into account, then the sonic speed (c) should 

be defined for the compressibility matrix    to be implemented (See Section 3.1.5). 

 

7.1.2. Fluid-structure interface 

Fluid-structure interface elements are located in the common contact surface (or line) between the 

fluid and the structure domain. This element couples both domains by ensuring the equilibrium and 

continuity between the fluid pressure and the solid displacements normal to the interface. 

In DIANA there are two types of fluid-structure interface elements: 1) Line interface elements for 2D 

or axisymmetric models; 2) Plane interface elements for 3D models. Schematic examples of both 

types of fluid-structure interface connecting structural and flow elements are shown in Fig. 7.5. 

 

Figure 7.5: DIANA fluid-structure interface elements.6 

                                                           
5 Figures taken from TNO DIANA (2011). 
6 Figures taken from TNO DIANA (2011). 
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One side of the fluid-structure interface elements are defined in terms of fluid pressure variables in a 

direction perpendicular to the interaction surface, whereas the other side is defined in terms of 

structure displacements variables in the three (or two) dimensions of analysis. For example, the 

hybrid variables definition of the fluid-structure interface elements is shown in Fig. 7.6 for the line 

interface BL4S2 and the plane interface BQ12S4. 

 

Figure 7.6: DIANA fluid-structure interface elements variables.7 

 

One material parameter is required by DIANA for the definition of a fluid-structure interface property, 

which is the fluid density ( ). 

 

7.1.3. Reservoir boundary conditions 

Specific material parameters should be assigned to the DIANA boundary flow elements (Section 7.1.1) 

in order to model the different types of reservoir boundary conditions explained in detail in Section 

3.1.3. 

Two types of boundary conditions were used in the present work: bottom absorption boundary and 

radiation boundary of infinite extent. The two material parameters required to be assigned to the 

boundary flow elements in order to model these two types of boundary conditions are the sonic speed 

(c) and the wave reflection coefficient ( ), which value varies between -1 (fully absorptive) and 1 

(fully reflective). For the infinite extent radiation boundary, the wave reflection coefficient is always 

equal to zero (   ). 

                                                           
7 Figures taken from TNO DIANA (2011). 
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The definition of these parameters is used in the calculation of the radiation matrix    (See Section 

3.1.5). 

 

7.1.4. Foundation modeling 

The soil which acts as the dam foundation is modeled with the same type of structural finite elements 

used to model the dam. Generally, plain strain elements are suitable for 2D models, whereas solid 

elements for 3D models. 

In DIANA the foundation elements can be directly connected to the base of the dam if no base sliding 

analysis is considered. The flexibility of the foundation is taken into account by defining its linear 

elastic behavior parameters (f.e.: Young modulus, poison ratio), which values depend on the type of 

foundation (f.e.: sand, clay, rock). 

The mass of the foundation is not necessarily taken into account. In structural dynamics the massless 

foundation is a well-established approach in which the stiffness of the foundation is included in the 

analysis but keeping out its mass. In this way, the foundation only plays the role of a boundary 

condition for the structure, and not a vibrating mass inside the model. 

In DIANA the radiation far field boundary of the soil can be modeled using boundary surface 

elements. This is a special element to model the free field medium in dynamic analysis8. Another way 

to do this is by means of viscous boundaries consisting on concentrated dashpots located in the 

foundation edges. The damping coefficients are calculated for both directions, normal and tangential 

to the boundary surface. 

In the present work the radiation far field boundary of the foundation is not taken into account. In 

turn the size of the soil is considerably extended in such a way that the soil boundary reflective effects 

have no influence in the dam’s vibration. 

 

7.1.5. Dam’s concrete cracking non-linear behavior 

The total strain rotating crack model was used in DIANA to model the non-linear concrete cracking 

behavior of the dam. Under this approach both the tensile and compressive behavior of the concrete 

is defined by means of a stress-strain curve which is used for determining the non-linear internal force 

vector, and therefore the pseudo force vector required by the HFTD method (See Chapter 4), for each 

time step. 

For the concrete tensile behavior different types of predefined tension softening functions shown in 

Fig. 7.7 can be chosen in DIANA. Similarly, for the concrete crushing behavior the predefined 

compression functions shown in Fig. 7.8 are available. Depending on the type of function, different 

parameters are required to be defined9. 

                                                           
8 For detailed information about boundary surface elements see TNO DIANA (2011). 
9 For detailed information about total strain crack models see TNO DIANA (2011). 
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Figure 7.7: DIANA predefined tension softening functions for total strain crack model.10 

 

 

Figure 7.8: DIANA predefined compression functions for total strain crack model.11 

 

 

7.2. HFTD implementation in DIANA 

Hybrid Frequency-Time Domain method was programmed, codified and implement in DIANA 

based on the theoretical background of Chapter 4. The flowcharts of the HFTD implementation in 

DIANA are reproduced in Appendix A. In addition, the command file for the execution of the HFTD 

analysis in DIANA is shown in Appendix C. 

 

                                                           
10 Figures taken from TNO DIANA (2011). 
11 Figures taken from TNO DIANA (2011). 
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7.3. Case study: 2D foundation-dam-reservoir interaction model 

 

7.3.1. Case study description 

The finite element mesh of the 2D case study is shown in Fig. 7.9. The model is composed of three 

parts which are the dam (cyan), the reservoir (yellow) and the foundation (green). The gravity dam’s 

height is 100 m, whereas its base length is 80 m. The reservoir’s length is considered to be 390 m, 

whereas the length and depth of the soil foundation block are 720 m and 200 m, respectively. 

 

Figure 7.9: DIANA model of the 2D foundation-dam-reservoir interaction case study. 

 

The types of finite elements used for each component of the model are indicated in Table 7.1. The 

dam and foundation elements are the typical quadrilateral (Q8EPS) and triangular (T6EPS) plane 

strain elements with linear interpolation. The characteristics of the reservoir flow and fluid-structure 

interface elements are explained in Section 7.1. 

The values of the linear and non-linear material parameters used in this case study for the dam, the 

foundation and the reservoir (fluid domain and boundary parameters) are listed in Tables 7.2, 7.3 and 

7.4, respectively. 

Table 7.1: Type of DIANA finite elements used for the case study modeling  

Component Type Element 

Dam Plane strain 2D 
Q8EPS 

T6EPS 

Foundation Plane strain 2D 
Q8EPS 

T6EPS 

Reservoir General flow 2D Q4HT 

Reservoir boundaries Flow boundary 2D B2HT 

Reservoir-dam interface Fluid-structure interface 1D BL4S2 
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Table 7.2: Material parameters for the concrete dam 

Parameter DIANA variable name Value / Type Units 

Modulus of elasticity YOUNG 2.7 x 1010 N / m2 

Poison modulus POISON 1.67 x 10-1 - 

Density DENSIT 2.4 x 103 kg / m3 

Rayleigh damping RAYLEI 
8.19456 x 10-1 - 

1.38396 x 10-3 - 

Softening tension curve TENCRV LINEAR - 

Tensile strength TENSTR 3.8 x 106 N / m2 

Ultimate tensile strain EPSULT 5.0 x 10-4 - 

Compression curve COMCRV CONSTA - 

Compressive strength COMSTR 3.5 x 107 N / m2 

 

Table 7.3: Material parameters for the foundation soil 

Parameter DIANA variable name Value / Type Units 

Modulus of elasticity YOUNG 2.5 x 1010 N / m2 

Poison modulus POISON 2.0 x 10-1 - 

Density DENSIT 0 kg / m3 

 

Table 7.4: Material parameters for the reservoir fluid 

Parameter DIANA variable name Value / Type Units 

Conductivity CONDUC 2.5 x 1010 N / m2 

Sonic speed CSOUND 1.44 x 103 m / s 

Density DENSIT 1.0 x 103 kg / m3 

Wave reflection coefficient for 
infinite extent boundary 

ALPHAB 0 - 

Wave reflection coefficient for 
bottom absorption boundary 

ALPHAB 5.0 x 10-1 - 

 

Finally, the foundation-dam-reservoir interaction system is subject to a base acceleration loading in 

the horizontal direction which is applied in the supports located in the foundation edges (See Fig. 7.9). 
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For transient and HFTD analysis the El Centro earthquake ground acceleration signal shown in Fig. 

7.10 is defined as the loading input. On the other hand, for direct frequency analysis the 

corresponding ground acceleration spectrum shown in Fig. 7.11 is taken into account. 

 

Figure 7.10: El Centro N-S earthquake ground acceleration signal. 

 

 

Figure 7.11: El Centro N-S earthquake ground acceleration spectrum. 

 

7.3.2. Eigen-analysis 

The eigen-analysis of the dam was performed following the two procedures presented and explained 

in Section 3.1.9. The first procedure, known as “dry dam” eigen-analysis, does not take into account 

the influence of the reservoir in the calculations, and therefore, it solves the free vibration equation of 

motion of the structures given by Eq. (3.73) in terms of the mass (  ) and stiffness (  ) matrices. 

   ̈            (3.73) 
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On the other hand, the second procedure, known as “wet dam” eigen-analysis, does take into account 

the influence of the fluid reservoir but assuming that it is incompressible and therefore, without 

radiation but reflective boundary conditions. In this approach the reservoir introduces in the free 

vibration equation of motion, given by Eq. (3.75), a fluid added mass term ( ̃ ) defined by Eq. (3.72) 

(See Chapter 3). 

 ̃     
   

        (3.72) 

(    ̃ ) ̈           (3.75) 

 

The dry dam eigen-frequencies and effective mass participation in both directions of analysis are 

presented in Fig. 7.12 for the first 15 modes of vibration. The fundamental vibration frequency for the 

dam without reservoir interaction is 3.33 Hz. Besides, it can be noticed that the first modes of 

vibration concentrate more than 90% of the vibration mass in both directions, being the first and third 

modes the most important for X and Y direction, respectively. 

 

Figure 7.12: Eigen-analysis results for the empty reservoir or dry dam case 

 

The total mass of the dam is equal to 9.6 x 106 kg. When the wet dam eigen-analysis is performed, 

the calculated fluid added mass is equal to 5.42 x 106, which means a mass increment of more than 
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50%. This considerable additional mass makes the system more flexible and therefore the eigen-

frequencies obtained are smaller than in the dry dam case. 

Indeed, this is confirmed by the fundamental eigen-frequency for the wet dam case shown in Fig. 

7.13, which is reduced to 2.62 Hz. However, even since the first mode, the effective mass 

participating in the X-direction is higher than 115%, which means that the fluid added mass actively 

contributes in the dam’s horizontal vibration. This is not the case for the vertical vibration (Y-direction) 

where the fluid mass has no participation at all, due to the vertical orientation of the dam-reservoir 

interface. 

 

Figure 7.13: Eigen-analysis results for the full reservoir or wet dam case 

 

The remarkable influence of the fluid added mass in the eigen-frequency values is not replicated in 

the mode shapes. Fig. 7.14 shows the modes shapes of the 1st, 2nd and 4th vibration modes in the X-

direction. It can be noticed that the first mode shape is not influenced by the added fluid mass, no 

matter that the eigen-frequency experiences a considerable reduction. Small magnitude differences 

can be appreciated in the second and fourth mode shapes.  

It is due to these negligible differences that the HFTD method uses the mode shapes of the empty 

reservoir eigen-analysis for the mode-superposition method. 
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Figure 7.14: First three mode shapes in the X-direction for empty (eigen-dry) and full 

(eigen-wet) reservoir cases 

 

Finally, the influence of the contribution of the initial conditions in the geometric stiffness matrix, and 

therefore in the eigen-analysis results, was investigated. For this purpose, the gravity load of the dam 

and the hydrostatic pressure applied in the dam’s face and in the soil below the reservoir were 

included as initial conditions. 
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As shown in Figs. 7.15 and 7.16 for the dry and wet dam cases, respectively, the influence of the 

initial loading conditions in the stiffness matrix of the structure is not significant. For this reason, the 

eigen-analysis results presented in Figs. 7.15 and 7.16 are almost the same as those presented in 

Figs. 7.12 and 7.13. 

 

Figure 7.15: Eigen-analysis results for the empty reservoir or dry dam case including 

initial loading conditions 
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Figure 7.16: Eigen-analysis results for the full reservoir or wet dam case including initial 

loading conditions 

 

7.3.3. Frequency domain linear elastic analysis 

With the objective of evaluate the effect of the frequency dependent properties introduced to the 

dam-reservoir interaction system by fluid compressibility and reservoir boundary conditions, like 

infinite radiation extent and bottom absorption, a linear elastic frequency domain analysis using the 

Direct Method12 is performed for the following five cases which are illustrated in Fig. 7.17. 

 Case I: Incompressible fluid. 

 Case II: Compressible fluid with reflective reservoir boundaries. 

 Case III: Compressible fluid with bottom absorption boundary. 

 Case IV: Compressible fluid with infinite extent radiation boundary. 

 Case V: Compressible fluid with bottom absorption and infinite extent radiation boundaries. 

 

The ground acceleration spectrum shown in Fig. 7.11 is applied to the five systems shown Fig. 7.17, 

and as a consequence, the Amplitude-Frequency response plots given by Figs. 7.18 to 7.21 give an 

                                                           
12 For theoretical background of the frequency domain analysis see Chapter 2. 
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illustrative insight of the effect that compressibility and reservoir boundary conditions have in the 

dynamic behavior of dam-reservoir interaction systems.   

 

Figure 7.17: Direct frequency linear elastic analysis cases. 

 

Figs. 18 and 19 show the relative Displacement Amplitude-Frequency plot, in the X and Y directions 

respectively, of the dam’s crest node (higher point of the dam). 

 

Figure 7.18: X-direction Displacement Amplitude-Frequency plot of the dam’s crest.  
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Figure 7.19: Y-direction Displacement Amplitude-Frequency plot of the dam’s crest. 

 

For all the case studies the higher amplitudes are obtained around the fundamental vibration 

frequency of the wet-dam system equal to 2.62 Hz (See Figs. 7.13 and 7.16). 

Comparing the cases C1 and C2 it can be concluded that assuming that the fluid of the reservoir is 

compressible produces an increment of the displacement amplitudes. The opposite occurs in case C3 

for which a bottom absorption boundary condition is introduced. This is due to the additional damping 

introduced to the system by the bottom absorption (See Chapter 3). 

On the other hand, in this case study the introduction of infinite extent radiation boundary condition 

(cases C4 and C5) does not influences decisively the magnitude of the responses around the 

fundamental frequency of vibration. Only for the higher vibration frequencies around 6 Hz the 

introduction of the infinite extent radiation boundary damps out the peaks of Cases C1 and C2. The 

main reason for the negligible contribution of the infinite extent boundary in this case study is the 

long extension of the reservoir, defined in the model and equal to 390 m. 

Finally, Figs. 20 and 21 present the relative velocity and acceleration, respectively, of the dam’s crest 

node in the X-direction. The same observations made for the displacement response are applicable to 

both velocity and acceleration amplitudes, with the only difference that the importance of 

compressibility and infinite extent radiation boundary is considerably higher for acceleration (Fig. 21) 

than for any other response. 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0 1 2 3 4 5 6 7 8 9 10 11

D
is

p
la

ce
m

e
n

t 
A

m
p

lit
u

d
e 

Y
-d

ir
ec

ti
o

n
 

(m
) 

Frequency (1/s) 

C1_incomp

C2_compres

C3_compres_botabs

C4_compres_infext

C5_compres_botabs_infext



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

7. Implementation of the HFTD Method in 
DIANA for the Seismic Analysis of Foundation-Dam-Reservoir Interaction Problems 

 

129 

 

 

Figure 7.20: X-direction Velocity Amplitude-Frequency plot of the dam’s crest. 

 

 

Figure 7.21: X-direction Acceleration Amplitude-Frequency plot of the dam’s crest. 

 

7.3.4. Transient analysis: Linear and non-linear seismic behavior 

Transient linear and non-linear analysis of the 2D foundation-dam-reservoir interaction system is 

performed for the following three cases which are described in Fig. 7.22. 

 Case I: Empty reservoir (influence fluid-structure interaction not considered). 

 Case II: Incompressible fluid (no frequency dependent properties) 

 Case III: Compressible fluid with reflective reservoir boundaries. 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11

V
el

o
ci

ty
 A

m
p

lit
u

d
e 

X
-d

ir
ec

ti
o

n
 (

m
/s

) 

Frequency (1/s) 

C1_incomp

C2_compres

C3_compres_botabs

C4_compres_infext

C5_compres_botabs_infext

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10 11

A
cc

el
er

at
io

n
 A

m
p

lit
u

d
e

 X
-d

ir
e

ct
io

n
 

(m
/s

2
) 

Frequency (1/s) 

C1_incomp

C2_compres

C3_compres_botabs

C4_compres_infext

C5_compres_botabs_infext



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

7. Implementation of the HFTD Method in 
DIANA for the Seismic Analysis of Foundation-Dam-Reservoir Interaction Problems 

 

130 

 

 

Figure 7.22: Transient linear and non-linear analysis cases. 

 

The ground acceleration loading shown in Fig. 7.10 is applied to the three case studies and their 

responses are determined using the Newmark (average acceleration) and HFTD methods. 

The type of cracking non-linearity, considered exclusively for the dam’s concrete, is described in 

Section 7.1.5, whereas the values of the concrete non-linear parameters are presented in Table 7.2. 

 

7.3.4.1. Case I: Empty reservoir 

A comparison of the structural concrete cracking non-linear responses obtained in the dam’s crest 

employing both Newmark and HFTD methods is presented in Figs. 7.23 to 7.25 for the relative 

displacement, velocity and acceleration responses in the X-direction, respectively. 

The empty reservoir is an ideal case in which the influence of the dynamic interaction of the reservoir 

with the dam is neglected. For this reason, the magnitudes of the responses obtained are small and 

the system barely reaches the non-linear behavior. Actually, most of the behavior shown in Figs. 7.23 

to 7.25 corresponds to a linear elastic behavior. 

The HFTD and Newmark results coincide very well until the time 2.5 s. After this time step, the slight 

cracking of concrete begins and the difference between both responses starts to be noticeable. The 

reason for this difference other is that, in spite of being small in both methods, the extension and 

magnitude of concrete cracking in Newmark is greater than in HFTD. 

Fig. 7.26 shows the cracking pattern of HFTD and Newmark methods for the last time step of the 

simulation equal to 4.49 s. It can be noticed that as expected the small cracking zone is located for 

both methods in the foot of the dam in the side of the reservoir. However, Newmark solution develops 

a more extended cracking zone for which the cracking strains are also higher in comparison with the 
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HFTD solution. An explanation for the inherent different non-linear performance of both methods is 

developed in the full reservoir with incompressible fluid case (Section 7.3.4.2). 

 

Figure 7.23: Empty reservoir concrete cracking non-linear response. Dam’s crest 

displacement X-direction. 

 

 

Figure 7.24: Empty reservoir concrete cracking non-linear response. Dam’s crest velocity 

X-direction. 
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Figure 7.25: Empty reservoir concrete cracking non-linear response. Dam’s crest 

acceleration X-direction. 

 

 

Figure 7.26: Empty reservoir concrete cracking non-linear response. Cracking pattern at 

time 4.49 s. 

 

7.3.4.2. Case II: Full reservoir with incompressible fluid 

When the reservoir interaction assuming incompressible fluid is considered, the responses of the dam 

become greater13. First a comparison of the structural linear elastic responses obtained in the dam’s 

                                                           
13 The influence of the reservoir interaction in the response of the dam was analytically presented for the one-
dimensional models of Chapter 6. 
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crest employing both Newmark and HFTD methods is presented in Figs. 7.27 to 7.29 for the relative 

displacement, velocity and acceleration in the X-direction, respectively. 

 

Figure 7.27: Incompressible fluid linear elastic response. Dam’s crest displacement X-

direction. 

 

 

Figure 7.28: Incompressible fluid linear elastic response. Dam’s crest velocity X-direction. 
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Figure 7.29: Incompressible fluid linear elastic response. Dam’s crest acceleration X-

direction. 

 

Figs. 7.27 to 7.29 show a very good agreement in the linear elastic solutions obtained with both 

methods. However, small differences are appreciated in the peak values since time 3.5 s thereafter, 

especially for the acceleration response. 

As it is explained in the following lines for the non-linear response, the reason for these differences is 

related with the choice of implementing the HFTD method in combination with the mode superposition 

method. Not all the modes of vibration but only fifteen are included in the HFTD analysis, and 

therefore part of the solution contributing with the peaks response is excluded. 

Furthermore, the loading input signal shown in Fig. 7.10 has a maximum sampling frequency equal to 

25 Hz. This means that any excitation frequency contained in the loading, or any modal vibration 

frequency of the system, which is greater to 25 Hz is not included in the HFTD response. 

Before showing the results obtained for the concrete cracking non-linear behavior of the dam, the 

hydrodynamic pressures generated by the linear elastic dam-reservoir interaction is shown for 

different time steps in Fig. 7.30. It is clear that the hydrodynamic pressures can assume several types 

of height distribution depending of the acceleration in the interface nodes for each time step of the 

analysis. 
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Figure 7.30: Incompressible fluid linear elastic response. Hydrodynamic pressures at 

different time steps. 

 

Now, a comparison of the structural concrete cracking non-linear responses obtained in the dam’s 

crest, employing both Newmark and HFTD methods, is presented in Figs. 7.31 to 7.33 for the relative 

displacement, velocity and acceleration in the X-direction, respectively. 

As mentioned before, the consideration of a full reservoir with incompressible fluid in the seismic 

analysis produces a significant increment of the responses amplitudes. For example, Fig. 7.31 shows 

that the maximum displacement obtained in this case study is close to between 0.06 m and 0.08 m. 

On the other hand, Fig. 7.23 shows that when the reservoir interaction with the dam is neglected, the 

maximum non-linear displacement is less than 0.04 m. This means that the level of cracking is also 

intensified when the incompressible fluid is taken into account, and as a consequence the difference 

between the cracking non-linear behaviors predicted by HFTD and Newmark methods is more obvious 

than in the empty reservoir case. 
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Figure 7.31: Incompressible fluid concrete cracking non-linear response. Dam’s crest 

displacement X-direction. 

 

 

Figure 7.32: Incompressible fluid concrete cracking non-linear response. Dam’s crest 

velocity X-direction. 
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Figure 7.33: Incompressible fluid concrete cracking non-linear response. Dam’s crest 

acceleration X-direction. 

 

Figs. 7.31 to 7.33 indicate that the non-linear behavior described by the HFTD method is moderate, 

resembling what is a known as a mild type of non-linearity. For this reason, the shape of the time-

history plots is similar to the ones of the linear elastic behavior (Figs. 7.27 to 7.29), but with slightly 

smaller amplitudes. 

On the other hand, the non-linear behavior described by the Newmark method is more severe, 

diminishing considerably the response amplitudes and altering the periods of oscillations. The 

substantial difference between the non-linear cracking behaviors predicted by each method at 

different time steps is illustrated in Fig. 7.34. 

It can be noticed that in the time step 1.42 s, where the first crack appears, there is a good 

agreement between both methods about which is the zone with higher tensile stresses. However, 

during the following time steps, and especially around 2.5 s, the Newmark method develops a very 

pronounced crack in the base due to the concentration of high tensile strains nearly that zone. 

In spite of calculating a similar displacement field as Newmark does, HFTD method does not predict 

such a tensile strain concentration in the base of the dam. Therefore, the HFTD tensile strain field is 

uniformly distributed through the entire dam’s body and has considerably smaller magnitudes. 

This observation about the displacement and strain fields obtained with both methods is graphically 

demonstrated in Fig. 7.35 for the time step 2.40 s, when the big cracks shown in Fig. 7.34 for the 

time step 2.61 s have not appeared yet. 
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Figure 7.34: Incompressible fluid reservoir non-linear response. Dam’s concrete cracking 

pattern at different time steps. 

 

The large crack in the base of the dam calculated by the Newmark method (Fig. 7.34) is the reason 

why the responses shown in Figs. 7.31 to 7.33 are highly non-linear for this method. What is more, 

due to the position and magnitude of the concrete cracking, the dam acts like an isolated system in 

which the ground acceleration loading is not fully transmitted to the structure. For this reason, since 

the time step 2.5 s the magnitudes of the responses in the crest of the dam calculated with the 

Newmark method diminish substantially. 

On the other hand, due to the fact that in the HFTD method the non-linear response of the dam is 

calculated based on the superposition of the linear elastic modes of vibration, the higher tensile 

strains are predicted to be located in the vertical face of the dam interacting with the reservoir and 

not in the base. In this case, the cracking is more distributed and therefore less severe. Furthermore, 
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the location of the higher tensile zones seems to be ruled by the first and the third mode shapes of 

vibration in the horizontal direction (See Fig. 7.14). 

 

Figure 7.35: Incompressible fluid reservoir non-linear response. Displacement and 

principal strain fields at time step 2.40 s. 

 

7.3.4.3. Case III: Full reservoir with compressible fluid 

The frequency dependent dam-reservoir interaction system with compressible fluid and infinite extent 

radiation boundary condition (Case III in Fig. 7.22) is directly solved in DIANA only by the Direct 

Method (linear frequency domain solution) and the HFTD method (non-linear transient solution). Due 

to the frequency dependence of the system, Newmark method is not applicable for this case. 

Therefore, non-linear concrete cracking HFTD solution is presented in Figs. 7.36 to 7.38 for the dam’s 

crest relative displacement, velocity and acceleration, respectively, in the X-direction. A general 

observation of the time history graphics allows concluding that for this particular model the inclusion 

of compressibility in combination with the radiation boundary of infinite extent does not change 

substantially the peak values of the non-linear responses of the system. This analyzed in detail in the 

next section. 
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Figure 7.36: Compressible fluid with radiation boundary. HFTD non-linear solution for the 

dam’s crest displacement in X-direction. 

 

 

Figure 7.37: Compressible fluid with radiation boundary. HFTD non-linear solution for the 

dam’s crest velocity in X-direction. 
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Figure 7.38: Compressible fluid with radiation boundary. HFTD non-linear solution for the 

dam’s crest acceleration in X-direction. 

 

7.3.4.4. HFTD results analysis: Influence of the dam-reservoir interaction 

in the non-linear structural response 

The influence of dam-reservoir interaction and fluid compressibility in the dam’s concrete cracking 

non-linear response is analyzed based on the HFTD solutions of the three cases previously studied 

(Fig. 7.22). The dam’s crest relative displacement, velocity and acceleration in the X-direction are 

presented in Figs. 7.39 to 7.41, respectively. 

 

Figure 7.39: Influence of the dam-reservoir interaction and fluid compressibility in the 

concrete cracking non-linear response. Dam’s crest displacement X-direction. 

-30

-20

-10

0

10

20

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

el
er

at
io

n
 X

 d
ir

ec
ti

o
n

 (
m

/s
2
) 

Time (s) 

HFTD_nlcrack

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
is

p
la

ce
m

e
n

t 
X

-d
ir

ec
ti

o
n

 (
m

) 

Time (s) 

C1_Empty reservoir

C2_Incompressible

C3_Compressible



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

7. Implementation of the HFTD Method in 
DIANA for the Seismic Analysis of Foundation-Dam-Reservoir Interaction Problems 

 

142 

 

 

Figure 7.40: Influence of the dam-reservoir interaction and fluid compressibility in the 

concrete cracking non-linear response. Dam’s crest velocity X-direction. 

 

 

Figure 7.41: Influence of the dam-reservoir interaction and fluid compressibility in the 

concrete cracking non-linear response. Dam’s crest acceleration X-direction. 

 

The consideration of the reservoir interaction in the seismic analysis is demonstrated to be important. 

Fig. 7.39 shows that the maximum displacement of the full reservoir analysis (Cases C2 and C3) is 

twice the maximum displacement of the empty reservoir analysis (case C1). Additionally, the vibration 

period of the full reservoir cases is longer than the oscillation period of the empty reservoir case. 
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On the other hand, for this particular case compressibility does not play a fundamental role. Even 

though higher displacement amplitudes are indeed obtained for the compressible fluid case, the 

difference with the amplitudes of the incompressible fluid case is very small. Fig. 7.39 also shows that 

the oscillation period of the compressible fluid case becomes progressively longer than the oscillation 

period of the incompressible fluid case. 

Anyhow, the time history acceleration plot shown in Fig. 7.41 demonstrates that the consideration of 

the reservoir interaction and the fluid compressibility in the seismic analysis of dams produces very 

different non-linear dynamic responses. This is confirmed by the cracking pattern at different time 

steps shown in Fig.7.42 for each of the three case studies. 

 

Figure 7.42: Influence of the dam-reservoir interaction and fluid compressibility in the 

non-linear response. Dam’s concrete cracking pattern at different time steps. 

 

Fig. 7.42 shows that when the reservoir interaction is not taken into account, the dam barely cracks; 

there is only a very small cracking zone located in the dam foot. On the other hand, the first crack 

appears at time step 1.42 s for the full reservoir with incompressible fluid case study. This is the case 

that suffers the higher levels of cracking in the zone of the vertical dam-reservoir interface. Finally, 

the higher levels of cracking in the inclined back face of the dam correspond to the compressible fluid 

case study. 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

7. Implementation of the HFTD Method in 
DIANA for the Seismic Analysis of Foundation-Dam-Reservoir Interaction Problems 

 

144 

 

 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

8. Conclusions and Recommendations 

 

145 
 

8. CONCLUSIONS AND RECOMMENDATIONS 

 

8.1. Conclusions 

Through the different parts of this thesis it has been demonstrated that the HFTD method is founded 

on a strong theoretical basis which fundamentals is the frequency domain analysis, particularly, the 

Fourier analysis. 

The results of the SDOF numerical examples performed in Chapter 5 validate the high accuracy of the 

HFTD method for linear and even for highly non-linear systems, including simultaneous hysteretic 

stiffness and damping non-linearity, subject to several types of loading. 

For linear elastic SDOF systems, the HFTD method results are almost exact for all types of loading, 

with exception of sudden loading functions which starts at an initial value different than zero (f.e.: 

cosine loading function). In these latter cases the results obtained are very accurate but not exact. 

For non-linear SDOF systems, if the size of the time step is appropriate, the HFTD method also shows 

a great precision, similar to the accuracy of the Newmark method. In order to achieve very accurate 

results, both methods require that the time step size is in the order of the natural period of vibration 

of the system divided over one hundred. 

However, in addition to the size of the time step, the research work has shown that the accuracy of 

the HFTD method depends on two numerical implementation issues: 1) Time segmentation approach; 

and 2) Extended Fourier Transform period. 

The division of the response time span of interest in a determined number of segments is a procedure 

implemented in the HFTD method to achieve convergence in non-linear problems. This 

implementation issue, denominated time segmentation approach, has proved to be very useful 

especially when the system is highly non-linear, the time span of interest is long, or the system 

includes frequency dependent properties. Besides, the division of the time span of interest in a higher 

number of time segments improves the accuracy of the results pertaining to the initial time steps. 

The extension of the Fourier Transform period by adding a band of zeros, called quiet zone, to the 

loading signal is a fundamental implementation issue of the HFTD method, which makes possible to 

satisfy the initial conditions and determine the transient response of the system, instead of the 

steady-state response. The properly definition of the HFTD method must perform all the Fourier 

Transforms using this extended period which resembles the infinite period of the analytical Fourier 

Integral. 

The HFTD method for MDOF systems was implemented in DIANA in combination with the Mode 

Superposition method. This implementation option, explained in detail in Chapter 4, is theoretically 

consistent due to the fact that the HFTD method solves a pseudo-linear equation in the frequency 

domain. 

The programming of the HFTD method for SDOF systems in MATLAB was essential for the 

understanding, implementation and validation of the HFTD implementation for general applications in 

DIANA. 
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The application of the HFTD method is mainly interesting in MDOF systems with frequency dependent 

properties, like the dam-reservoir interaction system subject to a seismic ground acceleration loading. 

In Chapter 7 a case study of this system was tested in DIANA using the HFTD and Newmark methods. 

For the linear elastic analysis of the dam-reservoir interaction system, the results obtained with the 

HFTD and the Newmark methods show a very good agreement, in terms of accuracy and 

performance. This is not the case for the concrete cracking non-linear behavior of the dam, which 

HFTD and Newmark results show considerable differences.  

The main reason for the differences in the results when dealing with the concrete cracking non-

linearity of this particular case study is the great influence that the Mode Superposition method has in 

the description of the non-linear behavior of the structure determined with the HFTD method. Due to 

the combination these two methods, the HFTD non-linear response of the structure is calculated 

based on the superposition of the linear elastic modes of vibration, and therefore, the distribution of 

higher stresses and cracking zones is ruled by their associated mode shapes. 

A totally different situation is defined by the Newmark method, which solution is not based on the 

Mode Superposition method, but on the solution of the complete system. Logically, the consequences 

of this inherent difference between both methods cannot be evaluated with the SDOF systems studied 

in Chapter 5, which total response is exactly the same as the modal response. 

Therefore, one important conclusion of the research work is that the best performance of the HFTD 

method, in combination with the Mode Superposition method, is obtained when it is applied to MDOF 

systems with frequency dependent properties and linear or mild non-linear behavior. 

Mild non-linear behavior is understood as a type of slight non-linearity which is not concentrated in 

particular zones but spread in the whole structure. It is assumed that mild non-linearity does not 

modify drastically the structural configuration of the linear elastic system, and consequently, the 

superposition of the modal responses system can still provide a good estimation of the non-linear 

response. 

In the particular application of HFTD in dam-reservoir interaction systems, the frequency dependent 

properties are composed by the fluid compressibility and the radiation boundary conditions of the 

reservoir, like for example, the bottom absorption and the infinite extent. 

From the thesis it can be concluded that these frequency dependent properties actually have an 

impact in the response of the dam-reservoir interaction system. However, it was not possible to 

outline any definitive conclusion about the relative importance of their inclusion in the system’s 

response. 

Nevertheless, it is clear that the radiation boundary conditions, especially the bottom absorption, act 

like additional damping in the system, and therefore, they reduce the magnitude of the system’s 

response. 

The effect of fluid compressibility, on the other hand, is less predictable. For linear elastic frequency 

domain analysis, the assumption of a compressible fluid clearly increases the amplitudes of the 

response. However, for this particular case study, the time domain response obtained with the HFTD 

method shows that, even though fluid compressibility indeed produces higher peaks, this increment is 

small and constitutes a minor change in the time-history response of the system. 

One important advantage of the HFTD method is its numerical stability. Accurate solutions are 

obtained without convergence problems mainly because the solution of the pseudo-linear equation in 
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the frequency domain does not require the calculation of a tangent stiffness matrix for each iteration 

or each time step, as it is the case of the Newton-Raphson method. On the contrary, the HFTD 

method uses the same linear elastic matrices through all the process, changing only the values of the 

excitation frequencies, the excitation forces and the pseudo force vector. This allows the HFTD 

method to solve large 3D models achieving convergence in an efficient way. 

As a final conclusion, the HFTD method shows promising perspectives for its application in the 

academic and professional practice, especially for the seismic analysis of fluid-structure and soil-

structure interaction systems, or any other area for which the research of dynamic non-linear behavior 

of frequency dependent systems becomes every time more important. 

 

 

8.2. Recommendations 

It is recommended that the current implementation of the HFTD method in DIANA be used in the 

investigation of different types of frequency dependent systems. 

Three-dimensional models of dam-reservoir interaction systems could be elaborated not only to keep 

evaluating the performance of the HFTD method, but to study more deeply the importance of fluid 

compressibility and radiation boundary conditions in the time response of this kind of systems. 

It would be important to test the HFTD method using different types of non-linear behavior (concrete 

crushing, steel yielding, base sliding), and evaluate the results obtained in the context of the mild-

non-linearity concept and the influence that the Mode Superposition method has on the HFTD 

method. 

The effect that different types of structural geometries have in the HFTD non-linear responses 

constitutes an interest research field which has not been studied yet. For some types of structural 

geometries, like for example slender structures, the principal mode shapes describe more precisely the 

actual deformation and stress distribution of the system, even after the incursion in the non-linear 

behavior stage. 

Finally, for future research it is recommended to study the feasibility, in terms of computational 

efficiency, of implementing the HFTD method without including the Mode Superposition method. This 

would allow overcoming the restriction to mild non-linear behavior, but assuming the cost of 

increasing drastically the size of the system of equations to be solved. 
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APPENDIX A: FLOWCHART OF THE HFTD METHOD IMPLEMENTATION IN DIANA 

 

A.1. Main HFTD flowchart 

 

START 

Set up of fluid element matrices 
  ,   ,    

 

Set up of structural element matrices 
  ,   ,    

 

[       ]    

Eigenvalue analysis of the pseudo-linear system 
 

 
NSDOF = Number of structural degrees of freedom 
NMODES = Number of modes included in the analysis 
 
    % Eigenvectors matrix (NSDOF x NMODES) 
 

          % Generalized structural mass 

          % Generalized structural damping 

          % Generalized structural stiffness 
 

   
   

      

   
       

   % Participation factor of mode p 

      
   

        

   
       

  % Translational X-direction participation factor of mode p 

          
(   

        )
 

   
       

 % Effective mass of mode p in the translational X-direction 

HFRESP 

FINISH 
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A.2. HRESP function flowchart 

 

 

START 

Ground acceleration signal information 
 
NFACT = Number of factors of the ground acceleration signal 
LODTIM = Values of time 
 
DT = (LODTIM(NFACT) - LODTIM(1)) / (NFACT-1) % Time step size 
TACSIG = NFACT * DT   % Ground acceleration signal duration 
 

Fourier period 
 
NLODTI = Total number of factors for the Fourier period 
f1 = Free vibration fundamental frequency of the structure 
ξ = Damping ratio of the structure 
 
TFOURI = max {TACSIG + 0.75/(f1 * ξ); 50 / f1} 
 
IF (MOD (TFOURI, DT) .NE. 0 ) THEN 
 NLODTI = (TFOURI / DT) +1 
ELSE 
 NLODTI = TFOURI / DT 
END IF 
 
TFOURI = NLODTI * DT               % Fourier period 

Extension of ground acceleration signal 
 

DO 100, I = NFACT+1, NLODTI 
 LODTIM (I) = LODTIM (1) + (I-1) * DT 
100 CONTINUE 

Time span of interest 
 
NFRESP = Total number of factors for the response duration 
 
TRESP = TACSIG + (0.5 / f1) 
 
IF (MOD (TRESP, DT) .NE. 0 ) THEN 
 NFRESP = (TRESP / DT) +1 
ELSE 
 NFRESP = TRESP / DT 
END IF 
 
TRESP = NFRESP* DT               % Time span of interest 

Number of time segments 
 
NTIMSE = Number of time segments 
NSAMPL = Number of samples per time segment 
 
IF (MOD (NFRESP, NSAMPL) .NE. 0 ) THEN 
 NTIMSE = (NFRESP / NSAMPL) +1 
ELSE 
 NTIMSE = NFRESP / NSAMPL 
END IF 
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Number of excitation frequencies 
 
MEXCIT = Maximum number of excitation frequencies 
 
IF (MOD (NLODTI, 2) .EQ. 0 ) THEN 
 MEXCIT = 1 + NLODTI / 2 
ELSE 
 MEXCIT = 1 + ( NLODTI - 1) / 2 
END IF 
 

Set up excitation frequency values 
 
EXCITA = Sampling frequency values 
 
FSAMPL = (NLODTI - 1) / (LODTIM (NLODTI) - LODTIM (1)) % Maximum sampling frequency 
DELTAF = FSAMPL / NLODTI     % Frequency increment 

 
DO 100, IEXCIT = 1, MEXCIT 
 EXCITA (IEXCIT) = (IEXCIT-1) * DELTAF 
100 CONTINUE 
 

HIGHPASS / LOWPASS identification 

       
Frequency dependent structural matrix 

Effective fluid matrix 
 
   = Effective fluid matrix [  ]

                    
 
  [  ]

             % Real part 
  [  ]

         % Imaginary part 
 

  ∫   
     

  

   

Interaction matrix 
 

         
     

Effective added mass and damping matrices 
 

 

 ̃           
 [     ]   % Real part 

 ̃               
 [     ]   % Imaginary part 

 

          ̃   
 

 
 ̃  

Effective seismic load matrix 
 

IEXCIT = MAX (2, HIPASS), LOPASS 

FR
EQ

U
EN

C
Y 

LO
O

P
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Generalized frequency dependent matrices 
 

         ̃    % Generalized effective added mass 

              % Generalized frequency dependent structural damping 

         ̃   % Generalized effective added damping 

          % Generalized effective seismic load 

DOTISE 

FINISH 

NEXT EXCITATION 

FREQUENCY? 

FR
EQ

U
EN

C
Y 

LO
O

P
 

YES 

NO 

Initialize response and pseudo force vectors 
 
DISPLA = 0 % Relative displacement of the structure in physical coordinates (NSDOF x NFRESP) [                    ] 
VELOCI = 0 % Relative velocity of the structure in physical coordinates (NSDOF x NFRESP)  [ ̇         ̇          ] 
ACCELE = 0 % Relative acceleration of the structure in physical coordinates (NSDOF x NFRESP) [ ̇         ̇          ] 
PSEUFO = 0 % Pseudo force vector (NSDOF x NLODTI)   [                  ] 

GENPSF = 0 % Generalized pseudo force vector (NMODES x NLODTI) [                      ] 
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A.3. DOTISE function flowchart 

 

 

 

START 

Get load factors for Fourier transform of ground acceleration 
 
NLODIR = Number of loading directions 
LODFAC = Values of ground acceleration signal (NLODIR x NLODTI)   [ ̈         ̈          ] 

SEGFAC = Values of ground acceleration for the current segment (NLODIR x NLODTI) [ ̈         ̈          ] 

ACDCYF = Values of the decay function for ground acceleration (NLODIR x NDCAYF) [                    ] 
NDCAYF = Number of time steps for decay function extension    % NDCAYF ≤ NSAMPL 
 
TDCAYF = NDCAYF * DT   % Decay function duration 
 
DO 100, ISEGFC = 1, NLODTI 

IF ( ISEGFC .LE. LPTISE ) THEN 
  SEGFAC (ISEGFC) = LODFAC (ISEGFC) 

ELSE IF ( ISEGFC .LE. (LPTISE + NDCAYF) ) THEN 
  SEGFAC (ISEGFC) = ACDCYF (ISEGFC - LPTISE, SEGFAC (LPTISE), NDCAYF, DT) 

ELSE 
 SEGFAC (ISEGFC) = 0 
END IF 

100 CONTINUE 

 ̈      ̂̈     

Fourier transformation of ground acceleration 
 

 

FOULOD = Values of ground acceleration Fourier transform (NLODIR x MEXCIT)  [ ̂̈         ̂̈          ] 

 

Output calculation 
 

Dynamic fluid pressures 
Strains and stresses of linear elements 

Time segment information 
 
FPTISE = (ITIMSE - 1) * NSAMPL +1 % First point of the current time segment 
LPTISE = ITIMSE * NSAMPL  % Last point of the current time segment 
 

TIMSEG 

FINISH 

TI
M

E 
SE

G
M

EN
T 

LO
O

P
 

NEXT TIME 

SEGMENT? 

YES 

NO 

ITIMSE = 1, NTIMSE 
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A.4. TIMSEG function flowchart 

 

 

START 

Initialize variables for convergence check 
 
GPFOLD = 0 %  Generalized pseudo force values of the previous iteration (NMODES x NFRESP) 
 
CONVTI = FPTISE - 1  % Last converged time point number 
 

Add decay function to the generalized pseudo force vector 
 
PFDCYF = Values of the decay function for generalized pseudo force (NMODES x NDCAYF) 

[                    ] 

 
DO 100, ISEGFC = LPTISE + 1, LPTISE + NDCAYF 
 GENPSF (IMODE, ISEGFC) = PFDCYF (ISEGFC - LPTISE, GENPSF (LPTISE), NDCAYF, DT) 
100 CONTINUE 
 

[                       ] ̂          
    ̂̈        ̂    

Solution of pseudo linear system and determination of structural response in the frequency 
domain 

 

 
GDISFR = Generalized displacement in freq. domain (NMODES x MEXCIT)       ̂          
GVELFR = Generalized velocity in freq. domain (NMODES x MEXCIT)                   ̂          

GACCFR = Generalized acceleration in freq. domain (NMODES x MEXCIT)              
   ̂          

 

      
            

  ̂    

Fourier transformation of generalized pseudo force 
 

 
FOUGPF = Values of generalized pseudo force Fourier transform (NMODES x MEXCIT) 

  [   ̂          ̂         ] 
 

NEXT MODE? YES 

NO 

IMODE = 1, NMODES 

NEXT EXCITATION 

FREQUENCY? 

YES 

NO 

IEXCIT = MAX (2, HIPASS), LOPASS 

FR
EQ

U
EN
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Expand from generalized to physical response 
 
DISPLA (ITIME)                          
VELOCI (ITIME)    ̇             ̇         
ACCELE (ITIME)    ̈             ̈         
 

NEXT MODE? YES 

NO 

IMODE = 1, NMODES 

ITIME = CONVTI + 1, LPTISE 

N
O

T 
C

O
N

V
ER

G
ED

 T
IM

E 
ST

EP
S 

LO
O

P
 

M
O

D
E 

LO
O

P
 

C
O

N
V

ER
G

EN
C

E 
LO

O
P

 

Inverse Fourier transformation of generalized response 
 

 ̂                      ̂          ̇             ̂          ̈         
 
GDISTI = Generalized disp. in time domain (NMODES x NLODTI)               [                  ] 
GVELTI = Generalized velocity in time domain (NMODES x NLODTI)         [ ̇        ̇         ] 
GACCTI = Generalized accel. in time domain (NMODES x NLODTI)            [ ̈        ̈         ] 
 

Nonlinear internal restoring force (State space determination) 
 

FNONLI (ITIME)    
            

Linear internal restoring force 
 

FLINEA (ITIME)               

Pseudo force in physical and generalized coordinates 
 

PSEUFO (ITIME)                           
            

GENPSF (ITIME)              
 

Calculate error 
 
GPSFER =  Error of the generalized pseudo force vector in relation with 

the previous iteration 
 
IF ( GENPSF(ITIME) .EQ. 0 ) THEN 
 GPSFER = 0 
ELSE  
 GPSFER = |GENPSF (ITIME) – GPFOLD (ITIME)| / |GENPSF (ITIME)| 
 
 

Update the last iteration generalized pseudo force  
 

GPFOLD (ITIME) = GENPSF (ITIME) 
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NEXT TIME 

STEP? 

Update the converged time step counter 
 

CONVTI = ITIME 

N
O
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P
 

YES 

CONVTI = LPTISE 

FINISH 

YES 

NO 

NO 

NO 

YES 

GPSFER ≤ GPSTOL 
& 

CONVTI = ITIME - 1 
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% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   HFTD for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   This script execute the HFTD method for linear and nonlinear simplfied 

%   dynamic models of one or more degrees of freedom (DOF) subjected to 

%   base (ground) acceleration loading. 

% 

%   After defining the system properties, the load signal and the HFTD 

%   method parameters, the following results are obtained: time history 

%   displacement, velocity, acceleration and nonlinear internal forces of 

%   the system. Besides, the frequency response of the pseudo linear system 

%   is also obtained. 

% 

%   The ground acceleration signal should be saved with the name "signal" 

%   in the work folder as a matlab variable file called "signal.mat". The 

%   values of the ground acceleration stored in the variable signal should 

%   be normalized with respect to the gravity (g). 

% 

%   A Frequency dependent damping relation for the dashpots coefficients 

%   can be specified in the function "f2_freq_dep_damp1". 

% 

%   The desired type of decaying function should be defined in the 

%   function file "f5_decay_func". 

% 

%   The type of stiffness and damping non-linearity to be used in the 

%   problem should be selected in Section 16.6.6 of this script. 

%   The selected function file is used to determine FNONLI. 

%   The nonlinear parameters of each type of non-linear function should be 

%   defined inside the corresponding function file. 

% 

%   The output results are saved as excel tables, figures and matlab data 

%   files. The file path where these output results files are saved should 

%   be indicated Secttion 17 of this script and in the function files 

%   "f15_excel_tables_v2" and "f16_plot_resp_v2". 

% 

% 

Section 1: File name 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%      All the output results of the program will be saved in the folder 

%      "Output results" located in the work folder. The name specified by 

%      the user is used to save the output files. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

clear; 
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disp('==========================================================================') 

disp('   Problem name                   ') 

disp('==========================================================================') 

name=input('\nEnter the name of the file (this name is used to save the output data)... ','s'); 

disp('   ') 

pause(1); 

Section 2: Exercise data definition 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Input the mass, damping and stiffness matrices of the simplified MDOF 

%   system. The gravity constant and the tolerance for non-linear analysis 

%   are also input by the user. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Definition of the mass matrix                   ') 

disp('==========================================================================') 

pause(1); 

lock=0; 

while lock==0 

    MCOF=input('\nEnter the value of the translational masses for each degree \nof freedom m (in 

a row vector enter one mass per DOF).... '); 

    sizem=size(MCOF); 

    if sizem(1)~=1 

        disp(' ') 

        disp('Error message: The masses should be arranged in a row vector') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

NDOF=sizem(2); 

pause(1); 

disp(' ') 

disp('The number of degrees of freedom (NDOF) of the system is defined to be ') 

NDOF 

pause(1) 

disp(' ') 

disp('The masses of each degree of freedom are defined to be ') 

MCOF 

pause(1); 

disp('  ') 

disp('==========================================================================') 

disp('   Definition of the elastic stiffness matrix                  ') 

disp('==========================================================================') 

pause(1); 

lock=0; 

while lock==0 
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    KELAST=input('\nEnter the linear elastic stiffness coefficients k of the springs \n(in a row 

vector enter NDOF+1 stiffness coefficients) .... '); 

    sizek=size(KELAST); 

    if sizek(1)~=1 

        disp('  ') 

        disp('Error message: The spring coefficients should be arranged in a row vector') 

        pause(2); 

    elseif sizek(2)~=NDOF+1 

        disp(' ') 

        disp('Error message: The row vectors defining the coefficientes of K should have NDOF+1 

components ') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The linear elastic stiffness coefficients are defined to be') 

KELAST 

disp(' ') 

pause(1); 

disp('==========================================================================') 

disp('   Definition of the damping matrices                   ') 

disp('==========================================================================') 

pause(1); 

lock=0; 

while lock==0 

    CELAST=input('\nEnter the constant (not frequency dependent) linear elastic damping 

coefficients c \nof the dashpots (in a row vector enter NDOF+1 damping coefficients)... '); 

    sizec=size(CELAST); 

    if sizec(1)~=1 

        disp(' ') 

        disp('Error message: The dashpots coefficients should be arranged in a row vector') 

        pause(2); 

    elseif sizec(2)~=NDOF+1 

        disp(' ') 

        disp('Error message: The row vectors defining the constant dashpot coefficients should 

have NDOF+1 components ') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The constant (not frequency dependent) linear elastic damping coefficients are defined to 

be ') 

CELAST 

pause(1); 

lock=0; 

while lock==0 
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    RAYLEI=input('\nEnter the coeficients for the definition of Rayleigh damping matrix aM+bK 

\nin a row vector [a b]. If there is no Rayleigh damping enter [0 0]... '); 

    sizer=size(RAYLEI); 

    if sizer(1)~=1 

        disp(' ') 

        disp('Error message: The Rayleigh coefficients should be arranged in a row vector') 

        pause(2); 

    elseif sizer(2)~=2 

        disp(' ') 

        disp('Error message: The row vectors defining the Rayleigh coefficientes a and b should 

have 2 components ') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

a=RAYLEI(1); 

b=RAYLEI(2); 

disp(' ') 

disp('The Rayleigh damping coefficients are defined to be ') 

a 

b 

pause(1); 

lock=0; 

while lock==0 

    HYSTER=input('\nEnter the hysteretic damping ratio. If there is no hysteretic damping enter 

0... '); 

    sizeh=size(HYSTER); 

    if sizeh(1)==1 && sizeh(2)==1 

        lock=1; 

    else 

        disp(' ') 

        disp('Error message: The input value must be scalar') 

    end 

end 

disp(' ') 

disp('The hysteretic damping ratio is defined to be ') 

HYSTER 

disp(' ') 

pause(1); 

disp('==========================================================================') 

disp('   Gravity constant                   ') 

disp('==========================================================================') 

pause(1); 

lock=0; 

while lock==0 

    g=input('\nEnter the value of the gravity constant g .... '); 

    sizeg=size(g); 

    if sizeg(1)~= 1 || sizeg(2)~=1 

        disp(' ') 
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        disp('Error message: g must be a scalar value') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The gravity constant is defined to be ') 

g 

disp('   ') 

pause(1); 

disp('==========================================================================') 

disp('   Tolerance for convergence of non-linear analysis                   ') 

disp('==========================================================================') 

pause(1); 

lock=0; 

while lock==0 

    tol=input('\nEnter the convergence tolerance tol for non-linear analysis.... '); 

    sizet=size(tol); 

    if sizet(1)~= 1 || sizet(2)~=1 

        disp(' ') 

        disp('Error message: tol must be a scalar value') 

        pause(2); 

    elseif tol>0.01 || tol<=0 

        disp(' ') 

        disp('Error message: tol must be positive and smaller than 10^-2') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The tolerance for convergence check is defined to be ') 

tol 

pause(2); 

disp(' ') 

Section 3: Construction of the linear elastic matrices of the system 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Based on the coefficients values defined in the previous section for 

%   each mass, spring and dashpot, the linear elastic matrices of the 

%   system are constructed using the function file "f1_linelast_mat". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Linear elastic matrices                   ') 

disp('==========================================================================') 

%Mass matrix 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

Appendix B: MATLAB Routines 

 

165 

 

M=zeros(NDOF); 

for IDOF=1:NDOF 

    M(IDOF,IDOF)=MCOF(IDOF); 

end 

disp(' ') 

disp('The mass matrix M is') 

M 

pause(1); 

%Stiffness matrix 

K=f1_linelast_mat(NDOF,KELAST); 

disp(' ') 

disp('The linear elastic stiffness matrix K is') 

K 

pause(1); 

%Damping matrix 

Cnp=f1_linelast_mat(NDOF,CELAST); 

disp(' ') 

disp('The constant (not frequency dependent) linear elastic non proportional (dashpots) damping 

matrix Cnp is') 

Cnp 

pause(1) 

Cray=a*M+b*K; 

disp(' ') 

disp('The constant (not frequency dependent) linear elastic Rayleigh damping matrix Cray is') 

Cray 

pause(1) 

C=Cnp+Cray; 

disp(' ') 

disp('The total constant (not frequency dependent) linear elastic damping matrix C is') 

C 

pause(1) 

Ch=HYSTER*K; 

disp(' ') 

disp('The hysteretic linear elastic damping matrix Ch is') 

Ch 

pause(2); 

disp(' ') 

Section 4: Free vibration Eigen-analysis 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Eigen-analysis of the simplified system. Mode shape vectors and 

%   eigen-frequencies of the system are calculated. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Free vibration natural frequencies and mode shape vectors                   ') 

disp('==========================================================================') 

[Phi,Natfreq]=eig(K,M); 
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Mgen=transpose(Phi)*M*Phi; 

w1=sqrt(Natfreq(1,1)); 

T1=2*pi/w1; 

pause(1); 

disp('   ') 

disp('The eigenvectors matrix is ') 

disp('   ') 

Phi 

pause(1); 

disp('   ') 

disp('The eigenvalues (squared natural circular frequencies) matrix is') 

disp('   ') 

Natfreq 

pause(1); 

disp('   ') 

disp('The fundamental period of the system is defined to be') 

disp('   ') 

T1 

pause(1); 

disp('   ') 

disp('The fundamental circular frequency of the system is defined to be') 

disp('   ') 

w1 

pause(1); 

Section 5: Fundamental mode of vibration damping ratio 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Damping ratio of the fundamental mode of vibration taking into account 

%   frecuency dependent and hysteretic damping. The frequency dependent 

%   damping should be defined by the user in the function file 

%   "f2_freq_dep_damp1". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Damping ratio of the fundamental mode of vibration considering                   ') 

disp('   hysteretic and frequency dependent damping                   ') 

disp('==========================================================================') 

[CFREDE1,EM]=f2_freq_dep_damp1(NDOF,w1);% Function defining the frequency dependent damping 

coefficients 

if EM==1 

    return 

end 

Cfd1=f1_linelast_mat(NDOF,CFREDE1); 

Ch1=(1/w1)*Ch; 

pause(1); 

disp('   ') 

disp('The hysteretic damping matrix (Ch1) and the frequency dependent damping ') 

disp('matrix (Cfd1) corresponding to the fundamental mode of vibration are defined to be ') 
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Ch1 

Cfd1 

pause(1); 

C1=C+Ch1+Cfd1; 

disp('  ') 

disp('The total damping matrix (constant + hysteretic + frequency dependent) ') 

disp('for the fundamental mode of vibration is determined to be ') 

C1 

pause(1); 

C1gen=transpose(Phi(:,1))*C1*Phi(:,1); 

xi1=(1/(2*w1))*(C1gen/Mgen(1,1)); 

disp('   ') 

disp('The damping ratio of the fundamental mode of vibration of the system is defined to be') 

disp('   ') 

xi1 

disp('   ') 

pause(2); 

Section 6: Ground acceleration signal information 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The data of the ground acceleration signal must be stored as a 

%       matlab variable called "signal". This variable should be 

%       defined as a matrix with two columns and as many rows as time 

%       points available in the signal data. The first column contains the 

%       time steps values, which should start in time = 0 seconds, and 

%       should be equally spaced (constant time step size). The second 

%       colum contains the ground acceleration values normalized with the 

%       gravity acceleration g. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Ground acceleration signal information                   ') 

disp('==========================================================================') 

disp('   ') 

disp('Loading the ground acceleration variable "signal" from file signal.mat saved in the work 

folder...') 

disp('   ') 

pause(1); 

load signal; 

lock=1; 

while lock~=0 

    sizesig=size(signal); 

    [SIGTIM,NFACT,SIGNDT,lock,k]=f3_ground_accel_signal_check(signal,sizesig);% Function that 

checks the correct definition of the signal variable 

    if lock==1 

        disp('Error message: The first time step must be zero') 

        return 

    elseif lock==2 
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        disp('Error message: Signal data variable must have two columns') 

        return 

    elseif lock==3 

        disp('Error message: Time step size of signal data is not constant') 

        disp('   ') 

        pause(2); 

        fprintf('The problem was found between the time points %d and %d\n',k,k+1) 

        return 

    end 

end 

SIGFAC=g*signal(:,2); 

TACSIG=NFACT*SIGNDT; 

pause(2); 

disp('   ') 

disp('The number of time points contained in the ground acceleration signal is ') 

disp('   ') 

NFACT 

pause(1); 

disp('   ') 

disp('The time step size of the ground acceleration signal is ') 

disp('   ') 

SIGNDT 

pause(1); 

disp('   ') 

disp('The duration of the ground acceleration signal is ') 

disp('   ') 

TACSIG 

pause(1); 

disp('   ') 

disp('The maximum ground acceleration magnitude contained in the signal is ') 

disp('   ') 

disp(max(abs(SIGFAC))) 

disp('   ') 

pause(2); 

Section 7: Time step size and Fourier Period 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The time step size (DT) is calculated base on the signal 

%       discretization. 

%       The Fourier period length (TFOURI)is calculated based on the 

%       fundamental mode of vibration period (T1) and damping ratio (xi1). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('==========================================================================') 

disp('   Period for the Fourier transform                 ') 

disp('==========================================================================') 

lock=0; 

while lock==0 

    pause(2); 
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    opt=input('\nSelect the option for the definition of the HFTD time step size (DT). Enter "0" 

for DT to be \nequal to the signal step size (SIGNDT) or enter "1" for DT to be a multiple of 

SIGNDT .... '); 

    if opt==0 

        TIMES=1; 

        lock=1; 

    elseif opt==1 

        pause(2); 

        TIMES=input('\nEnter the number of times that SIGNDT should be multiplied to obtain 

DT.... '); 

        if mod(TIMES,1)~=0 || TIMES<=0 

            disp('   ') 

            disp('Error message: The input value should be a positive integer') 

        else 

            lock=1; 

        end 

    else 

        pause(2); 

        disp('   ') 

        disp('Error message: The input value must be 0 or 1') 

    end 

end 

DT=TIMES*SIGNDT; 

prob=[TACSIG+0.75*T1/abs(xi1),50*T1,2*TACSIG]; 

TFOURI=max(prob); 

NLODTI=ceil(TFOURI/DT); 

TFOURI=DT*NLODTI; 

pause(1); 

disp('    ') 

disp('The number of time points (NLODTI) contained in the Fourier period is calculated to be ') 

disp('    ') 

NLODTI 

pause(1); 

disp('    ') 

disp('The HFTD time step size (DT) is defined to be') 

disp('    ') 

DT 

pause(1); 

disp('    ') 

disp('The Fourier period (TFOURI) is calculated to be') 

disp('    ') 

TFOURI 

disp('    ') 

pause(2) 

Section 8: Extension of ground acceleration signal 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The ground acceleration data is extended adding zeros (quiet zone) 
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%       until the Fourier period is covered. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

LODTIM=zeros(NLODTI,1); 

LODFAC=zeros(NLODTI,1); 

for k=1:NLODTI 

    LODTIM(k)=(k-1)*DT; 

    j=1+(k-1)*TIMES; 

    if j<=NFACT 

        LODFAC(k)=SIGFAC(j); 

    else 

        LODFAC(k)=0; 

    end 

end 

Section 9: Time span of interest 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Time span for which the reponses are calculated. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('==========================================================================') 

disp('   Time span of interest                ') 

disp('==========================================================================') 

lock=0; 

while lock==0 

    pause(2); 

    opt=input('\nSelect the option for the definition of the time span of interest: Enter "1" for 

the time span of interest to be \ndefined by the user or enter "0" for it to be calculated by te 

program .... '); 

    if opt==0 

        TRESP=TACSIG+0.5*T1; 

        NFRESP=ceil(TRESP/DT); 

        TRESP=DT*NFRESP; 

        lock=1; 

    elseif opt==1 

        pause(1); 

        TRESP=input('\nEnter the time span of interest in seconds .... '); 

        NFRESP=ceil(TRESP/DT); 

        TRESP=DT*NFRESP; 

        if TRESP>=TFOURI/2 || TRESP<=0 

            disp('    ') 

            disp('Error message: The time span of interest should be posistive and not greater 

than half the Fourier period (TFOURI)') 

        else 

            lock=1; 

        end 

    else 

        pause(1); 

        disp('    ') 

        disp('Error message: The input value must be 0 or 1') 
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    end 

end 

disp('    ') 

disp('The number of time steps defining the time span of interest length (NFRESP) is defined to 

be') 

disp('    ') 

NFRESP 

pause(1); 

disp('    ') 

disp('The response time span of interest (TRESP) is defined to be') 

disp('    ') 

TRESP 

disp('    ') 

pause(2); 

Section 10: Number of time segments 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       In order to achieve accurate results, HFTD requires that the time 

%       span of interest be divided in segments containing a certain number 

%       (NSAMPL) of time steps (DT). The convergence and iterative process 

%       is carried out sequentially, segment by segment, one after the 

%       other. 

%       One extreme case (not recommended) is to have only one time segment 

%       (NSAMPL*DT=TRESP). On the other hand, the other extreme case is to 

%       have as many segements as time steps (NSAMPL=1). Intermediate case 

%       is reccommended taking into account that increasing the number of 

%       time segments provides better accuracy and stability to the HFTD 

%       method. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('==========================================================================') 

disp('   Division of the time span of interest in time segments               ') 

disp('==========================================================================') 

lock=0; 

while lock==0 

    pause(2); 

    NSAMPL=input('\nEnter the number of time steps (DT) per time segment .... '); 

    if mod(NSAMPL,1)==0 && NSAMPL>=1 && NSAMPL<=NFRESP 

        lock=1; 

    else 

        pause(1); 

        fprintf('\nError message: The number of samples per time segment (NSAMPL) should be a 

positive \ninteger such that NSAMPL*DT is not greater than TRESP') 

    end 

end 

disp('    ') 

disp('The number of samples per time segment (NSAMPL) is defined to be') 

disp('    ') 

NSAMPL 
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disp('    ') 

NTIMSE=ceil(NFRESP/NSAMPL); 

pause(1); 

disp('The number of time segments (NTIMSE) through all the interest time span is defined to be') 

disp('    ') 

NTIMSE 

disp('    ') 

pause(2); 

Section 11: Decay function length 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       For the Fourier transformation of the ground acceleration and the 

%       pseudo force vector, an decaying function is appended at the end of 

%       the current time segment being analyzed. 

%       The number of time steps (DT) that define the decay function length 

%       is stored in the variable NDCAYF, which should be smaller or equal 

%       than NSAMPL (the decay function should not extend more than the 

%       time segment length). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('    ') 

disp('==========================================================================') 

disp('   Number of time steps defining the decaying function length              ') 

disp('==========================================================================') 

lock=0; 

while lock==0 

    pause(2); 

    NDCAYF=input('\nEnter the number of time steps (DT) for the definition of the decaying 

function length .... '); 

    if NDCAYF>=0 && mod(NDCAYF,1)==0 && NDCAYF<=NSAMPL 

        lock=1; 

    else 

        disp('    ') 

        fprintf('Error message: The number of time steps defining the decaying function length 

(NDCAYF) should be \nzero or a positive integer not greater than NSAMPL\n') 

    end 

end 

TDCAYF=NDCAYF*DT; 

disp('    ') 

disp('The number of time steps defining the length of the decaying function (NDCAYF) is defined 

to be') 

NDCAYF 

pause(1) 

disp('    ') 

disp('The lentgh of the decaying function (TDCAYF) is defined to be') 

TDCAYF 

disp('    ') 

pause(2); 
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Section 12: Set up excitation frequencies 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The number of excitation frequencies (MEXCITA), the frequency 

%       increment (DELTAF) and the maximum sampling frequency (FSAMPL) are 

%       calculated based on the Fourier Period (TFOURI) and its number of 

%       time points (NLODTI). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('===========================================================================================

=========================================') 

fprintf('   Number of excitation frequencies, excitation frequency values, frequency increment \n 

and maximum sampling frequency.               \n') 

disp('===========================================================================================

=========================================') 

if mod(NLODTI,2)==0 

    MEXCIT=1+NLODTI/2; 

else 

    MEXCIT=1+(NLODTI-1)/2; 

end 

FSAMPL=(NLODTI-1)/(LODTIM(NLODTI)-LODTIM(1)); 

DELTAF=FSAMPL/NLODTI; 

EXCITA=zeros(MEXCIT,1); 

for IEXCIT=1:MEXCIT 

    EXCITA(IEXCIT)=(IEXCIT-1)*DELTAF; 

end 

pause(2); 

disp('    ') 

disp('The maximum number of frequencies (MEXCIT) is') 

disp('    ') 

MEXCIT 

disp('    ') 

pause(1); 

disp('The frequency increment (DELTAF) is') 

disp('    ') 

DELTAF 

disp('    ') 

pause(1); 

disp('The maximum sampling frequency (FSAMPL) is') 

disp('    ') 

FSAMPL 

disp('    ') 

pause(1); 

disp('The maximum excitation frequency that can be accurately included in the analysis is') 

disp('    ') 

disp(FSAMPL/2) 

disp('    ') 

pause(2); 
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Section 13: Highpass/Lowpass frequency identification 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The frequency response can be determined for a restricted range of 

%       frequency instead of the frequency range from 0 to EXCITA(MEXCIT). 

%       This restriction is (optionally) defined by the user after 

%       specifying a minimum (Highpass) and a maximum (Lowpass) response 

%       frequency. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('==========================================================================') 

disp('   Highpass/Lowpass frequency identification              ') 

disp('==========================================================================') 

lock=0; 

while lock==0 

    pause(2); 

    MINFRE=input('\nEnter the minimum frequency to be included in the analysis .... '); 

    pause(1); 

    if MINFRE>=0 && MINFRE<=EXCITA(MEXCIT) 

        lock=1; 

    else 

        disp('    ') 

        fprintf('Error message: The minimum frequency (MINFRE) should be zero or a positive value 

\nnot greater than (MEXCIT-1)*DELTAF\n') 

    end 

end 

lock=0; 

while lock==0 

    MAXFRE=input('\nEnter the maximum frequency to be included in the analysis .... '); 

    pause(1); 

    disp('    ') 

    if MAXFRE>=MINFRE && MAXFRE<=EXCITA(MEXCIT) 

        lock=1; 

    else 

        fprintf('Error message: The maximum frequency (MAXFRE) should higher or equal than MINFRE 

\nand not greater than (MEXCIT-1)*DELTAF\n') 

    end 

end 

[LOPASS,HIPASS]=f4_high_low_pass_freq(EXCITA,MEXCIT,MAXFRE,MINFRE); 

disp('The HIGHPASS frequency is found to be') 

disp('    ') 

disp(EXCITA(HIPASS)) 

disp('    ') 

pause(1); 

disp('The LOWPASS frequency is found to be') 

disp('    ') 

disp(EXCITA(LOPASS)) 
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Section 14: Hysteretic and frequency dependent damping for each excitation frequency 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The hysteretic and frequency dependent damping matrices are 

%       calculated for each excitattion frequency between HIPASS and 

%       LOPASS. The frequency dependent damping should be defined by the 

%       user in the function file "f2_freq_dep_damp1". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

CFREDE=zeros(LOPASS-HIPASS+1,NDOF+1); 

Cfd=zeros(NDOF,NDOF,LOPASS-HIPASS+1); 

Chy=zeros(NDOF,NDOF,LOPASS-HIPASS+1); 

for IEXCIT=HIPASS:LOPASS 

    w=2*pi*EXCITA(IEXCIT); 

    [CFREDE(IEXCIT-HIPASS+1,:),EM]=f2_freq_dep_damp1(NDOF,w); %Function defining the frequency 

dependent damping 

    Cfd(:,:,IEXCIT-HIPASS+1)=f1_linelast_mat(NDOF,CFREDE(IEXCIT-HIPASS+1,:)); 

    if w==0 

        Chy(:,:,IEXCIT-HIPASS+1)=0*Ch; 

    else 

        Chy(:,:,IEXCIT-HIPASS+1)=(1/w)*Ch; 

    end 

end 

Section 15: Initialization of variables 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Set up to zero the response, pseudo force and internal restoring 

%       force variables 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

NRESIT=NTIMSE*NSAMPL; 

DISPLA=zeros(NDOF,NRESIT); 

VELOCI=zeros(NDOF,NRESIT); 

ACCELE=zeros(NDOF,NRESIT); 

PSEUFO=zeros(NDOF,NLODTI); 

FNONLI=zeros(NDOF,NRESIT); 

FLINEA=zeros(NDOF,NRESIT); 

KEY=zeros(NDOF+1,NRESIT); 

FNLSTI=zeros(NDOF,NRESIT); 

SPRFOR=zeros(NDOF+1,NRESIT); 

FNLDAM=zeros(NDOF,NRESIT); 

DASHFO=zeros(NDOF+1,NRESIT); 

UT=zeros(NDOF+1,NRESIT); 

UC=zeros(NDOF+1,NRESIT); 

UO=zeros(NDOF+1,NRESIT); 

disp('    ') 

pause(1); 
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Section 16: HFTD method execution for each time segment 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The HFTD calculation process is executed segment by segment. A time 

%       segment loop is defined in order to repeat the process for the 

%       NTIMSE segments previously determined. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('==========================================================================') 

disp('   HFTD method execution for each time segment              ') 

disp('==========================================================================') 

for ITIMSE=1:NTIMSE 

    pause(1); 

    disp('    ') 

    disp('Starting the HFTD calculation process: Time segment number ... ') 

    disp(ITIMSE) 

Section 16.1: Time segment information 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %       The index of the first (FPTISE) and last (LPTISE) point of the 

    %       current time segment (ITIMSE) are identified. 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    FPTISE=(ITIMSE-1)*NSAMPL+1; 

    LPTISE=ITIMSE*NSAMPL; 

Section 16.2: Ground acceleration decay function definition for the current segment 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %       The function "f5_decay_func" is called in order to determine 

    %       the ground acceleration factors pertaining to the decay 

    %       function appended at the end of the current time segment. 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    [GADCYF]=f5_decay_func(LODFAC,LPTISE,NDCAYF,DT,TDCAYF); 

Section 16.3: Load factors for the Fourier transform of the ground acceleration 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %       The load factors used for the Fourier transform of the ground 

    %       acceleration vary in each time segment. The ground acceleration 

    %       load factors including the decaying function used for the 

    %       current time segment are stored in the variable SEGFAC. 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    SEGFAC=LODFAC; 

    SEGFAC(LPTISE+1:LPTISE+NDCAYF)=GADCYF; 

    SEGFAC(LPTISE+NDCAYF+1:NLODTI)=zeros; 
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Section 16.4: Fast Fourier transform of the ground acceleration loading 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %       The FFT function is executed in the variable SEGFAC by 

    %       means of the function "f6_fast_fourier_transf". 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    disp('Fourier transform of the ground acceleration signal ... ') 

    [FOUACR,FOUACI]=f6_fast_fourier_transf(SEGFAC,NLODTI,MEXCIT); 

    FOUACC=FOUACR+1i*FOUACI; 

Section 16.5: Initialize variables for convergence check 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %       Set up to zero the response, pseudo force and internal 

    %       restoring force variables 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    PSFOLD=zeros(NDOF,NSAMPL); %Pseudo force values of the last iteration within the current 

segment. 

    DISOLD=zeros(NDOF,NSAMPL); %Displacement values of the last iteration within the current 

segment. 

    PFDCYF=zeros(NDOF,NDCAYF); %Decay function for the pseudo force vector. 

    FOUPFR=zeros(NDOF,MEXCIT); %Direct Fourier transform of the pseudo force vector (real part). 

    FOUPFI=zeros(NDOF,MEXCIT); %Direct Fourier transform of the pseudo force vector (imaginary 

part). 

    IFOUDR=zeros(NDOF,NSAMPL); %Inverse Fourier transform of the displacement vector(real part) 

for the time points inside the current time segment. 

    IFOUDI=zeros(NDOF,NSAMPL); %Inverse Fourier transform of the displacement vector(imaginary 

part) for the time points inside the current time segment. 

    IFOUVR=zeros(NDOF,NSAMPL); %Inverse Fourier transform of the velocity vector(real part) for 

the time points inside the current time segment. 

    IFOUVI=zeros(NDOF,NSAMPL); %Inverse Fourier transform of the velocity vector(imaginary part) 

for the time points inside the current time segment. 

    IFOUAR=zeros(NDOF,NSAMPL); %Inverse Fourier transform of the acceleration vector(real part) 

for the time points inside the current time segment. 

    IFOUAI=zeros(NDOF,NSAMPL); %Inverse Fourier transform of the acceleration vector(imaginary 

part) for the time points inside the current time segment. 

    CONVTI=FPTISE-1;           %Counter of the last time steps already converged. 

Section 16.6: Convergence loop 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %       The procedure below is repeated until achieving convergence in 

    %       all the time steps within the current segment. 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    iter=0; 

    convlock=0; 

    pause(1); 

    disp('    ') 
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    fprintf('Starting the iteration process untill convergence is achieved for all the time steps 

\ninside segment number... %d\n',ITIMSE) 

    while convlock==0 

        iter=iter+1; 

        disp('    ') 

        disp('Starting iteration number... ') 

        disp(iter) 

        disp('    ') 

        disp('Fourier transform of the pseudo force vector ... ') 

        for IDOF=1:NDOF 

Section 16.6.1: Pseudo force decay function definition 

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            %       The function "f5_decay_func is called in order to 

            %       determine the pseudo force factors pertaining to the 

            %       decay function appended at the end of the current time 

            %       segment. 

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            [PFDCYF(IDOF,:)]=f5_decay_func(PSEUFO(IDOF,:),LPTISE,NDCAYF,DT,TDCAYF); 

Section 16.6.2: Load factors for the Fourier transform of the pseudo force 

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            %       The load factors used for the Fourier transform of the 

            %       pseudo force vary in each iteration in accordance with 

            %       the results obtained in the previous iteration. The 

            %       pseudo force load factors including the decaying 

            %       function used for the current time segment and 

            %       iteration are stored in the variable PSEUFO. 

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            PSEUFO(IDOF,LPTISE+1:LPTISE+NDCAYF)=PFDCYF(IDOF,:); 

Section 16.6.3: Fast Fourier transform of the pseudo force 

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            %       The FFT function is executed in the variable PSEUFO by 

            %       means of the function "f6_fast_fourier_transf". 

            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

            [FOUPFR(IDOF,:),FOUPFI(IDOF,:)]=f6_fast_fourier_transf(PSEUFO(IDOF,:),NLODTI,MEXCIT); 

        end 
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Section 16.6.4: Pseudo linear equation of motion in the frequency domain 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %    Solution of the pseudo linear system for each excitation 

        %    frequency. 

        % 

        %       ${-(w^2)*M + i*w*C + K} u(w) = -M*I*ug(w) + q(w)$ 

        %       [-(w^2)*M + i*w*C + K] u(w) = -M*I*ug(w) + q(w) 

        %   The equation is solved using the direct method defined in the 

        %   function "f7_solver_pseudo_lin_direct_freq_v2". 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        disp('    ') 

        disp('Starting the solution of the pseudo linear system in the frequency domain ... ') 

        DISFRE=zeros(NDOF,NLODTI); 

        VELFRE=zeros(NDOF,NLODTI); 

        ACCFRE=zeros(NDOF,NLODTI); 

        DIFREA=zeros(NDOF,MEXCIT); 

        DIFRIM=zeros(NDOF,MEXCIT); 

        for IEXCIT=HIPASS:LOPASS 

            w=2*pi*EXCITA(IEXCIT); 

            

[DIFREA(:,IEXCIT),DIFRIM(:,IEXCIT)]=f7_solver_pseudo_lin_direct_freq_v2(K,C,Cfd(:,:,IEXCIT-

HIPASS+1),Chy(:,:,IEXCIT-

HIPASS+1),M,w,NDOF,FOUACR(IEXCIT),FOUACI(IEXCIT),FOUPFR(:,IEXCIT),FOUPFI(:,IEXCIT)); 

            DISFRE(:,IEXCIT)=DIFREA(:,IEXCIT)+1i*DIFRIM(:,IEXCIT);  % Displacement in the 

frequency domain 

            VELFRE(:,IEXCIT)=1i*w*DISFRE(:,IEXCIT);    % Velocity in the frequency domain 

            ACCFRE(:,IEXCIT)=-(w^2)*DISFRE(:,IEXCIT);  % Acceleration in the frequency domain 

        end 

Section 16.6.5: Inverse Fourier transform of the response 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %       The complex displacement (DISFRE), velocity (VELFRE) and 

        %       acceleration (ACCFRE) vectors in the frequency domain are 

        %       translated to the time domain by means of the function 

        %       "f8_inv_fast_fourier_transf". 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        disp('    ') 

        disp('Inverse Fourier transform of the displacement, velocity and acceleration vectors 

... ') 

        for IDOF=1:NDOF 

            

[IFOUDR(IDOF,:),IFOUDI(IDOF,:)]=f8_inv_fast_fourier_transf(DISFRE(IDOF,:),NLODTI,FPTISE,LPTISE); 

% Inverse Fourier transform  of the displacement vector for the time steps within the current 

segment. 

            

[IFOUVR(IDOF,:),IFOUVI(IDOF,:)]=f8_inv_fast_fourier_transf(VELFRE(IDOF,:),NLODTI,FPTISE,LPTISE); 

% Inverse Fourier transform  of the velocity vector for the time steps within the current 
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segment. 

            

[IFOUAR(IDOF,:),IFOUAI(IDOF,:)]=f8_inv_fast_fourier_transf(ACCFRE(IDOF,:),NLODTI,FPTISE,LPTISE); 

% Inverse Fourier transform  of the acceleration vector for the time steps within the current 

segment. 

        end 

Section 16.6.6: Not converged time steps loop 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %       In this loop, the new iteration values of the displacement, 

        %       velocity, acceleration and pseudo force vectors are 

        %       calculated and updated only for the time steps inside the 

        %       current segment which have not converged in the previous 

        %       iterations. 

        %       The functions defining the stiffness and damping 

        %       non-linearities are indicated below. 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        disp('    ') 

        disp('Calculation of the response, internal restoring forces and pseudo force for the non 

converged time steps ... ') 

        for ITIME=CONVTI+1:LPTISE 

            DISPLA(:,ITIME)=IFOUDR(:,ITIME-FPTISE+1); % Displacement vector 

            VELOCI(:,ITIME)=IFOUVR(:,ITIME-FPTISE+1); % Velocity vector 

            ACCELE(:,ITIME)=IFOUAR(:,ITIME-FPTISE+1); % Acceleration vector 

            if ITIME==1 

                CEROS1=zeros(NDOF,1); 

                CEROS2=zeros(NDOF+1,1); 

Section 16.6.6.1: Non-linear or linear stiffness force, internal spring force and state variable 

of time step 1 

                

%[KEY(:,ITIME),SPRFOR(:,ITIME),FNLSTI(:,ITIME),UT(:,ITIME),UC(:,ITIME),UO(:,ITIME),EMKEY]=f9_lin_

stiff_int_force(NDOF,CEROS2,CEROS1,DISPLA(:,ITIME),CEROS2,KELAST); 

                

%[KEY(:,ITIME),SPRFOR(:,ITIME),FNLSTI(:,ITIME),UT(:,ITIME),UC(:,ITIME),UO(:,ITIME),EMKEY]=f10_non

lin_hyster_stiff_int_force_v3(VELOCI(:,ITIME),NDOF,CEROS2,CEROS1,DISPLA(:,ITIME),CEROS2,CEROS2,CE

ROS2,CEROS2,ITIME,KELAST); 

                

[KEY(:,ITIME),SPRFOR(:,ITIME),FNLSTI(:,ITIME),UT(:,ITIME),UC(:,ITIME),UO(:,ITIME),EMKEY]=f11_nonl

in_hyster_stiff_int_force_cubic(VELOCI(:,ITIME),NDOF,CEROS2,CEROS1,DISPLA(:,ITIME),CEROS2,CEROS2,

CEROS2,ITIME,KELAST); 

Section 16.6.6.2: Non-linear or linear damping force, internal dashpot force and state 

variable of time step 1 
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%[FNLDAM(:,ITIME),DASHFO(:,ITIME)]=f12_lin_damp_int_force_v2(NDOF,VELOCI(:,ITIME),CEROS2,CELAST); 

%Nonlinear damping force and internal dashpot force of time step i+1 

                

[FNLDAM(:,ITIME),DASHFO(:,ITIME)]=f13_nonlinmet_damp_int_force(NDOF,DISPLA(:,ITIME),VELOCI(:,ITIM

E),CELAST); 

            else 

Section 16.6.6.3: Non-linear or linear stiffness force, internal spring force and state variable 

of time step i+1 

                

%[KEY(:,ITIME),SPRFOR(:,ITIME),FNLSTI(:,ITIME),UT(:,ITIME),UC(:,ITIME),UO(:,ITIME),EMKEY]=f9_lin_

stiff_int_force(NDOF,KEY(:,ITIME-1),DISPLA(:,ITIME-1),DISPLA(:,ITIME),SPRFOR(:,ITIME-1),KELAST); 

                

%[KEY(:,ITIME),SPRFOR(:,ITIME),FNLSTI(:,ITIME),UT(:,ITIME),UC(:,ITIME),UO(:,ITIME),EMKEY]=f10_non

lin_hyster_stiff_int_force_v3(VELOCI(:,ITIME),NDOF,KEY(:,ITIME-1),DISPLA(:,ITIME-

1),DISPLA(:,ITIME),SPRFOR(:,ITIME-1),UT(:,ITIME-1),UC(:,ITIME-1),UO(:,ITIME-1),ITIME,KELAST); 

                

[KEY(:,ITIME),SPRFOR(:,ITIME),FNLSTI(:,ITIME),UT(:,ITIME),UC(:,ITIME),UO(:,ITIME),EMKEY]=f11_nonl

in_hyster_stiff_int_force_cubic(VELOCI(:,ITIME),NDOF,KEY(:,ITIME-1),DISPLA(:,ITIME-

1),DISPLA(:,ITIME),UT(:,ITIME-1),UC(:,ITIME-1),UO(:,ITIME-1),ITIME,KELAST); 

Section 16.6.6.4: Non-linear or linear damping force, internal dashpot force and state 

variable of time step i+1 

                

%[FNLDAM(:,ITIME),DASHFO(:,ITIME)]=f12_lin_damp_int_force_v2(NDOF,VELOCI(:,ITIME)-VELOCI(:,ITIME-

1),DASHFO(:,ITIME-1),CELAST); %Nonlinear damping force and internal dashpot force of time step 

i+1 

                

[FNLDAM(:,ITIME),DASHFO(:,ITIME)]=f13_nonlinmet_damp_int_force(NDOF,DISPLA(:,ITIME),VELOCI(:,ITIM

E),CELAST); 

            end 

            if EMKEY~=100 

                return 

            end 

Section 16.6.6.5: Total non-linear force, linear force and pseudo force 

            FNONLI(:,ITIME)=FNLSTI(:,ITIME)+FNLDAM(:,ITIME); % Nonlinear internal restoring force 

            FLINEA(:,ITIME)=f14_linear_int_rest_force(K,DISPLA(:,ITIME),Cnp,VELOCI(:,ITIME)); % 

Linear internal restoring force vector 

            PSEUFO(:,ITIME)=FLINEA(:,ITIME)-FNONLI(:,ITIME); % Pseudo force vector 
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        end 

Section 16.6.7: Convergence check 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %       The convergence criteria is checked for the time steps from 

        %       CONVTI+1 to LPTISE. If after checking these points some of 

        %       them have not converged yet, the convergence loop is 

        %       repeated all over again for those new not converged tme 

        %       steps. On the other hand, if all the time steps of the 

        %       current segment (until LPTISE) have converged the 

        %       convergence loop is finished and a new time segment 

        %       calculation is started. 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        pause(1); 

        disp('  ') 

        disp('Convergence check ... ') 

        OLDCOT=CONVTI; 

        convlock=1; 

        while CONVTI~=LPTISE 

            TT=CONVTI+1; 

            ST=CONVTI-FPTISE+2; 

            if norm(PSEUFO(:,TT))==0 

                PSFERR=norm(PSEUFO(:,TT)-PSFOLD(:,ST)); 

            else 

                PSFERR=norm(PSEUFO(:,TT)-PSFOLD(:,ST))/norm(PSEUFO(:,TT)); 

            end 

            if norm(DISPLA(:,TT))==0 

                DISERR=norm(DISPLA(:,TT)-DISOLD(:,ST)); 

            else 

                DISERR=norm(DISPLA(:,TT)-DISOLD(:,ST))/norm(DISPLA(:,TT)); 

            end 

            if PSFERR<=tol && DISERR<=tol 

                CONVTI=CONVTI+1; 

                disp('    ') 

                disp('Convergence achieved for the time step number ... ') 

                disp(CONVTI) 

            else 

                PSFOLD(:,OLDCOT-FPTISE+2:NSAMPL)=PSEUFO(:,OLDCOT+1:LPTISE); 

                DISOLD(:,OLDCOT-FPTISE+2:NSAMPL)=DISPLA(:,OLDCOT+1:LPTISE); 

                convlock=0; 

                break 

            end 

        end 

        disp('    ') 

        if convlock==0 

            NOTCON=CONVTI+1; 

            disp('New iteration required. Not convergence achieved for the time step number ... 

') 
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            disp(NOTCON) 

        elseif ITIMSE~=NTIMSE 

            disp('Convergence achieved for all the time steps within the current segment. Next 

segment will be evaluated ... ') 

        else 

            disp('Finish: Convergence achieved for all the time steps of the interest span  ') 

        end 

    end 

end 

Section 17: Output results post processing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The output results are postprocessed for each DOF 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

pause(1) 

disp('   ') 

disp('Starting output results post processing...  ') 

t=LODTIM(1:NRESIT); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Creation of plots tables in excel 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

pause(1) 

% Calculation the relative displacement and velocity 

DISREL=zeros(NDOF+1,NRESIT); 

VELREL=zeros(NDOF+1,NRESIT); 

DISREL(1,:)=DISPLA(1,:); 

DISREL(NDOF+1,:)=-DISPLA(NDOF,:); 

VELREL(1,:)=VELOCI(1,:); 

VELREL(NDOF+1,:)=-VELOCI(NDOF,:); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL(IDOF)=DISPLA(IDOF)-DISPLA(IDOF-1); 

        VELREL(IDOF)=VELOCI(IDOF)-VELOCI(IDOF-1); 

    end 

end 

% Tables and plot generation 

nullrow1=zeros(1,NRESIT); 

nullrow2=zeros(1,MEXCIT); 

for IDOF=1:NDOF+1 

    disp('  ') 

    disp('Generating tables and figures of the response of degree of freedom number...') 

    disp(IDOF) 

    pause(1) 

    if IDOF<NDOF+1 

        

f15_excel_tables_hftd_v2(IDOF,name,DISPLA(IDOF,:),VELOCI(IDOF,:),ACCELE(IDOF,:),PSEUFO(IDOF,1:NRE

SIT),FNLSTI(IDOF,:),FNLDAM(IDOF,:),FNONLI(IDOF,:),FLINEA(IDOF,:),KEY(IDOF,:),SPRFOR(IDOF,:),DASHF
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O(IDOF,:),t,UT(IDOF,:),UC(IDOF,:),UO(IDOF,:),EXCITA,DISFRE(IDOF,1:MEXCIT),VELFRE(IDOF,1:MEXCIT),A

CCFRE(IDOF,1:MEXCIT)); 

        

f16_plot_resp_hftd_v2(IDOF,name,DISPLA(IDOF,:),VELOCI(IDOF,:),ACCELE(IDOF,:),SPRFOR(IDOF,:),DASHF

O(IDOF,:),DISREL(IDOF,:),VELREL(IDOF,:),t,EXCITA,DISFRE(IDOF,1:MEXCIT),VELFRE(IDOF,1:MEXCIT),ACCF

RE(IDOF,1:MEXCIT),FOUACC(1:MEXCIT)); 

    else 

        

f15_excel_tables_hftd_v2(IDOF,name,nullrow1,nullrow1,nullrow1,nullrow1,nullrow1,nullrow1,nullrow1

,nullrow1,KEY(IDOF,:),SPRFOR(IDOF,:),DASHFO(IDOF,:),t,UT(IDOF,:),UC(IDOF,:),UO(IDOF,:),EXCITA,nul

lrow2,nullrow2,nullrow2); 

        

f16_plot_resp_hftd_v2(IDOF,name,nullrow1,nullrow1,nullrow1,SPRFOR(IDOF,:),DASHFO(IDOF,:),DISREL(I

DOF,:),VELREL(IDOF,:),t,EXCITA,nullrow2,nullrow2,nullrow2,nullrow2); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Change the name of variables to be saved 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('  ') 

disp('Changing the name of the selected variables to be saved...') 

%   The new names of the variables are created and stored using the 

%   function "f17_new_name_var" 

[vk,vc,vm,vtol,vg,vphi,vnatfreq,vt1,vw1,vxi1,vsignal,vdt,vnsampl,vntimse,vmexcit,vdeltaf,vexcita,

vlopass,vhipass,vnresit,vdispla,vveloci,vaccele,vpseufo,vnlstiff,vnldamp,vfnonli,vflinea,vkey,vsp

rinfor,vdashfor,vdisfre,vvelfre,vaccfre,vt,vut,vuc,vdisrel,vvelrel,vfouacc]=f17_new_name_var_hftd

_v2(name); 

%   The new names are assigned to all the variables to be saved. 

eval([vk ' = K;']); 

eval([vc ' = C;']); 

eval([vm ' = M;']); 

eval([vtol ' = tol;']); 

eval([vg ' = g;']); 

eval([vphi ' = Phi;']); 

eval([vnatfreq ' = Natfreq;']); 

eval([vt1 ' = T1;']); 

eval([vw1 ' = w1;']); 

eval([vxi1 ' = xi1;']); 

eval([vsignal ' = signal;']); 

eval([vdt ' = DT;']); 

eval([vnsampl ' = NSAMPL;']); 

eval([vntimse ' = NTIMSE;']); 

eval([vmexcit ' = MEXCIT;']); 

eval([vdeltaf ' = DELTAF;']); 

eval([vexcita ' = EXCITA;']); 

eval([vlopass ' = LOPASS;']); 

eval([vhipass ' = HIPASS;']); 

eval([vnresit ' = NRESIT;']); 

eval([vdispla ' = DISPLA;']); 

eval([vveloci ' = VELOCI;']); 
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eval([vaccele ' = ACCELE;']); 

eval([vpseufo ' = PSEUFO;']); 

eval([vnlstiff ' = FNLSTI;']); 

eval([vnldamp ' = FNLDAM;']); 

eval([vfnonli ' = FNONLI;']); 

eval([vflinea ' = FLINEA;']); 

eval([vkey ' = KEY;']); 

eval([vsprinfor ' = SPRFOR;']); 

eval([vdashfor ' = DASHFO;']); 

eval([vdisfre ' = DISFRE;']); 

eval([vvelfre ' = VELFRE;']); 

eval([vaccfre ' = ACCFRE;']); 

eval([vt ' = t;']); 

eval([vut ' = UT;']); 

eval([vuc ' = UC;']); 

eval([vdisrel ' = DISREL;']); 

eval([vvelrel ' = VELREL;']); 

eval([vfouacc ' = FOUACC;']); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The selected variables are saved 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

pause(1) 

disp('  ') 

disp('Saving selected set of variables...') 

%File path where the data is store. The file path can be changed to another 

%desired location. 

path='C:\Users\slfx\Documents\Fernando\Graduation project\Master thesis\Analysis files\Matlab 

models\HFTD_freq dependence\HFTD Output results\Variables\'; 

%path='C:\Users\Fernando Sirumbal\Documents\Documents FERNANDO\TU Delft\Academic\MSc 

thesis\Master thesis\Analysis files\Matlab models\HFTD_freq dependence\HFTD Output 

results\Variables\'; 

%Name of the matlab data files 

filename1=[path 'results_' name]; %Name of the matlab file containing the results variables 

filename2=[path 'data_' name]; %Name of the matlab file conatining the data variables 

%Saving the variables in both files 

save(filename1,vdispla,vveloci,vaccele,vpseufo,vnlstiff,vnldamp,vfnonli,vflinea,vkey,vsprinfor,vd

ashfor,vdisfre,vvelfre,vaccfre,vt,vfouacc,vut,vuc,vdisrel,vvelrel); 

save(filename2,vk,vc,vm,vtol,vg,vphi,vnatfreq,vt1,vw1,vxi1,vsignal,vdt,vnsampl,vntimse,vmexcit,vd

eltaf,vexcita,vlopass,vhipass,vnresit); 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Delete the variables from the workspace 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('  ') 

disp('Deleting all variables from the workspace...') 

clear; 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       End of the program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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disp('  ') 

disp('End of the HFTD program... Check the results files saved in the specified folder') 

Published with MATLAB® R2012b 
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B.1.2. HFTD selected functions 

 

function [DCYFAC]=f5_decay_func(INPFAC,LPTISE,NDCAYF,DT,TDCAYF) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   HFTD for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to determine the factors of the decaying function appended to 

%   the ground acceleration and pseudo force. 

% 

%   inputs 

% 

%       INPFAC  Vector containing the input (ground acceleration or pseudo 

%               force)factors for each time step. 

%       LPTISE  Index indicating the last time point of the current 

%               segment. 

%       NDCAYF  Number of time steps defining the length of the decaying 

%               function. 

%       DT      Time step size. 

%       TDCAYF  Decaying function length. 

% 

%   outputs 

% 

%       DCYFAC  Decaying function factors for the input (ground 

%               acceleration or pseudo force). Different options for 

%               decaying function expressions can be used by uncomment the 

%               chosen one. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

f0=INPFAC(LPTISE); 

DCYFAC=zeros(1,NDCAYF); 

for k=1:NDCAYF 

DCYFAC(k)=f0*(1-k*DT/TDCAYF); 

%DCYFAC(k)=f0*(1-k*DT/TDCAYF+sin(2*pi*k*DT/TDCAYF)/(2*pi)); 

end 

Published with MATLAB® R2012b 
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function [FOUREA,FOUIMA]=f6_fast_fourier_transf(x,N,MEXCIT) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   HFTD for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to apply the direct discrete Fourier transform to a time 

%   dependent variable 

% 

%   inputs 

% 

%       x       Time dependent variable (signal) to which direct Fourier 

%               tranform is applied. 

%       N       Number of time points contained in x. 

%       MEXCIT  Maximum number of frequency samples to be analyzed. 

% 

% 

%   outputs 

% 

%       FOUREA  Real part of the direct Fourier transform of signal x. 

%       FOUIMA  Imaginary part of the direct Fourier transform of signal x. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% FFT computation 

y = fft(x,N); 

rey=real(y); 

imy=imag(y); 

% Scale FFT output 

reh=rey/N; 

imh=imy/N; 

% Copy only the frequency responses that are going to be used in the 

% frequency domain analysis. The conjugates are not required to be copied 

% since they do not provide additional information. 

FOUREA(1,:)=reh(1:MEXCIT); 

FOUIMA(1,:)=imh(1:MEXCIT); 

Published with MATLAB® R2012b 
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function 

[DIFREA,DIFRIM]=f7_solver_pseudo_lin_direct_freq_v2(K,C,Cfd,Chy,M,w,NDOF,FOUACR,FOUACI,FOUPFR,FOU

PFI) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   HFTD for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to solve a linear system in the frequency domain using the 

%   direct method 

% 

%              [-(w^2)*M + i*w*C + K] u(w) = -M*I*ug(w) + q(w) 

% 

%   inputs 

% 

%       K       Linear elastic stiffness matrix of the system. 

%       C       Linear elastic constant damping matrix of the system. 

%       Cfd     Linear elastic frequency dependent damping matrix of the 

%               system. 

%       Chy     Linear elastic hysteretic damping matrix of the system. 

%       M       Mass matrix of the system. 

%       w       Excitation frequency. 

%       NDOF    Number of degres of freedom. 

%       FOUACR  Fourier transform of the ground acceleration (real part) 

%               corresponding to the excitation frequency w 

%       FOUACI  Fourier transform of the ground acceleration (imaginary part) 

%               corresponding to the excitation frequency w 

%       FOUPFR  Fourier transform of the pseudo force vector (real part) 

%               corresponding to the excitation frequency w 

%       FOUPFI  Fourier transform of the pseudo force vector (imaginary part) 

%               corresponding to the excitation frequency w 

% 

%   outputs 

% 

%       DIFREA  Displacement vector in the frequency domain (real part) 

%               obtained from the solution of the linear system of 

%               equations. 

% 

%       DIFRIM  Displacement vector in the frequency domain (imaginary 

%               part) obtained from the solution of the linear system of 

%               equations. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Components of the modified stiffness matrix in the frequency domain 

A=K-(w^2)*M; 

B=w*(C+Cfd+Chy); 

% Assembling the modified stiffness matrix 
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KMODF=[A B;-B A]; 

% Rigig body motion vector 

l=ones(NDOF,1); 

% Real part of the modified force vector 

FMODRE=(-FOUACR*M*l)+FOUPFR; 

% Imaginary part of the modified force vector 

FMODIM=(-FOUACI*M*l)+FOUPFI; 

% Assembling the modified force vector 

FORMDF=[FMODIM;FMODRE]; 

% Solution of the system of equations 

SOL=KMODF\FORMDF; 

% Spliting the solution between real and imaginary terms 

DIFRIM=SOL(1:NDOF); 

DIFREA=SOL(NDOF+1:2*NDOF); 

Published with MATLAB® R2012b 
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function [IFOURE,IFOUIM]=f8_inv_fast_fourier_transf(x,N,FPTISE,LPTISE) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   HFTD for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to apply the inverse discrete Fourier transform to a time 

%   dependent variable 

% 

%   inputs 

% 

%       x       Frequency dependent complex variable (spectrum) to which inverse Fourier 

%               tranform is applied. 

%       N       Number of frequency points contained in x. 

%       FPTISE  First time point of the signal that is copied as output 

%       LPTISE  Last time point of the signal that is copied as output 

% 

%   outputs 

% 

%       IFOURE  Real part of the inverse Fourier transform of spectrum x. 

%       IFOUIM  Imaginary part of the inverse Fourier transform of spectrum x. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% IFFT computation 

y = ifft(N*x,N,'symmetric'); 

rey=real(y); 

imy=imag(y); 

% Copy only the results of the time steps within the current time segment 

IFOURE=rey(FPTISE:LPTISE); 

IFOUIM=imy(FPTISE:LPTISE); 

Published with MATLAB® R2012b 
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function FLINEA=f14_linear_int_rest_force(K,DISPLA,C,VELOCI) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   HFTD for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the internal linear restoring force 

% 

% 

%   inputs 

% 

%       K       Stiffness matrix of the system 

%       DISPLA  Displacement vector 

%       C       Damping matrix of the system 

%       VELOCI  Velocity vector 

% 

% 

%   outputs 

% 

%       FLINEA  Vector containing the linear restoring force 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

FLINEA=K*DISPLA+C*VELOCI; 

Published with MATLAB® R2012b 

 

 

 

 

 

 

 

 

 

 

http://www.mathworks.com/products/matlab


Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

Appendix B: MATLAB Routines 

 

193 

 

B.2. Newmark method code 
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% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Newmark method for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   This script execute the Newmark method for linear or nonlinear simplfied 

%   dynamic models of one or more degrees of freedom (DOF's) subjected to 

%   base (ground) acceleration. 

% 

%   After defining the system properties and the load signal, the following 

%   results are obtained: time history displacement, velocity, acceleration 

%   and nonlinear internal forces of the system. 

% 

%   The name of the function indicating the type of nonlinearity to be used 

%   in the problem is indicated in Section 11. The functions describing 

%   type of tangential stiffnes and damping matrix should be selected. 

%   Besides, the non-linear stiffness and damping models are defined inside 

%   the function "f18_Newt_Raph_modf_v6". 

% 

%   The output results are saved as excel tables, figures and matlab data 

%   files. The file path where these output results files are saved should 

%   be indicated Section 12 of this script and in the function files 

%   "f19_excel_tables_newm" and "f20_plot_resp_newm". 

% 

% 

Section 1: File name 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%      All the output results of the program will be saved in the folder 

%      "Output results" located in the work folder. The name specified by 

%      the user is used to save the output files. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

clear; 

disp('==========================================================================') 

disp('   Problem data                   ') 

disp('==========================================================================') 

name=input('\nEnter the name of the file (this name will be used to save the output data)... 

','s'); 

disp('   ') 

pause(2); 

Section 2: Newmark method parameters 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The Newmark parameters gamma and beta should be selected. Average 
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%       and linear acceleration cases are the two default options. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Define the Newmark method to be executed                  ') 

disp('==========================================================================') 

lock=0; 

while lock==0 

    pause(2); 

    opt=input('\nSelect a Newmark special case or the numerical values of the parameters gamma 

and beta. \nEnter "AA" for Average Acceleration or enter "LA" for Linear Acceleration, \nor "OC" 

for other case .... ','s'); 

    h=strcmp(opt,{'AA','LA','OC'}); 

    if h(1)==1 

        gama=0.5; 

        beta=0.25; 

        lock=1; 

    elseif h(2)==1 

        gama=0.5; 

        beta=1/6; 

        lock=1; 

    elseif h(3)==1 

        pause(1); 

        gama=input('\nEnter the value of gamma) .... '); 

        if gama<0 || gama>1 

            disp('   ') 

            disp('Error message: Not valid specified value for gamma') 

        else 

            pause(1); 

            beta=input('\nEnter the value of beta) .... '); 

            if beta<0 || beta>1 

            disp('   ') 

            disp('Error message: Not valid specified value for beta') 

            else 

            lock=1; 

            end 

        end 

    else 

        pause(2); 

        disp('   ') 

        disp('Error message: Option not correctly chosen. Choose one of the three available 

options') 

    end 

end 

Section 3: Exercise data definition 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Input the mass, damping and stiffness matrices of the simplified MDOF 
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%   system. The gravity constant and the tolerance and maximum number of 

%   iterations for non-linear analysis are also input by the user. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Define the elastic stiffness, elastic damping and mass matrices                   ') 

disp('==========================================================================') 

pause(1); 

lock=0; 

while lock==0 

    MCOF=input('\nEnter the masses of each degree of freedom m_i \n(in a row vector enter one 

mass per DOF).... '); 

    sizem=size(MCOF); 

    if sizem(1)~=1 

        disp(' ') 

        disp('Error message: The masses should be arranged in a row vector') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

NDOF=sizem(2); 

pause(1); 

disp(' ') 

disp('The number of degrees of freedom (NDOF) of the system is defined to be ') 

NDOF 

pause(1) 

disp(' ') 

disp('The masses of each degree of freedom are defined to be ') 

MCOF 

pause(1); 

lock=0; 

while lock==0 

    KELAST=input('\nEnter the linear elastic stiffness coefficients k_i of the springs \n(in a 

row vector enter NDOF+1 stiffness coefficients) .... '); 

    sizek=size(KELAST); 

    if sizek(1)~=1 

        disp('         ') 

        disp('Error message: The spring coefficients should be arranged in a row vector') 

        pause(2); 

    elseif sizek(2)~=NDOF+1 

        disp(' ') 

        disp('Error message: The row vectors defining the coefficientes of K should have NDOF+1 

components ') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 
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disp('The linear elastic stiffness coefficients are defined to be') 

KELAST 

pause(1); 

lock=0; 

while lock==0 

    CELAST=input('\nEnter the linear elastic damping coefficients c_i of the dashpots \n(in a row 

vector enter NDOF+1 damping coefficients)... '); 

    sizec=size(CELAST); 

    if sizec(1)~=1 

        disp(' ') 

        disp('Error message: The dashpots coefficients should be arranged in a row vector') 

        pause(2); 

    elseif sizec~=NDOF+1 

        disp(' ') 

        disp('Error message: The row vectors defining the coefficientes of C should have NDOF+1 

components ') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The linear elastic damping coefficients are defined to be ') 

CELAST 

pause(1); 

lock=0; 

while lock==0 

    g=input('\nEnter the value of the gravity constant g .... '); 

    sizeg=size(g); 

    if sizeg(1)~= 1 || sizeg(2)~=1 

        disp(' ') 

        disp('Error message: g must be a scalar value') 

        pause(2); 

    elseif g<=0 

        disp(' ') 

        disp('Error message: g must be defined as a positive value') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The gravity constant is defined to be ') 

g 

disp('   ') 

pause(1); 

lock=0; 

while lock==0 

    tol=input('\nEnter the convergence tolerance tol for noninear analysis.... '); 

    sizet=size(tol); 
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    if sizet(1)~= 1 || sizet(2)~=1 

        disp(' ') 

        disp('Error message: tol must be a scalar value') 

        pause(2); 

    elseif tol>0.01 || tol<=0 

        disp(' ') 

        disp('Error message: tol must be positive and smaller than 10^-2') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The tolerance for convergence check is defined to be ') 

tol 

pause(1); 

lock=0; 

while lock==0 

    maxite=input('\nEnter the maximum number of iterations for convergence check in nonlinear 

analysis .... '); 

    sizemax=size(maxite); 

    if sizemax(1)~= 1 || sizemax(2)~=1 

        disp(' ') 

        disp('Error message: maxite must be a scalar value') 

        pause(2); 

    elseif mod(maxite,1)~=0 || maxite<=0 

        disp(' ') 

        disp('Error message: maxite must be positive and integer') 

        pause(2); 

    else 

        lock=1; 

    end 

end 

disp(' ') 

disp('The maximum number of iterations for convergence check is defined to be ') 

maxite 

pause(2); 

Section 4: Construction of the linear elastic matrices of the system 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Based on the coefficients values defined in the previous section for 

%   each mass, spring and dashpot, the linear elastic matrices of the 

%   system are constructed using the function file "f1_linelast_mat". 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Linear elastic matrices                   ') 

disp('==========================================================================') 
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%Mass matrix 

M=zeros(NDOF); 

for IDOF=1:NDOF 

    M(IDOF,IDOF)=MCOF(IDOF); 

end 

l=ones(NDOF,1); 

P=-M*l; 

disp(' ') 

disp('The mass matrix M is') 

M 

pause(1); 

%Stiffness matrix 

K=f1_linelast_mat(NDOF,KELAST); 

disp(' ') 

disp('The linear elastic stiffness matrix K is') 

K 

pause(1); 

%Damping matrix 

C=f1_linelast_mat(NDOF,CELAST); 

disp(' ') 

disp('The linear elastic damping matrix C is') 

C 

pause(2); 

Section 5: Free vibration Eigen-analysis 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Eigen-analysis of the simplified system. Mode shape vectors, 

%   eigen-frequencies, damping ratio and generalized matrices of the system 

%   are calculated. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Free vibration natural frequencies and mode shape vectors                   ') 

disp('==========================================================================') 

[Phi,Natfreq]=eig(K,M); 

Mgen=transpose(Phi)*M*Phi; 

Kgen=transpose(Phi)*K*Phi; 

Cgen=transpose(Phi)*C*Phi; 

w1=sqrt(Natfreq(1,1)); 

T1=2*pi/w1; 

f1=1/T1; 

xi1=(1/(2*w1))*(Cgen(1,1)/Mgen(1,1)); 

pause(2); 

disp('   ') 

disp('The eigenvectors matrix is ') 

disp('   ') 

Phi 

pause(1); 
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disp('   ') 

disp('The eigenvalues (squared natural circular frequencies) matrix is') 

disp('   ') 

Natfreq 

pause(1); 

disp('   ') 

disp('The fundamental period of the system is defined to be') 

disp('   ') 

T1 

pause(1); 

disp('   ') 

disp('The fundamental circular frequency of the system is defined to be') 

disp('   ') 

w1 

pause(1); 

disp('   ') 

disp('The damping ratio of the fundamental mode of vibration of the system is defined to be') 

disp('   ') 

xi1 

disp('   ') 

pause(2); 

Section 6: Ground acceleration signal information 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The data of the ground acceleration signal must be stored as a 

%       matlab variable called "signal". This variable should be 

%       defined as a matrix with two columns and as many rows as time 

%       points available in the signal data. The first column contains the 

%       time steps values, which should start in time = 0 seconds, and 

%       should be equally spaced (constant time step size). The second 

%       colum contains the ground acceleration values normalized with the 

%       gravity acceleration g. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Ground acceleration signal information                   ') 

disp('==========================================================================') 

disp('   ') 

disp('Loading the ground acceleration variable "signal" from file signal.mat saved in the work 

folder...') 

disp('   ') 

pause(2); 

load signal; 

lock=1; 

while lock~=0 

    sizesig=size(signal); 

    [SIGTIM,NFACT,SIGNDT,lock,k]=f3_ground_accel_signal_check(signal,sizesig);% Function that 

checks the correct definition of the signal variable 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

Appendix B: MATLAB Routines 

 

201 

 

    if lock==1 

        disp('Error message: The first time step must be zero') 

        return 

    elseif lock==2 

        disp('Error message: Signal data variable must have two columns') 

        return 

    elseif lock==3 

        disp('Error message: Time step size of signal data is not constant') 

        disp('   ') 

        pause(2); 

        fprintf('The problem was found between the time points %d and %d\n',k,k+1) 

        return 

    end 

end 

SIGFAC=g*signal(:,2); 

TACSIG=NFACT*SIGNDT; 

pause(2); 

disp('   ') 

disp('The number of time points contained in the ground acceleration signal is ') 

disp('   ') 

NFACT 

pause(1); 

disp('   ') 

disp('The time step size of the ground acceleration signal is ') 

disp('   ') 

SIGNDT 

pause(1); 

disp('   ') 

disp('The duration of the ground acceleration signal is ') 

disp('   ') 

TACSIG 

pause(1); 

disp('   ') 

disp('The maximum ground acceleration magnitude contained in the signal is ') 

disp('   ') 

disp(max(abs(SIGFAC))) 

disp('   ') 

pause(2); 

Section 7: Time step size 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The time step size (DT) is calculated base on the signal 

%       discretization. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

disp('==========================================================================') 

disp('   Time step size               ') 

disp('==========================================================================') 
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lock=0; 

while lock==0 

    pause(2); 

    opt=input('\nSelect the option for the definition of the HFTD time step size (DT). Enter "0" 

for DT to be equal to the signal step \nsize (SIGNDT) or enter "1" for DT to be a multiple of 

SIGNDT .... '); 

    if opt==0 

        TIMES=1; 

        lock=1; 

    elseif opt==1 

        pause(2); 

        TIMES=input('\nEnter the number of times that SIGNDT should be multiplied to obtain (DT) 

.... '); 

        if mod(TIMES,1)~=0 || TIMES<=0 

            disp('   ') 

            disp('Error message: The input value should be a positive integer') 

        else 

            lock=1; 

        end 

    else 

        pause(2); 

        disp('   ') 

        disp('Error message: The input value must be 0 or 1') 

    end 

end 

DT=TIMES*SIGNDT; 

pause(1); 

disp('    ') 

disp('The Newmark time step size (DT) is defined to be') 

disp('    ') 

DT 

pause(2) 

Section 8: Time span of interest 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Time span for which the reponses are calculated. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('==========================================================================') 

disp('   Time span of interest                ') 

disp('==========================================================================') 

lock=0; 

while lock==0 

    pause(1); 

    TRESP=input('\nEnter the time span of interest in seconds .... '); 

    NFRESP=ceil(TRESP/DT); 

    TRESP=DT*NFRESP; 

    if TRESP<=0 

        disp('    ') 
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        disp('Error message: The time span of interest should be positive') 

    else 

        lock=1; 

    end 

end 

pause(1); 

disp('    ') 

disp('The number of time steps defining the time span of interest length (NFRESP) is defined to 

be') 

disp('    ') 

NFRESP 

pause(1); 

disp('    ') 

disp('The time span of interest for determining the response (TRESP) is defined to be') 

disp('    ') 

TRESP 

disp('    ') 

pause(2); 

Section 9: Ground acceleration signal modification 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The ground acceleration data is cutted or extended adding zeros 

%       until the response time span is covered. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

LODTIM=zeros(1,NFRESP); 

LODFAC=zeros(1,NFRESP); 

for k=1:NFRESP 

    LODTIM(k)=(k-1)*DT; 

    j=1+(k-1)*TIMES; 

    if j<=NFACT 

        LODFAC(k)=SIGFAC(j); 

    else 

        LODFAC(k)=0; 

    end 

end 

Section 10: Initialization of variables 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%    Initialize response and internal restoring force variables 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

DISPLA=zeros(NDOF,NFRESP); 

VELOCI=zeros(NDOF,NFRESP); 

ACCELE=zeros(NDOF,NFRESP); 

FNLSTI=zeros(NDOF,NFRESP); 

SPRFOR=zeros(NDOF+1,NFRESP); 

FNLDAM=zeros(NDOF,NFRESP); 

DASHFO=zeros(NDOF+1,NFRESP); 
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KEYSTI=zeros(NDOF+1,NFRESP); 

KEYDAM=zeros(NDOF+1,NFRESP); 

UT=zeros(NDOF+1,NFRESP); 

UC=zeros(NDOF+1,NFRESP); 

UO=zeros(NDOF+1,NFRESP); 

NITERA=zeros(1,NFRESP); 

Section 11: Newmark method execution for each time step 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The Newmark calculation process is executed step by step. A time 

%       step loop is defined in order to repeat the process for the 

%       NFRESP time steps previously determined. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('==========================================================================') 

disp('   Starting Newmark method execution for each time step              ') 

disp('==========================================================================') 

ACCELE(:,1)=M\(LODFAC(1)*P-FNLDAM(:,1)-FNLSTI(:,1)); % Initial acceleration 

for ITIME=1:NFRESP-1 

    VARLOD=(LODFAC(ITIME+1)-LODFAC(ITIME))*P; %Load increment 

    % 

    %Tangent stiffness matrix 

    %STIMAT=f15_tang_stiff_mat_elastoplast_hyster(NDOF,KEYSTI(:,ITIME),KELAST); 

    

STIMAT=f16_tang_stiff_mat_cubic_hyster_v2(NDOF,KEYSTI(:,ITIME),KELAST,DISPLA(:,ITIME),UO(:,ITIME)

); 

    %STIMAT=K; 

    % 

    %Tangent damping matrix 

    %DAMMAT=C 

    DAMMAT=f17_tang_damp_mat_nonlimet(NDOF,KEYDAM(:,ITIME),CELAST,DISPLA(:,ITIME)); 

    % 

    EFFSTI=STIMAT+((gama/beta/DT)*DAMMAT)+((1/beta/(DT^2))*M); % Effective stiffness matrix 

    

EFVALO=VARLOD+(((1/beta/DT)*M+(gama/beta)*DAMMAT)*VELOCI(:,ITIME))+(((1/2/beta)*M+((gama/2/beta)-

1)*DT*DAMMAT)*ACCELE(:,ITIME)); %Effective load increment 

    

[DISPLA(:,ITIME+1),VELOCI(:,ITIME+1),ACCELE(:,ITIME+1),FNLSTI(:,ITIME+1),FNLDAM(:,ITIME+1),NITERA

(ITIME),KEYSTI(:,ITIME+1),SPRFOR(:,ITIME+1),DASHFO(:,ITIME+1),UT(:,ITIME+1),UC(:,ITIME+1),UO(:,IT

IME+1),EMKEY]=f18_Newt_Raph_modf_v6(NDOF,DISPLA(:,ITIME),VELOCI(:,ITIME),ACCELE(:,ITIME),FNLSTI(:

,ITIME),FNLDAM(:,ITIME),EFVALO,EFFSTI,M,tol,KEYSTI(:,ITIME),SPRFOR(:,ITIME),DASHFO(:,ITIME),UT(:,

ITIME),UC(:,ITIME),UO(:,ITIME),ITIME,maxite,gama,beta,DT,LODFAC(ITIME+1),P,VARLOD,KELAST,CELAST); 

    if EMKEY~=100 

        return 

    end 

    if NITERA(ITIME)>maxite 

        return 

    else 

        fprintf('\nConvergence achieved for time step number %d',ITIME) 
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        disp('   ') 

    end 

end 

pause(2) 

Section 12: Output results post processing 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The output results are postprocessed for each DOF 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('   ') 

disp('Starting output results post processing...  ') 

t=LODTIM; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Creation of plots and tables in excel 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Calculation of the relative displacement and velocity 

DISREL=zeros(NDOF+1,NFRESP); 

VELREL=zeros(NDOF+1,NFRESP); 

DISREL(1,:)=DISPLA(1,:); 

DISREL(NDOF+1,:)=-DISPLA(NDOF,:); 

VELREL(1,:)=VELOCI(1,:); 

VELREL(NDOF+1,:)=-VELOCI(NDOF,:); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL(IDOF)=DISPLA(IDOF)-DISPLA(IDOF-1); 

        VELREL(IDOF)=VELOCI(IDOF)-VELOCI(IDOF-1); 

    end 

end 

% Tables and plots generation 

nullrow=zeros(1,NFRESP); 

for IDOF=1:NDOF+1 

    disp('  ') 

    disp('Generating tables and figures of the response of degree of freedom number...') 

    disp(IDOF) 

    pause(1) 

    if IDOF<NDOF+1 

        

f19_excel_tables_newm(IDOF,name,DISPLA(IDOF,:),VELOCI(IDOF,:),ACCELE(IDOF,:),FNLSTI(IDOF,:),FNLDA

M(IDOF,:),KEYSTI(IDOF,:),SPRFOR(IDOF,:),DASHFO(IDOF,:),t,UT(IDOF,:),UC(IDOF,:),UO(IDOF,:)) 

        

f20_plot_resp_newm(IDOF,name,DISPLA(IDOF,:),VELOCI(IDOF,:),ACCELE(IDOF,:),SPRFOR(IDOF,:),DASHFO(I

DOF,:),DISREL(IDOF,:),VELREL(IDOF,:),t) 

    else 

        

f19_excel_tables_newm(IDOF,name,nullrow,nullrow,nullrow,nullrow,nullrow,KEYSTI(IDOF,:),SPRFOR(IDO

F,:),DASHFO(IDOF,:),t,UT(IDOF,:),UC(IDOF,:),UO(IDOF,:)) 

        

f20_plot_resp_newm(IDOF,name,nullrow,nullrow,nullrow,SPRFOR(IDOF,:),DASHFO(IDOF,:),DISREL(IDOF,:)
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,VELREL(IDOF,:),t) 

    end 

end 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Changing the name of variables to be saved 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('  ') 

disp('Changing the name of the selected variables to be saved...') 

%   The new names of the variables are created and stored using the 

%   function f21_new_name_var_newm 

[vk,vc,vm,vtol,vg,vphi,vnatfreq,vt1,vw1,vxi1,vsignal,vdt,vdispla,vveloci,vaccele,vnlstiff,vnldamp

,vkeystiff,vkeydamp,vsprinfor,vdashfor,vt,vnitera,vut,vuc,vdisrel,vvelrel]=new_name_var_newm(name

); 

%   The new names are assigned to all the variables to be saved. 

eval([vk ' = K;']); 

eval([vc ' = C;']); 

eval([vm ' = M;']); 

eval([vtol ' = tol;']); 

eval([vg ' = g;']); 

eval([vphi ' = Phi;']); 

eval([vnatfreq ' = Natfreq;']); 

eval([vt1 ' = T1;']); 

eval([vw1 ' = w1;']); 

eval([vxi1 ' = xi1;']); 

eval([vsignal ' = signal;']); 

eval([vdt ' = DT;']); 

eval([vdispla ' = DISPLA;']); 

eval([vveloci ' = VELOCI;']); 

eval([vaccele ' = ACCELE;']); 

eval([vnlstiff ' = FNLSTI;']); 

eval([vnldamp ' = FNLDAM;']); 

eval([vkeystiff ' = KEYSTI;']); 

eval([vkeydamp ' = KEYDAM;']); 

eval([vsprinfor ' = SPRFOR;']); 

eval([vdashfor ' = DASHFO;']); 

eval([vt ' = t;']); 

eval([vnitera ' = NITERA;']); 

eval([vut ' = UT;']); 

eval([vuc ' = UC;']); 

eval([vdisrel ' = DISREL;']); 

eval([vvelrel ' = VELREL;']); 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       The selected variables are saved 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

pause(1) 

disp('  ') 

disp('Saving selected set of variables...') 

%File path where the data is store. The file path can be changed to another 
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%desired location. 

path='C:\Users\slfx\Documents\Fernando\Graduation project\Master thesis\Analysis files\Matlab 

models\Newmark_nonli_MDOF\Newm Output results\'; 

%path='C:\Users\Fernando Sirumbal\Documents\Documents FERNANDO\TU Delft\Academic\MSc 

thesis\Master thesis\Analysis files\Matlab models\Newmark_nonli_MDOF\Newm Output results\'; 

%Name of the matlab data files 

filename1=[path 'results_' name]; %Name of the matlab file containing the results variables 

filename2=[path 'data_' name]; %Name of the matlab file conatining the data variables 

%Saving the variables in both files 

save(filename1,vdispla,vveloci,vaccele,vkeystiff,vkeydamp,vsprinfor,vdashfor,vt,vnlstiff,vnldamp,

vnitera,vut,vuc,vdisrel,vvelrel); 

save(filename2,vk,vc,vm,vtol,vg,vphi,vnatfreq,vt1,vw1,vxi1,vsignal,vdt); 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       Deleting all the variables 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

pause(1) 

disp('  ') 

disp('Deleting all variables from the workspace...') 

clear; 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       End of the program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

pause(1) 

disp('  ') 

disp('End of Newmark program... Check the results files saved in the specified folder') 

Published with MATLAB® R2012b 
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B.2.2. Newmark selected functions 

 

function STIMAT=f15_tang_stiff_mat_elastoplast_hyster(NDOF,KEY,KELAST) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Newmark method for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the nonlinear tangential stiffness matrix of the 

%   current time step for the linear elastoplastic model 

% 

%   inputs 

% 

%       NDOF        Number of degrees of freedom of the system 

%       KEY         Vector specifying the nonlinear state of each degree of 

%                   freedom in the previous time step 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       KELAST      Vector containing the elastic stiffness coefficients of 

%                   the springs 

% 

% 

%   outputs 

% 

%       STIMAT      Tangential stiffness matrix of the current time step 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

F=zeros(NDOF+1,NDOF); 

STIMAT=zeros(NDOF); 

if KEY(1)==0 

    F(1,1)=KELAST(1); 

end 

if KEY(NDOF+1)==0 

    F(NDOF+1,NDOF)=-KELAST(NDOF+1); 

end 

if NDOF>1 

    for IDOF=2:NDOF 

        if KEY(IDOF)==0 

            F(IDOF,IDOF-1)=-KELAST(IDOF); 

            F(IDOF,IDOF)=KELAST(IDOF); 

        end 

    end 

end 
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for IDOF=1:NDOF 

    STIMAT(IDOF,:)=F(IDOF,:)-F(IDOF+1,:); 

end 

Published with MATLAB® R2012b 
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function STIMAT=f16_tang_stiff_mat_cubic_hyster_v2(NDOF,KEY,KELAST,DISPLA,UO) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Newmark method for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the nonlinear tangential stiffness matrix of the 

%   current time step for the cubic elastoplastic model 

% 

%   inputs 

% 

%       NDOF        Number of degrees of freedom of the system. 

%       KEY         Vector specifying the nonlinear state of each degree of 

%                   freedom in the previous time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       DISPLA      Displacement vector of the previous time step 

%       UO          Zero stress displacement of the previous time step 

%       KELAST      Vector containing the elastic stiffness coefficients of 

%                   the springs 

% 

% 

%   outputs 

% 

%       STIMAT      Tangential stiffness matrix of the current time step. 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%Relative displacement 

DISREL=zeros(NDOF+1,1); 

DISREL(1)=DISPLA(1); 

DISREL(NDOF+1)=-DISPLA(NDOF); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL(IDOF)=DISPLA(IDOF)-DISPLA(IDOF-1); 

    end 

end 

% Stiffness matrix coefficients 

KTANG=8-(32/9)*((DISREL-UO).*(DISREL-UO)); 

F=zeros(NDOF+1,NDOF); 

STIMAT=zeros(NDOF); 

if KELAST(1)==0 

    F(1,1)=0; 

elseif KEY(1)==0 || KEY(1)==3 

    F(1,1)=KTANG(1); 

elseif KEY(1)==2 
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    F(1,1)=KELAST(1); 

end 

if KELAST(NDOF+1)==0 

    F(NDOF+1,NDOF)=0; 

elseif KEY(NDOF+1)==0 || KEY(NDOF+1)==3 

    F(NDOF+1,NDOF)=-KTANG(NDOF+1); 

elseif KEY(NDOF+1)==2 

    F(NDOF+1,NDOF)=-KELAST(NDOF+1); 

end 

if NDOF>1 

    for IDOF=2:NDOF 

        if KELAST(IDOF)==0 

            F(IDOF,IDOF-1)=0; 

            F(IDOF,IDOF)=0; 

        elseif KEY(IDOF)==0 || KEY(IDOF)==3 

            F(IDOF,IDOF-1)=-KTANG(IDOF); 

            F(IDOF,IDOF)=KTANG(IDOF); 

        elseif KEY(IDOF)==2 

            F(IDOF,IDOF-1)=-KELAST(IDOF); 

            F(IDOF,IDOF)=KELAST(IDOF); 

        end 

    end 

end 

for IDOF=1:NDOF 

    STIMAT(IDOF,:)=F(IDOF,:)-F(IDOF+1,:); 

end 

Published with MATLAB® R2012b 

 

 

 

 

 

 

 

 

 

 

 

http://www.mathworks.com/products/matlab


Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

Appendix B: MATLAB Routines 

 

212 

 

function DAMMAT=F17_tang_damp_mat_nonlimet(NDOF,KEY,CELAST,DISPLA) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Newmark method for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the nonlinear tangential damping matrix of the 

%   current time step for the quadractic displacement dependent viscous 

%   model 

% 

%   inputs 

% 

%       NDOF        Number of degrees of freedom of the system. 

%       KEY         Vector specifying the nonlinear state of each degree of 

%                   freedom in the previous time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       DISPLA      Displacement vector of the previous time step 

%       UO          Zero stress displacement of the previous time step 

%       CELAST      Vector containing the elastic damping coefficients of 

%                   the dashpots 

% 

% 

%   outputs 

% 

%       DAMMAT      Tangential damping matrix of the current time step. 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

%Nonlinear damping parameters 

alfa=1; 

a=zeros(NDOF+1,1); 

for IDOF=1:NDOF+1 

    if CELAST(IDOF)>0 

        a(IDOF)=alfa; 

    elseif CELAST(IDOF)<0 

        a(IDOF)=-alfa; 

    end 

end 

%Relative displacement 

DISREL=zeros(NDOF+1,1); 

DISREL(1)=DISPLA(1); 

DISREL(NDOF+1)=-DISPLA(NDOF); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL(IDOF)=DISPLA(IDOF)-DISPLA(IDOF-1); 
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    end 

end 

% Damping matrix coefficients 

F=zeros(NDOF+1,NDOF); 

DAMMAT=zeros(NDOF); 

CTANG=transp(CELAST).*(1+a.*(DISREL.^2)); 

if KEY(1)==0 

    F(1,1)=CTANG(1); 

end 

if KEY(NDOF+1)==0 

    F(NDOF+1,NDOF)=-CTANG(NDOF+1); 

end 

if NDOF>1 

    for IDOF=2:NDOF 

        if KEY(IDOF)==0 

            F(IDOF,IDOF-1)=-CTANG(IDOF); 

            F(IDOF,IDOF)=CTANG(IDOF); 

        end 

    end 

end 

for IDOF=1:NDOF 

    DAMMAT(IDOF,:)=F(IDOF,:)-F(IDOF+1,:); 

end 

Published with MATLAB® R2012b 
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function 

[DISPLAOUT,VELOCOUT,ACCELEOUT,FNLSTIOUT,FNLDAMOUT,NITERA,KEYSTIOUT,SPRFOROUT,DASHFOUT,UTOUT,UCOUT

,UOOUT,EMKEY]=f18_Newt_Raph_modf_v6(NDOF,DISPLAIN,VELOCIN,ACCELEIN,FNLSTIN,FNLDAMIN,EFVALO,EFFSTI

,M,tol,KEYSTIN,SPRFORIN,DASHFOIN,UTIN,UCIN,UOIN,ITIME,maxite,gama,beta,DT,LODFAC,P,VARLOD,KELAST,

CELAST) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Newmark method for simplified MDOF systems 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Modified Newton Raphson iterative procedure to calculate the non-linear 

%   response of the system. The file containing the non-linear models for 

%   stiffness and damping should be selected below 

% 

%   inputs 

% 

% 

%       NDOF        Number of degrees of freedom of the system. 

%       DISPLAIN    Displacement vector of the previous time step 

%       VELOCIN     Velocity vector of the previous time step 

%       ACCELEIN    Acceleration vector of the previous time step 

%       FNLSTIN     Non-linear restoring stiffness force vector of the 

%                   previous time step 

%       FNLDAMIN    Non-linear restoring damping force vector of the 

%                   previous time step 

%       EFVALO      Effective load increment of the current time step 

%       EFFSTI      Effective stiffness matrix of the current time step 

%       M           Mass matrix of the system 

%       tol         Tolerance for convergence criteria 

%       KEYSTIN     Vector specifying the stiffness nonlinear state of each 

%                   degree of freedom in the previous time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       SPRFORIN    Spring internal stiffness force of the previous time 

%                   step 

%       DASHFOIN    Dashpot internal damping force of the previous time 

%                   step 

%       UTIN        Maximum tensile displacement in the elastic range of 

%                   the previous time step 

%       UCIN        Maximum compression displacement in the elastic range 

%                   of the previous time step 

%       UOIN        Zero stress displacement of the previous time step 

%       ITIME       Current time step index 

%       maxite      Maximum number of iterations 

%       gamma       gamma parameter of the Newmark method 

%       beta        beta parameter of the Newmark method 

%       DT          Time step size 
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%       LODFAC      Load factor of the current time step 

%       P           Load vector 

%       VARLOD      Load increment of the current time step 

%       KELAST      Vector containing the elastic stiffness coefficients of 

%                   the springs 

%       CELAST      Vector containing the elastic damping coefficients of 

%                   the dashpots 

% 

% 

%   outputs 

% 

%       DISPLAOUT   Displacement vector of the current time step 

%       VELOCOUT    Velocity vector of the current time step 

%       ACCELEOUT   Acceleration vector of the current time step 

%       FNLSTIOUT   Non-linear restoring stiffness force vector of the 

%                   current time step 

%       FNLDAMOUT   Non-linear restoring damping force vector of the 

%                   current time step 

%       NITERA      Number of iterations required to achieve convergence 

%       KEYSTIOUT   Vector specifying the stiffness nonlinear state of each 

%                   degree of freedom in the current time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       SPRFOROUT   Spring internal stiffness force of the current time 

%                   step 

%       DASHFOUT    Dashpot internal damping force of the current time 

%                   step 

%       UTOUT       Maximum tensile displacement in the elastic range of 

%                   the current time step 

%       UCOUT       Maximum compression displacement in the elastic range 

%                   of the current time step 

%       UOOUT       Zero stress displacement of the current time step 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Initialization of variables 

u=zeros(NDOF,maxite+1); 

fs=zeros(NDOF,maxite+1); 

fd=zeros(NDOF,maxite+1); 

dr=zeros(NDOF,maxite+1); 

du=zeros(NDOF,maxite+1); 

u(:,1)=DISPLAIN; 

fs(:,1)=FNLSTIN; 

fd(:,1)=FNLDAMIN; 

dr(:,1)=EFVALO; 

kt=EFFSTI; 

error=1; 

j=0; 
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%Start of iterative procedure 

while error>tol 

    j=j+1; 

    if j==maxite+1 

        NITERA=j; 

        fprintf('Error message: Maximum number of iterations (maxite) equal to %d has been 

reached without convergence\nin the time step number %d',maxite,ITIME+1) 

        return 

    end 

    du(:,j)=kt\dr(:,j); 

    u(:,j+1)=u(:,j)+du(:,j); 

    VARDIS=u(:,j+1)-DISPLAIN; %Displacement increment. 

    VARVEL=((gama/beta/DT)*VARDIS)-((gama/beta)*VELOCIN)+((1-gama/2/beta)*DT*ACCELEIN); %Velocity 

increment 

    VELOCOUT=VELOCIN+VARVEL; %Velocity of time step i+1 

    % 

    % Non-linear or linear stiffness force, internal spring force and state variable of time step 

i+1 

    

%[KEYSTIOUT,SPRFOROUT,fs(:,j+1),UTOUT,UCOUT,UOOUT,EMKEY]=f9_lin_stiff_int_force(NDOF,KEYSTIN,DISP

LAIN,u(:,j+1),SPRFORIN,KELAST); 

    

%[KEYSTIOUT,SPRFOROUT,fs(:,j+1),UTOUT,UCOUT,UOOUT,EMKEY]=f10_nonlin_hyster_stiff_int_force_v3(VEL

OCOUT,NDOF,KEYSTIN,DISPLAIN,u(:,j+1),SPRFORIN,UTIN,UCIN,UOIN,ITIME,KELAST); 

    

[KEYSTIOUT,SPRFOROUT,fs(:,j+1),UTOUT,UCOUT,UOOUT,EMKEY]=f11_nonlin_hyster_stiff_int_force_cubic(V

ELOCOUT,NDOF,KEYSTIN,DISPLAIN,u(:,j+1),UTIN,UCIN,UOIN,ITIME,KELAST); 

    if EMKEY~=100 

        return 

    end 

    % 

    %Nonlinear damping force and internal dashpot force of time step i+1 

    %[fd(:,j+1),DASHFOUT]=f12_lin_damp_int_force_v2(NDOF,VARVEL,DASHFOIN,CELAST); 

    [fd(:,j+1),DASHFOUT]=f13_nonlinmet_damp_int_force(NDOF,u(:,j+1),VELOCOUT,CELAST); 

    % 

    %Update the residual load increment for the next iteration 

    if j==1 

        dr(:,1)=VARLOD+(1/beta/DT)*M*VELOCIN+(1/2/beta)*M*ACCELEIN; 

    end 

    dr(:,j+1)=dr(:,j)-(fs(:,j+1)-fs(:,j)+fd(:,j+1)-fd(:,j)+(1/beta/(DT^2))*M*du(:,j)); 

    % 

    %Error calculation 

    error=norm(du(:,j))/norm(VARDIS); 

end 

% 

%Calculation of the system response for the time step i+1 

DISPLAOUT=u(:,j+1); 

FNLSTIOUT=fs(:,j+1); 

FNLDAMOUT=fd(:,j+1); 
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ACCELEOUT=M\(LODFAC*P-FNLDAMOUT-FNLSTIOUT); 

NITERA=j; 

Published with MATLAB® R2012b 
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B.3. Internal force models 

 

B.3.1. Stiffness force functions 

 

function 

[KEYOUT,INTFOROUT,FNLSTIOUT,UTOUT,UCOUT,UOOUT,EMKEY]=f9_lin_stiff_int_force(NDOF,KEYIN,DISPLA1,DI

SPLA2,INTFORIN,KELAST) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Stiffness force models 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the internal stiffness force corresponding to 

%   the linear elastic model 

% 

%   inputs 

% 

%       NDOF        Number of degrees of freedom of the system. 

%       KEYIN       Vector specifying the nonlinear state of each degree of 

%                   freedom in the previous time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       DISPLA1     Displacement vector of the previous time step 

%       DISPLA2     Displacement vector of the current time step 

%       INTFORIN    Spring internal stiffness force of the previous time 

%                   step 

%       KELAST      Vector containing the elastic stiffness coefficients of 

%                   the springs 

% 

% 

%   outputs 

% 

%       KEYOUT      Vector speciying the nonlinear state of each degree of 

%                   freedom in the current time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       INTFOROUT   Spring internal stiffness force of the current time 

%                   step 

%       FNLSIOUT    Non-linear restoring stiffness force vector of the 

%                   current time step 

% 

% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Calculation of relative displacements increments 

DISREL1=zeros(NDOF+1,1); 

DISREL2=zeros(NDOF+1,1); 

DISREL1(1)=DISPLA1(1); 

DISREL1(NDOF+1)=-DISPLA1(NDOF); 

DISREL2(1)=DISPLA2(1); 

DISREL2(NDOF+1)=-DISPLA2(NDOF); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL1(IDOF)=DISPLA1(IDOF)-DISPLA1(IDOF-1); 

        DISREL2(IDOF)=DISPLA2(IDOF)-DISPLA2(IDOF-1); 

    end 

end 

VARDISREL=DISREL2-DISREL1; 

% 

% Defining the nonlinear state and non-linear internal spring force for 

% each degree of freedom in the current time step 

EMKEY=100; 

KEYOUT=zeros(NDOF+1,1); 

INTFOROUT=zeros(NDOF+1,1); 

UTOUT=zeros(NDOF+1,1); 

UCOUT=zeros(NDOF+1,1); 

UOOUT=zeros(NDOF+1,1); 

for IDOF=1:NDOF+1 

    if KELAST(IDOF)==0 

        INTFOROUT(IDOF)=0; 

    elseif KEYIN(IDOF)==0 

        INTFOROUT(IDOF)=INTFORIN(IDOF)+KELAST(IDOF)*VARDISREL(IDOF); 

    end 

end 

% 

% Recalculation of the nonlinear restoring force vector for the current 

% time step 

FNLSTIOUT=zeros(NDOF,1); 

for IDOF=1:NDOF 

    FNLSTIOUT(IDOF)=INTFOROUT(IDOF)-INTFOROUT(IDOF+1); 

end 

Published with MATLAB® R2012b 
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function 

[KEYOUT,INTFOROUT,FNLSTIOUT,UTOUT,UCOUT,UOOUT,EMKEY]=f10_nonlin_hyster_stiff_int_force_v3(VELOCI,

NDOF,KEYIN,DISPLA1,DISPLA2,INTFORIN,UTIN,UCIN,UOIN,ITIME,KELAST) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Stiffness force models 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the internal stiffness force corresponding to 

%   the elastoplastic hysteretic model 

% 

%   inputs 

% 

% 

%       VELOCI      Velocity vector of the current time step. 

%       NDOF        Number of degrees of freedom of the system. 

%       KEYIN       Vector specifying the nonlinear state of each degree of 

%                   freedom in the previous time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       DISPLA1     Displacement vector of the previous time step 

%       DISPLA2     Displacement vector of the current time step 

%       INTFORIN    Spring internal stiffness force of the previous time 

%                   step 

%       UTIN        Maximum tensile displacement in the elastic range of 

%                   the previous time step 

%       UCIN        Maximum compression displacement in the elastic range 

%                   of the previous time step 

%       UOIN        Zero stress displacement of the previous time step 

%       ITIME       Current time step index 

%       KELAST      Vector containing the elastic stiffness coefficients of 

%                   the springs 

% 

% 

%   outputs 

% 

%       KEYOUT      Vector speciying the nonlinear state of each degree of 

%                   freedom in the current time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       INTFOROUT   Spring internal stiffness force of the current time 

%                   step 

%       FNLSIOUT    Non-linear restoring stiffness force vector of the 

%                   current time step 

%       UTOUT       Maximum tensile displacement in the elastic range of 

%                   the current time step 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

Appendix B: MATLAB Routines 

 

221 

 

%       UCOUT       Maximum compression displacement in the elastic range 

%                   of the current time step 

%       UOOUT       Zero stress displacement of the current time step 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Define the nonlinear elasto-plastic parameters for each degree of 

% freedom 

% This data has to be modified by the user depending of the problem data 

% 

TENSTR=[7.5 7.5 12.35 12.35 0 0 0 0 0 0];% Tensile strength for each degree of freedom 

COMSTR=[-7.5 -7.5 12.35 12.35 0 0 0 0 0 0];% Compressive strength for each degree of freedom 

if ITIME==1 

    for IDOF=1:NDOF+1 

        UTIN(IDOF)=TENSTR(IDOF)/KELAST(IDOF); 

        UCIN(IDOF)=COMSTR(IDOF)/KELAST(IDOF); 

    end 

    sizet=size(TENSTR); 

    sizec=size(COMSTR); 

    sizeut=size(UTIN); 

    sizeuc=size(UCIN); 

    sizeuo=size(UOIN); 

    % 

    % Checking if the number of parameters provided are enough 

    % 

    if sizet(2)<NDOF+1 || sizec(2)<NDOF+1 

        disp('Error message: the number coefficients of the vectors "TENSTR" and COMSTR, defined 

in function "nonlin_hyster_stiff_int_force...", should be equal or higher to NDOF +1') 

    elseif sizeut(2)<NDOF+1 || sizeuc(2)<NDOF+1 || sizeuo(2)<NDOF+1 

        disp('Error message: the number coefficients of the vectors "UTIN", "UCIN" AND "UOIN", 

defined in function "nonlin_hyster_stiff_int_force", should be equal or higher to NDOF +1') 

    end 

end 

% 

% Calculation of relative displacements increments and relative velocities 

% 

DISREL1=zeros(NDOF+1,1); 

DISREL2=zeros(NDOF+1,1); 

VELREL=zeros(NDOF+1,1); 

DISREL1(1)=DISPLA1(1); 

DISREL1(NDOF+1)=-DISPLA1(NDOF); 

DISREL2(1)=DISPLA2(1); 

DISREL2(NDOF+1)=-DISPLA2(NDOF); 

VELREL(1)=VELOCI(1); 

VELREL(NDOF+1)=-VELOCI(NDOF); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL1(IDOF)=DISPLA1(IDOF)-DISPLA1(IDOF-1); 

        DISREL2(IDOF)=DISPLA2(IDOF)-DISPLA2(IDOF-1); 
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        VELREL(IDOF)=VELOCI(IDOF)-VELOCI(IDOF-1); 

    end 

end 

VARDISREL=DISREL2-DISREL1; 

% 

% Defining the nonlinear state and nonlinear internal force for each degree 

% of freedom in the current time step 

EMKEY=100; 

KEYOUT=zeros(NDOF+1,1); 

INTFOROUT=zeros(NDOF+1,1); 

UTOUT=UTIN; 

UCOUT=UCIN; 

UOOUT=UOIN; 

for IDOF=1:NDOF+1 

    if KELAST(IDOF)==0 

        INTFOROUT(IDOF)=0; 

    elseif KEYIN(IDOF)==0 

        INTFOROUT(IDOF)=INTFORIN(IDOF)+KELAST(IDOF)*VARDISREL(IDOF); 

        if INTFOROUT(IDOF)>=TENSTR(IDOF) 

            KEYOUT(IDOF)=1; 

            INTFOROUT(IDOF)=TENSTR(IDOF); 

        elseif INTFOROUT(IDOF)<=COMSTR(IDOF) 

            KEYOUT(IDOF)=-1; 

            INTFOROUT(IDOF)=COMSTR(IDOF); 

        else 

            KEYOUT(IDOF)=0; 

        end 

    elseif KEYIN(IDOF)==1 

        INTFOROUT(IDOF)=TENSTR(IDOF); 

        if VELREL(IDOF)>0 

            KEYOUT(IDOF)=1; 

        else 

            KEYOUT(IDOF)=0; 

            if VARDISREL(IDOF)<0 

                INTFOROUT(IDOF)=TENSTR(IDOF)+KELAST(IDOF)*VARDISREL(IDOF); 

                UTOUT(IDOF)=DISREL1(IDOF); 

            else 

                UTOUT(IDOF)=DISREL2(IDOF); 

            end 

            UCOUT(IDOF)=UTOUT(IDOF)-(TENSTR(IDOF)-COMSTR(IDOF))/KELAST(IDOF); 

            UOOUT(IDOF)=UTOUT(IDOF)-TENSTR(IDOF)/KELAST(IDOF); 

        end 

    else 

        INTFOROUT(IDOF)=COMSTR(IDOF); 

        if VELREL(IDOF)<0 

            KEYOUT(IDOF)=-1; 

        else 

            KEYOUT(IDOF)=0; 

            if VARDISREL(IDOF)>0 

                INTFOROUT(IDOF)=COMSTR(IDOF)+KELAST(IDOF)*VARDISREL(IDOF); 
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                UCOUT(IDOF)=DISREL1(IDOF); 

            else 

                UCOUT(IDOF)=DISREL2(IDOF); 

            end 

            UTOUT(IDOF)=UCOUT(IDOF)+(TENSTR(IDOF)-COMSTR(IDOF))/KELAST(IDOF); 

            UOOUT(IDOF)=UTOUT(IDOF)-TENSTR(IDOF)/KELAST(IDOF); 

        end 

    end 

end 

% 

% Recalculation of the nonlinear restoring force vector for the current time 

% step 

FNLSTIOUT=zeros(NDOF,1); 

for IDOF=1:NDOF 

    FNLSTIOUT(IDOF)=INTFOROUT(IDOF)-INTFOROUT(IDOF+1); 

end 

Published with MATLAB® R2012b 
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function 

[KEYOUT,INTFOROUT,FNLSTIOUT,UTOUT,UCOUT,UOOUT,EMKEY]=f11_nonlin_hyster_stiff_int_force_cubic(VELO

CI,NDOF,KEYIN,DISPLA1,DISPLA2,UTIN,UCIN,UOIN,ITIME,KELAST) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Stiffness force models 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the internal stiffness force corresponding to 

%   the cubic elastoplastic hysteretic model 

% 

% 

%   inputs 

% 

%       VELOCI      Velocity vector of the current time step. 

%       NDOF        Number of degrees of freedom of the system. 

%       KEYIN       Vector specifying the nonlinear state of each degree of 

%                   freedom in the previous time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       DISPLA1     Displacement vector of the previous time step 

%       DISPLA2     Displacement vector of the current time step 

%       UTIN        Maximum tensile displacement in the elastic range of 

%                   the previous time step 

%       UCIN        Maximum compression displacement in the elastic range 

%                   of the previous time step 

%       UOIN        Zero stress displacement of the previous time step 

%       ITIME       Current time step index 

%       KELAST      Vector containing the elastic stiffness coefficients of 

%                   the springs 

% 

% 

%   outputs 

% 

%       KEYOUT      Vector speciying the nonlinear state of each degree of 

%                   freedom in the current time step. 

%                   KEY=0   Elastic behavior 

%                   KEY=1   Plastic behavior in tension 

%                   KEY=-1  Plastic behavior in compression 

%       INTFOROUT   Spring internal stiffness force of the current time 

%                   step 

%       FNLSIOUT    Non-linear restoring stiffness force vector of the 

%                   current time step 

%       UTOUT       Maximum tensile displacement in the elastic range of 

%                   the current time step 

%       UCOUT       Maximum compression displacement in the elastic range 

%                   of the current time step 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

Appendix B: MATLAB Routines 

 

225 

 

%       UOOUT       Zero stress displacement of the current time step 

% 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Define the nonlinear cubic elasto-plastic parameters for each degree of 

% freedom 

% Cubic non-linearity    fs=k1*u-k3*u^3 

% This data has to be modified by the user depending of the problem data 

% 

k1=[8 8 8 8 8 8 8 8 8 8]; 

k3=[32/27 32/27 32/27 32/27 32/27 32/27 32/27 32/27 32/27 32/27]; 

d=sqrt(k1./(3*k3)); 

TENSTR=(k1.*d)-k3.*(d.^3);% Tensile strength for each degree of freedom 

COMSTR=-TENSTR;% Compressive strength for each degree of freedom 

if ITIME==1 

    UTIN=transp(d); 

    UCIN=-UTIN; 

    sizet=size(TENSTR); 

    sizec=size(COMSTR); 

    sizeut=size(UTIN); 

    sizeuc=size(UCIN); 

    sizeuo=size(UOIN); 

    % 

    % Checking if the number of parameters provided are enough 

    % 

    if sizet(2)<NDOF+1 || sizec(2)<NDOF+1 

        disp('Error message: the number coefficients of the vectors "TENSTR" and COMSTR, defined 

in function "nonlin_hyster_stiff_int_force...", should be equal or higher to NDOF +1') 

    elseif sizeut(2)<NDOF+1 || sizeuc(2)<NDOF+1 || sizeuo(2)<NDOF+1 

        disp('Error message: the number coefficients of the vectors "UTIN", "UCIN" AND "UOIN", 

defined in function "nonlin_hyster_stiff_int_force", should be equal or higher to NDOF +1') 

    end 

end 

% 

% Calculation of relative displacements increments and relative velocities 

DISREL1=zeros(NDOF+1,1); 

DISREL2=zeros(NDOF+1,1); 

VELREL=zeros(NDOF+1,1); 

DISREL1(1)=DISPLA1(1); 

DISREL1(NDOF+1)=-DISPLA1(NDOF); 

DISREL2(1)=DISPLA2(1); 

DISREL2(NDOF+1)=-DISPLA2(NDOF); 

VELREL(1)=VELOCI(1); 

VELREL(NDOF+1)=-VELOCI(NDOF); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL1(IDOF)=DISPLA1(IDOF)-DISPLA1(IDOF-1); 

        DISREL2(IDOF)=DISPLA2(IDOF)-DISPLA2(IDOF-1); 



Numerical modeling of dam-reservoir interaction seismic response 
using the Hybrid Frequency–Time Domain (HFTD) method 

Appendix B: MATLAB Routines 

 

226 

 

        VELREL(IDOF)=VELOCI(IDOF)-VELOCI(IDOF-1); 

    end 

end 

VARDISREL=DISREL2-DISREL1; 

% 

% Defining the nonlinear state and nonlinear internal force for each degree 

% of freedom in the current time step 

EMKEY=100; %Value of state variable for error message 

KEYOUT=zeros(NDOF+1,1); 

INTFOROUT=zeros(NDOF+1,1); 

UTOUT=UTIN; 

UCOUT=UCIN; 

UOOUT=UOIN; 

for IDOF=1:NDOF+1 

    if KELAST(IDOF)==0 

        INTFOROUT(IDOF)=0; 

    elseif KEYIN(IDOF)==0 

        if DISREL2(IDOF)>=UTIN(IDOF) 

            KEYOUT(IDOF)=1; 

            INTFOROUT(IDOF)=TENSTR(IDOF); 

        elseif DISREL2(IDOF)<=UCIN(IDOF) 

            KEYOUT(IDOF)=-1; 

            INTFOROUT(IDOF)=COMSTR(IDOF); 

        else 

            KEYOUT(IDOF)=0; 

            INTFOROUT(IDOF)=k1(IDOF)*(DISREL2(IDOF)-UOIN(IDOF))-k3(IDOF)*((DISREL2(IDOF)-

UOIN(IDOF))^3); 

        end 

    elseif KEYIN(IDOF)==1 

        INTFOROUT(IDOF)=TENSTR(IDOF); 

        if VELREL(IDOF)>0 

            KEYOUT(IDOF)=1; 

        else 

            KEYOUT(IDOF)=2; 

            if VARDISREL(IDOF)<0 

                INTFOROUT(IDOF)=TENSTR(IDOF)+KELAST(IDOF)*VARDISREL(IDOF); 

                UTOUT(IDOF)=DISREL1(IDOF); 

            else 

                UTOUT(IDOF)=DISREL2(IDOF); 

            end 

            UOOUT(IDOF)=UTOUT(IDOF)-TENSTR(IDOF)/KELAST(IDOF); 

            UCOUT(IDOF)=UOOUT(IDOF)-d(IDOF); 

        end 

    elseif KEYIN(IDOF)==2 

        if DISREL2(IDOF)<=UOIN(IDOF) 

            KEYOUT(IDOF)=3; 

            INTFOROUT(IDOF)=k1(IDOF)*(DISREL2(IDOF)-UOIN(IDOF))-k3(IDOF)*((DISREL2(IDOF)-

UOIN(IDOF))^3); 

        elseif DISREL2(IDOF)>= UTIN(IDOF) 

            KEYOUT(IDOF)=1; 
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            INTFOROUT(IDOF)=TENSTR(IDOF); 

        else 

            KEYOUT(IDOF)=2; 

            INTFOROUT(IDOF)=KELAST(IDOF)*(DISREL2(IDOF)-UOIN(IDOF)); 

        end 

    elseif KEYIN(IDOF)==3 

        if DISREL2(IDOF)<=UCIN(IDOF) 

            KEYOUT(IDOF)=-1; 

            INTFOROUT(IDOF)=COMSTR(IDOF); 

        elseif DISREL2(IDOF)>= UOIN(IDOF) 

            KEYOUT(IDOF)=2; 

            INTFOROUT(IDOF)=KELAST(IDOF)*(DISREL2(IDOF)-UOIN(IDOF)); 

        else 

            KEYOUT(IDOF)=3; 

            INTFOROUT(IDOF)=k1(IDOF)*(DISREL2(IDOF)-UOIN(IDOF))-k3(IDOF)*((DISREL2(IDOF)-

UOIN(IDOF))^3); 

        end 

    else 

        EMKEY=KEYIN(IDOF); 

        SPRINGNUM=IDOF; 

        fprintf('\nNot defined state variable KEYIN=%d of spring number %d for the calculation of 

time step %d\n',EMKEY,SPRINGNUM,ITIME+1) 

        return 

    end 

end 

% 

% Recalculation of the nonlinear restoring force vector for the current time 

% step 

FNLSTIOUT=zeros(NDOF,1); 

for IDOF=1:NDOF 

    FNLSTIOUT(IDOF)=INTFOROUT(IDOF)-INTFOROUT(IDOF+1); 

end 

Published with MATLAB® R2012b 
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B.3.2. Damping force functions 

 

function [FNLDAMOUT,INTFOROUT]=f12_lin_damp_int_force_v2(NDOF,VARVEL,INTFORIN,CELAST) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Damping force models 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the internal damping force corresponding to 

%   the linear model 

% 

%   inputs 

% 

%       NDOF        Number of degrees of freedom of the system 

%       VARVEL      Velocity increment vector from the previous to the 

%                   current time step 

%       INTFORIN    Dashpot internal damping force of the previous time 

%                   step 

%       CELAST      Vector containing the linear damping coefficients of 

%                   the dashpots 

% 

% 

%   outputs 

% 

%       INTFOROUT   Dashpot internal damping force of the current time 

%                   step 

%       FNLDAMOUT   Non-linear restoring damping force vector of the 

%                   current time step 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Calculating the relative variation of velocity 

VARVELREL=zeros(NDOF+1,1); 

VARVELREL(1)=VARVEL(1); 

VARVELREL(NDOF+1)=-VARVEL(NDOF); 

if NDOF>=2 

    for IDOF=2:NDOF 

        VARVELREL(IDOF)=VARVEL(IDOF)-VARVEL(IDOF-1); 

    end 

end 

% 

% Calculation of dashpot force 

INTFOROUT=zeros(NDOF+1,1); 

for IDOF=1:NDOF+1 

    INTFOROUT(IDOF)=INTFORIN(IDOF)+CELAST(IDOF)*VARVELREL(IDOF); 
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end 

% 

% Calculation of nonlinear internal damping force 

FNLDAMOUT=zeros(NDOF,1); 

for IDOF=1:NDOF 

    FNLDAMOUT(IDOF)=INTFOROUT(IDOF)-INTFOROUT(IDOF+1); 

end 

Published with MATLAB® R2012b 
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function [FNLDAMOUT,INTFOROUT]=f13_nonlinmet_damp_int_force(NDOF,DISPLA,VELOCI,CELAST) 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%     Damping force models 

%       L. Fernando Sirumbal Z. 

%       April, 2013 

% 

%   Function to calculate the internal damping force corresponding to 

%   the non-linear displacement dependent model 

% 

%   inputs 

% 

%       NDOF        Number of degrees of freedom of the system 

%       DISPLA      Displacement vector of the current time step 

%       VELOCI      Velocity vector of the current time step 

%       CELAST      Vector containing the linear damping coefficients of 

%                   the dashpots 

% 

% 

%   outputs 

% 

%       INTFOROUT   Dashpot internal damping force of the current time 

%                   step 

%       FNLDAMOUT   Non-linear restoring damping force vector of the 

%                   current time step 

% 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 

% Quadratic displacement dependent non-linearity 

%   fd=CELAST*VELOCI(ALFA*DISPLA^2+1) 

% 

%Nonlinear damping parameters 

alfa=1; 

% 

%Relative displacement 

DISREL=zeros(NDOF+1,1); 

DISREL(1)=DISPLA(1); 

DISREL(NDOF+1)=-DISPLA(NDOF); 

if NDOF>=2 

    for IDOF=2:NDOF 

        DISREL(IDOF)=DISPLA(IDOF)-DISPLA(IDOF-1); 

    end 

end 

% 

%Relative velocity 

VELREL=zeros(NDOF+1,1); 

VELREL(1)=VELOCI(1); 

VELREL(NDOF+1)=-VELOCI(NDOF); 
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if NDOF>=2 

    for IDOF=2:NDOF 

        VELREL(IDOF)=VELOCI(IDOF)-VELOCI(IDOF-1); 

    end 

end 

% 

% Calculation of dashpot force 

INTFOROUT=zeros(NDOF+1,1); 

for IDOF=1:NDOF+1 

    INTFOROUT(IDOF)=VELREL(IDOF)*CELAST(IDOF)*(alfa*((DISREL(IDOF))^2)+1); 

    %INTFOROUT(IDOF)=VELREL(IDOF)*CELAST(IDOF)*(alfa*((DISREL(IDOF))^2)-1); 

end 

% 

% Calculation of nonlinear internal damping force 

FNLDAMOUT=zeros(NDOF,1); 

for IDOF=1:NDOF 

    FNLDAMOUT(IDOF)=INTFOROUT(IDOF)-INTFOROUT(IDOF+1); 

end 

Published with MATLAB® R2012b 
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APPENDIX C: DIANA HFTD COMMAND FILE 

 

*FILOS 

 INITIA 

*INPUT 

*PHASE 

 BEGIN ACTIVE  

   ELEMEN "Dam" "Found" / 

   REINFO  

 END ACTIVE 

*NONLIN 

 BEGIN EXECUT  

   BEGIN LOAD  

     LOADNR 1 

     STEPS  EXPLIC  SIZES 0.25(4) 

   END LOAD 

   ITERAT  CONVER  SIMULT  

 END EXECUT 

*PHASE 

*HFTD 

 BEGIN EIGEN  

   EXECUT  NMODES 15 

   BEGIN OUTPUT  

     FXPLUS 

     FILE "eigenHFTD_dry" 

   END OUTPUT 

 END EIGEN 

 BEGIN MODEL  

   BEGIN MATRIX  

     DAMPIN  

     STRESS  PHASE  

   END MATRIX 

 END MODEL 

 BEGIN RESPON  

   BEGIN EXECUT  

     ITERAT  MAXITE 50 

     MAXFRE 25 

     TIMESE  STEPS  EXPLIC  NUMBER 50 

   END EXECUT 

   BEGIN OUTPUT  

     FXPLUS 

     FILE "respHFTD_wet" 

     ACCELE  TOTAL  TRANSL  GLOBAL  

     DISPLA  TOTAL  TRANSL  GLOBAL  

     FORCE  REACTI  TRANSL  GLOBAL  

     FSPRES  TOTAL  

     STATUS  CRACK  

     STRAIN  TOTAL  GREEN  GLOBAL  

     STRAIN  CRACK  GREEN  

     STRESS  TOTAL  CAUCHY  GLOBAL  

     VELOCI  TOTAL  TRANSL  GLOBAL  

   END OUTPUT 

   REDUCE  SELECT  MODES 1-15 / 

 END RESPON 

*END 


