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Abstract

We study crepant resolutions of singularities C3/G, where G is a finite

abelian subgroup of SL(3,C). Using derived category methods, Bridgeland,

King and Reid proved that the Hilbert scheme of G-clusters (G-Hilb)(C3) is

a crepant resolution. Following Craw-Ishii, we study the moduli spacesMθ

of θ-stable G-constellations, in particular, (G-Hilb)(C3) is a moduli space

of this type for a suitable parameters in the GIT-parameter space, while all

crepant resolutions are of the formMθ for some θ.

The GIT-parameter space is divided into chambers, and for parameters

in adjacent chambers, theMθ spaces are Fourier-Mukai partners. Following

Craw-Ishii we study how the Fourier-Mukai transform between partners can

induce a change in the tautological line bundles.

As an application, we study the case of C3/Z4. We outline the toric de-

scription of the singularity and its crepant resolution. Using Chern classes

we determine the cohomological Fourier-Mukai transform between Fourier-

Mukai partners, that are moduli spaces for adjacent chambers. In general,

for the singularities C3/G, we also determine the cohomological Fourier-

Mukai transform as a linear transformation between the cohomology rings.

Keywords: Derived categories, derived functors, Fourier-Mukai transforms,

crepant resolutions, McKay correspondence, Geometric Invariant Theory,

moduli spaces, K-theory, Toric Geometry.
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Resumo

Estudamos a resolução de singularidades denominadas resoluções crepantes

da singularidade C3/G, onde G é um subgrupo abeliano finito de SL(3,C).
Usando métodos de categorias derivadas, Bridgeland, King e Reid provaram

que o esquema de Hilbert de G-clusters (G-Hilb)(C3) é uma resolução crepan-

te. Seguindo Craw-Ishii, estudamos os espaços de módulos Mθ de G-

constelações θ-estáveis, em em particular, (G-Hilb)(C3) é um espaço de

moduli deste tipo para um parâmetro adequado no espaço de parâmetros

GIT.

O espaço de parâmetros GIT é dividido em câmaras e para parâmetros

em câmaras adjacentes, os espaçosMθ são parceiros de Fourier-Mukai. Nós

também induce uma mudança dos fibrados de linha tautológicos.

Como aplicação, estudamos o caso de C3/Z4. Nós delineamos a de-

scrição tórica da singularidade e da sua resolução crepante e determinamos

a transformada cohomológica de Fourier-Mukai para câmaras adjacentes.

Em geral, para a singularidade C3/G, também determinamos a transfor-

mada cohomológica de Fourier-Mukai como uma transformação linear entre

os anéis de cohomologia.

Keywords: Categorias derivadas, funtores derivados, transformadas de

Fourier-Mukai, resoluçoes crepantes, Correspondencia de McKay, Teoria dos

Invariantes Geométricos, espaços de moduli, Teoria K, Geometŕıa Tórica.
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Introduction

The main objects of study in algebraic geometry are the spaces of solutions of

polynomial equations in several variables. The work of the so-called Italian

school was groundbreaking, however at some point foundational problems

started to emerge. After substantial contributions by O. Zariski and A. Weil,

it was A. Grothendieck who provided a consistent framework and a vision

that was needed in algebraic geometry. Using Sheaf Theory and strong new

results in Homological Algebra, and using methods from Algebraic Topology,

Grothendieck introduced more general spaces such as schemes, algebraic

spaces, stacks, etc., generalizing the classical theory of varieties, despite

these spaces and their methods being highly abstract.

In this thesis, our main focus is on the resolution of singularities, specif-

ically the crepant resolutions of the singularities C3/G when G is a finite

abelian group in SL(3,C), paying particular attention to the case G = Z4.

Crepant resolutions are the appropriate resolutions of singularities to

generalize the McKay correspondence to three dimensions. This correspon-

dence in two dimensions was studied by Gonzalez-Sprinberg and Verdier [22]

using methods from derived categories.

Derived McKay Correspondence

The McKay correspondence in two dimensions establishes a correspondence

between the representation ring of the group G and the cohomology ring of

the minimal resolution of singularities. We know by Bridgeland, King and

Reid Theorem [8, Theorem 1.2] that the integral functor

ΦU : Db(Y )
∼ // Db

G(C3)

is an equivalence of derived categories (as triangulated categories) between

the derived bounded category of Coh(Y ), where Y = G-Hilb(M), and G-

xv
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equivariant bounded derived category of Coh(C3). Actually according to

of Ito and Nakajima [32] and Nakamura [42], Y is a crepant resolution of

C3/G. This scheme parametrizes the G-clusters in C3, i.e., the G-invariant

zero-dimensional subschemes of C3 whose space of global sections Γ(OZ) is

isomorphic to the regular representation C[G] as G-modules.

The functor ΦU : Db(Y )
∼ // Db

G(C3) is called Fourier-Mukai transform and

induces the following commutative diagram of derived categories:

Db(Y )
Φ // Db

G(C3)

Db
c(Y )

Φc

//
?�

OO

Db
c,G(C3)
?�

OO

where

Db
c(Y ) =

{
E• ∈ Db(Y )

∣∣∣ supp(E•) ⊂ τ−1(π(0))
}

and

Db
c,G(C3) =

{
E• ∈ Db

G(C3)
∣∣∣ supp(E•) ⊂ {0}} .

These equivalences induce the following commutative diagram between K-

theory Grothendieck groups:

K(Y )
ϕ // KG(C3)

K0(Y )
ϕ0

//
?�

OO

KG
0 (C3).
?�

OO

For two complexes E• and F• in KG(C3) the G-equivariant Euler charac-

teristic is defined by:

χG(E•,F•) =
∑

(−1)idimHomDb
G(C3)(E

•,F•[i]).

Moreover, there exists an isomorphism between the representation ring of G

and the equivariant K-theory of C3 given by R(G) ∼= KG(C3), ρ 7→ ρ⊗OC3 .

The G-sheaves {ρ⊗OC3}ρ∈G∗ make up a basis for KG(C3), and similarly

one has a basis {ρ⊗O0}ρ∈G∗ ⊂ KG
0 (C3). With this and using the inverse

of ϕ, the K-theory of a crepant resolution is generated by

{Rρ}ρ∈G∗ ⊂ K(Y ).
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This works for the n-dimensional case under the assumption that

ΦU : Db(Y )
∼ // Db

G(Cn)

is an equivalence of derived categories.

Moduli Spaces of G-constellations and Crepant

Resolutions of C3/G

More generally, Craw and Ishii in [15] introduced the notion of G-constel-

lation, i.e., an object F of CohG(C3) such that H0(F) is isomorphic to C[G]
as G-modules. A stability condition is imposed to these G-constellations.

The notion of stability is taken from the one used for quiver representations,

as introduced by King in [35]. For that purpose, they introduced the GIT

parameter space:

Θ =
{
θ ∈ HomZ(R(G),Q)

∣∣∣ θ(R) = 0
}

where R(G) is the representation ring of G. This space has a chamber

structure. The chambers are open polyhedral convex cones, are finite in

number, and their union is dense in Θ. Chambers are separated by walls,

which have codimension 1. Parameters lying in the same chamber produce

isomorphic moduli spaces, so that one can use the notation MC where C

is a chamber. Moving from one chamber to an adjacent one wall-crossing

phenomena occur.

Fixing a stability condition in Θ, one can define the moduli spacesMθ of

θ-stable G-constellations, which come equipped with tautological line bun-

dles Rρ and a tautological bundle R. When θ is generic, these spaces are

fine moduli spaces of G-constellations, and therefore they possess a universal

G-constellation. Again when θ is generic, the integral transform

ΦU : Db(Mθ)
∼ // Db

G(C3)

is an equivalence of derived categories, where the kernel of the Fourier-Mukai

transform is the universal object on Y × C3.

The first main theorem in [15, Theorem 1.1] is the following: If G is

abelian, and Y → C3/G is a projective crepant resolution, then Y ∼= MC

for some chamber C ⊂ Θ. This has been recently extended to the case of

general (non-abelian) G by Yamagishi [54].
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The contraction morphism for a wall W is ContW :Mθ
//Mθ0 for a

fixed point θ0 that lies in W. This morphism classifies the walls into three

types. For each type of wall, the exceptional locus Z of the morphism ContW

has a closed subscheme structure. The dimension of Z is determined by the

type of wall.

So, for each chamber C in the GIT-parameter space, we have a crepant

resolution. We know that these chambers are separated by walls. The wall-

crossing phenomenon can cause a change in the tautological line bundles,

even when the adjacent chambers correspond to isomorphic varieties. This

happens because we need to distinguish between varieties and moduli spaces.

The latter have a universal object that depends on the chosen parameters.

For each type of wall, we have theorems that relate the tautological line

bundles of the initial chamber to the adjacent chamber. Thanks to these

results we can compute the cohomological Fourier-Mukai transform.

Moduli of G-Constellations as Fourier-Mukai

Partners

Consider two adjacent chambers in the GIT-parameter space Θ, say C and

C ′, with W = C ∩ C ′ the wall separating them. In this situation one has

the diagram

Db(MC) Db
G(C3)

Db(MC′)

Φ1

ΨP
Φ−1

2Φ2

where ΨP = Φ−1
2 ◦ Φ1 is a Fourier-Mukai transform. Then the equivalence

ΨP : Db(MC) // Db(MC′)

makes the varieties MC and MC′ Fourier-Mukai partners. By a second

result in [15, Theorem 1.2], the kernel P depends of the type of the wall W .

For walls of type 0, in [15, Proposition 4.3], the transform Ψ is explicitly

described. There are two cases; when the divisor D parameterizes a rigid

quotient Q, this family is a locally free OZ-module, and the irreducible

representation ρ ∈ H0(Q):

Ψ = Φ−1
2 ◦ Φ1 = TR′

ρ⊗ωD
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where TR′
ρ⊗ωD

is a twist along the spherical object R′
ρ ⊗ ωD. For the case

where the divisor D parameterizes a rigid subsheaf S it is analogous,

Ψ = Φ−1
2 ◦ Φ1 = OY (−D)⊗ TωD(−)

and the rigid subsheaf is too a locally free OZ-module.

For walls of type 1 the morphism MC
//MC′ is a classical flop along

the curve l ⊂MC ; this curve is the unstable locus determined by a wall that

separates the chambers. The results of Bondal and Orlov [6] can be applied

in this situation. For the case when the trivial representation ρ0 ⊂ R2, the

equivalence between Fourier-Mukai partners is

Ψ ∼= Rq∗Lp
∗

where the morphisms p : M̃ //MC and q : M̃ //MC′ are the projec-

tions and M̃ is the blow-up ofMC along the curve l .

The case ρ0 ⊂ R1 is similar. For walls of type 3, the moduli spaces

MC and MC′ are isomorphic. We know that in this case, the exceptional

locus is a divisor D ⊂ MC , which is contracted to a curve in Y0 under the

morphism ContW :MC −→ Y0. By forming the fiber productMC ×Y0MC

and considering p and q as the first and second projections onto the factors,

the equivalence is written in a similar way to the previous case.

Cohomological Fourier-Mukai Transform between

Crepant Resolutions of C3/Z4

The singularity C3/Z4 is interesting for several reasons. Its crepant reso-

lution can be constructed using toric geometry, allowing us to identify the

divisors that form the exceptional divisor.

The structure of the GIT-parameter space is completely determined,

including the walls that separate the chambers. The parameter space has

8 chambers and has two types of walls. We obtain the equations of each

wall and assign a name to them. We do this in order to apply the theorems

about of the change of the tautological line bundles under wall-crossing.

First, let us consider two moduli spaces MC and MC′ of θ-stable G-

constellations and θ′-stable G-constellations for parameters θ ∈ C and θ′ ∈
C ′. These varieties are Fourier-Mukai partners via

Ψ := Φ−1
2 ◦ Φ1 : D

b(MC) // Db(MC′)
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where Φ1 : D
b(MC) // Db

G(C3) and Φ2 : D
b(MC′) // Db

G(C3) are the

Fourier-Mukai transforms given by the derived McKay correspondence. The

cohomological version of the Fourier-Mukai transform Ψ is given by

ΨH
P : H∗(MC ,Q) // H∗(MC′ ,Q),

where we take the Chern character of the kernel P of the Fourier-Mukai

transform. The cohomology ring H∗(MC ,Q) is generated by the Chern

characters of the tautological line bundles. That is, the set {Ch(Rρ)}ρ∈G∗

forms a basis of the rational cohomology ring H∗(MC ,Q). This ring has a

decomposition

H∗(Y,Q) = H0(Y,Q)⊕H2(Y,Q)⊕H4(Y,Q).

By the Ito-Reid theorem, we know that the exceptional prime divisors form

a basis of H2(Y,Q) for any crepant resolution. The case of C3/Z4 has only

one crepant resolution and we can relate the tautological line bundles of

two adjacent chambers. This led us to explicitly obtain the cohomological

Fourier-Mukai transform.

Finally, with this example, we notice that we could compute the matrix

that defines this transformation. We obtain a matrix that defines the co-

homological Fourier-Mukai transform for the general case of the singularity

C3/G.

Organization of contents

In the first chapter, we start by reviewing fundamental facts about derived

categories, which are the natural framework for derived functors. We explain

the construction of abelian categories and then apply it to the case of derived

categories of coherent sheaves on a scheme. With this, we can study the

construction of the main functors that appear in algebraic geometry. This

is a particular case of the six functors formalism, and the Grothendieck-

Verdier duality used later fits into the context of this chapter.

In the second chapter, we study the derived McKay correspondence in

three dimensions and describe, with all the details, the two famous theorems

by Bridgeland, King, and Reid. At this point, we see how the machinery

of derived categories is applied throughout. The Fourier-Mukai transforms,

which are functors between derived categories, establish the equivalence of
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categories Db(Y ) and Db
G(C3). That allows us to obtain bases for the K-

theory of Y and the equivariant K-theory of C3. Then, in chapter 3, we ob-

serve that by taking Y =Mθ, the moduli space of θ-stable G-constellations,

these moduli spaces have tautological bundles that generate the K-theory

ofMθ.

In chapter 3 we study the GIT construction of the moduli spaces Mθ,

and following Craw, we describe the description of the spacesMθ as moduli

spaces of quiver representations, which provides a more concrete way of

studying these spaces. This leads us to establish a relation between the

universal G-constellation and the tautological bundle by working on ringed

spaces rather than schemes. We conclude this chapter by explaining some

details of the wall-crossing phenomenon and how it can generate changes in

the tautological line bundles of the moduli spacesMθ andM′
θ.

In chapter 4, we review some basic facts about spherical objects that will

be used to describe the Fourier-Mukai transform for Fourier-Mukai partners.

We outline the proofs by Craw-Ishii, according to the type of wall. Also in

this chapter, we develop a theorem that relates the Fourier-Mukai transform

in its K-theoretic and cohomological versions. The Grothendieck-Riemann-

Roch theorem and Chern classes serve as tools to relate the K-theoretic and

cohomological versions. We will use this result in the development of the

example C3/Z4.

Finally, in chapter 5, as an application, we study the example C3/Z4.

We provide a description of the toric geometry of the singularity and its

crepant resolution. By utilizing the theorems of Craw-Ishii that relate the

tautological line bundles under wall-crossing, we obtain the explicit form of

the cohomological Fourier-Mukai transform. For the general case, we also

derive a simple form of the aforementioned transform.
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Chapter 1

Derived Categories

Our starting point are derived categories, which were introduced by Verdier

under the supervision of Grothendieck. Derived categories provide the natu-

ral setting where one can define derived functors. However, these categories

have a rather complicated structure since they are not abelian. Nevertheless,

they possess a triangulated category structure. In this chapter, we review

the basic concepts of triangulated categories, derived categories, derived

functors, derived categories of schemes, and the functors that commonly

arise in algebraic geometry as they appear at the level of derived categories.

1.1 Triangulated Categories

In this section we recall the definition of a triangulated category. The main

example is the derived category of a scheme. Although the derived categories

are not abelian categories, they are always triangulated categories.

Definition 1.1 (Additive categories). A category A is an additive category

if for all objects A and B in A, the set Hom(A,B) of maps is an abelian

group satisfying the following conditions:

i. The composition of functions

Hom(A1, A2)×Hom(A2, A3) // Hom(A1, A3)

given by (f, g) � // g ◦ f is bilinear.

ii. There exists an object 0 inA called the zero object such that Hom(0, 0)

is the trivial group.

1



2 CHAPTER 1. DERIVED CATEGORIES

iii. For two objects A1, A2 in A there is an object B in A and morphisms

ji : Ai
// B and pi : B // Ai, i = 1, 2, which make B the direct

sum and the direct product of A1 and A2.

Observation 1.2.

1. Functors between additive categories are always considered additive

functors, where F : A // B is an additive functor if the induced

maps

Hom(A,B) // Hom(F (A), F (B))

are homomorphisms of abelian groups.

2. In this context, if the functor F : A // B is an additive functor that

is an equivalence, then it must be an additive equivalence, that is, its

inverse functor F−1 : B // A is also additive.

3. Yoneda’s lemma in its most general version can in particular be adapted

by considering only additive functors and additive categories.

Definition 1.3 (Abelian categories). An additive categoryA is called abelian

if additionally the following conditions are met:

1. Every homomorphism f ∈ Hom(A,B) has a kernel and a cokernel;

2. the map Coim(f) // im(f) is an isomorphism.

These features allow one to use the notion of exact sequences.

Definition 1.4 (Triangulated categories). Let D be an additive category;

a triangulated structure over D is given by a functor T : D // D which is

an additive equivalence (the shift functor) and a set of triangles

A // B // C // T (A).

Which are subject to the axioms TR1-TR4 listed below, and are called dis-

tinguished triangles.

We will use the following notation to state the axioms of triangulated

categories:

For all two objects A,B ∈ D and a map between them f : A // B we

denote by

A[1] := T (A), and f [1] := T (f) ∈ Hom(A[1], B[1]);
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furthermore, a map between two triangles is given by a diagram of the form:

A //

f

��

B //

g

��

C //

h

��

A[1]

f [1]

��
A′ // B′ // C ′ // A′[1].

A map between two triangles is an isomorphism if f , g and h are isomor-

phisms.

TR1 (i) For each object A ∈ D a triangle of the form:

A
id // A // 0 // A[1]

is distinguished.

(ii) If a triangle is isomorphic to a distinguished triangle, then it is

also a distinguished triangle.

(iii) Every morphism f : A // B can be completed to a distinguished

triangle:

A
f // B // C // A[1].

TR2 A triangle

A
f // B

g // C
h // A[1]

is distinguished if and only if

B
g // C

h // A[1]
−f [1] // B[1]

is a distinguished triangle.

TR3 Given two distinguished triangles and two maps f and g such that the

following diagram commutes

A //

f

��

B //

g

��

C // A[1]

f [1]

��
A′ // B′ // C ′ // A′[1]

then there exists a map h : C // C ′ such that

A //

f

��

B //

g

��

C //

h

��

A[1]

f [1]

��
A′ // B′ // C ′ // A′[1]

is a morphims of distinguished triangles.
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TR4 For every commutative diagram

B

u1

��
A

u3

??

u2

// C

and for three given distinguished triangles

A
u3 // B

v3 // C ′ w3 // A[1]

B
u1 // C

v1 // A′ w1 // B[1]

A
u2 // C

v2 // B′ w2 // A[1]

there are two morphisms m1 and m3 such that the following triangle

is distinguished

C ′ m1 // B′ m3 // A′
v3[1]◦w1

// C ′[1]

and the following diagram is commutative

A
u3 //

1

��

B
v3 //

u1

��

C ′ w3 //

m1

��

A[1]

1

��
A

u2 //

u3

��

C
v2 //

1

��

B′ w2 //

m3

��

A[1]

u3[1]

��
B

u1 //

v3

��

C
v1 //

v2

��

A′ w1 //

1

��

B[1]

v3[1]

��
C ′ m1 // B′ m3 // A′ v3[1]◦w1 // C ′[1].

The objects of derived categories are complexes. We will first quickly

review some important facts about these objects.
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Definition 1.5 (Category of complexes). Let A be an abelian category; the

category of complexes Kom(A) is the category whose objects are complexes

of objects in A, and the morphisms are morphisms of complexes.

The shift of A• ∈ Kom(A), denoted by A•[1], is the complex given by:

(A•[1])i = Ai+1, and its differential (dA•[1])
i = −di+1

A .

Let f : A• // B• be a morphism of complexes, the shift of this morphism

is f [1] : A•[1] // B•[1] defined by f [1]i = f i+1. So we can define the func-

tor T : Kom(A) // Kom(A) given by A• � // A•[1].

On the category of complexes we can make cohomology. Let A• ∈
Kom(A) the i−th cohomology of this complex is defined by:

H i(A•) :=
Ker(di)

Im(di−1)
∈ A.

A complex A• is called acyclic if H i(A•) = 0 for all i ∈ Z.

Definition 1.6. A morphism of complexes f : A• // B• is a quasi-iso-

morphism if for all i ∈ Z the induced map in cohomology

H i(f) : H i(A•) // H i(B•)

is an isomorphism.

1.2 Derived Categories

Derived categories can be described using an universal property. Hence, for

an explicit construction, we need to pass through an intermediate category

between the category of complexes and the derived category, which is called

the homotopy category. The main triangulated categories are the homotopy

category K(A) and the derived category D(A) of a given abelian category

A. In this section, we explore the triangulated structure of these categories.

Theorem 1.7 (Derived categories). Let A be an abelian category and Kom(A)
its associated category of complexes. There exists a category D(A), the de-

rived category of A, and a functor Q : Kom(A) // D(A) such that:

i. If f : A• // B• is an quasi-isomorphism then Q(f) is an isomor-

phism in D(A).
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ii. Universal property: Every functor F : Kom(A) // D that satisfies

the above condition can be uniquely factored by Q, i.e. then there

exists a unique functor (up to isomorphism) G : D(A) // D such

that F ∼= G ◦Q.

To build the derived category from an abelian category we need to con-

sider an intermedie category that we will define next.

Definition 1.8. Given two morphisms f, g : A• // B• we say that they

are homotopically equivalent if there exists a collection of homomorphisms{
hi : Ai // Ai−1, i ∈ Z

}
such that:

f i − gi = hi+1 ◦ diA• + di−1
B• ◦ hi.

In each HomKom(A)(A
•, B•) we define an equivalence relation, where two

morphisms f, g : A• // B• are equivalent if and only if they are homotopi-

cally equivalent. Indeed it can be proved that this defines an equivalence

relation.

Definition 1.9 (Homotopy category). The homotopy category of complexes

K(A) is the category whose objects are:

Ob(K(A)) := Ob(Kom(A))

and the set of morphisms is defined by

HomK(A)(A
•, B•) := HomKom(A)(A

•, B•)/ ∼ht

where ∼ht denotes homotopic equivalence.

Remark 1.10. The homotopy category K(A) is not abelian but it is trian-

gulated, and can be associated to any additive category.

Although the Theorem 1.7 is purely existential, it allows us to identify

the objects of the derived category:

Ob(D(A)) := Ob(Kom(A)).

To describe the morphisms in the derived category we use commutative di-

agrams in homotopy category.
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Diagrams of morphisms of complexes. Let A•, B• and C• ∈ D(A); a
roof between A• and B• is a diagram of the form

C•

ϕ

}}

f

!!
A• B•

where ϕ is a quasi-isomorphism and f a morphism of complexes. Two such

diagrams are equivalent if there is a third diagram of the same form, that

is:

C•

ϕ

~~

f

  
C•
1

ϕ1

~~ f1
**

C•
2

f2

  ϕ2

tt
A• B•

where ϕ, ϕ1 and ϕ2 are quasi-isomorphisms and f, f1 and f2 are morphisms

of complexes; also this diagram must be commutative in K(A).
Note that ϕ1 ◦ϕ is a quasi-isomorphism and since the commutative diagram

in K(A),

ϕ2 ◦ f = ϕ1 ◦ ϕ, the latter is also a quasi-isomorphism.

This equivalence defines in effect an equivalence relation between diagrams

of that type.

A morphism between two objects A• and B• in D(A) is an equivalence class

[f, ϕ] : A• // B• where

A• C•ϕoo f // B•

is a roof. Then:

HomD(A)(A
•, B•) = {equivalence classes of roofs between A• and B•}.

The composition of two diagrams, say

C•
1

ϕ1

~~

f

  

C•
2

ϕ2

~~

g

  
A• B• B• C•
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is given by a commutative diagram in K(A) of the following form:

C•
3

ϕ

~~

h

  
C•
1

ϕ1

~~

f

  

C•
2

ϕ2

~~

g

  
A• B• C•

where ϕ, ϕ1 and ϕ2 are quasi-isomorphisms and f, g and h are morphisms of

complexes. To guarantee the existence of the composition of two morphisms

in the derived category, the concept of the cone of a morphism is required.

Definition 1.11 (Mapping cone). The mapping cone of a morphism

f : A• // B• of complexes is a complex given by:

C(f)i = Ai+1 ⊕Bi
, and diC(f) :=

(
−di+1

A 0

0 diB

)
.

The mapping cone also allows one to define the concept of distinguished

triangle in the homotopy and derived category in a natural way.

Definition 1.12 (Distinghished triangles). A triangle

A•
1

// A•
2

// A•
3

// A•
1[1]

in K(A) and D(A) respectively is called distinguished if its is isomorphic in

K(A) and D(A) respectively to a triangle of the form:

A•
f
// B•

τ
// C(f) π

// A•[1].

Where f is a morphism of complexes and

τ : Bi // Ai+1 ⊕Bi
, π : Ai+1 ⊕Bi // Ai+1,

are the natural injection and natural projection.

Remark 1.13. The homotopy category K(A) and derived category D(A)
are triangulated but are not abelian.



1.3. DERIVED FUNCTORS 9

1.3 Derived Functors

As not all functors between abelian categories are exact, the concept of de-

rived functor was introduced in homological algebra. Derived functors are

exact in the sense that they transform distinguished triangles into distin-

guished triangles.

Definition 1.14 (Injective resolutions). An abelian category A has enough

injectives if for every object A ∈ A there exists an injective object I ∈ A and

a injective morphism A // I. An injective resolution of an object A ∈ A
is an exact sequence:

0 // A // I•, where Ii is an injective object in A.

Remark 1.15. If A has enough injectives for any A• ∈ K+(A) there exists

a complex I• ∈ K+(A) with Ii injective objects and a quasi-isomorphism

A• // I•.

Remark 1.16. Similarly one can consider of a category with has enough

projectives and projective resolutions.

Let I be the full additive subcategory of all injective objects of A, since it

is additive we can take its homotopy category K+(I).

Theorem 1.17. If the abelian category A has enough injectives, then the

natural functor i : K+(I) // D+(A) is an equivalence.

Let A and B be abelian categories and assume that A contains enough

injectives. For a functor F : A // B that is left exact we have the following

commutative diagram:

K+(I) K+(A) K+(B)

D+(A) D+(B).

i
QA

K+(F )

QB
i−1

We define the right derived functor of F as the functor:

RF := QB ◦K+(F ) ◦ i−1 : D+(A) // D+(B).

This has two problems, i.e., that the definition depends on the class of in-

jectives and on the equivalence i. The formal definition of a derived functor
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cannot depend on any class of objects. Moreover it might be difficult to

calculate injective objects in a given category, so we could get another suffi-

ciently large class of objects and get their localization in homotopy category,

and replace the class of injective objects to define the derived functor. There-

fore we need a formal definition of a derived functor that has a universal

property.

Definition 1.18 (Right derived functors). Let F : A // B be an addi-

tive exact left functor. A right derived functor of F is an exact functor

RF : D+(A) // D+(B) with a morphism of functors

εF : QB ◦K+(F ) // RF ◦ QA,

such that the following diagram is commutative

K+(A) K+(B)

D+(A) D+(B).

QA

K+(F )

QB

R(F )

Universal property. For any exact functor G : D+(A) // D+(B) and a

morphism of functors εG : QB ◦K+(F ) // G ◦ QA, then there exists a

unique morphism of functors η : RF // G such that the following dia-

gram is commutative:

QB ◦K+(F)

RF ◦ QA G ◦ QA.

εF ε

η◦QA

Observation 1.19 (Left derived functors). For right exact functors, in

the above definition we substitute the lower bounded categories with the re-

spective upper bounded categories to obtain the definition of the left derived

functor, LF : D−(A) // D−(B), and morphism of functors εF : LF ◦ QA // QB ◦K−(F ).

In this case the universal property is given by a morphism of functors

η : G // LF.

Some functors that we will work with are defined at the level of homotopy

categories and are not induced by a functor at the level of abelian category.

This leads us to define a class of complexes on the homotopy categories.
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Definition 1.20. Let A′ be a thick abelian subcategory of A and let

F : K∗
A′(A) // K∗(B) be an exact functor. This functor has the prop-

erty to have has enough acyclics, if there exists a triangulated subcategory

KF (A) of K∗
A′(A) and if the following conditions are satisfied

i. There exists a functor I : K∗
A′(A) // KF (A).

ii. For all E• ∈ KF (A), the morphism E• // F (E•) is a quasi-isomorph-

ism, which is functorial in E .

iii. For all complex E• ∈ KF (A)∩Acyc•(A), the complex F (E•) ∈ Acyc•(B).

Notation. In the previous definition we denote by Acyc•(A) the full

subcategory of all complexes acyclics in the category A.

Observation 1.21. Let A be an abelian category that has enough injec-

tives and consider any left exact functor F : A // B. We know this func-

tor induces naturally a functor between respectively homotopy categories

G = K+(F ) : K+(A) // K+(B). This functor has enough acyclics and we

take KG(A) = K+(IA), where IA is the full additive subcategory of all

injective objects of A.

Under the hypotheses of the above definition we let:

K∗(F ) : K∗
A′(A) // K∗(B), by K∗(F ) = F ◦ I.

This functor takes quasi-isomorphims into quasi-isomorphism (see [2, Lemma

A.60]); due to this we can apply the following theorem to descend the functor

to the derived category.

Theorem 1.22. Let F : K∗(A) // K∗(B) be an exact functor. If this

take quasi-isomorphisms into quasi-isomorphisms, then it induces an exact

functor D∗(F ) : D∗(A) // D∗(B) in the respective derived categories.

For the case ∗ = + we obtain the right derived functor

RF : D+(A) // D+(B).

For all E• ∈ D+(A), the higher derived functors of F are

RiF (E•) = Hi(RF (E•)).

Alternatively one can obtain derived functors from adapted classes as in [21].

We introduce that definition to later make a comparison with the notion of

a functor has enough acyclics.
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Definition 1.23 (Adapted classes to a left exact functor). Let F : A // B
be a left exact functor between abelian categories. A class of objects R ⊂ A
is said to be adapted to a F if it is stable under direct sums and if the

following conditions are satisfied

1. F takes a complex E• ∈ K+(R) ∩ Acyc•(A) into a complex F (E•) ∈
Acyc•(B).

2. For any A ∈ A there exists A′ ∈ R such that A �
� // A′.

Remark 1.24. In the previous definition we can also define classes of objects

adapted to a right exact functor, we only have to substitute the second

condition by: any A ∈ A is a quotient of some A′ ∈ R.

Let R be a class adapted to a left exact functor F . We can localize in

the homotopy category as the following theorem guarantees.

Theorem 1.25 (Localization of the homotopy category). Under the hy-

potheses of the previous definition, if SR is the class of quasi-isomoprhisms

in K+(R), then SR is a localizing class of morphisms in K+(R) and

K+(R)[S−1
R ] // D+(A)

is an equivalence of categories.

We know that there exists a functor Ψ : D+(A) // K+(R)[S−1
R ] and

a functor induced on the level of homotopy categories

K+(F ) : K+(R)[S−1
R ] // D+(B).

We define the right derived functor by composition of these functors:

RF = K+(F ) ◦Ψ : D+(A) // D+(B).

Observation 1.26. If the functor F has enough acyclics the subcategory

KF (A) of K+(A) is already a localized subcategory. Indeed if E• ∈ KF (A)
there exists a quasi-isomorphism E• // I(E•) in KF (A), but this is a

triangulated subcategory of K+
A′(A) and by Example 3 in [29, p. 40] the

last subcategory is localized in K+(A). This implies that E• // I(E•) is

an isomorphism in KF (A).
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So we have two alternative ways to construct derived functors, the first

by the property of a functor to have enough acyclics and the second using

adapted classes. But the universal property of derived functors leads us to

the same functor in derived category.

We conclude this section enunciating Grothendieck’s theorem of composition

on the derived functors.

Definition 1.27 (F -acyclics complexes). Under the hypotheses of Defini-

tion 1.23, a complex E• ∈ K+
A′(A) is called F -acyclic if the quasi-isomorphism

E• // I(E•) induces an isomorphism F (E•) // RF (E•).

Theorem 1.28 (Grothendieck). Let A′ and B′ thick subcategories of abelian
categories A and B respectively, and

F : K+
A′(A) // K+

B′(B), G : K+
B′(B) // K+(C)

functors at the level of homotopy categories. If F takes F -acyclics complexes

into G−acyclics complexes then:

1. G ◦ F has enough acyclics.

2. There exists the right derived functor of the composition

R(G ◦ F ) : D+(A) // D+(C).

3. There exists a natural isomorphism of functors

R(G ◦ F ) ∼= RG ◦RF.

1.4 Derived Categories of Coherent OX-modules

over a Scheme X

In this section we fix a notation and we recall two theorems of equivalence

between derived categories in the geometric context.

Let X be a scheme. We denote by

Db(X) = Db(Coh(X))

the bounded derived category of abelian category of coherent sheaves. One

finds the following results in [30] and [2].
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Theorem 1.29. Let X be a noetherian scheme. The natural embedding

D∗(Qcoh(X)) // D∗(Mod(X)),

for ∗ = b,+ induces an equivalence:

D∗(Qcoh(X))
∼ // D∗

qc(Mod(X))

where D∗
qc(Mod(X)) denotes the derived category of complexes in Mod(X)

with quasi-coherent cohomology.

Theorem 1.30. Let X be a noetherian scheme. The natural embedding

Db(X) // Db(Qcoh(X))

induces an equivalence

Db(X)
∼ // Db

coh(Qcoh(X))

where Db
coh(Qcoh(X)) denotes the derived category of complexes in Qcoh(X)

with coherent cohomology.

Summarizing these two results we have (see [2, Corollary A.40])

Db(X) ≃ Db
coh(Qcoh(X)) ≃ Db

coh(Mod(X)).

1.5 Derived Functors on Schemes

We conclude this chapter by outlining the construction of the main derived

functors that appear consistently in algebraic geometry.

1.5.1 Six Functors Formalism

P. Scholze in his notes [47] made an abstract study of the six functor for-

malism. As explained in the said reference, a particular situation is the

following:

Let C be a category of geometric objects, say the category of schemes and

an association X � // D(X) from C to a say (triangulated categories) and

six functors

(f∗, f∗,⊗,Hom, f!, f !).
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These functors have many types of compatibility, for example that the sec-

ond is always to right adjoint to the previous.

In this section we will describe the construction of the functors that are

used in the theory of Fourier-Mukai transforms and that are involved in

some way. The main references we follow are [29], [28], [53], [21], [33], [2]

and [30].

First following [30] we will describe cohomology in terms of derived cat-

egories.

Global sections.

Let X be a noetherian scheme over a field k. Since the functor of global

sections

Γ : Mod(X) // Vec(k)

is a left exact functor and Mod(X) has enough injectives, there exists

RΓ : D+(Mod(X)) // D+(Vec(k)).

We can restrict the functor of global sections to the category of quasi-

coherent modules then again:

Γ : Qcoh(X) // Vec(k)

is a left exact functor and Qcoh(X) has enough injectives, so that there

exists

RΓ : D+(Qcoh(X)) // D+(Vec(k)).

By Grothendieck’s theorem [28, Theorem III.2.7] for any F ∈ Qcoh(X) the

cohomology groups H i(X,F) = 0 for all i > dim(X). This implies that the

right derived functor of global sections can be restricted to bounded derived

categories

RΓ : Db(Qcoh(X)) // Db(Vec(k)).

In [23] Grothendieck generalizes a theorem by Serre [28, Theorem III.5.2],

that is, if X is proper, then for any F ∈ Coh(X), the cohomology groups

H i(X,F) are finite-dimensional k-vector spaces. This induces

Γ : Coh(X) // Vecfin(k).
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We need to descend to bounded derived categories. Since there are embed-

dings:

Db(X)
∼ // Db

coh(Qcoh(X)) �
� // Db(Qcoh(X))

and

D+(X)
∼ // D+

coh(Qcoh(X)) �
� // D+(Qcoh(X)),

for the latter embedding see [29, Proposition 4.8], we can consider the re-

strictions of the global section functor to the derived category of X:

RΓ : D+(Coh(X)) = D+(X) // D+(Vec(k)).

As we already discussed, the hypothesis that A has enough injective objects

in [30, Corollary 2.68] can be replaced by that the functor F has enough

acyclics, then using this corollary:

RΓ : D+(X) // D+(Vecfin(k)),

but due to the existence of an embedding between bounded derived cate-

gories mentioned above one has

RΓ : Db(X) // Db(Vec(k)).

Finally we obtain

RΓ : Db(X) // Db(Vecfin(k)).

The higher derived functors are

H i(X,F•) = RiΓ(F•),

and are called hypercohomology groups. When F• is a complex concentrated

in degree zero these are the classical cohomology groups.

1.5.2 Derived Pushforward

Let X and Y be Noetherian schemes and let f : X // Y be a morphism

of schemes. We know this morphism induces a left exact functor

f∗ : Mod(X) //Mod(Y )

and by existence of enough injectives in Mod(X) then there exists a right

derived functor:

Rf∗ : D
+(Mod(X)) // D+(Mod(Y )).
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The same can be done for

f∗ : Qcoh(X) // Qcoh(Y )

and the right derived functor exists

Rf∗ : D
+(Qcoh(X)) // D+(Qcoh(Y )).

By [28, III.8.6] for all F ∈ Qcoh(X) the higher direct images Rif∗F = 0 for

any i > dim(X), then we can restrict the

Rf∗ : D
b(Qcoh(X)) // Db(Qcoh(Y )).

Again Grothendieck [23, III.2.2.1] generalizes a theorem by Serre of pro-

jective morphisms to a proper morphisms. Let f : X // Y be a proper

morphism of noetherian schemes; if F ∈ Coh(X) then the higher direct im-

ages Rif∗F are coherent as well. We obtain a right derived functor between

bounded derived categories

Rf∗ : D
b(X) // Db(Y ),

again using the fact

Db(X)
∼ // Db

coh(Qcoh(X)).

If f : X // Y and g : Y // Z are two morphisms of noetherian schemes,

we let R1 = I be the class of all injective objects of Qcoh(X) and R2 =

{fabbly sheaves on Y }. For all flabby sheaf F on X the sheaf f∗F is flabby

on Y and as every injective OX -module is flabby sheaf on X we apply the

remark of the Theorem 1.28, and we then have

R(g ◦ f)∗ ≃ Rg∗ ◦Rf∗.

1.5.3 Derived Local Hom

Derived global hom.

LetA be an abelian category which has enough injectives and E• ∈ K−(A)opp.
It is known that we get the functor (see [2, p. 293])

Hom(E•,−) : K+(A) // K+(Ab)

which is left exact, and by Lemma A.66 in [2] if F• ∈ K+(I)∩Acyc•(Qcoh(X))

the complex Hom(E•,F•) ∈ Acyc•(Qcoh(X)) where I ⊂ Qcoh(X) is the
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class of all injective objects. Then take KF (A) = K+(I). There exists the

right derived functor:

RIIHom(E•,−) : D+(A) // D+(Ab).

Let us fix a complex F• ∈ D+(A) and consider the functor

RIIHom(−,F•) : K−(A)opp // D+(Ab),

which takes quasi-isomorphims into quasi-isomorphims. Then by Theorem

1.22 there exists a right derived functor

RIRIIHom(−,F•) : D−(A)opp // D+(Ab).

We obtains a bifunctor:

RHom(−,−) : D−(A)opp ×D+(A) // D+(Ab).

The higher derived functors are

Exti(E•,F•) = RiHom(E•,F•).

For a noetherian scheme X, we take A = Qcoh(X) and we proceed in the

same way to obtain the functor

RHom(−,−) : D−(Qcoh(X))opp ×D+(Qcoh(X)) // D+(Ab).

Derived local hom.

LetX be a noetherian scheme and let us fix a complex E• ∈ K−(Qcoh(X))opp,

we know that

Hom(E•,−) : K+(Qcoh(X)) // K+(Qcoh(X))

is a left exact functor. If F• ∈ K+(I) ∩ Acyc•(Qcoh(X)) the complex

Hom(E•,F•) ∈ Acyc•(Qcoh(X)) (see [30, Lemma 3.25]). Due to this we

can take KF (Qcoh(X)) = K+(I), for F = Hom(E•,−), then F -has enough
acyclics. Thus the functor

RIIHom(E•,−) : D+(Qcoh(X)) // D+(Qcoh(X))

is the right derived functor on the second variable. Now, let us fix a complex

F• ∈ D+(Qcoh(X)) and define a functor:

RIIHom(−,F•) : K−(Qcoh(X))opp // D+(Qcoh(X)).
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If F• is a complex of injective objects and E• ∈ Acyc•(Qcoh(X)) again by

[30, Lemma 3.25] the complex Hom(E•,F•) ∈ Acyc•(Qcoh(X)). For an

arbitrary complex F• there exists a quasi-isomoprhism F• −→ I• with I•

is a complex of injective objects and by construction of derived functor with

has enough acyclics RIIHom(E•,F•) = Hom(E•, I•) by Theorem 1.22 there

exists

RIRIIHom(−,F•) : D−(Qcoh(X))opp // D+(Qcoh(X)),

the right derived functor on the first variable. We obtain a bifunctor

RHom(−,−) : D−(Qcoh(X))opp ×D+(Qcoh(X)) // D+(Qcoh(X)).

But we need to descend this functor to the bounded derived category. Let

X be a regular scheme and F• ∈ Db(X) then F• ∼= L• in Db(X) where L•

is a complex of locally free sheaves (see [30, Proposition 3.26]). Then

RHom(−,−) : Db(X)opp ×Db(X) // Db(X).

Derived Dual. Fix a complex E• ∈ D−(Qcoh(X))opp; the derived dual of

this complex is defined by E•∨ = RHom(E•,OX). If X is a regular scheme,

for any E• ∈ Db(Qcoh(X))opp then E•∨ ∈ Db(Qcoh(X)).

1.5.4 Derived Tensor

Let X be noetherian scheme and let us fix a complex E• ∈ K−(Coh(X));

we can define the functor (see [30, p. 79]):

E• ⊗ (−) : K−(Coh(X)) // K−(Coh(X));

this functor is exact. By Corollary A.73 in [2] for any F• ∈ K−(Coh(X))

there exists a quasi-isomorphism P(F•) // F• where P(F•) is a complex

of flat sheaves. We denote by K−({flat sheaves}) the homotopy category

of the complexes bounded above of flat sheaves living in Coh(X). By [29,

Lemma II.4.1] for any E• ∈ K−(Coh(X)) and F• ∈ K−({flat sheaves}) ∩
Acyc•(Coh(X)) the tensor product E•⊗F• is an acyclic complex of coherent

sheaves; then we can take for that

KF (Coh(X)) = K−({flat sheaves})

for F = E• ⊗ (−). Then there exists

L(E• ⊗ (−)) : D−(Coh(X)) // D−(Coh(X))
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the left derived functor in the second variable. Let us fix a complex F• ∈
K−(Coh(X)) and define a functor

L((−)⊗F•) : K−(Coh(X)) // D−(Coh(X)).

Again by [29, Lemma II.4.1] if F• ∈ K−(F) and E• ∈ Acyc•(Coh(X)) then

the tensor product E• ⊗ F• is an acyclic complex of coherent sheaves, and

thus by Theorem 1.22 the functor L((−)⊗F•) descends to derived category:

L((−)⊗F•) : D−(Coh(X)) // D−(Coh(X)).

This functor induces a bifunctor:

(−)
L
⊗ (−) : D−(Coh(X))×D−(Coh(X)) // D−(Coh(X)).

We can construct the derived tensor from the class of locally free sheaves,

i.e., we take KF (Coh(X)) = K−({locally free sheaves}) proceeding in a

similar way. Let X be a regular scheme by [30, Proposition 3.26] if G• ∈
Db(Coh(X)) exists a complex L• ∈ Db(Coh(X)) of locally free sheaves iso-

morphic to a G•. Then the derived tensor descends to a bounded derived

category:

(−)
L
⊗ (−) : Db(X)×Db(X) // Db(X).

1.5.5 Derived Pullback

Let X and Y two noetherian schemes and let f : X // Y be a morphism

of schemes, we know that considering f as a morphism of locally ringed

spaces then the inverse image is:

f−1 : ShOY
(Y ) // Shf−1OY

(X)

is an exact functor, then this can descends to bounded above derived cate-

gory

f−1 : D−(ShOY
(Y )) // D−(Shf−1OY

(X)).

The usual tensor:

OX ⊗f−1OY
(−) : Shf−1OY

(X) // ShOX
(X).

is a right exact functor, the derived tensor exists is also in locally ringed

spaces, we can derive:

OX

L
⊗f−1OY

(−) : D−(Shf−1OY
(X)) // D−(ShOX

(X)).
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The pullback functor is a composition of these functors above described:

f∗ := (OX ⊗f−1OY
(−)) ◦ f−1(−) : ShOY

(Y ) // ShOX
(X).

By Grothendieck’s composite functor theorem for the case of left derived

functors, we obtain:

Lf∗ = (OX

L
⊗f−1OY

(−)) ◦ f−1(−) : D−(ShOY
(Y )) // D−(ShOX

(X)),

finally

Lf∗ = (OX

L
⊗f−1OY

(−)) ◦ f−1(−) : D−(Mod(Y )) // D−(Mod(X)).

When the morphism f of schemes is flat we do not need to derive it, because

the functor induced between abelian categories is exact.

1.5.6 Exceptional Inverse Image

Let f : X // Y be a morphism of smooth schemes over a field K the

relative dimension of f is dim(f) = dim(X) − dim(Y ) and the relative

dualizing bundle is ωf = ωX ⊗ f∗ω∗
Y .

The exceptional functor is defined by

f ! : Db(Y ) // Db(X), E• � // Lf∗E• ⊗ ωf [dim(f)].
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Chapter 2

Derived McKay

Correspondence

In this chapter, we develop in detail the two main theorems of the famous

paper of Bridgeland, King and Reid. Among other things, these results

guarantee the existence of crepant resolutions in 3 dimensions, and even

more, they establish an equivalence between the derived category of the

crepant resolution and the equivariant category of C3. The equivalence

is established by an integral transform which is a Fourier-Mukai functor.

Many properties of these transforms are based on the compatibility between

the six derived functors mentioned in the previous chapter. One of these

compatibilities is Grothendieck-Verdier duality, which can be found in classic

texts on derived categories.

2.1 Fourier-Mukai Transforms

In this section, we see the definition of integral transforms, which are the

main tool for finding equivalences between derived categories of varieties,

and we explore some standard properties of these functors.

Definition 2.1 (Integral functors). Let X and Y be proper algebraic vari-

eties over a field K, and let K• be an object in derived category D−(X×Y ).

The functor

ΦK•
: D−(X) // D−(Y )

23
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defined by

ΦK•
(E•) = RπY ∗

(
K• L
⊗ π∗X(E•)

)
is called an integral functor, where πX and πY are the projections of the

product X × Y onto the factors X and Y respectively, and the complex K•

is called the kernel of the integral functor.

These functors have nice properties; for example, if K• ∈ D−(X × Y )

and L• ∈ D−(Y × Z) are kernels, we can compose the respective integral

functors:

ΦL• ◦ ΦK• ∼= ΦL•∗K•

where L• ∗ K• is the convolution of these kernels, defined by:

L• ∗ K• = RπXZ∗

(
π∗XYK• L

⊗ π∗XZL•
)
∈ D−(X × Z)

Under suitable hypotheses, for example, if X and Y are smooth algebraic

varieties, the functor ΦK•
maps Db(X) to Db(Y ). Another property of

integral functors is that under certain conditions, they have adjoints. For

example, if X is smooth and the complex K• has finite Tor-dimension over

Y , the functor

ΦK•∨⊗π∗
XωX [dim(X)] : Db(Y ) // Db(X)

is the right adjoint of ΦK•
.

2.2 Examples of Fourier-Mukai Transforms

Some integral transforms that we will use are seen in this section as exam-

ples.

The identity Id : Db(X) // Db(X) is an integral transform indeed con-

sidering the embedding ι : X �
� // △ ⊂ X ×X the integral transform with

kernel O△ ∈ Db(X ×X) satisfies:

Id ∼= ΦO△ .

Let L be a line bundle over X; the twist E• � // E• ⊗ L is an integral

transform. To see this, let us take the complex ι∗(L) ∈ Db(X ×X) as the

kernel of the integral transform; then

L⊗ (−) ∼= Φι∗(L).
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The Serre functor SX : Db(X) � // Db(X) is defined by E• � // E• ⊗ ωX [n],

where n is the dimension of X. Once again, the Serre functor it is an integral

transform, indeed:

Φι∗ωXE• = RπX∗ (ι∗ωX ⊗ π∗XE•) = RπX∗ (ι∗ (ωX ⊗ ι∗π∗XE•))

= R(ι ◦ πX)∗ (ωX ⊗ ι∗π∗XE•) = ωX ⊗ ι∗π∗XE• = ωX ⊗ E•

= SX(E•)[−n].

Trivially the structure sheaf OX×Y on X × Y defines an integral functor:

ΦOX×Y (E•) = RπY ∗

(
OX×Y

L
⊗ π∗X(E•)

)
= RπY ∗π

∗
X(E•).

2.3 Derived McKay Correspondence

In this section we will see how the McKay correspondence was initially for-

mulated in two dimensions and how it was generalized to three dimensions.

The context of the classical McKay correspondence is the following. Let

G ⊂ SL(2,C) be an arbitrary finite group acting on C2; the quotient space

C2/G is called a Kleinian singularity. It has a unique resolution of singular-

ities. The McKay correspondence establishes a bijection

{ representations of G} ←→ { Cohomology of X }

where X is the resolution of singularities of C2/G.

The first step to interpret the McKay correspondence in a categorical sense

was given by Gonzalez-Sprinberg and Verdier who in [22] interpreting this

correspondence as an isomorphism

R(G) ∼= KG(C2)

where R(G) is the representation ring of G and KG(C2) is the equivariant

K-theory of C2.

For the case of dimension 3, going to dimension 3 was very complicated.

Nakamura in [42] introduced the scheme G-HilbC3, which is the moduli

space of G-clusters of C3. He proved that it is a crepant resolution of C3/G

when G is an abelian group, and conjectured the same for any finite group of



26 CHAPTER 2. DERIVED MCKAY CORRESPONDENCE

SL(3,C). Ito and Nakajima in [32] observed that the McKay correspondence

holds in the abelian case and proved that

K(G-HilbC3) ∼= KG(C3),

where this isomorphism is between the G-equivariant K-theory of C3 and

the usual K-theory of G-HilbC3.

Later Bridgeland, King and Reid in [8] proved Nakamura’s conjecture using

methods of derived categories and Fourier-Mukai transforms.

Before continuing we need some definitions that intervene in the situation

of the problem studied by Bridgeland, King and Reid [8].

Definition 2.2 (Crepant Resolution). LetX be a singular algebraic variety;

a morphism f : Y // X is called a resolution of singularities of X if:

i. Y is a nonsingular variety.

ii. The morphism f is proper.

iii. The morphism f is birational, in particular

f
∣∣
Y ′ : Y \ f−1(XSing)

∼ // X \XSing

where Y ′ := Y \ f−1(XSing) and XSing is the singular locus of X. If in

addition f∗(ωX) = ωY , f is called a crepant resolution of X.

Definition 2.3 (G-clusters). Let M be a variety with a G-action, where G

is a finite group. A zero-dimensional subscheme Z ⊂ M is a G-cluster if

Γ(OZ) ∼= C[G] as G-representations.

The functor

Λ : {locally noetherian schemes/C}opp // Sets

is defined by

Λ(S) =


G-invariant closed subschemes Z ⊂M ×C S

such that Z // S is flat and Zs ⊂M is

a G-cluster for each s ∈ S

 .

This functor is representable by a scheme G-HilbM called the G-Hilbert

scheme, which is a closed subscheme of Hilb|G|M , the Hilbert scheme of

zero-dimensional subschemes of M of length |G|.
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2.4 Situation of the Problem

In this section, we describe the hypotheses under which the two theorems

of Bridgeland, King and Reid will be developed in the following sections.

Let G be an arbitrary finite subgroup of SL(3,C) acting on a nonsingular

quasiprojective complex variety M such that the canonical bundle ωM is

locally trivial in CohG(M). The quotient varietyM/G is quasiprojective and

usually singular. The problem is to find a crepant resolution of this singular

quotient space. A natural candidate could be the irreducible component of

G-HilbM containing free orbits. In principle we have that this irreducible

component Y is quasiprojective by Grothendieck’s theorem ([27, Theorem

14.139]). Since the moduli functor Λ is representable, and it is represented by

G-HilbM , there is a universal G-invariant closed subscheme Z �
� // Y ×M.

Consider the following diagram:

Z
p

~~

q

  
Y

τ   

M

π~~
X

The hypotheses of the problem are:

i. The morphisms p, and q are the restricted projections Z �
� // Y ×M,

ii. the morphism π is a projection onto the quotient variety X :=M/G

iii. τ and q are birational

iv. p and π are finite

v. p is flat.

2.5 Main Theorem of Bridgeland, King and Reid

The first main theorem of [8, Theorem 1.1] is the following one that we will

describe with all the details.

Theorem 2.4. Suppose that the scheme

Y ×X Y := {(y1, y2) ∈ Y × Y | τ(y1) = τ(y2)}
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has dimension ⩽ n + 1. Then Y is a crepant resolution of X = M/G and

Φ : Db(Y ) // Db
G(M) is a equivalence of triangulated categories.

Proof. Since the variety M is quasi projective, we need to divide the proof

in two parts: first one proves the projective case, and then from there a

proof for the quasi-projective case is derived.

Case 1. We suppose that M is a projective variety.

We start by defining the integral functor between the derived category of

the candidate to be a resolution of singularities and the derived category of

nonsingular variety that has a finite group action; then we will prove that

it is indeed a Fourier-Mukai functor.

Let πY : Y ×M // Y and πM : Y ×M //M be the projection mor-

phisms; given the object OZ ∈ Db(Y ×M) we consider the associated inte-

gral functor

ΦOZ
Y→M : Db(Y ) // Db

G(M),

defined by

ΦOZ
Y→M (−) = RπM∗(OZ ⊗ π∗Y (−⊗ ρ0)).

The kernel OZ of this integral functor is a finite Tor-dimension so the tensor

does not need to be derived and the projection πY is flat then π∗Y does not

need to be derived either. The kernel OZ has finite homological dimension,

then O∨
Z , the derived dual, also has finite homological dimension. By Propo-

sition A.78 in [2] the finite homological dimension is equivalent to finite Tor-

dimension. Then by Proposition 1.13 in [2], there exists ΨK
M→Y ⊣ ΦOZ

Y→M

where the kernel of

ΨK
M→Y : Db

G(M) // Db(Y )

is defined by

K = O∨
Z ⊗ π∗MωM [n].

The composition of these integral functors

Ψ ◦ Φ : Db(Y ) // Db(Y )

is

Ψ ◦ Φ(−) = Rπ2∗(Q
L
⊗ π∗1(−)),

and by Proposition 1.3 in [2] the kernel is

Q = K ∗ OZ ∈ Db(Y × Y ).
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The morphisms π1 : Y × Y // Y and π2 : Y × Y // Y denote the pro-

jections onto the first and second factor respectively.

First we need to prove that the kernel of ΨΦ is supported on the diagonal

as that will help us prove isomorphisms between ext groups.

Claim: Q is supported on the diagonal
a
⊂ Y × Y.

For a closed point y ∈ Y we consider iy : {y} × Y // Y × Y, a closed

embedding; by the argument in Theorem 1.27 (b) in [2]

Li∗yQ = ΨΦOy,

since Q is the kernel of ΨΦ, and an the other side O(y1,y2) = iy1∗Oy2 .

Then

Homi
Db(Y×Y )(Q,O(y1,y2)) = Homi

Db(Y×Y )(Q, iy1∗Oy2)

= Homi
Db(Y )(Li

∗
y1Q,Oy2)

= Homi
Db(Y )(ΨΦOy1 ,Oy2)

= Homi
Db

G(M)
(ΦOy1 ,ΦOy2)

= Homi
Db

G(M)
(OZy1

,OZy2
),

for the last identity we use the Example 5.4 (vi) in [30]. We obtain

Homi
Db(Y×Y )(Q,O(y1,y2))

∼= Homi
Db

G(M)
(OZy1

,OZy2
).

For two G-clusters, say Z1 and Z2 ⊂M , we have

G-HomM (OZ1 ,OZ2) =

{
C if Z1 = Z2,

0 otherwise.

Let (y1, y2) ∈ (Y × Y ) \∆; by Serre duality,

G-ExtnM (OZy1
,OZy2

) = G-Extn−n
M (OZy2

,OZy1
⊗ ωM )∗

= G-Ext0M (OZy2
,OZy1

)∗

= G-HomM (OZy2
,OZy1

)∗

= 0.

Then for (y1, y2) ∈ (Y × Y ) \∆

Homi
Db(Y×Y )(Q,O(y1,y2)) = 0
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for i = n, unless 1 ≤ p ≤ n−1. Let Q′ be the restriction of Q to (Y ×Y )\∆,

then Proposition 5.4 in [7]

hd(Q′) ≤ n− 2.

Let (y1, y2) ∈ (Y × Y ) \ (Y ×X Y ) be a closed point, then τ(y1) ̸= τ(y2),

HomDb(Y×Y )(Q,O(y1,y2)) = G-HomM (OZy2
,OZy1

) = 0,

because the G-clusters Zy1 and Zy2 are disjoint. Hence Supp(Q) ⊂ Y ×X Y

and therefore also Supp(Q′) ⊂ Y ×X Y, since Q′ is a restriction of Q. By

Proposition 5.37. in [27]

dim(Y × Y ) = 2n,

then by hypothesis n− 1 ≤ codim(Y ×X Y ) and by Corollary 5.2 in [8]

codim(supp(Q′)) ≤ hd(Q′).

We have

n− 2 < n− 1 ≤ codim(Y ×X Y ) ≤ codim(supp(Q′)) ≤ hd(Q′) ≤ n− 2,

which is absurd, then Q′ ∼= 0 but Q′ = Q |(Y×Y )\∆ and this proves the claim

supp(Q) ⊂ ∆.

Fix a point y ∈ Y and let E = ΨΦ(Oy); above we have proved that E is

supported in y, since E = ΨΦ(Oy) = Qy and Q is supported on the diagonal

of Y .

Now we will prove that H0(E) = Oy. Indeed, by adjunction Ψ ⊣ Φ we know

that there exists a functor morphism ΨΦ // IdDb(Y ); then there exists a

morphism of complexes E = ΨΦOy
// Oy. With this morphism E a

// Oy

we can complete a distinguished triangle

E a
// Oy

b
// A c

// E[1].

By axiom TR2 of the triangulated categories we obtain the following distin-

guished triangle for some X ∈ Db(Y )

C σ
// E a

// Oy
b
// X[1].
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By Remark 1.1.11. in [44] the functor HomDb(Y )(−,Oy) is cohomological,

so that

HomDb(Y )(Oy,Oy) // HomDb(Y )(E,Oy) // HomDb(Y )(C,Oy)

is an exact sequence in the abelian category of abelian groups. This induces

a long exact sequence in cohomology

· · · HomDb(Y )(Oy,Oy) HomDb(Y )(E,Oy) HomDb(Y )(C,Oy)

Hom1
Db(Y )(Oy,Oy) Hom1

Db(Y )(E,Oy) · · ·

and since E = ΨΦ(Oy)

· · · HomDb(Y )(Oy,Oy) HomDb(Y )(ΨΦ(Oy),Oy) HomDb(Y )(C,Oy)

Hom1
Db(Y )(Oy,Oy) Hom1

Db(Y )(ΨΦ(Oy),Oy) · · ·

by the adjunction Ψ ⊣ Φ one has

· · · HomDb(Y )(Oy,Oy) HomDb
G(M)(ΦOy,ΦOy) HomDb(Y )(C,Oy)

Hom1
Db(Y )(Oy,Oy) Hom1

Db
G(M)

(ΦOy,ΦOy) · · ·
λ

The morphism Hom1
Db(Y )(Oy,Oy)

λ
// Hom1

Db
G(M)

(ΦOy,ΦOy) is the

Kodaira-Spencer map for the family OZ and as for each y ∈ Y,OZy is the

structure sheaf of a G-cluster, then by the Lemma 5.3 in [3] the morphism

λ is injective. Then

Homi
Db(Y )(C,Oy) = 0, for i = 0,

We claim that H0(C) ∼= 0.

With this we will prove that H0(E) ∼= Oy. Indeed, in the following

distinguished triangle

C σ
// E a

// Oy
b
// X[1]

taking cohomology sheaves one has

· · · H0(C) H0(E) H0(Oy)

H1(C) H1(E) H1(Oy) · · ·
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but E = Qy is a sheaf on Y and

· · · 0 Qy Oy

H1(C) 0 0 · · · .

Since Q is a complex with support on the diagonal, E = Qy is supported

at the point y, then in the diagram above we have an injective morphism of

sheaves supported at a point, so that

H0(E) ∼= Oy.

By Corollary 5.3 [8] we conclude that Y is nonsingular at y and E ∼= Oy but

the point y is arbitrary, i.e. Y is nonsingular.

We will prove that Φ is fully faithful; indeed let y1, y2 ∈ Y . We already

know that

Homi
Db(Y )(ΨΦOy1 ,Oy2) = Homi

Db(Y )(ΨΦOy1 ,Oy2)

= Homi
Db

G(M)
(ΦOy1 ,ΦOy2)

= Homi
Db

G(M)
(OZy1

,OZy2
),

and by a previous step if E = ΨΦOy then E ∼= Oy, so

Homi
Db(Y )(ΨΦOy1 ,Oy2) = Homi

Db(Y )(Oy1 ,Oy2)

thus

Homi
Db(Y )(Oy1 ,Oy2) = Homi

Db
G(M)

(OZy1
,OZy2

).

This isomorphism holds for any Oy1 ,Oy2 ∈ Ω, where Ω is the spanning class

for Db(Y ) [3, Example 2.2], and by Theorem 2.3 [8] Φ is fully faithful.

The property of Y being a crepant resolution relies on the fact that Φ is

an equivalence; this is the next point to prove. We will apply the Theorem

2.4 [8], so let us its hypotheses. First Db(Y ) is non trivial and Db
G(M) is

indecomposable since G acts faithfully on M . We also need to verify that

ΦSY (ω) = SMΦ(ω), for any ω ∈ Ω,

where SY and SM are the Serre functors, and Ω as we indicated before is the

spanning class of Db(Y ). By general hypotheses the action of the group G in
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M is such that the canonical bundle ωM is locally trivial, then for any point

x ∈M the orbit G.x ⊂M has a open neighbourhood V (G.x) in which:

ωM ⊗OZy
∼= OZy , for any y ∈ Y in CohG(M).

Taking for y ∈ Y, ω = Oy

ΦSY (Oy) = Φ(Oy ⊗ ωY [3]) = Φ(Oy[3]) = OZy [3]

and

SMΦ(Oy) = SMOZy = OZy ⊗ ωM [3] = OZy [3].

This verifies the identity we need, so that Φ is an equivalence.

To close the projective case, let us prove that Y is a crepant resolution.

Take a point x ∈ X =M/G and let

Dx(Y ) = {E• ∈ Db(Y ) | supp(E•) ⊂ τ−1(x)}

Dx,G(M) = {F• ∈ Db
G(M) | supp(F•) ⊂ π−1(x)}.

These are full subcategories; we restrict Φ to them, and then

Φx : Dx(Y ) // Dx,G(M)

is also an equivalence. The canonical bundle ωM is trivial as G-sheaf in a

neighbourhood of π−1(x) ⊂ M for every x ∈ X; then Db,G(M) has trivial

Serre functor. By the equivalence Φx the category Dx(Y ) also has trivial

Serre functor, and this is true for all x. Then by Lemma 3.1 [8] Y is a crepant

resolution (X has rational singularities since X is a quotient singularity).

Case 2. We suppose that M is a quasi-projective variety.

Since M is quasiprojective, we take its projective closure and get the im-

mersion M �
� //M this induces the immersion Db

G(M) �
� // Db

G(M). The

following diagram is commutative

Db(Y )
Φ // Db

G(M) // Db
G(M)

Db
c(Y )

Φc

//
?�

OO

Db
c,G(M) �

� //
?�

OO

Db
c,G(M)
?�

OO
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where Db
c(Y ), Db

c,G(M) and Db
c,G(M) are the full subcategories of Db(Y ),

Db
G(M) and Db

G(M), respectively, of objects with compact support. Since

the variety M is proper, then Db
c,G(M) = Db

G(M). By hypothesis M is non-

singular and by resolution of singularities M is nonsingular thus Db
G(M)

has a Serre functor restricting this functor to X we get a Serre functor on

Db
G(M) then Db

c,G(M) has Serre functor. With this we have all the functors

of the previous case,so we can use the same techniques of the previous case

and we conclude that:

The restricted functor Φc is an equivalence (i.e. a Fourier-Mukai transform),

Y is a nonsingular variety and a crepant resolution.

It remains to prove that Φ is an equivalence. Again by the Proposition

1.13 in [2], Φ has a right adjoint Υ
ωZ/M

M→Y : Db
G(M) // Db(Y ) given by

Υ
ωZ/M

M→Y (−) =
[
RπY ∗(OZ ⊗ π∗Y ωY [3]

L
⊗ π∗M (−))

]G
.

We prove that

OZ ⊗ π∗Y ωY [3] ∼= ωZ/M .

We start from

O∨
Z = RHomY×M (OZ ,OY×M ) = RHomY×M (i∗OZ ,OY×M )

where i : Z �
� // Y ×M is a closed embedding, to which we apply the

Grothendieck-Verdier duality

O∨
Z = i∗HomZ(OZ , i

!OY×M ) = i∗i
!OY×M .

By Section C.1 in [2] we have i!OY×M = ωi[−3] but the complex i∗i
!OY×M ;

we can write i!OY×M in Y ×M. With this

Ker(Υ) = i!OY×M ⊗ π∗Y ωY [3] = ωi[−3]⊗ π∗Y ωY [3] = ωi ⊗ π∗Y ωY = ωi

and then ωi = ωZ/M .

The composed functor Υ ◦ Φ : Db(Y ) // Db(Y ) defined by

Υ ◦ Φ(−) = Rπ2∗(Q
L
⊗ π∗1(−))

has kernel Q given by

Ker(Υ ◦ Φ) = ωZ/M ∗ OZ ∈ Db(Y × Y )
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where π1, π2 are the projections of Y × Y on the first and second factors.

Since Φc is an equivalence, ΥΦOy = Oy for any point y ∈ Y , but Q =

Ker(Υ◦Φ) and then Qy = Oy. By Corollary 5.23 [30] the composition Υ◦Φ
satisfies

Υ ◦ Φ(−) = L⊗ (−)

for some line bundle L in Y and Q =
a

∗ L where
a

: Y // Y × Y is the

diagonal morphism.

We prove that L is trivial; indeed by adjunction (Φ,Υ) there exists a mor-

phism of functors ϵ : Id // Υ ◦ Φ. We obtain a morphism of sheaves

ϵ(Oy) : Oy
// (Υ ◦ Φ)(Oy) = L

and a commutative diagram of sheaves on Y

OY L

Oy Oy

f

ϵ(OY )

L⊗f

ϵ(Oy)

Since Φc is an equivalence on Db
c(Y ) then ϵ is an isomorphism, and the ver-

tical arrows are surjective so that the morphism ϵ(OY ) is an isomorphism;

this proves that L is trivial. Thus Υ ◦Φ = IdDb(Y ) and Υ is a right adjoint.

We conclude that Φ is fully faithful.

We will use Lemma 2.1 of [8] to prove that Φ : Db(Y ) // Db
G(M) is an

equivalence; we only need to prove that,

if Υ(E) ∼= 0, then E ∼= 0 for any E ∈ Db
G(M).

Indeed if Υ(E) ∼= 0, for any B ∈ Db
c,G(M) there exists A ∈ Db

c(Y ) such that

ΦcA = B since Φc is an equivalence, therefore

Homi
Db

G(M)
(B,E) = Homi

Db
G(M)

(ΦA,E) = Homi
Db

G(M)
(A,ΥE) = 0. (2.1)

This holds for all i ∈ Z and for all B ∈ Db
G(M). By absurd suppose that

E ≇ 0 and let W = G.x be a G orbit contained in Supp(E), then the

inclusion W �
�

i
// E is a projective equivariant morphism of schemes. We

consider the functors:

i! : Db
c,G(M) // Db

c,G(W ) = Db
G(W ),
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and

i∗ : D
b
G(W ) // Db

c,G(M).

Take B = i∗i
!E ∈ Db

c,G(M) the morphism i∗i
!E // E is nonzero, but this

contradicts (2.1), then E ∼= 0, and we conclude that Φ is an equivalence, i.e.

a Fourier-Mukai functor.

This concludes the quasi-projective case.

2.6 Second Main Theorem of Bridgeland, King

and Reid

The second main result in the mentioned paper [8] is the proof of the Naka-

mura conjecture.

Theorem 2.5. Under the same general hypotheses, we suppose that M

is a nonsingular quasi-projective complex variety and dim(M) = n ≤ 3.

Then G-HilbM is irreducible and a crepant resolution of X = M/G, and

Φ : Db(Y ) // Db
G(M) is an equivalence (a Fourier-Mukai functor).

Proof. The morphism τ : Y // X is birational then the exceptional locus

has dimension ≤ 2. This implies that

dim(Y ×X Y ) ≤ 4,

therefore the condition of Theorem 2.4 is satisfied. Hence, Y is a crepant

resolution of X and Φ is an equivalence. It remains to prove that G-HilbM

is irreducible.

First we will prove that G-HilbM is connected. By absurd suppose that

there exists a G-cluster Z ofM such that Z /∈ {Zy | y ∈ Y }, that is, it is not
parameterized by Y . Then OZ ∈ Db

G(M), and there exists E ∈ Db
c(Y ) with

ΦcE = OZ as in particular Φc is an equivalence. Since Φ is an equivalence

it has a quasi-inverse Ψ; using adjunction we have

Homi
Db(Y )(E,Oy) = Homi

Db(Y )(ΨΦE,Oy) = Homi
Db(M)(ΦE,ΦOy)

= Homi
Db

G(M)
(OZ ,OZy) = 0.
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The last identity holds because Z ̸= Zy so that hd(E) = 1. This means that

E ∼= (· · · → 0→ L1 −→
η
L2 → 0→ · · · )

in Db
c(Y ) where the only nonzero terms of the complex are L1 and L2 and

they are locally free. The structural sheaf of Z is supported on a G-orbit

G · x ⊂M , then E it is supported on a fiber τ−1([x]) ⊂ Y.
The kernel of η is a torsion sheaf then ker(η) ∼= 0. The other side H0(E) ∼=
ker(η) = 0 and H1(E) ∼= L2/Im(η) = coker(η), then E ∼= coker(η)[1] and

[E] = [−coker η], in Kc(Y ).

Let y ∈ τ−1([x]) then by definition of Hilbert-Chow morphism τ(y) =

Supp(Zy) and τ(y) = [x], thus Z and Zy are supported in same G-orbit

[x]. By Lemma 8.1 of [8]

[OZ ] = [OZy ] in K
G
c (M);

since ΦE = OZ ,ΦOy = OZy and Φ is an equivalence, this induces an iso-

morphism on Grothendieck groups, then

[E] = [Oy], in Kc(Y ),

where KG
c (M),Kc(Y ) are the Grothendieck groups of Db

c,G(M), Db
c(Y ) re-

spectively. Since Y is a nonsingular quasiprojective variety there is an

open inclusion i : Y �
� // Y where Y is a nonsingular projective variety,

and i∗ : D
b
c(Y ) // Db

c(Y ) is a full embedding. This functor induces an

injective homomorphism between Grohendieck groups:

i∗ : Kc(Y ) // Kc(Y );

then

[E] = [Oy], holds on Kc(Y ).

Moreover [E] = −[coker η] thus [Oy] = −[coker η]. By applying Riemann-

Roch theorem on Y , for a sufficiently ample line bundle L on Y , the Euler

characteristics χ(Oy ⊗ L), χ(coker η ⊗ L) are positive, since in the last

identity we multiply by the L in Kc(Y )

[Oy].[L] = −[coker η].[L]
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by definition

[Oy ⊗ L] = −[coker η ⊗ L]

but χ(Oy ⊗ L) = −χ(coker η ⊗ L) > 0 this is a contradiction. As a conse-

quence Y = G-HilbM .

Finally G-HilbM is irreducible, since Y is irreducible.



Chapter 3

Moduli Spaces of

G-constellations and Crepant

Resolutions of C3/G

In this chapter we first review some basic facts about the construction of

quotients of varieties under the action of a group. The GIT quotient is

used in sections 3.2 and 3.3 for the construction of the moduli spaces of

θ-stable G-constellations, which are isomorphic to moduli spaces of θ-stable

McKay quiver representations. In sections 3.4 and 3.5 we prove an identity

that relates the tautological bundle R and the universal G-constellation U .
In the last section, we study the wall-crossing phenomenon by means of

the contraction morphism induced by a wall. Depending on each type of

wall, we describe the results of Craw and Ishii [15] about the structure of

the unstable locus Z and how the tautological line bundles change under

wall-crossing.

3.1 GIT: Construction of Quotients by Group Ac-

tions

In this section we describe some important points of the construction of

quotient varieties using Geometric Invariant Theory (GIT).

The principal reference for this section is [36] but also [40], [45], and [46].

Throughout this section we let

K be an algebraically closed field with characteristic zero, G a linear alge-

39
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braic group over K and M an affine algebraic variety over K. The algebraic

group G is assumed to acts algebraically on M .

3.1.1 GIT quotient

If G is a reductive affine algebraic group the GIT quotient of the affine

variety M by the linear action of G is defined by :

M �G = Spec K[M ]G,

where K[M ]G is the algebra of G-invariant polynomial functions on M. The

14-th Problem of Hilbert asks when K[M ]G is finitely generated, and in the

case G is a reductive linear group it is answered in the affirmative, so that

M � G is an affine algebraic variety. From now on we assume that G is

reductive.

We define a map of topological spaces

M/G //M �G,

by

O(x) � //
{
f ∈ K[M ]G | f(y) = 0, for any y ∈ O(x)

}
.

There exists a naturally morphism induced by inclusion K[M ]G �
� // K[M ]

Φ :M/G //M �G;

this morphism is called affine quotient map and is surjective (see [40, The-

orem 5.9]). Two orbits, say O1 and O2, define the same point in M � G if

and only if:

O1 ∩O2 ̸= ∅.

This leads us to define an equivalence relation on M , for any x and x′ in M :

x ∼ x′ if and only if O(x) ∩O(x′) ̸= ∅.

Theorem 3.1 (Nagata-Mumford). With the notation above:

two points x ∼ x′ if and only if cannot be separated by a equivariant polyno-

mial function.

We then have a topological-theoretic isomorphism

M �G =M/ ∼ .
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Let us remember that the quotient space M/ ∼ is only a topological space

and not an variety. The GIT quotient M � G can be described in a more

concrete way, we then set-theoretic isomorphism

M �G = // { closed orbits in M } ,

this map is defined by

[x] � // the unique closed orbit contained in O(x),

for the latter result see [40, Corollary 5.5].

3.1.2 χ-semistable points

We denote by Char(G) the set of characters of the algebraic group G. Fix

a character χ ∈ Char(G), an affine variety M and define:

K[M ]G,χ =
{
f ∈ K[M ]G | f(g.m) = χ(g).f(m)

}
;

this is called the set of semi-invariant functions.

The ring of semi-invariant functions can be graded using the characters of

group G as follows:

A =
⊕
n≥0

K[M ]G,χn
,

which is a finitely generated algebra.

We define the twisted GIT quotient

M �χ G = Proj(A);

this is a quasi-projective variety and by definition there exists a projective

morphism

π :M �χ G // Spec(A0) =M �G.

By definition of twisted GIT quotient there exists a rational map

M //M �χ G.

A point x ∈ M is called χ-semistable if there exists f ∈ An = K[M ]G,χn

for some n ≥ 1 such that f(x) ̸= 0. We denote by M ss,χ the set of all

χ-semistable points in M ; this set is open in M . There exists a natural

surjective map of topological spaces:

M ss,χ/G //M �χ G
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defined by

[x] � // {f | f(y) = 0, for any y ∈ [x]} .

Two semistable orbits O1 and O2, i.e. contained inM ss,χ, defines a same

point in M �χ G if and only if

O1 ∩O2 ∩M ss,χ ̸= ∅.

Again this leads us to define an equivalence relation, two points x and x′ in

M ss,χ:

x ∼ss x
′ if and only if O(x) ∩O(x′) ∩M ss,χ ̸= ∅.

We obtain a topological-theoretic isomorphism:

M �χ G =M/ ∼ss .

The projective morphism

π :M �χ G //M �G

can be described as follows [36, Theorem 9.19],

[x] � // unique closed orbit in M contained in O(x).

The twisted GIT quotient also can be described in terms of closed orbits

[36, Theorem 9.20]:

M �χ G
= // { closed orbits in M ss,χ } .

3.1.3 χ-stable points

A point x ∈ M ss,χ such that the stabilizer group Gx is finite and the orbit

O(x) is closed in M ss,χ, is called χ-stable point of the affine variety M . The

set of stable points ofM is denoted byM s,χ. If a point x ∈M ss,χ is χ-stable

we then:

O(x) ∩M ss,χ = O(x),

this implies that, for two χ-stable points :

O(x) ∩O(x′) ∩M ss,χ ̸= ∅ if and only if O(x) = O(x′).

We obtain a natural map

M s,χ/G //M �χ G.

Some properties that M s,χ satisfies:
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i. M s,χ is open in M ss,χ,

ii. if M s,χ is nonempty and M is irreducible, then M s,χ is dense in M ss,χ

and M s,χ/G is dense in M �χ G,

iii. if the variety M is nonsingular and for any x ∈M s,χ the stabilizer Gx

is trivial, then M s,χ/G is a nonsingular variety.

We summarize the morphisms between quotients that we have defined

in the following diagram:

M s,χ � � //

��

M ss,χ � � //

��

M

��
Φ

������

M s,χ/G //

=

��

M ss,χ/G //

����

M/G

��
M s,χ/G //M �χ G π

//M �G.

3.2 Moduli Spaces of θ-stable G-constellations

In this section we describe the construction of the moduli spaces of θ-stable

G-constellations following Craw and Ishii [15].

Let G be a finite subgroup of GL(n,C). The set of classes of irreducible

representations of G is denoted by Irr(G) and the regular representation by

R =
⊕
Rρ ⊗ ρ. The representation ring is

R(G) =
⊕

Z.ρ,

which can be interpreted as a Grothendieck group of classes of representa-

tions of G under isomorphism.

Definition 3.2 (G-constellations). A G-constellation is an object F ∈
CohG(Cn), such that the vector space of global sections satisfies H0(F) ∼= R

as a C[G]-modules.

Definition 3.3. The GIT-parameter space is the set

Θ =
{
θ ∈ HomZ(R(G),Q)

∣∣∣ θ(R) = 0
}
;

an element of this set is called a stability condition.
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Definition 3.4. A G-constellation F is called θ-stable if for every proper

G-equivariant coherent sheaf, 0 ⊊ F ′ ⊊ F , the inequality θ(F ′) > 0 holds.

If we replace this condition by θ(F ′) ≥ 0, the sheaf F is called θ-semistable.

Observation 3.5. The previous definition of stability was introduced by

King [35] for quiver representations.

Definition 3.6 (Generic parameters). A parameter θ ∈ Θ is called generic

if for any F ∈ {θ-semistable G-constellations} one has

F ∈ {θ-stable G-constellations}.

To construct the moduli space of G-constellations as in [15, Section 2.1],

let us denote V = Cn, and define the affine scheme

N =
{
B ∈ HomC[G](R, V ⊗R)

∣∣∣ Λ2B = 0
}
.

Each element B ∈ N generates a G-constellation. Indeed, each B ∈ N gives

a structure of C[V ]-module to the regular representation R, let us call this

structure RB, then the associated module R̃B ∈ OSpec(C[V ]). The sheaf R̃B

is a G-equivariant coherent sheaf and its global sections are isomorphic to

R, so R̃B is a G-constellation.

As the center C∗ acts trivially on AutC[G](R), one can define the quotient

PAutC[G](R) = AutC[G](R)/C∗;

this group acts on N by conjugation. Then AutC[G](R) acts on N by the

projection homomorphism AutC[G](R) −→ PAutC[G](R). The set of charac-

ters of PAutC[G](R) is

X(PAutC[G](R)) =
{
χθ : PAutC[G](R) −→ C∗ , χθ([gρ]ρ) =

∏
ρ

det(gρ)
θ(ρ)
}
.

We can construct the GIT quotients:

Mθ := Nθ/χθ
PAutC[G](R), Mθ := N ss

θ /χθ
PAutC[G](R)

the geometric quotient and categorical quotient respectively, where Nθ,N ss
θ

are the open subsets ofN of the χθ-stable and χθ-semistable points. By King

[35, Proposition 5.3] these quotients are the fine moduli and coarse moduli

spaces, respectively, of χθ-stable and χθ-semistable G-constellations. The

construction of these spaces as moduli spaces of quiver representations is
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more concrete, and we will describe it in the next section.

By descent theory of coherent sheaves the sheaves R⊗ON , Rθ ⊗ON on Nθ

descend to locally free sheaves R, Rθ on Mθ, and there exists a universal

G-constellation Uθ onMθ × C3.

3.3 Moduli Spaces of θ-stable McKay Quiver Rep-

resentations

In the previous section we reviewed the GIT construction of the moduli

spaces Mθ, which are equivalent to the moduli spaces of θ-stable McKay

quiver representations. In this section, we delve into the construction of

these moduli spaces from the point of view of quiver representations, which

is more concrete than the one presented in the previous section.

Let G ⊂ GL(n,K) a finite abelian subgroup of order r, such that the

characteristic of the field K dos not divide to r. First we note that the

group G can be considered as subgroup of (K∗)n, where (K∗)n is the group

of diagonal matrices with non-zero entries. We set

Tn := (K∗)n.

When G is abelian its representations are one-dimensional and the set of

classes of irreducible representations is also finite and

Irr(G) = {ρ1, . . . , ρr}

have the same number of elements of G.

The embedding G �
� // Tn into the algebraic torus induces a surjective ho-

momorphism Hom(Tn,K∗) // Hom(G,K∗), but Zn = Hom(Tn,K∗) is the

character lattice of Tn and G∗ = Hom(G,K∗) is the dual group as algebraic

groups, and we can be identify G∗ = Irr(G).

Definition 3.7 (McKay quiver). Let G ⊂ GL(n,K) be a finite abelian

group of order r; the McKay quiver of G is a quiver (I,Ω) where the set of

vertices is Irr(G) and the set of edges is

Ω =
{
aρi : ρρi → ρ | ρ ∈ Irr(G) and i ∈ I(n)

}
.

The McKay quiver of G has nr arrows.
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Definition 3.8 (Representation of the McKay quiver). A representation of

the McKay quiver of dimension d = (1, . . . , 1) ∈ Zr is an association:

for each ρ ∈ Irr(G) � // Rρ is a some one-dimensional K-vector space

and

for each aρi ∈ Ω � // Taρi : Rρρi → Rρ a K-linear map.

To any representation of the McKay quiver one can associate a matrix

(bρi ) ∈ Kn×r where the scalars bρi ∈ K represent the K-linear transformations

Taρi . We write the coordinate ring of the affine space Anr
K as

K[zρi : ρ ∈ Irr(G), i ∈ I(n)].

The quiver representations should satisfy the following relations:

bρρij bρi = b
ρρj
i bρj , ρ ∈ Irr(G), i ∈ I(n) (3.1)

this comes from the relations that G-constellations must naturally satisfy

[17]. We can write this relation in terms of the polynomial ring, and consider

the ideal generated by these relations

I = ⟨zρρij zρi − z
ρρj
i zρj : ρ ∈ Irr(G), i ∈ I(n)⟩.

The affine scheme defined by this ideal is denoted by Z. First note that K∗

acts on the one-dimensional K-vector space Rρ by the product by a scalar,

then the algebraic torus (K∗)r acts diagonally on ⊕Rρ, and also acts on

Hom(Rρρi , Rρ):

for t = (tρ) ∈ (K∗)r and bρi ∈ Hom(Rρρi , Rρ),

t.bρi := t−1
ρρib

ρ
i t

ρ. (3.2)

This action can be described in matrix terms. Let

{eρi | ρ ∈ G
∗, i ∈ I(n)} ⊂ Znr

is the usual basis of Znr; we define the block matrix:

A =
[
A1, A2, . . . , Ar

]
∈ Znr×nr

where each block for fixed ρ ∈ G∗ has for columns the vectors eρ1 , e
ρ
2 , . . . , e

ρ
n ∈

Znr×nr, that is

Aρ = [eρ1 , e
ρ
2 , . . . , e

ρ
n] ∈ Znr×n.
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Finally we define the block matrix:

B =
[
B1, B2, . . . , Br

]
∈ Zr×nr

where

Bρ = [eρ − eρρ1 , eρ − eρρ2 , . . . , eρ − eρρn ] ∈ Zr×n.

Each block Bρ for a fixed ρ ∈ G∗ contains the vectors eρ − eρρ1 , eρ −
eρρ2 , . . . , eρ − eρρn ∈ Zr as columns where

{eρ | ρ ∈ G∗} ⊂ Zr

is the usual basis of Zr.

If we put TB = Hom(ZB,K∗), then the set of characters of TB is:

X(TB) = TB
∗ = ZB.

The algebraic torus Tr acts on Anr
K by 3.2 and this induces an action of TB

on Anr
K . Now the ideal I ⊂ K[zρi : ρ ∈ Irr(G), i ∈ I(n)] is TB-invariant, so

that TB acts on the affine scheme

Z = Spec (K[zρi : ρ ∈ Irr(G), i ∈ I(n)]/I) .

The set of rational characters of TB is

X(TB)⊗Q = ZB ⊗Q =: QB

and as usual we denote this set by X(TB)Q. In Lemma 2.4 of [16] it is proved

that the semigroup NB ⊂ Zr is isomorphic to the following sublattice of Zr:{
(θρ) ∈ Zr |

∑
ρ∈G∗ θρ = 0

}
;

then QB is a (n−1)-dimensional Q-vector space. The GIT parameter space

is defined by

Θ := QB =
{
(θρ) ∈ Qr |

∑
ρ∈G∗ θρ = 0

}
.

Since the reductive affine algebraic group TB acts on the affine scheme Z,

for a rational character θ ∈ Θ as we described in the Section 3.3, we can

build the twist GIT quotient of this action. We define the moduli space of

θ-semistable McKay quiver representations of dimension (1, ..., 1) satisfying

the relations given in (3.1) it as [16]

Mθ := Z �θ TB.

If the parameter θ is generic, this quotient is the fine moduli space of θ-stable

McKay quiver representations and is denoted byMθ.
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3.4 Quasi-coherent OX-algebras over a Vector Bun-

dles

In this section we are we are looking for relation between the tautological

bundle R and the universal G-constellation U . To achieve this, we will

explore a theorem that allows us to recover a quasi-coherent algebra at the

level of ringed spaces.

Theorem 3.9 (EGA). Let S be a scheme; for any pair (A,B), where A is a

quasi-coherent OS-algebra and B is a quasi-coherent OA-algebra, there exists

a pair (X, E) where X = SpecA and E is a some quasi-coherent OX-module

such that

(F(X),F(E)) ∼= (A,B)

is a bi-isomorphism.

We denote by B̃ a OX -module E and is called the module associated to

B.
For a f : (X,OX) // (S,OS) morphism of ringed spaces we denote by

F(X) = f∗OX , and F(E) = f∗E for any E ∈ OX -mod.

The proof of this theorem is based on the definition of the following

morphism. Let f = (ψ, θ) : (X,OX) // (S,OS) be a morphism structural

of locally ringed spaces; then A = ψ∗OX .

The morphism g = (ψ, 1A) : (X,OX) // (S,A) of locally ringed spaces is

well defined, and A // ψ∗OX = A is the identity; then we let

E = g∗B.

3.5 Relation Between the Universal G-constellation

and the Tautological Bundle

In this section we prove a result that was only hinted at in [15]:

(π, 1A)
∗U = R

where U is the universal G-constellation, R is the tautological bundle and

λ = (π, 1A) is the morphism at the level of ringed spaces.
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Now we fix a chamber C ⊂ Θ in the GIT-parameter space. We denote

byMC the moduli space of θ-stable G-constellations for any θ ∈ C and RC

the tautological bundle onMC . Let us take:

(A,B) = (Sym(O⊕3
MC

),RC);

for convenience we denote L = O⊕3
MC

the previous pair, which satisfies the

conditions of the previous theorem.

Let us first observe that for a affine space over the field of complex numbers

V(O⊕3

SpecC) = C3,

we can take the following fiber product over SpecC

V(O⊕3

SpecC) ×
SpecC

MC = C3 ×
SpecC

MC .

The functor V(−) := Spec Sym(−) is compatible with base change; let

m :MC
// C be a morphism of projection over a point, then:

V(m∗O⊕3

SpecC) = V(O⊕3

SpecC)×MC ,

and we observe that

m∗O⊕3

SpecC = m−1O⊕3

SpecC ⊗
m−1OSpecC

OMC

=

{
m−1OSpecC ⊗

m−1OSpecC
OMC

}⊕3

= O⊕3
MC

.

Then

V(O⊕3
MC

) = C3 ×MC

The projection morphism is the structure morphism for the geometric vector

bundle X = SpecA,

π : SpecA = C3 ×MC : X //MC ;

we know that

π∗OSpecA = A.

We define the morphism

λ = (π, 1A) : X // (MC ,A)
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of locally ringed spaces, which it is well defined because the morphism of

sheaves A // π∗OSpecA = A is the identity.

The universal G-constellation is

UC = R̃ = λ∗R = λ−1R ⊗
λ−1A

OX .

3.6 The Wall-Crossing Phenomenon and the Con-

traction Morphism

Bridgeland, King, and Reid’s theorem holds for moduli spaces of θ-stable

G-constellations when the parameter θ is generic; in other words

Φ : Db(Mθ) // Db
G(C3)

is a equivalence of triangulated categories andMθ is a crepant resolution of

the singularity C3/G.

The set of generic parameters Θgen is an open and dense subset of the

GIT-parameter space Θ. Furthermore, it is a finite disjoint union of open

convex polyhedral cones in Θ.

Contraction morphism. Let θ and θ′ be generic parameters in the cham-

bers C and C ′ respectively; we put

θt :=
1

2
(1− t)θ + 1

2
(1 + t)θ′.

This parameter satisfies θt ∈ C ′ if 0 < t ≤ 1 and θt ∈ C if −1 ≤ t < 0, and

the point θ0 lies on the wall W that separates the chambers C and C ′.

If f :Mθ
//Mθ0 , is the canonical morphism, the contraction mor-

phism is defined by

ContW :Mθ
// Y0

where Y0 is the image of the morphism f.

Classification of the Walls. We classify the wall, of the space of stabil-

ity parameters according to the contraction induced by this birational mor-

phism:

I. The wall W is of type 0 if the morphism ContW is an isomorphism.
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II. The wall W is of type 1 if ContW contracts a curve onto a point.

III. The wall W is of type 3 if ContW contracts a divisor onto a curve.

The wall W is of type 2 if ContW contracts a divisor to a point, but these

walls do not exist [15, Proposition 3.8].

Wall Crossing. Let G be an abelian finite subgroup of SL(3,C); if we

fix a parameter θ in C and a parameter θ0 on the wall W , then there exist

non-trivial subrepresentations R1 and R2 of the group G sucht that:

I. R ∼= R1 ⊕R2.

II. There exist non-trivial θ0-semistable G-equivariant sheaves S and Q

such that: H0(S) ∼= R1, H
0(Q) ∼= R2 and θ0(S) = θ0(Q) = 0.

Indeed, as the parameter θ0 belongs to the wallW , it is not generic and then

there exists a G-constellation F which is θ0-semistable but not θ-stable. So

there exists a non-trivial G-subsheaf F ′ of F such that θ0(F ′) = 0, the global

section of this subsheaf is H0(F ′) ∼= R1, and there exists another nontrivial

G-subsheaf F ′′ of F with θ0(F
′′) = 0. By additivity of the global sections

H0(F ′′) ∼= R2.

The Unstable Locus of the Wall Crossing. The set

Z =

{ F ∈MC there exists a non-trivial subsheaf

S ⊂ F such that H0(S) ∼= R1

}
has a structure of closed subscheme ofMC . To see this we define a functor:

h :
{
schemes/C

}opp
// Sets

as

h(T ) =


f ∈ Hom(T,MC) such that exists a quotient

ν : (f × IdC3)∗UC ↠ QT flat over T with

H0(Qt) ∼= R2 ⊗ k(t), for any t ∈ T

 .

This functor is representable [15, Lemma 3.10] by a closed subscheme Z

called the unstable locus defined by the wallW . To prove this, the Grothendieck’s

Quot-scheme is used.
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Symmetrically, for the adjoining chamber C ′ the moduli space MC′ has a

closed subscheme Z ′ ⊂MC′ given by:

Z ′ =

{F ′ ∈MC′ where exists a non-trivial subsheaf

S′ ⊂ F ′ such that H0(S′) ∼= R2

}
.

Since the functor h is representable for the chamber C there exist a

universal subsheaf S ⊂ RC

∣∣
Z

and Q = (RC

∣∣
Z
)/S, which are locally free

OZ-modules.

3.6.1 Wall-Crossing for Walls of Type 0 and Change of Tau-

tological Line Bundles

Let us consider two adjacent chambers C and C ′ separated by a wall W of

type 0. The following properties are satisfied

I. the varieties associated to the moduli of these chambers are isomorphic

[15, Lemma 3.3]:

MC
∼=MC′ .

II. The unstable locus determined by the wall W is a Cartier divisor D

[15, Proposition 4.1], and this divisor is a compact reduced subscheme

[15, Proposition 4.4, 4.5.].

III. The change of tautological bundles induced by a wall-crossing [15,

Corollary 4.3] is given by:

(a) If ρ ⊂ R1, then

R′
ρ =

{
Rρ if ρ ⊂ R1

Rρ(−D) if ρ ⊂ R2.

(b) If ρ ⊂ R2, then

R′
ρ =

{
Rρ(D) if ρ ⊂ R1

Rρ if ρ ⊂ R2.

3.6.2 Wall-Crossing for Walls of Type 1 and Change of Tau-

tological Line Bundles

Let us consider two adjacent chambers C and C ′ separated by a wall W of

type 1. The following properties are satisfied
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I. the varietyMC is a flop of the varietyMC′ [15, Proposition 6.1].

II. The unstable locus Z ⊂ MC defined by the wall W is the curve l ,

where this curve is contracted by the morphism ContW .

III. The change of tautological bundles R′
ρ induced by a wall-crossing [15,

Corollary 6.3] is given by a proper transformation of Rρ and for any

irreducible representation ρ ∈ G∗:

(a) ρ0 ⊂ R1 if and only if deg(Rρ

∣∣
l
) is 0 or 1.

(b) ρ0 ⊂ R2 if and only if deg(Rρ

∣∣
l
) is 0 or −1.

3.6.3 Wall-Crossing for Walls of Type 3 and Change of Tau-

tological Line Bundles

Let us consider two adjacent chambers C and C ′ separated by a wall W of

type 3. The following properties are satisfied

I. The varieties MC and MC′ can be characterized by the blow-up of

MC′ along the curve l , that is the curve that was contracted by ContW ,

which was the contraction of the divisor D. Then by the [15, Proposi-

tion 6.4]:

MC
∼=MC′ .

II. The unstable locus Z ⊂ MC defined by the wall W is the divisor D,

where this divisor is contract by the morphism ContW .

III. The change of tautological bundles R′
ρ induced by a wall-crossing [15,

Corollary 6.3] is given by a proper transformation of Rρ and for any

irreducible representation ρ ∈ G∗:

(a) ρ0 ⊂ R1 if and only if deg(Rρ

∣∣
l
) is 0 or −1; in this case

R′
ρ =

{
Rρ(−D) if deg(Rρ

∣∣
l
) = −1

Rρ if deg(Rρ

∣∣
l
) = 0.

(b) ρ0 ⊂ R2 if and only if deg(Rρ

∣∣
l
) is 0 or 1; in this case

R′
ρ =

{
Rρ if deg(Rρ

∣∣
l
) = 0

Rρ(D) if deg(Rρ

∣∣
l
) = 1.
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Chapter 4

Moduli of G-Constellations

as Fourier-Mukai Partners

In this chapter we study the Fourier-Mukai transform between derived cat-

egories of crepant resolutions of C3/Z4. In the first section, we establish a

expression for the Fourier-Mukai transform as a composition of two functors

of this kind. In the second section, we study the Fourier-Mukai transforms

induced by spherical objects; this serves to determine in the following sec-

tion in the following section the Fourier-Mukai transform for Fourier-Mukai

partners associated with two chambers separated by a type 0 wall. In sec-

tions 4 and 5 we explore the same scenario for type 1 and type 3 walls,

respectively. In the last section we prove a compatibility theorem between

the K-theoretic and cohomological versions of the Fourier-Mukai transform.

One needs characteristic classes and the Grothendieck-Riemann-Roch The-

orem in order to establish a relation between the two versions.

4.1 Fourier-Mukai Transforms Between Derived

Categories of Crepant Resolutions

In this section we consider two spaces moduli of θ-stable G-constellations,

denoted MC and MC′ , corresponding to chambers C and C ′ separated

by a wall W in the GIT-parameter space Θ. We know that, for walls

of type 0 and 3, these moduli spaces are isomorphic as varieties. Is im-

portant to recall that tautological line bundles might change under wall-

crossing. Let Φ1 : D
b(M1) // Db

G(C3) and Φ2 : D
b(M2) // Db

G(C3) be

55
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the Fourier-Mukai transforms associated to moduli spaces MC and MC′

respectively; we can take the inverse of Φ2 to obtain the Fourier-Mukai

Φ−1
2 : Db

G(C3) // Db(M2) with kernel:

Ker(Φ−1
2 ) = U∨

2 [3] = RHom(U2[3],OMC′×C3).

The moduli spaces MC and MC′ are Fourier-Mukai partners; we see this

equivalence in the following commutative diagram:

Db(M1)
Φ1 //

Ψ %%

Db
G(C3)

Φ−1
2

��

Db(M2);
Φ2oo

Db(M2)

the functor Ψ := Φ−1
2 ◦Φ1 is a Fourier-Mukai between the derived categories

of MC and MC′ . Using the following commutative diagram, we can see

how to obtain the kernel:

M1 × C3 ×M2

π12

ww
π23

��

π13

((
M1 × C3 C3 ×M2 M1 ×M2

if we make the convolution of the corresponding kernels

Ker(Ψ) = Ker(Φ−1
2 ) ∗Ker(Φ1) = Rπ13

(
π∗23 U∨

2 [3]
L
⊗ π∗12 U1

)
we obtain an object of the derived category Db(M1 ×M2).

4.2 K-Theoretic Fourier-Mukai Transform and

Cohomological-Theoretic Fourier-Mukai

In this section we prove a compatibility theorem between the K-theoretic and

cohomological versions of the Fourier-Mukai transform. The proof relies on

the Grothendieck-Riemann-Roch theorem. We use this compatibility in the

next chapter to determine the cohomological version of the Fourier-Mukai

transform between Fourier-Mukai partners for the case of C3/Z4.

Theorem 4.1 ([30, Corollary 5.29]). Let e ∈ K(X×Y ). For any a ∈ K(X)

there an equality in the cohomology ring H∗(Y,Q):

ΦH
v(e)(Ch(a) .

√
td(X)) = Ch(ΦK

e (a)) .
√
td(Y ) .



4.2. K-THEORETIC AND COHOMOLOGICAL FOURIER-MUKAI TRANSFORM57

This implies that the following diagram is commutative:

K(X)
ΦK

e //

v

��

K(Y )

v

��
H∗(X,Q)

ΦH
v(e)

// H∗(Y,Q).

Proof. The commutativity of the previous diagram can be deduced from the

commutativity of the three squares in the following diagram:

K(X)
q∗ //

v

��

K(X × Y )
.e //

v(−)
(
p∗
√

td(Y )
)−1

��

K(X × Y )
p! //

v(−)q∗
√

td(X)

��

K(Y )

v

��
H∗(X,Q)

q∗
// H∗(X × Y,Q)

.v(e)
// H∗(X × Y,Q) p∗

// H∗(Y,Q)

For simplicity, for any smooth algebraic variety W we will denote

λW =
√
td(W ).

The commutativity of the first square follows from the following steps:

K(X)
q∗ //

v

��

K(X × Y )

v(−) .
(
p∗
√

td(Y )
)−1

��
H∗(X,Q)

q∗
// H∗(X × Y,Q)

for any a ∈ K(X) the composition of the arrows in the upper part of the

diagram

v(q∗a) . (p∗λY )
−1 = Ch(q∗a) . λX×Y . (p

∗λY )
−1

= Ch(q∗a) . p∗λY . q
∗λX . (p∗λY )

−1 = Ch(q∗a) . q∗λX .

In the lower part

q∗(v(a)) = q∗(Ch(a) . λX) = q∗(Ch(a)) . q∗λX

the compatibility between the Chern character and pullbacks

Ch ◦ q∗ = q∗ ◦ Ch,
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gives us the identity.

For the second square

K(X × Y )
.e //

v(−)
(
p∗
√

td(Y )
)−1

��

K(X × Y )

v(−)q∗
√

td(X)

��
H∗(X × Y,Q)

.v(e)
// H∗(X × Y,Q)

let d ∈ K(X × Y ) be an element of the Grothendieck group

v(d) . v(e) . (p∗λY )
−1 = Ch(d) . Ch(e) . (λX×Y )

2 (p∗λY )
−1

= Ch(d) . Ch(e) . λX×Y . p
∗λY . q

∗λX . (p∗λY )
−1

= Ch(d) . Ch(e) . λX×Y . q
∗λX ,

then

v(d . e) . q∗λX = Ch(d) . Ch(e) . λX×Y . q
∗λX

= Ch(d) . Ch(e) . λX×Y . q
∗λX .

We have used the fact that the Chern character satisfies:

Ch(d . e) = Ch(d) . Ch(e).

Indeed in Lemma 42.45.3 [49] the compatibilities between the tensor prod-

uct and the Chern character is discussed, and this equality was proved using

finite locally free sheaves. Since every complex in the bounded derived cat-

egory of a smooth variety has a resolution by locally free sheaves of finite

length we can apply this result proves the commutativity of the second di-

agram.

Finally, for the third diagram

K(X × Y )
p! //

v(−)q∗
√

td(X)

��

K(Y )

v

��
H∗(X × Y,Q) p∗

// H∗(Y,Q),

let d ∈ K(X × Y ) be an element of the Grothendieck group

v(p!d) = Ch(p!d) . λY =
(
Ch(p!d) . λ2Y

)
. λ−1

Y .
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As the varieties X and Y are smooth and the morphism p is proper, we can

apply the Grothendieck-Riemann-Roch [18, Theorem 5.2]

p∗(Ch(d) . (λX×Y )
2) = Ch(p!d) . λ2Y .

Then (
Ch(p!d) . λ2Y

)
. λ−1

Y = p∗(Ch(d) . (λX×Y )
2) . λ−1

Y

= p∗(Ch(d) . (λX×Y )
2 . p∗λ−1

Y )

= p∗(Ch(d) . λX×Y . λX×Y . p
∗λ−1

Y )

= p∗(Ch(d) . λX×Y . p
∗λY . q

∗λX . p∗λ−1
Y )

= p∗(Ch(d) . λX×Y . q
∗λX)

= p∗(v(d) . q
∗λX);

this concludes the proof.

4.3 Fourier-Mukai Transforms Induced by Spher-

ical Objects

In this section, we study how one can induce a Fourier-Mukai transform

using certain objects in the derived category, called spherical objects. First,

we introduce the concept of a spherical object and see how it can be defined

in terms of distinguished triangles according to the triangulated structure

of the derived category.

Definition 4.2 (Spherical Objects). Let Y be a nonsingular quasi-projective

variety of dimension n, and letDb
c(Y ) be the full subcategory ofDb(Y ) whose

objects have compact support. An object E• is called spherical if:

i. Homk
Db(Y )(E

•, E•) =

{
C if k = 0, n

0 otherwise,

and

ii. E• ⊗ ωY
∼= E•.

We denote by Sph(Db(Y )) the set of all spherical objects.
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To any E• ∈ Sph(Db(Y )) we can associate an object PE• ∈ Db(Y × Y )

defined by the cone of the morphism:

π∗1E•∨
L
⊗ π∗2E• // O△ ,

where the morphisms π1 and π2 are the projections onto the factors of Y ×Y.
The embedding X �

�

ι
// △ ⊂ Y × Y enables us to consider O△ as a coherent

module on Y × Y.
The morphism above can be constructed by the composition of the following

morphisms (see [30]):

π∗1E•∨
L
⊗ π∗2E• // Rι∗ι

∗(π∗1E•∨
L
⊗ π∗2E•) = Rι∗(ι

∗π∗1E•
∨ L
⊗ ι∗π∗2E•)

in the last identity, the compatibility between the tensor and the inverse

image in the derived category was used. We compose this morphism with

the morphism Rι∗(trE•):

π∗1E•∨
L
⊗ π∗2E• // Rι∗(E•∨

L
⊗ E•) // Rι∗(OX) = O△.

We obtain

π∗1E•∨
L
⊗ π∗2E• // Rι∗(OX) = O△.

Definition 4.3 (Spherical Functors). Let E• be a spherical object; the

spherical twist along of E• is the functor defined by

TPE• = ΦPE• : Db(Y ) // Db(Y ).

It is useful to interpret these functors in terms of the triangulated struc-

ture of Db(Y ). We complete the distinguished triangle based on the cone

that defines PE• , that is

π∗1E•∨
L
⊗ π∗2E• // O△ // PE• // ∗;

let us take F• ∈ Db(Y ) and tensor the above distinguished triangle by π∗1F•

π∗1E•∨
L
⊗ π∗2E•

L
⊗ π∗1F• // O△

L
⊗ π∗1F• // PE

L
⊗ π∗1F•

// π∗1E•∨
L
⊗ π∗2E•

L
⊗ π∗1F•[1].
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We can apply the functor Rπ2∗, which is an exact functor between the

respective triangulated categories

Rπ2∗(π
∗
1E•∨

L
⊗ π∗2E•

L
⊗ π∗1F•) // Rπ2∗(O△

L
⊗ π∗1F•) // Rπ2∗(PE•

L
⊗ π∗1F•)

// Rπ2∗(π
∗
1E•∨

L
⊗ π∗2E•

L
⊗ π∗1F•[1]).

Now let us use the projection formula [2, Proposition A.83.]:

Rπ2∗(π
∗
1E•∨

L
⊗ π∗1F•)

L
⊗ E• // Rπ2∗(O△

L
⊗ π∗1F•) // Rπ2∗(PE•

L
⊗ π∗1F•)

// Rπ2∗(π
∗
1E•∨

L
⊗ π∗1F•)

L
⊗ E•[1],

identifying π1 and π2:

Rπ1∗(π
∗
1E•∨

L
⊗ π∗1F•)

L
⊗ E• // Rπ1∗O△

L
⊗Rπ1∗π∗1F• // Rπ2∗(PE•

L
⊗ π∗1F•)

// Rπ1∗(π
∗
1E•∨

L
⊗ π∗1F•)

L
⊗ E•[1].

Finally using the base change in derived category

Rπ1∗π
∗
1E•∨

L
⊗Rπ1∗π∗1F• L

⊗ E• // F• // Rπ2∗(PE•
L
⊗ π∗1F•)

// Rπ1∗π
∗
1E•∨

L
⊗Rπ1∗π∗1F• L

⊗ E•[1],

we obtain

E•∨
L
⊗ E•

L
⊗F• // F• // TPE• (F•) // E•∨

L
⊗ E•

L
⊗F•[1].

The following isomorphism is due to [48, Lemma 3.2.]

RHom(E•,F•)
L
⊗
C
E• // F• // TPE• (F•) // RHom(E•,F•)

L
⊗
C
E•[1];

(4.1)

this is the definition of spherical twist given in [15, Definition 7.1].
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4.4 Fourier-Mukai Partners for Walls of Type 0

In this section. We consider chambers separated by walls of type 0. In

this case, we can identify the Fourier-Mukai transform Ψ = Φ−1
C′ ◦ΦC using

spherical twists.

Let C and C ′ be chambers in the GIT-parameter space separated by a

wall W of type 0; the functor Ψ := Φ−1
C′ ◦ ΦC : Db(MC) // Db(MC′), as

discussed in Section 4.1, is again a functor of Fourier-Mukai type, i.e. the

moduli spaces associated to chambers are Fourier-Mukai partners. Craw

and Ishii in [15, Section 7] proved that this functor is related to twists of

spherical objects that define the wall of type 0.

Theorem 4.4 ([15, Proposition 7.3]). Under the aforementioned hypotheses,

there are two cases:

I. If the divisor D parametrizes a rigid quotient Q, then there exists an

irreducible representation ρ ∈ G∗ and ρ ∈ Q, and

i. If Rρ

∣∣
D
≇ OD, the autoequivalence is given by the isomorphism of

functors

Ψ ∼= TE ,

where E = R−1
ρ ⊗ ωD.

ii. If Rρ

∣∣
D
∼= OD, then

Ψ ∼= OY (−D)⊗ TωD(−),

where Y =MC .

II. If the divisor D parametrizes a rigid subsheaf S, then there exists an

irreducible representation σ ∈ G∗ and σ ∈ Q, and

i. If Rσ

∣∣
D
≇ OD, then

Ψ ∼= T ′
E ,

where E = R−1
σ

∣∣
D
.

ii. If Rσ

∣∣
D
∼= OD, then

Ψ ∼= T ′
ωD

(OY (D)⊗−),

where Y =MC .
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Proof. For the first case, let us observe that E = R−1
ρ ⊗ωD ∈ Sph(Db(MC))

and the K-theory of MC is generated by the set of the inverses of the

tautological line bundles: {
R−1

ρ , ρ ∈ G∗
}
.

So it is only necessary to prove that

Ψ(R−1
σ ) ∼= TE(R−1

σ ), for any σ ∈ G∗. (4.2)

The functor Ψ is an equivalence, then Ψ(R−1
σ ) = R−1

σ . The wall-crossing

induces a relation between the tautological line bundles of the chambers

separated by a wall of type 0 (Section 3.6.1, III):

(R′
σ)

−1 =

{
R−1

σ if σ ⊈ Q
R−1

σ (D) if σ ⊆ Q.

First we compute the right-hand side of (4.2). As we saw in the previous

section, this object is defined through distinguished triangles. Therefore,

let us calculate the first element on the left-hand side in the distinguished

triangle (4.1):

RHom(E ,R−1
σ ) = RHom(R−1

ρ ⊗ ωD,R−1
σ ) = RΓ

((
R−1

ρ ⊗ ωD

)∨ ⊗R−1
σ

)
= RΓ(Rρ ⊗R−1

σ ⊗OD[−1]). (4.3)

If the irreducible representation σ satisfies σ ⊈ Q, then (R′
σ)

−1 = R−1
σ by

Proposition 5.5 in [15]

H i(Rρ ⊗R−1
σ

∣∣
D
) = 0,

for all i ∈ Z,
RHom(E ,R−1

σ ) ∼= 0.

The distinguished triangle that defines TE is:

0 // R−1
σ

// TE(R−1
σ ) // 0,

and thus we obtain the isomorphism.

If σ ⊆ Q then (R′
σ)

−1
∣∣
D
∼= R−1

ρ

∣∣
D
, this is due to the rigidity of the subsheaf

Q, in the equation (4.3), we have:

RHom(E ,R−1
σ ) ∼= RΓ(Rρ ⊗R−1

σ ⊗OD[−1])
∼= RΓ(R−1

ρ

∣∣
D
⊗R−1

σ

∣∣
D
⊗OD[−1])

∼= RΓ(OD[−1]).
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The cohomology H i(OD[−1]) ∼= 0, i = 1, 2; for that

RΓ(OD[−1]) ∼= C[−1].

The object TE(R−1
σ ) is the cone of the morphism

C[−1]⊗ E ϖ
// R−1

σ ,

This sheaf is therefore represented by a nontrivial class in the Ext group:

Ext1(R−1
σ ⊗ ωD,R−1

σ ) ∼= Ext1(ωD,Rσ ⊗R−1
σ )

= Ext1(ωD,OY ) ∼= H2(ωD)
∨

∼= H0(OD) ∼= C,

and then TE(R−1
σ ) ∼= R−1

σ (D).

To establish the functoriality of the isomorphism, we observe that the

crepant resolutions

τ1 :MC
// C3/G, τ2 :MC′ // C3/G

satisfyMC \ Z ∼=MC′ \ Z ′ and τ−1
1 (0) ⊆ Z, τ−1

2 (0) ⊆ Z ′, where Z and Z ′

denote the unstable loci in the respectively moduli spaces, so that

MC \ τ−1
1 (0) ∼=MC′ \ τ−1

2 (0).

This isomorphism induces a natural equivalence between the derived cate-

gories Db(MC \τ−1
1 (0)) ∼= Db(MC′ \τ−1

2 (0)). The restrictions of the Fourier-

Mukai transforms

Φ̃C : Db(MC \ τ−1
1 (0)) // Db

G(C3 \ {0}),

Φ̃−1
C′ : Db

G(C3 \ {0}) // Db(MC′ \ τ−1
2 (0))

depend on the restricted tautological bundlesR
∣∣
MC\τ−1

1 (0)
andR′∣∣

MC′\τ−1
2 (0)

,

and they are isomorphic. More precisely, they depend on the restricted

universal G-constellations, U
∣∣
MC\τ−1

1 (0)×C3\{0} and U ′∣∣
MC′\τ−1

1 (0)×C3\{0} re-

spectively.

Then the restriction of the Fourier-Mukai transform Ψ

Ψ̃ := Φ̃−1
C′ ◦ Φ̃C : Db(MC \ τ−1

1 (0)) // Db(MC′ \ τ−1
2 (0))
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makes the upper part of the following diagram commute

Db(MC)
Ψ //

rest1

��

Db(MC′)

rest2

��
Db(MC \ τ−1

1 (0))
≃
nat

// Db(MC′ \ τ−1
2 (0))

Db(MC)

rest1

OO

TE
// Db(MC′).

rest2

OO

For the commutativity of the lower part of the diagram, let us note that

the restriction of the spherical twist TE on Db(MC \ τ−1
1 (0)) is an identity

functor, indeed Supp(E) ⊂ D ⊂ τ−1
1 (0). All this proves the functoriality.

4.5 Fourier-Mukai Partners induced by Flops, Walls

of Type 1

We consider, two moduli spaces of θ-stable G-constellations,MC andMC′ ,

where the chambers C and C ′ are separated by a wall of type 1. For cham-

bers separated by walls of type 1, the contraction morphism by definition

contracts a curve l to a point. The unstable locus Z of the wall crossing

is the contracted curve l . In the section Section 3.6.2 I, we see that MC

is a flop of MC′ , the curve l is a copy of P1, and p : M̃ //MC′ is the

blow-up ofMC along the curve l ; the exceptional locus is E ∼= P1 × P1 and

q : M̃ //MC is a contraction.

So that we are under the hypotheses of Bondal and Orlov’s theorem [6,

Theorem 3.6] the moduli spacesMC andMC′ , are Fourier-Mukai partners,

i.e. their have bounded derived categories that are equivalent, however the

tautological bundles vary. We can visualize the flop between these moduli
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spaces in the following diagram:

E ∼= P1 × P1
� _

��
π1

{{

π2

$$

M̃

p

yy

q

%%
P1 � � //MC

//MC′ P1? _oo

Theorem 4.5 ([15, Proposition 7.4]). For a wall crossing of type 1, the

changes in the tautological line bundles are as follows (Section 3.6.2, III):

(falta)

I. For the case of (+1)

Ψ ∼= Rq∗Lp
∗.

II. For the case of (−1)

Ψ ∼= Rq∗ (O(E)⊗ Lp∗(−)) .

These Fourier-Mukai transforms are inverses of each other according to

the Bondal-Orlov theorem.

4.6 Fourier-Mukai Partners induced by Blow-ups,

Walls of Type 3

Now, let us consider moduli spaces of θ-stable G-constellations MC and

MC′ where C and C ′ are chambers separated by a wall of type 3.

For walls of type 3, the contraction morphism contracts a divisor D to

a curve l ⊂ Mθ0 =: Y0. In this case, the exceptional locus is isomorphic

to divisor Z ∼= D, the varieties MC and MC′ are isomorphic and we de-

note Y = MC = MC′ . This situation can be depicted in the following

commutative diagram:

Y ×Y0 Y
q //

p

��

Y

��
Y // Y0
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where Y −→ Y0 is the contraction morphism.

Theorem 4.6 ([15, Proposition 7.5]). For a wall crossing of type 3, the

changes in the tautological line bundles are as follows (Section 3.6.3, III):

I. For the case of (−1)
Ψ ∼= Rq∗Lp

∗.

II. For the case of (+1)

Ψ ∼= Rq∗

(
ωY×Y0

Y ⊗ Lp∗(−)
)
.



68 CHAPTER 4. FOURIER-MUKAI PARTNERS



Chapter 5

Cohomological

Fourier-Mukai Transform

between Crepant Resolutions

of C3/Z4

In this chapter, as an example of the developed theory, we will study the

case of the singularity C3/Z4 following [13]. Using Toric Geometry, we can

obtain the crepant resolution. Then, we describe the GIT-parameter space

and provide detailed insights into the intersections between chambers and

the corresponding walls. Finally, we derive the cohomological version of the

Fourier-Mukai transform for Fourier-Mukai partners.

5.1 Toric Geometry of C3/Z4

The authors of [13] study the toric structure of the singularity C3/Z4. For

an introduction to toric geometry techniques see [14, Chapter 3].

The action of Z4 on C3 is given by:

(x, y, z) 7→ (ωx, ωy, ω2z)

where w4 = 1. The singularity is denoted by Y0 = C3/Z4 and the singular

locus is the z-axis and the origin. Let
{
ei
}
the usual basis of R3, and the

corresponding dual basis is denoted by
{
ϵi
}
. The lattice M is generated by

69
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{
u1, u2, u3

}
, where

u1 = ϵ1 − ϵ2, u2 = 2ϵ2 − ϵ3, u3 = 2ϵ3

and the dual lattice N is generated by {w1, w2, w3} where

w1 = e1, w2 =
1

2
(e1 + e2), w3 =

1

4
(e1 + e2 + 2e3).

Inverting these last relations we obtain the rays that form the cones of the

fan the singularity:

Σ(Y0) = {v1, v2, v3}

where the vector are

v1 = (1, 0, 0), v2 = (−1, 2, 0) and v3 = (0,−1, 2).

The toric divisors are given by the three rays of the fan and all divisors are

Weil, this is summarized in Table 5.1.

Table 5.1: Toric Divisors in Y0

Ray Divisor Fan Variety Type

v1 D1 (1, 0), (−1, 2) C2/Z2 Weil

v2 D2 (1, 0), (−1, 2) C2/Z2 Weil

v3 D3 (1, 0), (−1, 4) C2/Z4 Weil

5.2 Crepant Resolutions of C3/Z4

To solve the singularity C3/Z4 we can apply the techniques of toric geometry

because the group Z4 is cyclic. Details may be found in [13]. An introduc-

tion to toric techniques may be found in [14, Chapter 11].

The full resolution of singularities is denoted by Y. To resolve the sin-

gularity, two rays need to be added to the fan of the singularity; these rays

are

w2 = (0, 1, 0), w3 = (0, 0, 1).

The fan of the resolution of singularities is

Σ(Y ) = {v1, v2, v3, w2, w3} .
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The two newly added rays generate the divisors that are the components of

the exceptional divisor:

w3 corresponds to compact divisor called Dc

and

w2 corresponds to non-compact divisor called Dnc.

Some points remarkable are:

i. All cones in Σ(Y ) are smooth, so that the variety Y is smooth. This

implies that all divisors are Cartier.

ii. There exists a morphism Y −→ Y0, which is a resolution of singulari-

ties.

In the Table 5.2, the rays generating the divisors and the corresponding

variety for these divisors are described.

Table 5.2: Toric Divisors in Y . The last column shows the components of

the divisor class on the basis given by (Dnc, Dc).

Ray Divisor Fan Variety Components

w3 Dc (1, 0), (−1, 2), (0,−1), (0, 1) F2 (0, 1)

w2 Dnc (1, 0), (−1, 0), (0, 1) P1 × C (1, 0)

v1 DEH (1, 0), (−1, 2), (0, 1) A1 (−1
2 ,−

1
4)

v3 D4 (1, 0), (−1, 4), (0, 1) tot (O(−4)→ P1) (0,−1
2)

v2 D′
EH (1, 0), (−1, 2), (0, 1) A1 (−1

2 ,−
1
4)

Only two toric divisors are independent in cohomology, for instance Dc

and Dnc. The set of divisors Div(Y ) is generated by DEH , D
′
EH , D4, Dnc

and Dc and the Picard group is generated by Dnc and Dc.

The class of canonical divisor is [KY ] = 0, this implies Y is a crepant

resolution. The resolution of singularities satisfies that:

Y ∼= tot(OF2(−2E)),

where E is the exceptional divisor, i.e, Y is the total space of the canonical

bundle of the second Hirzebruch surface F2.
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5.3 Chamber Structure of GIT-Parameter Space

In this section following [13] we calculate the equations of the walls and find

all the walls separating two adjacent chambers.

The GIT-parameter space is:

Θ = R3;

this space is divided by three planes, that will form the structures of cham-

bers and walls. The equations of these planes are

π1 : X − Y − Z = 0

π2 : −X + Y − Z = 0

π3 : −X − Y + Z = 0,

where x, y and z are the usual coordinates of R3.

The 8 chambers of the GIT-parameter space are convex polyhedral cones,

as we know from general theory. In the Table 5.3 we describe the three

half-planes that delimit the 8 chambers.

Table 5.3: The equations of the chambers

Chamber Sign on the plane π1 Sign on the plane π2 Sign on the plane π3

Chamber I X − Y − Z > 0 −X + Y − Z > 0 −X − Y + Z > 0

Chamber II X − Y − Z > 0 −X + Y − Z > 0 −X − Y + Z < 0

Chamber III X − Y − Z > 0 −X + Y − Z < 0 −X − Y + Z > 0

Chamber IV X − Y − Z < 0 −X + Y − Z > 0 −X − Y + Z > 0

Chamber V X − Y − Z < 0 −X + Y − Z < 0 −X − Y + Z > 0

Chamber VI X − Y − Z < 0 −X + Y − Z > 0 −X − Y + Z < 0

Chamber VII X − Y − Z > 0 −X + Y − Z < 0 −X − Y + Z < 0

Chamber VIII X − Y − Z < 0 −X + Y − Z < 0 −X − Y + Z < 0

To study the wall-crossing phenomenon, a name was given to each wall.

Each of the planes determines four walls, and the equations of these walls

are given in the Tables 5.4, 5.5 and 5.6.
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Table 5.4: Equations of the walls in π1

Name of Wall Points Sign in Y Sign in Z

Ma (Y + Z, Y, Z) Y > 0 Z > 0

Mb (Y + Z, Y, Z) Y > 0 Z < 0

Mc (Y + Z, Y, Z) Y < 0 Z > 0

Md (Y + Z, Y, Z) Y < 0 Z < 0

Table 5.5: Equations of the walls in π2

Name of Wall Points Sign in X Sign in Z

Ra (X,X + Z,Z) X > 0 Z < 0

Rb (X,X + Z,Z) X > 0 Z > 0

Rc (X,X + Z,Z) X < 0 Z > 0

Rd (X,X + Z,Z) X < 0 Z < 0

Table 5.6: Equations of the walls in π3

Name of Wall Points Sign in X Sign in Y

Va (X,Y,X + Y ) X > 0 Y < 0

Vb (X,Y,X + Y ) X > 0 Y > 0

Vc (X,Y,X + Y ) X < 0 Y > 0

Vd (X,Y,X + Y ) X < 0 Y < 0

In Table 5.7, the first column describes the walls surrounding and forming

each chamber. In the second column of this table, we describe each of the

three adjacent chambers for the eight chambers of the GIT-parameter space.
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Table 5.7: Walls defining chambers and adjacent chambers

Chambers Walls of the chambers Adjacent chambers

Chamber VII Va,Ma, Ra C3 = Va, C8 =Ma, C2 = Ra

Chamber VIII Vb,Ma, Rb C5 = Vb, C7 =Ma, C6 = Rb

Chamber VI Vc,Mb, Rb C4 = Vc, C2 =Mb, C8 = Rb

Chamber II Vd,Mb, Ra C1 = Vd, C6 =Mb, C7 = Ra

Chamber IV Vc,Md, Rc C6 = Vc, C1 =Md, C5 = Rc

Chamber V Vb,Mc, Rc C8 = Vb, C3 =Mc, C4 = Rc

Chamber III Va,Mc, Rd C7 = Va, C5 =Mc, C1 = Rd

Chamber I Vd,Md, Rd C2 = Vd, C4 =Md, C3 = Rd

5.4 Cohomological Fourier-Mukai Transform In-

duced by Wall-Crossing

In this section we determine an expression for the Fourier-Mukai transform

at the cohomology level version for the case when the group G is Abelian

and the walls W are of type 0 and 3.

Let MC and MC′ be two moduli spaces of θ-stable G-constellations

associated to chambers C and C ′ in the GIT-parameter space separated by

the wall W. We know that these varieties are Fourier-Mukai partners, more

precisely, there is an equivalence of categories

Ψ := Φ−1
2 ◦ Φ1 : D

b(MC) // Db(MC′)

where Φ1 : D
b(MC) // Db

G(C3) and Φ2 : D
b(MC′) // Db

G(C3) are the

Fourier-Mukai transform given by the derived McKay correspondence. As

in Chapter 4, the cohomological version for the Fourier-Mukai of Ψ is given

by

ΨH
P : H∗(MC ,Q) // H∗(MC′ ,Q),

for any a ∈ H∗(MC ,Q)

ΨH
P (a) = q∗(v(P) . p∗a).

Here v(P) is the Mukai vector from the kernel of the ΨP , that is:

v(P) = Ch(P) .
√

td(MC ×MC′),
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and p and q are the projections of the productMC ×MC′ onto the factors

MC andMC′ , respectively.

By Theorem 4.1 about the compatibility between K-theoretic and coho-

mological versions of Fourier-Mukai transforms,

ΨH
P (Ch(a) .

√
td(MC)) = Ch(ΨK

P (a)) .
√
td(MC′),

and therefore

Ch(ΨK
P (a)) = ΨH

P (Ch(a) .
√
td(MC)) .

√
td(MC′)

−1

= q∗

(
v(P) . p∗(Ch(a) .

√
td(MC) )

)
.
√
td(MC′)

−1

= q∗

(
v(P) . p∗(Ch(a) .

√
td(MC)) . q

∗√td(MC′)
−1
)

= q∗

(
v(P) . p∗(Ch(a)) . p∗

√
td(MC) . q

∗√td(MC′)
−1
)
.

Afetr some calculations we have

p∗
√
td(MC) . q

∗√td(MC′)
−1

=

(
1 +

1

24
p∗c2(MC)

)(
1− 1

24
q∗c2(MC′)

)
= 1 +

λ

24
(p∗c2(MC)− q∗c2(MC))

− λ2

576
(p∗c2(MC)⌣ q∗c2(MC)) .

Taking a = Rρ ∈ K(MC), from the general theory we know that

Ψ(Rρ) = R′
ρ.

Indeed, it can be proven that Φ1(Rρ
∨) = ρ⊗OC3 , so that

Ψ(Rρ) = Φ−1
2 ◦ Φ1(Rρ

∨) = Φ−1
2 (ρ⊗OC3) = R′

ρ.

The following identity holds in the cohomology ring:

ΨH
P (Ch(Rρ)) = Ch(ΨK

P (Rρ)) .
√
td(MC′) .

√
td(MC)

−1
,

= Ch(R′
ρ) .
√
td(MC′) .

√
td(MC)

−1
.

This leads us to consider the following diagram between the cohomology

rings ofMC ,MC′ , and of the crepant resolution Y :

H∗(MC ,Q)
ΨH

P //

A
&&

H∗(MC′ ,Q)

B

xx

H∗(Y,Q)

B−1

88
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where A and B are linear transformations and the cohomological Fourier-

Mukai is obtained as

ΨH
P = B−1 . A.

In general, for any crepant resolution Y of C3/G and G a finite abelian

subgroup of SL(3,C):
dim(H∗(Y,Q)) = ♯(G).

If we put ♯(G) = r + 1 by Ito-Reid’s results

H∗(Y,Q) = H0(Y,Q)⊕H2(Y,Q)⊕H4(Y,Q)

We know that h0(Y,Q) = 1 and we suppose

h2(Y,Q) = r1, h
4(Y,Q) = r2

so that

Ch(R0) = 1 ∈ H∗(Y,Q)

for i = 1, · · · , r,

Ch(Ri) = 1 + C1(Ri) +
C1(Ri)

2

2
∈ H∗(Y,Q).

We can write the components of this vector in the cohomology ring:

Ch(Ri) = (1, ai1, · · · , air1 , b
i
1, · · · , bir2) ∈ H

∗(Y,Q).

So, the matrix representing the linear transformation A is:

A =



1 1 · · · 1

0 a11 · · · ar1
...

...
...

...

0 a1r1 · · · arr1
0 b11 · · · br1
...

...
...

...

0 b1r2 · · · brr2


∈ Q(r+1)2

The linear transformation B depends on the change of tautological line

bundles:

B =


1 1 · · · 1

0

... [∗]
0


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the minor matrix is represented by [δij ]. We can make explicit calculations

for changes on the tautological line bundles for walls of type 0 and 3.

For walls of type 0. Fixing the column j = 1, · · · , r.
Case 1: if ρ0 ⊂ R1, j = ρ and i = 1, . . . , r1, 1, . . . , r2

i. for ρ ⊂ R1, then R′
ρ = Rρ,

(δij) = (aj1, . . . , a
j
r1 , b

j
1, . . . , b

j
r2).

ii. for ρ ⊂ R2, then R′
ρ = Rρ(−D),

(δij) = (aj1 − λ
j
1, . . . , a

j
r1 − λ

j
r1 , c

j
1, . . . , c

j
r2).

For ρ ⊂ R1 the matrix A does not change in the column j, for ρ ⊂ R2 the

column j of the matrix A it would only change as:

B =



1 1 · · · 1 · · · 1

0 a11 · · · aj1 − λ
j
1 · · · ar1

...
...

...
...

...
...

0 a1r1 · · · ajr1 − λ
j
r1 · · · arr1

0 b11 · · · cj1 · · · br1
...

...
...

...
...

...

0 b1r2 · · · cjr2 · · · brr2


∈ Q(r+1)2

Case 2, if ρ0 ⊂ R2, j = ρ and i = 1, . . . , r1, 1, . . . , r2.

i. For ρ ⊂ R1, then R′
ρ = Rρ(D),

(δij) = (aj1 + λj1, . . . , a
j
r1 + λjr1 , c

j
1, . . . , c

j
r2).

ii. For ρ ⊂ R2, then R′
ρ = Rρ,

(δij) = (ai1, . . . , a
i
r1 , b

i
1, . . . , b

i
r2).

For ρ ⊂ R2 the matrix A does not change in the column j, for ρ ⊂ R1 the
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column j of the matrix A changes in the following way

B =



1 1 · · · 1 · · · 1

0 a11 · · · aj1 + λj1 · · · ar1
...

...
...

...
...

...

0 a1r1 · · · ajr1 + λjr1 · · · arr1
0 b11 · · · cj1 · · · br1
...

...
...

...
...

...

0 b1r2 · · · cjr2 · · · brr2


∈ Q(r+1)2 .

Wall-crossing of type 3. Fixing the column j = 1, . . . , r.

Case 1, if ρ0 ⊂ R1, j = ρ and i = 1, . . . , r1, 1, . . . , r2.

i. For deg(Rρ

∣∣
l
) = −1, then R′

ρ = Rρ(−D),

(δij) = (ai1 − λi1, . . . , air1 − λ
i
r1 , c

i
1, . . . , c

i
r2).

ii. for deg(Rρ

∣∣
l
) = 0, then R′

ρ = Rρ,

(δij) = (ai1, . . . , a
i
r1 , b

i
1, . . . , b

i
r2).

For the case deg(Rρ

∣∣
l
) = 0 no changes occur in j-th column, for the case

deg(Rρ

∣∣
l
) = −1 the matrix changes only in the j-th column:

B =



1 1 · · · 1 · · · 1

0 a11 · · · aj1 − λ
j
1 · · · ar1

...
...

...
...

...
...

0 a1r1 · · · ajr1 − λ
j
r1 · · · arr1

0 b11 · · · cj1 · · · br1
...

...
...

...
...

...

0 b1r2 · · · cjr2 · · · brr2


∈ Q(r+1)2 .

Case 2, if ρ0 ⊂ R2, j = ρ and i = 1, . . . , r1, 1, . . . , r2.

i. For deg(Rρ

∣∣
l
) = 0, then R′

ρ = Rρ,

(δij) = (ai1, . . . , a
i
r1 , b

i
1, . . . , b

i
r2).

ii. For deg(Rρ

∣∣
l
) = 1, then R′

ρ = Rρ(D),

(δij) = (ai1 + λi1, . . . , a
i
r1 + λir1 , c

i
1, . . . , c

i
r2).
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For the case deg(Rρ

∣∣
l
) = 0 no changes occur in j-th column, for the case

deg(Rρ

∣∣
l
) = 1 the matrix changes only in the j-th column:

B =



1 1 · · · 1 · · · 1

0 a11 · · · aj1 + λj1 · · · ar1
...

...
...

...
...

...

0 a1r1 · · · ajr1 + λjr1 · · · arr1
0 b11 · · · cj1 · · · br1
...

...
...

...
...

...

0 b1r2 · · · cjr2 · · · brr2


∈ Q(r+1)2 .
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Chapter 6

Epilogue

All the tools discussed in this thesis lead us to study the stability conditions

of triangulated categories. By setting an appropriate triangulated category

D, the set of stability conditions:

Stab(D)

has a natural topology. This topological space is a new invariant of trian-

gulated categories.

The stability conditions are not related to the type of stability studied in

this thesis, because the ones treated here refer to coherent sheaves while the

stability conditions we mentioned are for a triangulated category.

Bridgeland in [4, Theorem 1.2] proved that for each connected com-

ponent Σ ⊂ Stab(D) of the triangulated category D there exists a linear

subspace V (Σ) ⊂ Hom(K(D),C) and a local homeomorphism Σ −→ V (Σ),

then each component Σ is locally topological vector space. In the case that

D is numerically finite [4, Corollary 1.3] Σ is a finite-dimensional complex

manifold.

But in order to study the stability conditions of a triangulated category

D of the bounded derived category of OX -module, where X is by example

K3 surface, we need more general spaces to the schemes, let us remember

that

{varieties} ⊂ {schemes} ⊂ {algebraic spaces} ⊂ {stacks} .

In the source [39, Theorem 2.3 (Toda, Alper, Halpern-Leistner, Heinloth)]

σ ∈ Stab(D) and a phase v ∈ Λ, there exists a finite type Artin stackMσ(v).

In this situation we plan to study the stability conditions for K3 surfaces

with appropriate singularities and describe them.
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