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RESUMO

LEUYACC, R. Y. S. Sistemas elipticos hamiltonianos com crescimento exponencial em di-
mensao dois. 2017. 192 p. Doctoral dissertation (Doctorate Candidate Program in Mathematics)
— Instituto de Ciéncias Matematicas e de Computacdo, Universidade de Sao Paulo, Sdo Carlos —
SP, 2017.

Neste trabalho estudamos a existéncia de solugdes fracas nao triviais para sistemas hamiltonianos
do tipo eliptico, em dimensao dois, envolvendo uma fungdo potencial e ndo linearidades tendo
crescimento exponencial mdximo com respeito a uma curva (hipérbole) critica. Consideramos
quatro casos diferentes. Primeiramente estudamos sistemas de equa¢des em dominios limitados
com potencial nulo. No segundo caso, consideramos sistemas de equacdes em dominio ilimitado,
sendo a funcao potencial limitada inferiormente por alguma constante positiva e satisfazendo
algumas de integrabilidade, enquanto as nao linearidades contém fung¢des-peso tendo uma
singularidade na origem. A classe seguinte envolve potenciais coercivos e ndo linearidades com
funcdes peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso
¢ dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no
infinito. Para estabelecer a existéncia de solucgdes, utilizamos métodos variacionais combinados
com desigualdades do tipo Trudinger-Moser em espagos de Lorentz-Sobolev e a técnica de

aproximac¢do em dimensao finita

Palavras-chave: Sistemas hamiltonianos, Crescimento exponencial, Métodos variacionais, Desi-

gualdade de Trudinger-Moser, Espagos de Lorentz-Sobolev.






ABSTRACT

LEUYACC, R. Y. S. On Hamiltonian elliptic systems with exponential growth in dimension
two. 2017. 192 p. Doctoral dissertation (Doctorate Candidate Program in Mathematics) —
Instituto de Ciéncias Matematicas e de Computagdo, Universidade de Sao Paulo, Sdo Carlos —
SP, 2017.

In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic
systems in dimension two, involving a potential function and nonlinearities which possess
maximal growth with respect to a critical curve (hyperbola). We consider four different cases.
First, we study Hamiltonian systems in bounded domains with potential function identically zero.
The second case deals with systems of equations on the whole space, the potential function is
bounded from below for some positive constant and satisfies some integrability conditions, while
the nonlinearities involve weight functions containing a singulatity at the origin. In the third
case, we consider systems with coercivity potential functions and nonlinearities with weight
functions which may have singularity at the origin or decay at infinity. In the last case, we
study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To
establish the existence of solutions, we use variational methods combined with Trudinger-Moser

type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation.

Keywords: Hamiltonian systems, Exponential growth, Variational methods, Trudinger-Moser

inequality, Lorentz-Sobolev spaces.
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A CB—Aisasubsetof B

A G B— A is a proper subset of B.

X\A — The the complement of a set A C X

xe — The the characteristic function of the set E.

R — The set of real numbers.

Rt —{xeR:x>0}.

N — The set of natural numbers.

RN — The Euclidean N-space.

e; — The vector (0,...,0,1,0,...,0) with 1 in the i-th entry and 0 elsewhere.
[x] — The integer part of the real number x.

Bg(x) — The ball of radius R centered at x in R".

x| — \/|x1[2+ -+ + |xu|? when x = (x1,...,x,) € RV.

SN — The unit sphere {x € RV : [x| = 1}.

wy_1 — The surface area of the unit sphere SV~!.

|Q| — The Lebesgue measure of the set Q C RV

(X, ) — Measure space

M (X,R) — The collection of all extended real-valued p-measurable functions on X
Mo(X,R) — Class of functions in .# (X, R) that are finite y-almost everywhere in X
LP(X, ) — The Lebesque space over the measuare (X, 1)

LP(RN) — The space LP(RY | -|).

LP (RN) — The space of functios that lie in L”(K) for any compact set K in RV,
suppf — Support of a function f.

f* — The decreasing rearrangement of a function f.

fn  f — The sequence f, increases monotonically to a function f.

Jfn \( f — The sequence f;, decreases monotonically to a function f.



f=0(g) — Means | f(x)| < M|g(x)| for some M for x near xy.

f =o0(g) — Means |f(x)||g(x)|~" — 0as x — x.

fn=o0n(1) — Means f,, — 0 as n — +oo.

|| — indicates the size |0 |+ - - - + || of a multi-index @ = (o, ..., O).
d/" f — The m-th partial derivative of f(xy,...,xy) with respect to x;.

9% f— oo f.

€* — The space of functions f with 9% f continuous for all |o| < k.

%o — The space of continuous functions with compact support

¢ — The space of smooth functions ﬂkzl%k .

%, — The space of smooth functions with compact support.
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CHAPTER

INTRODUCTION

In recent years, many authors have considered the existence of nontrivial solutions for

Hamiltonian systems of the form

{ —Au+V(x)u (L1

H,( ), Xx€Q,
—Av+V(x)v = H,

X, U,V
(x,u,v), x€Q,
where Q is a smooth domain in RN, N > 2 and H (x,u,v) is a nonlinear function. Hamiltonian
systems have been widely use in applied sciences, mainly in the mathematical study of standing
wave solutions in models in population dynamics (Murray (1993)), in nonlinear optics (Bulgan
et al. (2004), Christodoulides et al. (2001)) and in the study of Bose-Einstein condensates
(Chang et al. (2004)). In dimension N > 3, the simplest example of (1.1) is H, (x,u,v) = g(v),
H,(x,u,v) = f(u), (g(v) ~v” and f(u) ~ u?). Even for this case, relevant open questions still
persist (see Bonheure, Santos and Tavares (2014)). In order to suppose that this systems is in
variational form, that is (1.1) is the Euler-Lagrange equation of some functional defined on a

suitable product of Sobolev type spaces, the couple (p,q) lies on or below the critical hyperbola
(see Figueiredo and Felmer (1994), Hulshof and Vorst (1993), Mitidieri (1993)):

1 1 N-2
+ > .
p+1 g+1 N

(1.2)

In dimension N = 2 one sees that the critical hyperbola is not defined. More precisely,
Let Q C R" be a domain of finite measure. The classical Sobolev space embeddings say that
WOI’Z(Q) C L1(Q) forall 1 < g <2N/(N —2).In the limiting case N =2 we have g = oo, but
easy examples show that WO1 ’Z(Q) ¢ L*(), in particular from that any polynomial growth for
f and g is admitted. Thus, one is lead to ask if there is another kind of maximal growth in this
situation. The answer was obtained independently by Pohozaev (1964) and Trudinger (1967), it

states that ¢ € L!(Q) for all u € H} () and o > 0. Furthermore, Moser (1970/71) showed
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that there exists a positive constant C = C(a, Q) such that

a 2 S C7 (04 S 47[7
sup / e dx (1.3)
ueH} (Q) & = 4o, o >4m.
[Vul2<1

Estimate (1.3) from now on will referred to as Trudinger-Moser inequality, similar results wwere
obtained for Q = R? (see Cao (1992), Ruf (2005)). A singular type extension of inequality (1.3)
for bounded domains was given by Adimurthi and Sandeep (2007) and its version in the whole
space RY was obtained by Adimurthi and Yang (2010). They showed that there exists a positive
constant C = C(«, 3,N) such that

1 Lo N=2 gk N/ (V1) <C, 0<a<(1-B/N)a
sup / (eoc|u|N/(N 1) o Z |I/t| )dx ( ﬁ/ ) N
R

ucH(RV) JRY <[P k=0 k! = +oo, o> (1—-f/N)ay,

[Vl 2+ |l 2<1
(1.4)

where ay = (Na)}i,/N)N/(N_I).

In dimension two, inequalities (1.3) and (1.4) show that, if the setting space of the system
(1.1) is given by H} (Q) x H] (Q) the maximal growth of the functions f and g can be consider

such as g(v) ~ ¢” and fu) ~ e

An important point is the fact that Trudinger-Moser type inequalities can be sharpened
using Lorentz-Sobolev spaces. First, we recall the Lorentz spaces: for a measurable function

u:Q — R, and u* denote its decreasing rearrangement. Then, u belongs to the Lorentz space

LP4(Q) (p,g > 1) if
e de\1/4
= (/P11 o0
lullpg = ([ [0 @77 5) " < 4o

These spaces represent an extension of the Lebesgue spaces, in particular when p = g we
have L”P(Q) = LP(Q). Using these spaces we can define the Lorentz-Sobolev spaces, roughly
speaking we say that u belongs to the Lorentz-Sobolev space WOIL’W(Q) if u and its weak

derivatives belongs to LP4(Q).

Using Lorentz-Sobolev spaces, Brézis and Wainger (1980) showed : If € be a bounded
domain in R? and s > 1, then, /""" belongs to L'(Q) for all u € W) L>*(Q). Furthermore,
Alvino, Ferone and Trombetti (1996) obtained the following refinement of (1.3), there exists a
positive constant C = C(Q, s, &) such that

sup
UeW, L>5(Q)
[Vull2,<1

. <C, o< (4n)/6-D,
/e““"“ dx{ ~ < (47) 1.5)
Q — oo

o> (4m)/6D).

As it was showed in Ruf (20006), if the setting space of the system (1.1) is given by
the product space W L>4(Q) x W, L*P(Q) the maximal growth of the nonlinearities can be
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considered like f(u) ~ e*” and g(v) ~ el"l" with p,q > 1 satisfying

—+ ! =1. (1.6)
P 4
Trudinger-Moser inequalities in the case Q = R? were studied by Cassani and Tarsi
(2009) with some natural modifications. Recently Lu and Tang (2016) obtained the following
result which represents an extension of (1.4) in Lorentz-Sobolev spaces: Let 1 < 5 < oo,
0 < B < N. Then, there exists a positive constant C = C(N,s, ) such that

Bl arluls/ =1 <C.  a<(1-B/N)ay,.
su /M‘B)dx (1=B/N)ow.s 1.7)
wivsey)  JRY ] = 4o, a>(1—B/N)oy,,
1Vl o+l <1

where
ko ¢k ~ 1N
D(t) = — Z L ko = [u] and oy = (Nw]z]/N)s/(s—l)_
k=0"" §

In dimension two the last inequality allows us toconsider the nonlinearities of the system (1.1)
such as g(x,v) ~ e’ /|x|* and f(x,u) ~ el /|x|® with a,b € [0,2) and (p,q) belonging to (1.6).

Finally, we illustrate the content of each chapter of this thesis.

In Chapter 2, we show important properties which will be used in the chapters 3,4 and
5. We start introducing some basic concepts about distribution and decreasing rearrangement
of a function in order to define Lorentz spaces, which represent a generalization of L”-spaces.
Furthermore, with the help of these spaces we can construct Lorentz-Sobolev spaces as gener-
alization of Sobolev spaces. Finally, following Figueiredo, O and Ruf (2005), Ruf (2008) we
define an application called tilde-map which is very useful in the variational formulation of the

systems which will be presented in the next chapters.

In Chapter 3, we study the existence of nontrivial weak solution to the following

Hamiltonian elliptic system

—Au = g(v), in Q,
“Av = f(u), in Q, (1.8)
u=v = 0, on JQ,

where Q is a smooth bounded domain in R? and the nonlinearities f and g possess maximal
growth which allows us to treat the system (1.8) variationally in the cartesian product of Lorentz-

Sobolev spaces.

In Ruf (2008) it was shown the existence of nontrivial solution of the system (1.8) in the
case where f(u) ~ el*” and g(v) ~ eIl where 5, > 0 such that 1/5+1/g > 1. In this case, we
can obtain (p,q) belongs to the hyperbola (1.6) such that

[/ (s)] HOI

s|P s|e

=0 and lim

lim
5|00 €]

5] o0 €|

=0, forall o >0. (1.9)



22 Chapter 1. Introduction

The existence of solutions for the system (1.8) when f(u) ~ el“” and g(v) ~ e/ has
been solved for the case p = ¢ = 2 in Figueiredo, O and Ruf (2004). Our main result in this
chapter is to prove the existence of nontrivial weak solutions for the general case, that is (p, q)
satisfies (1.6).

Motivated by the above results, we call the curve (1.6) as exponential critical hyperbola
in analogy to (1.2) in the sense that for (p, q) belongs to this hyperbola gives the maximal growth

range and the solutions is proved when (p,g) lies on or below to (1.6).

Therefore, from this results we have naturally associated notions of criticality and
subcriticality, namely: Given p > 1, we say that a function f has p-subcritical exponential
growth, if f satisfies condition (1.9), whereas a function f has p-critical exponential growth, if

there exists o > 0 such that

0, a > o,
O %

P
BESr foo, @< 0.

In order to study the existence of solutions of the system (1.8) we are going to impose the

following conditions:

(A1) f and g are continuous functions, with f(s) = g(s) = o(s) near the origin.
(A2) There exist constants > 2, v > 2 and s > 0 such that
0<uF(s)<sf(s), and O0<VvG(s)<sg(s), forall |s|> sp.
where F(s) = [, f(t)dt and G(s) = [; g(t) dt.
(A3) There exist &g > 0 and p > 1, such that

)0 a> o,

= €] fee o < .
(A4) There exists By > 0, such that

lg(s)] )0, B> P,
0, ﬁ < ﬁO-

lim =
5| o0 eBlsI? 4

where g = L.
p—1

(As) There exist constants 8 > 2 and Cy > 0 such that
F(s)>Cgls|® and G(s) > Cgls|®, forall seR,

where

Co >

14+6vV5 27 pw—2 v-2
u v

= ———— max
S RO-2 " 1/ppl/q ’
o o' By

and 0y is a positive constant which will be explicit later on.
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Now we state the main result of chapter 3.

Theorem 1.1. Suppose (A;) — (As) hold. Then, the system (1.8) possesses a nontrivial weak

solution.

Note that the above theorem permits to work with (p,q) lying in the exponential critical
hyperbola thanks to assumptions (A3) — (A4). Consequently, this result completes the study
made in Figueiredo, O and Ruf (2004) which corresponds to the diagonal case p = g = 2. We
point out the condition (As) will be crucial in our proof, this condition is of type as considered
in many works (see Cao (1992) and the references therein). We remark that from the choose of

Cg we do not need the following usual assumption:

(Ap) There exist positive constants M and s such that

0<F(s)<M|f(s)] and 0<G(s) <M|g(s)|, forall |s|> so.

which is used to get some convergence results.

Since the system (1.8) is a special case of a Hamiltonian system, some difficulties appear;
for example, the associated functional is strongly indefinite, that is, its leading part is respectively
coercive and anti-coercive on infinite-dimensional subspaces of the energy space. To overcome
these difficulties, we will use a finite-dimensional approximation combine with the Linking

theorem.

In Chapter 4, we study the following singular Hamiltonian system:

—Au+V(x)u = g(v), x € R?,
|

(1.10)

—Av+V (x)v = M, x € R?,
|x[?

where a,b € [0,2) and the functions f and g possess critical exponential growth. This system is

motivated by inequality (1.7).

In order to have properties like embedding theorems we consider that V' is a continuous

potential verifying the following conditions:

(V1) There exists a positive constant Vy such that V (x) > V; for all x € R?.

(V2) There exist constants p > 2 and ¢ = p/(p — 1) such that

1 1
717 € L*P(R?) and o177 € L>9(R?).

System (1.10) was studied by Souza (2012) in the case where p = g = 2 and its solution
was found in H'(R?) x H'(IR?), for this case the author use the respective assumption instead of
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(V»), that is 1/V € L'(R?) and similar conditions on the functions f and g as (Ag) — (A4) given
above. Moreover, it is considered a following condition: there exist 6 > 2 and a positive constant

Cy sufficiently large such that
f()>Cot® 1 and g(t) > Cot?!, forall 1>0. (1.11)

Cassani and Tarsi (2015) proved the existence of nontrivial solutions of the system (1.10) in
the case where a = b = 0. The authors have assumed (V;) — (V2) on V and (Ap) — (A4) on
the nonlinearities. Furthermore, in order to estimate the minimax level it was considered the
following conditions:

lim ¢f()e” %" = lim tg(t)e P’ = +oo and oy/” # B)/". (1.12)

t—+oo t—-+oo

Motivated by these results, we will prove the existence of nontrivial weak solution of (1.10)
in two different ways, that means, in addition to (Ag) — (A4) we will adapt the conditions (As)
and (1.12) and we use each one independently in the proofs. More precisely, we describe the

following additional conditions on the functions f and g.

(Ag) The following limits holds

sf(s) . sg(s)
im ——— = 4o and lim ——- =+
|s|—+o0 €®0l5P |5|—+o0 ePols]?

(A7) For a,b given by (1.10), p,q given by (V2), o and By given by (A3) and (A4) respectively,

(1—a2/2)1/p # (5 —Bg/z>l/q‘

(Ag) Leta,b € [0,2) given by (1.10). Then, there exist 6 > 2 and a positive constant Cg , 5 such

it satisfies

that
F(s) > Coapls|® and G(s)>Coapls|®, forall scR,
where
co 56+ 32./3
O,a,b 607a7bR6_2 )
and

_ I/p(1_ 1/q _ _
R2:47r(1 b/2)'P(1—a/2) max{u 2 v 2}7

1/ppl/p '
o, B, 2u - 2v

whereas the constant dg , , Will be explicit later on.

The following theorems contains our main results in Chapter 4.

Theorem 1.2. Suppose that V satisfies (V;) — (V») and f and g satisfy (Ag) — (A4) and (Ag) —
(A7). Then, the system (1.10) possesses a nontrivial weak solution.
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Theorem 1.3. Suppose that V satisfies (Vi) — (V») and f and g satisfy (A;) — (A4) and (Ag).

Then, the system (1.10) possesses a nontrivial weak solution.

We remark that the class of functions which satisfy the hypotheses of the above theorems
are different. The conclusion of Theorems 1.2 and 1.3 extends the result given in Cassani and
Tarsi (2015) in the sense that we add the singularities |x|~* and |x|~” on the nonlinearities
considered in that paper. Moreover, our result complements the study made in Souza (2012) in
the sense that, in this work, we study the class of Hamiltonian systems where the nonlinearities

possess maximal growth with respect to the exponential critical hyperbola.

Our proof of Theorems 1.2 and 1.3 is based on variational methods and a finite dimen-

sional approximation.

In Chapter 5, we discuss the existence of nontrivial solutions for the Hamiltonian system

{ —Au+V(x)u = Qr(x)g(v), xeR? (1.13)

—Av+V(xy = 01(0)f(w), xR
where V, Q1, 0, are continuous functions and the nonlinearities f and g possess critical exponen-

tial growth with (p,q) lying on the exponential critical hyperbola.

On the potential V we assume the following condition:
(V) Ve €(R%R), V(x) >V, > 0 for all x € R?, there exists a > 0 such that

iming ~ )

x| —seo |x[

> 0.

Assumption (V') implies that, if a > 0 the potential V is coercive. On the functions Q; fori = 1,2,

we consider:

(Qi) Qi € F(R*\{0},R), Qi(x) > 0 for x # 0 and there exist d; < a/(max{p,q} — 1) — 1 and
b; > —2 such that

0 < lim Qi(;) < +oo and limsup Qi(j;)
=0 [x]" oo X[

< o0,

The existence of solutions of system (1.13) was studied in Cassani and Tarsi (2015) for the case
Q1(x) = Q2(x) = 1. The case Q1 (x) = |x|~* and Qy(x) = |x|~? with a,b € [0,2) was treated in
Souza (2012) for the diagonal case p = g = 2 and also considered in Chapter 4 when (p,q)
belongs to the exponential critical hyperbola. In this section we treat a more general class of
nonlinearities studied in previously mentioned papers. We also mention that the systems studied
in Cassani and Tarsi (2015), Souza (2012) and also in Chapter 4 the potential V satisfy some
integrability conditions. In our case, we consider coercive potentials which represent a different

class of potential from the mentioned works.
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On assumption (V) and for s = p or s = ¢, we consider the following weighted Lorentz-
Sobolev space WIL%,’S(RZ) which is defined to be the closure of compactly supported smooth

functions, with respect to the quasinorm
el 2 gy = (lalls g+ IVYoulls )
Forany A > 1 and i = 1,2 we also define
LME2Q) = {u : [ Qi(o)luf* dx < +o},
endowed with the norm
ol g2, = (/RQ 0 |uf* dx)l/l.
In these spaces we obtain the next result which will be proved later.

Proposition 1.4. Assume (V) and (Q;) for i = 1,2 and let s = g or s = p. Then, the following

embeddings are compact

WL (R?)—LH(R?,Q;), forall A >min{p,q}.
Concerning the functions f and g we suppose the following assumptions:

(B1) f,g€FC(R), f(s)=o0(sM)and g(s) =o0(s"), as s — 0, where n; = max{1/(¢—1),min{p,q}}
and m, = max{1/(p—1),min{p,q}}.

(B2) There exist constants y > 2 and v > 2 such that
0 < uF(s) <sf(s), 0<vG(s) <sg(s), forall s#0,
where F(s) = [, f(t)dt and G(s) = [; g(t) dt.
(B3) There exist positive constants M and s¢ such that

0<F(s) <M|f(s)] and 0< G(s) <M|g(s)

, forall |s| > sp.

(Bs4) There exists 0 > 0 such that

lim [fGs)] _ JFoo <o
|5 oo €51 0, o>da.

(Bs) There exists By > 0 such that

00, <
i L6 _ [ Bt
sl =0 €71 0, ﬁ > BO'
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(Bg) The following limits holds

. sf(s) . s8(s)
lim = 4o and lim ———— =+
|5|—-+oo €@0ls1” |s|—+o0 ePols|?

(B7) For b; given by (Q;), i = 1,2 and oy, Bo given by (B4) and (Bs) respectively, it satisfies

in{1,1+2}\1 1
(Ocomm{ : —;2}> /P>< . Bo : ) /4
(1+3) min{1,1+ %}

or

< o )1/p< (Bomin{l,l—i—%})l/q
min{1,1+ 4} (1+%)2 '

Theorem 1.5. Suppose that V satisfies (V), Q; satisfy (Q;) for i = 1,2 and the nonlinearities f
and g satisfy (B;) — (B7) . Then, the system (1.13) possesses a nontrivial weak solution.

In Costa (1994) was studied the existence of solutions for gradient elliptic systems
involving coercive potentials in dimension N > 3 where the growth of the nonlinearities were of
polinomial type. In our case we study a Hamiltonian elliptic system in dimension two, and the
potential is coercive which is of the class different considered in the systems studied in Cassani
and Tarsi (2015), Souza and o} (2016), Souza (2012). Moreover, due to the fact of the weights Q;

allow us to complement the results with more general class of nonlinearities.

We recall that under the hypothesis (V) and (V») considered in Cassani and Tarsi (2015)
and Chapter 4 (or (V;) and 1/V € L'(R?) assumed in Souza (2012)) implies that the space
WILES(R?) (or HL(R?) = {u € H'(R?) : [V (x)|u[> dx < +o0}) is compactly embedded in
I (R?) for any A > 1. In view of Proposition 1.4 and in order to overcome some difficulties
due to lack of embeddings, we compensate with condition (B;) which will be used to show and
control the boundedness of Palais-Smale sequences. Observe also that (B;) implies the usual

assumption, that is, f(s) = g(s) = o(s), as s — 0.

In our argument to prove the existence results, it was crucial a Trudinger-Moser inequality
and some embeddings type properties in weighted Lorentz-Sobolev spaces WIL%,’S(RZ). In the
proof we used a linking theorem and finite dimensional approximation as in the proofs of
Theorems 1.2 and 1.3.

In Chapter 6, we establish the existence of the following Hamiltonian system

(1.14)

—Au+V(x)u = gv), xeR?
—Av+V(x)v= f(u), x€cR?

where the functions f and g possess critical exponential growth and V' is a continuous potential.

First, in the systems (1.10) and (1.13) considered in the last chapters, the condition (V)
says that V is bounded below for a some positive constant and (V) gives some conditions of

integrability or coercivity.
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In Albuquerque, O and Medeiros (2016), the authors proved that the system

{—Au+v<rxr>u o(lx)g(v), xeR?,

—Av V(v = QX))  xe R, (-1

has a nontrivial solution under the potential V and the weight function Q being radially symmetric

and satisfying the following assumptions:

(V) V€ %(0,+), V(r) >0 and there exists a > —2 such that
Vir)

liminf —= > 0.
r—+o pd

(Q) Q€ €(0,4+), Q(r) > 0 and there exists b < (a —2)/2 and by > —2 such that
o(r) o(r)

rbo rb

< +oo and limsup <Aoo

r—r+oo

liminf
r—0t
In Souza and O (2016), the authors established the existence of nontrivial solutions for

Hamiltonian systems of the form

B . 2
{ Au+V(x)u = g(x,v), xeR? (1.16)

—Av+V(x)v = flx,u), xcR?

when the potential V' is neither bounded away from zero, nor bounded from above. The nonlinear
terms f(x,s) and g(x,s) are superlinear at infinity and have exponential subcritical or critical
growth for the case p = ¢ = 2. Among other things, it is assumed that potential V satisfies the

following assumptions

lim vs(Rz\FR) = 4o, forsome s € [2,+c), (1.17)
R—+o0

or for any r > 0 and any sequence (x;) C R?, which goes to infinity

lim Vs(B,(x;)) = +oo, forsome s€ [2,4), (1.18)
k—>-oo

where V; is defined by, if Q C R2 is an open set and s > 2,

Vul? +v(x)u?)d
v(Q) = inf fQ(’ ul”+ (x);/‘) X
weHJ(@N\0 ([ |ul* dx)*”

and V(@) = +oo.

Motivated by the above mentioned results we are interested in studying the system (1.14)
for the exponential critical case p = g = 2, when the potential V can be bounded or can vanish at

infinity. More precisely, we assume:

(V1) V € €(R?,R) is a radially symmetric positive function.
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(Va) There exist constants 0 < a < 2, b < a and Ry > 1 such that

L
ﬁ <V(x) < ﬁ forall |x| > Ry,

where L, and L, are positive constants depending on a,b and Ry.

(V3) V(x)=1if [x| <1and V(x) > 1if 1 < |x| < Ry.
Under these conditions on V, we set for 1 < p < 40
L{;’md(RZ) := {u: R* = R : u is measurable, radial and /]RZ V(x)|ul? dx < +oo}
and we consider the following Sobolev space
Hy 0q(R?) = {u € Ly ;g (R?) : [Vu| € L*(R?)},

these spaces were considered by Su, Wang and Willem (2007a), Su, Wang and Willem (2007b).

Concerning the functions f and g, we suppose the following assumptions:
(Hy) f,g € €(R)and f(s) =g(s) =0 forall s <O0.
Setting b* =2(2 —2b+a)/(2 — a) where a and b are given by (V,), consider
(H,) There exist constants > b* and v > b* such that
0 < UF(s) <sf(s), 0<vG(s) <sg(s), forall s>0,
where F(s) = [y f(¢)dt and G(s) = [; g(t) dt.
(H3) There exist constants s; > 0 and M > 0 such that
O0<F(s)<Mf(s) and 0<G(s)<Mg(s), forall s>sj.
Setting p and v given by (H>) and a given by (V;), we suppose:
(Hy) There exists 6 > 4a/(2—a) such that f(s) = O(s*~'*9) and g(s) = O(s"~1*9) as s — 0.
(Hs) There exists o > 0 such that

0, o > o, 0, o > o,
fim £ _ % nd 1im 8U) %

2 2
s et +oo, @ < Qp, s e® too, Q< 0.

(Hg) For o > 0 given by (Hs), we have

tf(t 4 to(t 4
SO % nd iming W) 5 4
t—+oo 0ot O t—4oo 00t (047}
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The following theorem contains our main result in Chapter 5.

Theorem 1.6. Suppose that V satisfies (V;) — (V3) and f and g satisfy (H;) — (Hg). Then, there
exists L* = L*(f,g,1, Vv, Qy, 0,a,b,Ry) > 0 such that system (6.1) possesses a nontrivial weak
solution (u,v) € H&jmd(Rz) X H‘%md(Rz) provided that L, > L*, namely (u,v) € H&’md(Rz) X
H‘hmd(Rz) satisfies

L, (Va¥y+V@uy+ Vivo +V(0vo) dr= [ ()9 +8(r)y) dx.

for all (¢, y) € Hy,,,,(R?) x Hy, .,(R?).

rad

Our theorem may be seen as complement of the above mentioned results. We recall
that condition (V) allows V (x) — 0 as |x| — oo. The condition (V) in the system (1.10) and its
relationed works considered in Chapter 4 requires that V be large at infinity. We also note when
Q =1 in condition (Q), this implies that V (x) — oo as |x| — co. Thus, although the class of
Hamiltonian systems considered in Albuquerque, O and Medeiros (2016) is very general, the
main result in that paper can not be applied to the model case V (x) = L/|x|%, for |x| sufficiently

large, considered here.

In the recent paper Souza and O (2016), a fairly general result was proved on system
(1.16), but under the hypotheses (1.17) and (1.18), which implies that V is large at infinity, as we
can verified with the following example: taking uy € 6;;° (R?) such that

W N
W

up(x,y) = Lif [(x,y)| < 7 and  wo(x,y) =0 if [(x,y)[ >

Setting (ux) C 65 (R?) defined by u(x,y) = ug(x — k,y — k) for k € N. Thus, for every k € N
and for all s € [2,0), we have
supp uy C By (k,k), (1.19)

u € H) (Q)\{0} and / lug|*dx > 1 forall Q D By(k,k). (1.20)
Q
If V is bounded near infinity there exist ky > 0 and C > 1 such that

V(x)|<C forall |x|>ko. (1.21)

For given R > 0 let k; > max{R,kp} + 1 using (1.19), (1.20) and (1.21) we have that

fRz\ER (|Vukl >+ V(x)u%] ) dx
)2/5

Vg (Rz \ER) <
(Jr2\3 [, | dx

< Vu |? +Cu? ) dx
_/I%Z\BR (‘ kl’ k])

< Vuy, |? 4+ Cu? ) dx < Cllu ,
_/Bl(kukl)(| k1| kl) N “ OHH(;(Bl)
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which contradicts (1.17). Note also that by (1.19), (1.20) and (1.21), for every k > ko + 1, we get

B, (kk) (Vi +V (x)u) dx

Vs(B1(k,k)) < .
(3, (ki) ’Mk!sdx)z/

SCHMOHH(;(Bl)a

which contradicts (1.18).

Observe that, the associated functional with (1.14) is strongly indefinite and the space
H& (R?) presents some phenomenons such as lack of compactness. In order to prove the existence,
we combine a truncation argument with a finite-dimensional approximation and Linking theorem.
The truncation argument employed here is an adaptation of the reasoning used in Alves and
Souto (2012) to study the existence of positive solutions to a scalar equation. We point out that

this chapter is contained in the accepted paper Leuyacc and Soares (2017).
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CHAPTER

LORENTZ AND LORENTZ-SOBOLEV
SPACES

In this chapter we introduce and prove some properties which will be important in the

development of this thesis.

2.1 Distribution functions and decreasing rearrangement

Let X = (X,X, 1) be a c—finite measure space, denote by .7 (X,R) the collection of
all extended real-valued p-measurable functions on X and .#)(X,R) the class of functions
in .# (X,R) that are finite u-almost everywhere in X. As usual, any two functions coinciding

almost everywhere in X will be identified. Moreover, natural vector space operations are well
defined on .#y(X,R).

Definition 2.1. The distribution function 4 of a function ¢ € .#,(X,R) is defined by

Ho(t) :=pu{xeX:|p(x)|>t}, for 1>0.

The distribution function satisfies the following properties (see Hunt (1966), Bennett and
Sharpley (1988)).

Proposition 2.2. Let ¢,y € .#,(X,R). Then, the distribution function p, is nonnegative, non-
increasing and continuous from the right on [0, +ec). Furthermore,

(i) If |¢(x)| < |w(x)| u-almost everywhere in X, then e () < py(t), for all £ > 0.
(i) Hap(t) = tto (|/tl—|), for all 7 >0 and A % 0.

(iil) Moty(ti +12) < Ug(t1) + Uy (t2), for all 11,1 > 0.

(iv) [.L(pw(tltz) < u¢(t1)u¢ (tz), for all #;,1, > 0.
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(v) Let (¢,) be a sequence in .#,(X,R) such that |¢ (x)| < liminf,_ e |@,(x)|, H-a.e in X. Then,
Uo (1) < liminf, e tg, () a.e in R™. In particular, if |@,| * |¢| n-a.e in X. Then, g 7 Lg,
aeinRT.

Using distribution functions we can consider the following spaces:

Definition 2.3. (Weak L”-spaces) If f € .Zy(X,R) , let

[flp = [flp.x = supt [1s(1)] 1,

>0

We define the weak-L? as follows:

Weak — LP(X) := {f : f € My(X,R), [f]p < +oo}.

More details about these spaces can be found on Adams and Fournier (2003).

Definition 2.4. The decreasing rearrangement of ¢ € .#y(X,R) is defined by
¢*(s) :=inf{r > 0: puy(r) <s}, for s>0.
The decreasing rearrangement satisfies the following properties (see Hunt (1966), Bennett

and Sharpley (1988)).

Proposition 2.5. Let ¢, y € .#,(X,R). Then, the distribution function ¢* is nonnegative, non-
increasing and continuous from the right on [0, +ec). Furthermore,

(i) T g (1) < y(¢), forall £ > 0, then ¢*(s) < y*(s), for all s > 0.
(if) (A9)* =|A|¢*, forall A € R.

(iii) (¢ +y)"(s1+52) < 9" (s1) + y*(s2), forall 51,5 > 0.

(iv) (Qy)*(s152) < 9*(s1)9"(s2), for all 51,52 > 0.

(v) Let (¢,) a sequence in .#y(X,R) such that |¢| < liminf, . |@,|, t-a.e in X. Then, ¢* <
liminf, . ¢, a.c in R, In particular, if |¢,| /' |¢| -a.e in X. Then, ¢ 7 ¢* aein RT.

In the following example, we compute the distribution and decreasing rearrangement of

a simple function.

Example 2.6. Let ¢ € .#,(X,R) be a simple function, that is, ¢ is a linear combination of

characteristic functions, in particular, we can write

01=Y ajxe
=1
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where a; >a; > ---a, >0and E; ={x € X : |¢|(x) = a,}.

Indeed, since |@(x)| < a; for all x € X, for each t > a;, we have

Ho(t) = pix X : 9(x)| > a1} = u(2) = 0.

Let ar <t < ay. Thus,

Ho(t) = p{x € X : [p(x)] > 1} = pfx € X : [9(x)] = ar} = (Ey).

In general, ifaj | <t <ajfor j=1,--- ,n (a,11 =0), we have

b (1) = i € X 19(3)] > 1} = il € X2 [0(x) | = ar,aa,.. aj} = gu<Ei>.

Thus,

n J
Ho(t) =Y MiXiajsray> Where mj=Y u(E).
=1 i=1

If 0 <s < my, we have

0 (s)=inf{r >0: Z MjXa;1ap) () < s} =ar.
=

If m; <s <my, we have

0 (s)=inf{tr >0: Z MjXa;1ap) () < s} = ar.
=1

In general, if m; | <s<mjfor j=1,....n (mg =0), we have

(p*(S) = lnf{t Z O : Z mj%[a_,-Jrl.,aj) (t) S S} = Clj.
j=1

Thus,

n J
0" (s) =Y ajXim, \my, Where mj=3 u(E).
=1 i=1

See the following figures for a specific example:
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Figure 1 — A simple function ¢.

3 —
O ——— s ————
2
—
4 2 0 2 4
1

@ ¢ =—x3-1)+2X-1.1) +4X12) + A3
Source: Elaborated by the author.

Figure 2 — Distribution function and decreasing rearrangement of ¢.

|

4 g [rm—

2 2 _—

0 Z 3 3 > 0 Z 3 3 >
(@) Ho = 60,1y +3X[12) T X[2.4)- | (®) 9" =4x0,1) +2213) + X3.6)-

Source: Elaborated by the author.

Example 2.7. Let r > 0 and ¢ : R? — R defined by

¢(x) = <H—;ﬂ|x|2>r

Then,
1

(1+s5)"

forall s>0.

9" (s) =
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Indeed, since |¢(x)| < 1 for all x € R?, for each > 1 we have

0.

Ho(t) = [{x € R*:[9(x)| > 1}| = |2

If 0 <t < 1, we have

1
= er]RiZ:— >r1/’}
1 + 7|x|?

:’{xeRZ:IXK %(ﬂ%_l)}’
1

On the other hand, let s > 0 fixed and 7 > 0 such that 1y () <'s. Thus, there are two possibilities:

t>1or
1

tl/r_ -

that is,

Thus, we conclude that

1
(14s)"

0*(s) = inf{t > 0: py(t) < s} =

Example 2.8. Let f(x) = 1 — e~ defined on R. Then, for each # > 1 we have ys(t) = 0 and
for each 0 <t < 1 we have

pe(t) = {x e R?: 1—e W >} = HxE]RZ:|x| >1n(1L_t)H = oo,

Therefore, f*(s) = 1 for all s > 0. In particular, we conclude that, if f € .#,(X,R) not necessarily

Iy 1s an almost everywhere finite-valued function.
Let ¢ be a simple function as given by Example 2.6. Then,
~+o0 n n
|0 ds= Y ajom—mi) = Y amE) = [ owlduw. @D
j=1 j=1

A more general result is given by the following Lemma:

Lemma 2.9. Let ¢ € .#,(X,R) and G : [0, 4o0) — [0, +0) be a nondecreasing function such
that G(|¢|) € L' (X) and G(0) = 0. Then, G(¢*) € L' ([0, +e0)) and

400
| 6@ 6)ds= | 6wl du).
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Proof. Let ¢ be a simple function, using notation given by Example 2.6 and the fact that G(0) =0

we have
(G(lo))" = ( Z] G(aj)xE, (x)) = Y Gla) X, () = G(O°(s).  (22)
j=
Thus, from (2.2) and (2.1) we obtain

[ e snas= [ (@ow) ds= [ 6ol dut). 3
0 0 X

In the general case, there exists a increasing sequence (|¢,|) of simple functions converging
almost everywhere to |¢|. By Proposition 2.5-(v), ¢, converges monotonically to ¢* almost
everywhere. Consequently, the sequences G(|@,|), G(¢,;) converges monotonically to G(|¢|) and
G(¢*) respectively. Moreover, G(|¢,|) and G(¢,7) are simple functions. By (2.3) and Monotone

converge theorem, we have

oo +oo
| 6ods=tim [ 6o ds = lim [ G(ou)dutx) = [ Gllo]du(x)
0

n—eo /0

Reducing to simple functions and taking limit we can obtain the following result:

Lemma 2.10. (Hardy-Littlewood inequality) (See Hunt (1966).) Let ¢, y € .#y(X,R). Then,

/\¢ Oldu(x) < O+°°¢*(s)y/*<s)ds.

2.2 Lorentz spaces

In this section we present Lorentz spaces which were introduced by Lorentz (1950). For
simplicity we consider throughout this section the following measure space (X, i) = (Q,m)

where Q is a measurable subset in RY with N > 1 and m is the Lebesgue measure.

Definition 2.11. Let | < p < 400, 1 < g < +o0. The Lorentz space L"4(Q) is the collection of
functions ¢ € .#)(Q,R) such that |||, 4 < +oo where

+oo
([Tl i 1<q< e
9]0 = e
supt'/Po* (1), if g=+oo.

>0

In particular, two functions in L”9(Q) are identified if they are equal almost everywhere in Q.

For a mensurable function f = (fi,---, fv) : @ — RY, we say that f € L4(Q) if and
only if | f| € L71(Q) and we set

1A Nlp.q =
Therefore, f € LP4(Q) if and only if f; € LP9(Q) for 1 <i < N.
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Proposition 2.12. The map || - || given by (2.4) is a quasinorm and LP9(Q) is a vector space.
Proof. Let 1 < p < +ooand 1 < g < +oo.

(i) Itis clear that || ¢||, 4 > O for all ¢ € LP9(Q) and |||, 4 = 0 if and only if ¢ = 0.

(ii) Let A € R, by Proposition 2.5-(ii) we have (A¢)*(¢t) = |A|¢*. Then,
oo . di\1/q
4010 = ([ 100y @71 %) ™ < 1210l

(iii) Let ¢,y € LP9(Q) using Proposition 2.5-(iii), we have

oo d
lo+vlg,= [ [@+wr@r7])'S
qa.dt

<[l
o} /0+°° (") + v ()s77]" as
<28 [ (006 4 [y 0057))

I4q-1
=205 (o114 4+ 1v2,).

Hence,
1.1
16+ Wllpg <20 0 (I19]lpg+ IWllpg), forall ¢,yeLlP9(Q).

The properties (i)-(iii) are also true for the case when 1 < p < +e0 and g = +oo. Thus,

Nlp.a

represents a quasinorm. Moreover, if ¢,y € L79(Q) and A € R, using (i) and (iii), we have
¢ + v and Ay belong to LP4(Q), that is, LP4(Q) is a vector space. [

The following result says that || - ||, , is @ norm for some cases.

Proposition 2.13. (See Bennett and Sharpley (1988).) The map || - ||, 4 is a norm if and only if
I<g<p

Now, we build a topology 7 in Lorentz spaces. For every x € LP4(Q) and every r > 0,
we consider the following open ball:

Br(x) ={y e L7(Q) : ly—xllpq <1}
and we set the collection of balls
B = {Br(x) :x € L"1(Q),r > 0}.
A subset U in LP4(Q) is said to be open in LP4(Q) (U € 7) if and only if

U= U (B,-1 NBj,--- ﬂB,-ni), where B;, € % and I is an index set.
iel
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Consequently, LP9(Q) turns out a topological vector space. Note that, each ball B,(x) is an open
set. Thus, we say that, the sequence (¢,) C L”9(Q) converges to ¢ € LP9(Q), in the topology
 if and only if ||¢, — ¢

g — 0.

In the following we define a metric d such that (Lp 1(Q),d ) 1s a metric space.

Definition 2.14. Let 1 < p < 400, | < g < 400, Q C RN and ¢ € .#,(Q,R), the maximal
function is defined by
1

+o0
0 (1) := A 0*(s)ds, forall ¢>0.
0

Definition 2.15. Let 1 < p < +o0, 1 < g < 40, we define

+o0 1
(/ [d)**(t)fl/p]q ﬂ) /q’ if 1< q < oo,
0 t
191154 =
supt'/Po** (1), if g=oo.

>0
Proposition 2.16. (See Adams and Fournier (2003).) Let 1 < p < 4o and 1 < g < 4. Then,
the functional || - [|7, , represents a norm on L”4(Q). Moreover, LF(€) endowed with this norm

is a Banach space and

] p
101p.g <11@1lpq < pTlHq)

pqs forall ¢ e LP9(Q). (2.5)

Setting the metric
d :LP9(Q)xLPI(Q) — RT
(9, ¥), = o=l
Let 7 the topology induced by the metric d. Using (2.5), we have the topologies .7 and T
defined on L”(Q) are equals.

Remark 2.17. (i) The Lorentz space L%(Q) with 1 < g < +eo is not interesting, since the only
function in this space is given by the zero function.

(ii) Using Lemma 2.9 with G(s) = s”, p > 1, we have

ol =( [T rar) " = ([ o) =gl

This implies,
LPP(Q) =LP(Q).

Thus, Lorentz spaces are intermediate between LP-spaces.

(iii) For 1 < p < 400, we have

11]p.e0 = fglgtl/%*(f) = supt[ty (1)]'17 = 9],

t>0
Thus,

LP=(Q) = weak-LP(Q).
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(iv) Given a function ¢ defined on Q, we denote by ¢ its extension outside &, that is,
_ o(x), xeQ
¢(x) =
0, x € RM\Q.
In particular, if Q is a bounded set, we have
— ¢*(1), 0=<t<IQ
(9)"(r) =
0, > Q.
Thus,

— teo o de\1/p teo de\1/p

Bl = ([ 1@ @) = ([ [0 @17 SE) " = 19llace
Lemma 2.18. (Holder’s inequality in Lorentz spaces) Let 1 < p,g < +o0 and p/, ¢’ denoted
the conjugate exponents defined by p’ = p/(p—1) and ¢’ = q/(¢—1). If f € L”4(Q) and

g € L4 (Q). Then, fg € L'(Q) and
| 17@stodx< s

pallglly q-

Proof. Using Lemma 2.10 we have

e [0 g @
Lirwstlar< [ rwgwan= [0

By classical Holder’s inequality with 1/g+ 1/¢' = 1 we obtain

oo ()P g (1) P T g ANV g dt N1
0 t1/a Ve ds§</0 (@ >T> (/0 (870 )Tdt> @7

Joining (2.6) and (2.7) the claim follows. |

dt. (2.6)

Lemma 2.19. (Generalized Holder’s inequality in Lorentz spaces) Let the following con-

stants 1 < p, p1,p2,49,q1,92 < oo such that
1 1 1 1 1 1
—=—+— and - =—+—.
P p1 D2 9 491 92

If f e LP19(Q) and g € LP>92(Q). Then, fg € L74(Q) and

Hfg“nq < 21/prthq1 Hngz,qz-

Proof. Using Proposition 2.5-(iv) and Holder’s inequality, we have

[ lsrom < [ (e (s
< zq/p/()+°° [f*(t)g*(t)tl/l’}qﬂ

doo - £x (£t 1/P1 o* (£)f1/ P2
a/p Jr@)e g ()24
=2 /0 [ tV/a t1/ a2 } di
Foo diNa/a ;[T dt\ 4/
q/p *(1\+1/p11491 *(1\1/p2792 &
=2 (/0 @] t ) (/0 "] t ) '
Then, the claim follows. |
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Remark 2.20. (i) The claim in Lemma 2.18 is still valid if we consider 1 and 4o as conjugated

exponents.

(ii) The claim in Lemma 2.19 is still valid if we consider ¢ = ¢g; and g, = 4 or ¢ = ¢ and

q1 = o0,

Lemma 2.21. (See Hunt (1966).) Let 1 < g; < g» < 4o and p > 1. Then, the following
embedding is continuous
LP9(Q) < LP(Q).

Lemma 2.22. Let |Q| < +oo, | < p; < pp < +eoand 1 < g; < gz < oo, Then, the following

embedding is continuous
LP2~,‘]2 (Q) (SN Lpl »q1 (Q) .

Proof. Let f € LP191(Q) and taking p3 and g3 such that

1 1 1 1 I 1
—=—+4+— and —=—+4—.
pPr p2 Pp3 9 92 g3

Using Lemma 2.18 we have

Hf||1717611 < 21/p1||le727(12H1||P37613 = 21/p1|Q|l/q3Hf||Pz7f12'

and the embedding follows. |
Lemma 2.23. Let |Q| < +0, 1 < p < o0 and 1 < g < +o0. Then, the following embeddings
LP9(Q) — LP7%(Q), forall 0<8<p—1

are continuous.

Proof. 1f 1 < ¢ < p, by Lemma 2.21, we have forall 0 < 6 < p—1
LP(Q) — LPP(Q) =LP(Q) — L”_‘S(Q).
If g > p, by Lemma 2.22 we have forall 0 < § < p—1
LP(Q) — LP~OP=3(Q) = P73 (Q).

Then, forall0 < d < p—1
LPA(Q) — LP~%(Q).

[ |
Lemma 2.24. Let |Q| < +oo, | < p < o0 and 1 < g < +oo. Then, the following embeddings

LPTO(Q) — LP9(Q), forall &>0

are continuous.
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Proof. If 1 < p < g, by Lemma 2.21 we have
LP+6(Q) — LP(Q) =LPP(Q) — LP1(Q), forall & >0. (2.8)
If p > g, by Lemma 2.22 we have
LPHO(Q) = LPHOPTO(Q) s [P9(Q), forall &> 0. (2.9)
Joining (2.8) and (2.9) the lemma follows. |

Proposition 2.25. (See Hunt (1966).) Let 1 < p < +o0, 1 < g < +o0. Then, the set of simple

functions are dense in L”4(Q).

Proposition 2.26. Let 1 < p < +o0, 1 < g < 40 and Q a open subset in RY. Then, €2 (Q) is
dense in L74(Q).

Proof. Let f € LP9(Q) and € > 0, by Lemma 2.25 there exists a simple function s defined on Q

with compact support such that

E
1f = sllerag) < 7- (2.10)

Let K = supp(f) and consider Q' = J,cx (B1(x) N€). Thus, ' is an open bounded set such
that K C Q' C Q. From Lemma 2.24 the space LP! (') continuously embedded in LP4(Q'),
denoting by S,, > 0 its best embedding constant. Since s € LP™!(Q’) using the density of €°(Q')
in LPT1(Q)), there exists g € €°(Q') C €°(Q) such that

€

s —gllppriiony < —. (2.11)
) g,

Note that,
Is — gllzra(a) = IIs — &llraa) (2.12)
Thus, combining (2.10), (2.11) and (2.12) we obtain

1f = 8llzrace) <2 f —sllra) +2ls — 8llzrae)
€
<3 +2|ls — gllzra(e)
£
2
<E.

<5 +28plls — gl ooy
Thus, €°(Q) is dense in LP9(Q). |

Proposition 2.27. (See Hunt (1966).) Let Q an open subset in RV. Then, the following results
holds:

(i) Let 1 < p < +oo. Then, the dual space of L' (Q) is given by L”**(Q) where 1/p+1/p’ =
1.
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(ii)) Let 1 < p < 4o and 1 < g < +o0. Then, the dual space of L”9(Q) is given by LP/"/(Q)
where 1/p+1/p’=1and 1/g+1/¢' = 1. Moreover, these spaces are reflexive.

Proposition 2.28. (See Halperin (1954).) Let Q an open subset in RV, 1<p<+4wandl <g<

+o0. Then, the Lorentz space L”7(Q) is a uniformly convex space.

Lemma 2.29. Let ¢ € LP4(RY). Then, for every € > 0 there exists R > 0 such that

10 — O xBillpg <€
where yp, 1s the characteristic function of Bg.
Proof. Let € > 0, since ¢ € LP4(RV), we have
{x e RV : ¢(x) > e}| < +oo.
Observe that
{xeBr:o(x)>e}| = [{xeRY:p(x) > €} as R— +oo.
Thus, for each § > 0 there exists R = R(€,8) > 0 such that
IIg| <8 where Igp={xcRV\Bg:¢(x)> e}
Setting g = ¢ xR, then,

0<(¢p—0r)(x)<e, forall xeRM\I.

Thus,
[{xeRY: (0 —gr)(x) > e}| < &.
Therefore,
Hig—ge)(€) < 0.
Then,

(0 —9r)"(6) =inf{s >0: “(¢—¢R)<S) <d}<e.

Using the fact that (¢ — @g)* is nonincreasing we have
(0 —or)"(t) <e, forall r>§.
Thus, for each n € N, there exists ¢, such that

, forall t>

S| =

Y

S| =

(0—0n)"(1) <
where ¢, = ¢ xr,. Consequently, there exists a sequence (¢,) such that

0 < ¢a(x) < ¢(x), almosteverywherein RY (2.13)
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and
(¢ —¢,)"(t) — 0, almost everywherein R™. (2.14)

Using (2.13) and Lemma 2.5, we obtain

(0 —0a)"(1) < (@ + )" (1)

<o (D) +0r(}) @19
2 2
t
<20%(=
<20"(}),
almost everywhere in R*. Now, by (2.14), (2.15) and Dominated convergence theorem, we have

oo d
H¢—¢n||§’,,q:/0 [tl/p(¢—¢n)*(t)]q7t—>0.

Thus, there exists R > 0 such that
10 — O xrllpq <€
[ |

Proposition 2.30. Let | < p < 4o and 1 < g < +oo. If (u,) is a sequence in LP9(Q) and
u € LP1(Q) such that u, — u in LP9(Q). Then,

(i) u, — uin measure.
(if) There exists a subsequence (uy, ) such that

Uup, (x) = u(x), almost everywherein Q.

Proof.

(i) By Lemma 2.21 we have LP4(Q) < LP**(Q) continuously. Thus,
u, —>u in LP7(Q).
Consequently, for given € > 0 there exists ng > 1 such that
ity — t]| poo < €PEV/P - forall n> ny.
By Remark 2.17-(iii), we have

sugt[,u(un_u) ()P < ePT/P forall n>ny.
>

In particular, taking ¢t = € in last inequality we obtain
W(uy—u) (€) < &, forall n>ng.

That means,
{x € Q:|up(x) —u(x)| >e}| <e, forall n>ny.

which proves the assertion.
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(i) It is a consequence of (i).

Proposition 2.31. Let (f,) be a sequence of functions in LP9(Q) satisfying

D o<fi<fp<---<fu<fog1:,almost everywhere in Q.

(ii) sup anHp# < oo,
neN

Then, f,, converges pointwise on € to a measurable function f, that is finite almost everywhere,

and furthermore
fo— f in LPI(Q).

Proof. Let E be a measurable set in Q with measure zero such that, for any x € Q\E the sequence

(fn(x)) is nondecreasing. Then, we can define

lim f,(x) = sup fu(x), x € Q\E.

n>1

o0, xeE.

flx) =
Now, we show that f is finite almost everywhere in Q. Since LP4(Q) is continuous embedding

in P>, by assumption (ii) there exists C > 0 such that

supt s, (O)VP = || full poe < C, forall n>1.

>0
Taking t = m € N in last inequality, we have

cP
ps, (m) < s forall n,m>1. (2.16)
Setting for each m,n > 1 the following measurable sets
Fun = {x € Q\E : [fu(x)] > m},

Fn={x€ Q\E : |f(x)| > m}.

and
F={xcQ\E:|f(x)| = +oo}.

Fixing m > 1, if x € F;, we have sup,,~ f,(x) = f(x) > m. Then, there exists no > 1 such that
fno(x) > m thatis x € F, ,. Therefore,
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Moreover, from assumption (i) we have F, , C F, o1 for all n > 1. Then,

|Fm| < | U Fm7n| :,}LIEJFI"’M' 2.17)

n=1

From (2.16)

|[Fum| = {x € Q\E : |[fo(x)| > m}| < [{x € Q:|fu(x)| > m}| = pp, (m) < -

mpP

Combining the last inequality with (2.17), we get
CP
|Fy| < —, forall m>1. (2.18)
mpP

On the other hand, we have F,, | C F;, for all m > 1 and the measure of F] is finite. Using (2.18),

we obtain
ﬂw cr
|F| |n71Fm| ”llir'!"|Fm| _%%omp 0.

Thus, f is finite in Q\{E UF} with |[EUF| = 0. Since (f,,) is nondecreasing almost everywhere
in Q and f,, — f almost everywhere in 2, by Propositions 2.2 and 2.5, we have

(f¥) is nondecreasing almost everywhere in R

and

fi— f* almost everywherein RY, (2.19)

By the Monotone convergence theorem,

oo . dt . T . dt .
/ (PO = = Tim [P A 0]V = = T | fll§, < sup [[fnllh g < oo,
0 n—eo meN

t n—ee Jq t

Thus, f € LP4(Q). Moreover, by Propositions 2.2 and 2.5, we have
0<fi(t) < f*(t) almosteverywherein RT.

Combining the last inequality, (2.19), the fact that f € LP(Q) and Dominated convergence

theorem, we get

—+o0

tim [ ()~ o))V S = /0 tim /7 (7 (1) — £ ()]0 & ~ 0.

n—o [ t n—yoo t

Thus,
fa— f in LPIQ).
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2.3 Lorentz-Sobolev spaces

Definition 2.32. Let Q be an open domain in RY, assume that 1 < p < 40, 1 < g < 40 and
define W, L79(Q) the closure of the set {u € 65°(Q) : ||u

the quasinorm

pq T Hqup,q < +oo} with respect to

¢ vape ) 2.20
patll ”Hp,q> (2.20)

el gy = (e
where Vu = (Dyu,--- ,Dyu) and D; is the weak derivative with respect to x; for 1 <i < N. The

space W LP4(Q) can also be equipped with the norm

1/
N I (221)

el gy = [ (5. 0) 7+ (11 V2

Proposition 2.33. Let Q an open domain in RY, assume that 1 < p,g < +oc. Then, W)/ L74(Q)
endowed with the norm defined by (2.21) is uniformly convex Banach space (and hence a

reflexive space).

Proof. Let (u,) be a Cauchy sequence in W) L74(Q). Then, (uy), (Dju,) for 1 < i < n are Cauchy
sequences in LP4(Q). Since (LP4(Q),||- ||;;7q) is a Banach space, there exist u, v; in L"9(Q)
such that

up —»u in  LP9(Q)

and
Diu,, —v; 1in Lp’q(.Q.).

Let ¢ € 6;°(Q). By generalized Holder’s inequality in Lorentz spaces, we have
|| =)D x| < =l 1226 . =0
and
|| (Dt =) dx| < 1Dt =il 9l 0
which implies
/ unD; dx — / uDigdx and / (Ditty) 9 dx — / o dx, forall ¢ €Ee(Q).
Q Q Q Q

Thus, for all ¢ € €;°(Q), we have

/ uD; dx = lim / Db dx
o n—e Jo

= —lim | (Dju,)¢dx

n—o JQ

= —/Qvi(]) dx.

That is, Dju = v; for 1 <i <N in the weak sense. Therefore, u € Wy L"(Q) and ||u, — ul|*

0. Now, consider the following isometry

()

J WeLPA(Q) — LPI(Q) x LP4(Q)N
u, = (u,Vu).
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Since, W LP(Q) is a Banach space, J (W] LP4(Q)) is a closed subset in LP4(Q) x LP4(Q)V.
Consequently, J (WoL"4(€)) is a uniformly convex and reflexive space. Finally, since J (W, L"(Q))
and W, LP(Q) are isometrically isomorphic, the same properties holds for Wy LP9(Q). |

Note that, the quasinorm defined by (2.20) induces a topology in WyL”4(Q) which is
equivalent to the topological metric induced by the norm defined by (2.21).

Proposition 2.34. (See Alvino, Trombetti and Lions (1989).) Let ] < p <N and 1 < g < Hoo.
Then, there exists a positive constant C = C(N, p, q) such that

[l pr g < ClIVullpg, forall ue a5 (RY),
where p* = pN/(N — p).

Corollary 2.35. Let Q be a bounded domain, 1 < p < N and 1 < g < +o0. Then, there exists a
positive constant C = C(N, p,q) such that

el pr.q < Cl[Vtllpg, forall ueWyLP9(Q).

Proof. Let u € °(Q), using notation given by Remark 2.17, the function # € 6§ (RN) satisfies

g_f,- = a_u, for any 1 <i < N. Consequently,

X,

_ du\*
(2B = () (9, 0=s<ial
xi 0, s> Q.
Then,
ull L aqmy = llull gy and  [[Vullppayy = [ Vullra(o)-

Thus, replacing these identities in Proposition 2.34, we get

ullp.q < Cl[Vu

p.q-

Finally, using density we obtain the claim. |

Note that this corollary improves slightly Sobolev’s embedding theorem, which states
that: if Vi € LP(Q) = LPP(Q), then u € L7 (Q) = LP"P" (Q). However, last result states that
ue Ll P(Q) S LPP(Q).

Proposition 2.36. (Poincaré inequality in Lorentz-Sobolev spaces) Let Q C R" be a bounded
domain, 1 < p < +eoand 1 < g < +oo. Then, there exists a positive constant C = C(Q,N, p,q)
such that

ul|pg < C||Vul|pq, forall ucWyLP9(Q). (2.22)

Proof. We consider the following cases:
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() If1 < p<N.
By Corollary 2.35, W) LP4(Q) C LP"4(Q) and

[u]l p g < C||Vutl|pg, forall ue WiLP4(Q). (2.23)

Since p < p*, by Lemma 2.22, LP4(Q) C LP%(Q) and there exists a positive constant
C) =C1(Q,N, p) such that

]l pg < Cillullpr g, forall ueLP9(Q). (2.24)
From (2.23) and (2.24), we get (2.22).

(ii) If p > N.
We can choose 1 < r < N such that p < r* =Nr/(N —r). Thus, by Lemma 2.22, L" 4(Q) C
LP4(Q) and there exists a positive constant C; = C1(Q,N, p,q) such that

lullpg < Crllullr.q- (2.25)

Since 1 < r < N, by Corollary 2.35, W)/ L"(Q) C L" () and there exists a positive
constant C; = C»(N, p,q) such that

lull.q < Cof|Vull1g- (2.26)

Since r < N < p, by Lemma 2.22, there exists a positive constant C3 = C3(Q, N, p,q) such
that
[Vullrg < C3[[ V] p g- (2.27)

From (2.25), (2.26) and (2.27), we obtain (2.22).

Remark 2.37. If Q@ C R" is a bounded domain, using Proposition 2.36 we can consider on the
Lorentz-Sobolev space W LP4(Q), the following quasinorm

ell1,p.g) = Vel pg
which is equivalent to the quasinorm defined by (2.20).

Lemma 2.38. (See Ruf (2006).) Let @ C R" be a bounded domain and 1 < ¢ < 4-co. Then, the
following embeddings are compact

Wi LN4(Q) — L7(Q), forall r>1.

Proof. From Lemma 2.23, the following embedding is continuous

LN(Q) — IN79(Q), forall 0<8<N-—1.
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Thus, the following embedding is also continuous
WLV (Q) — Wy N2 (Q).

Consequently, using Sobolev’s embedding the following embeddings

N(N-6
Wi LN9(Q) — L'(Q), forall 1<r< %,
are compact. Finally, since 6 is arbitrary, the conclusion follows. ]
Theorem 2.39. (See Brézis and Wainger (1980).) Suppose that Vu € LN4(Q), for some 1 < g <
_4q_
+o0. Then, /""" ¢ L1(Q).

Last theorem generalizes the Trudinger embedding (see Trudinger (1967)), which gives

N
e e L1(Q) provided Vu € LNV (Q), where N/(N — 1) is the maximal exponent growth.
Note that the maximal growth depends only on the second Lorentz exponent ¢, but not on N.

Remark 2.40. As a consequence of Theorem 2.39, we have
%]
/ T dx < 4oo,  forall ueWiLN(Q), a>0.
Q

The following theorem is a version sharp of Theorem 2.39.

Theorem 2.41. (See Alvino, Ferone and Trombetti (1996).) Let Q € RY be a bounded domain
and 1 < g < +oo. Then, there exists a positive constant C = C(N, g) such that

sup ea‘”‘q% dx <clel, it o< g,
[Vul|y o<1/ € =+, if a>ay,

where a; = (Na)li,/N)Q/(q_l).

The following result represents an extension of Brezis (2011, Proposition 8.3).

Proposition 2.42. Let u € LP9(Q) with 1 < p,q < +eo. Then, the following properties are

equivalents:

(i) u € W)LP9(Q).

(i) There exists a positive constant C such that

0
’/u—q)dx‘gCHq)leql, forall ¢ € Z2(Q), 1<i<N.
Q Jx; ’

Proof.
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(i) = (if) Using the fact that u possesses weak derivatives in L”(Q) and Holder’s inequality in

Lorentz spaces, we have foreach 1 <i <N
‘/ d ’/ M s d ’ <c|o| forall ¢ € 6 (Q)
Lt— x - X /o
ox; Q Ox; - Pav 0

where C = maX{H Hpq 1 <i<N}.

(if) = (i) Foreach 1 <i <N fixed, consider the following functional
fi 1657(Q) — R
[ — u=—dx.
Using (ii), the functional f; is continuous in the quasinorm of L”4 () and Cy (Q) is
considered a dense subspace of L4 (Q) (see Proposition 2.26). By Hahn-Banach theorem

there exists a continuous, linear extension F; of f; on the whole space LP/’qI(Q). Moreover
since the dual of LP4 (Q) is LP4(Q), there exists v; in LP4() such that

F :179(Q) - R
[0} > /viq)dx.
Q

In particular F;(¢) = fi(¢) for all ¢ in €;;°(€2). That is,
¢ -
/ Vi@ dx:/ u=—dx, forall ¢ €%, (Q)
Q o dx;

du d
Thus, there exists — in the weak sense and a_ v; € LP9(Q). Repeating the same

ox; ox;
argument for each each 1 <i < N, we conclude that u € WOIL” 9(Q).

Lemma 2.43. Let u € L79(Q) and (uy) be a sequence in W LP4(Q) such that u, — u in L"9(Q)
and (Vuy) is a bounded sequence in (LP4 (Q))N. Then, u € W) LP4(Q).

Proof. By Holder’s inequality in Lorentz spaces for each ¢ € €;°(Q2), we have

)
)/ dx‘<]|un u||p,q||a—)‘f_||p,7q,, forall 1<i<N.
l

Thus,
hm axl d.x - / u8 l d.x for all 1 1 N (228)

g < Cforalln > 1 and for all 1 <i < N. Using Holder’s inequality

]
in Lorentz spaces for each ¢ € €;°(€2), we have

sl ad =] [ 52| <152 1lo

pt <Cl9llyg. 1<I<N.
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From this and (2.28) we obtain
a¢ (oo} .
[ 5 dx] <Clldllyg. forall ¢ €GF(@), 1<i<N.
Q dx ’
Finally, by Proposition 2.42 we conclude that u € W LP9(Q). [
Proposition 2.44. Let (u,) be a sequence in W L74(Q) and u € W LP9(Q) such that
Uy —u in WeLPI(Q).

Then, there exists a subsequence (uy,, ) and a function & € WolLIW (Q) such that

lup, (x)| < h(x), forall k>1 andalmosteverywherein .

Proof. From Proposition 2.30 we can assume that u, — u almost everywhere in Q. Moreover,

we can extract a subsequence (uy, ), denoted by (ux) such that

1
i1 = el (pg) < 2350 forall k=1,

Set
n
Z |1 (x) — ug ()]
k=1
Then, (g,) € W LP4(Q) and lgnll1,(p,q) < 1 forall n > 1, that is
gnllpg <1 and |[[Vgullpq <1, forall n>1.

Since (gx(x)) is nondecreasing almost everywhere in Q and sup,,~ | ||gx||p.¢ < 1, by Proposition
2.31, we have g, — g in L7(Q). Moreover, using the fact that (Vg,) is bounded in (L4 (Q))N,
we get by Lemma 2.43 that g, — g in W L7*(Q). On the other hand, for / > k > 2 we have

|4y (x) — g () < ot (x) — g1 () [+ -+ -+ Jutges 1 (6) — e (x)| < g1—1(x) — gr—1(x) < g1-1(x).
Taking [ — +oo, we obtain
lu(x) —ur(x)| < g(x) almost everywhere in R.

Thus,
|ug(x)| < h(x) almost everywherein R.

where h = g+ |u| € WiLP9(Q). |

2.3.1 Lorentz-Sobolev spaces in R>

In this section we study some properties of Lorentz-Sobolev spaces restricted to R?. We
denote by
WILP4(R?) := Wy LP4(R?).
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Proposition 2.45. (See Cassani and Tarsi (2009).) Let 1 < s < +oo. Then, there exists a positive
constant C = C(s) such that for any (sufficiently smooth) domain  C R? and for any o < o} =
(\/ 47r) =T the following inequalities hold:

sup /(ﬂM“—w—mmﬁ)mgc,if2<s<+w (2.29)
Jull o <172
sup /(ﬂM“-Jyhgc,if1<sgz (2.30)
ully (2,5 <12

Moreover, inequalities (2.29)-(2.30) are sharp, in the sense that for any ¢ > ¢ the corresponding

suprema become infinity.

Proposition 2.46. (See Lu and Tang (2016).) Let 1 < s < 4oo. Then, there exists a constant
C(s) > 0 such that for any 0 < a < & = (V4x)* " and any u € W!'L*$(R?) with ||Vul|,,, < 1,

the following inequalities hold:

A@@WW‘—l—aqudxgc@mM&w if 2<s5< oo, (2.31)

l@AﬂM“—Jﬁmgc@mwa,if1<sgz (2.32)

The restriction & < o is sharp, in the sense that if & > ¢, then, the inequality can no longer

hold with some C(s) independent of u.

Proposition 2.47. Let 1 < s < +oo. Then, the following embeddings are continuous

(i) Ifl<s<2
W!L?S(R?) — L"(R?), forall r>2.

GG If2<s
2s

W!L?$(R?) — L"(R?), forall r>
S_

Proof.

(i) Since 1 < s <2, from Lemma 2.21 the embedding L>*(R?) C L?(IR?) is continuous. Then,

W!L25(R?) — WI2(R?) — L'(R?), forall r>2.
(i) Lets > 2,5 =s/(s— 1) and considering r > 25, we have the following limits

|¢|” 2, if r=2¢,

m s / .
10 eltl™ — 1 — |¢|s 0, it r>2¢
and
]

e[ =voo elt” — 1 — ||
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Thus, there exists C; = C(r,s) > 0 such that
t]" <Cy (et —1—|¢*), forall 7eR. (2.33)

Hence, for every 0 # u € W!L*5(R?), let consider & = u/||Vul|2,s. Thus, by Proposition
2.46 and (2.33), there exist C = C(r,s) > 0 such that

/R2 |al" dx < Cy /]RZ (e —1— @) ax < clal3,. (2.34)

Thus,
2 -2
[[ul[}- < Cllull34[[Vul[3~ < Cllu

,
1,(2,5)°

That is, W'L?*%(R?) — L"(IR?) is continuous for all r > 25’

Now, we introduce a weighted Lorentz-Sobolev space. Let V : R — R be a continuous

function verifying the following conditions:

(V1) There exists Vp > 0 such that

V(x) > inf V(x):=Vp > 0.
x€R?

(V2) There exist constants p > 2 and ¢ = p/(p — 1) such that

1 1
i € L*P(R?) and i € L>(R?).

Consider the following Lorentz-Sobolev space
WL (R?) := {u e W'LPP(R?) : |V Pully, < +o0}.
endowed with the quasinorm
1/p

lull iy = (vl V75, )
We denote this space by W () := W17 (R).
Proposition 2.48. Suppose that (V;) and (V,) hold. Then, the following embeddings

W) [5(R?), W@ s L5(R?), forall 1<s< oo

are compact.

Proof. By Proposition 2.5, we have

Vo/Pu(e) = (Vg /Pu) (1) < (VV/Pu)*(r), forall >0



56 Chapter 2. Lorentz and Lorentz-Sobolev spaces

which implies that

Foo . dt T . dt
V0||u||127’p:V0/0 [tl/Zu (t)]p? S/O [tl/Z(Vl/Pu) (t)}PT _ ||V]/pu||127,p'

Therefore,
1Vully, + Vollul}, < [Vully , +1V"/Pull3 , = lull?,.

Thus, we obtain W (P) < W!L2P(IR?) continuously. By Proposition 2.47, the space W'L??(R?)
is continuously embedded in L’ (R?) for all » > 2p/(p — 1). Consequently,

2p

W < [7(R?), forall r> -
p_

(2.35)
On the other hand, let C = ||1/V!/9||, ,. By Holder’s inequality in Lorentz spaces, we have

lulli < 157z g IV Pull2,p < Cllull ). (2.36)

v1/a

Thus, the embedding W(?) — L!(R?) is continuous. Moreover, for s > 1 and r > max{s,2p/(p —

1)} we can write
s—1r

- (2.37)

r—1s’

[unl|s < ””nHi_lH”n”&, where A =

Using (2.35), we conclude
WP(R?) < L'(R?), forall r>1, (2.38)

continuously. In order to prove compactness we show first that the embedding w) < ! (R?)
is compact. Consider a sequence (u,) C W) such that u, — 0 in W), For given & > 0 there
exists C > 0 such that

[tnl|(py <C, forall n>1. (2.39)

Using the fact that V~!/? € L>9(R?) in Lemma 2.29, we can find R > 0 such that

- _ €
VP v Py llag < o (2.40)
Consider the following embeddings
W) s WIL2P(R?) < W' L>P(BR(0)) < L' (Bz(0)) (2.41)

where
WLL2P(BR(0)) := {ulp, : u € WIL>P(R?)}.

and arguing as in the proof of Lemma 2.38, we can prove that the last embedding in (2.41) is

compact. Thus, we can assume that i, — 0 in L (Bg). Therefore, there exists ng > 1 such that

£
luy|dx < =, forall n>ny. (2.42)
Br 2
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Using Holder’s inequality in Lorentz spaces, (2.39) and (2.40), we get

Lo e = IV PV,
R

VPl 1V P s |2 (2.43)
<CIVP(1 = x8e)l2.g-
< €

-

From (2.42) and (2.43), we obtain that u,, — 0 in L! (Rz). Moreover, let s and r as in (2.37), from
(2.38) and (2.39), we have that (u,) is a bounded sequence in L"(R?). By (2.37) we obtain

u, =0, in L5(R?),

which implies the embedding of W) in L* (R?) is compact for all s > 1. Similarly, we can prove
that W(@) in L*(R?) is compact for all s > 1. |

2.4 The tilde-map

Following the arguments developed in Figueiredo, O and Ruf (2005), Ruf (2008), we
construct an application from the space W L>%(Q) to W) L*?(Q) where p = gq/(q—1).

Proposition 2.49. Let Q be a bounded domain in RY. For each u € W L*9(Q) consider
S:= sup{/ Vu()Vo()dy: © € WL (Q), Vo, = [Vula, ). (2.44)
Q

Then, there exists a unique # € Wy L>P(Q) such that

Vi

2p and ||Vulla, = ||Vill2,p.

S— / Vu(x)Vi(x) dx = |Vl
Q

Proof. Given u € W L*(Q) fixed. Note that, for each @ € W L*»?(Q) such that |[Vol2, =

| Vul|2,4, by Holder’s inequality in Lorentz spaces, we have

Vol = [Vulz,4-

/ Vu(x)Vo(x)dx < ||Vul|z 4
Q

Thus, there exists the supremum S. Let (®,) be a maximizing sequence for S. Since the sequence
is bounded and the fact that WOILZJ’(Q) is a reflexive space, we can assume that @, — ® in
W, L?P(Q). Thus,

/Vu(x)Va)n(x)a’x—>/Vu(x)V(T)(x)dx:S
Q Q

and

[V6]]2,y < liminf [Ve |2, = | Vall2 (2.45)
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that is, the supremum is attained. If || V®||2,, < ||[Vul|2,4, setting @y = . we note that,

Vo

wy € Wy L*P(Q)

.- Thus,

HleHzp

Sz/QVu(x)Va)o(x)d /V Wb (x)dx > S,

= ||Vu

which gives a contradiction. Hence,

2,9-
In order to prove the uniqueness, without less of generality we can assume that || Vu||, , =
1 and there exist @; # @, in W) L*?(Q) with ||V&,

2p = HVGA)zﬂz,p =1, such that
/VM()C)VC/(\)l(X) dx:/ Vu(x)va\)z(x)dx: 1.
Q Q

We see that @ # — @, and by Proposition 2.28 we have that W L>?(Q) is a uniformly convex

space. Thus,
0< HV(“’l +a’2) <1.
2.p
Set r=2/[|V(®; + @,)|]2,, > 1. Then,
1> /QVMV( ||V((%)11:2)2)2)||27p) dx = %/QVMV((/[)] +@)dx=r>1,
which is a contradiction, and the uniqueness follows. We denote by u this element. |

Definition 2.50. Let 1 < g < +oo, using the Proposition 2.49 we can define the tilde-map

TWeLM(Q) — WLAP(Q)

u — U,

(2.46)

where p=¢q/(q—1).

Remark 2.51. Let p > 1, ¢ > 1 and denote by &, , the tilde-map from Wy L24(Q) to Wy L>P(Q)
as defined in (2.46). A direct calculation shows that the inverse of &, , is given by &, , . Thus,
the tilde-map is bijective.

It follows from the construction that the tilde-map is positively homogeneous, that is
pu=pi, forall ueWyL*(Q), p>0.
With the help of the tilde-map, we define two continuous subspaces of
E := W} L>(Q) x Wi L>7 (Q)

by

Et={(uu):uc WOILZ"I(Q)} and E~ ={(u,—u):uc WOILZ"I(Q)}.
Following ideas from Figueiredo, O and Ruf (2005), the nonlinear subspaces E* and E~ have a
linear structure with respect to the following operations:
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Definition 2.52. (Tilde-sum) Given (u,v) and (y,z) € E, we define the tilde sum by

(u, ) + (0,2) := (u+y,v+2). (2.47)

Note that, the set E endowed with the tilde-map is an abelian group, indeed, associative
and commutative axioms follows from the properties in WO1 L>9(Q) and due to the surjectivity
of the tilde-map. Moreover, the zero element is given by (0,0) € E and additive inverse of an
element (u,v) € E is given by (—u, —v) € E.

Motivated by the tilde sum, we define the following binary operation:

Definition 2.53. Given (1,v) in E and a € R, we define
o(u,v) := (au,av), forall ocR. (2.48)
Lemma 2.54. (i) Let (u,v) € E and (y,z) € E. Then, for all ¢, B € R we have

a(u,?) F B2 €E and a(u,7) F B(33) = (ou+ By, v+ B2).

Moreover, the set E endowed with the operations given by (2.47) and (2.48) has a vector

Space structure.

(i) For each (y,Z) € E, there exist unique elements (u,u) € E™ and (v,—v) € E~ such that

(yvz) = (”hﬁ) 'T_ (V= _N)'
Thus,
E=ETQE".

Proof.

(i) Using the clousure of the operations (2.47) and (2.48), for all (u,Vv),(y,z) € E and o, B € R

we have
o(u,v) + B(32) € E.

and

a(u,7) ¥ B(32) = (otw, av) T (By. Bz)
— (otu+ By, ov + B2).

As we see (E, T) is an abelian group. Moreover, all other axioms of vector space can be

checked easily.

(i) Let (ul,ﬁl), (uz,ﬁz) € ET and (V] , —171), (Vz, —gz) € E~ such that

—_— —_—

(g +vi,u1 —vi) = (1,2) = (U2 +v2,up — 7).
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Then, u; +v| = up + v, and u; — vy = up — v which implies u; = u and v{ = v,. Thus,

we obtain uniqueness. In order to prove the existence, let (y,z) € E. Taking

y+z y+z y—z y—z
(uvﬁ):(T7T) and (V7_§):(_a__)7

the existence follows.

Remark 2.55. The operations defined by (2.47) and (2.48) restricted to the space {0} x

W, L?(Q) make the tilde-map into a linear function.
Lemma 2.56. The application defined in (2.46) is continuous.
Proof. Let (u,) C WiL*49(Q) be a sequence and 0 # u € W L*9(Q) such that
|V (un —u)|l2,4 — 0, (2.49)
by Proposition 2.49 we have
IVainllzp = IVutallg,  IVilllzp = [Vulag  and [Vt =w)]l2p = |V () [24- (2:50)
If 1 < g <2, by Proposition 2.13 || - ||2,4 is a norm. Then, by (2.50), we have

|||V’f7n||2,p - ||Vﬁ||2,p‘ = |||V”n||2,q

24| <NV (U —u)]l24 — 0
If g > 2, from Proposition 2.13 || - ||, , is a norm. Then, by (2.49) and (2.50), we have
1Vatnll2.p = I Villl2,p| < 1|V (ttn = )|, — 0.

In both cases we obtain
[Vt |2, — ([ Vid]|2,p. (2.51)

In particular, the sequence (z,) is bounded in Wy L*P(Q), which implies that, there exists
v € W/ L*P(Q) and a subsequence (not renamed) (i) such that

iy —v in WyL*P(Q). (2.52)

Note that,
/Q Vity Vit dx = || Vity||2.0]| Viia||2.q

implies that
/Q VuVidx = ||Vul|ay || Vil 2. 2.53)

Observe also that, by (2.52) and (2.51), we have

V912, < liminf [[Vida|l2,p = [|Vallz,p = [[Vull24-
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Suppose that [|VV]|2,, < ||Vul|2,4, setting w = || Vul|2 4/||VV]|2,p. Then,
weEWGLPP(Q) and ||Vwl|2, = ||Vullg-

Now using (2.53)

~ 2 ~
HVquqHVuHZqZ/Vqudx [Vu] ’q/ VuVidx > || Vil | Vit
Q VY2,

which gives a contradiction. Hence, ||VV]|2,, = ||Vul|2 4. Using this, (2.53) and uniqueness of the
tilde-map we get that v = u. Consequently, we get in (2.52)

Uy — 0 in WiL*P(Q). (2.54)
Finally, joining (2.51) and (2.54), we obtain

Uy — 0 in WiL*P(Q).

Now, we extend the tilde-map for the weighted Lorentz-Sobolev spaces W (9.

Proposition 2.57. (See Cassani and Tarsi (2015).) Let V : R> — R a continuous function
verifying (V}). For each u € W9 consider

::sup{/Rz <Vu(x)Va)(x)+V(x)u() ())dx 0ew?, o, —||u||(q)}. (2.55)
Then, there exists a unique u € W () such that

§= Rz(”(x)ﬁ(x)+V(X)VM(X)VL7(X))dx:Hul\@HﬁH(p) and [|ul|(g) = [|ull ()

Proof. Consider the functional
L,(v) := / (VuVv+V(ouv)dx, vew®. (2.56)
R
Using Holder’s inequality for Lorentz spaces we have

[Lu(v)] < [[Vu

AVl <20l ) IVl )

2,p

Thus, L, € (W(p))*. Since W'L>?(R?) is reflexive, by (Vi) we have that W(?) is a closed
subspace of wlp2p (]Rz), hence W) is also reflexive, therefore, there exist uniqueness N + 1
functions w; € L*>9(R?) j=0,---,N such that

Z/RzWJBx dx+/ X)wovdx

and

sup IL u(v)|:||wo||(q). (2.57)
vew® v]=1



62 Chapter 2. Lorentz and Lorentz-Sobolev spaces

By uniqueness wo = u and w; = Du for j =1,...,N. Thus, From(2.56) and (2.57), we obtain

sup (VuVy+V (x)uv) dx = 2]l (4)- (2.58)
vew®),[v],=17E>

Taking @ = v||uf|(,) withv € W) |lv||l, = 1in (2.58)

w [ (e de
) - R? q
oW [l ) =|lull 4

In order to prove an existence and uniqueness of u € W (@) which attains the supremum S, we can

proceed similarly as the Proposition 2.49. |

Analogously, using Proposition 2.57, we define the tilde-map
(2.59)

The application (2.59) is continuous and set
E:-=w@ x«w®

and
EY={(uw,n):ucW9} and E~ ={(u,—a):uecwa}.

Then, the following decomposition holds
E=ETQE".
Similarly in these spaces we consider the following applications.

Definition 2.58. Given (u,V), (y,Z) € E and a € R, we define

(u,9) F (,2) == (u+y,v+2), (2.60)

o(u,v) := (o, av). (2.61)

The set E = W9 x W(P) endowed with the operations given by (2.60) and (2.61) satisfies
the same properties given by Lemma 2.54.
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CHAPTER

HAMILTONIAN SYSTEM WITH CRITICAL
EXPONENTIAL GROWTH IN A BOUNDED
DOMAIN

This chapter is concerned with the existence of nontrivial solution to the following

Hamiltonian elliptic system

—Au = g(v), in Q,
“Av = f(u), in Q, 3.1)
u=v = 0, on dQ,

where Q is a bounded domain in R? and the functions f and g possess critical exponential growth

with (p, q) lying on the exponential critical hyperbola.

3.1 Introduction

We start with the notion of critical and subcritical exponential growth.

Definition 3.1. Given p > 1, we say that a function /4 : R — R has p-critical exponential growth,
if there exists o > 0 such that

h 0, o> 0,
i ()] %

=
5| o0 €l foo, 0L < 0.

Whereas, we say that & : R — R has p-subcritical exponential growth, if

7(s)]

P

=0, forall o >0.

5] o0 €IS

In order to study the existence of the system (3.1), we make the following hypotheses on

the functions f and g:
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(A1) f,g € F(R), with f(s) = g(s) = o(s) near the origin.
(Az) There exist constants 4 > 2, v > 2 and s > 0 such that
0<uF(s)<sf(s) and O0<VvG(s)<sg(s), forall [s|>so.
where F(s) = [, f(t)dt and G(s) = [; g(t) dt.
(A3) There exist &g > 0 and p > 1, such that

0, o > o,
G %

P
sl—ve= €1 too, o < Q.

(A4) There exists fy > 0, such that

. lg(s)] _ 0, B > Bo,
|s|—o0 6/3|s|‘1 +o0, ﬁ < ﬁ0~

where g = L.
p—1

Throughout this chapter, we denote the product space
E =Wy L*(Q) x Wi L*P(Q),

endowed with the norm
1/2
1, D) := ([|Vull3,, + V913, 2,

Moreover E has a structure of vector space with the operations (2.47) and (2.48). We recall that

v is an independent variable; we write v to emphasize that v belongs to the space W(}LZ’P (Q).

Lemma 3.2. Let 6 > 2. Then, the following number
5o = inf{/ (lei + ©% +]e1 —0]%) dx: @ € W} L>(Q) com |Vol|p, <2+ fs}
Q
is positive, where ey is the first eigenfunction of (—A, H}(Q)) normalized in W) L?9(Q).

Proof. We proceed by contradiction, if g = 0, we can find a sequence (®,) in WOI 124 (Q) such
that
IVoul2q <2+V5 and  lim /Q (lex+ @nl® + 161 ~al®) = 0.

Since W, L*9(Q) is a reflexive space, there exists @ € Wi L>9(Q) such that @, — @ in W} L>9(Q)
up to subsequence. By compact embedding of Wy L>9(Q) in L% (Q), we can assume that 1 +
®, — e;+oin L° (Q). Observe also that e} — @, — ¢; — @ in Wole’q(Q). Using the fact that

—~—

the tilde-map is a continuous linear function, we obtain e} — w, — €] — ® in WOILQJ’ (Q). By
compact embedding of Wi L>”7(Q) in L?(Q), we can assume that 6 —wy— e —oinLP (Q).

Hence, ||e; + @||g + ||[e1 — ®@]|g = 0. Thus, we obtain that e, = —® and e¢; = @ which is a

contradiction. [ ]

Now, we describe an additional condition on the functions f and g.
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(As) There exist constants 6 > 2 and Cg > 0 such that
F(s)>Cgls|® and G(s) > Cgls|?, forall seR,

where

Y

U v

Co>—=—5—, R =

144+6V5 2n u—2 v-2
69R972 s (xl/p—Bl/qmaX{ s (32)
0 0

Op is defined as in Lemma 3.2 and p and v are given by condition (A;).

Example 3.3. Let 6 > 2, p,g > 1, with 1/p+1/g =1, A > 0 and consider the following

continuous functions defined on R

fi(s) =gi(s) =A|s|® %5, forall seR,

sP1 (e — 1), 0<s<1,
fz(S) = p ( ) P B
(e—1)[(psP~ 1 = 1) F+sP71], 1<s,
and
gs? (e —1), 0<s<1,

(e—1)[(gs? ' = 1) 5771, 1<s,

where f(—s) = —f2(s) and go(—s) = —g»(s) for all s > 0. Then, the functions f = f; + f> and
g = g1 + g satisfy conditions (A]) — (As) for A sufficiently large.

We observe that, to prove the conditions, it is sufficient to show them for the function f.
Note that A
S
Fi(s) :/ fi(t)dt = 5|s|9, forall seR
0
and
e’ — P —1, 0<s<1,

P
e—2+(e—1)[(esp_s—l)+s
p

Since f; is an odd function we have F>(—s) = F»(s) for all s > 0. We observe that f is an odd

R = [ falt)yde =

], 1<s.

function and satisfies:

(a) The following limits holds

tim 1) 0 and  tim 200

s—0+t S s—0+t S

=0,

since f} and f, are odd functions we have that f satisfies the condition (Ay).

(b) Fors > 1, we have

A s sP—1
F(s)  Fi(s)+Ps) _5s6+e—2+(e—1)[(e‘ -1+ . }

sf(s) B sfi(s) +sfa(s) As® +s(e—1)[(psP~! — 1)es" =5 + s~ 1]

0<
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Using last equality and the fact that F(s)/(sg(s)) is an even function we have

F(s)

|s|—-+o0 S £(5)

Thus, f satisfies condition (A;).

(c) Fors > 1 we have

() Al +HGs) AT 4 (e—1)[(psP T = 1) T 5P |

0< e0s? - e0s? - eos?
Thus,
) s ) S 0 a>1
lim |];( )p| = lim —fésp) = ’ ’
s—+oo o |s] S—>+oo @ —|—oo, o< 17
and

VO [ G R O N (U b

s——o0 @OIS|IP T ptee QO=TIP T p oo g
€ € +oo, < 1.

That is, f satisfies condition (A3) with ap = 1.

(d) Since F; is a nonnegative function, we have
A o
F(s) =Fi(s)+Fa(s) > Fi(s) = §|S| , forall seRR.

Thus, taking A sufficiently large, f satisfies condition (As).

Next we state the main result of this chapter.

Theorem 3.4. Suppose (A;) — (As) hold. Then, (3.1) possesses a nontrivial weak solution in
E =W L>9(Q) x Wi L*P(Q).

In the proof of Theorem 3.4 we use variational arguments. More precisely, combining
Theorem 5.3 and Example 5.26 in Rabinowitz (1986) we obtain the following result: We recall
the definition of (PS) sequence.

Definition 3.5. Let E be a Banach space and I € € (E,R). The function I satisfies the Palais-
Smale condition (denoted by (PS)) if any sequence (u,) C E for which (I(u,)) is bounded and

I'(u,) — 0 possesses a convergent subsequence.

Proposition 3.6. (Linking theorem) Let E be a real Banach space with E =V & X, where V is
finite dimensional. Suppose I € €' (E,R), satisfies (PS), and

(Iy) There are constants p,c > 0 such that Lyp,nx = O.



3.2. Variational setting 67

(I) Thereisane € dB;NX and Ry > 0 and R; > p such that if
Q:=(Br,NV)®{re:0<r <Ry},

then /55 < 0.

Then, I possesses a critical value ¢ > ¢ which can be characterized as
¢ := inf maxI(h(u))

hel’ ueQ

where
I'= {h S %(Q,E) : h|8Q = id}.

Remark 3.7. If the (PS) condition is not required in Proposition 3.6, the geometric conditions
(1) and (1) combined with the Ekeland Variational Principle (see Ekeland and Temam (1999))

asserts the existence of a sequence (u,) C E such that

I(uy) = c and I'(u,)— 0.

3.2 Variational setting

In order to employ variational methods, we consider the functional J : E — R associated
with (3.1) and defined by

J(u,ff):/QVMVde—/QF(u)dx—/QG(T})dx. (3.3)

Proposition 3.8. The functional J given by (3.3) is well defined and belongs to the class
¢'(E,R) with

T 9) = [ (Vavg+vive)dx— [ fwodi— [ @y
forall (¢, y) € E.

Proof. Let u € W) L*9(Q) and v € W] L>P(Q). Then, from Holder’s inequality in Lorentz spaces,

we have
‘/QVMVde‘ < Vil V¥l (3.4)

By (A1) and (A3), there exists C > 0 such that
1f(s)| < Cel @tV forall seR. (3.5)

Thus,

u u
[F(u)] < / |[f(s)]ds < C/ L0t IN g5 < Clulel %ot < g!u\z + gez(“o“)'”"’.
0 0
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Consequently,
[ Faax| < [ uPaxre [ oot ar
Q Q Q

By Lemma 2.38 and Remark 2.40, we have
/ F(u)dx < +oo, forall ueWlI29(Q). (3.6)
Q

Similarly, G(v) belongs to L!(Q) for all v € W,/ L*?(Q). Thus, joining (3.4) and (3.6) we
conclude that J is well defined on E.

SetJi,J2,J3 : E — R by
Jl(u,ff):/ VuVvdsx, Jz(u,ﬂ:/F(u)dx and J3(u,\7):/ G(v)dx.
Q Q Q

By (3.4), we have
Vi (u,v)[ <2[u

ﬂ

Thus, J; is a continuous bilinear function. Then, J; € €*(E,R) and

24|Vll2p, forall (u,v)€E€E.

T (1,7)(0, 7) = /Q (VuV§+ Vive) dx, forall (9,)€E. 3.7)
Now, fixing u and ¢ in W) L*9(Q), for given x € Q, consider / : R — R defined by

h(t) = F (u(x) +19(x)).

Let (2,) be any sequence in R such that #, — 0, we can assume that 0 < |t,| < 1 for all n > 1. For
any n > 1, by the Mean value theorem, there exists 6, = 6,(#,,x) € (0, 1) such that

Fu+1,0) — F(u) = h(ty) — h(0) = K (Butn)tn = f(tt+ Optn® )19 (3.8)

Define
hy(x) :=F(u+1t,0)—F(u) = f(u+ 6,1,0)0.

Since f is continuous, we have

lim £, (x) = lim (F(u+1t,¢) — F(u)) = f(u)¢, forall xeQ.

n—oo n—oo

Note that |u+ 0,t,9| < |u| + 9| = w € W} L*9(Q). From (3.5), we have

A (x)| = | f (1 + 6,1,9) 0|

< Ce(%+l)|u+9ntn¢|p|¢|
< Ce(ao+1)lw\”|¢|
< Cy|¢? + Pt

From Lemma 2.38 and Remark 2.40, we get

C ‘(])’2 _|_C162((x0+1)|w\1’ el (.Q)
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By Dominated convergence theorem we obtain

lm Jo(u+1,0) —Jo(u)

J(w)¢ = lim ;
n
n—+o /o th
— [ rwoax.
Q

Now, we prove the continuity of the Fréchet derivative. Let (,) be a sequence in Wy L*9(Q)
such that u, — u in W} L*9(Q). By Proposition 2.44, there exists a subsequence (not renamed)
(un) and & € W) L?9(Q) such that

lun(x)] < u(x), almosteverywherein Q (3.9

and

un(x) — u(x), almost everywherein Q. (3.10)

Thus,

f () = f()* < 20 f ()| >+ 21 f (u) |

< 2ce 0t Dl 4 ocp2(e0t1)ul?
< 2ceA 0t Dlul” 4 pcp2(+1)ul?,

By Remark 2.40, we have
2CeH NP 4 o@Dl ¢ 1(Q).

Moreover, from (3.10) and the fact that f is continuous, we obtain

|f(un) — f(u)[*> =0, almost everywhere in Q.
By Dominated convergence theorem, we obtain

1/ (un) = f(u)||l2 =0, (3.11)

which implies

Uh002) 3. 9)| < [ 1) = £(u)9)]

< () = f ()21 [l2
< C||f (un) = f (@) [[2IV |24

Thus, by (3.11)

sup [ (3 (un) = J5(u), 8)] < CIIf (un) = f(u)]|2 — 0.
IVOl24<1
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That is, J, belongs to ¢! (E,R), similar arguments prove that J3 belongs to ¢! (E,R). Conse-
quently J € €1 (E,R). [ |

We say that (u,v) € E is a weak solution of (3.1) if

/Q(VMVIT/—FVWQ))dx:/Q(f(u)a—kg(ﬁ)w) dx, forall (¢,y)€E.

Consequently, critical points of the functional J correspond to the weak solutions of (3.1).

3.3 The geometry of the linking theorem

This section is devoted to establish that the functional J satisfies (I;) and (15).

Lemma 3.9. There exist constants p > 0 and ¢ > 0 such that J(u,u) > o, for all (u,u) € E with

1w, @) | = p-

Proof. From (A1), given € > 0, there exists d > 0 such that |f(s)| < 2¢|s| and |g(s)| < 2¢|s| for
all |s| < 8. Then,

IF(s)| <e|s]* and |G(s)| <e|s|*, forall |s] <. (3.12)
By (A1), (A3) and (A4), there exists a positive constant C such that
1f(s)| < Ce®” and |g(s)| < Ce2PoB" forall seR.
Thus, there exists some C = C(€) > 0 such that

‘ p

F(s) < C|s]P%B” and  G(s) < C|s|?e*Pdl’ | forall |s| > 6. (3.13)
Joining (3.12) and (3.13) we get
F(s) <e|s|>+ClsPe?®” and  G(s) < e|s|>+C|s]Pe?Pll forall seR. (3.14)
Using Holder’s inequality, we obtain
(i) = /Q VuViidx— /Q F(u) dx— /Q G (@) dx
> \|VuH27qHVLNtH27p—/Q(8|u]2—|—C]u\3em°|”|p)dx—/g(8|b7|2—|—C]17|362ﬁ0|W)dx
> Va3, ~ el — cllul( [ etoon ax) "
+ 3wl — elld - clafg( [ #Hax) "

For p; > 0 sufficiently small, by Theorem 2.41 there exists C > 0 such that

1/2 - 1/2
([ ar)"<c ana ([ A ax) " <c, foral i) <pr.
Q Q
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Moreover, using Lemma 2.38 we can find some positive constant C; (independent of €), such
that

lull2 < Ci[[Vu

24> |ull2 < C1]|Va]

2,p

lulle < C1[Vu

24 and Hﬁ||6§C1HVﬁH2,p~

Thus, for some C > 0 and C; > 0 (independent of €) we have

1 1 ~ -~
J(u,u) 2 (5 = eC1)||Vull3 4 —Cl[Vull3 , + (53— eC1)||Vall3,, —C|| Va3,
1

> (5= &C)|(u, ) |* = C[ (w, @)

1
z (5 —&Cy)||(u,u) > (1= C||(u, m)]]).-
Now, taking

1 1
D<e<— d 0 < —.
< TS an <p2_2C

Thus, for 0 < p < min{py,ps}, we obtain

2
Jui) =5 =0, forall ||(uwi)]| = p.

Lemma 3.10. (See Cassani and Tarsi (2015).) Let r,”/ > 1 such that 1 /r+1/r =1 and ¢ > 0.
Then, the following inequality holds

¢ —1+s(ns)V/7,  s>er,
st < s 1
e —1+—, 0<s<er.

r

From definition of Cg, there exist 0 < mg < 1 and € > 0 such that

14+ 6+/5 R?
C9>6+9\/2_, where R%:Tig. (3.15)
601
That is,
2 2 v-2
R = UL Y AN (3.16)
(1+¢&)oy/"By u v

Lemma 3.11. Let
0={r(e1,&1) + (0,—0) : [|(0,—®)| < (2V2+V10)R;,0 < r <Ry},

where R; > 0 is given by (3.16). Then, J(z) < 0 for all z € dQ, where dQ denote the boundary
of Qin R(ey,e1) + E~.
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Proof. We can write

0 ={r(e1,61)  (0,—0) : V0|24 < (2+V5)R;,0 < r <Ry}

Observe that the boundary dQ of the set Q consists of three parts. On these parts the functional J
is estimated as follows:

(i) Letz€ dQNE~. Thus, z = (u,—u) and

(@) = J(u, —il) /VuVudx /QF(u)dx—/QG(—mg—uvuuiqgo,

because F and G are nonnegatives functions.

(ii) Letz =r(e1,e1) + (@, —®) = (re +w,r?—70) € dQ with |[Vo|j2, = (2+/5)R; and
0 <r<R;.Thus,

/V reH—(D)Vu(rel ) dx— /F rej+ o) dx — /G rey — ) dx
g/V re1+a))Vu(re1—w)dx
/V re| — Vu(rel dx+/ V(2re;) Vu(rel ®)dx
< —||[V(re1 = 0) |34+ [V (2re1) 24|V (re1 = @) 2.
<~ V(e ~ @), + IV 2rer) g (I ren) g + [ V1)
—V(ren) I3 g+ 201V (rer) |24Vl ~ V0|3, )
+[V(2ren) |24 (I1V(re1) l2.g + [ VWll2,q)-

IA
—

Using the fact ||Ve; |2, = 1 and |V®||2,, = (2+V/5)R}, we obtain

J(2) < —[IVo|3,+4r([Vol2 +r* < = Vo3, +4Ri Vo2, + R} = 0.

(ii1) Let z = Rl(el,a) ¥ Rl(a),—(T)) = (Rl(el + 0)),R1(€1 — (I))) with HV(’)HZ,q <2+ \/5
From assumption (As) we have

J(2) R/Ve1+a))Vu(e1 ) dx — /FR161+(D )) dx — /GRleTv))dx

RY|[V(e1 + )|l

@102y~ Co [ (IRier+ @)%+ |Rifer — ) dx

= RV (€15 0) 4] Ve1 = 0) |2~ CorS [ (lev+0l* +[e1 =0 d
2 2 0 : 0
RH(IVer |2+ IV0l2)? ~CoR? inf [ (jer+ 0l +|er~0l) dx
IVoll2g<2+V5/0
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< (1446V5)R] —CoR} 5.

Using (3.15) in last inequality, we obtain J(z) < 0.

[
Lemma 3.12. (See Ruf (2008).) Let (uy,,v,) € E be a sequence such that |J(u,,v,)| < d, and
' (14, V) (9, W) < &all (@, W), where ¢,y € {0, uy, vi}
where (g,) C R is a sequence such that &, — 0 as n — +o0. Then, there exists C > 0 such that
/Qf(un)undxgc, /Qg(%)%dxgﬁ forall n>1

and
|(tn,vn)|| <C, forall n>1.

3.4 Finite-dimensional approximation

Since J is strongly indefinite near the origin (J is positive definite on E™ and negative
definite on £, the standard linking theorem can not be directly applied. We therefore consider
an approximate problem on finite-dimensional spaces. Let {¢;};cn be an orthonormal basis of
{Ai}ien of (—A,HJ (Q)). Setting

El =Span{(e1,e;): i=1,2,...,n}, E, =Span{(e;,—¢;): i=1,2...,n},
and

E,=E 9E,,
Define
[, ={y€€(0nE,; ®R(e1,e1)): y(z) =z forallz € dQ,},
where O, = ONE, and QO as in Lemma 3.11. Set

— inf maxJ . 3.17
¢n = nf max (7(2)) (3.17)

Using Lemma 5.5 in Figueiredo, O and Ruf (2005), we have
¥(0n)N(dBpNE, ) #0, forall yeT,, (3.18)
for p > 0 given by Lemma 3.9. Thus, combining Lemma 3.9 and (3.18), we have
c, >0, forall n>1. (3.19)

Since the identity map I, : Q,, — E, ® R(ey,e1) belongs to I, for z = r(ey,e1) + (u, —1), we
obtain

J(z):rZHVeIH%’q—HVuH%jq—/QF(rel+u)dx—/QG(re1/\—/u)dx§R%. (3.20)

Let J, be the restriction of J to the finite-dimensional space E,.
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Proposition 3.13. For each n € N, the functional J,, has a critical point at level ¢,. More precisely,
there is (u,,v,) € E, such that

(V) = ¢ € [0, RY) (3.21)

and

Ju((n, V) (¢, 9) =0, forall (¢,y) € E,.

Proof. Fix n € N fixed. We observe that J,, also satisfies Lemmas 3.9 and 3.11. Thus, by Remark

3.7, we obtain a sequence (#,v;) C E, such that
Jn(uj,Vj) — ¢, and J,;(uj,Vj) —0, as j— +oo.

By Lemma 3.11, (u I \7]-) is bounded in E,,. Then, using the fact that E,, is finite dimensional, we
can assume that there exists (u,v,) € E, such that (u;,v;) — (u,, V), as j — +oo. Moreover,
since J € ¢! (E,R), we obtain

Jo(Un, V) =c, and  J!(up,v,) = 0.
Finally, combining (3.19) and (3.20), yields ¢, € [G,R%]. [ |

Lemma 3.14. Let s > 1 and {u, € W/ L?*(Q) : || Vup||2.s = 1} be a sequence converging weakly
to the zero function in WOILz’S(Q). Then, for every 0 < o < @, we can find a subsequence (not
renamed) such that Y

lim | (el — 1) dx = 0.

Proof. Let € > 0 be such that @ 4+ € < o. Since

lim eah‘ﬁ -1 0 and Ilim ealt\ﬁ ! 0
1 - = 1 s =Y,
=0 | 1= || (elate) 1T — 1)

there exists C > 0 such that
T 1 < Cle| +Cle|(e! TN — 1), forall reR.

Taking r > 1 such that r(a + €) < o and using Holder’s inequality, we have

=1 = Y/
/Q(eaunls1_1)dx§C||un||1—|—C||un||,/</g(er(a+s)|un| )

Finally, using Theorem 2.41, the compact embeddings of W, L**(Q) in L () and L' (Q) and
the fact that u,, — 0 in WO1 Lz"‘(Q), we get a subsequence (not renamed) such that

lim [ (47 1) ax=o.

n—oo |0
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Lemma 3.15. Let (u,,v,) be the sequence given by Proposition 3.13 and assume that (u,,v,) —

(0,0) in E. Then, there exists a subsequence (not renamed) (u,,V,) such that

2 71-1/2 B 2 71-1/2
[Vvnll2,q < mol_/ or ||Viyl2,, < mol—/’ forall neN,
ﬁO q o p

for mg € (0,1) given by (3.15).
Proof. If ||Vv,||24 — 0 or |Viyl|[24 — 0, the claim follows. Thus, we can assume that there
exists b > 0 such that
|VVall2g>b and ||Vi,lay>0b, forall n.eN (3.22)
Since (uy,,Vvy) is given by Proposition 3.13, we have
J(u,v,) € [0,R3], forall neN (3.23)

and

J (V) (9, y) =0, forall (¢,y) € Ey. (3.24)
Taking (¢, W) = (un,vy) in (3.24), we have

/f(un)undx+/g(\7n)\7ndx:2/ Vu,Vv, dx.
Q Q Q

Since
/VunVVndx:J(un,Vn)—i—/F(un)dx+/ G(vy)dx,
Q Q Q
we get
/f(un)undx+/g(Vn)Vndx=2J(un,\7n)+2/ F(un)dx—|—2/ GG )dx.  (3.25)
Q Q Q Q
From (A;), we get
/F(un)dx:/ F () dx+ F () dx
Q {xeQ:lup (x)|<so} {x€Q:luy (x)|>s0}
1
§/ F(uy)dx+— S (uy)uy dx (3.26)
{xeQ|uy (x)|<so} W J{xeQ:|uy (x)|>s0}

B /{xesz:w)go} (F(u") - %ﬂu”)u”) et %/Qf(u")u" dx'

Similarly, we obtain
- SN B 1 o~
/G(vn)dxg/ <G(vn)——g(vn)vn> dx—i——/g(vn)vndx. (3.27)
Q {xeQ: v, (x)[<s0} \4 VJao

Thus, from (3.23) and replacing (3.26) and (3.27) in (3.25), we obtain
2 2 e
(l - —) / S (uy)updx+ <1 - —) / g(Vp)vpdx
w7 Jjg v/iJa

<2R? 12 (F(un) - % f(un)un) dx (3.28)

{xeQ:fun(x)[<s0}

+2 (G(Vn) - %g(vn)vn) dx.

{xeQ:[vn(x)|<s0}
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Since (uy,v,) — (0,0) € E, we can assume that
Up —0, ¥, —0inL7(Q), forall r> 1. (3.29)

and

u, — 0, v, — 0, almost everywhere in Q. (3.30)

Note that
<M, forall {xeQ,|u,(x)|<so},

1
) = )t

1
where M = n[lax} (IF(s)|+ m | £ (s)s|). Moreover, by (3.30) and the fact that f and F are contin-
s€[0,s0

uous, we have

1
F(uy) — ﬁf(u,,)u,, — 0, almost everywhere in Q.

Thus, by Dominated convergence theorem, we obtain

1
/{xesz:mn(x)gso} <F(”"> ! (””)””) dx = on(1). (3.31)

Similarly, we have

I
/{xesz:mx>|<so} (G) = 8T dx=on(1). (3.32)

Replacing (3.31) and (3.32) in (3.28), we obtain

(1—%>/Qf(un)undx+(1—%)/Qg(’v“n)\7ndx§2R%+on(1).

Consequently,
2u

/f(un)undxs RZ+o0,(1) (3.33)
Q 2

and
2v

2R%+o,,(1). (3.34)

/Qg(‘;n)ﬁndXS
Taking (¢, ¥) = (v,,0) and (¢, ¥) = (0,uy,) in (3.24), we have

HanHiq:/QVV,IVVndx:/Qf(un)vndx

and
Vi3, = /Q Vit Vi dx = /Q (V)i dx

Using (3.22), we can define

Vn -~ izn
Vi=——— and U,= -——.
" IVallag " Vil p
Thus,
Vvallag = /Q Fln)Vidx (3.35)
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and
| Vitn||2,p = /Q g(V)U, dx. (3.36)

For € > 0 given by (3.15), we set

eop(4m)” eBo(4m)?
5:min{ %n):  __ eholin)’ } (3.37)
oo+ (47m)2 +eay Po+ (47)2 +€fo
Let @y = o + &. By assumption (A3) there exists A > 0 such that
1£(s)| < Ae®B” forall seR. (3.38)

Set ap = (4717)1’/2 — &, using (3.35), we can write

Vv

A 1 (a)] s
s s 1 v

Now, applying Lemma 3.10 with s = | f (u,(x))|/A, t = azl/p\Vn(x)

A , 1 | ()|
an / ea2|vn‘ _1 dx+—/ dx
| 24 < Oé/p[ Q( ) q J xe@: @l < p1/p9y A4

A

1F(un)| | f(ua)|\ /P
+/{er:«".(”}’:<)‘)|>61/174} A <ln A ) dx|. (3.39)

,r=pandr = g, we have

By (3.38), we obtain

)] (o )N ol
/{xegzwzew} ) (1“ ) ) dx< == /Qﬂun)undx- (3.40)

From (3.30) and the continuity of f, by Dominated convergence theorem, we have

P
/{XGQ:WSeI/Pq}de_O”(I)' (3.41)
Taking w in the dual space of WO1 L>9(Q), from (3.22) and the fact that v, — 0 in Wo] 124(Q), we

obtain
Vn

[V, )| = Km’

Thus, V,, — 0 in W(}Lz*q (Q). From Lemma 3.14, we have

1
w>‘ < l—)|(vn,w>| — 0.

/Q(eazvn"— 1) dx = o,(1). (3.42)

Replacing (3.40), (3.41) and (3.42) in (3.39), we obtain

Vv

2g < <@317+§_€>1/p/9f(un)undx+on(l).

Using (3.33), we obtain

RI+0,(1). (3.43)

o — & )I/P 2u

HVVn”Zq < ((477:)1;/2_6 w—2
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Similarly, we have

~ Bo—& /g 2v
Since,
2 -2 v-2
R = T min{—“ Y } (3.45)
(1+£)a0/p[30/q u v
we can suppose that
> 2moT u—2
Rl -

1/pal/
(1+e)a,'"B,? H
Replacing in (3.43) , we get

9l < 2207 (%_é)l/p<<m—wzs)l/p+on<1>.

(1+e)py/t % 4mpPz =

Using the definition of £ in (3.37), we have

_%+E (4m)

0 5 <l+e¢,
O (4m)2 —¢&
which implies that
2m071'1/2 1
< .
”VVn 2,9 = ﬁol/q (1—{—8)1/9 +0n(1)
Thus, we can assume without loss of generality that
2 71'1/2
[Vvnll2,4 < mOT, forall neN.
Bo
On the other hand, if in (3.45) we have
2moT v—2

R: =
1/ppl/q
(1+€&)oy’"By'* vV
and replacing in (3.44), we can obtain similarly
2m07t 1/2

[Vitg|l2p < —7—
aé/p ’

forall neN,

and the proof is complete. |

Lemma 3.16. (See Figueiredo, Miyagaki and Ruf (1995).) Let Q be a bounded subset in RY,
f:Q xR — R be a continuous function and (u,,) be a sequence of functions in L' (Q) converging
to u in L' (Q). Assume that f(x,u(x)) and f(x,u,(x)) are also L' (Q) functions. If

/ | f (x, )y | dx < C.
Q

Then, f(x,u,) converges in L' (Q) to f(x,u).
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Lemma 3.17. Let (u,, v,) be the sequence given by Proposition 3.13 converging weakly to (u,V)
in E£. Then,

flun) = f(u) and  g(v) —g(¥) in LY(Q).

Proof. By Lemma 2.38, we can assume that there exists a subsequence (not renamed) (u,) C
W, L*4(Q) C L'(Q) such that u, — u in L' (Q). From (A3), there exists Cp > 0 such that

1£(s)] < Coel DB forall seRR.

By Remark 2.40, the sequence (f(u,)) and f(u) are in L' (Q). Moreover, by (A,), we have
/ | f ()| dx = / | f (tt )| dx +  (un)un dx (3.46)
Q {xeQ:]uy, (x)|<so} {x€Q:|uy, (x)|>s0}

= (|f(un)un| —f(un)un> dx+ /Qf(un)un dx.

{xeQ:fun(x)|<so}
Note that
Sun)un| — f(un)uy ) dx < 2|1Q| sup |f(s)s].
/{xeﬁzun(x)|<50} <| ( ) | ( ) ) | | P | ()|

s€10,s0]
Joining last inequality and Lemma 3.12 in (3.46), we conclude

/|f(un)un]dx§C, forall n>1,
Q

for some C > 0. Consequently, by Lemma 3.16, f(u,) — f(u) in L'(Q). Similar arguments
apply for the function g. |

3.5 Proof of Theorem 3.4

In this section we prove the existence of a nontrivial solution for (3.4).

Proof. By Proposition 3.13, there exists a sequence (u,,V,) € E such that

lim J (i, ¥) = ¢ € (0,R3] (3.47)
and
J (un,v,) (0, W) =0, forall (¢,y)€E,.

This means,

/ Vi,V dx = / ¢ Wdx, forall (9,V)¢c E, (3.48)

Q Q
and

/ Vi,V dx = / f(up)pdx, forall (¢,y)e E,. (3.49)

Q Q

From Lemma 3.12, the sequence (uy,v,) is bounded. Thus, without loss of generality,
we can assume that there exists (u,v) € E such that (uy,,v,) — (u,v) in E. Moreover, we can
assume

up —>u, vy—v in L'(Q), forall r>1 (3.50)
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and

u, —u, v,—v, almosteverywherein Q. (3.51)

Furthermore, from Lemma 3.17, we have

/Q F () dx — /Q f(u)dx and /Q 2(¥) dx — /Q 2(¥) dx.

Thus, taking limits as n — +o< in (3.48) and (3.49), we get

/VuVl/7dx = /g(ﬂl?dx,
Q Q +oo

forall (¢,y)€ | JE,=E. (3.52)

n=1

/Q ViV dx /Q F(u)9 dx,

Thus, (u,v) € E is a weak solution of the system (3.1).

Now, we prove that (u,V) is a nontrivial weak solution. Suppose u = 0. By (3.52), we

obtain v = 0. By Lemma 3.15, we can assume that

2 71.1/2
[Vvnll2,q < mOT, forall neN.
Po
Let r1,r > 1 such that
rirymd(4m)4/? < (4m)9/2. (3.53)
By (A4), we have
8(s)

|s|—o0 e"1Pols|? N

From this and (A ), imply that there exists C > 0 such that
g(s)| < CePoll  forall s eR. (3.54)
Taking (0, ) = (0,v,) in (3.48), we have
/ Vu,Vv, dx = / g(Vn) v dx.
Q Q
From (3.54) and Holder’s inequality with r, > 1 given by (3.53), we obtain
| / Vit Vi d| < c/ R AP
Q Q

r ~ Fal  \4 1/
<C /eﬁonerang,p(W‘nriz_p) dx} HVHHL
Q

/
"2

qiamya/2 (Ll )4 1/r
<C /enrzmo( ) (I\anHz,p) dx} HVnHr’z
Q

§ EVAYIARAY 1/r
<C /e( ) (HVVnHz.p) dx} ||{’/n||r’2
L/ Q
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By (3.50), we have ||v,||,4 — 0. Moreover, using Theorem 2.41 we get
lim [ Vu,Vv,dx=lim | g(v,)v,dx=0. (3.55)
On the other hand, taking (¢,0) = (u,,0) in (3.49), we have
/ Vu,Vv, = / S (uy)uy dx.
Q Q
Thus, from (3.55)
lim | f(u,)u,dx=0. (3.56)
n—e JO
Using (A;), we have
/ F () dx = / F () dx+ F () dx
Q {xeQ:luy (x)|>s0} {xeQ:fuy, (x)|<so}
1 1
< — Uy Uy, dx -+ <Fu —— uu)dx.
o wmas [ (F ) = )
From (3.56) and Dominated convergence theorem in the second integral, we obtain
/ F (1) dx — 0. (3.57)
Q
Similarly, we have
/ G(¥,) dx — 0. (3.58)
Q

Since
J(tty, V) dx = / Vu, Vv, dx — / F(u,)dx — / G(vy) dx.
Q Q Q
Thus, taking limit and using (3.55), (3.57) and (3.58), we get

J(un,v,) =0

which is a contradiction with (3.47). Consequently, (u,V) is a nontrivial weak solution for the

Hamiltonian system (3.1).
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CHAPTER

WITH

CRITICAL EXPONENTIAL GROWTH IN R?

In this chapter we discuss the existence of nontrivial solutions for the Hamiltonian system

g(v)

—Au+V(x)u = mrl x €R?
—Av+V(x)y = ]‘:E—’LZ, x € R?,

4.1)

where a,b are numbers belong to the interval [0,2) and the functions f and g possess critical

exponential growth with (p,q) lying on the exponential critical hyperbola.

4.1 Introduction and main results

In order to have properties like embedding theorems, we assume that V (x) is a continuous

potential satisfying the following conditions:

(V1) There exists a positive constant V; such that V (x) > V, for all x € R2.

(V2) There exist constants p > 2 and g = p/(p — 1) such that

1 1
o177 € L*P(R?) and o7 € L*(R?).

Concerning the functions f and g we suppose the following assumptions:
(A1) f,g€ €(R)and f(s) =g(s) =o(s),as s — 0.
(A) There exist constants i > 2 and v > 2 such that
0 < UF(s) <sf(s), 0<VvG(s) <sg(s), forall s#0,

where F(s) = [, f(t)dt and G(s) = [ g(t) dt.
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(A3) There exist positive constants M and s such that
0<F(s)<M|f(s)] and 0<G(s)<M|g(s)|, forall [s|> so.
(A4) There exists o > 0 such that

o @I J e, a<a
5| o0 €OISI7 0, o> ap,

where p is given by (V).

(As) There exists By > 0 such that

s eﬁ|5|q 0, B > ﬁ()v

where ¢ is given by (V2).

(Ag) The following limits holds

. sf(s) . sg(s)
lim 22 — 4o lim =227 —
R S o e

(A7) For a,b given by (4.1), p,q given by (V2), o and By given by (A4) and (As) respectively,

(3 _a2/2>1/p “ (5 _ﬁZ/zy/q'

Throughout this chapter we consider the space E = W@ x W(P) and we use the tilde-map
given by (2.59) defined on W (@),

we have

Lemma 4.1. Let a,b € [0,2), ¢ > 1 and 6 > 2. Then,

I RNT

0 —

89.ap = inf / <|81+ C e |>dx:co€W(‘1)withHa)||(q)§3—|—2\/§
o R2\ [xfP x|

is a positive number, where e| is the first eigenfunction (normalized in the norm || |[(,)) for the

Schrodinger operator —A+V (x) in Hy}(R?) := {u € H'(R?) : [2 V (x)u? dx < +o0}.

Proof. Assume by contradiction that dg ,, = 0. Thus, there exists a sequence (®@,) C W@ such
that

|@nll() <3+2V3 and  lim

(axol ooy,
n—oo JR2

x| x|
Since the sequence (®,) is bounded, there exists ® € W@ such that @, — @ in W@ up to
subsequence. Consequently, e; + @, — ¢; + @ in W@, Let G =le1 +@,|? and ¢ = |e; + w|°.
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By Proposition 2.48, W4 is embedding compactly in L"(R?) for all » > 1. Thus, we can suppose
that ¢, — ¢ in L"(R?) for all » > 1. Using Holder’s inequality with 1/¢ +1/¢/ = 1 such that
bt' < 2, we have

16— 6| / 16 —¢| /
d < d "’ n o d
/R2 |x|b r= (xeRZx<1}  |x]? * {xeRz:\x\zl}‘g Sldx

1 1/ 1/t
< — d / - — 'd -

<Cllgi—sll:+len —¢ll1 — 0,

for some positive constant C. Hence,

0 7]
() Q)
/ le1 + o, . / le1 + o| I
R |xfp R2  |xf?

e~ e~

Since the tilde-map is a continuous linear function, we have e; — w, — ¢; — @ in wp), Hence,

up to a subsequence, we obtain
— O, —
/ —‘el n dx—>/ —’el | dx,
R |x[@ R |x|

e1+® fer—o®\
/]12{2< |x|? i |x|@ )dx—O.

Thus, ¢; = —® and e¢; = ®, which is a contradiction. [ |

which implies

Now, we describe an additional condition on the functions f and g.

(Ag) For a,b € [0,2) given by (4.1) and u, Vv given by (A;), there exist 6 > 2 and a positive
constant Cg , , such that

F(s) > C97a7b|s|9 and G(s) > C97a7b1s|9, forall seR,

where 3
564323
> — 4.2
0.a,b SousRO 2’ 4.2)
0p a,» is defined as in Lemma 4.1 and R is a positive constant such that
4n(1—b/2)/P(1—a/2)!/4 —2v-2
grdm1=b/) MU a2 0 fu=2 V-2 4.3)
1/ppl/p 2u T 2v
Gy Po

Example 4.2. The function
V(x) = (1+7x*)?, xecR?
satisfies conditions (V) and (V;) for p = 3 and ¢ = 3/2. Moreover, the functions

3
_1)7 g(s):§S1/2(6S3/2_1)’ 3207
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where f(—s) = —f(s),g(—s) = —g(s) for all s < 0, satisfy the conditions (A;) — (A7) fora =1,
b=3/2.

Indeed, since V (x) > 1 for all x € R, the condition (V}) follows. Moreover, we have

1 1 1

— )= ————, forall x€R?.
var ) T (15 727

1
and m (X) =

By Example 2.7, we have

Thus,

and

<V2/3> (S>:m and <m) (S):m, for all SZO
3 _/+°° 1/2( 1 ﬁ_ e s12ds  m
3h V2/3 ) (I+s)* 16

oo /2 oo
2 [l Ly 3§_/+ di__
HV1/3H /o {S <V1/3) (S)} s Jo (1_|_S)S1/4_\/§7r‘

1

Consequently 1/V1/4 € L2P(R?) and 1/V'/P € L*4(R?) with p = 3 and ¢ = 3/2. Thus, (V3) is
satisfied.

We observe that

F(S):€S3—S3—17 G(s)zes3/2—s3/2—l, forall s>0

and F(—s) = F(s), G(—s) = G(s), for all s > 0.

(a)

(b)

The following limits holds
8(s)

lim &:0 and lim —= =0,

s—0t S s—0t 8

since f and g are odd functions we have that f and g satisfy the condition (A}).

Taking u = 3, since G is even we have

0<3G(s) =3("" —s¥2—1), forall s#0 (4.4)

Hy(s) :==sg(s) —3G(s) = %s3/2(e53/2 —-1)— 3(es3/2 —s32-1), >0

and 3
H(t) := Hy(*?) = St =1)=3('—1=1), 1>0.

Thus, H'(t) = %(e’(t —1)41) > 0 for all + > 0 which implies that H is increasing.
Consequently, Hy is also increasing in [0, +e0). Moreover, since Hy is an even function we
conclude that

3G(s) <sg(s), forall s#0. 4.5)

From (4.4) and (4.5), we observe that g satisfies (A;). Similar arguments apply for the
function f.
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(c) We observe that

G(s) 2(e”—s32—1)

0< =
8(s) 351/2(es™ — 1)

, forall s>0.

This and the fact that G(s) is an even function and g is an odd function, we have

fim G _ o GG
[s|—-+oo [g(s)] 5o g(s)

Thus, g satisfies the condition (A3). Similar arguments apply for the function f.

(d) Since g is an odd function, we have

. g(s)] {0 3512 1) too, o<1
‘ tim als]?/2 :s1_1>111°o os3/2 :s1—1>I-Poo as3/? -
e ¢ 2e 0,

o> 1.
Thus, g satisfies condition (As) with By = 1.

(e) Similar to (d), f satisfies condition (A4) with oy = 1.

(f) Since
3/2
sg(s) 353/2(e5 — 1)
e o2 , forall s>0
and g is an odd function, we obtain
) g )
5| +oo elsI¥? s—teo psY/

Similar arguments apply for the function f. Consequently condition (Ag) follows.
(g) Asop=Po=1,p=3,9=3/2,a=1and b =3/2, the condition (A7) holds.

Remark 4.3. For the function f given by Example 4.2, we can not guarantee that f satisfies

condition (Ag), which would imply
F(l)=e—2>Cgq4p, forall 6>2 and a,be]0,2].
Thus, condition (Ag) turns out to be necessary.

Example 4.4. Let V the function given by Example 4.2 and consider the following continuous

functions defined on R
fi(s) =g1(s) =Alsls, forall seR,
for some constant A > 0,

32 (e — 1), 0<s<l,

fals) = (e_l)[(3s2_1)6s3—5_|_52], I<s,
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and
%sl/z(esm—l), 0<s<1,

g2(s) =
(e—1) [(%sl/z - l)esm_s +s1/2}, 1 <s,

where f>(—s) = —fa(s) and g2(—s) = —ga(s), for all s > 0. Setting f = f1 + f> and g = g1 + g».
Then, similarly as Example 3.3 the functions f and g satisfy conditions (A;), (A2) withu =v =3,
and conditions (A4) — (As) with ap = By = 1. Moreover, condition (Asg) is satisfied with 6 = 3
and A sufficiently large.

Remark 4.5. The function f given by Example 4.4 satisfies

0 < sf(s) _ AsP +s(e—1)[(3s* - 1)653*5 + 5%

3 , forall s>1.

es e’

Thus, using last relation and the fact that f is an odd function we obtain

sf(s)

|s]—o0 e|5|3

Thus, f fails to satisfy (Ag).

The following theorems contain our main results.

Theorem 4.6. Suppose that V satisfies (V) — (V») and f and g satisfy (A;) — (A7). Then, system

(4.1) possesses a nontrivial weak solution.

Theorem 4.7. Suppose that V satisfies (V}) — (V2) and f and g satisfy (A;) — (42), (A1) — (As)
and (Ag). Then, system (4.1) possesses a nontrivial weak solution.

4.2 Preliminary results

In this section we state some results that it will be used in this chapter. First, we recall
the following result obtained by Lu and Tang (2016).

Proposition 4.8. Let 1 < s < 400, 0 < B < N. Then, there exists a positive constant C =
C(N,s,B) such that for any 0 < & < (1 — /N)ay ; where ay, ;= (Na)]}/N)s/(s_l) and for any
u € W1L2*(R?) the following inequality hold:

d s/(s—1)

sup / Lﬁ) dx<C, (4.6)
Vel Hlully <1 /BY ]

where

d(r)=¢ —) — and kozuwu.

The inequality in (4.6) is sharp, in the sense that for any a > (1 —f/N)ay ; the supremum
become infinity.
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Remark 4.9. (i) The inequality given by Proposition 4.8 is still valid if we consider the supre-
mum over all functions u in W'L?(R?) such that ||Vu||ys < 1 and ||u||ys < M where M

is a positive constant. Moreover, in this case C = C(N,s,3,M) > 0.

(ii) As in Proposition 2.48, we have

IVull3 + VollullS.s < [[Vaells,s+ 1V 5ulls s = [lullfy)-

Thus, u € W), with [|ull 5y < 1, implies that |[Vul[2s < 1 and [Jul]2 s < V, !. Consequently,
by (i), Theorem 4.8 is still valid if we consider the supremum over all functions « in w)

such that HMH(S) <1.

(iii) A careful look at the proof of Proposition 4.8(Lu and Tang (2016)) shows that

o) s/(s—1)
/N (a‘ybdyﬁ—) dx < +oo, forall >0, 0< B <Nandue W'L*(R?). (47
R X

Since we are interested in the case N = 2, from now on we denote o, = o, , = (47)4/?

and oy =05, = (47)P/2, where p and g are given by (V3).

4.2.1 The concentrating and hole functions

Now, we recall some important definitions and results presented in Cassani and Tarsi
(2015), Cassani and Tarsi (2009), where it were provided some special functions which will be

useful in the linking geometry in order to prove Theorem 4.6.

We consider the following modified Moser-sequence:

( (logh)7 !
ogk) » p-1
W(l &) 7, RhP<i
My (x) = 4 1 4.8)
,
(18,7 1
——F—log(—), g <hP<1,
\ (logh)7vax W

where & will be fixed later such that § — 0 as n — +oo. Then, we have

/ —1
(logk) 7
vam

—1
(1_6k,p>p77 0<s<

=19

p—1
1—8,) 7 T
U T 10g ) 2oz,

| (logk)»vax S
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whereas
0, x| <1
VM X) = -1
VM) =] (s e e
—7 E x ——
(logh)7 /7|x]
and
p—1
1—-6,,) 7
( 1"7”) , 0<s<m(1-1)
VM |(s) = (logk)? /s +Z
k,p -
0, n(l—4) <s<m.

\

Lemma 4.10. For the sequence given by (4.8), the followings estimates hold as k — oo
1

P (1_ p—1 _
and |
||V]/pMkaP||[2)7p < (1= 8p)"! ||V||L°°(B1)O(@()a
where 0 , — 0 as k — oo
Using Lemma 4.10, we obtain
1M pl17) = VM pl15, + VP15,
1 IVYPM 8
—(1-6 P—l(l o) ’ ”’)
( k7P) + (logk)+ (l_sk’p)pfl

Thus, we can choose &, depending on ||V || =(s,), p and k such that

M pll(p) = 1.
Note also that
sl < IVl o 35 K=
For each d > 0, define u,4(x) = u(). Thus,
[Vually, = IVulls, and V/Puqlly, = d? ||V, full5 . (4.9)

For M, defined by (4.8), we consider

Mg (x) == Mk,p(il—c), (4.10)

where we denoted by & , 4 instead of J; , to emphasize the dependence on d. By (4.9), we have

1
1M pallF,) = IVMiplI5 , + |1V, 7 M

p
2,p

1/p p
1 dp”V]/desz

= (1-&,)" '1+0 Rl
(1= %) (* T (R




4.2. Preliminary results 91

Similarly, we can choose & 4 depending on ||V||;=(g,), p,d and k such that

HMk,p;d”(p) =1
Note also that
dP

|6k.p.d] SCHVHL‘”(Bd)@, as  k — too. 4.11)

Lemma 4.11. Let p,q > 1 be conjugate exponents, and let M ,,Mj , be the normalized concen-
trating sequences defined in (4.8). Then, M , # —I\Z/Q - Furthermore, as k — o0

/RZ (VMy p:a VM g:a +V (X) My p.aMy g:a) dx

CIV||z=z,)d” logk 1
> (1= g ) 00 ) v+ giog) |
—( logk { )T Siogk

logk
where the constant C and the quantity O(%) depend only on k.

Now, we consider the hole functions ¢, : R> — R as follows

Oa |X| S%
log |x|
Cnlx)i= 24290 <kl <5 4.12)
15 |X| Z \/Ln?
Then,
0, <L oor x>
V| (x) = 2 " vim
Lox <L
|x|logm’ m Vm’
2
0, ) | 5> log’”m
- 2y/m 2m
Hive,|(s) = ”<s21og2m - ﬁ) Togm <5 < Togm
11 » i
n(E_n?>7 OSSSIOgm,
and
> 0275 )
t+75
m

Let {e;};en be an orthonormal basis of eigenfunctions for the operator (—A+ V) in H}(R?) :=
{u € H'(R?) : [p2V(x)u?dx < }. By Lemma 3 in Cassani and Tarsi (2015), the sequence
{ei}ieny provides also a dense system in W@ as well as W(P). For each n € N, consider the
following finite dimensional subspace:

E, :=Span{ey,...,ey}.
We define the set
Enm:={um:=Cuu:ucE,}.
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Lemma 4.12. One can choose m = m(n) — +o0, as n — oo, such that the following estimates
hold

i =l gy < )l and =l < 8(n) gy, wE E

where 8(n) — 0, as n — +oo.

Remark 4.13. Let My .4, My 4.4 as defined in (4.10). By construction, for any u,, € Ey ,, we
have

supp uy N\ supp My p.q =@ and  supp u, \supp My g.q = &

for any k > 0, provided thatd < 1/m.

4.3 Variational setting

In this section, we describe the functional setting that allows us to treat (4.1) variationally.
The natural functional associated to (4.1) is given by J : E := W@ x WP) - R, where

/(v [ R, 60,
J(u,ﬁ)—/]Rz (VuVv+V (x)uv) dx /JR{Z FE d /}R dx. (4.13)

2 Jx
Lemma 4.14. Let a > 0, p,q > 1 and r > 1. Then, the following inequalities holds:
@)
(S —1)" < el — 1, forall reR.

(ii) For each B > ar there exists a positive constant C = C(f3) such that

(X" —ajr|7—1)" < (P —Blr]7—1), forall reR.
Proof.

(i) Given r > 1, the function A(s) = (1+s)" —s" — 1 is increasing in [0, 4o) and 4(0) =0,

taking s = e®l” — 1 we obtain
0< er(x\t|” . (ea|t|[’ _ l)r _ 17
which implies ().

(i) Since

e a1y
r|—0 eBlil? — Blt|?—1

and ‘ (eo‘"|q—a]t|q—1)’
BT Bl —1

the conclusion follows.
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Proposition 4.15. Assume (A;),(A4) and (As). Then, J is well defined and belongs to the class
¢ (E,R) with

I (u,9)(9, ¥) :/Rz (VuVy+V (x)uy+ Vive +V(x)\7¢)dx—/Rz f|i|b2)¢dx_/mz é!}j‘?~

forall (¢,y) €E

Proof. Let u € W@ and v e W), By Holder’s inequality in Lorentz spaces and assumption
(V2), we have

| [ vuvTds] < |Vl 9712, < el |71 (4.14)
and
‘ V(x)uwx(: ‘/ V(x)]/un(x)l/dex‘ <[Vl [V P < [l () [l ) (415)
R2 R2
From (A;) and (A4), there exists C > 0 such that
£ ()] < |s| +C(el @+ _ 1) forall seR. (4.16)

Thus, applying Young’s inequality and Lemma 4.14-(1), we obtain
[F ()] < [uf” +Clul (%" — 1) < Cluf* + c(eH 0D — 1),

Then,

F(u) |u|? ( 2o0+1)ul” 1)

—a’x‘ <cC dx+C [ dx. 4.17
Lo o 2 [xf? P St

Let r > 1 such that br < 2. By Holder’s inequality, we find

’”|2 2
/ —bdx</ / |u|~dx
R2 |x] {xeR%: |x|<1}
1/r

;Y 1
< {/ uf” dx} U —dx| 4 ||ul3.
{xeR2:|x[<1} (xeR2:|x|<1} |x]"

From Proposition 2.47, we have

2
/ | ’ dx < oo,
R? [x[P

Combining this with (4.17) and Remark 4.9-(ii1), we obtain

/F( )dx<—|-oo forall uecw@. (4.18)
R

> x|

Similarly, G(v)/|x|* belongs to L' (R?) for all v € W(?). Thus, from (4.14), (4.15) and (4.18), we
conclude that J is well defined in E. Consider J1,J>,J3 : E — R defined by

Ji(u,v) = /]RZ (VuVv+V (x)uv) dx,
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F(u)
B = [ Tidr Jg(u,V):/RZ

By (4.14) and (4.15), we have

G(? dx.
x|

1) < 2l 7. forall (u.9) € E.
Thus, J; is a continuous bilinear function. Then, J; € €*(E,R) and
T (u,7)(9, ) = /2 (VuV§+V (x)ufi+ ViVe +V(x)79) dx, forall (¢,¥)€E.
R
Now, fix u and ¢ in W9, for given x € R? and consider 4 : R — R defined by

o) F<u<x>|;|:t¢<x>) |

Let (z,) any sequence in R such that 7, — 0, we can assume that 0 < |#,| < 1 for all n > 1. For

any n > 1, by the Mean value theorem there exists 8, = 6,(f,,x) € (0, 1) such that

Bt in®) ZF0) ) — h0) = H (0t )t — LT Ol )nd. (4.19)
A o
Defi
o () = T 0) ZFQ) _ f(ut 6uiaf)

t x| a x|
Since f is continuous, we have

lim 4, (x) = lim Flu+t,9)—F(u)  f(u)o

= forall xc R2.
o T T P P

Note that |1+ 6,1,0| < |u| + |¢| :=w € W9 From (4.16), we have

()| = |f(u+,j'2t"¢)¢|
_ lut-6u29 ][9] +C (el %Dt Omdl” 1) o)
B [x1?
[wilg|+C (el —1)]9|
B [x1°
_ P[9P (20D 1) + o
B 2/u? '

Using Holder’s inequality and Remark 4.9 -(iii), we have
’W’2 + |¢|2 +C(62(a0+1)|w|1’ . 1) —I—C|¢|2

€ L'(R?).
By Dominated convergence theorem, we obtain

J. Q) —J.

()¢ = tim 20T 00) = 2(1)

n—oo Iy
F th)—F
— lim (uttg)—Flu)

n—oo JR2 tn|_x|b

=lim [ h,(x)dx

n—oo JIR2

[ fwe

IR |x
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Now, we prove the continuity of the Fréchet derivative. Let (u,) be a sequence in W@ such

that u, — u in W9, and hence u, — u in W'L>%(R?). By Proposition 2.44, there exists a

subsequence (not renamed) (u,) and & € W!L?4(R?) such that
lup(x)| < @(x), almost everywherein R2,

and

Un(x) — u(x), almost everywherein R

For » > 1 such that rb < 2, from (4.16) and Lemma 4.14-(i), we have
IF(s)]" < 2fs]" +-2C7 (" @+DE" 1) forall seR

By (4.20), we get
() = f()]” 21 f ()| | 2] ()]

|x|rb — |x|rb ’x’rb

r r oot Dlul? _ 1 prloo+D)ul? _ |
Szr(‘un’ + ‘I/t‘ >+2rcr<e +€

|x|rb ‘x‘rb |x‘rb |x|rb

ar ul ol Dli? _ | prlao+Dlul? _ |
<z(| ) Zﬁy(
— |x|rb + ’x’rb + ‘x‘rb + |x|rb

Using Holder’s inequality and Remark 4.9-(ii1), we get

r r r(og+1)[ul? _ r(og+1)[ulP _
2r< |I//t\] + |Lt’ )_l_zrcr(e 1+e 1> ELI(RZ).

|x’rb |x|rb |x|rb |x|rb

Moreover, from (4.21) and the fact that f is continuous, yields

|f (un) = fw)["

x| — 0, almost everywhere in R
X

By Dominated convergence theorem, we have

wauw()réa
Since
A 0e) — J4 (), 9)] < (T\Wx
_Hf \nw,
<ch
by (4.22), we have
sup_[(03(ur) ~ 330003 < ¢ LS o,

I9llg<1

(4.20)

(4.21)

(4.22)
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Hence, J> belongs to ¢! (E,R). Similar arguments prove that J3 belongs to ¢! (E,R). Further-
more J € € (E,R). [ |

As a consequence of Proposition 4.15, critical points of J correspond to the weak
solutions of (4.1).

Lemma 4.16. Let o, a, 3, b be positive numbers and r > 1. Then,

(i) Let u € W@ such that |ul[ () < M with aM? /oty +b/2 < 1. Then, there exists a positive
constant C = C(ot,b, M, r) such that

(e 1)

r

- dx < Cllull,)-

(i) Let v e WP) such that [V]l(py <M with BM?/a; +a/2 < 1. Then, there exists a positive
C =C(B,a,M,r) such that

(eﬁlﬂq —B9—1)

]

o dx < CIFl

Proof. Choose ¢ > 1 close to 1 such that taM? /a; +1tb/2 < 1 and rt > 1, where t' = /(¢ — 1).
Using Holder’s inequality and Lemma 4.14-(i), we obtain

alulP _q alul” _ 1)! 1/t
]u\’udxg (1) a7
]R2 rt

R? x| e[

lll( ) -1 1/t
e q .
S </l\{2 |x|tb dx) ||u||rt"

By Proposition 4.8, we have

)
- \WT dx < Cllul[jy-

Using the continuous embedding W4 — L' (R2), we conclude the proof of (i). Similar argu-

ments proves (ii). u

Lemma 4.17. Let s > 1,0 < r <2 and {u, € W® : [|un|(5) = 1} be a sequence converging
weakly to the zero function in W), Then, for every 0 < o0 < (1 —r/2)e}, we can find a

subsequence (not renamed) such that
(1)
lim ———dx=0, if 1<s<2.

(ii)

dx=0, if 2>s.
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Proof. We begin proving (i). Let € > 0 such that @ + € < (1 —r/2) ;. Since,

SOl SOl
Iim ——— =0 and Ilim < =0,
=0 ] 1= |g] (el@te)1=T — 1)

there exists a constant C > 0 such that
T < Clt|+Clt|(el € =T _ 1), forall treR.
Hence,

a+e |u,,\Y r 1)
dx. (4.23)

(xlun‘é 1
/ dx < C/
R? W
Taking 7 > 1 such that 7( +¢€) /ot +1r/2 < 1, we have
/ |Mn|dx</ ’ |dX+HMnH1
R2 x| {reR2: <1} [x|”

1 1/[ , 1/[/
= d / ”t d + [|un 4.24
B </{XER23|X|<1} " X) ( {xeR2:|x|<1} ol x) lenl1 (4.24)

< Cllunl|pr 4 ||| 1-

x|

In order to estimate the second integral in (4.23), we use Holder’s inequality and Lemma 4.14 to

get

Sl _ et ST )y
[ Las <l [, 4 ax) "

e[ x|t

Since ||un||(s) = 1 and t(a +€)/a; +1tr/2 < 1, by Proposition 4.8, there exists C > 0 such that

o-+€)|uy| =T _ 1)
el g dx < Clal @25)

x|

Replacing (4.24) and (4.25) in (4.23), using the compact embeddings of W) in L’ (]Rz) and the
fact that u,, — 0 in W) we get a subsequence (not renamed) such that

. (e®lunl*"T 1)
| 0
e ST *
Arguing similarly we prove (ii). [
Let
a7 ~ 117,
AMpi= 1nf ———7—— and Aj,:= mf —_— (4.26)

wew@n\0 Jg2 uz/\x\bdx aew(P)\o Jp2 U2 /|x|adx

By Holder’s inequality and continuous embeddings, the numbers A, ;, and 4, , are positive.
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4.3.1 On Palais-Smale sequences

Lemma 4.18. Assume (A;) — (A2),(A4) — (As) and let (u,,v,) be a sequence in E such that
|J (up,vn)| < d and

‘Jl(un,\//vn)((]b,l?/)‘ S SnH((P,lT/)H, fOI’ all ‘Pa‘l’ € {Ovunvvn}' (427)

Then, ||(un,vy)|| < ¢ for every n € N and for some positive constant c.

Proof. Taking (¢, V) = (u,,v,) in (4.27), we have

~ ~ Up)U V)V
‘2/Rz (Vi Vi + V(@) e~ [ f(|xril)7 ndx_/Rzg(PC'l x| < &) (r, 7).

Thus,

/ S (un)uy dx+ g(Vn)Vn
r> |xl R2 |x[?

dx < ‘2/2 (Vi Vo +V (x)unvp) dx’ + & (ttn, V) ||
R

Since

~ _ - F v,
/ (Vuann —|—V(x)unvn) dx = J(un;Vn) +/ (UZ) dx+/ G(Vn) dx,
R? R2 \x| R

2 e
we get

d
w i T e |x|“

" <2d+2/ (1t 7).

IXI”

Using (A,), we obtain

/ Flun) dx<l/ Jlndttn 4 ang [ G 4 l/ g)Vn
R R2 R2

> P T Jx|? R2 x4 TV x|

Thus,

(1—%) /sz(‘x‘z dx +(1—%> Azg(&"f" < 2d + & (ttn, ) |-

Hence, there exists ¢ > 0 such that

S (un)uy

R2  |x|P

" dx < ¢+ & (1, )| and / 80V 1 et gl (i) (4.28)

On the other hand, taking (¢, ) = (v,,0) in (4.27), we get

/ (Vi 4V (x)va7,) dx</ SWa)vn 1o el 0)])
R2
This means,
S (un)vn
”vnH%q) — |x|b dx‘*‘gn”vn“(q)
Defining
I, = o s

[vallig)
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we can write

Vil (g) /f P L dx+ g, (4.29)

Let oy > ap and 0 < o < (1 —b/2)a;. From (A1) and (A4), there exists A > 0 such that
1£(s)] < 2e®B” forall seR. (4.30)

Applying Lemma 3.10 in (4.29) with s = | f (u(x))|/A, t = Oczl/p\Tn(x)], r=pandr =q, we
obtain

A 1 ‘f(”n)| 1/p
an”(q)SW/RZW T ® |T,| dx+ €,

2 / (eoclenl”_1)der 1 / Lf Q) 431)
azl/p R? x| qA? Jixerz: Lmd | <o1/p?y x|

! £ @)l 1y L ()|
+7L/{xe]1{<2;f<j{ﬂ>zel/pq} x| In 1 dx| +¢&,.

From (4.30), we have

‘f(un)| lnl/p |f(un)‘ dx < al/l’ f(”n)”n dx.

/{xeR2:|f<;">|>e1/P4} |x[? A = R Jxfp

(4.32)

Since ||T,||(4) = 1 and 0 < (1 —b/2) 0y, by Proposition 4.8, there exists C > 0 such that

0| Tl? _ 1
/ S esC (4.33)
R

Now, we estimate the second integral in (4.31). From assumption (A} ), given € > 0 there exists
0 < 6 < 1 such that

()] <&Y9)¢|, forall |r]<Sé.

Thus,
|f(6)]9 <EJt|? <Et|, forall || <S$. (4.34)
Note also that
At
1 14 1 1
|f(#)] < Aer” < el t]aT, forall {[t|>6:|f(t)] <Aer”}.
6aT
This means,
FO9 < altl[f(r)], forall {Jf]|>5:[f(r)] <Aer}. (4.35)

where ¢(€) = (Aep%)qfl/& From (4.34) and (4.35), we get

)7 < Ele| +elf @), forall {reR:[f(:)] < Aer}.
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By (4.28), there exist c1,c2 > 0 (c; is independent of €) such that

{XGRZZV(iiﬂSel/pq} |x| {xeRZ:lw‘gel/])Q} |x|
< é/ il g o [ S0
R2 |x| Rz |x|b

< t_-JCQHunH(q) —|—5(C+8n”(una‘7n)|‘)

< ey +Ecalunll () + Enll (un, i) |-

Combining this with (4.32) and (4.33) in (4.31), there exist c¢1,c2 > 0 (c¢; is independent of €)
such that

f (’”;”’Z”” dx+ &) (s ). (4.36)

[vall(g) < c1+Ecal[unl|(g) +c1 /RZ

On the other hand, taking (¢, ¥) = (0,1,) in (4.27), we can obtain dy,d, > 0 (d5 is independent
of &) such that

v, ~
l dx + &| (un, v,) |- 4.37)

~ i~ g
ol < -+ 2l +ar [ 50

|
Using (4.36), (4.37) and (4.28), there exist k1,k, > 0 (k; is independent of €) such that
[ (s vi) | < Ky + Eka || (1t Vi) | 4+ & | (2t Vi) |-

Hence, taking € sufficiently small we conclude that (u,,v,) is a bounded sequence in E. |

Remark 4.19. In the previous Lemma, using the fact that (u,,v,) is bounded in E and replacing
in (4.28), there exists C > 0 such that

GO dx<C and 8 (V)
R x| R [x]?

dx<C, forall n>1.

In the next result, we repeat the same type of arguments developed in Lemma 4.3 in
Souza (2012).

Lemma 4.20. Let (u,,v,) be a sequence in E such that J(u,,v,) — ¢, J,(un,v,) — 0 and

(t4n,v) — (u,v) in E. Then, up to a subsequence

f(un) N f(u) and g<‘7n) N g(;) in Ll (RZ)

o el e

Proof. Note that, f(u,)/|x|’ € L'(R?) for all n > 1 and f(u)/|x|’ € L'(R?). Thus, for given
€ > 0 there exists 8 > 0 such that

/’f<“)’dx<s, it 1A <8, (4.38)
A |x[p

for every mensurable A C R?. Consider

Q, = {xeR?: |u(x)] >n}.
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Since u € L'(R2) , we have |Q,| — 0 and there exists M > 0 such that
{xeR?: |u(x)| > M}| < 8. (4.39)

~ C
Let M = max{M, E}’ where C > 0 is given by Remark 4.19. Then,

u
‘/ |fZ b ‘<11,,+12n+13n (4.40)
R2 |x| \x\
where
/ f(uZ)| d.x,
{(x€R2:|uy(x)[ =M} |X]
/ |f ()] dx
{xeR2:Ju(x)|=m}  [x]?
and

|/ LLTAIpN £l
{xeR2:Ju, ()| <M} |x[P {xeR2:|u(x)| <p} |x]°

From Remark 4.19, we have

Il,n:/ |f(’/2n)”n|dxS i/ f(”nzund
{x€R2:|uy (x)|>M} |x| ’un‘ M {x€RZ:|uy (x)|>M} ‘x‘

Using (4.38) and (4.39), we obtain

de<

= S €
(xeR2:Ju(x)[>m}  |x[P

and

\f un)| S (u)]
I3n_ ‘/Rz |x|b - |x|b )X{xeR2:|un(x)|SM}dx‘

\ /Rz |x’b %{xeRZ:\un<x>|§M}—%{xeR2:|u<x>|SM})dx‘

< / h,, dx + / de
R2 (xeR2:[u(x)|=M}  |X]

§/ h,dx+ &,
R2

| (n)| 1S (w)]
x| x|
the continuity of f and the fact that f(s) = o(s), as s — 0, there exists ¢, > 0 such that | f(s)| <

ca|s| if |s| < M. We can assume that u,, — u almost everywhere in R? and |u,|/|x|® < hg almost

where h, = (

) X {xeR2:|u(x)|<m}- Then, h, — 0 almost everywhere in R?. Using

everywhere in R?, for some kg € L (RZ). Thus,
| < |f ()] |f (u)] |un| | f(u)] |f(u)|

x| Tl KAreR [ ()| <M} T x[b T XreR2:u (x)| <M} S €2 |x|b+ x]p < cohg+ P

almost everywhere in R? and since cahg + f(u)/|x|” € L'(R?), by Dominated convergence
theorem, we have

/2 hp,dx <€, forall n large enough.
R
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Then, for n sufficiently large

[37,1 <2e.
Thus, we get
fn) gy [ F0) 4
B |x]? R P
Similarly, we have
R2 |x|? R2 |x|*

Lemma 4.21. Assume (A;) — (As) and let (u,,Vv,) be a sequence in E, such that J(uy,v,) — c,

J) (tn,vn) — 0 and (uy,v,) — (u,v) in E. Then, up to a subsequence

Fw)  FL) GG GE)
P TR ™ e T e

L'(R?).

Proof. By (A}) and (A4), there exists C; > 0 such that
1F(s)| < |s| 4+ Cis|le @t DB forall seR.
In particular, there exists C > 0 such that
F(s) < /O F(O)]dt <ClsP, forall |s| < so.
Combining this with (A3), we obtain
F(s) <C|s|* +Mf(s), forall secR. (4.41)

Let r > 1 be such that br < 2. We can assume up to subsequence that |u,|> — |u|? in L (R?)
and in L'(R2). Thus, there exist g, € L” (R?) and g € L'(R?) such that |u,|? < g;(x) and

|un|> < g2(x) almost everywhere in R?. Then,

w _ ()

WP S P xB,(x) +g2(x), almost everywhere in R?. (4.42)
X X

Using the fact that 1/|x|” in L"(B;), by Holder’s inequality, we have

‘%m + g € LI(R?). (4.43)
By Lemma 4.20, f(u,)/|x|® — f(u)/|x|P in L'(R?). Thus, there exists g3 in L' (R?) such that
f(u,)/|x[’ < g3 almost everywhere in R?. Combining this with (4.42) and (4.43) in (4.41), we
get

Flun) _ Clun+Mf () _ Car(x)

xp = P S 18, (x) +Cga(x) + Mg3(x), almost everywhere in R?
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and

Cé—ib x5, +Cgr+Mgs in LY (R?).

Using the fact that u, — u in L'(R?) for a subsequence, F is continuous and Dominated

[ F) g [ F0
R2 |x|b R |x|°

Similar arguments apply to function G. |

convergence theorem, we obtain

4.4 Theorem 4.6

This section is devoted to prove Theorem 4.6.

4.4.1 The geometry of the Linking theorem

Let consider y(x) = M 4.4(x) and Z(x) = My p.4(x). Thus, ||(y,z)|| = 2 and by Lemma
4.11, 7 # —y. Define
Fn,m = Lpm X En,m @R(yaz)a

which is a finite dimensional subspace of E. Let
El,={(wv):vEE,n} and E, :={(v,—V):vEE,n},
where m = m(n) as in Lemma 4.12. Consider
JB, ﬂanm C Fum, where F,:“m = E,fm ®R(y,2)

and
Onm={w+s(3»2):w=(0,-0) €E,,,||w|| <Ro,0 <5 <Ry}

Lemma 4.22. There exist p,c > 0 such that J(z) > o, forall z € dB, NF,,
Proof. For € > 0 given by (A1), there exists § > 0 such that

IF(s)| <e|s]* and |G(s)| <els|*, forall |s| <. (4.44)
From (A1), (A4) and (As), there exists C > 0 such that

F(s)] < Cls* (28" —1) and  |G(s)| < C|s|*(eXPol" —2By[s]7—1), forall |[s|> 8.
(4.45)
From (4.44) and (4.45), for some constant C > 0, we obtain

IF(s)| < e|s] +C|s\4(62“°|s‘p —1), forall seR (4.46)
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and
|G(s)| < els|? +C|s|4(62ﬁ0|s|q —2Bols|7—1), forall seR. (4.47)

Let (u+sy,u+sz) € F,f,, with ||(u+sy,u+ sz7)|| < p; for p; > 0 sufficiently small such that
200p7 /oy +b/2 < 1 and 2Bopy /oty +a/2 < 1. By Lemma 4.16, there exists C > 0 such that

F(u+sy) |u+ sy|? 4
/]Rszxge/Rz FE dx+Cllu+syll, (4.48)
" @+ i+527
G(u+sz u+sz ~ 4
——dx<¢ dx+C . 4.49
I e B o

From (4.48) and (4.26), we have

F(u+sy) € 2 4
/RZ P dxﬁMﬁHu%—syH(q)~|—C\|u+syH(q)

Using Remark 4.13, we obtain

F(u+sy) € 5 51 A -
/Rz =g, i +57IlGg) +Cluligy + 7)) (4.50)

Similarly, we obtain

G(u+sz €, -
[ S e < St + R il < SR, @S
l.a

Thus,
J(u+sy,u+sz) = /]1%2 <V(u+sy)V(ﬁ+ s2) +V(x)(u+sy)(u+ sZ)) dx

_/ F(LH—sy)dx_/ G(u+s§)dx
R |xf R |

2 ~
>s /]R2 (VyVz+V(x)yz) dx

£

L 2 2012 4 A4
+§||“H(q)—m(H“||(q)+S ||)’H(q))—c(||”\|(q)+5 HYH(q))

1, £ - ~
+ EHuH%,,) - I—(HMH%,,) +52(1212,)) — Cllall{,) +5*1z01¢))
l,a

Since [|y||(4) = lIZll(p) = 1, we have

J(u+sy,u+sz) > s2/ (VyVZ+V (x)yz) dx
R2

_ & 2 2 & 2 4
+(1 i CHuH(q)>Hu||(q) il

€ ~12 Y\ 312 € 2 4
+(1—T—C||u||(p)>||u||(p)—Ts st

l.a l,a
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Then,
J(u+ sy, i+sz) > s </]R2 (VyVZ+V (x)yz) dx— €Cy — Czsz)
+(2—eCi - Cng)pg.
where ||ul|(,) = |ul|(,) = p2. Using Lemma 4.11, there exists C3 > 0 such that

/ . (VyVz+V(x)yz) dx > C3, for k sufficiently large.
R

Taking p1, p2, s1 and € positives and sufficiently small such that C3 — eC; — Czs% > (C3/2 and
2—¢eC|— p22 > 0. Set p = min{py, p2,s1}, there exists ¢ > 0 such that

C3p? _

J(u+ sy, u+sz7) > 5

o,
where ||(u+sy,u+s2)|| = p. |

Lemma 4.23. There exist Ry > 0 and R; > p (independent of n and k) such that J(©%) < 0 for
all 9 € dQy m, Where

Onm={w+s(0,2) :w=(0,-0) €E_,,[w| <Rp,0 <s <Ry}
Proof. Note that, the boundary dQ is composed of three parts.

i) If 0 € IQNE,,,, ¥ = (0, ~®). Thus,

J@,—d) :—/

(VoVo+V(x)0d)dx— Flo) jo_ [ G2 dx < —||@||, <0
) 5 (2)
R R

R2 |xfP x|
since F and G are nonnegative functions.

(i) If O = (0,—®) + 5(3,2) = (® + 5y, — @ + 57) € Q. m, With ||[(0,—®)| = Ry and 0 <
s < R, we obtain

J(o+sy,—0+s7) = /R2 (V(w—l—sy)V(—(TH—sE) +V(x)(a)+sy)(—(7)~|—s2)) dx

p =
_/ (a)+sy)dx_/ G(—o+s2) Jx.
R ¢ R |x]?

Using the fact that F and G are nonnegatives and Remark 4.13, we obtain
Jo+s7.~6+53) < —|o|?, —|—s2/ (VyVZ+V (x)yZ) dx
R2

< —[l@lf,) + 571yl Izl )
RZ
< —70 +R3.

Then, J(¥) < 0 provided that Ry = v/2R;.
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(iii) Let ¥ = (0,—®) + R1(,2), ||(®,—®)|| < Rp. Then,

J(@+R1y,®+RiZ) = —||w||%q)+R%/ (VyVE+V (x)yZ) dx 4.52)
F R R
_/ ((D+b 1) dx—/ Go+Riz)
R2 x| R x|

Using (A}) and (A3), there exists C > 0 such that
Fit)>Clt|®—1*> and G(t) >Clt|®—1%, forall teR.
By the last inequalities and Remark 4.13, we have

F(w+R o+ Ryy|? o+ Ryy|?
_/ (+1y)dx§/\ tRO” o[ lo+RyP
R2 |x|P R |xfb rR2  |x|?

2 2 0 0
<[ loF 4 +R2/ D e [ 120 4, ~CRY [ DI 4
R> x| 2 |x| R> || R ||

< 1 2 1 2 CR® |y|9d
_—lelq +m||yll(q>— R e P

R R ¥1°
<0 4 1 _cRY / YL dx.
- 2/11 b )«1 b 1 R2 |x|b

Since y # 0 and Ry = v2R),

F(w+R 2R?
- / ( +b ) gy < L _CR?, forsome C > 0. (4.53)
R2 |x| AMp

Similarly, we have

® 2R?
—/2 GO+RD) 2R pe (4.54)
R

e La

Then, using (4.53) and (4.54) in (4.52), we obtain

_ 2 2
J(@+Riy,@+Ri7) <R} (145 +=—) —CRY.
Mp o A

Since 6 > 2, taking R; sufficiently large, we get J(9) < 0.

|
4.4.2 Approximation finite dimensional
We define the sets
Lom={Y€C(Qum,Fam): () =20, forall 0 € 00, m}
and the numbers
cam = inf max J(y(1)). (4.55)

yer‘nﬁm ﬁeQn,m
The proof of the following results proceeds along some lines as the proof of Lemma 9 in Cassani
and Tarsi (2015).
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Lemma 4.24. The sets O, and dBp N F,%, link, that is
Y(Qum) N (OBp NE) #0, forall €T, (4.56)

for p given by Lemma 4.22.

Combining Lemma 4.22 and (4.55), we have
Cpm > 0, forall n>1. 4.57)

Note also that, since the identity map I : Q, , — F;, m belongs to I, ,,, for every ¥ = (o, —0)+
$(,2) € Onm, We obtain

cam < sup J(O) <R3 (4.58)
ﬁGQVLm

Denote by J, ,, the restriction of J to the finite-dimensional space F;, ;. By Remark 3.7 in J,, 5,

and using (4.57) and (4.58), we get the following result:

Proposition 4.25. For each n,m > 1 (m = m(n) as in Lemma 4.12), the functional J,, ,, has a

Palais-Smale sequence at level ¢, ,,. More precisely, there is a sequence (uj,V;) C F, ,, such that
~ 2
Jnm(Uj, Vi) = cum € [0,R]]

and
J\/Fn,m<uj’ VJ) — 0.

Proposition 4.26. Assume that f and g satisfy (A;) — (As) and let (u;,V;) be a sequence in F,
given by Proposition 4.25. Then,

(i) The sequence (u;,v;) is bounded sequence in F, ,, and there exists C > 0 such that

flujuj <c 80j)Vj <c
R |xfP R2  [x|
Flu; G(v;
/ (1)) dx<C, and / (v])dng,
R [x[? R2 x|

for all j > 1.

(ii) For each sequence (u;,V;), there exists (upnm, Vn,m) € Fnm and a subsequence (not renamed)
(uj,v;) such that
(uj,v;) = (nm,Vom) in Fyp.
Furthermore,

Jn,m(”mmﬂ’;n,m) =Cnm € [G,R%]

and

Ji5, Wngns Vnm) = 0.
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(iii) The sequence (i, m,Vnm) is bounded in E and there exists C > 0 such that

Fnmlnm o oo [ 8GmmVnm o
R2 |x|? R x|
F (uy v
/ Ltn) dx<C and Gloinn) dx < C,
R2 |X’b R2 |x|a
for all n € N.
Proof.

(i) From Lemma 4.18, the sequence (u s Vj) is bounded in F;, ,,. Moreover, by Remark 4.19

and assumption (A;), we get the estimates in (i).

(ii) Since (uj,v;) is bounded, F,,, is finite dimensional and J is of class %' the assertion

follows.

(iii) Using the sequence (uy m,Vn,m) in Lemma 4.18 for the case e, ,, = 0, we get the bound-
edness of the sequence. Using again Remark 4.19 and assumption (A;) we obtain, the

estimates.

4.4.3 Estimate of the minimax level
Proposition 4.27. There exists k € N such that for any sequence

(UnmsVnm) € R<Mk,q,%7Mk SE

,pﬁ)

satisfying the following conditions:

(i) The sequence (upm,Vn,m) is bounded in E.
(i) The sequence (uy m, Vn,m) converge weakly to (0,0) in E and

tpm —0, Vum—0 in LT(R?), forall r>1.

Then,

~_4n(1—b/2)'/P(1—a/2)"/e
supJ (tn,ms Vam) < ( /1)/17 (I/P = '
neN "By

Proof. On the contrary, for each fixed & in N, there exist a nonnegative sequence &, — 0 and a
sequence

M

k,p,%) + (un,ka _ﬁmk), with Un k € En,m

Mnk = Tnk (Mk

1
aq7a7
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such that
Mkl < C=C(k),

T[n,ké() in E,

iy 1 Fitng =0, Ty, 1 i — 0 in L(R?), forall s>1

and
Am(1-b/2)"/P(1—a/2)!/7

aé/PBOl/P

J(nn,k) > &n.

In particular, we have

— I/p(1 1/q
Supf(tnn,k)zj(nmk)z“”(l b/2)''P(1—a/2) e

I/ppl/p
#20 o' By

Since J (11, x) — —oo as t — +o0 and J(0) = 0, there exists 7 > 0 such that

SUPJ(”Tn,k) = max']<tnn7k) = J(fnn,k)'
[20 IZO

We can assume without loss of generality that 7 = 1, that is

4m(1—-b/2)V/P(1—-a/2)"/7

a&/l’ﬁol/l’

J M)k =0 and  J(Nug) >

Then,

2/R2 V(Tn,kMk,q,% + ank)V(kaMk’p’% — ﬁn,k) dx

+2 /}R V) (GiMy g 1+ 1600 (TuiM 1~ i) dx

f(fn,kMk7q7l + un,k) (Tn,thq’L + un,k)
= = - dx
R? |x[?
/ g(kaMk’p’% - ﬁn,k) (Tn,kM]Qp’% - I/A[n,k)
R2

|

dx

and

/R2 V(kaMk’q’% + un,k)V(kaMk’p’% — 17,,7]() dx

+ /R V0 (i 1+ ) (T, 1 — )

dx

F(Tn,kMk’%% + un,k) G(Tn,kMkJ,’# - ﬁn,k)
B /R x]? i /R
_ 4n(l —b/2)V/P(1—a/2)V/
= 1 1 o
aO/PBO/P

.
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Since HMk’q’%H(q) = HMk’p%H([,) =1, [|unill(g) = llttnkll(p) and using the fact that the support

sets of u, x, u, x and the concentrating functions are disjoint, we obtain

f(Tn,kng% + ”n,k) (Tn,kMk%% + un,k)

2 2 2
212 > 25— lunsly) = [ - dx
/ 8t iMyp, 1 = k) (TriMy 1 =l dx (4.59)
R? x| '
and
‘L'2 . H” H2 _/ F(Tn’kMkv%% +un,k) _/ G(Tn’kMkJ’v% _ﬁmk) dx
n,k nkll(q) R2 |x’b R2 |x|“
_ Ip(1 — 1/q
> 4m(1 b/21)/p (lip a/2) e (4.60)
%" "By
Using that F' and G are nonnegative functions in (4.60), we obtain
4m(1—b/2)V/P(1—a/2)/4
2> (1-8/ 1)/p (1/p D, (4.61)
a,
0 o
Define y y
4n(1—b/2)"/P(1 —a/2)"/1
Sk = Tik— ( / ])/p (]/p /2) > —g,. (4.62)
%" By
By (Ag), given R > 0O there exists Tk such that
tf(t) > Re®" and 1g(r) > R for all |t| > Tk.
Thus,
S (TgcMy 1+t j) (T My, 1+ tn )
R? Jx[?
g(’L‘ 7kM 1 —u, 7k)(T 7kM 1 —u, 7k)
/ L R e R (4.63)
R? x|

aO|Tn,kMk L'p
e 4 m
>R ———p—dx
{(x€B 3| TiM, 1 [>Tk} |x|
7 > i
M q
eBO‘T""k k-,p‘% |

+R/ —adx,
{XEB%:Mn,kMk,p’%}lzTR} |x|

where we used the fact that the functions u,, x and u,, ; are zero in B . From the definition of the

m

concentrate function, we have

q—1

(logk) ¢ =1 1
M, i (x)=—L (1-6 T, i |y < ——.
@ =" g ) i< —

From (4.61), for this given R > 0, there exists ng and kg (kg independent of n) sufficiently large
such that

g—1

(logk) « a1 , 1
Tn My g 1 (x) = kaﬁ(l =Og 1) T 2 TR, i < - (4.64)
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for n > ng and k > kg. Combining (4.59) with (4.63), we get

2 eaorf’k <47171;’]§/2 (1_6’@4-%) eﬁof,[f,k (4;]4(/2 (1_61@,/7-,%)
T, > = d d
2 E N
mVk m\/;
nRea()TI%L)k< h;f’/z( (Skvq,%) ﬁo nk 4/2( 5]{,]%,%)

T 22— bym2bk(1-b/2) + 2(2 a)ym2—ak(1=a/2) (4.65)
S TR (eaor,i’k(4';/ 5(1-8, rln)(1b/2)lnk+eﬁofzﬁk(4;]‘;/z(l5k1p’lll)(1a/2)lnk)
o 2(2—d0)m2_d0

where dy = min{a,b}. We emphasize that up to now, we have fixed n (and consequently, m),
where k can be arbitrarily chosen independently of n (k > Kg). By (4.11), we have

1

1
|6 1 | < C“VHL Bl/m 11 and |5 1 | < CHV”L Bl/m p/21nk.

md/? Ink

Increasing ng if necessary, we have

Vi Vi
(1 — 6]{’(1’%) > I—Cm, and (1 —5](7177,") > l_cﬁ( where Vl = ||V||L°°(Bl)'

Using these estimates in (4.65), we get

2 > R Ty, (4711')‘;/2(lfCh‘i—lk)f(lfb/2)lnk+ Borjk(4‘; (1 —C k) —(1—a/2) Ink
n.k = 2(2 _ do)mzfdo )
Using Young’s inequality (X?/p+Y9/q > XY) with
% (1-b/2)Ink B n % (1—a/2)Ink
X — pl/pe P nk (47) p/2(] Clnk) P and Y — ql/qe qO Zk 4710];/2( Clnlk) — ,
we find
2o anl/pql/q (%Trﬁk (47131;/2+%013‘k (471;;1;/2)(lfcl‘rfllk)f(17175)2)1111(7(17‘1{12)1;11( (466)
k=22 — do)m>—do ' .
Using again Young’s inequality, we get
ay , Ink Bo q Ink 1/p ]/q nk
—T T, 1 k.
p M Gamp g G = %0 P
Replacing in (4.66), we have
1/pg1/q T;%A n —a/2)In
2 nRp'"q oy By (1-C ) Ink— =222k 1=/ 2] k7 (4.67)

>
nk = 2(2 d())m2 doe

for n > ng and k > kg. Consider
R:=2(2—dy)m> %,

Since m depends on n, and k depends on R, kg depends on n. With this choice, we obtain

oa/rgl/ab nk Vi (1=b/2) (1-a/2)
TikZﬂmpl/pql/qe[ By 4z (1-C)——, . ]lnk’ (4.68)
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for k > kg. If the sequence {’L’,f i fn>no is unbounded, using (4.68) we get a contradiction. Thus,
{ri i fn>n, 18 a bounded sequence. In particular, without loss of generality, we can assume that

there exists s € R such that

4n(1—b/2)VP(1—a/2)V/4 4m(1—b/2)V/P(1—a/2)V/4
a&/pﬁ(}/p st ag/pﬁg/p

, a8 n— +oo.

2
Tl’l,k = Snk _|_

Moreover, by (4.62), s > 0. From (A7), we can suppose without loss of generality that

1/p 1/q
% By
> . 4.69
(1—b/2)V/r " (1—a/2)V4 (4.69)
Now by (4.65), we have
p __Ink YN
22, > ame ™ e 1) TG (4.70)
Writing
4m(1—b/2)V/P(1—a/2)V/4
e L TE K

aé/Pﬁ()l/P

and replacing in (4.70), we obtain

p/2
% (s+4““’2’/2)1/”“’”/2)1/q +0n(1)> Ik _(1—C L)~ (1—b/2)Ink

1/p.l/q p/2 Ink
Tp i > Tme % "o )
—b/2)V/P(1=a/2)1 /4 p/2 n
R %(47:(1 bfl)/pﬁ(ll/q /2) +0n(1)) (4;);; 7 (1=Cpk)—=(1-b/2) Ink
> mme 0 Po
1200 o121 _u/\P/2q
(ao ( ”/2>p/2f11 </2) +0n(1)> Ink(1-C Lk )—(1—b/2) Ink
> tme Fo
1200 o01/2(1 0 yp/2 U200 /21 _ajayp/24
oy (1-b/2)1 /2 (1-a/2)P/24 Va7 (1-b/2)1 /2 (1-a/2)
< 0 e +0n(1)—(1—b/2)> Ink——1-0 o +on(1)
> Tme Po Po .

Using (4.69), we have

oy (1=b/2) 2 (1 —af2)p/%

p/2q
0

—(1—b)2).

Thus,

CVlaé/z(l—b/z)l/z(l—a/z)P/ZQ

A(1— b /NP (1 — g/ (8+0u(1)) Ink— . +on(1)
Ho 1)/p (1/p YD ou(1) = mme o .
%' "By

s+

Taking n — +oo (and hence kK — +oo, where we used the fact Tg — 40 as R — +o0 and (4.64)),

we get a contradiction and the proposition follows. |
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4.4.4 Proof of Theorem 4.6
Proof. By Proposition 4.26, there exists a sequence (Up m, Vam) € Fym such that
Jn,m(un7m7‘7n,m) =Cpm € [GaR%] 4.71)

and

J,’l7m(un7m,\7n’m)(¢, y)=0, forall (¢,y)€ Fyn. 4.72)
Moreover, the sequence (i, Vnn,) is bounded in E. Thus, we can assume that there exists
(u,v) € E such that (u s, Vym) — (4,v) in E and

Upm —u and Vv, — Vv in L'(R?), forall r>1. (4.73)

Taking respectively (0, ) and (¢,0), in (4.72), with (¢, ¥) € F,.» N (5 (R?) x G52 (R?)), we
have

(Vun,mvilv/‘i‘ V(X)ummi/vl) dx = M dx
R2

R x|
and
/ (VV,, mVO +V(x)v, m(])) dx = M dx.
R ’ R |x]®

Taking the limit as n — +oo, using Lemma 4.21 and the fact that ;> F,n N (65 (R?) x
%y (R?)) is dense in E, we obtain

/Z(VMVITH-V(X)MITI) dx:/ g(wwdx, forall yew®
R

R2 |x]?

and

/ (VoVo +V(x / f a’x forall ¢ e W9,

Thus, (u,v) € E is a solution of the system .

It remains to prove that (u,v) is a nontrivial weak solution. Assume, by contradiction,

that u = 0 (which implies that v = 0). Thus, we can assume that
pm —0 and ¥V,, -0 in L'(R?), forall r>1. (4.74)

Taking (0,Vy ) and (upm,0) in (4.72) we have

80nm)Vnm , /) WSt o g 7)
R

/R , (Vitn V'V m 4V ()t iV m ) dx = / Ak

R [x|
From Proposition 4.27, there exists 8’ > 0 such that

_ 1/p(1_ 1/q
o < RO )0,
o' "By

Moreover, there exists 6 > 0 such that
(47r(1 —b/2)'/P(1—a/2)"/s §’> (- ot )-1/p _an(1-b/2)/P(1—a/2)V/1
ag/f’ﬁol/" 4 1—b/2 aol/pﬁol/p . 786)
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and

(47r(1 —b/2)VP(1—a/2)te g’> (1 3B >l/q _4n(l-b/2) (1 —a/2)Vs &
aé/pﬁol/p 4 1—a/2 - aé/pﬁol/p 8"

Taking (vim,0) in (4.72), we obtain

f unm f Unm)||Vnm
|Vnm|| |x|b < /Rz%dx 4.77)
Set
1-b/2 Ur vy
Vn7m:\/47r<—b/—6> P Vnm 4.78)
Qo mll(q)

Applying Lemma 3.10 in (4.77) with s = | f (up, m)|/a0/p t= /p|Vn7m|, r=pandr =gq, we

obtain

dx

1-b6/2 /p fun,m V,
Var(+ o2 =8) Ml < [, e

ea()‘vn‘m‘p _ 1 1 f " q
= /2 ( |x|? ! dr+ q/p / 2 )| _ 1/p4 %a’x (4.79)
R 0y " q {xeR .Wge p7)

Vel o (V) o

1 / f(Vn,n
o/ Jwemeil gl <e )

As in proof of Lemma 3.15, V,, ,, — 0 in W(q), and from (4.78), we have

(4m)P2(1-b/2)

1V,

This combined with Lemma 4.17, yields

(e%Vaml” 1) B
/Rz T dx = op(1). (4.80)

Now, we estimate the second integral of (4.79). Using (A;) there exists 6 > 0 such that
|f(®)| <|t], forall [f]<8.

We observe that
|f(t)|<|f()’\t| forall |r| > .

Thus, there exists C > 0 such that

1/p =

F(0)|7 < Cle]?, forall {te]R O el/P"}. 4.81)
120
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Let r > 1 such that rb < 2, using Holder’s inequality, (4.81) and (4.74), we have

/ ’f(un,m)’q dx
{XGRZ:V(MI”/’;")‘geI/Pq} |)C b
%
<c/ | el c/ | |9 dx (4.82)
- {xeBlz\f(u]n/,rpn)‘Sel/pq} |x|b {xERz\Bl:\f(”ln/,rpn)‘gel/pﬂl} )
% %
1 1/r q q
< C</Bl ) T+ Clunl
=oy(1).
Let ' mi
£ — m:;l{“f”ﬁ(’} - , (4.83)
4(477:(1 —b/2)P(1—a/2)"1 —6/)
1/p ol
aO/PBO/‘]
by (A1) and (A4), there exists C¢ > 0 such that
g
()] < Ceel®@ N forall 1eR.
Thus,
/ |f (unm)| [ln<‘f(”n,m)‘)} ]/pdx
{xeRzzilf%"/’;fﬂgel/Pq} |x|b aé/l’
C (0o+8)unm|? 1/
< / f ()| [in ( 8¢ )| ax (4.84)
Rz |x[P ol/P
0
|f(un,m)‘ 1/p C& 1/p

For each n € N consider

C
T, =dxecR2:n'/? <—5) 4 (o + E)VP |ty ] < (0t +28) Pty ] V.
al/p

0
Thus,
|f (st m)| 1/p C§ 1/p
| (tngn)| T, 1) Cy 1/ 1/ / J (Unm )t,m
< W \Tnm)| p(_—5_ p p : )
< o T [ 5 0 €0 20 [ SR
<In'/P (=5 / Y APnm)] 1/1’/ LTI 4.
<In <aé/p) e P dx+ (o +28) - P dx (4.85)
Observe that
1 S
In!/? (a]/p)
RAT, = {x €R?: |upm| <di}, where dj= 0

(a0 +28)1/7 — (o +&)'/7
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Thus,
RAT, C {x € R?: [f(unm)| < da}, where dy = max |f(s)].

s|<d,

Using similar arguments as the integral in (4.82), we can conclude that

[, el o, 0) (4.86)
R2\T,

x|

From (4.84), (4.85) and (4.86), we obtain
n,m n.m 1/ nm
/{xeRZ.f(unm) Pt [ln (Mﬂ dx < (a0 +28)'/7 Htnmlitnm 4, +on(1).

s <el/oty |x[? o7 R IX|b
0
(4.87)
Using this, (4.80) and (4.82) in (4.79), we have
1—b/2  \V/p 28 i/p [ S (tnm)tnm
— < —2)\/p EA Nt et e e . .
Vaz( o 8) " vnmllg <220 [ SRR a1 @89)
Taking (0, u,,) in (4.72), we obtain
~ 2 o ~ ~
H”n,mH(p) —/Rzg(vn,m)“n,mdx~
Analogously, we can obtain
1—61/2 1/q 2& g(i;nm)‘f;nm
Van -5 o 1+ 1/‘1/ SR x4 0g(1). 4.89
(g =8) Ml < (14 g0V [ EEEEE Ao (1), 489)
By Lemma 4.21, we have
F n,m G n,m
/ Wnn) 4 40 and W) 4y, (4.90)
R2 x| 2 |x]?
which imply
L Vit ¥V (it ) dx =t am) + (1.
R
By Proposition 4.27, we find
S (W)t 8(nm)Vnm 4n(1-b/2)"/7(1—a/2)"/e
R x %' By
Using (4.88), (4.89) and (4.83), we have
1-b/2 1/p —a/2 aq _
Var(+ 2 = 8) vl + V(- 5= 8) lnal)
28N\ 1/p S (U )t m 28\ 1/4 gVnm)Vam
<(1+= ———d 1 =2 n(1
< ( + oc0> - x]P x~|—< + ﬁo> /RZ X[ x+0,(1)
25 f(uan)”nm 8(‘7n m)";nm
<|(l1l4+—"— ———d ———d n(1
- ( +min{(x0 [30}>< R2 |x|? e R2 |x|@ x) +on(1)
An(1—b/2)VP(1—a/2)Ve
< —
= ( mm{oco B0}>< ol 717" 5)“"(1)
n(1-b/2)'/P(1—-a/2)'1 &

1/PB1/6I D)
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Now, we can suppose that, for all n > 1

\/4_7T<1_a];/2—3>1/p||vn,m|| +\/—< —a/2 3>1/q||b7n,m||(p)

Bo
4n(1—b/2)VP(1—a/2)!/1
SZ( aé/pﬁol/q B >

Thus, we can assume that

1 s4n(1—b/2)/P(1—a/2)V7 &'\ /1-b/2 ~1/p
[vnmllig) < \/E< a&/pﬁ(;/q a Z) (T a 6)

or

N 1 4n(1—-b)/P(1—a/2)V1 &'\ /1—a)2 ~1/q
[tnmll(p) < /_47:( o 7p e _Z)< Bo _5) '

Suppose that the second inequality holds. Rewritting

)/ (4717(1—[9/2)1/1’(1—(1/2)1/‘1_5_’)(1_ 860 >—1/q
Van(l—a/2)l/a aé/pﬁg/q 4 1—a/2 ’

and using (4.76), we obtain

||L7n,mn(p) <

k <4n(1—b/2)1/P(1—a)1/q_6_'>

Nnm S

lnallio) < a2 o "By ’
_ (47r)1/2(1—b/2)1/p_ 5’/301/q
= a)/? 8V4rn(1—a/2)!/a

In particular, aé/p||un,m||(q) < (4m)'/2(1—b/2)"/P. Thus, we can find » > 1 and 1 > 0 such that

r(00+1)|lun ) < (4m)2(1 = rb/2). (4.91)
By (A} and (A4), there exists C; > 0 such that

1£(s)] < |s| +Cp (el 1) forall seR.

From Hoélder’s inequality with #' = r/(r — 1), Lemma 4.14 and Proposition 4.8, we have

f(un,m)un,mdx</ nm| dx —|—C/
R

Rz | 2 |

et mlnnl” 1)

]x|b dx

e(aﬂ+n)|“n,m|p _ 1)r
|x|rb
(er(aO+n)‘”n,m|p _ 1)

|x‘rb

dx

3+ il + Coltunl [
R2

3o+l 3+ Colltnnl [ d

S+ ”“n,MH% +C3||”n,m||r’-

Using (4.74), we get
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Replacing in (4.75), we have
/R2 (VummVme + V(x)un7m7n7m) dx — 0.
Combining the last limit with (4.90), we get
J(Uums Vom) = 0,

which gives a contradiction with the fact that ¢, ,, > ©. Thus, (u,V) is a nontrivial weak solution.

4.5 Theorem 4.7

This section is to prove Theorem 4.7.

4.5.1 The geometry of the Linking theorem

Lemma 4.28. There exist p, ¢ > 0 such that J(z) > o, forall z € dB, NE™.

Proof. Given € > 0 for assumptions (A;), (A4) and (As) there exists C > 0 such that
|F(s)| < €ls]? -|—C|s|3(e2“°‘s‘p —1), forall seR

and
G(5)| < gls|> +C|s* (2Pl —2Bg[s|7 — 1), forall seR.

Thus, taking p; > 0 such that 2050pf7/oc;1k +b/2 < 1and ZBOpf/a; +a/2 < 1, by Lemma 4.16,
there exists C > 0 such that

F(u) |u|? ;
/Rz [x[? deS/RZde—i—CHuH(q), forall |[ull(,) < p1.

and

G(u) > 13 _
——=dx < —dx+C for all <py.
/R2 |x[@ r= S/RZ |x|@ x+Clul,), forall [lul,) < pr

Thus,

F(u) dx_/ Gu)

2 |xf?

J(u, :/ VuVii+V(x)uil) d —/
(u,u) RZ( uVi+V (x)ui) dx A e T
LTI Jul® 3
> lully —e [, o dx—Clull

e —e [ g cpap
2 %) R? |x]? (P)

1 & - ~
a2, —Cllulls + (2~ =Sae,, —cla?,

S (2%
_(2 )'1-,17) 2 )vl.,a
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which implies

1 € 1 €
)2 (L = £~ Clll )l + (L — =~ cl )l
(1) 2 | 5 T leellg) ) laelligy + (5 i all py ) lael| )
Chosen p;, € > 0, sufficiently small such that
1 £ 1 1 € 1
————Cpy >~ d -=—=——-Cpy > -.
2, P2Ea M g TPReg
Hence,
P> _ _
J(u,u) 2 7-=0>0, forall ||(u,u)|=p,
where 0 < p < min{py,p2}. |

We observe that, from inequality given in (4.2), we can choose mg € (0,1) and € > 0
such that

56+32v/3 R?
CG,a,b>+—6\/;, where R} =~ (4.92)
0p.a,bR] (1+e¢)
Let
2momt/2(1—a/2)!/4 2mom!/2(1=b/2)V/P
py = 2mom P a2 Ty gy = e (=) (4.93)
1/q 1/p
0 ao
Thus, we can write
1/2 - Up(y — _ 1/q (v —
1:(47r) ax Mi(1—-b/2)1P (u 2)7M2(1 a/2)14 (v —2) . (4.94)
14+¢ 1/p 2u 1/q v
aO ﬁo

Lemma 4.29. Let Q = {r(e1,¢1) + (0, —®) : [olg) < (3 +2v/3)R1,0 < r < Ry}, where
R > 0 is given by (4.94). Then, J(z) < 0 for all z € dQ, where dQ is the boundary of Q in
R(é’l,a) -T—Ef.

Proof. Note that, the boundary dQ is composed of three parts.
(i) Ifz€ dQNE~, we have z = (u,—u). Thus,
o F(u) G(~il) )
J(u,—u) =— VuVu+V a’—/—d—/—d<— <0,
(u,—u) /]1%2( uVi+V (x)uir) dx e P = |, X x < —lullf,) <

since F and G are nonnegative functions.
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(i) Ifz=r(er,e1) T (0,~®) = (re; + @,re; — 0) € IQ, with || 0|, = (3+2V3)R; and
0 <r <Ry, in this case, we obtain

—_—

J(z) = /]R (Vrer + ©)V(rer — @) +V(x)(res + 0)(rer — 0)) da

F =
_/ (re; + ) dx—/ G(re; — o) .
R |xf? R [

< /R (Virer + @)V (rer — @) +V(x) (rer + 0) (e — @) d

P —_—

= —/2 V(re; — @)V (re; — @) dx — /ZV(x)(rel —o)(re; — ) dx
R R
€] —

+/RZV(21’61)V(r a))dx—i—/WV(x)(Zrel)(l’Z\—/w)dx

< —lrer = 0|12, + 21|V (rer) 4|V (rer — @)

2,p
20V 7 |2,V o1 = @) 2
< —|[lrer — @[3,y +2[lrer[l g rer = @l ) +2llrer | g Irer — @1 )
< —|lrex[lt,) +2llrerll g @l (q) — l@IIF,) +4llrerlig) (Irerll gy + @l g))-
Since |le1|;) = 1 and 0 < r <Ry, we have
I(z) < —|@[|f, +6r| ol +3r < —[|o|f, +6Ril|o] 4, + 3R]

Using the fact that [|@||,) = (3 +2v/3)Ry, we get J(z) < 0.

—_——

(iii) Let z = Rl(el,a) —T— Rl(a),—(T)) = (Rl(el + (1)),R1(€1 — (1))) with ||a)||(q) <3 —|—2\/§.
Then, by (Ag), we have

J@) =R /R (Vier+0)Vu(er =) +V(x)(e1 + 0)(e1 ~0)) d

_/ F(Ry(e1 + 0)) dx_/ G(Ri(e1 —®))
R2 R?

x|
-~

< Ri|[V(e1+ 0)[24/V(e1 = @) 2., + RV (er + @) 2,4]V'/?(e1 = )

e1 +o|° o [ lei— ol
—C Re/ |—d —C R / —d
6761717 1 RZ |x|b X 9,(1,[) 1 RZ |x‘a X
2 —_ — 2 —_ —
< Rille1 + 0|y ller — @ () + Rille1 + ]| (g ler — @)

0 —— 19
_ 9 |el + a)| . 0 / ‘el — CO’
C97a7bR1 /RZ —|x|b dx C97a7bR1 R2 —‘x‘a dx

2,p

, e1 +0® e —o°
< 2Rler + 0l g ler - 0l )~ Coapkl it [ (! - ) dx
@) (@ b g <3+2vae2 U [x]P |x]@

. er+0|® e — o
<2R}(|le1 |y + |l @]|(0))* — Co.apRE inf / <’ + )dx
@ ) ol <3rava e N [ x|

< (56432V3)R? — Co o ,RY 89 0.1-

Now, using (4.92) in the last inequality, we obtain J(z) < 0.
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4.5.2 Finite-dimensional approximation

Let {e;};,cn be an orthonormal basis of eigenfunctions for the operator (—A+ V) in
H}(R?) := {u € H'(R?) : [V (x)u? dx < oo}. By Lemma 3 in Cassani and Tarsi (2015), the
sequence {e; };cn provides also a dense system in W(P) as well as W ). For each n € N, consider

the following finite dimensional subspaces:
E; =Span{(e;,e;): i=1,2,...,n}, E, =Span{(e;,—&;)): i=1,2...,n},
and
E,=E'OQE,.

Define
I,={ye ‘K(Qn,En_ ® R(el,é])) : ¥(z) =z, forallz€dQ,},

where Q,, = QN E, and Q as in Lemma 4.29, and set

, = inf maxJ(y(z)). 4.95
cn = inf maxJ(y(z)) (4.95)

Using Lemma 5.5 in Figueiredo, O and Ruf (2005), we have
Y(Qn) N (OB, NE,) #0, forall yecT,, (4.96)
for p given by Lemma 4.28. Thus, combining Lemma 4.28 with (4.96), we have
cp >0, forall n>1. (4.97)

Note also that, since the inclusion map 1,, : O, — E,; @ R(ey,e1) belongs to I, we have, for
z=r(e,e1)+ (u,—u) € Q,
F(re;+u) G(rei —u)
2 2 2 1 1 2
= J— — R J— - - 7 <
J(2) =rllenlly) — llullf, /]R{? P dx /RZ P dx < Rj. (4.98)

Let denote J,, the restriction of J to the finite-dimensional space E,. Then, applying Linking
theorem (Theorem 3.6) for J,, and noticing (4.97) and (4.98), we get the following result.

Proposition 4.30. For each n € N, the functional J,, has a critical point at level c¢,,. More precisely,
there is z, = (upn,vn) € E, such that

Ju(zn) = cn € [0,R3] (4.99)
where o and R are given by Lemma 4.28 and (4.92), respectively, and

J(z)(0,9) =0, forall (¢,y)<€E,.
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Lemma 4.31. Let (u,,v,) be the sequence given by Proposition 4.30. Moreover, assume that

(t4n,vy) — (0,0) in E. Then, up to a subsequence
unll(g) <Mz or |[Vall(,y <My, forall neN.

for My and M; given by (4.93).
Proof. If [Juy||(4) — O or [[V4||(,) — O the claim follows. Thus, we can assume that there exists a
positive constant d such that

[tnl|(q) >d and ||V >d, forall neN. (4.100)
Using the fact that |J(uy,v,)| < R? and

J (un,v,)(¢,¥) =0, forall (¢,y)€cE,, (4.101)

and employing similar arguments as in to Lemma 4.18, we obtain

(1 —3) 5 )t (1 —3> /Qg(v,,)vn dx < 2R,

M e v |
Then,
2
fltn)un o 2 pa (4.102)
Rz |x|? u—2
and F) oy
8\ 2
% dxdx < —RY. 4.103
RZ ‘x‘a 2 ( )
On the other hand, taking (¢, ) = (v,,,0) in (4.101), we get
S (un) T
[Vall(g) < P dx, (4.104)
where
v
[Vall(q)
Define

. mm{ eao(1—b/2)(47)" ePo(1—a/2)(4m)} } (4.105)

o+ (1-b/2)(4m)% +ea Bo+ (1 —a/2)(4m)% + €y
where £ > 0 is given by (4.92). Consider o; = o+ & and o = (1 —b/2)(47)2 — . By (A})
and (A4), there exists A > 0 such that

1F(s)| < Ae®B” forall seR. (4.106)

Applying Lemma 3.10 in (4.104) with s = | f (un(x))|/A, t = Oczl/p|Tn(x)|, r=pandr =g, we
obtain

all g < —> /(ea2|Tn|p_1>dx+ 1/ Sl g @aom)
nli(q) = azl/p R2 ‘x‘b gL {xeR2:|%")\Sel/pq} ‘x‘b

! )| |1/ 1 )| dx] |

A /{x€R2:|ﬂZ")>el/1’q} |x|? A
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By (4.106), we have

/ )l g L] e [ f)n
xRz Lnl ety [x]? AT e W

Since [|T;|| (4 =1, T, — 0in W@ and o < (1—b/2)(47)%, by Lemma 4.17 we can suppose

that ( P )
e® il —1
/Rszxzon(l).

Similar to the integral given in (4.82), we obtain

|f (un) |7

dx = o0,(1
e, 4=V
Using these estimates in (4.107), we have
1/p
a
1 ACOLE dx+o0,(1).

v <
Ivnllg < azl/l’ r2  |x|°
From (4.102), we get

RI+0,(1). (4.108)

o+ & 1/r 2u
Ivnllig) < ( - é)

(1-b/2)(4m)>

Similarly, we have

Bo+E& >1/q v,

[[tnl] () < ((1_61/2)(4%)3_& Ry +o0n(1). (4.109)

Now, if we have in (4.94)

w2 Mi(1—b/2)P(4m)' 2 (1 —2)
: (1+€)ay’? 2

and replacing in (4.108), we get

My (1—b/2)V/P(4m)'/? ( o+ &
I+e) ol/? (1—b/2)(4n
M <ao+§ (1—b/2)(4m)P/?

(I+e)\ a0 (1—b/2)(4m)5 —

>€—§)l/p+""<1)

HWM@S(

1/p
> +o0,(1).
3
From (4.105), we have

o %S (1-b/2)(dmpr"

7 <Il+e.
% (1-b/2)(4m)2 -
Thus, v Y
1 1/p 1
< <
||Vn||(q) = (1+£)(1+8) +0n<1) = (1—|—8)1/‘1+0n(1)
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We can assume without loss of generality that
Vall(p) = Ivall(q) <M1, forall neN,

On the other hand, if we have in (4.94)
_ My(1—a/2)V/P(4m)' /2 (v —2)
(1+¢) 01/11 2v

2
R
and replacing in (4.109), we can assume that

lunl|(q) < M2, forall neN,

this complete the proof. ]

4.5.3 Proof of Theorem 4.7
Proof. By Proposition 4.30, there exists a sequence (u,,v,) C E, such that
Jo(ttn, V) = ¢, € [0, R3] (4.110)

and
J,’l(un,Vn)((Z), y)=0, forall (¢,y)€E,. 4.111)

From Lemma 4.18, we have that the sequence (u,,v,) is bounded in E. Thus, without loss of

generality, we can assume that there exists (u,v) € E such that (u,,v,) — («,v) in E and
u, —u and v,— Vv in L’(Rz), forall r>1.

Taking (0, ) and (¢,0) in (4.111) with (9, ) € E, N (65 (R?) x 65°(R?)), we obtain

~ ~ . g(‘Zz)‘TI
/Rz(Vu,le+V(x)unn,/)dx_/]Rz B dx (4.112)
and -
~ ~ f(un)¢
% = : :
/Rz( vV +V(x)v,0) dx P dx (4.113)

Taking limits in (4.112) and (4.113), as n — oo, by Lemma 4.20 and the fact that U,le E.N
(657 (R?) x 65 (R?)) is dense in E, we obtain

/ (VuVy+V (x)uy) dx:/ g(mwdx, forall yew®
R2 R2 |x|¢

and

f(u)¢

R? |x[?

/]RZ (VoV +V (x)v9) dx = dx, forall ¢ ew,

Thus, (u,v) € E is a weak solution of (4.1). It remains to prove that (u,V) is a nontrivial weak
solution. Assume, by contradiction, that u = 0 (which implies that v = 0). Thus, we can assume
that

u, =0 and v,—0 in L'(R?), forall r>1. (4.114)
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From Lemma 4.31, we can assume without loss of generality that

2mom!/2(1 —b/2)'/P

l/p ’
&

forall neN.

[tn[(g) < M2 =

Note that, apM3 /s +b/2 < 1. Chosen ry > 1 such that oori M} /oy +b/2 < 1. From (A;) and
(A4), there exists C > 0 such that

I£(s)] < |s| +Cls| (e %B1" —1), forall seR. (4.115)

Using (4.115), Holder’s inequality with r, > 1 such that aorlrzMg / Qy +rb /2 < 1 and Lemma
4.14, we have
e’ a0|"‘n|

f(un>un dxg/
rR2 x| R2 x|

1 noo 5 ) (eCorirzlnl” 1)\ 1/r,
§</Bl|x|—rzb""> HunHzrferH”nHerCH“n\|z/2</R2 )

2 2 2
< Cillunly + a3+ Calaal 13,

)dx

where in the last inequality we have used Proposition 4.8. From (4.114), we get

f(”n)”n

— 0.
R xP

Taking (0,v,) and (u,,0) in (4.111), we have

/R (Vi 4V (x)uF) dx = / gn)Vn /Rz fluuy

R2  |x]* [xf?

Thus,

/R L (Vun Vo +V (x)un¥,) dx — 0 and Rzg(|x|1 dx — 0.

By (A;), we obtain

F
/ (u )d —0 and / d — 0.
R |« |XI“

Finally, we conclude that

J(un,?n):/R2 (VunVVn—l—V(x)unVn) dx—/R F(un) dx—/R G )d — 0,

2 xf? 2 e

which gives a contradiction with (4.110). Thus («,v) is a nontrivial weak solution. |
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CHAPTER

HAMILTONIAN SYSTEMS WITH CRITICAL
EXPONENTIAL GROWTH AND COERCIVE
POTENTIALS

In this chapter we discuss the existence of nontrivial solutions for the Hamiltonian system

{ —Av+V(x)y = 01(x)f(u), xeR? (5.1)

—Au+V(x)u = Q(x)g(v), x€R?
where V, Q1, 0, are continuous functions and the nonlinearities f and g possess critical exponen-
tial growth.

5.1 Introduction and main result

Since we are interested in find solutions with p,q lying on the exponential critical

hyperbola, we consider p > 1 and g = p/(p — 1). We make the following assumption on (V):

(V) V€ €(R?R), V(x) > Vy > 0 for all x € R? and there exists a > 0 such that

timint Y ) < 0.
el oo [x]
Fori=1,2 we assume
(Q;) Qi € €(R*\{0},R) , Q;(x) > 0 for x # 0 and there exists d; < m —1 and
b; > —2 such that
0 < lim Qi(x) < 4o and limsup Qi(x) < o0,
x|—0 |x|bi |

e[ e

Concerning the functions f and g, we suppose the following assumptions:



128 Chapter 5. Hamiltonian systems with critical exponential growth and coercive potentials

(B1) f,g€E(R), f(s)=o0(s")and g(s) =0(s"),as s — 0, where n; = max{1/(¢—1),min{p,q}}
and 1, = max{1/(p— 1), min{p,q}}.

(Ba) There exist constants 4 > 2 and v > 2 such that
0 < uF(s)<sf(s) and 0<VvG(s)<sg(s), forall s#0,
where F(s) = [, f(t)dt and G(s) = [; g(¢) dt.
(B3) There exist positive constants M and s such that

0<F(s)<M|f(s)] and 0<G(s)<M|g(s)|, forall [s|> so.

(Bs4) There exists o > 0 such that

f(s)] _ JHoo <o
sl €57 o > o,

(Bs) There exists By > 0 such that

. le(s)] +o0, B < Bo
lim Bh
sl = €7F 0, B>Ppo.

(Bg) The following limits holds

sf(s) . sg(s)
m —2- =+ and Iim ——— =
|| 400 els|? |s|—>+o0 ePolsl?

~+o0

(B7) For b; given by (Q;), i = 1,2 and o, Py given by (B4) and (Bs), respectively, then

(%min{1;1+%}>1/17>< Bo i )l/q
(14 3)? min{1,1+ %}

or

(ﬁomin{1,1+%}>l/q> ( O )I/P
(1+%)2 min{l,1+%}/

Remark 5.1. In (B;), we have 7 > 1 and 1, > 0, this imply that f(s) = g(s) = o(s), as s — 0.
Next we state the main result of this chapter.

Theorem 5.2. Suppose that V satisfies (V), Q; satisfy (Q;) for i = 1,2 and the nonlinearities f
and g satisfy (B;) — (B7) . Then, (5.1) possesses a nontrivial weak solution.
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5.2 Preliminaries
We define the following Lorentz-Sobolev space WlL‘z,’S(Rz) as the closure of the set
{u € G5 (R) : [ VullS,+ IV ullss < +oo},
with respect to the quasinorm
a5y 2= (19l + 1V uly,)
We denote the space WIL%,’S(RZ) as E®) and the quasinorm || - [ 129(R2) 33 - [l s)-

Lemma 5.3. (See Cassani and Tarsi (2009).) If u € L>*(R?). Then,

* s l/SH”H2s
< (= : .
|u (r)|_(2) YR forall r>0

By Lemma 5.3, for all u € W'Ly*(R?), we have

1/s. \* s l/s”u“(s)
(vFu)' () < (5) s, forall r>0. (5.2)

Let A be a measurable set in R2. We denote
WL (A) = {uy :u € WL (R?)},
foreach A > 1andi= 1,2, we set
LMA,0) = {u : [ Qilx)luf* dx < +o}

endowed with the norm A

lilhsag = | [ @i as|
In particular, we denote L* (A4, 1) := L*(A), ||uHL,1(A) = H”HM(A,1) and ||ul|, = ||MHL7L(R2)'
Lemma 54. Let ] <A < +o, s >1and 0 < r < R < +o0. For i = 1,2, the embedding

WIL%/’S(BR\Br) < L*(Bg\B,,Q;) is compact.

Proof. We observe that, there exist D} > 0 and D, > 0 such that D} <V (x) < D, for all x € Bg\B,.
Thus, the quasinorms of WIL‘Z,’S (Bg\B,) and W'L>*(Bg\B,) are equivalents. Moreover, arguing
as in the proof of Lemma 2.38, the space W'L?*(Bg\B,) is compactly embedded in L* (Bg\B;)
for all A > 1. Thus,

WL (BR\B,)—L*(Bg\B,), forall A>1.

Since Q; is continuous on R?\ {0} there exist D3 > 0 and D4 > 0 such that D3 < Q;(x) < Dy for
all x € Bg\B,, i = 1,2. Thus,

L*(Bg\B;) < L*(Bg\B,,Q;), forall A >1,

and the proof follows. u
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Lemma 5.5. Let | <A < o0, s > 1 and R > 0. Then, the embedding WIL%,’S(BR) s I} (Bg)

1S continuous.

Proof. Since V (x) > V, for all x € R?, as in the proof of Proposition 2.48, the space WIL‘Z,’S (Br)
is continuously embedded in W!L?*(Bg). Arguing as in Lemma 2.38, the proof follows.

From conditions (V) and (Q;) for i = 1,2 there exist positive constants Cy,Cy,C3,Cq4,Rg
and rp such that

Cilx|* <V(x), forall |x|> Ry, (5.3)
Qi(x) < Gy|x|%, forall |x|>Ry, i=1,2 (5.4)

and
Calx|” < Qi(x) < Cylx|?, forall 0<|x|<ry, i=1,2. (5.5)

Proposition 5.6. Assume (V) and (Q;) for i = 1,2 and let s = g or s = p. Then, the following
embeddings
WLy (R*)—L*(R%,Q;), forall A >min{p,q}

are compact.
Proof. We prove for s = g and Q1, without loss of generality, we consider the case where g > 2.

This implies that min{p,q} = p = ¢q/(q—1). In order to prove the continuity of the embedding,
it is sufficient to show that

u
S, := inf il lull ) > O.
uéé?q> leell 2 m2,0y) 11, e, oy~

ucE@

In fact, on the contrary, there exists a sequence (u,) such that
luallyr gegpy =1 and uall gy = 0n(1): (5.6)
Thus,
A _ A Ag. A
/ 01 ()|t * dx = / 01 (x)un| dx+/ () | dx = / O()|unl* dx (5.7)
R2 |x|<r <|x|<R |x|>R
where R > Rp and 0 < r < rg will be determined later on. Using (5.4), we have

01 () |un|* dx < cz/ x| (1| * dx

|x|> [x|=R
_ _aL A
—oe [ () ) d
[X[>R
_ _ak A
<GoC, q“/ x| 1" (Vl/‘1|un|> dx
xX|=>
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Using Hardy-Littlewood inequality, we have

. o0 x X * *
01wl dx < ey [ (FEEELY () (v o)) ) () ar

x|>R x| @

Since d; +1 < and ;< A, then, di + 1 < %, Moreover, a direct calculation shows that

(X{‘L)ZI';R})* — <m>ﬁ/2, forall B >0

Using Lemma 5.3, we obtain

Vo prer 1 B )
< q/ q / 2(1 2 7
/WR 0100l dx < ¢ o (4) 0 <R2+r/ﬂ) R gy

_ 1/q too 1 572 1
< q/l g )L/ 2q 2_ .
scien(3) Cally | (prm) "

Note that 1 5+6= Z -3 4 for some & > 0, Then, for some constant Cg .¢ depending on R and ¢

we have

1 3+8 1
Adx < : = A
0l dx <c(2) Nl [ () mdr=Cralully = on(1)
(5.8)

X[=R

Now, we estimate [, Q(x) |un|* dx with 0 < r < min{ry, 1}. We consider two cases:

Case 1: b; > 0. Using (5.5) and Lemma 5.5, we have

01 () |un|* dx < c4/| § x| 10| dix
x|<r

|x|<r
< Cyr / lup|* dix
|x|<1
< Ci i,

=op(1).

Case 2: —2 < b; <0. By (5.5), we have

01 () |n|* dx < c4/| § x| 10| dix
x|<r

lx|<r
Taking & = &(b1) > 0 such that 0 < b; = § — by < 2, we can write

Jun|*

/||< Ql(x)|un|’ldx§C4/ |x|b1|un]xdx§C4
x| <r

|x|<r lx|<r |x|l_’1
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Taking 6 > 1 such that 0 < b1 0 < 2 and using Holder’s inequality, we find

dx 1/9 / 1/9/
A 16
dx<C / - / d
/xSrQl(x)\un! x < 4( e |x|b19> < ‘x‘gr!un| x)

2751’27516 1/6 A
<GS0 :
—C“( 2-b10 ) el 5,

27'[1"27516 1/6 A
<G(5pg) Ml

2n 1/6 2
< =

where we have used Lemma 5.5 and the fact that 0 < » < 1. From (5.6), we have
/ 01 (x)|un|* dx = 0,(1). (5.9)
|x|<r
Thus, from (5.8) and (5.9) in (5.7), we get
/ Ql(x)yun\’tdx:/ 01 (%) dx + 00 (1).
R2 r<|x|<R
Using Lemma 5.4 and (5.6), for a subsequence (not renamed), we obtain

/2Q1(X)|un|ldx—>0, as n— +oo
R

which contradicts (5.6). Now, we prove the compactness. Let (u,) be a sequence in WIL‘z,’q(]RZ)
such that u, — 0 weakly in WIL%,"I(RZ). Then, there exists Co > 0 such that |[uy||(4) < Co. From
(5.8), we have

A —a/d g (I\Y /°° AL ¢
< q S PR
/szQl(x)’un| dr <G C2n<2> luallty 0 <R2+r/7t> ri/2 dr R%0

We observe there exists C > 0 such that

/M( 1 )MLdr—ﬁ °°< 1 )é+6 L C
0 \R24r/n/ /27 R¥Jo \14z/ /277 R

Thus, for given € > 0 there exists R > 0 such that

01 (x)|un|* dx < g (5.10)

x|2R

On the other hand, from the proofs of cases 1 and 2, there exits C > 0 such that

O1(xX)|up|*dx < Cr®', if b >0

|x|<r

and

2—-b1 6
g 01 (X dx<Cr o, if —2<b <0.
x| <r
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where b0 < 2. Thus, we can find r > 0 sufficiently small such that
€
/ 01 (x)|up|* dx < =, (5.11)
x|<r 3
Moreover, by Lemma 5.4, there exists ng € N such that
/ 01 () |un* dx < £, forall n>ng (5.12)
r<|x|<R 3
From (5.10), (5.11) and (5.12), we have
/2 O01(X)|up|* dx < e, forall n>ng,
R

and the proof is complete. ]

5.2.1 A Trudinger-Moser type inequality

In the following, we present a Trudinger-Moser type inequality suitable for the spaces

introduced in this chapter.

Lemma 5.7. (See Lam and Lu (2012).) Let 0 < A < 1, 1 < s < 0 and a(t,r) be a nonnegative

measurable function on R X [0,0) such that
a(t,r) <1, O<t<r

and

sup ( [/i—i—/;m} (a(t,r»s/sth) b =Y < oo

r>0

Then, there exists C = C(7,s) such that for every nonnegative function y satisfying

~+o0
/ y(r)'de <1,

we have e
/ e 20 gr < C,
0

where

(r)=2r—A( / " w(t)alt.r) ) e

—00

In the next result, we follow Lu and Tang (2016) to prove a version of singular Trudinger-

Moser inequality for E(*).

Proposition 5.8. Let s = p or s =g and i € {1,2}. Then, there exists C = C(s,Q;,V,a) > 0 such
that

s/(s—1
sup RzQ,-(;c)(g““ e >—1) dx < C, 0<O‘<O‘s*,bi7
fJull (<1

where

gy, = min{ (Va0 (Vam/e D (14 %) ]
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Proof. Consider u € E®) with Jul|(5) < 1. Take

1:/2Q,-(x) (e“‘"‘“‘/“‘” —1) dx =1 +1, (5.13)
R
where

I = 0i(x) (e“‘“‘s/(s_w — 1) dx and b=

[x[<R

0;(x) <e(x|u|s/(8—l) _ 1) dx,

|x|>R
for R > +/27R3. From (5.3) and (5.4), we have

12:/ 0:i(x) (ea\“\"/(“”—l) deCz/ ’x|d,-<ea|u|é‘/(s—l)_1) i
lx|=R |x|>R

Lo o |u|s/ =D

= Cz |x|di Z

‘/ |x|d, |JS‘/S1
J 1] |x\>R

/(6)
—0Y / 5 (o)
1J' [x[>R

dx

= ool Js/(s—=1)
<oy ¥ / x| (V1)) dx.
j—Zl C{/(S_l)]' |x|>R ( )

Using Hardy-Littlewood inequality, we have

[ e ) s / (FLEY 0 (1)) )

e[+
Since d; < W 1, then, we have d; < ;%7 — 1 for s = p or s = q. Thus, using Lemma
5.3, we obtain
« js/(s—1) 1s [+ 1 =4 |V su)
/ |x|di_sjj <V]/S|u|> dxﬁﬂ:(i) / ( > )2( ||( ) H2,s dr
>R 2 0 \R’+r/m rl/2
ja ﬂ 1
2

Observe that there exists &y > 0 such that % +6) = z(sa_] 4 Then,

2
/+°° < 1 > 2(ij / 2(;11)_% 1
—_ —=dr
0o \R2+r/m rl/2 R2+r/7r rl/2
%+60 1

IN

/ R2+r/7r rl/2
= Cy4(a,d;,s,R).
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Thus,

- . otlul/6=D S\1/s
b= o(e 1) dx < CoCan(3) Z—c{/““) ;

= C5(R, OC,a,di,S).

Now, we estimate the integral /;. Now, we estimate the integral [;.

Case 1: b; > 0. In this case, by continuity of Q;, there exists Cg = Cg(Q;, R) > 0 such that

1, <Cs / (el
|x|<R

By Hardy-Littlehood inequality and the fact that (¥{x<r})" = X{o</<zr2}> We have

s/(s—1) | |x/(x71)

1)dx:C6/RzX{x§R}(eau —l)dx.

TR? s 1s/(s— R % (4\[8/(s—
I <G / (el Oy ar < / O g (514
0 0

From Lemmas 2 and 3 in Cassani and Tarsi (2009), for each u € wlp?s (]RZ), we have

W (r) — u (TR?) < \/z_n{/nR |Vu| / Vul*(0 } (5.15)

Consider v defined by

* % 2 2
v(r)::{ w(r) —u* (7R, 0<r<mR? 5.16

0, r> R
Observe that
(m4+n)? <md+q29 ' m9 In+q297 4, for mn>0, ¢>1.

Given € > 0, by Young’s inequality, we have

q—1 1—q

E 7 E e
(m4+n)? <mi+ (q_—q1> ! mIgpa! <qTq1) " n+ @2t n? < (14 €)md + Ce gn.

Then,
(7)) 07D < (148)v(r))/ 07D 4 Ce y|u* (mR?)]/ 67, (5.17)

Now, we estimate u*(7R?). From (5.2), we have

l/s % (P2 /s, \* (o2 S\ |lulls sy 1
(xR < (v!'u) (2R < (5) e < (5) T

Thus, there exists Cg, = C(Rp,s) > 0 such that

W (P < (L) ()7 4 Cpy: (5.18)
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From (5.14) and (5.18), we find

2

R? .
Il S C6 /ﬂ e“(1+€)| v(t))* $/(s= +CR dt < C eCRO /TE ea(l+g)|v(t)|5/(sfl) .
0 0
Taking t = TR2e™",
e 2 ,—r\|s/(s—1) _
I < C67IR26CR0/ o0 (1+€) (TR )| iy
0

Taking 6 = wR%e~" in (5.15), we obtain

(R2 fr

—+oo
{ / Vul* (TR )e /2 di + 1 / Vul* (xR e dt}
r
(5.19)
Since a < o b = Vi 47rs/ (s=1) (b; > 0), we can find € > 0 sufficiently small such that

(a(1+¢)* " U5 < /a7 Then,

—l—er/z/ ]Vu|*(7rRzet)e’dt},
r

((X(I—I—S))s_l/sv(nRze_r < {/ \Vu|*(mR*e ™" )e™"/? di

which implies

~+o0
(a(1+€) P u(zR2e™) < / w(t)alt,r)dr, (5.20)
where
0, £ <0,
a(t,r):=¢ =02 r<y, (5.21)
1, 0<t<r
and
R2IVul*(mtR2e e 1/2 >0
lll(t)::{ VAR?|Vul*(mR*e e /%, >0, (5.22)
0, t <0.
Note that,
0 +oo e 2(s—1
[/ +/ }(a(t,r))/ Lar = (ss ) (5.23)
and
e 2ns/2 [T ¥ 2 NS —st/2
/ (oY dt = (nR?) / (|Vul* (xR% ")) e/ dr1.
oo 0
Taking = wR%e ™", we obtain
Foo nR? sdr
/ w(t)sdt:/o (IVul*(r)r'/?) —<||Vu”25§||u|| : (5.24)

By Lemma 5.7, we have
—+oo
/ e ®0) qr < C,
0
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where

oo >s/(s1) (5.25)

o(r)=r—( [ w@)al,nar
From (5.20) and (5.25), we get
I < Ck / 7 alire R g / e gy — )
0 0
Case 2: b; < 0. Using (5.5) and the continuity of Q;, there exists Cp, > 0 such that
n=[ o(e 1) dx+

Ql'(x) (ea|u|s/(s—l) o l) dx
lx[<ro

< C3/ |x|bi <e(x\u‘s/(s—1) _ 1) dx—f—CQi/ (eoc\u|s/(s—1) _ 1) dx
[x|<R lx|<R

< c3/ P (ﬂ‘““”“’” - 1) dx+Cy,
|x|<R

ro<|x|<R

where we use the case 1 in the last integral. By Hardy-Littlewood inequality, we have

2

TR * s/(s—
,1§C3/ a2 (21 Oy ar g ¢y,
0

Using (5.18), we obtain

TR? "
I <C37ch0/ 0172 g@(148) (1)1~ 4-Cry di +Cy.
o 0

Taking t = wR%e~", we find

I < Colar?) e [ R g e (526
0
(s=1)/ by =1/
We can find € = €(a,s) > 0 such that <a(1 —|—8)> T < 47r(1 + 5’) S Thus,
replacing in (5.18), we obtain
_ bi\(s=1)/s [Fe
(a1 + )V oy(aR2e™) < (1+3’> ’ / w(t)al(t,r) dr, (5.27)

where a(t,r) and y(z) are given by (5.21) and (5.22) respectively. By Lemma 5.7 with
0<A=(1+b;/2) < 1,(5.23) and (5.24), we have

—+oo
/ e ®Mgr<c, (5.28)
0

where
D(r) = (1+bi/2)r—(14+b;/2) (/+ y(t)a(t,r) a’t)sml),

Using (5.27) and (5.28) in (5.26), we obtain

L < C3(7TR2)1+bi/zeCR0 /'+oo ea(H—e)|v(7rR2efr)|s/(s71)_(H_bi/z)rdr+C7
0

e oo (s=1)/s
< C3(7.L.R2)1+bi/2eCR0 / e(1+b,'/2)(f,w y(t)a(t,r) dt) 7(1+b"/2)rdr—|—C7
B 0

+o0
:C3(7-L-R2)1+bi/zeCR0/ ) gr i

0

= Gs.
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Thus, using estimates /; and I, the proof follows.

Proposition 5.9. Let s > 1 and (u,) be a sequence in E(*) and let u € E(*) be such that
u, —u in EW.
Then, there exist a subsequence (u,,) and a function 2 € E () such that

|tn, (x)] < h(x), forall k>1 andalmosteverywherein RZ.

Proof. Since E () s wip2s (]RZ), we can assume that u,, — u almost everywhere in R2. Moreover,

we can extract a subsequence (uy, ), denoted by (uy) such that

1
a1 — il () < 72 forall k> 1.

Set
Z |1 (x) — e (x)).
Then, (g,) € E®) and lgnll(sy < 1 for all n > 1. That is
IVgnllas <1 and [|[V'Yog,|las <1, forall n>1.

Since (V!/%g,(x)) is nondecreasing almost everywhere in R? and SUp,,> [V1/3gull2s < 1, by
Proposition 2.31, there exists gg € L>*(R?) such that

Vg, —go in L>(R?). (5.29)

From (V) and arguing as Proposition 2.48, we obtain

||gn - ||(V1/Sgn gO)Vl/Sst — 1/Y||V1/Sgn

Vl/s
Thus, g, — go/V/* in L%*(IR?). Moreover, using the fact that (Vg,) is bounded in (L>* (]Rz))z,
from Lemma 2.43, g, — go/V'/* in W!L?*(R?). In particular,

1V(gn—

s =0

and using (5.29), we get

V! (gn — 2. = 0.

Vl/ )
Thus,

gn— 8= go/Vl/s in EV.

Using again the fact that E(5) < W12 (R?), we can assume that g,, — g almost everywhere in
R2. On the other hand, for [ > k > 2, we have

|4 (%) — g ()| < ot () — w1 ()| + -+ + g1 (6) — g ()| < g1—1(x) — gr—1(x) < gr—1(x).



5.3. Variational setting 139
Taking [ — 4o, we obtain
lu(x) —ug(x)| < g(x) almost everywhere in R
Thus,
lug(x)| < h(x) almost everywhere in R
where h:= g+ |u| € EW), [

We observe that, by Proposition 2.57, we can construct a map tilde from E @) to E(P)
and the set E = E@) x E(P) endowed with the operations given by (2.60) and (2.61) satisfies the

same properties given by Lemma 2.54.

5.3 Variational setting

In this section, we describe the functional J : E — R, associated to the system (5.1)

which is given by

J(u,7) = /R (VuVi 4V (x)up) dx /R O1(0)F (u)dx— /R 02(x)G(V) .

Proposition 5.10. Assume (Bj),(Bs) and (Bs). Then, the functional J is well defined and

belongs to the class ¢’ (E,R) with
TP 0.9) = [ (V¥ +V (3Julr+ V7V0 +V (2)79)
- [, owrwods— [ 0:(0s(mwar,
R R
forall (¢,y) €E.

Proof. Let u € E(9 and v € E(P). By Holder’s inequality in Lorentz spaces, we have

| [, VuvTas| < [Vule 1952, < lll 171

and

‘ ZV(x)qudx‘ V(x)l/un(x)l/”?fdx‘ < [V || g||VV/75]
R

- ‘ .
Using (B;) and (B4), there exists C > 0 such that

£ ()] < |s| +C(el @D _ 1) forall seR.
Thus, there exists C > 0 such that

IF(u)| < Clul?> +C(el@F D" _ 1)y,

Using Proposition 5.8 and Corollary 5.6, we obtain

)/ Ql(x>F<u>dX\sC / Q1 (x)|u]* dx+C / 01 (x) (XTI — 1) dx < oo,
RZ R2 RZ

2,p < HuH(q) ||‘7||(p)

(5.30)

(5.31)

. (5.32)

(5.33)

(5.34)
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Similarly, Q»(x)G(¥) belongs to L' (R?) for all v € E(). Thus, from (5.31), (5.32) and (5.34),
we conclude that J is well defined in E. Moreover, using Proposition 5.9 and arguing as in proof
of Lemma 4.13, we can prove that J € €' (E,R) and J' is given by (5.30). [ |

We say that (u,v) € E is a weak solution of (5.1) if
/RZ (VuVy +V (x)uy + VoV +V (x)ve) dx = /RZ O1(x)f(u ¢dx+/ 02(x)g(V)ydx,

for all (¢,y) € E. Consequently, critical points of the functional J correspond to the weak

solutions of (5.1).

Lemma 5.11. Let s =g or s = p, o > 0 and r > 1. Then, if u € E®¥) is such that ull () <M
with oM/ (=1 < Oc;‘ by then there exists a positive constant C = C(a, M, r,s) such that

r uls/6=1) r
Ol (¢ 1) dx < Clulf,

Proof. Consider the case s = g and s/(s— 1) = p. Choose r > 1 close to 1 such that raM” < o,
and sett’ =1/(r — 1). Thus, using Holder’s inequality and Lemma 4.14, we obtain

[ ool (e ~1yav< ([ ot 1y ax) ([ o ax)”
< </]Rz Qi(X)(etoc\u\P _ ])dx)l/t(/zQi(x)|u|r,/dx)l/t

< </R2 Qi(X) (etocM/’(uu )P

!

1/t
07 =1)dx) "l e g

By Proposition 5.8, we have
: r(e@ul” _
Qi (e 1) dx < Clally g
Finally, we use the continuous embedding E(@) < L' (R2, Q;). |

Lemma 5.12. Lets =g or s = p and {u, € W : ||u, |(sy = 1} be a sequence converging weakly

to the zero function in E(*). Then, for every 0 < oo < ¢, , we can find a subsequence (not

q, b ’
renamed) such that

lim Q ( )(ea|un|s/(s—l) _ 1) dx = 0.

n—oo
Proof. We prove in the case s = ¢g. Let € > O such that d + € < o bi° Since,

e 1 P 1
lim ——— =1 and lim =0,
i i (@ 1)

then, there exists ¢ > 0 such that

e —1 < cftP+cfe|(el TN 1), forall teR.
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Hence,

- Qi(x) (ea‘“”|p —1)dx < C/R2 Q,-(x)|un|pdx—|—c/Rz Qi (x) |uy| (e(‘”g)‘””'p —1)dx. (5.35)
By Hoélder’s inequality and Lemma 4.14, in the second integral of (5.35), we get

w, |P " 1/t
/Rz Q,-(x)|un|(e(“+€)| AP 1) dx < Hu””U/(Rz,Qi)(/Rz Qi(x) (et(oHe)\ n|P_1)) dx) .

Since |[un||(sy = 1 and (¢ + &) < o7 ., by Proposition 5.8, we obtain ¢ > 0 such that

/Rz Qi(x)|un|(e(a+e)|uﬂlﬁ —1)dx < cHunHLp(RaQO +C““nHLf’(R2,Q,-)' (5.36)

Replacing (5.36) in (5.35), using the compact embeddings of E@) in L?(R2, Q;) and in L' (R2, Q;)

and the fact that u, — 0 in E(@), we get a subsequence (not renamed) such that

lim | Qi(x)(e®“!” —1)dx = 0.
R2

i
|
Denote
A, := inf i and Ag, = inf M (5.37)
ueE@\0 Jr2 Q1(x)u?/ dx aeEM\0 Jr2 Q2(x)u? dx

By Holder’s inequality and continuous embeddings we have that A, and /Nle are positives

numbers.

5.3.1 On Palais-Smale sequences

Lemma 5.13. Assume (B;) — (B2),(B4) — (Bs) and let (u,,v,) be a sequence in E such that
|J (tp,vn)| < d and

[ (s ¥0) (9, )| < &1 (@, W)l forall ¢,y € {0,un,va}. (5.38)
Then, ||(u,,v,)|| < ¢ for every n € N and for some positive constant c.
Proof. Taking (¢, ) = (uy,v,) in (5.38), we have
2 [ (V554 Vi) dx = [ 0100w )und— [ 02(00g(7)7 ] < el (1.2
Thus,
/RZ 01 () f (tn )t dx+ /Rz 02(x) ()P dx < ‘z/RZ (Vitn Vi + V()11 dx) e (s ) |-

Since

/R (Vi VTV (JutaTi) o = I, T) + /R O1()F (1) dx + /R 02(x)G(T) d,
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we get
01 (x)f(”n)”ndx+/ 02 (x)g(Vn)vn dx
Rz RZ
§2d+2/ 0 (x)F(un)dx+2/ 02(x)G(F,) dx+ & (16,72
RZ RZ

Using (B;), we obtain

/]R2 Q1 (x)F (up) dx < ﬁ/Rle(X)f(un)undx

and
/]R2 02(x)G(vn) dx < %/RZ 0:(x)g(V,) v dx.

Hence,

(1- %) [ 010 wumds+ (1-2) [ 0208 < 24+ &l 7)1

Thus, there exists ¢ > 0 such that
/ 01 (X) £ (un )it dx < ¢+ &,]| (16, 7)|| and / 02(x)g(7) T dx < ¢ + €| (tn, 7). (5.39)

On the other hand, taking (¢, ) = (v,,,0) in (5.38), we get

/ (Vou i+ V (x)va¥) dx < / 01 () f () v dx + €| (v, 0) -
R2 R2

This means,
lvall?,) / Q1 (%) f (tn) v dx + €| vall ()
Set
T,= "
[vall(q)
Then, we can write
[vall(q) / Q1 (%) f (un) Ty + &n- (5.40)

Let oy > 09 and 0 < o < @, . By (B1) and (By), there exists A > 0 such that
1f(s)| < Ae®B” forall seR. (5.41)

Applying Lemma 3.10 in (5.40) with s = | f (us(x))|/A, t = Oczl/p]Tn(x)\, r=pandr =q, we

obtain

M
vullca 1/p/ N LACDII .

—l aZ‘Tn‘p 1 g
< azl/p[ L, Q1) _l)dx+W/{xeszun ety Q1 (x)|f(un)|9dx (5.42)

1

- . dx| + &,.
A {XGR22|'f(X'1>‘2e1/Pq} n

Q1 (x)|f (un)| I/ B
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From (5.41), we have

/{E]RZ.JCW)|> l/q}Ql(X)|f( 2)|In'/? ‘f( )l <a‘/"/ 01 (x) f (un)up dx. (5.43)
X R [=el/p

Since [Ty |(q) = 1 and 0 < a» < e, , by Proposition 5.8, there exists C > 0 such that
Q1) (e~ T)ax < C. (5.44)
R

Now, we estimate the second integral in (5.42). From (Bj), given &€ > 0 there exists § > 0 such

that
1 1
|f(t)] <&aTlt|aT, forall |[t| <9,

which implies
lf()|? <E&|f(t)t|, forall |t <F. (5.45)
Note also that

]

)" < (xeﬁq)qflg, forall {|f|>8:[f(r) < e}, (5.46)
Then, from (5.45) and (5.46), we get
FO <Elf()], forall {teR:|f(r)| < Aer}, (5.47)

1
where ¢ = max{(Aer? )41 /§,&}. By (5.39), there exist ¢ > 0 such that

0\()|f(w)|?dv < |

{xeR2:|f—<j{”) |<el/P?y

/{xeR2:f<j{”>§e‘/ﬂq} O1(x) f (up)uy, dx
< c1+ &l (un, va) |

which together with (5.43) and (5.44) in (5.42), gives that there exist ¢ > 0 such that

[vallig) < c+ C/RZ O1(x) f (un)un dx + €| (un, vn)||- (5.48)
On the other hand, taking (¢, y) = (0,u,) in (5.38), we can obtain d > 0 such that

liinll (g < d+4d /R Os(X) ()T dx -+ | 1, 7). (5.49)
Using (5.48), (5.49) and (5.39), there exist k£ > 0 such that

(1t V)| < ke =+ €| (s, V) |-

Hence, (u,,v,) is a bounded sequence. [ |

Remark 5.14. In the previous Lemma, using the fact that (u,,v,) is a bounded sequence in E

and replacing in (5.39), we can find a positive constant C such that

2Q1(x)f(un)undx <C and /zQz(x)g(Vn)Vndx <C, forall n>1.
R
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The following lemmas can be proved arguing as in Souza (2012), Souza (2011) and

using some estimates developed as in proof of Proposition 5.8.

Lemma 5.15. Let (u,,V,) be a sequence in E such that J(u,,v,) — ¢, J}, (4, V) — 0 and (up, vy,)

converges weakly to («,v) in E. Then, up to a subsequence

Q1(x)f(un) = Q1(x)f(u) and  Q2(x)g(Vn) = Q2(x)g(¥) in  Ljye(R?).

Lemma 5.16. Assume (H;) — (Hy) and let (u,,v,) be a sequence in E,, such that J(u,,v,) — c,

J) (n,vn) — 0 and (uy,v,) — (u,v) in E. Then, up to a subsequence

Q1(x)F (un) = Q1(x)F(u) and  Q2(x)G(v,) = Q2(x)G(¥) in L'(R?).

5.3.2 Linking geometry

Let {e;};cn be an orthonormal basis of eigenfunctions for the operator (—A+ V) in
H)(R?) :={u € H'(R?) : g2V (x)u? dx < =}. By Lemma 3 in Cassani and Tarsi (2015), the
sequence {e; };cn provides also a dense system in E (@) and E(P). For each n € N, consider the

following finite dimensional subspace:
E, := Span{ey,...,e,}.

We define the set
Enm:={um:=Cuu:u€cE,}.

where {,, is given by (4.12) and m = m(n) as in Lemma 4.12. Let y(x) = M} 4.4(x) and Z(x) =
My p.a(x). By Lemma 4.11, ||(y,2)|| = 2 and 7 # —y. Set

Fn,m - En,m X En,m @R(y,%),

E ,={(wV):vEE,,} and E,, :={(v,—V):vEEn}

Consider
dByNF,,, C Fum, where F' :=E  &R(y32)

and
Onm = {W"i_s(yvz) W= ((1), _&3) S Eer? HW” <Ro,0<s< Rl}?

where p, Rg and R; are positives numbers which will be chosen in the following lemmas.

Lemma 5.17. There exist p,c > 0 such that J(z) > o, forall z € dB, ﬁanm

Proof. Given € > 0 for assumption (B;) and (B4), there exists C > 0 such that

F(s)| < e|s]* +C|s|*(%B" —1), forall seR (5.50)
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Let (u+ sy, u+sz) € E,L, with || (u+ sy, u+s52)|| < p; with p; > 0 sufficiently small such that
2050p1 a, b1' By Lemma 5.11, there exists C > 0 such that

Lo @wFutsydr<e [ ot sPdrrClutsll, 65D
R2 R2 (9)
From (5.51) and (5.37), we have
[ @Rt ) < 5 syl +Cllut s
By Remark 4.13,

E
/Rszx)sty)dxs@uwn@ﬁsznyn%q))+c(||u|rz‘q)+s4||y||z‘q)). (5.52)

1

Similarly, we obtain
/RzQz(x> @+ s2)de < =— (HNH 52 215,) +C (1l +5*1=1,)- (5.53)
Thus,
J(u+sy,i+57) = / V(- $y) V(@4 52) 4V (x) (e +-59) @+ 52) ) dx
— [ Qi0F+sy)de— [ 0x(0G(+s2)dx
> s /R L (VyVE+V (x)yz) dx

1 €
+ 5 llullfy — Z(Iluﬂfq) +52l7) = C(lliiyy +s*Ivli,)
1

HNH (HuH )+ 5721, —C @,y +s* 121G ) -

Qz

Since |ly[|(g) = lIZ]l(p) = 1, we have

J(u+ sy, i+ s2) > s> / (VyVZ+V(x)yz) dx

£
+ (1= = Clul Yl — 55— Cs*
2o, 7LQ
£ ~ ~
+ (1= =~ clal, ) Ial?, ——s —cs*.
A0, Ao,

Then,
J(u+ sy, i+ s7) > s* < /Rz (VyVZ+V(x)yz) dx— €Cy — C2s2)
+ (2 —eCy — Czp22> P
where [|ul|(4) = [[u]|(,y = p2 > 0. Using Lemma 4.11, there exists C3 > 0 such that

/ (VyVZ+V(x)yz) dx > C3, for k sufficiently large.
R2
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Taking p; > 0, p2 > 0, s; > 0 and € > O sufficiently small such that C3 — eC| — Czs% > C3/2
and 2 — £C) — C,p2 > 0 and setting p = min{py, p2,s1 }, there exists ¢ > 0 such that

3P
2

where ||(u+sy,u+sz2)|| = p. [

J(u+sy,u+sz7) > —— = o,

Lemma 5.18. There exist Ry > 0 and R; > p (independent of n and k) such that J(?) < 0, for
all & € dQy ;. where

Qn7m = {W+S()’»a W= (0), _(5> €E nms ||WH <Rp,0<s< Rl}
Proof. Notice that the boundary dQ,, , of the set Q,, ,, is composed of three parts.
(i) If ® € IQNE, . ¥ = (0, —®), and hence

J(w,—a))z—/ (VoVo+V(x)oo) dx—/ 01(x)F(w)dx— / 0> (x ®)dx <0
R2 R2
because Q1F and Q,G are nonnegative functions.

(ll) If ¥ = (wa_a)) :i: S(y,Z) - (w+sy7_a5+sz) S aQn,ma with ||(0‘)7_a5)|| - RO and 0 <
s < R, we obtain

J(@+sy,—0+s7) = /R2 (V(a)-l—sy)V(—oT)—l—sE) -I—V(x)(a)—l—sy)(—a)-i-si)) dx
—/ng(xmwﬂy)dx—/RzQ2<x)G<—a>+sz)dx.
Using the fact that Q1 F and Q»G are nonnegatives and Remark 4.13, we obtain
Jo+sy-0+57) < ol + [ (V3VE+V()7) do
< —[l@lf,) + 5>yl Izl )
2

R
< —70+R%.

Hence, J(¥) < 0 provided Ry > V/2R|. Thus, we can take Ry = v/2R;, for R; > 0 to be
determined later.

(iii) If ¥ = (0,—®) + Ry(y,2), with ||(®,—®)|| < Ry for Ry given by case (ii), then
J(0+Riy,~@+RiZ) = — |||, + K / (VyVZ+V (x)yz) dx (5.54)
R2
_ /Rz 01(x)F(@+Ryy) dx — /Rz 02(x)G(—@+R17) dx.
From (B;) and (B;), there exists C > 0 such that

F(r)>Clt|® —#* and G(r) >C|t|® —*, forall rcR.
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By the last inequalities and Remark 4.13, we have

— /R2 O1(x)F(@w+Ryy)dx

< [ oilo+RyPdi=C [ 0i)|o+R|"ds

< [LowioPdrrt [ oiebPdi—c [ 0iwlof dx—crf [ 01 dx

1 > R0 0 0
S—H(DH +—HJ’H ) —CR] Ql(x)b’\ dx

< R2 + K CRO/ 01 (x)|y|®d
<+ - 1(x)[y]” dx.
2)LQl AQ1

Since y # 0 and Ry = /2R, for some C > 0 we obtain
2

2R
_/R2 Q1 (x)F(@+Riy)dx < 5-' —CRY.
01

Similarly, we have

. 2R3 0
, Qz(x)G(—O) +R12> dx < T —CRY.
0))

Then, using (5.55) and (5.56) in (5.54), we obtain

_ 2 2
J(@+Ryy,—®+Ri3) gR%( ot ) —CRY.
(0} le

Since 6 > 2, taking R; sufficiently large, we get J(9) < 0.

5.3.3 Approximation finite dimensional

Let consider

Com={y€ € (Qum,Fom): Y(O) =1, forall & € 90, n}.

and set

Cnm = Yeignfm ﬁlggzml (7(0)).

Lemma 5.19. (See Cassani and Tarsi (2009).) The sets Qy, ,» and dB, N anm link, that is

Y(Onm) N (OBp NE, ) #0, forall yeT,u,

for p > 0 given by Lemma 5.17.

(5.55)

(5.56)

(5.57)

(5.58)
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Thus, combining Lemma 5.17 with (5.57), we have
cpm >0, forall n>1. (5.59)

Note also that, since the identity map I : Oy, » — Fyn belongs to I, for & = (0, — @) +s(,2) €
On,m, We have

Com < sup J(O) <R3 (5.60)
19€Qn,m

Denote J, ,, the restriction of J to the finite-dimensional space F;, ,,. Then, applying the Linking
theorem for J, ,, and noticing (5.59) and (5.60), we get the following result:

Proposition 5.20. For each n,m > 1 (m = m(n) as in Lemma 4.12), the functional Jom has a

Palais-Smale sequence at level ¢, ,,. More precisely, there is a sequence (#,V;) C F, ,, such that
= 2
Jam(Uj,Vj) = com € [0, R]]

and
J\/Fn,m(”ﬁ‘?z’) — 0.
Proposition 5.21. Assume that f and g satisfy (B;) — (Bs) and let (u;,v;) be a sequence in F;, ,,

given by Proposition 5.20. Then,

(i) The sequence (u;,v;) is bounded in F, , and there exists C > 0 such that for each j > 1,

we have

/Q] fluj)ujdx <C, /Q2 g(vj)dx <C,
[ 0WF)dx<C, and /]R 02(x)G(7))dx < C.

(i) For each sequence (u;,v;)in F, ,, there exist (un m,Vnm) € Fnm and a subsequence (not
renamed) (u;,v;) such that
(uj7\7j) — (un’m,Vn7m) in me.

Furthermore,

Jn,m(un,ma";mm) = Cpm € [0-7R%]

and

J|/Fn,l71 (un7m7 vi’l,i’}’l) = 0

(iii) The sequence (i, m,Vnm) is bounded in E and there exists C > 0 such that

/ Q] Mn m un mdx < C / Q2 (Vn,m)gn,m dx < C7

01 (X)F (ttnm)dx < C  and / 02(x)G(Fpm) dx < C,
R2 R2

forall n € N.
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Proof.

(i) By Lemma 5.13, the sequence (u;,V;) is bounded in F, ,,. Moreover, by Remark 5.14 and

(By), we get the estimates given in (i).

(ii) Since (u;,v;) is bounded, F;, , is finite dimensional and J is of the class %!, the assertion

follows.

(iii) Using the sequence (i, Vnm) in Lemma 5.13, for the case e, , = 0, we get the bounded-

ness of the sequence, using again Remark 5.14 and (B;), we obtain the estimates.

5.3.4 Estimate of the minimax level

Proposition 5.22. There exists k € N such that for any sequence

(Unms Vnm) € R(M,w;%,Mk S®E~

,p%)

such that

(i) The sequence (up m,Vn,m) is bounded in E
(ii) The sequence (uym, Vn,m) converges weakly to (0,0) in E and

tnm —0, Vum—0 in L*(R?), forall A >min{p,q}.

Then,

o, \N1/p 0, \1/q
supJ ((tn.m, v, < <L> <L> .
nEII\DI <( njm n,m)) (0%)] ﬁO

Proof. On the contrary, for each k fixed in N, there exist a sequence (7,x), a nonnegative

sequence &, — 0 and a sequence

Nnk = Tnk (Mk M]w,;%) + (un.,ka _ﬁn,k)a Upk € En,m

i
such that
[Nl < C=C(k),

Nk — 0 in E,
ToiMy g1 ity =0, Ty, 1 —dp—0 in LH(R?), forall A >min{p,q},

and

) = (B2 (%),
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In particular, we have

0o Bo

t>0

Since J(0) =0 and J(¢n,, x) — —co and t — oo, there exists 7 > 0 such that

>0
We can assume without loss of generality that 7 = 1, that is

a*

T (M) Mk =0 and T (Nny) = ( Zijl)l/p<

Then,

2/ V(Tn kM L +u, k)V(’Cn,kMij;i —LNtn’k) dx
+2/ Tn kM 1 +un,k)(fn,kMk’p;i — 1,
= /RZ Ql X f In,kMkﬂ;% +un,k)(fn,kMk7q;% +un,k) dx

+ [ 00850y g1 = 0i) (i 1~

and
/]1{2 V(’Cn,kMk’q;% + un,k)v<fn,kMk7p;% — 1/7,17]() dx

+ /]RZ V(x)(kaMk’q;% + ”mk)(ﬂrn’kMk’p;% — 1/7,17]() dx

_/RZ 01(x)F (7, kMk7q;,l,+u”7k)dx_/Rz QZ(X)G(kaMk’p%_N

= () ()" s

Since [|M, ;. 1{l(g) = 1My, .1 [l )

the concentrating functions are disjoint, we obtain

202> 22— k) = [ 01O (i g1 + 1000 (i 0

+ /]Rz QZ(x)g(TnJch’p;% - ﬁn,k)(kaMkw % — U,

and

el = [ QUOF (i gy i) = [ 020G (5sM, 1 =)

hou: )" .

Since F and G are nonnegative functions from (5.62), we obtain

o, \1/p 1/q
2 qabl sz
ez (an) " (5) e

0o Bo

up(1m0) = I, > (20 )7 (S 1,

SUPJ(”?n,k) = r?f’é“](tnn,k) = J(frlmk)'

= L1, [|tnkll(g) = lttnkll(p) and the support sets of u,, i, i, x and

(5.61)

(5.62)



5.3. Variational setting 151

Denote

From (Hs), for any R > 0 there exists 7Tz > 0 such that

2
Sn7k = ka — (

tf(t) > Re®” and tg(r) > R for all |t| > Tx.
Thus,
/Rle (x)f(fn,kqu;% + tn o) (T kM, . 1+ Uiy k) dx

+ /Rz Qz(x)g(‘kaMk’p;% — ﬁn,k)(fn,thp;% — ﬁn,k) dx (564)

|t eM, 1P
(x)e " kem dx

{xeB :|T0uM, 1 [>Tk}
m Am

BoltusM, 114
+R/ 02(x)e " ek
{x€B 1T M, 1, [>Tk}
i kP b

where we have used the fact that the functions u, ; and u,, x are zero in B . From the definition

m

of the concentrate function, we have

gq—1
(logk) . 1
BT (15,007, i <

M
mv/k

kit (0) = T
From (5.63), we can fixed n sufficiently large such that

—1

q
(logk) a1 , 1
——(1-6 o >Tg, if |x|<——,
/—471_ ( k,q,%) —Z IR | | = m\/%
for k > kg, for some kg sufficiently large. Note that kg is independent of n. From (5.11), (5.61)
and (5.64), we get

kaMk,q;%(x) = Tnk

Ink q Ink
0‘0 ” (1-6 B " (1-9 )
T > 2/ Q1 (x a2 (g ) dx+ 2/ O (x VG2 g
vz i
a0 (1= 1) oty M (18, 1)
TRCye et kad)  pRCa e Mk ama? " kp
(5.65)

(2+bl)m2+blk(1+bl/2) + 2<2+b2)m2+b2k(1+b2/2)

) Ink - q Ink _ _ by
N R _ (eao%k(zm)P/z(l 8 g )™ (a+4 )1“k+€ﬁ07n,k(4n)q/z(1 8p1) (1+2)1nk>
— 2(24+bg)m*tho

where by = max{by,b,}. We observe that until now, we have fixed n (and consequently, m),
where k can be arbitrarily chosen, sufficiently large and independent of n (that is kK > Kg). By
(4.11), we have

1 1
[ |<C||V||L (Bim) a2 Ik and [ |<C||V||L Bim) ol Ik

Taking ng € N such that

1% 1%
(I_Bkqu%bl_cﬁ and (1—5k7p7%)>1—cﬁ, where Vi = ||V 1=(5,) > Vo.
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for all n > ng and for some C > 0. Replacing in (5.65), we get

2 s FRG [t Bn(-CR-( ik | Byt (1-Cr)—(143 ) Ink

Using Young’s inequality X” /p+Y?/q > XY in last inequality with

14+b1/2)Ink 6] Ink

( (
1-C 1-C
2 (1-Cab)= and Y = ql/qe K a2 )

% (b /2)nk
X=p'/Pe? e ‘

Y

we obtain

1 1 %, p _Ink  Bo.g _Ink Vi y  (14b1/2)Ink  (1+by/2)Ink
2, > RGP Pq e (Gl ) 0 - (o
k= (2 bo)m>+bo

By Young’s inequality again, we get

% p Ink ﬁ() q Ink 1/p 1/q “nk nk
p k@ g kg = % Po g Ik

Replacing in (5.66), we have

2 7[RC3p1/pq1/qe l/pﬁl/q nk(l Cl‘glk)lnk— 1+b1152)1nk_(1+b2q/2)1nk 5.67)
n.k = (2—}—b0)m2+b0 ’ :

for all n > ng and k > kg. We now choose k depending on n. For any n arbitrarily large, take
R:=2C3m>™0(2+by), where m=m(n)
and consequently, k > kg = k(n). With this choice, we obtain

[ l/pﬁl/q nk(l Cvl) (1+b1/2) (1+b2/2>]lnk

‘L'ikzﬁmpl/pql/qe Ik P . (5.68)

If the sequence {7, k}">n0 is unbounded, using (5.68), we get a contradiction. Thus, the sequence
{7 k}n>no is a bounded. In particular, without loss of generality, we can assume that there exists
s € R such that

o, \1/p 1/q o), \1/p 1/q
Tlg’k:smH(;,Obl) (Eobz) ﬂ+<;§1> <l§ob2> .

Moreover, by (5.63), s > 0. From (Hg), we can suppose without loss of generality that

(Otomin{l,l+%}>1/P> < Bo )1/4'

5.69)
(1%—%)2 min{1,1+b—22} (

By (5.65), we have

Ty (1-C k)~ (1+by /2) Ink
2 > Tme {amorn (1= , (5.70)

writing

o, \1/ 1/
emss ()" (%) s
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and replacing in (5.70), we obtain

1 1 [7/2
e /p ””2) /q+0n(l)> ('“k (1=C )= (1+by /2) Ink

Po 4m)p/?

4m(min{1, 1+b1/2} l/p(mln{l+b2/2})1/q p/2 Ink
+on(1) (1- Clnk) (14b1/2)Ink

&

1/17 1/q P2
> Ttme Po )
1/2 min 1/2 min /2
(ao ( {I‘th/z”m; (L1 /2D q+on(1)) Ink(1—C k)= (1+by /2) Ink
> Tme Po
12 1/2 (mi /2
(“0 L q+an(1)7(1+b1/2)> Ink
> Ttme Po X
B (CVI a(l)/z(min{l.l+b1/Zi)/;/qz(min{l,1+b2/2})1’/2q +0n(1))
B
e 0
From (5.69),
1/2, . 1/2( i /2
o, “(min{1,1+b;/2 min{1,1+b,/2})P/=4
0<51— 0 ( {7 /}) ( {7 /}) —(1—|—b1/2).
p/2q
0
Thus,
1/2 )1/2 /2
s+( o 1) ( 2 2)q+0n<1)2 Tme
Po
Taking n — +oo (and hence k — +o0), we get a contradiction and the claim of the Proposition
follows. H

5.4 Proof of Theorem 5.2
Proof. From Proposition 5.21, there exists a sequence (umm,%’m) € Fy,m such that
Jn,m(un,m,vn,m) = Cnm S [G;R%] (571)

and
Ty (Unns Vam) (@, W) =0, forall (¢,V) € Fyp. (5.72)

Moreover, the sequence (i m,Vnm) is bounded in E. Thus, we can assume that there exists
(u,v) € E such that (u m, Vem) — (u,v) in E and

Upgm —u and vV, , =V in L’(RZ), forall r>min{p,q}.

Taking (0, ) and (¢,0) in (5.72) with (¢, ) € F,,, N (657 (R?) x 65 (R?)), we have

/ (Vun,mvll’?‘f'v(x)unm‘/’?) dx:/ QZ(X)g(‘A’/mm)ll’}dx
R2 R2
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and
/ (an,qu) + V(x>‘7n,m¢) dx = / 01 (x)f(”n,m>¢ dx.

Taking the limit as n — +oo and using Lemma 5.16 and the fact that |J,> F,n N (%“(Rz)
%y (R?)) is dense in E, we obtain

/Rz (VuVy+V (x)uy) dx = /R2 0>(x)g(V)Wdx, forall yeE®
and
/RZ (VoV +V (x)v9) dx = /]RZ 01(x)f(u)¢pdx, forall ¢ €EY

Thus, (u#,v) € E is a solution of the system. Now, we prove that (,V) is a nontrivial solution.

Assume by contradiction that (z = 0 which implies that v = 0). Thus, we can assume that
tpm —0 and V,,, —0 in L'(R?), forall r>min{p,q}. (5.73)

Taking (0,Vy ) and (upm,0) in (5.72), we have

e (V¥ V i) e = [ 020 o)y = [ 0109 )t
(5.74)
By Proposition 5.22, there exists 6’ > 0 such that

Cnm < (aifl ) 1/”( EObZ)l/q 5.

Moreover, there exists 0 > 0 such that

* / la S S —1/p / /a &
[N SR~ RC Vi

* / —1/q * /
o) Cpey -] =G e

)

and

Taking (vi,m,0) in (5.72), we obtain

||Vn,m||% / Ql unm Vnde</ Ql |f(unm)||vnm|dx (5.76)
Let i
o 1
Vo = ("—”1 - 6) /pV”—””. (5.77)
Qo (4)

Applying Lemma 3.10 in (5.76) with s = | (tty )| / 00 1/1’ =0 P |Vol r = pand ¥ = g, we

obtain

o 1/p
(o =3) " Ionnll < [, Q1 NF ) Vol

o
1
< x) (€% Vanl” 1) dx + /
< [ Ty (rem2: )

0

1 | f (ttnm) [\ 1/P
— - nm)| |10 ———7— d
a&/[’ /{xeRZ: \f(”ln/-,;)\ gel/p"} Qi (x)|f(u ’ )l |: n ( aé/l’ >} *

%

O1(X)|f (upm)|?dx (5.78)
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Note that V,, ,, = 0in E (@) and

Vol < =22
Thus, by Lemma 5.12, we have
/Rz 01 (x)(e®Vrnl” — 1) dx = 0,(1). (5.79)
Now, we estimate the second integral of (5.78). From (B ), we can find C > 0 such that
IF(O)|9 < Cle]?, forall {reR: % <e'/r!y, (5.80)
%

Since we can suppose that u, , — 0 in L‘I(RZ, Q1), then,

01 ()| f ()| dx < C 01(3) gl dx = 0(1).

/{xeR2: \fi:llrt/rpn)\ Sel/l’q}

2.‘f(“n‘m)\ 1/p4
i {xeR T <el/rhy

0

(5.81)
For
_ 6" min{a, fo}
o o \1/p 0, \1/q ’
q,b1 p,b> S/
1) () -2
by (B1) and (By), there exists Cg > 0 such that
|f(2)] SCge(a“é)W, forall 7eR.
Hence,
|f (tnm) [ \11/P
nm)| |1 ’ d
/{xeRzzwa/I,q}Ql(Xﬂﬂu, )|[n< o7 )] X
Cye(@+E)|unm|” 1/p
g/RZQI(x)V(un,mﬂ[ln( : G )| ax (5.82)
C
1/p (=5 1/p
< [, Q1)1 () [1n () o) | .
For each n € N, denote
C
T, = {xe R2:In'/7 (=5 )+ (00 -+ &)/l < <ao+2§>1/l’|un,m|}.
%
Thus,
C
1/p (=8 1/p
1,101/ ()] [ 1n () + (@) ]
C
< [ Il [ 07 (—5) + (oo -+ )Pl (5.83)
RAT, 060 p

+ (OC()—i—Zé)l/p/T 01 (x)f(un,m)un,mdx

C
1/p § 1/p
<In (OC(1 ) fo, QOIS ) e (20+28) [ Q1) )t



156 Chapter 5. Hamiltonian systems with critical exponential growth and coercive potentials

Observe that
C
1 5
In /p( 1/p)
]RZT:xE]Rz:unm <dy}, where d;= % .
V= bRl <) "o 2E) P~ (a0 + E)P
Thus,

RZ\Tn Cixe R : |f(nm)| <d2}, where dp= |n|1azi< |£(s)]-
s|<d;

By (B;), we can find a constant C > 0 such that | f(s)| < C|s|""{P4} for all s € R such that
|f(s)| < ds. Thus, by Lemma 5.6, we get

01 (xX)|f (unm) Idx<C/ ) ttnm = 0,(1). (5.84)
R2\T, R2\T,
From (5.82), (5.83) and (5.84), we obtain
|f(”n,m>| 1/p
/{XGRZ: \f(”ln/,g)\ Sel/l’q} Ql ('x)|f(unm)| |:hl <W>} dx (585)
%

< (a0+2€)1/p /]Rz Ql(x)f(un7m)un,mdx+0n(l)'

Using this, (5.79) and (5.81) in (5.78), we have

o, 1/p 2EN\1/p
(a2 =) Ml < (1475) " L Q1 wamnmdxton(1). (550

Taking (0, 4y ) in (5.72), we find

/ QZ Vnm unmdx

Analogously, we can obtain

ot 1/q /q
p7b2 . ~
<—ﬁ0 6) fiinmll ) < / 0> (%) (T )Py dx + 0 (1). (5.87)
By Lemma (5.16), we have
O1(x)F () dx 0 and / 023G () dx 0, (5.88)
R R

which implies
/R (Vo V ()t ) d = It o) + 0n(1).

Thus,

=~ N\ a;,bl I/p sz 1 '
- Q1 (x) f (unm)ttn m a’x—I—/R2 OxX)8(Vim)Vnmdx <2 {( p” > < B > -0 } +o,(1).
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Using (5.86), (5.87) and the assumption on &, we have
% b 1 % a, -
(o ~5) @+ (52 =8) " Nl

2EN\1/ 2 1/
< <1+£> p/]Rle(x)f(”n,m)un,mdx“f’ 5 q/ Q2 Vnm Vnmdx+0n(1)

< (1+ﬁfmﬁo})( [ 1) ()t /]R 2 Qz(x)g(7n7m)\7n,mdx> + (1)
§2<1+mm{i§0 ﬁ0}> {(aif]y/p( E(,%)l/q—‘s'} +on(1)
<

(%) (%) 8] st

We can assume that
(% —5)1/”| @+ (%_6>1/(]“’7n,m“(1’) = 2{(2’51) /p< Eobz)l/q_ aﬂ’

for all n € N. Thus, we can assume

o< [C) () -5 a9

1Tnanlliy) < {(ai?)l/p( E(fz)l/q 6/}( E;Z _6>1/q.

Supposing the second and using (5.75), we have

s () [C8) () -5

<(a) S GE)"

'p,bo

or

In particular, Oco||un7m||€7 < @, forall n > 1. Thus, we can find > I and n > 0 such that
r=r/(r—1)>2and
) < (x (5.89)

r(og+m)
By (B1) and (By), there exists C; > 0 such that

1£(8)] < |s| +Ci (eI 1) forall seR.
By Holder’s inequality , Lemma 4.14 and Proposition 5.8, we have
/ Q1 (x) f (unm)ttnm dx
g/ 01t dx+C1 [ 01(3) i el Ml 1)
< ltnlize g1y + Cilltnmll s g,y [, @1x) (el Mlienl” —1)"d
< ltnliz g1y + Cilltnmll s g,y [, @) (€7 Mhinnl” 1) dx

< Ntnmllr2 w2, 0,) + Colltnmll g2 0,)-
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Using (5.73), we get
/Rz 01 (x)f(”n,m)”n,m dx — 0.

Replacing in (5.74), we have
/RZ (VummVme + V(x)un7m\7n7m) dx — 0.
Combining this with (5.88), we get
J (U Vm) = 0,

which gives a contradiction with the fact that ¢, ,, > . Thus, (u,v) is a nontrivial weak solution.
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CHAPTER

HAMILTONIAN SYSTEMS WITH

POTENTIALS WHICH CAN VANISH AT
INFINITY

In this chapter we study the following Hamiltonian system
e R?,
iy ©6.1)

—Au+V(x)u = g(v),
x € R,

—Av+V(x)v = f(u),

where the functions f and g possess critical exponential growth and the potential V can be vanish

at infinity.

6.1 Introduction

First, we recall the assumptions on V

(V1) V € €(R?,R) is a radially symmetric positive function.

V») There exist constants a,b,Ro,L, and L, with 0 <a <2, b <a, Ry > 1, L, > R{ and
0

LoRY ™ < Ly < L7 g2/ @) quch that
L, Ly
PL <V(x) < P forall |x| > Ry.

(V3) V(x)=1forall |x| <1andV(x)>1forall 1 < |x| <Ry, for Ry given by (V3).

Before stating the assumption on the nonlinearities of f and g, we define the energy
space which will be use to set the variational structure. Following Albuquerque, O and Medeiros

(2016), we let H‘l,J ud (R?) denote the subspace of the radially symmetric functions in the closure
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of 6;°(R?) with respect to the norm

2 ) 1/2
=l = ([, 10 +V (o )
For 1 < p < 400, we define

L€7rad(R2) := {u: R* = R;u is measurable, radial and /R? V(x)|u|P dx < +oo}

1/p
lulig = ([, velarax)

Hy 1ag(R?) = {1 € Ly 144(R?) : [Vu| € L*(R?)}.

endowed with the norm

Thus,

We note that H‘l,.r " d(Rz) is a Hilbert space endowed with inner product

(u,v) := /RZ (VuVv+V (x)uv)dx, u,ve H&,md(Rz)

Now, we state a basic embedding result (see Su, Wang and Willem (2007a), Su, Wang and
Willem (2007b), for a proof).

Lemma 6.1. Suppose V satisfies (V) — (V). Taking Ry,a and b given by (V;), consider a* =
(4+2a)/(2—a) and b* =2(2—2b+a)/(2 —a). Then,

(i) The embedding H,., ,(R?) < LP(R?) is continuous for a* < p < e and compact for
a* < p<eo.

(ii) The embedding H), ,(R?) < L}

V rad (R?) is continuous for b* < p < e and compact for
b* < p < oo,
(iii) The embedding Hy, ,(Bg) < HJ(Bg) is continuous for R > 1.

Remark 6.2. 1. As we will see further on (Lemma 6.14), conditions (V;) — (V3) will be
employed to show that we obtain Sobolev embedding inequalities as above with constants

that do not depend on L,,.

2. As a consequence of (iii) and Sobolev embedding theorem, the space Hy,, ,(R?) is

compactly immersed in LP(Bg) for all 1 < p < H-oo.
Concerning the functions f and g, we suppose the following assumptions:
(Hy) f,g€ € (R) and f(s) =g(s) =0forall s <O0.

Taking b* € R as in Lemma 6.1, consider
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(H,) There exist constants it > b* and v > b* such that
0 < UF(s)<sf(s), 0<VvG(s) <sg(s), forall s>0,
where F(s) = /Osf(t) dt and G(s) = /Osg(t) dt.
(Hz) There exist constants s; > 0 and M > 0 such that
O0<F(s)<Mf(s) and 0<G(s) <Mg(s), forall s>s.

Setting 1 and v given by (H>) and a given by (V»), we suppose:

4 ere exists 6 > 4a —a)suchthat f(s) = O(s" and g(s) =0(s" ass— 07,
Hy) Th ists 0 >4a/(2 hth O(s#~179) and O(sv—1+o 0"
(Hs) There exists o > 0 such that

0, o> o, 0, o> o,
tim I8 _  and 1im &Y %

2
e too, @ < Qp, s e® +oo, @ < 0.

(Hg) For o > 0 given by (Hs), we have

tf(t 4 tglt 4
imint L) 5 % g timine 80 5 4€
t—rtoo0 pQot (o)) t—r4oo0 00t (0/4)

In the literature, the condition (Hs) says that f and g have critical growth in the Trudinger-
Moser sense (see Adimurthi (1990) and also Figueiredo, Miyagaki and Ruf (1995)).

The following theorem contains our main result.

Theorem 6.3. Suppose that V satisfies (V}) — (V3) and f and g satisfy (H;) — (Hg). Then, there
exists L* = L*(f,g,1, Vv, Qy, 0,a,b,Ry) > 0 such that system (6.1) possesses a nontrivial weak
solution (u,v) € Hy ,,4(R*) x Hy,,,(R?) provided that L, > L*, namely (u,v) € Hy,,4(R?) %
H‘%md(Rz) satisfies |

L, (v (uy +V3Vo V(@) dr = [ (F)9+g()w) dx.

for all (¢, y) € Hy ,,q(R?) x Hy ., (R?).

rad

6.2 Preliminaries

In the first result of this section, we follow Su, Wang and Willem (2007b) to prove a

version of the Strauss result (Strauss (1977)) for the functions of our space.

Lemma 6.4. Suppose that (V) and (V,) hold. Then

forall |x| > Ry,

for every w € H}, _,(R?).
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Proof. Let w € 65, (R?), w(x) = ¢(r) where |x| = r we have

d(r'2* 92 (r) _ (2—a)¢*(r)
dr 2r4/2

Thus, we obtain for all r > Ry

— /+°° m 2-a . 2-a 2—a

ds r—r+too

Thus,

<2 [Tl GIvalow) Ly ds
< 2</r+oo |<P'(S)|2sa’s>Uz(/;roo |¢(s)yzsds>1/z

Sa

1 e 2 1/2 te L, 2 1/2
= ALl (2”/r [9°(s)] Sds> <27T/r s—a|¢(s)| sds)

1 1/2 1/2
< Vw|?d / Vixw?d
B ﬂ'Lﬂll/2</Rz\B,| W| x) ( Rz\Br (X)W )C)

1

Vw[>+V (x)w?) dx.

<1 [V V) ax

Inspired by similar arguments developed in Albuquerque, Alves and Medeiros (2014), O
(1997), Ruf (2005), we establish the following version of the Trudinger-Moser inequality which
will be used throughout this paper.

Proposition 6.5. Assume V satisfies (V;) and (V,). Then,
Ja Jlas12]
/2 (eo“”‘z -Y %) dx < oo, forall ucH},,,(R*) and o >0 (6.2)
R P J: ’
j=0

where j, = [|4/(2 —a)|]. Furthermore, if 0 < a < 4, there exists a positive constant ¢ =
c(ot,a,Rp) such that

2 Ja Otj]u|2j
sup / ey —— Jdx<ec. (6.3)
u||<1 Rz( 3 >

|
1 P .
ueHV,rad’H ]_O ]

Proof. Set r > 0. For every u € Hy, _,(R?), we have

Ja a]|u|2] ) Ja a]|u|2]
peluf _ > di — ( / " ) (ea\u\ _ )dx. 6.4
/RZ ( Z J! B, JR2\B, jz' J! (04
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In order estimate the first integral on the right hand side of (6.4), we define the function

v(x) = u(x) —u(rxg), 0<|x|<r

0, x| > r.

where xq € R? such that |xo| = 1. Fix £ > 0. By Young’s inequality, we get
4
(o) < (L+ ) + (1 + ) u(rxo) [
4. 2 .
By Lemma 6.4, for r > max{Ry, (1 + E)Z*a }, we obtain

I/l2
() < (1)@ P+ (14 ) 1 <

2-a
r 2

Ja 14,127
/ <e“|”|2 -Y %) dx < / el gy
r 1 .]

]:0 r

< / Lo (el ul?) 4,
B,

which implies

< ool / L2+ gy

Since v € H}(B,), we have

Ja a] 2j
/B (eo““‘z -Y ’—7‘) dx < 4o, forall u€ Hy,,,(R?).

=0 J:

< (L4 ) () + [lull?,

(6.5)

Moreover, if € > 0 is sufficiently small such that (1 +€) < 4 and noticing that ||u|| < 1 implies

that [|[Vv|| 125,y < 1, by (2?), we find

Ja Jly,12]
/ (e~ 3° M) dx < @ up / a1+ gy < coolul?,
B, <l

|
= ! 19v],25

forall u € H\l,md (R?) such that ||u|| < 1, for some positive constant ¢ = c¢(a,a,Rp). Thus,

Ja a] 2j
sup / (e"‘|”|2 _ Z |—b‘t|) dx<c.

Jull<1 =0 J!

By Lemma 6.4, we have

J 2j +oo i1,,127
/ (e(x|u|2 Z 05’|u| / / OCJM e
R2\B, - R2 J!

j=0 \Br j= J+1
<y af||u\|2f/ 1
R

o alllull? e @-2))
—on Y M Ll / s g,
r

|
j=jat1 I’

(6.6)



164 Chapter 6. Hamiltonian systems with potentials which can vanish at infinity

Since @—ng %+2<0f0raﬂj2]‘a+l,we obtain

too (a-2) +oo (a-2)(jat+1)
/ s 2 +1a’sg/ K} 2 s
r r

1
2—a)(ja+1 2=a)(jatl) 5"
(( )é} ) 2)r 3 2

Thus,

Ja o’ lul?/ 2 o||ul)?
/Rz B <e 4 Jj! = (2—a)(ja+1) Q=a)(atl) 5" (6.7)
\B; j=0 (T 2), 3

Hence,

Ja (X]|M|2J
el > dx < 4oo, forall ueH}, (R?).
/RZ\B, ( jZO ]| V,rad( )

This last inequality combined with (6.5) gives (6.2). Furthermore, from (6.7), we obtain

Ja OCJ|u|ZJ
su ol ) dx <c, 6.8
p [ o (= L < (6.8)

[lull<1 =0 J

for some positive constant ¢ = c(a, a,Ry). Finally, using (6.6) and (6.8), we obtain (6.3).
[ |

The following result may be proved in much the same way as Lemma 2.2 in O, Medeiros
and Severo (2008).

Lemma 6.6. Let oo > 0 and m > 1. Then, for each n > m there exists a positive constant C = C(n)
such that

Ja J+2Jj Ja jryis2]
2 o't m 2 n’ o't
<e°" —z : ) §C<e”°“ — E : >, forall teR.
| |
j=0 J* j=0 J

Lemma 6.7. Let {u, € H, _,(R?);|lu,| = 1} be a sequence converging weakly to the zero
function in H& rad (]RZ). Then, for every 0 < a < 47, we can find a subsequence (not renamed)

such that

rad

Ja J 2j
. 2 oY \u
lim (ea“’”‘ — Z l—n|> dx =0,
n—e Jpp =0 ]‘

where R > 1.

Proof. Let € > 0 such that & + € < 4. We have the following limits

‘ 2] . £2J
eOCt2 _VJa o't eat2 _VJa o't
=05 =0
lim =0 and lim =0
lt|=0 7] frl e It|(elo+e)? — Ja —(OH—S) !
Jj=0 j!

Thus, there exists C > 0 such that

Ja a]t2]
eatz—z m SC|I|+C|I|<e(a+8)t2— S
j=0 J: - J

Ja (o €)%
ZL> forall 1€R.
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Hence,

Ja aj 2j
Br J!

J=0

Ja oa+e i 2j
+C/ ]u plate)lul* _ Z M) dx. (6.9)
~ J!
j=0
In order to estimate the last integral, we use Holder inequality for » > 1 such that r(a +€) < 4m
and taking ry > r close to r such that ro(a + €) < 47, by Lemma 6.6, we get

/ |u OC+£ ‘un|2 za: (a+8)]|un|2])dx

=0 J!
1

u L + J nzj r T
< Cllunll (/BR (e<a+s>\ oy M) dx)

j=0 J!

1
-

Ja a+e¢ J an
<l ( (6’““‘“)'””2—2(”)( )l )ax)"

j=0 J!

Using ||u,|| = 1 for n > 1 and the fact that ro(a + €) < 47 in Proposition 6.5, we obtain

w2 Ja (OH—S)j Uun|>
/B ™ (e(a+€)| nl” _ Z #) dx < C||“n||Lr’(BR) (6.10)
R

=R
Replacing (6.10) in (6.9), yields

> 3 o |u, |
/ (et - §° |_:1|> dx < Clutall 1)+ Clitall - (6.11)
Bgr j=0 J:

Using that u, — 0 in H‘ﬁ ra d(Rz) and Remark 6.2 for a subsequence, we have

Ja j 2j
/ (e~ 3° M) dx— 0.
Bg

=0 J

Throughout what follows, we define the product space
E= H&,md(Rz) X H&,md(Rz)y
endowed with the inner product
(), (@ ¥))e = [ (VUV9+V (0)ud +VyVy+V(x)vy) da
for all (u,v),(¢,y) € E, to which corresponds the norm
el = 1)l = (el + v]12) 2

We say that (u,v) € E is a weak solution of (6.1) if

/]RZ (VuVy +V(x)uy + VvV +V(x)vg) dx = /]RZ (f(u)p+g(v)y) dx, (6.12)
forall (¢p,y) € E
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6.2.1 The auxiliary functional

Given R > R, we define a function f: R2 x [0, 400) — [0, +o0) by

P EON B
Flxn), >R,

where f: R2 x [0, +o0) — [0, +o0) is defined by f(x,) = min{f(¢),V (x)t*~'}, for u > b* given
by (H,). Similarly, we define g : R? x [0, +o0) — [0, +o0) by

g(t), [x[<R,
g(x,1), |x|>R.

where g: R? x [0, +-00) — [0, o) is defined by g(x,#) = min{g(¢),V (x)t¥~'}, with v > b* given
by (H,). Moreover, we set f(x,1) = 0 and g(x,) = 0 for r < 0.

Lemma 6.8. Suppose that f and g satisfy (H;) — (H,).Then,
0 < uF(x,1)<tf(x,r) and 0<VvG(x,r)<tg(x,t) forall >0,

where i, v > b* are given by (H,), F(x,t) = I f f(x,s)ds and G(x,s) = fo8(x,s)ds.

Proof. If |x| < R, we have f(x,1) = f(¢), and hence

tf(;c,f) _ ffL(Lt) > F(t) = F(x,1).

If [x| > R and f(x,r) = V(x)*~!, we obtain
tf V (x)et
f( ) / V(x)shds

/ min{f(s),V (x)s* '} ds

—/fxsds—/fxs

= F(x,1).

If [x| > R and f(x,1) = f(t), we get
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Similar arguments apply to function g. |

Using the functions fand g, we consider the following auxiliary functional J:E—-R
defined by

J(u,v) :/R2 (VuVv+V (x)uv) dx—/RzFV(x,u) dx—/R2 G(x,v)dx,

for all (u,v) € E. From the conditions on fand g, the functional J is well defined.

Fix 1 < p < +o0. We consider the subspace £ = H}, (R?*) N L (R?) endowed with

the norm
lullzr == [|ull gy g2y + el 22 (m2) -

Lemma 6.9. If u, — u in E”, then there exist a subsequence (wy) of (u,) and g in L}, (R?) such

that, almost everywhere in R?, w,(x) — u(x) and
u(x)]; [wa(x)] < g(x).

Proof. Note that we can assume that u,, — u almost everywhere in R?. Also we can extract a

subsequence (wy,) of (u,) such that
1 .
Wit —ijsza(Rz) < i forall j>1.
Let us define

n +o0
8n(x) == [wi(x)[+ Zl wis1(x) —wj(x)| and  g(x) := wi(x)|+ Zl W1 (x) —w;j(x)].
J= j=

Thus, |u(x)|, |[w,(x)| < g(x) almost everywhere in R?. By the monotone convergence theorem,

gn — g almost everywhere in R2. Furthermore, (Vgh) is a non-decreasing sequence and
/ Vgl dx = Hganp 2
R2 n LV (R )

n
p
< (Iilliggee) + X Iwjer = willipe) < (el +1)"
j=1

By the monotone convergence theorem, we have / , Vgl dx < +oo, that is, g € L";(]RZ).
R

Lemma 6.10. The functional J belongs to ¢! (E,R) and
T (u,v)(9,v) = /]R2 (VuVy +V (x)uy + VvV +V(x)v) dx
- [ Fewgdr— [ gxvvar
R2 R2

for all (u,v), (¢,y) € E.



168 Chapter 6. Hamiltonian systems with potentials which can vanish at infinity

Proof. Setting Jr, : H'(Bg) — R and Jp, : E* — R defined by

i) = [ Foum()ds and Jg () = [ Flxu) (1=, (0) d.

We recall the existence of an extension operator P : H'(Bg) — H'(R?) such that Pujg, = u.
Thus, from O (1997), for all u € H'(Bg) and o > 0, we have

/ (@ — 1) dx = / (P — 1) dx < / (PP — 1) dx < oo,
Bgr Bg R?

which implies
/ e < 4o forall ue H'(Bg),a > 0. (6.13)
Bg
We observe that
T (1) = / Flxu)dr, forall ucH'(Bg).
Bg

Note also that for & > o there exists ¢ > 0 such that
f(s) < ce®” forall seR. (6.14)

Thus, for |x| < R, we have

Fx,0) =| /0 " s)ds| < /0 " f(s)ds < ¢ /0 P g < (2 4 ), 6.15)
From (6.13), (6.15) and the embedding of H!(Bg) in L?(Bg), we obtain
: F(x,u)dx < +oo, forall uecH'(Bg).
R
Thus, J}l is well defined. Now, set u,v € H 1 (Bg) and 0 < |t| < 1. By the mean value theorem,
there exists 0 (x,7) € (0, 1) such that

F(x,u+tvt) — F(x,u) _ N(x,u+6(x,t)tv)v. (6.16)

Since the function f(x, t) is continuous in the second variable, it follows that
F tv)—F ~
llm (.x,’/l+ V) (.x,l/l) — (x, M).

t—0 t

Moreover, using (6.14) in (6.16) and the fact that f(x,7) < f(t), we get

F(x,u+1tv)—F(x,u)
t

< e+ ) < %(e2a(\u\+IVI)2 +P) € LY(Bg).

From the dominated convergence theorem, we find

Tr (u+1v) = Ji ()

77 T
Jp (v = lim !
 lim F(x,u—+1tv) — F(x,u) I
t—0JQ t
F ) —F
— [ tim (x,u+1v) —F(u) i
Bpt—0 t
= [ flx,u)vdx.

Bg
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In order to prove the continuity of Jg,, let (i,) be a sequence in H'(B) such that u, — u in
H'(Bg). Arguing similarly as Proposition 2.7 in O, Medeiros and Severo (2008), we can assume
that u, — u almost everywhere in Bg and there exists v € H'(Bg) such that |u, (x)| < v(x) almost

everywhere in Br. Consequently,
F o) = F 0> < 20(21F 4 2417 € L (By),
and by the continuity of falmost everywhere in Bg, we get
f (x, 1) — f(x,u)[> — 0 almost everywhere in Bg.
By Lebesgue’s dominated convergence theorem, we obtain

7 7 7 7
15, () =T ()l =~ sup | < T, (un) =T, (), v > |

HVHHI(BR)SI

= sup | (f(x, un) — f(x, u))vdx|

Hv”Hl(BR)Sl Bg

< sup [|f(xun) — f(x, “)HL2(BR)HVHL2(BR)
HVHHI(BR)Sl

=o0,(1).

Thus, Jp, € €' (H'(Bg),R). Since Hy,,,(R?) < H'(Bg) continuously, it follows that Jg, €
€' (H),,.,(R?),R). In other hand, F(x,s)(1 — xp,(x)) is a Carathéodory function in (x,s) €
R? x R and

1F(x,8) (1= e (0)) | S V(x)[s|F71, forall (x,5) € R* xR,

Using Lemma 6.9 and arguing similarly as Lemma 17.1 in Kavian (1993), we have J}z €
€' (=", R) and since the embedding H‘l,,r 4(R?) = EH is continuous, we have Jp €6 (H‘l,r (R, R).
Thus,

Jr(u) = /R 2ﬁ(x,u) dx, forall u€ Hy,,,(R?),

is of class ¢! in H‘%md(Rz) and
Tew)(@) = [ Flrugds, forall ¢ € Hyy(B).

A similar result holds for the function G and the conclusion follows. [ |

6.3 The geometry of the linking theorem

This section is devoted to set the geometry of the linking theorem of the auxiliary

functional. We begin by considering the following subspaces:
Et={(u,u)€E} and E = {(u,—u)€E},

so that
E=E"®E".
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Lemma 6.11. Suppose (V1),(V2), (H;),(Hs) and (Hs) holds. Then, there exist ,p > 0 such

that J(z) > o forallz€ dBpNE™.

Proof. From (H;) we have f(s) = g(s) = o(s* ~!). Thus, there exists § > 0 such that
£(s)],lg(o)] < [s|"~", forall |s| < 8.
By critical growth, there exist constants ¢ > 0 and g > a* such that
J 2Ja({|syzf'>
i!

)] 1g(s)] < sl (2087 — Y

j=0

, for all [s| > 6.

From these estimates, we get a constant ¢ > 0 such that

~ * ja 2jaj s 2j
F(x,5)] < |F ()] < els]” +lsf (200 — ) #)
=0 I

and | |
G * Ja 2]a] 2]
|G(x,5)] < [G(s)] < cls]* +c|s\‘1<e2ao\s\2 -y O—sz)

j=0 J:

By Lemma 6.6 and Proposition 6.5, we obtain

Ja 27 orf | y4|20
/2 ’u‘q<e2060|u|2 _ i M) dx
R

i
j=0 J:
5 ) Ja ZJaé]ulzf 2 1/2
< ||u||gq(/2 (et — 3 200N 1)
R = J!
j=0
o & 60l u¥ 1/2
< el ([, (esa — 3 SBHT) 41
R ~ J!
j=0
< cllull3,

provided that ||u|| < p; for some p; > 0 such that 60pp? < 4. Thus,
/ Fx,u)dx < cllull% +cllull?, and / G(x, ) dx < cllull% +cllul.
R2 q R2 q

By Lemma 6.1, we obtain

J(u,u) > HuH2—/sz(x,u)dx—/RzG(x,u)dx

.
> ] — cllul|*” — clful| .

Therefore, we can find p, 6 > 0, p sufficiently small, such that J(z) > o > 0, for z € aBp NET.
[ |

Lete € Hy,_,(R?) be a fixed nonnegative function such that ||e|| = 1 and set
Qe ={r(e;e) +(0,~ ) : [[(®,~0)|| <Ry,0 <r <Ry},

where the positive constants Ry and R; will be chosen in the next lemma.



6.3. The geometry of the linking theorem 171

Lemma 6.12. Suppose that (V}) — (V,) and (H;) — (H>) are hold. Then, there exist positive
constants Ry and R, which depend on e, such that

J(z) <0, forall z€dQ,.

Proof. Notice that the boundary dQ, of the set Q, in the space R(e,e) & E~ is composed of
three parts.

(i) Ifz€ JONE~, we have J(u,u) <O0. In fact, for all z = (u,—u) € E~,
f(z):—||u||2—/ f(x,u)dx—/ G(x,—u)dx <0
R2 R2
because F and G are nonnegative functions.
(i) Ifz=r(e,e) + (0,—0) = (re+ w,re— ®) € dQ,, with || (0, —®)|| =Rpand 0 < r <Ry,
JN(Z):rZHeHZ—Ha)HZ—/ ﬁ(x,re+w)dx—/ Glx,re— o) dx
R2 R2
21,112 > KRG
< Rillel” ~ llo]|” = Ry — —.
Thus, J(z) < 0 if Ry = V2R).

(iii) If z=R;(e,e) + (w,—w) € IQ,, with ||(@,—®)|| < Ry, it follows from Lemma 6.8 the
existence of ¢ > 0 and ¥ > 2 such that

F(x,5),G(x,s) > c|s|? — %, forall (x,s) € B;(0) x [0, 4o0).
Thus,

J@) = Rillel? = 0] - [ Flx.Rie+o)dr— [ GlxRie—w)dx
SR%—/B f(x,R1e+a))dx—/B (N?(x,Rle—a))dx
1 1
gR%+/B (IRie+ o+ [Rie — 0> — c|Rie + 0[® — c|R1e — 0] dx
1
<RI+c(R?-RY).

Finally, we take R; > O sufficiently large such that J(z) < 0.

Lemma 6.13. Given 0 < a <2 and j, = [|4/(2 — a)|], there exists a constant ¢, = ¢(a) > 1 such
that
) Ja t2j 1
st < (e’ —ZT>+sln/ s, forall 1>0,s>c, 6.17)
j=0J:
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Proof. Fix s > 0 and consider the following strictly concave function

2 Ja t2j
1 st — (e _27>
j=0 7"
Thus, there exists a unique #; where the supremum is attained. Then,

2 , e 2t52j_1
s:tetS+<tet*— - )
’ ’ jz’l(J—l)!

Observe that there exists d = d(a) > 1 such that

2—2

2l2]1
J 5 >0 forall f>d.
J_

We consider two cases:
(l) ty > d;
.o 2
(i) 0<t,<dande? <s.

If (i) holds, then s > €', hence that #; < In'/2s and finally that st; < sIn'/2s. If (ii) holds, then
sty < sd < sIn'/2s. We observe that

2 Ja t2] 12 2
sup{st—(e’ Y >}<st<sln/ s, forall s>c,=e".
>0 =0 J!

|
Let a,b,Ry, L, and L;, be constants given by (V,). Setting p > b*, define the constant
Vu|> +V (x)u?) dx
S = i BTV
OACH g ( Jia V() u]? lx)

and for each p > a*, we define the constant

Vul? 2d
S(Lq)i= inf Je2(1Vd +V(x);/‘) -
O#ME de (IRZ ‘u|pdx) P

We observe that in the case of V satisfies (V1) and (V;), from Lemma 6.1, these constants are

positive.

In order to prove that these constants are independent of L,, we assume that V also

satisfies (V3), more precisely:

Lemma 6.14. Suppose that V satisfies (V;) — (V). Then,

(a) Forevery p > b*, we have

Sy := inf Sy(L,) > 0.
Ly>RS
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(b) For every p > a*, we have

S:= inf S(L,) > 0.

L,>RS

Proof.

(a) If ST = 0 there exist sequences (Ly4) and (L, ) such that L, , > R§, LM,RS_“ <Ly <

Lﬁfa_ b)/(2=0) p2(a=b)/(2-a) apd Sv,(Lna) — 0. Thus, there exists a sequence (u,) such

that u, € H‘ﬁn ad(B2), Jr2(|Vuan|? + Vi (x)u2) dx = 0,(1) and [g2 Viy(x)|un|P dx = 1. Using
the fact that V,,(x) = 1 in B; for each n > 1 and the Sobolev embedding there exists
¢ = c(p) > 0 such that

/B] V() |ty |P dx = /B, |up|P dx < C(/B](|Vun|2_|_vn(x)u%) dx)P/Z =0,(1).

By the Strauss lemma Strauss (1977) and the fact that V,,(x) > 1 in Bg,\Bj, there exists
¢ = c¢(p) > 0 such that

/ Vn(x)|un|pdx§/ Vi () |t P2 1t
BRO\BI BR\

0 1
-2)/2

Sc(/ (|Vun|2—|—u%)dx)(p )// Vi, (x)u dx

Bg,\Bi Bg\Bi

—2)/2

§c(/ (\Vun|2+Vn(x)u,21)dx>(p )// Vi ()12 dx

Bgy\B1 Bry\Bi
=on(1).

By Lemma 6.4 and since p > b* we have

p ’”n|p_2 |”n’2
Vi (x)|un|P dx < Ly, p g dx
R?\Bg, R?\Bg, x| [x]
-2
< b u””'l;&n / 1 a7 d
—L dx
> Lgfa_z)/47r(p_2)/2 RQ\BRO ’x’b—a+(2—a)(p—2)/4 |x|a

-2
Ln,bH”n HZ‘I/
n

< n.a 2
T LE A2 2l G- /Rz\BRO e

,a

2
d
2y T

-2
Ln,bH”nHZ‘l/ Lna
L’g%;b)/(Z—a)ﬂz(a_b) /(2—a) /R

<Nl [ Valoudd
0

Thus, / Va (x)|un|? dx — 0 a contradiction.
R
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(b) If S =0, similarly to part (a) there exists a sequence () and (L, ,) such that [g2(|Vu,|* +
Vo (x)u2)dx = 0,(1) and [g2 |u|P dx = 1. By Sobolev embedding there exists ¢ = ¢(p) >0
such that

/ P dx < c(/ (Vw2 + V()2 dx) "' = 0,(1).
B, B,

By Sobolev embedding and the fact that V,,(x) > 1 in Bg,\B; we have

/ |un|P dx < c</
Bg,\Bi Bg,\B

0 1

2
Sc(/ (|Vun|2+Vn(x)u%)dx>p/
Bg,\Bi

=op(1).

/2
(|Vun]2 + ug) dx)p

By Lemma 6.4 we have

/ lu \”dx</ al?2 fen”
R?\Bg, " ~ JR?\Bg, RY I R

p—2
Un
< [ / v s
T L A g(p-2)2g et @023 Jraygy x|

-2
<lunlfy? [, Vb
n RO

=oy(1).
Thus, / ) |un|P dx — 0 a contradiction.
R

Lemma 6.15. For each p > b* and ¢ > a*, there exist positive constants ¢ = ¢(p,a,b,Ry) and
d =d(p,a,Rp) such that

lullp, < ellullygy, forall we Hy,\(R?)

and
||ue| L4 SdHM”H‘I/, for all uEH‘%md(RZ).

Proof. By Lemma 6.14, it is sufficient to consider ¢ = 5;1/2 and d = S~1/2. |
Lemma 6.16. Let (u,,v,) € E such that |J(u,,v,)| < d and
T (4, v) (0, )| < &,|(9, w)||, forall ¢,y € {0,u,,v,}, where &, — 0. (6.18)

Then, ||(un,vn)|| < ¢ for every n € N and for some positive constant c.
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Proof. Taking (¢, y) = (upn,v,) in (6.18), we have

/sz(x,un)undw/Rzg(x,vn)vndx

< ‘2/ (ViuuVvu +V (x)unvy) dx‘ + & (un, vn) |-
R2

This combined with Lemma 6.8 and the fact that |J(u,,v,)| < d , we have
/ £, un)un dx+/ g(x,vy) vy dx
R? R?
< 2d+2/2ﬁ(x,un)dx+2/2é(x,vn)dx—ks,l”(un,vn)”
R R
2 ~ 2 -
<2d+ —/ O, up)uy, dx + —/ g(x,vp) v dx+ &, || (ty, vin) |-
H Jr2 v JR2
Thus, there exists ¢ > 0 such that
[ Funundrt [ gevn)vade < e el ()| (6.19)
Taking (¢, y) = (0,u,) in (6.18), we obtain
Junl < [ B viJta vt el
R2
Setting, for every n € N, the sets
Tip={x€R*: |x| >R, g(vy) < V(x)v) 1} (6.20)

and
Ty ={x€R?: |x| > R,g(va) > V(x)/ '}, (6.21)

We can write
]2 g/ gvindx+ [ VEW iy dx+ nun])-
R 1

UT1 Tp
Thus, for n € N such that u,, # 0, we have
Un

it — &, < / e dxt [ Vg, (6.22)
BRUTY, [|un | Ty [|un |

By Young’s inequality and Lemma 6.15, there exists a positive constant ¢ = ¢(v,a, b, Ry) such

that .
v J—
V()Y ! o< X2 V(x)v) dx+c. (6.23)
T H Un H v Top

Set U, = —™ . There exists A = A(g) > 0 such that

[
lg(s)] < Ae(@ DB forall s € R. (6.24)
Using Lemma 6.13 with s = |g(v,(x))|/A and t = |U,(x)|, we get
/{ e, {2l }g(vn)Un dx <ILin+1L,. (6.25)
XCBRUL nt| =7 Ca
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where

_ Un2 |U | /
Lip=2 £ (' - Z )
j=0

{XEBRUT] ,n:‘ (l )

and

b - g1 £

{x€BRUT ,,!| WDCG}

From Proposition 6.5 and (6.24), for ¢ = ¢(g,a,Ry) > 0, we have
/ gvp)Updx < c++/ o /
{)CEBRUTI.,n:lg()‘{n> }

g(v,,)vn dx. (6.26)
XEBRUTI g |g
On the other hand, by Young’s inequality

/ g("'n)Un dx < 13771 _{_14-‘” (627)
{x€BRUT} , ‘8(?) <ca}
where )
a — .
L, = / D MET d
N a* {XGBRUTIJI:‘@|SC“} |g( n)|
and

1 .
Lin= _*/ U, | dx.
a” J{xeBrUT n:|g<vn> <cq}

Since g(r) = o(t* 1), there exists 0 < & < 1 such that

g(t)[#1 <lr], forall || < &.

Thus,
g()[#T < g()r, forall |t <&
and .
mwﬁéﬂkw,mw re{Jt > &t g(1)] < cal

Since ¢, > 1, we obtain

1g(t)|# T < 5 g()t, forall tef{reR:|g(t)| <ca). (6.28)

Using (6.28) and Lemma 6.1 in (6.27), there exist positive constants = fB(a,g) and ¢ = c¢(a)
such that

g(v)Updx < B/{ g(va)vadx +c||U,||%. (6.29)

XGBRUTl,n:|g(;L7n)|SCa}

/{XGBRUTl w892 |<ea}
Combining (6.26), (6.29) with Lemma 6.15, there exists ¢ = ¢(g, ap,a,Rg) > 0 such that

/ g(vp)Updx < c+c/ g(vn)vpdx. (6.30)
BRUTI n BRUTL,,

From (6.23) and (6.30) in (6.22), there exists ¢ = ¢(g, vV, Qg,a,b,Ry) > 0 such that

||un|| < c+c/ gvn)vpdx+c | V(x)v, dx+&,. (6.31)

BrUT: T,
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By (6.19), we have
/ g(vp)vpdx+ V(x)vy dx < ¢+ & || (tn, vn)]|.
BRUTl,n TZ‘n
Thus, there exists ¢ > 0 such that
lunll < ¢+ &l (tn, i) || + &n-
Similarly, we get

[vall < ¢+ &nl[(un,vn)l + €

We finally obtain
|t vl < €+ &l (ttns Vi) || + -

which implies that ||(uy,,v,)|| < ¢, for every n € N, for some positive constant c. |

Lemma 6.17. Suppose that (V) — (V») and (H;) — (Hs) hold. If (u,,v,) C E is a sequence such
that (i, vs) — (,v) in E, J(un,vn) — ¢ and J (up, v,) — 0. Then,

(i) f(x,u,) = f(x,u)in L'(Bg,) and g(x,u,) — g(x,u) in L' (Bg,), where R > 1.

(ii) F(x,uy) = F(x,u) in L'(R?) and G(x,u,) — G(x,u) in L' (R?).

Proof. We give the proof for the functions f and F; similar arguments apply to the other
functions. According to Remark 6.2, we can assume that u, — u in L'(Bg,). Moreover, by
the exponential growth of f and Proposition 6.5, we have that f(x,u,) € L! (Br,) and since

J (ttny ) (Un,vn) = 0, (1) there exists ¢ > 0 such that

/sz(x7un)undX+/Rzg(x,v,,)vndx§c.

Using Figueiredo, Miyagaki and Ruf (1995, Lemma 2.10), we conclude that (i) holds for the

function f

From (i), given R; > R, where R is given by the definition of ]7, we obtain

fx,uy)dx — f(x,u)dx.
Bg, Bg,

Thus, there exists p € L!(Bg,) such that
f(un) < p(x) almost everywhere in Bg, . (6.32)
From (H}) and (H3), we obtain

F(t) < max F(t)+Mf(t), forall reR. (6.33)

te [O,So]

Using (6.32) and (6.33), we have

F(x,uy) < F(u,) < rr[loax]F(t) +Mp(x), forall x¢& Bg,. (6.34)
te|0,50
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By Lebesgue’s dominated convergence theorem, we obtain

/ F(x, 1) dx — F(x,u)dx.
Bg, Bg,

Consequently, to prove that

/ f(x,u,,)dx—>/ F(x,u) dx,
R2 R2

it is sufficient to show that given 8 > 0, there exists R; > 0 such that

/ F(x,u,)dx <8 and F(x,u)dx < §.
R2\By, R2\By,
Note that .
F(x,uy) < EV(x)]un\”, forall x € R*\Bg,. (6.35)
Hence,

~ 1
/ F(x,u,)dx < —/ V(x)|un|* dx
Rz\BRl lLl' Rz\BRl
Pl

<z 1% w—u|*dx+ 1% Hdx).
< (/RZ\BR1 () [un — u* dx - () ul x>

Using the compactness of the embedding H‘%m d(Rz) — L#J ad (R?) and the weak convergence
(t4n,vn) — (u,v) in E, we can choose R > 0 sufficiently large such that

/ F(x,uy) dx < 8.
R2\Bg,
Since F(-,u) € L' (R?), we may assume that
/ F(x,u)dx < 8.
R?\Bg,

Combining all the above estimates, since 6 > 0 is arbitrary, we have

/I:“J(x,un)dx%/ F(x,u) dx.
R2 R2

6.4 Estimates

In this section we establish the estimates for the auxiliary functional that are used to
prove Theorem 6.3. We start with the definition of Moser type functions. Consider k € N. Let
O > 0 be a sequence which will be fixed such that 8 — 0, as k — +o0. The Moser type functions

are defined by
Vink (1-80)'72, | S%,
1 1. (1-8)1% 1
ep=——=1<1In(—)— . _ <1
v | M) T me 0 kSHst

0, x| > 1.
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We have
[Verls =1- 6

and
Ink 1 )

2 —_— — —
/RZV(x)ekdxg(l 5k)<k2 + e

Then, we may choose &, depending on k, such that
llex|| =1, forall k>1.

Furthermore, we can note that

5k§(1_8k)(lnk 1 ><lnk 1

 Tamk) S T amk
Thus,
OxInk <1/2, for k sufficiently large . (6.36)

Proposition 6.18. Suppose that (H;) — (Hg) hold. Then, there exists kg € N such that

~ 4r
sup  J(u,v) < —
R (e exy ) PE~ Qo

Proof. Suppose, by contradiction, that for all k € N

~ 4
sup  J(u,v) > —E,
R(ey.cr) SE- %

Thus, for all fixed k > 1, there exist a nonnegative sequence §, — 0, as n — oo, and a sequence

NMnk = Tn,k(eka ek) + (un,ku _”n,k>7 Unk € H‘l',md (Rz)u

such that A
T
(nn k) > — = Cn

)
Let /2 : [0,+o0) — R be the function defined by /(t) = J(t1,.x). Since 7(0) = 0 and tgrf h(t) =
—oo, there exists a maximum point 7. We may assume, without loss of generality, that 7 = 1, so

that 4
~ T ~
J(Mug) > w G and  J'(Myi)Nni =0.

This means that

7o llexl® / (X, Ty er + tn i) dx — /Rz G(x, Ty xer — tn k) dx
47
Z % - gn
and
el = lunel = [ Tuert ) (aei+ i) d

+ /RZ §(x, Tnk€k — un’k)(rn,kek — un,k) dx.
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Hence, 4
T
T k > ¢, (6.37)

and
Tr%,k Z /RZ f(x, Tn,kek + un,k) (Tn,kek + un,k) + /]RZ §(x, Tn,kek - un,k) (Tn,kek - un,k)- (638)

Set [ > 0 such that

liminf

t tolt 4
2l (2) liminf g(f ¢ (6.39)
t—+oo pOI° " t—4o0 Ol

>0 > —.
0o
Thus, given € > 0, there exists Rz > 0 such that
tf(1),1g(t) > (I—€)e®”, forall > R,. (6.40)

Using (6.37), there exists ky > 0 such that

VInk
(1— 8027, 22 >Re, forall k> k.
Since,
ec(x) = (1= 802 /25 forall xeB
o’ 1/k>
we get

max{ T, ke + Un i, Tnkek — Uni} = Tuk(X)ex(x) > Re, forallx € By, and k > ko.
Combining (6.38) with (6.40), gives
Ty > /R2 £ T ke + tn ) (Tager + thn i) dx
+ /R L 8% T ker — tn i) (To ek — n k) dx

> /B f(Tuker + uni) (T rer + tn k) dx
1/k

+ | g(Taker — ) (Tnker — tn i) dx
By /i

Z(,_g>/ Po(1-8) BT,
By

. 4w
for every k > ko. Setting s,  := ‘L',%k N we get

4 Ink
_TC + Sn,k Z (l _ 8)/ e (1 6/() (ao"_sn,k)
0o Bk

— (1 — &) mesnkan'St ¢ 3 gy Honn)Bilnk

for every k > kg. Using (6.36), we find

4 s,
%"’_Sn,kZ(l— £)me “ot (Ink=1/2) ,—1 (6.41)
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Inequality (6.41) implies that (s, &) is bounded for each k > ko. Therefore, there exists s; € R
such that limsups, y = s¢. By (6.37), s; > 0. Using the last limit in (6.41) and taking k — +oo

n—oo
we see that necessarily s; = 0 for each k > 1. Then, ILH’I snk = 0. Using this in (6.41), yields
n—yoo '

4
> (1 e)me!
o

This contradicts (6.39) because € > 0 is arbitrary. |

6.5 Finite-dimensional approximation

Since the functional J is strongly indefinite on the space E (i.e. positive and negative
definite on infinite-dimensional subspaces), the standard linking theorems cannot be applied. In

order to overcome this problem, we consider a finite-dimensional approximation.
Taking ko given by Proposition 6.18, we consider e = ¢, € H& (R?) and {e;}icn a

Hilbert basis of (e)*. We set

rad

E; = Span{(e;,e;): i=1,2,...,n},
E, =Span{(e;,—e;): i=1,2...,n},
E,=E'QE,.
We use the following notation:
H,=R(e,e)®E,, HS =R(e,e)®ES, H, =R(e,e)DE, .

Furthermore, define the class of mappings

L, ={y€€(QnHn): Y(z) =2,Y2€ 0y},
where O, = Q, N H,, and set

¢p, = inf maxJ(¥(z)). (6.42)
Y€l z€0,

Let us denote by J,, the restriction of J to the finite-dimensional space H,. We obtain that the

linking geometry holds for . Using Lemma 5.5 in Figueiredo, O and Ruf (2005) we have
Y(0n)N(IBpNH, ) #0 forall yeT,, (6.43)
for p given by Lemma 6.11. Thus, combining Lemma 6.11 and (6.43) we have
cp,>0>0 forall n>1.
Since the inclusion mapping I, : Q,, — H,, belongs to I,,, for z = r(e,e) + (u, —u) € Q,, we have

J(z) = r?|le||> - ||u||2—/zf(x,re—}—u)dx—/z6(x,re—u)dx§R%. (6.44)
R R
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Thus,
cn <R, forall n>1. (6.45)

Therefore, applying the linking theorem for Jn, we have the following result (see Rabinowitz
(1986) for a proof):

Proposition 6.19. Suppose that V satisfies (V) and (V») and f and g satisfy (H}), (H>), (Hs)
and (Hs). Then, for each n € N, the functional J,, has a critical point at level ¢,. More precisely,
there is z, = (upn,vn) € H, such that

J(zn) = cu € [0,RT], (6.46)

where o and Ry > 0 are given by Lemma 6.11 and Lemma 6.12, respectively, and

T (z)(@,w) =0, forall (9, )€ H,, (6.47)

that is, for every (¢, y) € H,, we have

Jee VurVy +V(x)upwdx = [gog(x,va) W dx, (6.48)
Je2 VOV +V(X)0 vpdx = [po fx,u,)0 dx. '
By Proposition 6.18, there exists 6 > 0 such that
~ ~ ~ 4r
cpn<maxJ(z) < sup J(z) < sup J(z) < ——6, (6.49)
On R(e,e)®E, R(e,e)BE~ )

for every n € N.
Proposition 6.20. Suppose that V satisfies (Vi) — (V2) and f and g satisfy (H;) — (Hg). Then, J

possesses a nontrivial critical point.

Proof. By Proposition 6.19, there is a sequence (u,,v,) € H, satisfying (6.46) and (6.47). By
Lemma 6.16, (uy,v,) is bounded in E. Then we can find a subsequence (not renamed) and there
exists (u,v) € E such that (uy,v,) converges weakly to (u,v) in E. Taking (0, ) and (¢,0) in
(6.48), where ¢ and y are arbitrary functions in ‘55:’ vad (R?) N H,, we get

/ (Vu,Vy +V (x)un ) dxz/ g(x,vy)wdx (6.50)
R2 R2
and
/ (VouVo +V (x)vnd) dx = / Fx,un) 0 dx. (6.51)
R2 R2
Using Lemma 6.17, we obtain

/ Flx,un) dx — / Fowdds, forall ¢ €%, (R2)NH,
R2 R2 ’

and
/zg(x,vn)l//dx%/zg(x,v)l//dx, forall v e € ,(R*)NH,.
R R ’
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Taking the limit in (6.50) and (6.51) as n — oo, and using the fact that 4", ,(R?) N (UneN Hn)
is dense in H,},,_,(R?), yields

/R (VuVy +V (xuy) dx = /R L8(xv)wdx, forall y e Hy oa(R) (6.52)

and
/R (VOVOV ()vg) dx = /R Fleu)gdx, forall § € HY 0y (B?). (6.53)

Then, (u,v) € E is a critical point of J. To conclude the proof, it only remains to prove that  and
v are nontrivial. Suppose, by contradiction, that u = 0. From (6.53), we also have v = 0. Then,

we can assume that
tn — 0 and v, — 0 in L}, ,,4(R?), forall r>b". (6.54)

We claim that there exists ¢ > 0 such that ||u,|| > o > 0 for all n > 1. In fact, suppose that,
contrary to our claim, there exists a subsequence (not renamed) such that ||u,|| — 0, as n — oo.
From this, we get

/R2 (Vuann + V(x)unvn) dx — 0. (6.55)

Taking (¢, ¥) = (u,,0) and (¢, y) = (0,v,) in (6.48), we get

/RZ (Vuann+V(x)unvn) dx = /Qf(x, Up )ty dx = /Qg(x, Vi)V dX. (6.56)

Using Lemma 6.17 and (6.54), we obtain

lim | F(x,u,)dx=0 and lim | G(x,v,)dx=0.

n—oo JIR2 n—oo JR2

Consequently,

J(ty,vy) — 0, as n—» oo,
in contradiction with (6.46), which completes the proof of the claim.

Taking (¢, y) = (0,u,) in (6.48), we get

i ||* = / g(%,vn)u dx < / g(vn)un dx + V(x)vYlu, dx. (6.57)
R2 Bg R2\Bg

By Young’s inequality, we find

v—1 1
V(v ! n dx<—/ V(x)vY dx+ / V(x)u) dx. 6.58
/ L Vet an < n [ v oo [ v, (6.58)

Using (6.54), we have

/ V(x)y ! n dx = o,(1).
R2\Bg

14|
From (6.57), we obtain,
[[utn | S/ 2(vn) 2 dx+ 0,(1). (6.59)
Bg

4|
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Thus,

4w 1/2
(Z=8) "l < [ gtvn)idx+on(D)
Qo B
4

where i, = (£ — 5)1/2”2—"” From Lemma 6.13, with s = |g(v,)|/\/0 and t = \/Q|ity|, we
n

get

Ja Ji= 2j
(- 5) Junl < [ (elon? — 3° M) i
(0% {xeBR:\%\xa} - J!

j=0
(vn)

+ / g(vn)
{XGBR:|W|>CLJ} o

—|—/ g(vn)i, dx+o0,(1).
{xeBM%Kca}

In'/2 ‘M dx

4
Since [|ii,||* < %’ by Lemma 6.7 the first integral tends to zero, while by Young’s inequality in

the third integral, we have

a*—1 _a*
gwmdr="—= [ Jglm)#Tax
/{xeBR:|%|gca} e a* {xeBR:|%|gca} "
1 *
+ _* g(Vn) |I/_tn|a dx
a {XGBR:|W|§Ca}
= 0,(1)

where we used Lebesgue dominated theorem and Remark 6.2 because i, — 0 in H& rad (R?).
Thus,
(

4 1/2
(G —8) Ml < I/Z\g on(1). (6.60)
. 00 . .
Given € € (O, T) , where 6 > 0 is given by (6.49), there exists C¢ > 0 such that
4(% —90)
18(5)| < Ceel®tO5  forall seR.
By (6.60), we get
C.elC0+e)v;
(Z-8) " Jnl < / S 2 SW) dx+0,(1).

Thus,

an b 12, Ce 1/2
(5o =0) Tl < == [ Tstwn)l (10 2(TE) + a8 Plun) +ou). (661

C
Let I, /BR lg(vy)] (ln (\/_) +(ap+¢€) |vn]) and set

= e Bt A(TE) < ((e0+20)! 2~ (on-+)' ) ).
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Hence,
I=n'? (%%) [, o lsmldr e+ [ gl
+ [ sl (102 4 (a0 +-) )
< In!/2 (%@) [ o lenldet @) [ gl
+ (o +28)1/2 /E 2(v)vndx.
Thus,

C.
I, <ln'/? (=X / )| d 2 1/2/ )V dx. 6.62
<w'?(Z2) | stnldvs (@+2e)'2 [ gnmdr. (662

Since g(t) = o(t), as t — 0, there exists dy > 0 such that [g(s)| < |s|, for |s| < 8. We can assume
that v, — 0 almost uniform in Bg. Thus, given € > 0, there exists Qz C Bg such that |Qz| < €,

v (x)| < 8 for x € BR\ Q¢ and n sufficiently large. Let M = \/In(Ce / /@ ) / (v oo +2€ — /ap + € ),
for n sufficiently large. Hence,

Vi dx:/ dx+ V)| dx
Jog, = [ el [ Teon)

< i I et |/
(BR\Z,)NQE [—M M| (BR\Zn

< Ivnldx+ sup |g(s)[€.
Bg [—M M|

Since € > 0 is arbitrary and v, — 0 € L'(Bg), we get
/ |8 (V)| dxx = 05 (1). (6.63)
Bgr\Z,

Combining (6.62) and (6.63) with (6.61), we obtain

4w 1/2 2e.1)2
(%—5) ol < (14 57) /BRg(vn)vndx+on(1). (6.64)

Arguing similarly, we get

41 2e.1)2
<%_5> Ivall < (14 5) /BRf(u,,)undx—f—on(l). (6.65)

By Lemma 6.17, we have
/ F(x,u,)dx —0 and / G(x,up) dx — 0. (6.66)
R2 R2

Using Proposition 6.18 and (6.66), we obtain

4w
()| < on(1)+ (6.67)
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Since Zg(un,vn)(un, vy) = 0, we have

/ T, )t dx + / 0, V) dx = 2| {1ty ). (6.68)
R2 R2

By (6.67) and (6.68), we find

4r
I (up)up dx+/ gvp)vpdx <2(— —3) +0,(1). (6.69)
Bg Br (24}
Combining (6.64), (6.65) and (6.69), we obtain

1/2
(Z2-8) "l + Il

< <1+%>1/2( BRf(un)undx+

< 2(1+%)1/2(‘%—5) +on(1).

. g(vi)vn dx) +o0,(1)

Thus, for every n € N,
2eN\1/2 /4x 1/2 4t 6\1/2

which implies
4T O0\1/2
|tn| + [|Va]| < 2<% — Z> , for all n sufficiently large.

Without loss of generality we can assume that

4w 5\ 1/2
||un|| < (—ﬂ — —) , for all n sufficiently large.

o 4
Thus, there exists ¢ > 0 such that

£(5)] < Isf"~ e elcatelbl — Y (o0 +e)|s|*

T ), forall seRR.
j=0 J:

4t S
For p > 1 sufficiently close to 1 such that p(og + €) <% — —) < 4w, we obtain

4

/ £, )it dx
R2

= S up)updx+o,(1)

Br
. Ja j 2j
< ||unHZ*+c/ <e(a+s)lun|2_ 3 (00 +€)/luy| >|un|dx+on(1)
Br j=0 J!

. > & (o) |upP NP NP
SHM,ZHZ*—I—cHuan/(/B (elecronl _ 3 )l ) )" 4ot
R j:() .

. 2 {4 pl (o + )7 |un|¥
< Hunﬂz*—i—cHuan//B (el _y 7l j‘) ] ) dx-tonl),
R =0 :
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where in the last inequality we used Lemma 6.6 for pg > p such that

po(0n+€) (% - g) < 4.

Using Proposition 6.5 and Lemma 6.1-(i), we get

/zf(x, Up )ty dx — 0.
R

Consequently, by (6.56), we get

lim J (up,v,) =0,
n—oo
which is a contradiction with (6.46). This complete the proof. ]

Lemma 6.21. Let (1, v) be the critical point of J given by Proposition 6.20. Then, there exist
positive constants dy = d(g,V, Qy,a,b,Ry) and dy = da>(f, 1, 0, a,b,Ry) such that

lul<di  and  [v] <do.

Proof. Let (uy,v,) be the sequence given Proposition 6.19 converging weakly to (u,v) in E.

Following the argument used in the proof of Lemma 6.16 and using Proposition 6.18, we get
u—2 / ~ v—-2 ~ 87
— dx+—— , dx < — 1).
" sz(x,un)un x+ " Rzg(x V)V dx < % +on(1)

In particular,
8y

g(x,vy)vpdx < ————

Moreover, there exists ¢ = ¢(g,V, &,a,b,Ry) > 0 such that

Junll < e
B

+ou(1). (6.70)

g(vn)vndx+c/T V(x)vy dx+o,(1). (6.71)

RUTY

where T ,, and 75 ,, are defined in Proposition 6.18. From (6.70) and (6.71), we obtain

8verm
——+0,(1).
_2)+0()

l|tn] < c+
ap(Vv

Consequently, there exists a constant d; = d;(g,V, ®,a,b,Ry) > 0 such that
||lu|| < liminf||u,|| < d;.
n—soo

Similar arguments apply to function v. ]

6.6 Proof of Theorem 6.3

Let (u,v) € E given by Proposition 6.20. We start showing that

flx,u(x) = f(u(x)) and g(x,v(x)) =g(v(x)) forall xeR>. (6.72)
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Notice that

Flru(x)) = f(u(x)) in {xe€R*:u(x)=0}UBg,

and
gx,v(x)) =gv(x)) in {xe R?: v(x) =0} UBg,.

Thus, we can assume that u(x) # 0 and v(x) # O for |x| > Ry. From (Hs), there exists a positive
constant C = C(f, g, 0) such that

pyTES Rt g , forall ¢>0.
By Lemma 6.4, we have
, (@) ll® o (@) I
|X|T MT
L | O R
ut— x| (550 v x| (55%)@

Cd° (o +1)d?
L];Eu)l , fvv)l < | |e(2a)9 , forall [|x|>Ry.
x|\ 4
4
Set L* = Cd®e(@t1)4* Since 6 > . , for L, > L*, we get
—a
L
fpgﬁ)] , 852 < | |aa, forall |x| > Ry.
u v X
From (V;), we obtain
flff)l , g‘fi)l <V(x), forall |x|>Ry.
u v

Thus, if |x| > Ry we have f(x,u(x)) = min{f(u(x)),V(x)u(x)* =1} = f(u(x)). Hence, (6.72)
(u,v

follows. Consequently since (u,v) is a critical point of J, we can use (6.72) to obtain

/]1%2 (VuVy +V (x)uy + VvV +V(x)vo) dx:/sz(u)(bdx—k/RZg(v)I//dx

for all (¢, y) € E, that is, system (6.1) possesses a nontrivial weak solution.
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