
On Hamiltonian elliptic systems with exponential
growth in dimension two

Yony Raúl Santaria Leuyacc





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Yony Raúl Santaria Leuyacc

On Hamiltonian elliptic systems with exponential growth in
dimension two

Doctoral dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação – ICMC-
USP, in partial fulfillment of the requirements for the
degree of the Doctorate Program in Mathematics.
FINAL VERSION

Concentration Area: Mathematics

Advisor: Prof. Dr. Sérgio Henrique Monari Soares

USP – São Carlos
June 2017



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados fornecidos pelo(a) autor(a)

L652o
Leuyacc , Yony Raúl Santaria
   On Hamiltonian elliptic systems with exponential
growth in dimension two / Yony Raúl Santaria
Leuyacc ; orientador Sérgio Henrique Monari Soares
. -- São Carlos, 2017.
   192 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Matemática) -- Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, 2017.

   1. Hamiltonian systems. 2. Exponential growth.
3. Variational methods. 4. Trudinger-Moser
inequality. 5.  Lorentz-Sobolev spaces. I. , Sérgio
Henrique Monari Soares, orient. II. Título. 



Yony Raúl Santaria Leuyacc

Sistemas elípticos hamiltonianos com crescimento
exponencial em dimensão dois

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Matemática. VERSÃO
REVISADA

Área de Concentração: Matemática

Orientador: Prof. Dr. Sérgio Henrique Monari Soares

USP – São Carlos
Junho de 2017





To my dear family.





ACKNOWLEDGEMENTS

I want to start by expressing my sincerest gratitude to my advisor Sérgio Monari, for all
his outstanding supervision, valuable advice and great guidance. I feel very fortunate to have
worked with an advisor who was so involved with my research.

I also have to thank the members of my PhD committee, Professors Raquel Lehrer,
Jefferson Abrantes, and Ederson Moreira dos Santos for their helpful feedback and suggestions
in general.

I must express my very profound appreciation to all the people who provided me support
and continuous encouragement. I wish to thank all the Brazilians for their generosity and giving
me such a comfortable place to stay. I have had a wonderful time in this lovely country. I would
also like to show gratitude to my friends in Philippines.

I would like to thank CAPES, for the financial support.





“Take what you need,

do what you should,

you will get what you want.”

(Gottfried Leibniz)





RESUMO

LEUYACC, R. Y. S. Sistemas elípticos hamiltonianos com crescimento exponencial em di-
mensão dois. 2017. 192 p. Doctoral dissertation (Doctorate Candidate Program in Mathematics)
– Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2017.

Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos
do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo
crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos
quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados
com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado,
sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo
algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma
singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com
funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso
é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no
infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados
com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de
aproximação em dimensão finita

Palavras-chave: Sistemas hamiltonianos, Crescimento exponencial, Métodos variacionais, Desi-
gualdade de Trudinger-Moser, Espaços de Lorentz-Sobolev.





ABSTRACT

LEUYACC, R. Y. S. On Hamiltonian elliptic systems with exponential growth in dimension
two. 2017. 192 p. Doctoral dissertation (Doctorate Candidate Program in Mathematics) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2017.

In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic
systems in dimension two, involving a potential function and nonlinearities which possess
maximal growth with respect to a critical curve (hyperbola). We consider four different cases.
First, we study Hamiltonian systems in bounded domains with potential function identically zero.
The second case deals with systems of equations on the whole space, the potential function is
bounded from below for some positive constant and satisfies some integrability conditions, while
the nonlinearities involve weight functions containing a singulatity at the origin. In the third
case, we consider systems with coercivity potential functions and nonlinearities with weight
functions which may have singularity at the origin or decay at infinity. In the last case, we
study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To
establish the existence of solutions, we use variational methods combined with Trudinger-Moser
type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation.

Keywords: Hamiltonian systems, Exponential growth, Variational methods, Trudinger-Moser
inequality, Lorentz-Sobolev spaces.
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|x|—
√
|x1|2 + · · ·+ |xn|2 when x = (x1, ...,xn) ∈ RN .

SN — The unit sphere {x ∈ RN : |x|= 1}.

ωN−1 — The surface area of the unit sphere SN−1.

|Ω|— The Lebesgue measure of the set Ω⊂ RN

(X ,µ) — Measure space

M (X ,R) — The collection of all extended real-valued µ-measurable functions on X
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Lp
loc(R
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supp f — Support of a function f .

f ∗ — The decreasing rearrangement of a function f .

fn↗ f — The sequence fn increases monotonically to a function f .

fn↘ f — The sequence fn decreases monotonically to a function f .



f = O(g) — Means | f (x)| ≤M|g(x)| for some M for x near x0.

f = o(g) — Means | f (x)||g(x)|−1→ 0 as x→ x0.

fn = on(1) — Means fn→ 0 as n→+∞.

|α|— indicates the size |α1|+ · · ·+ |αN | of a multi-index α = (α1, ...,αN).

∂ m
i f — The m-th partial derivative of f (x1, ...,xN) with respect to xi.

∂ α f — ∂
α1
1 · · ·∂

αN
N f .

C k — The space of functions f with ∂ α f continuous for all |α| ≤ k.

C0 — The space of continuous functions with compact support

C ∞ — The space of smooth functions ∩k≥1C
k.

C ∞
0 — The space of smooth functions with compact support.
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CHAPTER

1
INTRODUCTION

In recent years, many authors have considered the existence of nontrivial solutions for
Hamiltonian systems of the form

{
−∆u+V (x)u = Hv(x,u,v), x ∈Ω,

−∆v+V (x)v = Hu(x,u,v), x ∈Ω,
(1.1)

where Ω is a smooth domain in RN , N ≥ 2 and H(x,u,v) is a nonlinear function. Hamiltonian
systems have been widely use in applied sciences, mainly in the mathematical study of standing
wave solutions in models in population dynamics (Murray (1993)), in nonlinear optics (Bulgan
et al. (2004), Christodoulides et al. (2001)) and in the study of Bose-Einstein condensates
(Chang et al. (2004)). In dimension N ≥ 3, the simplest example of (1.1) is Hv(x,u,v) = g(v),
Hu(x,u,v) = f (u), (g(v)∼ vp and f (u)∼ uq). Even for this case, relevant open questions still
persist (see Bonheure, Santos and Tavares (2014)). In order to suppose that this systems is in
variational form, that is (1.1) is the Euler-Lagrange equation of some functional defined on a
suitable product of Sobolev type spaces, the couple (p,q) lies on or below the critical hyperbola
(see Figueiredo and Felmer (1994), Hulshof and Vorst (1993), Mitidieri (1993)):

1
p+1

+
1

q+1
≥ N−2

N
. (1.2)

In dimension N = 2 one sees that the critical hyperbola is not defined. More precisely,
Let Ω⊂ RN be a domain of finite measure. The classical Sobolev space embeddings say that
W 1,2

0 (Ω)⊂ Lq(Ω) for all 1≤ q≤ 2N/(N−2). In the limiting case N = 2 we have q =+∞, but
easy examples show that W 1,2

0 (Ω)* L∞(Ω), in particular from that any polynomial growth for
f and g is admitted. Thus, one is lead to ask if there is another kind of maximal growth in this
situation. The answer was obtained independently by Pohozaev (1964) and Trudinger (1967), it
states that eαu2 ∈ L1(Ω) for all u ∈ H1

0 (Ω) and α > 0. Furthermore, Moser (1970/71) showed
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that there exists a positive constant C =C(α,Ω) such that

sup
u∈H1

0 (Ω)

‖∇u‖2≤1

∫
Ω

eαu2
dx

≤C, α ≤ 4π,

=+∞, α > 4π.
(1.3)

Estimate (1.3) from now on will referred to as Trudinger-Moser inequality, similar results wwere
obtained for Ω = R2 (see Cao (1992), Ruf (2005)). A singular type extension of inequality (1.3)
for bounded domains was given by Adimurthi and Sandeep (2007) and its version in the whole
space RN was obtained by Adimurthi and Yang (2010). They showed that there exists a positive
constant C =C(α,β ,N) such that

sup
u∈H1(RN)

‖∇u‖2+‖u‖2≤1

∫
RN

1
|x|β

(
eα|u|N/(N−1)

−
N−2

∑
k=0

αk|u|kN/(N−1)

k!

)
dx

≤C, 0≤ α ≤ (1−β/N)αN

=+∞, α > (1−β/N)αN ,

(1.4)
where αN = (Nω

1/N
N )N/(N−1).

In dimension two, inequalities (1.3) and (1.4) show that, if the setting space of the system
(1.1) is given by H1

0 (Ω)×H1
0 (Ω) the maximal growth of the functions f and g can be consider

such as g(v)∼ ev2
and f (u)∼ eu2

.

An important point is the fact that Trudinger-Moser type inequalities can be sharpened
using Lorentz-Sobolev spaces. First, we recall the Lorentz spaces: for a measurable function
u : Ω→ R, and u∗ denote its decreasing rearrangement. Then, u belongs to the Lorentz space
Lp,q(Ω) (p,q > 1) if

‖u‖p,q =
(∫ +∞

0

[
u∗(t)t1/p]q dt

t

)1/q
<+∞.

These spaces represent an extension of the Lebesgue spaces, in particular when p = q we
have Lp,p(Ω) = Lp(Ω). Using these spaces we can define the Lorentz-Sobolev spaces, roughly
speaking we say that u belongs to the Lorentz-Sobolev space W 1

0 Lp,q(Ω) if u and its weak
derivatives belongs to Lp,q(Ω).

Using Lorentz-Sobolev spaces, Brézis and Wainger (1980) showed : If Ω be a bounded
domain in R2 and s > 1, then, e|u|

s
s−1 belongs to L1(Ω) for all u ∈W 1

0 L2,s(Ω). Furthermore,
Alvino, Ferone and Trombetti (1996) obtained the following refinement of (1.3), there exists a
positive constant C =C(Ω,s,α) such that

sup
u∈W 1

0 L2,s(Ω)

‖∇u‖2,s≤1

∫
Ω

eα|u|
s

s−1 dx

≤C, α ≤ (4π)s/(s−1),

=+∞, α > (4π)s/(s−1).
(1.5)

As it was showed in Ruf (2006), if the setting space of the system (1.1) is given by
the product space W 1

0 L2,q(Ω)×W 1
0 L2,p(Ω) the maximal growth of the nonlinearities can be
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considered like f (u)∼ e|u|
p

and g(v)∼ e|v|
q

with p,q > 1 satisfying

1
p
+

1
q
= 1. (1.6)

Trudinger-Moser inequalities in the case Ω = R2 were studied by Cassani and Tarsi
(2009) with some natural modifications. Recently Lu and Tang (2016) obtained the following
result which represents an extension of (1.4) in Lorentz-Sobolev spaces: Let 1 < s < +∞,
0≤ β < N. Then, there exists a positive constant C =C(N,s,β ) such that

sup
W 1LN,s(RN)

‖∇u‖s
N,s+‖u‖s

N,s≤1

∫
RN

Φ(α|u|s/(s−1))

|x|β
dx

≤C, α ≤ (1−β/N)αN,s,

=+∞, α > (1−β/N)αN,s,
(1.7)

where

Φ(t) = et−
k0

∑
k=0

tk

k!
, k0 =

[(s−1)N
s

]
and αN,s = (Nω

1/N
N )s/(s−1).

In dimension two the last inequality allows us toconsider the nonlinearities of the system (1.1)
such as g(x,v)∼ e|v|

p
/|x|a and f (x,u)∼ e|u|

q
/|x|b with a,b ∈ [0,2) and (p,q) belonging to (1.6).

Finally, we illustrate the content of each chapter of this thesis.

In Chapter 2, we show important properties which will be used in the chapters 3,4 and
5. We start introducing some basic concepts about distribution and decreasing rearrangement
of a function in order to define Lorentz spaces, which represent a generalization of Lp-spaces.
Furthermore, with the help of these spaces we can construct Lorentz-Sobolev spaces as gener-
alization of Sobolev spaces. Finally, following Figueiredo, Ó and Ruf (2005), Ruf (2008) we
define an application called tilde-map which is very useful in the variational formulation of the
systems which will be presented in the next chapters.

In Chapter 3, we study the existence of nontrivial weak solution to the following
Hamiltonian elliptic system 

−∆u = g(v), in Ω,

−∆v = f (u), in Ω,

u = v = 0, on ∂Ω,

(1.8)

where Ω is a smooth bounded domain in R2 and the nonlinearities f and g possess maximal
growth which allows us to treat the system (1.8) variationally in the cartesian product of Lorentz-
Sobolev spaces.

In Ruf (2008) it was shown the existence of nontrivial solution of the system (1.8) in the
case where f (u)∼ e|u|

p̄
and g(v)∼ e|v|

q̄
where p̄, q̄ > 0 such that 1/p̄+1/q̄ > 1. In this case, we

can obtain (p,q) belongs to the hyperbola (1.6) such that

lim
|s|→∞

| f (s)|
eα|s|p = 0 and lim

|s|→∞

|g(s)|
eα|s|q = 0, for all α > 0. (1.9)
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The existence of solutions for the system (1.8) when f (u) ∼ e|u|
p

and g(v) ∼ e|v|
p

has
been solved for the case p = q = 2 in Figueiredo, Ó and Ruf (2004). Our main result in this
chapter is to prove the existence of nontrivial weak solutions for the general case, that is (p,q)

satisfies (1.6).

Motivated by the above results, we call the curve (1.6) as exponential critical hyperbola
in analogy to (1.2) in the sense that for (p,q) belongs to this hyperbola gives the maximal growth
range and the solutions is proved when (p,q) lies on or below to (1.6).

Therefore, from this results we have naturally associated notions of criticality and
subcriticality, namely: Given p > 1, we say that a function f has p-subcritical exponential
growth, if f satisfies condition (1.9), whereas a function f has p-critical exponential growth, if
there exists α0 > 0 such that

lim
|s|→∞

| f (s)|
eα|s|p =

0, α > α0,

+∞, α < α0.

In order to study the existence of solutions of the system (1.8) we are going to impose the
following conditions:

(A1) f and g are continuous functions, with f (s) = g(s) = o(s) near the origin.

(A2) There exist constants µ > 2, ν > 2 and s0 > 0 such that

0 < µF(s)≤ s f (s), and 0 < νG(s)≤ sg(s), for all |s|> s0.

where F(s) =
∫ s

0 f (t)dt and G(s) =
∫ s

0 g(t)dt.

(A3) There exist α0 > 0 and p > 1, such that

lim
|s|→∞

| f (s)|
eα|s|p =

0, α > α0,

+∞, α < α0.

(A4) There exists β0 > 0, such that

lim
|s|→∞

|g(s)|
eβ |s|q =

0, β > β0,

+∞, β < β0.

where q =
p

p−1
.

(A5) There exist constants θ > 2 and Cθ > 0 such that

F(s)≥Cθ |s|θ and G(s)≥Cθ |s|θ , for all s ∈ R,

where

Cθ >
14+6

√
5

δθ Rθ−2 , R2 =
2π

α
1/p
0 β

1/q
0

max
{

µ−2
µ

,
ν−2

ν

}
and δθ is a positive constant which will be explicit later on.
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Now we state the main result of chapter 3.

Theorem 1.1. Suppose (A1)− (A5) hold. Then, the system (1.8) possesses a nontrivial weak
solution.

Note that the above theorem permits to work with (p,q) lying in the exponential critical
hyperbola thanks to assumptions (A3)− (A4). Consequently, this result completes the study
made in Figueiredo, Ó and Ruf (2004) which corresponds to the diagonal case p = q = 2. We
point out the condition (A5) will be crucial in our proof, this condition is of type as considered
in many works (see Cao (1992) and the references therein). We remark that from the choose of
Cθ we do not need the following usual assumption:

(A0) There exist positive constants M and s0 such that

0 < F(s)≤M| f (s)| and 0 < G(s)≤M|g(s)|, for all |s|> s0.

which is used to get some convergence results.

Since the system (1.8) is a special case of a Hamiltonian system, some difficulties appear;
for example, the associated functional is strongly indefinite, that is, its leading part is respectively
coercive and anti-coercive on infinite-dimensional subspaces of the energy space. To overcome
these difficulties, we will use a finite-dimensional approximation combine with the Linking
theorem.

In Chapter 4, we study the following singular Hamiltonian system:
−∆u+V (x)u =

g(v)
|x|a

, x ∈ R2,

−∆v+V (x)v =
f (u)
|x|b

, x ∈ R2,

(1.10)

where a,b ∈ [0,2) and the functions f and g possess critical exponential growth. This system is
motivated by inequality (1.7).

In order to have properties like embedding theorems we consider that V is a continuous
potential verifying the following conditions:

(V1) There exists a positive constant V0 such that V (x)≥V0 for all x ∈ R2.

(V2) There exist constants p > 2 and q = p/(p−1) such that

1
V 1/q

∈ L2,p(R2) and
1

V 1/p
∈ L2,q(R2).

System (1.10) was studied by Souza (2012) in the case where p = q = 2 and its solution
was found in H1(R2)×H1(R2), for this case the author use the respective assumption instead of
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(V2), that is 1/V ∈ L1(R2) and similar conditions on the functions f and g as (A0)− (A4) given
above. Moreover, it is considered a following condition: there exist θ > 2 and a positive constant
Cθ sufficiently large such that

f (t)≥Cθ tθ−1 and g(t)≥Cθ tθ−1, for all t ≥ 0. (1.11)

Cassani and Tarsi (2015) proved the existence of nontrivial solutions of the system (1.10) in
the case where a = b = 0. The authors have assumed (V1)− (V2) on V and (A0)− (A4) on
the nonlinearities. Furthermore, in order to estimate the minimax level it was considered the
following conditions:

lim
t→+∞

t f (t)e−α0t p
= lim

t→+∞
tg(t)e−β0tq

=+∞ and α
1/p
0 6= β

1/q
0 . (1.12)

Motivated by these results, we will prove the existence of nontrivial weak solution of (1.10)
in two different ways, that means, in addition to (A0)− (A4) we will adapt the conditions (A5)

and (1.12) and we use each one independently in the proofs. More precisely, we describe the
following additional conditions on the functions f and g.

(A6) The following limits holds

lim
|s|→+∞

s f (s)
eα0|s|p

=+∞ and lim
|s|→+∞

sg(s)
eβ0|s|q

=+∞.

(A7) For a,b given by (1.10), p,q given by (V2), α0 and β0 given by (A3) and (A4) respectively,
it satisfies (

α0

1−b/2

)1/p
6=
(

β0

1−a/2

)1/q
.

(A8) Let a,b ∈ [0,2) given by (1.10). Then, there exist θ > 2 and a positive constant Cθ ,a,b such
that

F(s)≥Cθ ,a,b|s|θ and G(s)≥Cθ ,a,b|s|θ , for all s ∈ R,

where

Cθ ,a,b >
56+32

√
3

δθ ,a,bRθ−2 ,

and

R2 =
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

max
{

µ−2
2µ

,
ν−2

2ν

}
,

whereas the constant δθ ,a,b will be explicit later on.

The following theorems contains our main results in Chapter 4.

Theorem 1.2. Suppose that V satisfies (V1)− (V2) and f and g satisfy (A0)− (A4) and (A6)−
(A7). Then, the system (1.10) possesses a nontrivial weak solution.



25

Theorem 1.3. Suppose that V satisfies (V1)− (V2) and f and g satisfy (A1)− (A4) and (A8).
Then, the system (1.10) possesses a nontrivial weak solution.

We remark that the class of functions which satisfy the hypotheses of the above theorems
are different. The conclusion of Theorems 1.2 and 1.3 extends the result given in Cassani and
Tarsi (2015) in the sense that we add the singularities |x|−a and |x|−b on the nonlinearities
considered in that paper. Moreover, our result complements the study made in Souza (2012) in
the sense that, in this work, we study the class of Hamiltonian systems where the nonlinearities
possess maximal growth with respect to the exponential critical hyperbola.

Our proof of Theorems 1.2 and 1.3 is based on variational methods and a finite dimen-
sional approximation.

In Chapter 5, we discuss the existence of nontrivial solutions for the Hamiltonian system{
−∆u+V (x)u = Q2(x)g(v), x ∈ R2,

−∆v+V (x)v = Q1(x) f (u), x ∈ R2,
(1.13)

where V,Q1,Q2 are continuous functions and the nonlinearities f and g possess critical exponen-
tial growth with (p,q) lying on the exponential critical hyperbola.

On the potential V we assume the following condition:

(V ) V ∈ C (R2,R), V (x)≥V0 > 0 for all x ∈ R2, there exists a≥ 0 such that

liminf
|x|→∞

V (x)
|x|a

> 0.

Assumption (V ) implies that, if a > 0 the potential V is coercive. On the functions Qi for i = 1,2,
we consider:

(Qi) Qi ∈ C (R2\{0},R) , Qi(x)> 0 for x 6= 0 and there exist di < a/(max{p,q}−1)−1 and
bi >−2 such that

0 < lim
|x|→0

Qi(x)
|x|bi

<+∞ and limsup
|x|→∞

Qi(x)
|x|di

<+∞.

The existence of solutions of system (1.13) was studied in Cassani and Tarsi (2015) for the case
Q1(x) = Q2(x)≡ 1. The case Q1(x) = |x|−a and Q2(x) = |x|−b with a,b ∈ [0,2) was treated in
Souza (2012) for the diagonal case p = q = 2 and also considered in Chapter 4 when (p,q)

belongs to the exponential critical hyperbola. In this section we treat a more general class of
nonlinearities studied in previously mentioned papers. We also mention that the systems studied
in Cassani and Tarsi (2015), Souza (2012) and also in Chapter 4 the potential V satisfy some
integrability conditions. In our case, we consider coercive potentials which represent a different
class of potential from the mentioned works.
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On assumption (V ) and for s = p or s = q, we consider the following weighted Lorentz-
Sobolev space W 1L2,s

V (R2) which is defined to be the closure of compactly supported smooth
functions, with respect to the quasinorm

‖u‖W 1L2,s
V (R2)

:=
(
‖u‖s

2,s +‖V 1/su‖s
2,s
)1/s

.

For any λ ≥ 1 and i = 1,2 we also define

Lλ (R2,Qi) := {u :
∫
R2

Qi(x)|u|λ dx <+∞},

endowed with the norm

‖u‖Lλ (R2,Qi)
:=
(∫

R2
Qi(x)|u|λ dx

)1/λ

.

In these spaces we obtain the next result which will be proved later.

Proposition 1.4. Assume (V ) and (Qi) for i = 1,2 and let s = q or s = p. Then, the following
embeddings are compact

W 1L2,s
V (R2)↪→Lλ (R2,Qi), for all λ ≥min{p,q}.

Concerning the functions f and g we suppose the following assumptions:

(B1) f ,g∈C (R), f (s)= o(sη1) and g(s)= o(sη2), as s→ 0, where η1 =max{1/(q−1),min{p,q}}
and η2 = max{1/(p−1),min{p,q}}.

(B2) There exist constants µ > 2 and ν > 2 such that

0 < µF(s)≤ s f (s), 0 < νG(s)≤ sg(s), for all s 6= 0,

where F(s) =
∫ s

0 f (t)dt and G(s) =
∫ s

0 g(t)dt.

(B3) There exist positive constants M and s0 such that

0 < F(s)≤M| f (s)| and 0 < G(s)≤M|g(s)|, for all |s|> s0.

(B4) There exists α0 > 0 such that

lim
|s|→∞

| f (s)|
eα|s|p =

+∞, α < α0

0, α > α0.

(B5) There exists β0 > 0 such that

lim
|s|→∞

|g(s)|
eβ |s|q =

+∞, β < β0

0, β > β0.
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(B6) The following limits holds

lim
|s|→+∞

s f (s)
eα0|s|p

=+∞ and lim
|s|→+∞

sg(s)
eβ0|s|q

=+∞.

(B7) For bi given by (Qi), i = 1,2 and α0, β0 given by (B4) and (B5) respectively, it satisfies(
α0 min{1,1+ b1

2 }
(1+ b1

2 )
2

)1/p
>
(

β0

min{1,1+ b2
2 }

)1/q

or (
α0

min{1,1+ b1
2 }

)1/p
<
(

β0 min{1,1+ b2
2 }

(1+ b2
2 )

2

)1/q
.

Theorem 1.5. Suppose that V satisfies (V ), Qi satisfy (Qi) for i = 1,2 and the nonlinearities f

and g satisfy (B1)− (B7) . Then, the system (1.13) possesses a nontrivial weak solution.

In Costa (1994) was studied the existence of solutions for gradient elliptic systems
involving coercive potentials in dimension N ≥ 3 where the growth of the nonlinearities were of
polinomial type. In our case we study a Hamiltonian elliptic system in dimension two, and the
potential is coercive which is of the class different considered in the systems studied in Cassani
and Tarsi (2015), Souza and Ó (2016), Souza (2012). Moreover, due to the fact of the weights Qi

allow us to complement the results with more general class of nonlinearities.

We recall that under the hypothesis (V1) and (V2) considered in Cassani and Tarsi (2015)
and Chapter 4 (or (V1) and 1/V ∈ L1(R2) assumed in Souza (2012)) implies that the space
W 1L2,s

V (R2) (or H1
V (R2) = {u ∈ H1(R2) :

∫
R2 V (x)|u|2 dx < +∞}) is compactly embedded in

Lλ (R2) for any λ ≥ 1. In view of Proposition 1.4 and in order to overcome some difficulties
due to lack of embeddings, we compensate with condition (B1) which will be used to show and
control the boundedness of Palais-Smale sequences. Observe also that (B1) implies the usual
assumption, that is, f (s) = g(s) = o(s), as s→ 0.

In our argument to prove the existence results, it was crucial a Trudinger-Moser inequality
and some embeddings type properties in weighted Lorentz-Sobolev spaces W 1L2,s

V (R2). In the
proof we used a linking theorem and finite dimensional approximation as in the proofs of
Theorems 1.2 and 1.3.

In Chapter 6, we establish the existence of the following Hamiltonian system{
−∆u+V (x)u = g(v), x ∈ R2,

−∆v+V (x)v = f (u), x ∈ R2,
(1.14)

where the functions f and g possess critical exponential growth and V is a continuous potential.

First, in the systems (1.10) and (1.13) considered in the last chapters, the condition (V1)

says that V is bounded below for a some positive constant and (V2) gives some conditions of
integrability or coercivity.
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In Albuquerque, Ó and Medeiros (2016), the authors proved that the system{
−∆u+V (|x|)u = Q(|x|)g(v), x ∈ R2,

−∆v+V (|x|)v = Q(|x|) f (u), x ∈ R2,
(1.15)

has a nontrivial solution under the potential V and the weight function Q being radially symmetric
and satisfying the following assumptions:

(V ) V ∈ C (0,+∞), V (r)> 0 and there exists a >−2 such that

liminf
r→+∞

V (r)
ra > 0.

(Q) Q ∈ C (0,+∞) , Q(r)> 0 and there exists b < (a−2)/2 and b0 >−2 such that

liminf
r→0+

Q(r)
rb0

<+∞ and limsup
r→+∞

Q(r)
rb <+∞.

In Souza and Ó (2016), the authors established the existence of nontrivial solutions for
Hamiltonian systems of the form{

−∆u+V (x)u = g(x,v), x ∈ R2,

−∆v+V (x)v = f (x,u), x ∈ R2,
(1.16)

when the potential V is neither bounded away from zero, nor bounded from above. The nonlinear
terms f (x,s) and g(x,s) are superlinear at infinity and have exponential subcritical or critical
growth for the case p = q = 2. Among other things, it is assumed that potential V satisfies the
following assumptions

lim
R→+∞

νs(R2\BR) = +∞, for some s ∈ [2,+∞), (1.17)

or for any r > 0 and any sequence (xk)⊂ R2, which goes to infinity

lim
k→+∞

νs(Br(xk)) = +∞, for some s ∈ [2,+∞), (1.18)

where νs is defined by, if Ω⊂ R2 is an open set and s≥ 2,

νs(Ω) = inf
u∈H1

0 (Ω)\0

∫
Ω

(
|∇u|2 +V (x)u2)dx(∫

Ω
|u|s dx

)2/s

and νs(∅) = +∞.

Motivated by the above mentioned results we are interested in studying the system (1.14)
for the exponential critical case p = q = 2, when the potential V can be bounded or can vanish at
infinity. More precisely, we assume:

(V1) V ∈ C (R2,R) is a radially symmetric positive function.



29

(V2) There exist constants 0 < a < 2, b≤ a and R0 > 1 such that

La

|x|a
≤V (x)≤ Lb

|x|b
for all |x| ≥ R0,

where La and Lb are positive constants depending on a,b and R0.

(V3) V (x) = 1 if |x| ≤ 1 and V (x)≥ 1 if 1 < |x|< R0.

Under these conditions on V , we set for 1 < p <+∞

Lp
V,rad(R

2) := {u : R2→ R : u is measurable, radial and
∫
R2

V (x)|u|p dx <+∞}

and we consider the following Sobolev space

H1
V,rad(R

2) = {u ∈ L2
V,rad(R

2) : |∇u| ∈ L2(R2)},

these spaces were considered by Su, Wang and Willem (2007a), Su, Wang and Willem (2007b).

Concerning the functions f and g, we suppose the following assumptions:

(H1) f ,g ∈ C (R) and f (s) = g(s) = 0 for all s≤ 0.

Setting b∗ = 2(2−2b+a)/(2−a) where a and b are given by (V2), consider

(H2) There exist constants µ > b∗ and ν > b∗ such that

0 < µF(s)≤ s f (s), 0 < νG(s)≤ sg(s), for all s > 0,

where F(s) =
∫ s

0 f (t)dt and G(s) =
∫ s

0 g(t)dt.

(H3) There exist constants s1 > 0 and M > 0 such that

0 < F(s)≤M f (s) and 0 < G(s)≤Mg(s), for all s > s1.

Setting µ and ν given by (H2) and a given by (V2), we suppose:

(H4) There exists θ ≥ 4a/(2−a) such that f (s) =O(sµ−1+θ ) and g(s) =O(sν−1+θ ) as s→ 0+.

(H5) There exists α0 > 0 such that

lim
s→∞

f (s)
eαs2 =

0, α > α0,

+∞, α < α0,
and lim

s→∞

g(s)
eαs2 =

0, α > α0,

+∞, α < α0.

(H6) For α0 > 0 given by (H5), we have

liminf
t→+∞

t f (t)
eα0t2 >

4e
α0

and liminf
t→+∞

tg(t)
eα0t2 >

4e
α0

.
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The following theorem contains our main result in Chapter 5.

Theorem 1.6. Suppose that V satisfies (V1)− (V3) and f and g satisfy (H1)− (H6). Then, there
exists L∗ = L∗( f ,g,µ,ν ,α0,θ ,a,b,R0)> 0 such that system (6.1) possesses a nontrivial weak
solution (u,v) ∈ H1

V,rad(R
2)×H1

V,rad(R
2) provided that La ≥ L∗, namely (u,v) ∈ H1

V,rad(R
2)×

H1
V,rad(R

2) satisfies∫
R2

(
∇u∇ψ +V (x)uψ +∇v∇φ +V (x)vφ

)
dx =

∫
R2

( f (u)φ +g(v)ψ) dx,

for all (φ ,ψ) ∈ H1
V,rad(R

2)×H1
V,rad(R

2).

Our theorem may be seen as complement of the above mentioned results. We recall
that condition (V2) allows V (x)→ 0 as |x| → ∞. The condition (V2) in the system (1.10) and its
relationed works considered in Chapter 4 requires that V be large at infinity. We also note when
Q ≡ 1 in condition (Q), this implies that V (x)→ +∞ as |x| → ∞. Thus, although the class of
Hamiltonian systems considered in Albuquerque, Ó and Medeiros (2016) is very general, the
main result in that paper can not be applied to the model case V (x) = L/|x|a, for |x| sufficiently
large, considered here.

In the recent paper Souza and Ó (2016), a fairly general result was proved on system
(1.16), but under the hypotheses (1.17) and (1.18), which implies that V is large at infinity, as we
can verified with the following example: taking u0 ∈ C ∞

0 (R2) such that

u0(x,y) = 1 if |(x,y)| ≤ 2
3

and u0(x,y) = 0 if |(x,y)| ≥ 3
4
.

Setting (uk) ⊂ C ∞
0 (R2) defined by uk(x,y) = u0(x− k,y− k) for k ∈ N. Thus, for every k ∈ N

and for all s ∈ [2,∞), we have

supp uk ⊂ B1(k,k), (1.19)

uk ∈ H1
0 (Ω)\{0} and

∫
Ω

|uk|s dx≥ 1 for all Ω⊃ B1(k,k). (1.20)

If V is bounded near infinity there exist k0 > 0 and C > 1 such that

|V (x)| ≤C for all |x| ≥ k0. (1.21)

For given R > 0 let k1 > max{R,k0}+1 using (1.19), (1.20) and (1.21) we have that

νs(R2\BR)≤
∫
R2\BR

(
|∇uk1|2 +V (x)u2

k1

)
dx(∫

R2\BR
|uk1|s dx

)2/s

≤
∫
R2\BR

(
|∇uk1|

2 +Cu2
k1

)
dx

≤
∫

B1(k1,k1)

(
|∇uk1|

2 +Cu2
k1

)
dx≤C‖u0‖H1

0 (B1)
,
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which contradicts (1.17). Note also that by (1.19), (1.20) and (1.21), for every k > k0 +1, we get

νs(B1(k,k))≤
∫

B1(k,k)
(
|∇uk|2 +V (x)u2

k

)
dx(∫

B1(k,k) |uk|s dx
)2/s

≤C‖u0‖H1
0 (B1)

,

which contradicts (1.18).

Observe that, the associated functional with (1.14) is strongly indefinite and the space
H1

V (R2) presents some phenomenons such as lack of compactness. In order to prove the existence,
we combine a truncation argument with a finite-dimensional approximation and Linking theorem.
The truncation argument employed here is an adaptation of the reasoning used in Alves and
Souto (2012) to study the existence of positive solutions to a scalar equation. We point out that
this chapter is contained in the accepted paper Leuyacc and Soares (2017).
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CHAPTER

2
LORENTZ AND LORENTZ-SOBOLEV

SPACES

In this chapter we introduce and prove some properties which will be important in the
development of this thesis.

2.1 Distribution functions and decreasing rearrangement
Let X = (X ,Σ,µ) be a σ−finite measure space, denote by M (X ,R) the collection of

all extended real-valued µ-measurable functions on X and M0(X ,R) the class of functions
in M (X ,R) that are finite µ-almost everywhere in X . As usual, any two functions coinciding
almost everywhere in X will be identified. Moreover, natural vector space operations are well
defined on M0(X ,R).

Definition 2.1. The distribution function µφ of a function φ ∈M0(X ,R) is defined by

µφ (t) := µ{x ∈ X : |φ(x)|> t}, for t ≥ 0.

The distribution function satisfies the following properties (see Hunt (1966), Bennett and
Sharpley (1988)).

Proposition 2.2. Let φ ,ψ ∈M0(X ,R). Then, the distribution function µφ is nonnegative, non-
increasing and continuous from the right on [0,+∞). Furthermore,

(i) If |φ(x)| ≤ |ψ(x)| µ-almost everywhere in X , then µφ (t)≤ µψ(t), for all t ≥ 0.

(ii) µλφ (t) = µφ

( t
|λ |
)
, for all t ≥ 0 and λ 6= 0.

(iii) µφ+ψ(t1 + t2)≤ µφ (t1)+µψ(t2), for all t1, t2 ≥ 0.

(iv) µφψ(t1t2)≤ µφ (t1)µφ (t2), for all t1, t2 ≥ 0.
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(v) Let (φn) be a sequence in M0(X ,R) such that |φ(x)| ≤ liminfn→∞ |φn(x)|, µ-a.e in X . Then,
µφ (t)≤ liminfn→∞ µφn(t) a.e in R+. In particular, if |φn|↗ |φ | µ-a.e in X . Then, µφ ↗ µφn

a.e in R+.

Using distribution functions we can consider the following spaces:

Definition 2.3. (Weak Lp-spaces) If f ∈M0(X ,R) , let

[ f ]p = [ f ]p,X = sup
t>0

t
[
µ f (t)

]1/p
.

We define the weak-Lp as follows:

Weak−Lp(X) := { f : f ∈M0(X ,R), [ f ]p <+∞}.

More details about these spaces can be found on Adams and Fournier (2003).

Definition 2.4. The decreasing rearrangement of φ ∈M0(X ,R) is defined by

φ
∗(s) := inf{t ≥ 0 : µφ (t)≤ s}, for s≥ 0.

The decreasing rearrangement satisfies the following properties (see Hunt (1966), Bennett
and Sharpley (1988)).

Proposition 2.5. Let φ ,ψ ∈M0(X ,R). Then, the distribution function φ∗ is nonnegative, non-
increasing and continuous from the right on [0,+∞). Furthermore,

(i) If µφ (t)≤ µψ(t), for all t ≥ 0, then φ∗(s)≤ ψ∗(s), for all s≥ 0.

(ii) (λφ)∗ = |λ |φ∗, for all λ ∈ R.

(iii) (φ +ψ)∗(s1 + s2)≤ φ∗(s1)+ψ∗(s2), for all s1,s2 ≥ 0.

(iv) (φψ)∗(s1s2)≤ φ∗(s1)φ
∗(s2), for all s1,s2 ≥ 0.

(v) Let (φn) a sequence in M0(X ,R) such that |φ | ≤ liminfn→∞ |φn|, µ-a.e in X . Then, φ∗ ≤
liminfn→∞ φ∗n a.e in R+. In particular, if |φn| ↗ |φ | µ-a.e in X . Then, φ∗n ↗ φ∗ a.e in R+.

In the following example, we compute the distribution and decreasing rearrangement of
a simple function.

Example 2.6. Let φ ∈M0(X ,R) be a simple function, that is, φ is a linear combination of
characteristic functions, in particular, we can write

|φ |=
n

∑
j=1

a jχE j
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where a1 > a2 > · · ·an > 0 and E j = {x ∈ X : |φ |(x) = a j}.

Indeed, since |φ(x)| ≤ a1 for all x ∈ X , for each t ≥ a1, we have

µφ (t) = µ{x ∈ X : |φ(x)|> a1}= µ(∅) = 0.

Let a2 ≤ t < a1. Thus,

µφ (t) = µ{x ∈ X : |φ(x)|> t}= µ{x ∈ X : |φ(x)|= a1}= µ(E1).

In general, if a j+1 ≤ t < a j for j = 1, · · · ,n (an+1 = 0), we have

µφ (t) = µ{x ∈ X : |φ(x)|> t}= µ{x ∈ X : |φ(x)|= a1,a2, . . . ,a j}=
j

∑
i=1

µ(Ei).

Thus,

µφ (t) =
n

∑
j=1

m jχ[a j+1,a j), where m j =
j

∑
i=1

µ(Ei).

If 0≤ s < m1, we have

φ
∗(s) = inf{t ≥ 0 :

n

∑
j=1

m jχ[a j+1,a j)(t)≤ s}= a1.

If m1 ≤ s < m2, we have

φ
∗(s) = inf{t ≥ 0 :

n

∑
j=1

m jχ[a j+1,a j)(t)≤ s}= a2.

In general, if m j−1 ≤ s < m j for j = 1, . . . ,n (m0 = 0), we have

φ
∗(s) = inf{t ≥ 0 :

n

∑
j=1

m jχ[a j+1,a j)(t)≤ s}= a j.

Thus,

φ
∗(s) =

n

∑
j=1

a jχ[m j−1,m j), where m j =
j

∑
i=1

µ(Ei).

See the following figures for a specific example:
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Figure 1 – A simple function φ .

(a) φ =−χ[−3,−1)+2χ[−1,1)+4χ[1,2)+χ[2,3].

Source: Elaborated by the author.

Figure 2 – Distribution function and decreasing rearrangement of φ .

(a) µφ = 6χ[0,1)+3χ[1,2)+χ[2,4]. (b) φ ∗ = 4χ[0,1)+2χ[1,3)+χ[3,6).

Source: Elaborated by the author.

Example 2.7. Let r > 0 and φ : R2→ R defined by

φ(x) =
( 1

1+π|x|2
)r
.

Then,

φ
∗(s) =

1
(1+ s)r , for all s≥ 0.
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Indeed, since |φ(x)| ≤ 1 for all x ∈ R2, for each t ≥ 1 we have

µφ (t) = |{x ∈ R2 : |φ(x)|> t}|= |∅|= 0.

If 0 < t < 1, we have

µφ (t) =
∣∣{x ∈ R2 : |φ(x)|> t

}∣∣
=
∣∣∣{x ∈ R2 :

1
1+π|x|2

> t1/r
}∣∣∣

=
∣∣∣{x ∈ R2 : |x|<

√
1
π

( 1
t1/r
−1
)}∣∣∣

=
1

t1/r
−1.

On the other hand, let s≥ 0 fixed and t ≥ 0 such that µφ (t)≤ s. Thus, there are two possibilities:
t ≥ 1 or

1
t1/r
−1≤ s,

that is,
1

(1+ s)r ≤ t.

Thus, we conclude that

φ
∗(s) = inf{t ≥ 0 : µφ (t)≤ s}= 1

(1+ s)r .

Example 2.8. Let f (x) = 1− e−|x| defined on R. Then, for each t ≥ 1 we have µ f (t) = 0 and
for each 0≤ t < 1 we have

µ f (t) = |{x ∈ R2 : 1− e−|x| > t}|=
∣∣∣{x ∈ R2 : |x|> ln

( 1
1− t

)}∣∣∣=+∞.

Therefore, f ∗(s) = 1 for all s≥ 0. In particular, we conclude that, if f ∈M0(X ,R) not necessarily
µ f is an almost everywhere finite-valued function.

Let φ be a simple function as given by Example 2.6. Then,

∫ +∞

0
φ
∗(s)ds =

n

∑
j=1

a j(m j−m j−1) =
n

∑
j=1

a jµ(E j) =
∫

X
|φ(x)|dµ(x). (2.1)

A more general result is given by the following Lemma:

Lemma 2.9. Let φ ∈M0(X ,R) and G : [0,+∞)→ [0,+∞) be a nondecreasing function such
that G(|φ |) ∈ L1(X) and G(0) = 0. Then, G(φ∗) ∈ L1([0,+∞)) and∫ +∞

0
G(φ∗(s))ds =

∫
X

G(|φ(x)|)dµ(x).
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Proof. Let φ be a simple function, using notation given by Example 2.6 and the fact that G(0) = 0
we have (

G(|φ(x)|)
)∗

=
( n

∑
j=1

G(a j)χE j(x)
)∗

=
n

∑
j=1

G(a j)χ[m j−1,m j)(s) = G(φ∗(s)). (2.2)

Thus, from (2.2) and (2.1) we obtain∫ +∞

0
G(φ∗(s))ds =

∫ +∞

0

(
G(|φ(s)|)

)∗ ds =
∫

X
G(|φ(x)|)dµ(x). (2.3)

In the general case, there exists a increasing sequence (|φn|) of simple functions converging
almost everywhere to |φ |. By Proposition 2.5-(v), φ∗n converges monotonically to φ∗ almost
everywhere. Consequently, the sequences G(|φn|),G(φ∗n ) converges monotonically to G(|φ |) and
G(φ∗) respectively. Moreover, G(|φn|) and G(φ∗n ) are simple functions. By (2.3) and Monotone
converge theorem, we have∫ +∞

0
G(φ∗)ds = lim

n→∞

∫ +∞

0
G(φ∗n )ds = lim

n→∞

∫
X

G(|φn|)dµ(x) =
∫

X
G(|φ |)dµ(x).

�

Reducing to simple functions and taking limit we can obtain the following result:

Lemma 2.10. (Hardy-Littlewood inequality) (See Hunt (1966).) Let φ ,ψ ∈M0(X ,R). Then,∫
X
|φ(x)ψ(x)|dµ(x)≤

∫ +∞

0
φ
∗(s)ψ∗(s)ds.

2.2 Lorentz spaces
In this section we present Lorentz spaces which were introduced by Lorentz (1950). For

simplicity we consider throughout this section the following measure space (X ,µ) = (Ω,m)

where Ω is a measurable subset in RN with N ≥ 1 and m is the Lebesgue measure.

Definition 2.11. Let 1 < p <+∞, 1≤ q≤+∞. The Lorentz space Lp,q(Ω) is the collection of
functions φ ∈M0(Ω,R) such that ‖φ‖p,q <+∞ where

‖φ‖p,q =



(∫ +∞

0
[φ∗(t)t1/p]q

dt
t

)1/q
, if 1≤ q <+∞,

sup
t>0

t1/p
φ
∗(t), if q =+∞.

(2.4)

In particular, two functions in Lp,q(Ω) are identified if they are equal almost everywhere in Ω.

For a mensurable function f = ( f1, · · · , fN) : Ω→ RN , we say that f ∈ Lp,q(Ω) if and
only if | f | ∈ Lp,q(Ω) and we set

‖ f‖p,q := ‖| f |‖p,q.

Therefore, f ∈ Lp,q(Ω) if and only if fi ∈ Lp,q(Ω) for 1≤ i≤ N.
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Proposition 2.12. The map ‖ · ‖ given by (2.4) is a quasinorm and Lp,q(Ω) is a vector space.

Proof. Let 1 < p <+∞ and 1≤ q <+∞.

(i) It is clear that ‖φ‖p,q ≥ 0 for all φ ∈ Lp,q(Ω) and ‖φ‖p,q = 0 if and only if φ = 0.

(ii) Let λ ∈ R, by Proposition 2.5-(ii) we have (λφ)∗(t) = |λ |φ∗. Then,

‖λφ‖p,q =
(∫ +∞

0
[(λφ)∗(t)t1/p]q

dt
t

)1/q
= |λ |‖φ‖p,q.

(iii) Let φ ,ψ ∈ Lp,q(Ω) using Proposition 2.5-(iii), we have

‖φ +ψ‖q
p,q =

∫ +∞

0

[
(φ +ψ)∗(t)t1/p]q dt

t

≤
∫ +∞

0

[(
φ
∗(

t
2
)+ψ

∗(
t
2
)
)

t1/p
]q dt

t

= 2
q
p

∫ +∞

0

[(
φ
∗(s)+ψ

∗(s)
)
s1/p

]q ds
s

≤ 2
q
p+q−1

∫ +∞

0

([
φ
∗(s)s1/p]q + [ψ∗(s)s1/p]q) ds

s

= 2
q
p+q−1

(
‖φ‖q

p,q +‖ψ‖q
p,q
)
.

Hence,

‖φ +ψ‖p,q ≤ 2
1
p+1− 1

q
(
‖φ‖p,q +‖ψ‖p,q

)
, for all φ ,ψ ∈ Lp,q(Ω).

The properties (i)-(iii) are also true for the case when 1 < p <+∞ and q =+∞. Thus, ‖ · ‖p,q

represents a quasinorm. Moreover, if φ ,ψ ∈ Lp,q(Ω) and λ ∈ R, using (ii) and (iii), we have
φ +ψ and λψ belong to Lp,q(Ω), that is, Lp,q(Ω) is a vector space. �

The following result says that ‖ · ‖p,q is a norm for some cases.

Proposition 2.13. (See Bennett and Sharpley (1988).) The map ‖ · ‖p,q is a norm if and only if
1≤ q≤ p.

Now, we build a topology T in Lorentz spaces. For every x ∈ Lp,q(Ω) and every r > 0,
we consider the following open ball:

Br(x) = {y ∈ Lp,q(Ω) : ‖y− x‖p,q < r}

and we set the collection of balls

B := {Br(x) : x ∈ Lp,q(Ω),r > 0}.

A subset U in Lp,q(Ω) is said to be open in Lp,q(Ω) (U ∈T ) if and only if

U =
⋃
i∈I

(
Bi1 ∩Bi2 · · ·∩Bini

)
, where Bik ∈B and I is an index set.
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Consequently, Lp,q(Ω) turns out a topological vector space. Note that, each ball Br(x) is an open
set. Thus, we say that, the sequence (φn)⊂ Lp,q(Ω) converges to φ ∈ Lp,q(Ω), in the topology
T if and only if ‖φn−φ‖p,q→ 0.

In the following we define a metric d such that
(
Lp,q(Ω),d

)
is a metric space.

Definition 2.14. Let 1 < p < +∞, 1 ≤ q ≤ +∞, Ω ⊂ RN and φ ∈M0(Ω,R), the maximal
function is defined by

φ
∗∗(t) :=

1
t

∫ +∞

0
φ
∗(s)ds, for all t > 0.

Definition 2.15. Let 1 < p <+∞, 1≤ q≤+∞, we define

‖φ‖∗p,q =



(∫ +∞

0
[φ∗∗(t)t1/p]q

dt
t

)1/q
, if 1≤ q <+∞,

sup
t>0

t1/p
φ
∗∗(t), if q =+∞.

Proposition 2.16. (See Adams and Fournier (2003).) Let 1 < p <+∞ and 1≤ q≤+∞. Then,
the functional ‖ · ‖∗p,q represents a norm on Lp,q(Ω). Moreover, Lp,q(Ω) endowed with this norm
is a Banach space and

‖φ‖p,q ≤ ‖φ‖∗p,q ≤
p

p−1
‖φ‖p,q, for all φ ∈ Lp,q(Ω). (2.5)

Setting the metric

d : Lp,q(Ω)×Lp,q(Ω) → R+

(φ ,ψ), 7→ ‖φ −ψ‖∗p,q.

Let T̃ the topology induced by the metric d. Using (2.5), we have the topologies T and T̃

defined on Lp,q(Ω) are equals.

Remark 2.17. (i) The Lorentz space L∞,q(Ω) with 1 < q <+∞ is not interesting, since the only
function in this space is given by the zero function.

(ii) Using Lemma 2.9 with G(s) = sp, p > 1, we have

‖φ‖p,p =
(∫ +∞

0
[φ∗(t)]p dt

)1/p
=
(∫

Ω

|φ(x)|p dx
)1/p

= ‖φ‖p.

This implies,
Lp,p(Ω) = Lp(Ω).

Thus, Lorentz spaces are intermediate between Lp-spaces.

(iii) For 1 < p <+∞, we have

‖φ‖p,∞ = sup
t>0

t1/p
φ
∗(t) = sup

t>0
t[µφ (t)]1/p = [φ ]p.

Thus,
Lp,∞(Ω) = weak-Lp(Ω).
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(iv) Given a function φ defined on Ω, we denote by φ its extension outside Ω, that is,

φ(x) =

φ(x), x ∈Ω

0, x ∈ RN\Ω.

In particular, if Ω is a bounded set, we have

(φ)∗(t) =

φ∗(t), 0≤ t ≤ |Ω|

0, t > |Ω|.

Thus,

‖φ‖Lp,q(RN) =
(∫ +∞

0

[
(φ)∗(t)t1/p]p dt

t

)1/p
=
(∫ +∞

0

[
φ
∗(t)t1/p]p dt

t

)1/p
= ‖φ‖Lp,q(Ω).

Lemma 2.18. (Hölder’s inequality in Lorentz spaces) Let 1 < p,q <+∞ and p′, q′ denoted
the conjugate exponents defined by p′ = p/(p− 1) and q′ = q/(q− 1). If f ∈ Lp,q(Ω) and
q ∈ Lp′,q′(Ω). Then, f g ∈ L1(Ω) and∫

Ω

| f (x)g(x)|dx≤ ‖ f‖p,q‖g‖p′,q′.

Proof. Using Lemma 2.10 we have∫
Ω

| f (x)g(x)|dx≤
∫ +∞

0
f ∗(t)g∗(t)dt =

∫ +∞

0

f ∗(t)t1/p

t1/q

g∗(t)t1/p′

t1/q′
dt. (2.6)

By classical Hölder’s inequality with 1/q+1/q′ = 1 we obtain∫ +∞

0

f ∗(t)t1/p

t1/q

g∗(t)t1/p′

t1/q′
ds≤

(∫ +∞

0

(
f ∗(t)t1/p)q dt

t

)1/q(∫ +∞

0

(
g∗(t)t1/p′)q′ dt

t
dt
)1/q′

(2.7)
Joining (2.6) and (2.7) the claim follows. �

Lemma 2.19. (Generalized Hölder’s inequality in Lorentz spaces) Let the following con-
stants 1 < p, p1, p2,q,q1,q2 <+∞ such that

1
p
=

1
p1

+
1
p2

and
1
q
=

1
q1

+
1
q2

.

If f ∈ Lp1,q1(Ω) and g ∈ Lp2,q2(Ω). Then, f g ∈ Lp,q(Ω) and

‖ f g‖p,q ≤ 21/p‖ f‖p1,q1‖g‖p2,q2.

Proof. Using Proposition 2.5-(iv) and Hölder’s inequality, we have∫ +∞

0

[
( f g)∗(t)t1/p

]q dt
t
≤
∫ +∞

0

[
f ∗
( t

2

)
g∗
( t

2

)
t1/p
]q dt

t

≤ 2q/p
∫ +∞

0

[
f ∗(t)g∗(t)t1/p

]q dt
t

≤ 2q/p
∫ +∞

0

[ f ∗(t)t1/p1

t1/q1

g∗(t)t1/p2

t1/q2

]q
dt

≤ 2q/p
(∫ +∞

0

[
f ∗(t)t1/p1

]q1 dt
t

)q/q1
(∫ +∞

0

[
g∗(t)t1/p2

]q2 dt
t

)q/q2
.

Then, the claim follows. �
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Remark 2.20. (i) The claim in Lemma 2.18 is still valid if we consider 1 and +∞ as conjugated
exponents.

(ii) The claim in Lemma 2.19 is still valid if we consider q = q1 and q2 = +∞ or q = q2 and
q1 =+∞.

Lemma 2.21. (See Hunt (1966).) Let 1 ≤ q1 ≤ q2 ≤ +∞ and p > 1. Then, the following
embedding is continuous

Lp,q1(Ω) ↪→ Lp,q2(Ω).

Lemma 2.22. Let |Ω|<+∞, 1 < p1 < p2 <+∞ and 1≤ q1 ≤ q2 ≤+∞. Then, the following
embedding is continuous

Lp2,q2(Ω) ↪→ Lp1,q1(Ω).

Proof. Let f ∈ Lp1,q1(Ω) and taking p3 and q3 such that

1
p1

=
1
p2

+
1
p3

and
1
q1

=
1
q2

+
1
q3

.

Using Lemma 2.18 we have

‖ f‖p1,q1 ≤ 21/p1‖ f‖p2,q2‖1‖p3,q3 = 21/p1|Ω|1/q3‖ f‖p2,q2.

and the embedding follows. �

Lemma 2.23. Let |Ω|<+∞, 1 < p <+∞ and 1≤ q≤+∞. Then, the following embeddings

Lp,q(Ω) ↪→ Lp−δ (Ω), for all 0 < δ ≤ p−1

are continuous.

Proof. If 1≤ q≤ p, by Lemma 2.21, we have for all 0 < δ ≤ p−1

Lp,q(Ω) ↪→ Lp,p(Ω) = Lp(Ω) ↪→ Lp−δ (Ω).

If q > p, by Lemma 2.22 we have for all 0 < δ ≤ p−1

Lp,q(Ω) ↪→ Lp−δ ,p−δ (Ω) = Lp−δ (Ω).

Then, for all 0 < δ ≤ p−1
Lp,q(Ω) ↪→ Lp−δ (Ω).

�

Lemma 2.24. Let |Ω|<+∞, 1 < p <+∞ and 1≤ q≤+∞. Then, the following embeddings

Lp+δ (Ω) ↪→ Lp,q(Ω), for all δ > 0

are continuous.
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Proof. If 1≤ p≤ q, by Lemma 2.21 we have

Lp+δ (Ω) ↪→ Lp(Ω) = Lp,p(Ω) ↪→ Lp,q(Ω), for all δ > 0. (2.8)

If p > q, by Lemma 2.22 we have

Lp+δ (Ω) = Lp+δ ,p+δ (Ω) ↪→ Lp,q(Ω), for all δ > 0. (2.9)

Joining (2.8) and (2.9) the lemma follows. �

Proposition 2.25. (See Hunt (1966).) Let 1 < p < +∞, 1 ≤ q < +∞. Then, the set of simple
functions are dense in Lp,q(Ω).

Proposition 2.26. Let 1 < p <+∞, 1≤ q <+∞ and Ω a open subset in RN . Then, C ∞
c (Ω) is

dense in Lp,q(Ω).

Proof. Let f ∈ Lp,q(Ω) and ε > 0, by Lemma 2.25 there exists a simple function s defined on Ω

with compact support such that
‖ f − s‖Lp,q(Ω) <

ε

4
. (2.10)

Let K = supp( f ) and consider Ω′ =
⋃

x∈K
(
B1(x)∩Ω

)
. Thus, Ω′ is an open bounded set such

that K ⊂ Ω′ ⊂ Ω. From Lemma 2.24 the space Lp+1(Ω′) continuously embedded in Lp,q(Ω′),
denoting by Sp > 0 its best embedding constant. Since s ∈ Lp+1(Ω′) using the density of C ∞

c (Ω′)

in Lp+1(Ω′), there exists g ∈ C ∞
c (Ω′)⊂ C ∞

c (Ω) such that

‖s−g‖Lp+1(Ω′) <
ε

4Sp
. (2.11)

Note that,
‖s−g‖Lp,q(Ω) = ‖s−g‖Lp,q(Ω′) (2.12)

Thus, combining (2.10), (2.11) and (2.12) we obtain

‖ f −g‖Lp,q(Ω) ≤ 2‖ f − s‖Lp,q(Ω)+2‖s−g‖Lp,q(Ω)

<
ε

2
+2‖s−g‖Lp,q(Ω′)

<
ε

2
+2Sp‖s−g‖Lp+1(Ω′)

< ε.

Thus, C ∞
c (Ω) is dense in Lp,q(Ω). �

Proposition 2.27. (See Hunt (1966).) Let Ω an open subset in RN . Then, the following results
holds:

(i) Let 1< p<+∞. Then, the dual space of Lp,1(Ω) is given by Lp′,∞(Ω) where 1/p+1/p′=

1.
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(ii) Let 1 < p <+∞ and 1 < q <+∞. Then, the dual space of Lp,q(Ω) is given by Lp′,q′(Ω)

where 1/p+1/p′ = 1 and 1/q+1/q′ = 1. Moreover, these spaces are reflexive.

Proposition 2.28. (See Halperin (1954).) Let Ω an open subset in RN , 1 < p <+∞ and 1 < q <

+∞. Then, the Lorentz space Lp,q(Ω) is a uniformly convex space.

Lemma 2.29. Let φ ∈ Lp,q(RN). Then, for every ε > 0 there exists R > 0 such that

‖φ −φ χBR‖p,q < ε.

where χBR is the characteristic function of BR.

Proof. Let ε > 0, since φ ∈ Lp,q(RN), we have

|{x ∈ RN : φ(x)> ε}|<+∞.

Observe that

|{x ∈ BR : φ(x)> ε}| → |{x ∈ RN : φ(x)> ε}| as R→+∞.

Thus, for each δ > 0 there exists R = R(ε,δ )> 0 such that

|IR|< δ where IR = {x ∈ RN\BR : φ(x)> ε}.

Setting φR = φ χR, then,

0≤ (φ −φR)(x)≤ ε, for all x ∈ RN\IR.

Thus,
|{x ∈ RN : (φ −φR)(x)> ε}|< δ .

Therefore,
µ(φ−φR)(ε)< δ .

Then,
(φ −φR)

∗(δ ) = inf{s≥ 0 : µ(φ−φR)(s)< δ} ≤ ε.

Using the fact that (φ −φR)
∗ is nonincreasing we have

(φ −φR)
∗(t)≤ ε, for all t ≥ δ .

Thus, for each n ∈ N, there exists φn such that

(φ −φn)
∗(t)≤ 1

n
, for all t ≥ 1

n
,

where φn = φ χRn . Consequently, there exists a sequence (φn) such that

0≤ φn(x)≤ φ(x), almost everywhere in RN (2.13)
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and
(φ −φn)

∗(t)→ 0, almost everywhere in R+. (2.14)

Using (2.13) and Lemma 2.5, we obtain

(φ −φn)
∗(t)≤ (φ +φn)

∗(t)

≤ φ
∗( t

2
)
+φ

∗
n
( t

2
)

(2.15)

≤ 2φ
∗( t

2
)
,

almost everywhere in R+. Now, by (2.14), (2.15) and Dominated convergence theorem, we have

‖φ −φn‖q
p,q =

∫ +∞

0

[
t1/p(φ −φn)

∗(t)
]q dt

t
→ 0.

Thus, there exists R > 0 such that

‖φ −φ χR‖p,q < ε.

�

Proposition 2.30. Let 1 < p < +∞ and 1 ≤ q ≤ +∞. If (un) is a sequence in Lp,q(Ω) and
u ∈ Lp,q(Ω) such that un→ u in Lp,q(Ω). Then,

(i) un→ u in measure.

(ii) There exists a subsequence (unk) such that

unk(x)→ u(x), almost everywhere in Ω.

Proof.

(i) By Lemma 2.21 we have Lp,q(Ω) ↪→ Lp,∞(Ω) continuously. Thus,

un→ u in Lp,∞(Ω).

Consequently, for given ε > 0 there exists n0 ≥ 1 such that

‖un−u‖p,∞ < ε
(p+1)/p, for all n≥ n0.

By Remark 2.17-(iii), we have

sup
t>0

t[µ(un−u)(t)]
1/p < ε

(p+1)/p, for all n≥ n0.

In particular, taking t = ε in last inequality we obtain

µ(un−u)(ε)< ε, for all n≥ n0.

That means,
|{x ∈Ω : |un(x)−u(x)|> ε}|< ε, for all n≥ n0.

which proves the assertion.
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(ii) It is a consequence of (i).

�

Proposition 2.31. Let ( fn) be a sequence of functions in Lp,q(Ω) satisfying

(i) 0≤ f1 ≤ f2 ≤ ·· · ≤ fn ≤ fn+1 · · · , almost everywhere in Ω.

(ii) sup
n∈N
‖ fn‖p,q <+∞.

Then, fn converges pointwise on Ω to a measurable function f , that is finite almost everywhere,
and furthermore

fn→ f in Lp,q(Ω).

Proof. Let E be a measurable set in Ω with measure zero such that, for any x∈Ω\E the sequence
( fn(x)) is nondecreasing. Then, we can define

f (x) =


lim
n→∞

fn(x) = sup
n≥1

fn(x), x ∈Ω\E.

+∞, x ∈ E.

Now, we show that f is finite almost everywhere in Ω. Since Lp,q(Ω) is continuous embedding
in Lp,∞, by assumption (ii) there exists C > 0 such that

sup
t>0

t[µ fn(t)]
1/p = ‖ fn‖p,∞ ≤C, for all n≥ 1.

Taking t = m ∈ N in last inequality, we have

µ fn(m)≤ Cp

mp , for all n,m≥ 1. (2.16)

Setting for each m,n≥ 1 the following measurable sets

Fm,n = {x ∈Ω\E : | fn(x)|> m},

Fm = {x ∈Ω\E : | f (x)|> m}.

and

F = {x ∈Ω\E : | f (x)|=+∞}.

Fixing m≥ 1, if x ∈ Fm we have supn≥1 fn(x) = f (x)> m. Then, there exists n0 ≥ 1 such that
fn0(x)> m that is x ∈ Fm,n0 . Therefore,

Fm ⊂
∞⋃

n=1

Fm,n.
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Moreover, from assumption (i) we have Fm,n ⊂ Fm,n+1 for all n≥ 1. Then,

|Fm| ≤ |
∞⋃

n=1

Fm,n|= lim
n→∞
|Fm,n|. (2.17)

From (2.16)

|Fn,m|= |{x ∈Ω\E : | fn(x)|> m}| ≤ |{x ∈Ω : | fn(x)|> m}|= µ fn(m)≤ Cp

mp .

Combining the last inequality with (2.17), we get

|Fm| ≤
Cp

mp , for all m≥ 1. (2.18)

On the other hand, we have Fm+1 ⊂ Fm for all m≥ 1 and the measure of F1 is finite. Using (2.18),
we obtain

|F |= |
∞⋂

n=1

Fm|= lim
m→∞
|Fm| ≤ lim

m→∞

Cp

mp = 0.

Thus, f is finite in Ω\{E ∪F} with |E ∪F |= 0. Since ( fn) is nondecreasing almost everywhere
in Ω and fn→ f almost everywhere in Ω, by Propositions 2.2 and 2.5, we have

( f ∗n ) is nondecreasing almost everywhere in R+

and

f ∗n → f ∗ almost everywhere in R+. (2.19)

By the Monotone convergence theorem,

∫ +∞

0
[t1/p f ∗(t)]1/q dt

t
= lim

n→∞

∫ +∞

0
[t1/p f ∗n (t)]

1/q dt
t
= lim

n→∞
‖ fn‖q

p,q ≤ sup
m∈N
‖ fm‖q

p,q <+∞.

Thus, f ∈ Lp,q(Ω). Moreover, by Propositions 2.2 and 2.5, we have

0≤ f ∗n (t)≤ f ∗(t) almost everywhere in R+.

Combining the last inequality, (2.19), the fact that f ∈ Lp,q(Ω) and Dominated convergence
theorem, we get

lim
n→∞

∫ +∞

0
[t1/p( fn(t)− f ∗(t)

)
]1/q dt

t
=
∫ +∞

0
lim
n→∞

[t1/p( f ∗n (t)− f ∗(t)
)
]1/q dt

t
= 0.

Thus,

fn→ f in Lp,q(Ω).

�
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2.3 Lorentz-Sobolev spaces

Definition 2.32. Let Ω be an open domain in RN , assume that 1 < p <+∞, 1 < q ≤+∞ and
define W 1

0 Lp,q(Ω) the closure of the set {u ∈ C ∞
0 (Ω) : ‖u‖p,q +‖∇u‖p,q <+∞} with respect to

the quasinorm

‖u‖1,(p,q) :=
(
‖u‖q

p,q +‖∇u‖q
p,q

)1/q
(2.20)

where ∇u = (D1u, · · · ,DNu) and Di is the weak derivative with respect to xi for 1≤ i≤ N. The
space W 1

0 Lp,q(Ω) can also be equipped with the norm

‖u‖∗1,(p,q) :=
[(
‖u‖∗p,q

)q
+
(
‖∇u‖∗p,q

)q
]1/q

. (2.21)

Proposition 2.33. Let Ω an open domain in RN , assume that 1 < p,q <+∞. Then, W 1
0 Lp,q(Ω)

endowed with the norm defined by (2.21) is uniformly convex Banach space (and hence a
reflexive space).

Proof. Let (un) be a Cauchy sequence in W 1
0 Lp,q(Ω). Then, (un), (Diun) for 1≤ i≤ n are Cauchy

sequences in Lp,q(Ω). Since
(
Lp,q(Ω),‖ · ‖∗p,q

)
is a Banach space, there exist u, vi in Lp,q(Ω)

such that
un→ u in Lp,q(Ω)

and
Diun→ vi in Lp,q(Ω).

Let φ ∈ C ∞
0 (Ω). By generalized Hölder’s inequality in Lorentz spaces, we have∣∣∣∫

Ω

(un−u)Diφ dx
∣∣∣≤ ‖un−u‖p,q‖Diφ‖p′,q′ → 0

and ∣∣∣∫
Ω

(Diun− vi)φ dx
∣∣∣≤ ‖Diun− vi‖p,q‖φ‖p′,q′ → 0

which implies∫
Ω

unDiφ dx→
∫

Ω

uDiφ dx and
∫

Ω

(Diun)φ dx→
∫

Ω

viφ dx, for all φ ∈ C ∞
0 (Ω).

Thus, for all φ ∈ C ∞
0 (Ω), we have∫

Ω

uDiφ dx = lim
n→∞

∫
Ω

unDiφ dx

=− lim
n→∞

∫
Ω

(Diun)φ dx

=−
∫

Ω

viφ dx.

That is, Diu= vi for 1≤ i≤N in the weak sense. Therefore, u∈W 1
0 Lp,q(Ω) and ‖un−u‖∗1,(p,q)→

0. Now, consider the following isometry

J : W 1
0 Lp,q(Ω) → Lp,q(Ω)×Lp,q(Ω)N

u, 7→ (u,∇u).
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Since, W 1
0 Lp,q(Ω) is a Banach space, J

(
W 1

0 Lp,q(Ω)
)

is a closed subset in Lp,q(Ω)×Lp,q(Ω)N .
Consequently, J

(
W0Lp,q(Ω)

)
is a uniformly convex and reflexive space. Finally, since J

(
W 1

0 Lp,q(Ω)
)

and W 1
0 Lp,q(Ω) are isometrically isomorphic, the same properties holds for W 1

0 Lp,q(Ω). �

Note that, the quasinorm defined by (2.20) induces a topology in W0Lp,q(Ω) which is
equivalent to the topological metric induced by the norm defined by (2.21).

Proposition 2.34. (See Alvino, Trombetti and Lions (1989).) Let 1 < p < N and 1≤ q≤+∞.
Then, there exists a positive constant C =C(N, p,q) such that

‖u‖p∗,q ≤C‖∇u‖p,q, for all u ∈ C ∞
0 (RN),

where p∗ = pN/(N− p).

Corollary 2.35. Let Ω be a bounded domain, 1 < p < N and 1≤ q≤+∞. Then, there exists a
positive constant C =C(N, p,q) such that

‖u‖p∗,q ≤C‖∇u‖p,q, for all u ∈W 1
0 Lp,q(Ω).

Proof. Let u ∈ C ∞
0 (Ω), using notation given by Remark 2.17, the function u ∈ C ∞

0 (RN) satisfies
∂u
∂xi

= ∂u
∂xi

for any 1≤ i≤ N. Consequently,

( ∂u
∂xi

)∗
(s) =


(

∂u
∂xi

)∗
(s), 0≤ s≤ |Ω|

0, s > |Ω|.

Then,

‖u‖Lp∗,q(RN) = ‖u‖Lp∗,q(Ω) and ‖∇u‖Lp,q(RN) = ‖∇u‖Lp,q(Ω).

Thus, replacing these identities in Proposition 2.34, we get

‖u‖p∗,q ≤C‖∇u‖p,q.

Finally, using density we obtain the claim. �

Note that this corollary improves slightly Sobolev’s embedding theorem, which states
that: if ∇u ∈ Lp(Ω) = Lp,p(Ω), then u ∈ Lp∗(Ω) = Lp∗,p∗(Ω). However, last result states that
u ∈ Lp∗,p(Ω)$ Lp∗,p∗(Ω).

Proposition 2.36. (Poincaré inequality in Lorentz-Sobolev spaces) Let Ω⊂RN be a bounded
domain, 1 < p <+∞ and 1≤ q≤+∞. Then, there exists a positive constant C =C(Ω,N, p,q)

such that

‖u‖p,q ≤C‖∇u‖p,q, for all u ∈W 1
0 Lp,q(Ω). (2.22)

Proof. We consider the following cases:
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(i) If 1 < p < N.
By Corollary 2.35, W 1

0 Lp,q(Ω)⊂ Lp∗,q(Ω) and

‖u‖p∗,q ≤C‖∇u‖p,q, for all u ∈W 1
0 Lp,q(Ω). (2.23)

Since p < p∗, by Lemma 2.22, Lp∗,q(Ω) ⊂ Lp,q(Ω) and there exists a positive constant
C1 =C1(Ω,N, p) such that

‖u‖p,q ≤C1‖u‖p∗,q, for all u ∈ Lp∗,q(Ω). (2.24)

From (2.23) and (2.24), we get (2.22).

(ii) If p≥ N.
We can choose 1< r <N such that p< r∗=Nr/(N−r). Thus, by Lemma 2.22, Lr∗,q(Ω)⊂
Lp,q(Ω) and there exists a positive constant C1 =C1(Ω,N, p,q) such that

‖u‖p,q ≤C1‖u‖r∗,q. (2.25)

Since 1 < r < N, by Corollary 2.35, W 1
0 Lr,q(Ω) ⊂ Lr∗,q(Ω) and there exists a positive

constant C2 =C2(N, p,q) such that

‖u‖r∗,q ≤C2‖∇u‖r,q. (2.26)

Since r < N ≤ p, by Lemma 2.22, there exists a positive constant C3 =C3(Ω,N, p,q) such
that

‖∇u‖r,q ≤C3‖∇u‖p,q. (2.27)

From (2.25), (2.26) and (2.27), we obtain (2.22).

�

Remark 2.37. If Ω⊂ RN is a bounded domain, using Proposition 2.36 we can consider on the
Lorentz-Sobolev space W 1

0 Lp,q(Ω), the following quasinorm

‖u‖1,[p,q] := ‖∇u‖p,q

which is equivalent to the quasinorm defined by (2.20).

Lemma 2.38. (See Ruf (2006).) Let Ω⊂ RN be a bounded domain and 1≤ q <+∞. Then, the
following embeddings are compact

W 1
0 LN,q(Ω) ↪→ Lr(Ω), for all r ≥ 1.

Proof. From Lemma 2.23, the following embedding is continuous

LN,q(Ω) ↪→ LN−δ (Ω), for all 0 < δ ≤ N−1.
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Thus, the following embedding is also continuous

W 1
0 LN,q(Ω) ↪→W 1,N−δ

0 (Ω).

Consequently, using Sobolev’s embedding the following embeddings

W 1
0 LN,q(Ω) ↪→ Lr(Ω), for all 1≤ r <

N(N−δ )

δ
,

are compact. Finally, since δ is arbitrary, the conclusion follows. �

Theorem 2.39. (See Brézis and Wainger (1980).) Suppose that ∇u ∈ LN,q(Ω), for some 1 < q <

+∞. Then, e|u|
q

q−1 ∈ L1(Ω).

Last theorem generalizes the Trudinger embedding (see Trudinger (1967)), which gives

e|u|
N

N−1 ∈ L1(Ω) provided ∇u ∈ LN,N(Ω), where N/(N−1) is the maximal exponent growth.
Note that the maximal growth depends only on the second Lorentz exponent q, but not on N.

Remark 2.40. As a consequence of Theorem 2.39, we have∫
Ω

eα|u|
q

q−1
dx <+∞, for all u ∈W 1

0 LN,q(Ω), α > 0.

The following theorem is a version sharp of Theorem 2.39.

Theorem 2.41. (See Alvino, Ferone and Trombetti (1996).) Let Ω⊂ RN be a bounded domain
and 1 < q <+∞. Then, there exists a positive constant C =C(N,q) such that

sup
‖∇u‖N,q≤1

∫
Ω

eα|u|
q

q−1
dx

≤C|Ω|, if α ≤ α∗q ,

=+∞, if α > α∗q ,

where α∗q = (Nω
1/N
N )q/(q−1).

The following result represents an extension of Brezis (2011, Proposition 8.3).

Proposition 2.42. Let u ∈ Lp,q(Ω) with 1 < p,q < +∞. Then, the following properties are
equivalents:

(i) u ∈W 1
0 Lp,q(Ω).

(ii) There exists a positive constant C such that∣∣∣∫
Ω

u
∂φ

∂xi
dx
∣∣∣≤C‖φ‖p′,q′, for all φ ∈ C ∞

0 (Ω), 1≤ i≤ N.

Proof.
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(i)⇒ (ii) Using the fact that u possesses weak derivatives in Lp,q(Ω) and Hölder’s inequality in
Lorentz spaces, we have for each 1≤ i≤ N∣∣∣∫

Ω

u
∂φ

∂xi
dx
∣∣∣= ∣∣∣∫

Ω

∂u
∂xi

φ dx
∣∣∣≤C‖φ‖p′,q′, for all φ ∈ C ∞

0 (Ω)

where C = max{
∥∥∥ ∂u

∂xi

∥∥∥
p,q

: 1≤ i≤ N}.

(ii)⇒ (i) For each 1≤ i≤ N fixed, consider the following functional

fi : C ∞
0 (Ω) → R

φ 7→
∫

Ω

u
∂φ

∂xi
dx.

Using (ii), the functional fi is continuous in the quasinorm of Lp′,q′(Ω) and C ∞
0 (Ω) is

considered a dense subspace of Lp′,q′(Ω) (see Proposition 2.26). By Hahn-Banach theorem
there exists a continuous, linear extension Fi of fi on the whole space Lp′,q′(Ω). Moreover
since the dual of Lp′,q′(Ω) is Lp,q(Ω), there exists vi in Lp,q(Ω) such that

Fi : Lp′,q′(Ω) → R

φ 7→
∫

Ω

viφ dx.

In particular Fi(φ) = fi(φ) for all φ in C ∞
0 (Ω). That is,∫

Ω

viφ dx =
∫

Ω

u
∂φ

∂xi
dx, for all φ ∈ C ∞

0 (Ω)

Thus, there exists
∂u
∂xi

in the weak sense and
∂u
∂xi

= vi ∈ Lp,q(Ω). Repeating the same

argument for each each 1≤ i≤ N, we conclude that u ∈W 1
0 Lp,q(Ω).

�

Lemma 2.43. Let u∈ Lp,q(Ω) and (un) be a sequence in W 1
0 Lp,q(Ω) such that un→ u in Lp,q(Ω)

and (∇un) is a bounded sequence in
(
Lp,q(Ω)

)N . Then, u ∈W 1
0 Lp,q(Ω).

Proof. By Hölder’s inequality in Lorentz spaces for each φ ∈ C ∞
0 (Ω), we have∣∣∣∫

Ω

(un−u)
∂φ

∂xi
dx
∣∣∣≤ ‖un−u‖p,q‖

∂φ

∂xi
‖p′,q′ , for all 1≤ i≤ N.

Thus,

lim
n→+∞

∫
Ω

un
∂φ

∂xi
dx =

∫
Ω

u
∂φ

∂xi
dx, for all 1≤ i≤ N. (2.28)

Let C > 0 such that ‖∂un

∂xi
‖p,q ≤C for all n≥ 1 and for all 1≤ i≤ N. Using Hölder’s inequality

in Lorentz spaces for each φ ∈ C ∞
0 (Ω), we have∣∣∣∫

Ω

un
∂φ

∂xi
dx
∣∣∣= ∣∣∣∫

Ω

∂un

∂xi
φ dx

∣∣∣≤ ‖∂un

∂xi
‖p,q‖φ‖p′,q′ ≤C‖φ‖p′,q′, 1≤ i≤ N.
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From this and (2.28) we obtain∣∣∣∫
Ω

u
∂φ

∂xi
dx
∣∣∣≤C‖φ‖p′,q′, for all φ ∈ C ∞

0 (Ω), 1≤ i≤ N.

Finally, by Proposition 2.42 we conclude that u ∈W 1
0 Lp,q(Ω). �

Proposition 2.44. Let (un) be a sequence in W 1
0 Lp,q(Ω) and u ∈W 1

0 Lp,q(Ω) such that

un→ u in W 1
0 Lp,q(Ω).

Then, there exists a subsequence (unk) and a function h ∈W 1
0 Lp,q(Ω) such that

|unk(x)| ≤ h(x), for all k ≥ 1 and almost everywhere in Ω.

Proof. From Proposition 2.30 we can assume that un→ u almost everywhere in Ω. Moreover,
we can extract a subsequence (unk), denoted by (uk) such that

‖uk+1−uk‖1,(p,q) ≤
1

22k , for all k ≥ 1.

Set

gn(x) =
n

∑
k=1
|uk+1(x)−uk(x)|.

Then, (gn) ∈W 1
0 Lp,q(Ω) and ‖gn‖1,(p,q) ≤ 1 for all n≥ 1, that is

‖gn‖p,q ≤ 1 and ‖∇gn‖p,q ≤ 1, for all n≥ 1.

Since (gn(x)) is nondecreasing almost everywhere in Ω and supn≥1 ‖gn‖p,q ≤ 1, by Proposition
2.31, we have gn→ g in Lp,q(Ω). Moreover, using the fact that (∇gn) is bounded in

(
Lp,q(Ω)

)N ,
we get by Lemma 2.43 that gn→ g in W 1

0 Lp,q(Ω). On the other hand, for l > k ≥ 2 we have

|ul(x)−uk(x)| ≤ |ul(x)−ul−1(x)|+ · · ·+ |uk+1(x)−uk(x)| ≤ gl−1(x)−gk−1(x)≤ gl−1(x).

Taking l→+∞, we obtain

|u(x)−uk(x)| ≤ g(x) almost everywhere in R.

Thus,
|uk(x)| ≤ h(x) almost everywhere in R.

where h = g+ |u| ∈W 1
0 Lp,q(Ω). �

2.3.1 Lorentz-Sobolev spaces in R2

In this section we study some properties of Lorentz-Sobolev spaces restricted to R2. We
denote by

W 1Lp,q(R2) :=W 1
0 Lp,q(R2).
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Proposition 2.45. (See Cassani and Tarsi (2009).) Let 1 < s <+∞. Then, there exists a positive
constant C =C(s) such that for any (sufficiently smooth) domain Ω⊂ R2 and for any α ≤ α∗s =(√

4π
) s

s−1 , the following inequalities hold:

sup
‖u‖1,(2,s)≤1

∫
Ω

(
eα|u|

s
s−1 −1−α|u|

s
s−1
)

dx≤C, if 2 < s <+∞. (2.29)

sup
‖u‖1,(2,s)≤1

∫
Ω

(
eα|u|

s
s−1 −1

)
dx≤C, if 1 < s≤ 2. (2.30)

Moreover, inequalities (2.29)-(2.30) are sharp, in the sense that for any α > α∗s the corresponding
suprema become infinity.

Proposition 2.46. (See Lu and Tang (2016).) Let 1 < s < +∞. Then, there exists a constant
C(s)> 0 such that for any 0 < α < α∗s =

(√
4π
) s

s−1 and any u ∈W 1L2,s(R2) with ‖∇u‖2,s ≤ 1,
the following inequalities hold:∫

R2

(
eα|u|

s
s−1 −1−α|u|

s
s−1
)

dx≤C(s)‖u‖2
2,s, if 2 < s <+∞. (2.31)

∫
R2

(
eα|u|

s
s−1 −1

)
dx≤C(s)‖u‖2

2,s, if 1 < s≤ 2. (2.32)

The restriction α < αs∗ is sharp, in the sense that if α > α∗s , then, the inequality can no longer
hold with some C(s) independent of u.

Proposition 2.47. Let 1 < s <+∞. Then, the following embeddings are continuous

(i) If 1 < s≤ 2
W 1L2,s(R2) ↪→ Lr(R2), for all r ≥ 2.

(ii) If 2 < s

W 1L2,s(R2) ↪→ Lr(R2), for all r ≥ 2s
s−1

Proof.

(i) Since 1 < s≤ 2, from Lemma 2.21 the embedding L2,s(R2)⊂ L2(R2) is continuous. Then,

W 1L2,s(R2) ↪→W 1,2(R2) ↪→ Lr(R2), for all r ≥ 2.

(ii) Let s > 2, s′ = s/(s−1) and considering r ≥ 2s′, we have the following limits

lim
|t|→0

|t|r

e|t|s
′ −1−|t|s′

=

2, if r = 2s′,

0, if r > 2s′

and
lim
|t|→∞

|t|r

e|t|s
′ −1−|t|s′

= 0
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Thus, there exists C1 =C1(r,s)> 0 such that

|t|r ≤C1
(
e|t|

s′
−1−|t|s

′)
, for all t ∈ R. (2.33)

Hence, for every 0 6= u ∈W 1L2,s(R2), let consider û = u/‖∇u‖2,s. Thus, by Proposition
2.46 and (2.33), there exist C =C(r,s)> 0 such that∫

R2
|û|r dx≤C1

∫
R2

(
e|û|

s′
−1−|û|s

′)
dx≤C‖û‖2

2,s. (2.34)

Thus,
‖u‖r

r ≤C‖u‖2
2,s‖∇u‖r−2

2,s ≤C‖u‖r
1,(2,s).

That is, W 1L2,s(R2) ↪→ Lr(R2) is continuous for all r ≥ 2s′.

�

Now, we introduce a weighted Lorentz-Sobolev space. Let V : R2→ R be a continuous
function verifying the following conditions:

(V1) There exists V0 > 0 such that

V (x)≥ inf
x∈R2

V (x) :=V0 > 0.

(V2) There exist constants p > 2 and q = p/(p−1) such that

1
V 1/q

∈ L2,p(R2) and
1

V 1/p
∈ L2,q(R2).

Consider the following Lorentz-Sobolev space

W 1L2,p
V (R2) := {u ∈W 1L2,p(R2) : ‖V 1/pu‖2,p <+∞}.

endowed with the quasinorm

‖u‖(p) :=
(
‖∇u‖p

2,p +‖V
1/pu‖p

2,p

)1/p
.

We denote this space by W (p) :=W 1L2,p
V (R2).

Proposition 2.48. Suppose that (V1) and (V2) hold. Then, the following embeddings

W (p) ↪→ Ls(R2), W (q) ↪→ Ls(R2), for all 1≤ s <+∞

are compact.

Proof. By Proposition 2.5, we have

V 1/p
0 u∗(t) = (V 1/p

0 u)∗(t)≤ (V 1/pu)∗(t), for all t ≥ 0
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which implies that

V0‖u‖p
2,p =V0

∫ +∞

0

[
t1/2u∗(t)

]p dt
t
≤
∫ +∞

0

[
t1/2(V 1/pu)∗(t)

]p dt
t
= ‖V 1/pu‖p

2,p.

Therefore,

‖∇u‖p
2,p +V0‖u‖p

2,p ≤ ‖∇u‖p
2,p +‖V

1/pu‖p
2,p = ‖u‖

p
(p).

Thus, we obtain W (p) ↪→W 1L2,p(R2) continuously. By Proposition 2.47, the space W 1L2,p(R2)

is continuously embedded in Lr(R2) for all r ≥ 2p/(p−1). Consequently,

W (p) ↪→ Lr(R2), for all r ≥ 2p
p−1

. (2.35)

On the other hand, let C = ‖1/V 1/q‖2,q. By Hölder’s inequality in Lorentz spaces, we have

‖u‖1 ≤ ‖
1

V 1/q
‖2,q‖V 1/pu‖2,p ≤C‖u‖(p). (2.36)

Thus, the embedding W (p) ↪→ L1(R2) is continuous. Moreover, for s> 1 and r >max{s,2p/(p−
1)} we can write

‖un‖s ≤ ‖un‖1−λ

1 ‖un‖λ
r , where λ =

s−1
r−1

r
s
. (2.37)

Using (2.35), we conclude

W (p)(R2) ↪→ Lr(R2), for all r ≥ 1, (2.38)

continuously. In order to prove compactness we show first that the embedding W (p) ↪→ L1(R2)

is compact. Consider a sequence (un)⊂W (p) such that un ⇀ 0 in W (p). For given ε > 0 there
exists C > 0 such that

‖un‖(p) ≤C, for all n≥ 1. (2.39)

Using the fact that V−1/p ∈ L2,q(R2) in Lemma 2.29, we can find R > 0 such that

‖V−1/p−V−1/p
χBR‖2,q <

ε

2C
. (2.40)

Consider the following embeddings

W (p) ↪→W 1L2,p(R2) ↪→W 1L2,p(BR(0)) ↪→ L1(BR(0)) (2.41)

where

W 1L2,p(BR(0)) := {u|BR : u ∈W 1L2,p(R2)}.

and arguing as in the proof of Lemma 2.38, we can prove that the last embedding in (2.41) is
compact. Thus, we can assume that un→ 0 in L1(BR). Therefore, there exists n0 ≥ 1 such that∫

BR

|un|dx <
ε

2
, for all n≥ n0. (2.42)
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Using Hölder’s inequality in Lorentz spaces, (2.39) and (2.40), we get∫
R2\BR

|un|dx = ‖V 1/punV−1/p
χR2\BR

‖1

≤ ‖V 1/pun‖2,p‖V−1/p
χR2\BR

‖2,q (2.43)

≤C‖V−1/p(1−χBR)‖2,q.

<
ε

2
.

From (2.42) and (2.43), we obtain that un→ 0 in L1(R2). Moreover, let s and r as in (2.37), from
(2.38) and (2.39), we have that (un) is a bounded sequence in Lr(R2). By (2.37) we obtain

un→ 0, in Ls(R2),

which implies the embedding of W (p) in Ls(R2) is compact for all s≥ 1. Similarly, we can prove
that W (q) in Ls(R2) is compact for all s≥ 1. �

2.4 The tilde-map

Following the arguments developed in Figueiredo, Ó and Ruf (2005), Ruf (2008), we
construct an application from the space W 1

0 L2,q(Ω) to W 1
0 L2,p(Ω) where p = q/(q−1).

Proposition 2.49. Let Ω be a bounded domain in RN . For each u ∈W 1
0 L2,q(Ω) consider

S := sup
{∫

Ω

∇u(x)∇ω(x)dx : ω ∈W 1
0 L2,p(Ω), ‖∇ω‖2,p = ‖∇u‖2,q

}
. (2.44)

Then, there exists a unique ũ ∈W 1
0 L2,p(Ω) such that

S =
∫

Ω

∇u(x)∇ũ(x)dx = ‖∇u‖2,q‖∇ũ‖2,p and ‖∇u‖2,q = ‖∇ũ‖2,p.

Proof. Given u ∈W 1
0 L2,q(Ω) fixed. Note that, for each ω ∈W 1

0 L2,p(Ω) such that ‖∇ω‖2,p =

‖∇u‖2,q, by Hölder’s inequality in Lorentz spaces, we have∫
Ω

∇u(x)∇ω(x)dx≤ ‖∇u‖2,q‖∇ω‖2,p = ‖∇u‖2
2,q.

Thus, there exists the supremum S. Let (ωn) be a maximizing sequence for S. Since the sequence
is bounded and the fact that W 1

0 L2,p(Ω) is a reflexive space, we can assume that ωn ⇀ ω̂ in
W 1

0 L2,p(Ω). Thus, ∫
Ω

∇u(x)∇ωn(x)dx→
∫

Ω

∇u(x)∇ω̂(x)dx = S

and

‖∇ω̂‖2,p ≤ liminf
n→∞

‖∇ωn‖2,p = ‖∇u‖2,q (2.45)
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that is, the supremum is attained. If ‖∇ω̂‖2,p < ‖∇u‖2,q, setting ω0 =
ω̂‖∇u‖2,q

‖∇ω̂‖2,p
. we note that,

ω0 ∈W 1
0 L2,p(Ω) and ‖∇ω0‖2,p = ‖∇u‖2,q. Thus,

S≥
∫

Ω

∇u(x)∇ω0(x)dx =
‖∇u‖2,q

‖∇ω1‖2,p

∫
Ω

∇u(x)∇ω̂(x)dx > S,

which gives a contradiction. Hence, ‖∇ω̂‖2,p = ‖∇u‖2,q.

In order to prove the uniqueness, without less of generality we can assume that ‖∇u‖2,q =

1 and there exist ω̂1 6= ω̂2 in W 1
0 L2,p(Ω) with ‖∇ω̂1‖2,p = ‖∇ω̂2‖2,p = 1, such that∫

Ω

∇u(x)∇ω̂1(x)dx =
∫

Ω

∇u(x)∇ω̂2(x)dx = 1.

We see that ω̂1 6=−ω̂2 and by Proposition 2.28 we have that W 1
0 L2,p(Ω) is a uniformly convex

space. Thus,

0 <
∥∥∥∇

(
ω̂1 + ω̂2

2

)∥∥∥
2,p

< 1.

Set r = 2/‖∇(ω̂1 + ω̂2)‖2,p > 1. Then,

1≥
∫

Ω

∇u∇

(
ω̂1 + ω̂2

‖∇(ω̂1 + ω̂2)‖2,p

)
dx =

r
2

∫
Ω

∇u∇(ω̂1 + ω̂2)dx = r > 1,

which is a contradiction, and the uniqueness follows. We denote by ũ this element. �

Definition 2.50. Let 1 < q <+∞, using the Proposition 2.49 we can define the tilde-map

˜ : W 1
0 L2,q(Ω) → W 1

0 L2,p(Ω)

u 7→ ũ,
(2.46)

where p = q/(q−1).

Remark 2.51. Let p > 1, q > 1 and denote by ξq,p the tilde-map from W 1
0 L2,q(Ω) to W 1

0 L2,p(Ω)

as defined in (2.46). A direct calculation shows that the inverse of ξq,p is given by ξp,q . Thus,
the tilde-map is bijective.

It follows from the construction that the tilde-map is positively homogeneous, that is

ρ̃u = ρ ũ, for all u ∈W 1
0 L2,q(Ω), ρ ≥ 0.

With the help of the tilde-map, we define two continuous subspaces of

E :=W 1
0 L2,q(Ω)×W 1

0 L2,q′(Ω)

by
E+ = {(u, ũ) : u ∈W 1

0 L2,q(Ω)} and E− = {(u,−ũ) : u ∈W 1
0 L2,q(Ω)}.

Following ideas from Figueiredo, Ó and Ruf (2005), the nonlinear subspaces E+ and E− have a
linear structure with respect to the following operations:
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Definition 2.52. (Tilde-sum) Given (u, ṽ) and (y, z̃) ∈ E, we define the tilde sum by

(u, ṽ) +̃ (y, z̃) := (u+ y, ṽ+ z). (2.47)

Note that, the set E endowed with the tilde-map is an abelian group, indeed, associative
and commutative axioms follows from the properties in W 1

0 L2,q(Ω) and due to the surjectivity
of the tilde-map. Moreover, the zero element is given by (0,0) ∈ E and additive inverse of an
element (u, ṽ) ∈ E is given by (−u,−̃v) ∈ E.

Motivated by the tilde sum, we define the following binary operation:

Definition 2.53. Given (u, ṽ) in E and α ∈ R, we define

α(u, ṽ) := (αu, α̃v), for all α ∈ R. (2.48)

Lemma 2.54. (i) Let (u, ṽ) ∈ E and (y, z̃) ∈ E. Then, for all α,β ∈ R we have

α(u, ṽ) +̃ β (y, z̃) ∈ E and α(u, ṽ) +̃ β (y, z̃) = (αu+βy, α̃v+β z).

Moreover, the set E endowed with the operations given by (2.47) and (2.48) has a vector
space structure.

(ii) For each (y, z̃) ∈ E, there exist unique elements (u, ũ) ∈ E+ and (v,−ṽ) ∈ E− such that

(y, z̃) = (u, ũ) +̃ (v,−ṽ).

Thus,
E = E+⊕̃ E−.

Proof.

(i) Using the clousure of the operations (2.47) and (2.48), for all (u, ṽ),(y, z̃)∈ E and α,β ∈R
we have

α(u, ṽ) +̃ β (y, z̃) ∈ E.

and

α(u, ṽ) +̃ β (y, z̃) = (αu, α̃v) +̃ (βy, β̃ z)

= (αu+βy, α̃v+β z).

As we see (E,+̃) is an abelian group. Moreover, all other axioms of vector space can be
checked easily.

(ii) Let (u1, ũ1),(u2, ũ2) ∈ E+ and (v1,−ṽ1),(v2,−ṽ2) ∈ E− such that

(u1 + v1, ũ1− v1) = (y, z̃) = (u2 + v2, ũ2− v2).



60 Chapter 2. Lorentz and Lorentz-Sobolev spaces

Then, u1 + v1 = u2 + v2 and u1− v1 = u2− v2 which implies u1 = u2 and v1 = v2. Thus,
we obtain uniqueness. In order to prove the existence, let (y, z̃) ∈ E. Taking

(u, ũ) = (
y+ z

2
,
ỹ+ z

2
) and (v,−ṽ) = (

y− z
2

,− ỹ− z
2

),

the existence follows.

�

Remark 2.55. The operations defined by (2.47) and (2.48) restricted to the space {0} ×
W 1

0 L2,p(Ω) make the tilde-map into a linear function.

Lemma 2.56. The application defined in (2.46) is continuous.

Proof. Let (un)⊂W 1
0 L2,q(Ω) be a sequence and 0 6= u ∈W 1

0 L2,q(Ω) such that

‖∇(un−u)‖2,q→ 0, (2.49)

by Proposition 2.49 we have

‖∇ũn‖2,p = ‖∇un‖2,q, ‖∇ũ‖2,p = ‖∇u‖2,q and ‖∇(ũn−u)‖2,p = ‖∇(un−u)‖2,q. (2.50)

If 1 < q≤ 2, by Proposition 2.13 ‖ · ‖2,q is a norm. Then, by (2.50), we have∣∣‖∇ũn‖2,p−‖∇ũ‖2,p
∣∣= ∣∣‖∇un‖2,q−‖∇u‖2,q

∣∣≤ ‖∇(un−u)‖2,q→ 0.

If q > 2, from Proposition 2.13 ‖ · ‖2,p is a norm. Then, by (2.49) and (2.50), we have∣∣‖∇ũn‖2,p−‖∇ũ‖2,p
∣∣≤ ‖∇(ũn−u)‖2,p→ 0.

In both cases we obtain
‖∇ũn‖2,p→‖∇ũ‖2,p. (2.51)

In particular, the sequence (ũn) is bounded in W 1
0 L2,p(Ω), which implies that, there exists

ṽ ∈W 1
0 L2,p(Ω) and a subsequence (not renamed) (ũn) such that

ũn ⇀ ṽ in W 1
0 L2,p(Ω). (2.52)

Note that, ∫
Ω

∇un∇ũn dx = ‖∇un‖2,q‖∇ũn‖2,q

implies that ∫
Ω

∇u∇ṽ dx = ‖∇u‖2,q‖∇ũ‖2,q. (2.53)

Observe also that, by (2.52) and (2.51), we have

‖∇ṽ‖2,p ≤ liminf
n→∞

‖∇ũn‖2,p = ‖∇ũ‖2,p = ‖∇u‖2,q.
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Suppose that ‖∇ṽ‖2,p < ‖∇u‖2,q, setting w = ṽ‖∇u‖2,q/‖∇ṽ‖2,p. Then,

w ∈W 1
0 L2,p(Ω) and ‖∇w‖2,p = ‖∇u‖2,q.

Now using (2.53)

‖∇u‖2,q‖∇ũ‖2,q ≥
∫

Ω

∇u∇w dx =
‖∇u‖2,q

‖∇ṽ‖2,p

∫
Ω

∇u∇ṽ dx > ‖∇u‖2,q‖∇ũ‖2,q

which gives a contradiction. Hence, ‖∇ṽ‖2,p = ‖∇u‖2,q. Using this, (2.53) and uniqueness of the
tilde-map we get that ṽ = ũ. Consequently, we get in (2.52)

ũn ⇀ ũ in W 1
0 L2,p(Ω). (2.54)

Finally, joining (2.51) and (2.54), we obtain

ũn→ ũ in W 1
0 L2,p(Ω).

�

Now, we extend the tilde-map for the weighted Lorentz-Sobolev spaces W (q).

Proposition 2.57. (See Cassani and Tarsi (2015).) Let V : R2 → R a continuous function
verifying (V1). For each u ∈W (q) consider

S := sup
{∫

R2

(
∇u(x)∇ω(x)+V (x)u(x) ω(x)

)
dx : ω ∈W (p), ‖ω‖(p) = ‖u‖(q)

}
. (2.55)

Then, there exists a unique ũ ∈W (p) such that

S =
∫
R2

(
u(x)ũ(x)+V (x)∇u(x)∇ũ(x)

)
dx = ‖u‖(q)‖ũ‖(p) and ‖u‖(q) = ‖ũ‖(p).

Proof. Consider the functional

Lu(v) :=
∫
R2

(
∇u∇v+V (x)uv

)
dx, v ∈W (p). (2.56)

Using Hölder’s inequality for Lorentz spaces we have

|Lu(v)| ≤ ‖∇u‖2,p‖∇v‖2,q +‖V 1/pu‖2,p‖V 1/qv‖2,q ≤ 2‖u‖(p)‖v‖(q).

Thus, Lu ∈
(
W (p))∗. Since W 1L2,p(R2) is reflexive, by (V1) we have that W (p) is a closed

subspace of W 1L2,p(R2), hence W (p) is also reflexive, therefore, there exist uniqueness N +1
functions w j ∈ L2,q(R2) j = 0, · · · ,N such that

Lu(v) =
N

∑
j=1

∫
R2

w j
∂v
∂x j

dx+
∫
R2

V (x)w0v dx

and
sup

v∈W (p),‖v‖=1
|Lu(v)|= ‖w0‖(q). (2.57)
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By uniqueness w0 = u and w j = D ju for j = 1, . . . ,N. Thus, From(2.56) and (2.57), we obtain

sup
v∈W (p),‖v‖p=1

∫
R2

(
∇u∇v+V (x)uv

)
dx = ‖u‖(q). (2.58)

Taking ω = v‖u‖(p) with v ∈W (p),‖v‖p = 1 in (2.58)

sup
ω∈W (p),‖ω‖(p)=‖u‖(q)

∫
R2

(
∇u∇ω +V (x)uω

)
dx = ‖u‖2

(q).

In order to prove an existence and uniqueness of ũ ∈W (q) which attains the supremum S, we can
proceed similarly as the Proposition 2.49. �

Analogously, using Proposition 2.57, we define the tilde-map

˜ : W (q) → W (p)

u 7→ ũ,
(2.59)

The application (2.59) is continuous and set

E :=W (q)×W (p)

and
E+ = {(u, ũ) : u ∈W (q)} and E− = {(u,−ũ) : u ∈W (q)}.

Then, the following decomposition holds

E = E+⊕̃ E−.

Similarly in these spaces we consider the following applications.

Definition 2.58. Given (u, ṽ), (y, z̃) ∈ E and α ∈ R, we define

(u, ṽ) +̃ (y, z̃) := (u+ y, ṽ+ z), (2.60)

α(u, ṽ) := (αu, α̃v). (2.61)

The set E =W (q)×W (p) endowed with the operations given by (2.60) and (2.61) satisfies
the same properties given by Lemma 2.54.
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CHAPTER

3
HAMILTONIAN SYSTEM WITH CRITICAL

EXPONENTIAL GROWTH IN A BOUNDED
DOMAIN

This chapter is concerned with the existence of nontrivial solution to the following
Hamiltonian elliptic system 

−∆u = g(v), in Ω,

−∆v = f (u), in Ω,

u = v = 0, on ∂Ω,

(3.1)

where Ω is a bounded domain in R2 and the functions f and g possess critical exponential growth
with (p,q) lying on the exponential critical hyperbola.

3.1 Introduction
We start with the notion of critical and subcritical exponential growth.

Definition 3.1. Given p > 1, we say that a function h : R→R has p-critical exponential growth,
if there exists α0 > 0 such that

lim
|s|→∞

|h(s)|
eα|s|p =

0, α > α0,

+∞, α < α0.

Whereas, we say that h : R→ R has p-subcritical exponential growth, if

lim
|s|→∞

|h(s)|
eα|s|p = 0, for all α > 0.

In order to study the existence of the system (3.1), we make the following hypotheses on
the functions f and g:
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(A1) f ,g ∈ C (R), with f (s) = g(s) = o(s) near the origin.

(A2) There exist constants µ > 2, ν > 2 and s0 > 0 such that

0 < µF(s)≤ s f (s) and 0 < νG(s)≤ sg(s), for all |s|> s0.

where F(s) =
∫ s

0 f (t)dt and G(s) =
∫ s

0 g(t)dt.

(A3) There exist α0 > 0 and p > 1, such that

lim
|s|→∞

| f (s)|
eα|s|p =

0, α > α0,

+∞, α < α0.

(A4) There exists β0 > 0, such that

lim
|s|→∞

|g(s)|
eβ |s|q =

0, β > β0,

+∞, β < β0.

where q =
p

p−1
.

Throughout this chapter, we denote the product space

E =W 1
0 L2,q(Ω)×W 1

0 L2,p(Ω),

endowed with the norm
‖(u, ṽ)‖ :=

(
‖∇u‖2

2,q +‖∇ṽ‖2
2,p
)1/2

.

Moreover E has a structure of vector space with the operations (2.47) and (2.48). We recall that
ṽ is an independent variable; we write ṽ to emphasize that ṽ belongs to the space W 1

0 L2,p(Ω).

Lemma 3.2. Let θ > 2. Then, the following number

δθ = inf
{∫

Ω

(
|e1 +ω|θ + |ẽ1−ω|θ

)
dx : ω ∈W 1

0 L2,q(Ω) com ‖∇ω‖2,q ≤ 2+
√

5
}

is positive, where e1 is the first eigenfunction of (−∆,H1
0 (Ω)) normalized in W 1

0 L2,q(Ω).

Proof. We proceed by contradiction, if δθ = 0, we can find a sequence (ωn) in W 1
0 L2,q(Ω) such

that
‖∇ωn‖2,q ≤ 2+

√
5 and lim

n→∞

∫
Ω

(
|e1 +ωn|θ + |ẽ1−ωn|θ

)
= 0.

Since W 1
0 L2,q(Ω) is a reflexive space, there exists ω ∈W 1

0 L2,q(Ω) such that ωn ⇀ω in W 1
0 L2,q(Ω)

up to subsequence. By compact embedding of W 1
0 L2,q(Ω) in Lθ (Ω), we can assume that e1 +

ωn→ e1 +ω in Lθ (Ω). Observe also that e1−ωn ⇀ e1−ω in W 1
0 L2,q(Ω). Using the fact that

the tilde-map is a continuous linear function, we obtain ẽ1−ωn ⇀ ẽ1−ω in W 1
0 L2,p(Ω). By

compact embedding of W 1
0 L2,p(Ω) in Lθ (Ω), we can assume that ẽ1−ωn→ ẽ1−ω in Lθ (Ω).

Hence, ‖e1 +ω‖θ + ‖ẽ1−ω‖θ = 0. Thus, we obtain that e1 = −ω and e1 = ω which is a
contradiction. �

Now, we describe an additional condition on the functions f and g.
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(A5) There exist constants θ > 2 and Cθ > 0 such that

F(s)≥Cθ |s|θ and G(s)≥Cθ |s|θ , for all s ∈ R,

where

Cθ >
14+6

√
5

δθ Rθ−2 , R2 =
2π

α
1/p
0 β

1/q
0

max
{

µ−2
µ

,
ν−2

ν

}
, (3.2)

δθ is defined as in Lemma 3.2 and µ and ν are given by condition (A2).

Example 3.3. Let θ > 2, p,q > 1, with 1/p+ 1/q = 1, A > 0 and consider the following
continuous functions defined on R

f1(s) = g1(s) = A|s|θ−2s, for all s ∈ R,

f2(s) =

psp−1(esp−1
)
, 0≤ s < 1,

(e−1)
[
(psp−1−1)esp−s + sp−1], 1≤ s,

and

g2(s) =

qsq−1(esq−1
)
, 0≤ s < 1,

(e−1)
[
(qsq−1−1)esq−s + sq−1], 1≤ s,

where f2(−s) =− f2(s) and g2(−s) =−g2(s) for all s≥ 0. Then, the functions f = f1 + f2 and
g = g1 +g2 satisfy conditions (A1)− (A5) for A sufficiently large.

We observe that, to prove the conditions, it is sufficient to show them for the function f .
Note that

F1(s) =
∫ s

0
f1(t)dt =

A
θ
|s|θ , for all s ∈ R

and

F2(s) =
∫ s

0
f2(t)dt =


esp− sp−1, 0≤ s < 1,

e−2+(e−1)
[
(esp−s−1)+

sp−1
p

]
, 1≤ s.

Since f2 is an odd function we have F2(−s) = F2(s) for all s≥ 0. We observe that f is an odd
function and satisfies:

(a) The following limits holds

lim
s→0+

f1(s)
s

= 0 and lim
s→0+

f2(s)
s

= 0,

since f1 and f2 are odd functions we have that f satisfies the condition (A1).

(b) For s≥ 1, we have

0 <
F(s)
s f (s)

=
F1(s)+F2(s)

s f1(s)+ s f2(s)
=

A
θ

sθ + e−2+(e−1)
[
(esp−s−1)+

sp−1
p

]
Asθ + s(e−1)

[
(psp−1−1)esp−s + sp−1

] .
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Using last equality and the fact that F(s)/
(
sg(s)

)
is an even function we have

lim
|s|→+∞

F(s)
s f (s)

= 0.

Thus, f satisfies condition (A2).

(c) For s≥ 1 we have

0 <
f (s)
eαsp =

f1(s)+ f2(s)
eαsp =

Asθ−1 +(e−1)
[
(psp−1−1)esp−s + sp−1]

eαsp .

Thus,

lim
s→+∞

| f (s)|
eα|s|p = lim

s→+∞

f (s)
eαsp =

0, α > 1,

+∞, α < 1,

and

lim
s→−∞

| f (s)|
eα|s|p = lim

r→+∞

| f (−r)|
eα|−r|p = lim

r→+∞

f (r)
eαrp =

0, α > 1,

+∞, α < 1.

That is, f satisfies condition (A3) with α0 = 1.

(d) Since F2 is a nonnegative function, we have

F(s) = F1(s)+F2(s)≥ F1(s) =
A
θ
|s|θ , for all s ∈ R.

Thus, taking A sufficiently large, f satisfies condition (A5).

Next we state the main result of this chapter.

Theorem 3.4. Suppose (A1)− (A5) hold. Then, (3.1) possesses a nontrivial weak solution in
E =W 1

0 L2,q(Ω)×W 1
0 L2,p(Ω).

In the proof of Theorem 3.4 we use variational arguments. More precisely, combining
Theorem 5.3 and Example 5.26 in Rabinowitz (1986) we obtain the following result: We recall
the definition of (PS) sequence.

Definition 3.5. Let E be a Banach space and I ∈ C 1(E,R). The function I satisfies the Palais-
Smale condition (denoted by (PS)) if any sequence (un)⊂ E for which

(
I(un)

)
is bounded and

I′(un)→ 0 possesses a convergent subsequence.

Proposition 3.6. (Linking theorem) Let E be a real Banach space with E =V ⊕X , where V is
finite dimensional. Suppose I ∈ C 1(E,R), satisfies (PS), and

(I1) There are constants ρ,σ > 0 such that I|∂Bρ∩X ≥ σ .
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(I2) There is an e ∈ ∂B1∩X and R0 > 0 and R1 > ρ such that if

Q := (BR0 ∩V )⊕{re : 0≤ r ≤ R1},

then I∂Q ≤ 0.

Then, I possesses a critical value c≥ σ which can be characterized as

c := inf
h∈Γ

max
u∈Q

I(h(u))

where

Γ = {h ∈ C (Q,E) : h|∂Q = id}.

Remark 3.7. If the (PS) condition is not required in Proposition 3.6, the geometric conditions
(I1) and (I2) combined with the Ekeland Variational Principle (see Ekeland and Temam (1999))
asserts the existence of a sequence (un)⊂ E such that

I(un)→ c and I′(un)→ 0.

3.2 Variational setting
In order to employ variational methods, we consider the functional J : E→ R associated

with (3.1) and defined by

J(u, ṽ) =
∫

Ω

∇u∇ṽ dx−
∫

Ω

F(u)dx−
∫

Ω

G(ṽ)dx. (3.3)

Proposition 3.8. The functional J given by (3.3) is well defined and belongs to the class
C 1(E,R) with

J′(u, ṽ)(φ , ψ̃) =
∫

Ω

(
∇u∇ψ̃ +∇ṽ∇φ

)
dx−

∫
Ω

f (u)φ dx−
∫

Ω

g(ṽ)ψ̃ dx,

for all (φ , ψ̃) ∈ E.

Proof. Let u∈W 1
0 L2,q(Ω) and ṽ∈W 1

0 L2,p(Ω). Then, from Hölder’s inequality in Lorentz spaces,
we have ∣∣∣∫

Ω

∇u∇ṽ dx
∣∣∣≤ ‖∇u‖2,q‖∇ṽ‖2,p. (3.4)

By (A1) and (A3), there exists C > 0 such that

| f (s)| ≤Ce(α0+1)|s|p, for all s ∈ R. (3.5)

Thus,

|F(u)| ≤
∫ |u|

0
| f (s)|ds≤C

∫ |u|
0

e(α0+1)|s|p ds≤C|u|e(α0+1)|u|p ≤ C
2
|u|2 + C

2
e2(α0+1)|u|p.
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Consequently, ∣∣∣∫
Ω

F(u)dx
∣∣∣≤C1

∫
Ω

|u|2 dx+C1

∫
Ω

e2(α0+1)|u|p dx.

By Lemma 2.38 and Remark 2.40, we have∫
Ω

F(u)dx <+∞, for all u ∈W 1
0 L2,q(Ω). (3.6)

Similarly, G(ṽ) belongs to L1(Ω) for all ṽ ∈ W 1
0 L2,p(Ω). Thus, joining (3.4) and (3.6) we

conclude that J is well defined on E.

Set J1,J2,J3 : E→ R by

J1(u, ṽ) =
∫

Ω

∇u∇ṽ dx, J2(u, ṽ) =
∫

Ω

F(u)dx and J3(u, ṽ) =
∫

Ω

G(ṽ)dx.

By (3.4), we have
|J1(u, ṽ)| ≤ 2‖u‖2,q‖ṽ‖2,p, for all (u, ṽ) ∈ E.

Thus, J1 is a continuous bilinear function. Then, J1 ∈ C ∞(E,R) and

J′1(u, ṽ)(φ , ψ̃) =
∫

Ω

(
∇u∇ψ̃ +∇ṽ∇φ

)
dx, for all (φ , ψ̃) ∈ E. (3.7)

Now, fixing u and φ in W 1
0 L2,q(Ω), for given x ∈Ω, consider h : R→ R defined by

h(t) = F
(
u(x)+ tφ(x)

)
.

Let (tn) be any sequence in R such that tn→ 0, we can assume that 0 < |tn| ≤ 1 for all n≥ 1. For
any n≥ 1, by the Mean value theorem, there exists θn = θn(tn,x) ∈ (0,1) such that

F(u+ tnφ)−F(u) = h(tn)−h(0) = h′(θntn)tn = f (u+θntnφ)tnφ . (3.8)

Define
hn(x) := F(u+ tnφ)−F(u) = f (u+θntnφ)φ .

Since f is continuous, we have

lim
n→∞

hn(x) = lim
n→∞

(
F(u+ tnφ)−F(u)

)
= f (u)φ , for all x ∈Ω.

Note that |u+θntnφ | ≤ |u|+ |φ |= w ∈W 1
0 L2,q(Ω). From (3.5), we have

|hn(x)|= | f (u+θntnφ)φ |

≤Ce(α0+1)|u+θntnφ |p|φ |

≤Ce(α0+1)|w|p|φ |

≤C1|φ |2 +C1e2(α0+1)|w|p.

From Lemma 2.38 and Remark 2.40, we get

C1|φ |2 +C1e2(α0+1)|w|p ∈ L1(Ω).
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By Dominated convergence theorem we obtain

J′2(u)φ = lim
n→+∞

J2(u+ tnφ)− J2(u)
tn

= lim
n→+∞

∫
Ω

F(u+ tnφ)−F(u)
tn

dx

= lim
n→+∞

∫
Ω

hn(x)dx

=
∫

Ω

f (u)φ dx.

Now, we prove the continuity of the Fréchet derivative. Let (un) be a sequence in W 1
0 L2,q(Ω)

such that un→ u in W 1
0 L2,q(Ω). By Proposition 2.44, there exists a subsequence (not renamed)

(un) and û ∈W 1
0 L2,q(Ω) such that

|un(x)| ≤ û(x), almost everywhere in Ω (3.9)

and
un(x)→ u(x), almost everywhere in Ω. (3.10)

Thus,

| f (un)− f (u)|2 ≤ 2| f (un)|2 +2| f (u)|2

≤ 2Ce2(α0+1)|un|p +2Ce2(α0+1)|u|p

≤ 2Ce2(α0+1)|û|p +2Ce2(α0+1)|u|p .

By Remark 2.40, we have

2Ce2(α0+1)|û|p +2Ce2(α0+1)|u|p ∈ L1(Ω).

Moreover, from (3.10) and the fact that f is continuous, we obtain

| f (un)− f (u)|2→ 0, almost everywhere in Ω.

By Dominated convergence theorem, we obtain

‖ f (un)− f (u)‖2→ 0, (3.11)

which implies

|〈J′2(un)− J′2(u),φ〉| ≤
∫

Ω

| f (un)− f (u)φ |dx

≤ ‖ f (un)− f (u)‖2‖φ‖2

≤C‖ f (un)− f (u)‖2‖∇φ‖2,q.

Thus, by (3.11)

sup
‖∇φ‖2,q≤1

|〈J′2(un)− J′2(u),φ〉| ≤C‖ f (un)− f (u)‖2→ 0.
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That is, J2 belongs to C 1(E,R), similar arguments prove that J3 belongs to C 1(E,R). Conse-
quently J ∈ C 1(E,R). �

We say that (u, ṽ) ∈ E is a weak solution of (3.1) if∫
Ω

(
∇u∇ψ̃ +∇ṽ∇φ

)
dx =

∫
Ω

(
f (u)φ̃ +g(ṽ)ψ

)
dx, for all (φ , ψ̃) ∈ E.

Consequently, critical points of the functional J correspond to the weak solutions of (3.1).

3.3 The geometry of the linking theorem
This section is devoted to establish that the functional J satisfies (I1) and (I2).

Lemma 3.9. There exist constants ρ > 0 and σ > 0 such that J(u, ũ)≥ σ , for all (u, ũ) ∈ E with
‖(u, ũ)‖= ρ .

Proof. From (A1), given ε > 0, there exists δ > 0 such that | f (s)| ≤ 2ε|s| and |g(s)| ≤ 2ε|s| for
all |s|< δ . Then,

|F(s)| ≤ ε|s|2 and |G(s)| ≤ ε|s|2, for all |s|< δ . (3.12)

By (A1), (A3) and (A4), there exists a positive constant C such that

| f (s)| ≤Ce2α0|s|p and |g(s)| ≤Ce2β0|s|q, for all s ∈ R.

Thus, there exists some C =C(ε)> 0 such that

F(s)≤C|s|3e2α0|s|p and G(s)≤C|s|3e2β0|s|q, for all |s| ≥ δ . (3.13)

Joining (3.12) and (3.13) we get

F(s)≤ ε|s|2 +C|s|3e2α0|s|p and G(s)≤ ε|s|2 +C|s|3e2β0|s|q, for all s ∈ R. (3.14)

Using Hölder’s inequality, we obtain

J(u, ũ) =
∫

Ω

∇u∇ũ dx−
∫

Ω

F(u)dx−
∫

Ω

G(ũ)dx

≥ ‖∇u‖2,q‖∇ũ‖2,p−
∫

Ω

(
ε|u|2 +C|u|3e2α0|u|p

)
dx−

∫
Ω

(
ε|ũ|2 +C|ũ|3e2β0|ũ|q

)
dx

≥ 1
2
‖∇u‖2

2,q− ε‖u‖2
2−C‖u‖3

6

(∫
Ω

e4α0|u|p dx
)1/2

+
1
2
‖∇ũ‖2

2,p− ε‖ũ‖2
2−C‖ũ‖3

6

(∫
Ω

e4β0|ũ|q dx
)1/2

.

For ρ1 > 0 sufficiently small, by Theorem 2.41 there exists C > 0 such that(∫
Ω

e4α0|u|p dx
)1/2
≤C and

(∫
Ω

e4β0|ũ|q dx
)1/2
≤C, for all ‖(u, ũ)‖< ρ1.
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Moreover, using Lemma 2.38 we can find some positive constant C1 (independent of ε), such
that

‖u‖2 ≤C1‖∇u‖2,q, ‖ũ‖2 ≤C1‖∇ũ‖2,p

‖u‖6 ≤C1‖∇u‖2,q and ‖ũ‖6 ≤C1‖∇ũ‖2,p.

Thus, for some C > 0 and C1 > 0 (independent of ε) we have

J(u, ũ)≥ (
1
2
− εC1)‖∇u‖2

2,q−C‖∇u‖3
2,q +(

1
2
− εC1)‖∇ũ‖2

2,p−C‖∇ũ‖3
2,p

≥ (
1
2
− εC1)‖(u, ũ)‖2−C‖(u, ũ)‖3

≥ (
1
2
− εC1)‖(u, ũ)‖2(1−C‖(u, ũ)‖

)
.

Now, taking

0 < ε ≤ 1
4C1

and 0 < ρ2 ≤
1

2C
.

Thus, for 0 < ρ ≤min{ρ1,ρ2}, we obtain

J(u, ũ)≥ ρ2

8
= σ , for all ‖(u, ũ)‖= ρ.

�

Lemma 3.10. (See Cassani and Tarsi (2015).) Let r,r′ > 1 such that 1/r+1/r′ = 1 and t ≥ 0.
Then, the following inequality holds

st ≤


etr −1+ s(lns)1/r, s≥ e

1
rr′ ,

etr −1+
sr′

r′
, 0≤ s≤ e

1
rr′ .

From definition of Cθ , there exist 0 < m0 < 1 and ε > 0 such that

Cθ >
14+6

√
5

δθ Rθ−2
1

, where R2
1 =

m0R2

1+ ε
. (3.15)

That is,

R2
1 =

2m0π

(1+ ε)α
1/p
0 β

1/q
0

min
{

µ−2
µ

,
ν−2

ν

}
. (3.16)

Lemma 3.11. Let

Q = {r(e1, ẽ1) +̃ (ω,−ω̃) : ‖(ω,−ω̃)‖ ≤ (2
√

2+
√

10)R1,0≤ r ≤ R1},

where R1 > 0 is given by (3.16). Then, J(z)≤ 0 for all z ∈ ∂Q, where ∂Q denote the boundary
of Q in R(e1, ẽ1) +̃ E−.
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Proof. We can write

Q = {r(e1, ẽ1) +̃ (ω,−ω̃) : ‖∇ω‖2,q ≤ (2+
√

5)R1,0≤ r ≤ R1}.

Observe that the boundary ∂Q of the set Q consists of three parts. On these parts the functional J

is estimated as follows:

(i) Let z ∈ ∂Q∩E−. Thus, z = (u,−ũ) and

J(z) = J(u,−ũ) =−
∫

Ω

∇u∇ũ dx−
∫

Ω

F(u)dx−
∫

Ω

G(−ũ)≤−‖∇u‖2
2,q ≤ 0,

because F and G are nonnegatives functions.

(ii) Let z = r(e1, ẽ1) +̃ (ω,−ω̃) = (re1 +ω, ˜re1−ω) ∈ ∂Q with ‖∇ω‖2,q = (2+
√

5)R1 and
0≤ r ≤ R1. Thus,

J(z) =
∫

Ω

∇(re1 +ω)∇u( ˜re1−ω)dx−
∫

Ω

F(re1 +ω)dx−
∫

Ω

G( ˜re1−ω)dx

≤
∫

Ω

∇(re1 +ω)∇u( ˜re1−ω)dx

=−
∫

Ω

∇(re1−ω)∇u( ˜re1−ω)dx+
∫

Ω

∇(2re1)∇u( ˜re1−ω)dx

≤−‖∇(re1−ω)‖2
2,q +‖∇(2re1)‖2,q‖∇( ˜re1−ω)‖2,p

≤−‖∇(re1−ω)‖2
2,q +‖∇(2re1)‖2,q

(
‖∇(re1)‖2,q +‖∇w‖2,q

)
≤
(
−‖∇(re1)‖2

2,q +2‖∇(re1)‖2,q‖∇ω‖2,q−‖∇ω‖2
2,q

)
+‖∇(2re1)‖2,q

(
‖∇(re1)‖2,q +‖∇w‖2,q

)
.

Using the fact ‖∇e1‖2,q = 1 and ‖∇ω‖2,q = (2+
√

5)R1, we obtain

J(z)≤−‖∇ω‖2
2,q +4r‖∇ω‖2,q + r2 ≤−‖∇ω‖2

2,q +4R1‖∇ω‖2,q +R2
1 = 0.

(iii) Let z = R1(e1, ẽ1) +̃ R1(ω,−ω̃) = (R1(e1 +ω),R1 ˜(e1−ω)) with ‖∇ω‖2,q ≤ 2+
√

5.
From assumption (A5) we have

J(z) = R2
1

∫
Ω

∇(e1 +ω)∇u(ẽ1−ω)dx−
∫

Ω

F
(
R1(e1 +ω)

)
dx−

∫
Ω

G
(
R1 ˜(e1−ω)

)
dx

≤ R2
1‖∇(e1 +ω)‖2,q‖∇(ẽ1−ω)‖2,p−Cθ

∫
Ω

(
|R1(e1 +ω)|θ + |R1 ˜(e1−ω)|θ

)
dx

= R2
1‖∇(e1 +ω)‖2,q‖∇(e1−ω)‖2,q−Cθ Rθ

1

∫
Ω

(
|e1 +ω|θ + |ẽ1−ω|θ

)
dx

≤ R2
1(‖∇e1‖2,q +‖∇ω‖2,q)

2−Cθ Rθ
1 inf
‖∇ω‖2,q≤2+

√
5

∫
Ω

(
|e1 +ω|θ + |ẽ1−ω|θ

)
dx
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≤ (14+6
√

5)R2
1−Cθ Rθ

1 δθ .

Using (3.15) in last inequality, we obtain J(z)≤ 0.

�

Lemma 3.12. (See Ruf (2008).) Let (un, ṽn) ∈ E be a sequence such that |J(un, ṽn)| ≤ d, and

|J′(un, ṽn)(φ , ψ̃)| ≤ εn‖(φ , ψ̃)‖, where φ ,ψ ∈ {0,un,vn}

where (εn)⊂ R is a sequence such that εn→ 0 as n→+∞. Then, there exists C > 0 such that∫
Ω

f (un)un dx≤C,
∫

Ω

g(ṽn)ṽn dx≤C, for all n≥ 1

and
‖(un, ṽn)‖ ≤C, for all n≥ 1.

3.4 Finite-dimensional approximation
Since J is strongly indefinite near the origin (J is positive definite on E+ and negative

definite on E−, the standard linking theorem can not be directly applied. We therefore consider
an approximate problem on finite-dimensional spaces. Let {ei}i∈N be an orthonormal basis of
{λi}i∈N of (−∆,H1

0 (Ω)). Setting

E+
n = Span{(e1, ẽi) : i = 1,2, . . . ,n}, E−n = Span{(e1,−ẽi) : i = 1,2 . . . ,n},

and
En = E+

n ⊕E−n ,

Define
Γn = {γ ∈ C

(
Qn,E−n ⊕̃ R(e1, ẽ1)

)
: γ(z) = z, for all z ∈ ∂Qn},

where Qn = Q∩En and Q as in Lemma 3.11. Set

cn = inf
γ∈Γn

max
z∈Qn

J(γ(z)). (3.17)

Using Lemma 5.5 in Figueiredo, Ó and Ruf (2005), we have

γ(Qn)∩ (∂Bρ ∩E+
n ) 6= /0, for all γ ∈ Γn, (3.18)

for ρ > 0 given by Lemma 3.9. Thus, combining Lemma 3.9 and (3.18), we have

cn ≥ σ , for all n≥ 1. (3.19)

Since the identity map In : Qn→ E−n ⊕̃ R(e1, ẽ1) belongs to Γn, for z = r(e1, ẽ1)+(u,−ũ), we
obtain

J(z) = r2‖∇e1‖2
2,q−‖∇u‖2

2,q−
∫

Ω

F(re1 +u)dx−
∫

Ω

G(r̃e1−u)dx≤ R2
1. (3.20)

Let Jn be the restriction of J to the finite-dimensional space En.
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Proposition 3.13. For each n∈N, the functional Jn has a critical point at level cn. More precisely,
there is (un, ṽn) ∈ En such that

Jn((un, ṽn)) = cn ∈ [σ ,R2
1] (3.21)

and
J′n((un, ṽn))(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ En.

Proof. Fix n ∈ N fixed. We observe that Jn also satisfies Lemmas 3.9 and 3.11. Thus, by Remark
3.7, we obtain a sequence (u j, ṽ j)⊂ En such that

Jn(u j, ṽ j)→ cn and J′n(u j, ṽ j)→ 0, as j→+∞.

By Lemma 3.11, (u j, ṽ j) is bounded in En. Then, using the fact that En is finite dimensional, we
can assume that there exists (un, ṽn) ∈ En such that (u j, ṽ j)→ (un, ṽn), as j→ +∞. Moreover,
since J ∈ C 1(E,R), we obtain

Jn(un, ṽn) = cn and J′n(un, ṽn) = 0.

Finally, combining (3.19) and (3.20), yields cn ∈ [σ ,R2
1]. �

Lemma 3.14. Let s > 1 and {un ∈W 1
0 L2,s(Ω) : ‖∇un‖2,s = 1} be a sequence converging weakly

to the zero function in W 1
0 L2,s(Ω). Then, for every 0 < α < α∗s , we can find a subsequence (not

renamed) such that
lim
n→∞

∫
Ω

(
eα|un|

s
s−1 −1

)
dx = 0.

Proof. Let ε > 0 be such that α + ε < α∗s . Since

lim
|t|→0

eα|t|
s

s−1 −1
|t|

= 0 and lim
|t|→∞

eα|t|
s

s−1 −1

|t|
(
e(α+ε)|t|

s
s−1 −1

) = 0,

there exists C > 0 such that

eα|t|
s

s−1 −1≤C|t|+C|t|(e(α+ε)|t|
s

s−1 −1), for all t ∈ R.

Taking r > 1 such that r(α + ε)< α∗s and using Hölder’s inequality, we have∫
Ω

(
eα|un|

s
s−1 −1

)
dx≤C‖un‖1 +C‖un‖r′

(∫
Ω

(
er(α+ε)|un|

s
s−1 −1

)
dx
)1/r

.

Finally, using Theorem 2.41, the compact embeddings of W 1
0 L2,s(Ω) in Lr′(Ω) and L1(Ω) and

the fact that un ⇀ 0 in W 1
0 L2,s(Ω), we get a subsequence (not renamed) such that

lim
n→∞

∫
Ω

(
eα|un|

s
s−1 −1

)
dx = 0.

�
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Lemma 3.15. Let (un, ṽn) be the sequence given by Proposition 3.13 and assume that (un, ṽn)⇀

(0,0) in E. Then, there exists a subsequence (not renamed) (un, ṽn) such that

‖∇vn‖2,q ≤
2m0π1/2

β
1/q
0

or ‖∇ũn‖2,p ≤
2m0π1/2

α
1/p
0

, for all n ∈ N,

for m0 ∈ (0,1) given by (3.15).

Proof. If ‖∇vn‖2,q → 0 or ‖∇ũn‖2,q → 0, the claim follows. Thus, we can assume that there
exists b > 0 such that

‖∇vn‖2,q ≥ b and ‖∇ũn‖2,q ≥ b, for all n. ∈ N (3.22)

Since (un, ṽn) is given by Proposition 3.13, we have

J(un, ṽn) ∈ [σ ,R2
1], for all n ∈ N (3.23)

and
J′(un, ṽn)(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ En. (3.24)

Taking (φ , ψ̃) = (un, ṽn) in (3.24), we have

∫
Ω

f (un)un dx+
∫

Ω

g(ṽn)ṽn dx = 2
∫

Ω

∇un∇ṽn dx.

Since ∫
Ω

∇un∇ṽn dx = J(un, ṽn)+
∫

Ω

F(un)dx+
∫

Ω

G(ṽn)dx,

we get∫
Ω

f (un)un dx+
∫

Ω

g(ṽn)ṽn dx = 2J(un, ṽn)+2
∫

Ω

F(un)dx+2
∫

Ω

G(ṽn)dx. (3.25)

From (A2), we get∫
Ω

F(un)dx =
∫
{x∈Ω:|un(x)|≤s0}

F(un)dx+
∫
{x∈Ω:|un(x)|>s0}

F(un)dx

≤
∫
{x∈Ω:|un(x)|≤s0}

F(un)dx+
1
µ

∫
{x∈Ω:|un(x)|>s0}

f (un)un dx (3.26)

=
∫
{x∈Ω:|un(x)|≤s0}

(
F(un)−

1
µ

f (un)un

)
dx+

1
µ

∫
Ω

f (un)un dx.

Similarly, we obtain∫
Ω

G(ṽn)dx≤
∫
{x∈Ω:|ṽn(x)|≤s0}

(
G(ṽn)−

1
ν

g(ṽn)ṽn

)
dx+

1
ν

∫
Ω

g(ṽn)ṽn dx. (3.27)

Thus, from (3.23) and replacing (3.26) and (3.27) in (3.25), we obtain(
1− 2

µ

)∫
Ω

f (un)un dx+
(

1− 2
ν

)∫
Ω

g(ṽn)ṽn dx

≤ 2R2
1 +2

∫
{x∈Ω:|un(x)|≤s0}

(
F(un)−

1
µ

f (un)un

)
dx (3.28)

+2
∫
{x∈Ω:|ṽn(x)|≤s0}

(
G(ṽn)−

1
ν

g(ṽn)ṽn

)
dx.
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Since (un, ṽn)⇀ (0,0) ∈ E, we can assume that

un→ 0, ṽn→ 0 in Lr(Ω), for all r ≥ 1. (3.29)

and
un→ 0, ṽn→ 0, almost everywhere in Ω. (3.30)

Note that ∣∣∣F(un)−
1
µ

f (un)un

∣∣∣≤M, for all {x ∈Ω, |un(x)| ≤ s0},

where M = max
s∈[0,s0]

(
|F(s)|+ 1

µ
| f (s)s|

)
. Moreover, by (3.30) and the fact that f and F are contin-

uous, we have
F(un)−

1
µ

f (un)un→ 0, almost everywhere in Ω.

Thus, by Dominated convergence theorem, we obtain∫
{x∈Ω:|un(x)|≤s0}

(
F(un)−

1
µ

f (un)un

)
dx = on(1). (3.31)

Similarly, we have ∫
{x∈Ω:|ṽn(x)|≤s0}

(
G(ṽn)−

1
ν

g(ṽn)ṽn

)
dx = on(1). (3.32)

Replacing (3.31) and (3.32) in (3.28), we obtain(
1− 2

µ

)∫
Ω

f (un)un dx+
(

1− 2
ν

)∫
Ω

g(ṽn)ṽn dx≤ 2R2
1 +on(1).

Consequently, ∫
Ω

f (un)un dx≤ 2µ

µ−2
R2

1 +on(1) (3.33)

and ∫
Ω

g(ṽn)ṽn dx≤ 2ν

ν−2
R2

1 +on(1). (3.34)

Taking (φ , ψ̃) = (vn,0) and (φ , ψ̃) = (0, ũn) in (3.24), we have

‖∇vn‖2
2,q =

∫
Ω

∇vn∇ṽn dx =
∫

Ω

f (un)vn dx

and
‖∇ũn‖2

2,p =
∫

Ω

∇un∇ũn dx =
∫

Ω

g(ṽn)ũn dx

Using (3.22), we can define

Vn =
vn

‖∇vn‖2,q
and Ũn =

ũn

‖∇ũn‖2,p
.

Thus,
‖∇vn‖2,q =

∫
Ω

f (un)Vn dx (3.35)
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and
‖∇ũn‖2,p =

∫
Ω

g(ṽn)Ũn dx. (3.36)

For ε > 0 given by (3.15), we set

ξ = min
{

εα0(4π)
p
2

α0 +(4π)
p
2 + εα0

,
εβ0(4π)

q
2

β0 +(4π)
q
2 + εβ0

}
. (3.37)

Let α1 = α0 +ξ . By assumption (A3) there exists λ > 0 such that

| f (s)| ≤ λeα1|s|p, for all s ∈ R. (3.38)

Set α2 = (4π)p/2−ξ , using (3.35), we can write

‖∇vn‖2,q ≤
λ

α
1/p
2

∫
Ω

| f
(
un(x)

)
|

λ
α

1/p
2 |Vn(x)|dx.

Now, applying Lemma 3.10 with s = | f
(
un(x)

)
|/λ , t = α

1/p
2 |Vn(x)|, r = p and r′ = q, we have

‖∇vn‖2,q ≤
λ

α
1/p
2

[∫
Ω

(eα2|Vn|p−1)dx+
1
q

∫
{x∈Ω: | f (un(x)|

λ
≤e1/pq}

| f (un)|q

λ q dx

+
∫
{x∈Ω: | f (un(x)|

λ
≥e1/pq}

| f (un)|
λ

(
ln
| f (un)|

λ

)1/p
dx
]
. (3.39)

By (3.38), we obtain

∫
{x∈Ω: | f (un(x)|

λ
≥e1/pq}

| f (un)|
λ

(
ln
| f (un)|

λ

)1/p
dx≤

α
1/p
1
λ

∫
Ω

f (un)un dx. (3.40)

From (3.30) and the continuity of f , by Dominated convergence theorem, we have∫
{x∈Ω: | f (un(x)|

λ
≤e1/pq}

| f (un)|q

λ q dx = on(1). (3.41)

Taking w in the dual space of W 1
0 L2,q(Ω), from (3.22) and the fact that vn ⇀ 0 in W 1

0 L2,q(Ω), we
obtain

|〈Vn,w〉|=
∣∣∣〈 vn

‖∇vn‖2,q
,w
〉∣∣∣≤ 1

b
|〈vn,w〉| → 0.

Thus, Vn ⇀ 0 in W 1
0 L2,q(Ω). From Lemma 3.14, we have∫

Ω

(
eα2|Vn|p−1

)
dx = on(1). (3.42)

Replacing (3.40), (3.41) and (3.42) in (3.39), we obtain

‖∇vn‖2,q ≤
(

α0−ξ

(4π)p/2−ξ

)1/p ∫
Ω

f (un)un dx+on(1).

Using (3.33), we obtain

‖∇vn‖2,q ≤
(

α0−ξ

(4π)p/2−ξ

)1/p 2µ

µ−2
R2

1 +on(1). (3.43)
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Similarly, we have

‖∇ũn‖2,p ≤
(

β0−ξ

(4π)q/2−ξ

)1/q 2ν

ν−2
R2

1 +on(1). (3.44)

Since,

R2
1 =

2m0π

(1+ ε)α
1/p
0 β

1/q
0

min
{

µ−2
µ

,
ν−2

ν

}
, (3.45)

we can suppose that

R2
1 =

2m0π

(1+ ε)α
1/p
0 β

1/q
0

µ−2
µ

.

Replacing in (3.43) , we get

‖∇vn‖2,q ≤
2m0π1/2

(1+ ε)β
1/q
0

(
α0−ξ

α0

)1/p( (4π)p/2

(4π)p/2−ξ

)1/p
+on(1).

Using the definition of ξ in (3.37), we have

0 <
α0 +ξ

α0

(4π)p/2

(4π)
p
2 −ξ

≤ 1+ ε,

which implies that

‖∇vn‖2,q ≤
2m0π1/2

β
1/q
0

1
(1+ ε)1/q

+on(1).

Thus, we can assume without loss of generality that

‖∇vn‖2,q ≤
2m0π1/2

β
1/q
0

, for all n ∈ N.

On the other hand, if in (3.45) we have

R2
1 =

2m0π

(1+ ε)α
1/p
0 β

1/q
0

ν−2
ν

.

and replacing in (3.44), we can obtain similarly

‖∇ũn‖2,p ≤
2m0π1/2

α
1/p
0

, for all n ∈ N,

and the proof is complete. �

Lemma 3.16. (See Figueiredo, Miyagaki and Ruf (1995).) Let Ω be a bounded subset in RN ,
f : Ω×R→R be a continuous function and (un) be a sequence of functions in L1(Ω) converging
to u in L1(Ω). Assume that f (x,u(x)) and f (x,un(x)) are also L1(Ω) functions. If∫

Ω

| f (x,un)un|dx≤C.

Then, f (x,un) converges in L1(Ω) to f (x,u).
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Lemma 3.17. Let (un, ṽn) be the sequence given by Proposition 3.13 converging weakly to (u, ṽ)

in E. Then,
f (un)→ f (u) and g(ṽn)→ g(ṽ) in L1(Ω).

Proof. By Lemma 2.38, we can assume that there exists a subsequence (not renamed) (un)⊂
W 1

0 L2,q(Ω)⊂ L1(Ω) such that un→ u in L1(Ω). From (A3), there exists C0 > 0 such that

| f (s)| ≤C0e(α0+1)|s|p , for all s ∈ R.

By Remark 2.40, the sequence ( f (un)) and f (u) are in L1(Ω). Moreover, by (A2), we have∫
Ω

| f (un)un|dx =
∫
{x∈Ω:|un(x)|≤s0}

| f (un)un|dx+
∫
{x∈Ω:|un(x)|>s0}

f (un)un dx (3.46)

=
∫
{x∈Ω:|un(x)|≤s0}

(
| f (un)un|− f (un)un

)
dx+

∫
Ω

f (un)un dx.

Note that ∫
{x∈Ω:|un(x)|≤s0}

(
| f (un)un|− f (un)un

)
dx≤ 2|Ω| sup

s∈[0,s0]

| f (s)s|.

Joining last inequality and Lemma 3.12 in (3.46), we conclude∫
Ω

| f (un)un|dx≤C, for all n≥ 1,

for some C > 0. Consequently, by Lemma 3.16, f (un)→ f (u) in L1(Ω). Similar arguments
apply for the function g. �

3.5 Proof of Theorem 3.4
In this section we prove the existence of a nontrivial solution for (3.4).

Proof. By Proposition 3.13, there exists a sequence (un, ṽn) ∈ E such that

lim
n→∞

J(un, ṽn) = c ∈ [σ ,R2
1] (3.47)

and
J′n(un, ṽn)(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ En.

This means, ∫
Ω

∇un∇ψ̃ dx =
∫

Ω

g(ṽn)ψ̃ dx, for all (φ , ψ̃) ∈ En (3.48)

and ∫
Ω

∇ṽn∇φ dx =
∫

Ω

f (un)φ dx, for all (φ , ψ̃) ∈ En. (3.49)

From Lemma 3.12, the sequence (un, ṽn) is bounded. Thus, without loss of generality,
we can assume that there exists (u, ṽ) ∈ E such that (un, ṽn)⇀ (u, ṽ) in E. Moreover, we can
assume

un→ u, ṽn→ ṽ in Lr(Ω), for all r ≥ 1 (3.50)



80 Chapter 3. Hamiltonian system with critical exponential growth in a bounded domain

and

un→ u, ṽn→ ṽ, almost everywhere in Ω. (3.51)

Furthermore, from Lemma 3.17, we have∫
Ω

f (un)dx→
∫

Ω

f (u)dx and
∫

Ω

g(ṽn)dx→
∫

Ω

g(ṽ)dx.

Thus, taking limits as n→+∞ in (3.48) and (3.49), we get
∫

Ω

∇u∇ψ̃ dx =
∫

Ω

g(ṽ)ψ̃ dx,

∫
Ω

∇ṽ∇φ dx =
∫

Ω

f (u)φ dx,

for all (φ , ψ̃) ∈
+∞⋃
n=1

En = E. (3.52)

Thus, (u, ṽ) ∈ E is a weak solution of the system (3.1).

Now, we prove that (u, ṽ) is a nontrivial weak solution. Suppose u≡ 0. By (3.52), we
obtain ṽ≡ 0. By Lemma 3.15, we can assume that

‖∇vn‖2,q ≤
2m0π1/2

β
1/q
0

, for all n ∈ N.

Let r1,r2 > 1 such that

r1r2mq
0(4π)q/2 < (4π)q/2. (3.53)

By (A4), we have

lim
|s|→∞

g(s)
er1β0|s|q

= 0.

From this and (A1), imply that there exists C > 0 such that

|g(s)| ≤Cer1β0|s|q, for all s ∈ R. (3.54)

Taking (0, ψ̃) = (0, ṽn) in (3.48), we have∫
Ω

∇un∇ṽn dx =
∫

Ω

g(ṽn)ṽn dx.

From (3.54) and Hölder’s inequality with r2 > 1 given by (3.53), we obtain∣∣∣∫
Ω

∇un∇ṽn dx
∣∣∣≤C

∫
Ω

er1β0|ṽn|q|ṽn|dx

≤C
[∫

Ω

e
β0r1r2‖∇ṽn‖q

2,p

(
|ṽn|

‖∇ṽn‖2,p

)q

dx
]1/r2

‖ṽn‖Lr′2

≤C
[∫

Ω

e
r1r2mq

0(4π)q/2
(

|ṽn|
‖∇ṽn‖2,p

)q

dx
]1/r2

‖ṽn‖r′2

≤C
[∫

Ω

e
(4π)q/2

(
|ṽn|

‖∇ṽn‖2,p

)q

dx
]1/r2

‖ṽn‖r′2
.
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By (3.50), we have ‖ṽn‖r′2
→ 0. Moreover, using Theorem 2.41 we get

lim
n→∞

∫
Ω

∇un∇ṽn dx = lim
n→∞

∫
Ω

g(ṽn)ṽn dx = 0. (3.55)

On the other hand, taking (φ ,0) = (un,0) in (3.49), we have∫
Ω

∇un∇ṽn =
∫

Ω

f (un)un dx.

Thus, from (3.55)
lim
n→∞

∫
Ω

f (un)un dx = 0. (3.56)

Using (A2), we have∫
Ω

F(un)dx =
∫
{x∈Ω:|un(x)|>s0}

F(un)dx+
∫
{x∈Ω:|un(x)|≤s0}

F(un)dx

≤ 1
µ

∫
Ω

f (un)un dx+
∫
{x∈Ω:|un(x)|≤s0}

(
F(un)−

1
µ

f (un)un

)
dx.

From (3.56) and Dominated convergence theorem in the second integral, we obtain∫
Ω

F(un)dx→ 0. (3.57)

Similarly, we have ∫
Ω

G(ṽn)dx→ 0. (3.58)

Since
J(un, ṽn)dx =

∫
Ω

∇un∇ṽn dx−
∫

Ω

F(un)dx−
∫

Ω

G(ṽn)dx.

Thus, taking limit and using (3.55), (3.57) and (3.58), we get

J(un, ṽn)→ 0

which is a contradiction with (3.47). Consequently, (u, ṽ) is a nontrivial weak solution for the
Hamiltonian system (3.1). �
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CHAPTER

4
SINGULAR HAMILTONIAN SYSTEM WITH
CRITICAL EXPONENTIAL GROWTH IN R2

In this chapter we discuss the existence of nontrivial solutions for the Hamiltonian system
−∆u+V (x)u =

g(v)
|x|a

, x ∈ R2,

−∆v+V (x)v =
f (u)
|x|b

, x ∈ R2,
(4.1)

where a,b are numbers belong to the interval [0,2) and the functions f and g possess critical
exponential growth with (p,q) lying on the exponential critical hyperbola.

4.1 Introduction and main results
In order to have properties like embedding theorems, we assume that V (x) is a continuous

potential satisfying the following conditions:

(V1) There exists a positive constant V0 such that V (x)≥V0 for all x ∈ R2.

(V2) There exist constants p > 2 and q = p/(p−1) such that

1
V 1/q

∈ L2,p(R2) and
1

V 1/p
∈ L2,q(R2).

Concerning the functions f and g we suppose the following assumptions:

(A1) f ,g ∈ C (R) and f (s) = g(s) = o(s), as s→ 0.

(A2) There exist constants µ > 2 and ν > 2 such that

0 < µF(s)≤ s f (s), 0 < νG(s)≤ sg(s), for all s 6= 0,

where F(s) =
∫ s

0 f (t)dt and G(s) =
∫ s

0 g(t)dt.
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(A3) There exist positive constants M and s0 such that

0 < F(s)≤M| f (s)| and 0 < G(s)≤M|g(s)|, for all |s|> s0.

(A4) There exists α0 > 0 such that

lim
|s|→∞

| f (s)|
eα|s|p =

+∞, α < α0

0, α > α0,

where p is given by (V2).

(A5) There exists β0 > 0 such that

lim
|s|→∞

|g(s)|
eβ |s|q =

+∞, β < β0

0, β > β0,

where q is given by (V2).

(A6) The following limits holds

lim
|s|→∞

s f (s)
eα0|s|p

=+∞ and lim
|s|→∞

sg(s)
eβ0|s|q

=+∞.

(A7) For a,b given by (4.1), p,q given by (V2), α0 and β0 given by (A4) and (A5) respectively,
we have (

α0

1−b/2

)1/p
6=
(

β0

1−a/2

)1/q
.

Throughout this chapter we consider the space E =W (q)×W (p) and we use the tilde-map
given by (2.59) defined on W (q).

Lemma 4.1. Let a,b ∈ [0,2), q > 1 and θ > 2. Then,

δθ ,a,b = inf
{∫

R2

( |e1 +ω|θ

|x|b
+

˜|e1−ω|θ

|x|a
)

dx : ω ∈W (q) with ‖ω‖(q) ≤ 3+2
√

3
}

is a positive number, where e1 is the first eigenfunction (normalized in the norm ‖ ‖(q)) for the
Schrödinger operator −∆+V (x) in H1

V (R2) := {u ∈ H1(R2) :
∫
R2 V (x)u2 dx <+∞}.

Proof. Assume by contradiction that δθ ,a,b = 0. Thus, there exists a sequence (ωn)⊂W (q) such
that

‖ωn‖(q) ≤ 3+2
√

3 and lim
n→∞

∫
R2

( |e1 +ωn|θ

|x|b
+
|ẽ1−ωn|θ

|x|a
)

dx = 0.

Since the sequence (ωn) is bounded, there exists ω ∈W (q) such that ωn ⇀ ω in W (q) up to
subsequence. Consequently, e1 +ωn ⇀ e1 +ω in W (q). Let ςn = |e1 +ωn|θ and ς = |e1 +ω|θ .
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By Proposition 2.48, W (q) is embedding compactly in Lr(R2) for all r≥ 1. Thus, we can suppose
that ςn → ς in Lr(R2) for all r ≥ 1. Using Hölder’s inequality with 1/t + 1/t ′ = 1 such that
bt ′ < 2, we have∫

R2

|ςn− ς |
|x|b

dx≤
∫
{x∈R2:|x|≤1}

|ςn− ς |
|x|b

dx+
∫
{x∈R2:|x|≥1}

|ςn− ς |dx

≤
(∫
{x∈R2:|x|≤1}

1
|x|bt ′ dx

)1/t ′(∫
{x∈R2:|x|≤1}

|ςn− ς |t dx
)1/t

+‖ςn− ς‖1

≤C‖ςn− ς‖t +‖ςn− ς‖1→ 0,

for some positive constant C. Hence,∫
R2

|e1 +ωn|θ

|x|b
dx→

∫
R2

|e1 +ω|θ

|x|b
dx.

Since the tilde-map is a continuous linear function, we have ẽ1−ωn ⇀ ẽ1−ω in W (p). Hence,
up to a subsequence, we obtain∫

R2

|ẽ1−ωn|θ

|x|a
dx→

∫
R2

|ẽ1−ω|θ

|x|a
dx,

which implies ∫
R2

( |e1 +ω|θ

|x|b
+
|ẽ1−ω|θ

|x|a
)

dx = 0.

Thus, e1 =−ω and e1 = ω , which is a contradiction. �

Now, we describe an additional condition on the functions f and g.

(A8) For a,b ∈ [0,2) given by (4.1) and µ,ν given by (A2), there exist θ > 2 and a positive
constant Cθ ,a,b such that

F(s)≥Cθ ,a,b|s|θ and G(s)≥Cθ ,a,b|s|θ , for all s ∈ R,

where

Cθ ,a,b >
56+32

√
3

δθ ,a,bRθ−2 , (4.2)

δθ ,a,b is defined as in Lemma 4.1 and R is a positive constant such that

R2 =
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

max
{

µ−2
2µ

,
ν−2

2ν

}
. (4.3)

Example 4.2. The function

V (x) = (1+π|x|2)2, x ∈ R2

satisfies conditions (V1) and (V2) for p = 3 and q = 3/2. Moreover, the functions

f (s) = 3s2(es3
−1), g(s) =

3
2

s1/2(es3/2
−1), s≥ 0,
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where f (−s) =− f (s),g(−s) =−g(s) for all s < 0, satisfy the conditions (A1)− (A7) for a = 1,
b = 3/2.

Indeed, since V (x)≥ 1 for all x ∈ R, the condition (V1) follows. Moreover, we have

1
V 2/3 (x) =

1
(1+π|x|2)4/3 and

1
V 1/3 (x) =

1
(1+π|x|2)2/3 , for all x ∈ R2.

By Example 2.7, we have( 1
V 2/3

)∗
(s) =

1
(1+ s)4/3 and

( 1
V 1/3

)∗
(s) =

1
(1+ s)2/3 , for all s≥ 0.

Thus, ∥∥ 1
V 2/3

∥∥3
2,3 =

∫ +∞

0

[
s1/2
( 1

V 2/3

)∗
(s)
]3 ds

s
=
∫ +∞

0

s1/2 ds
(1+ s)4 =

π

16
and ∥∥ 1

V 1/3

∥∥3/2
2, 3

2
=
∫ +∞

0

[
s1/2
( 1

V 1/3

)∗
(s)
]3/2 ds

s
=
∫ +∞

0

dt
(1+ s)s1/4 =

√
2π.

Consequently 1/V 1/q ∈ L2,p(R2) and 1/V 1/p ∈ L2,q(R2) with p = 3 and q = 3/2. Thus, (V2) is
satisfied.

We observe that

F(s) = es3
− s3−1, G(s) = es3/2

− s3/2−1, for all s≥ 0

and F(−s) = F(s), G(−s) = G(s), for all s≥ 0.

(a) The following limits holds

lim
s→0+

f (s)
s

= 0 and lim
s→0+

g(s)
s

= 0,

since f and g are odd functions we have that f and g satisfy the condition (A1).

(b) Taking µ = 3, since G is even we have

0 < 3G(s) = 3(es3/2
− s3/2−1), for all s 6= 0 (4.4)

Denote

H0(s) := sg(s)−3G(s) =
3
2

s3/2(es3/2
−1)−3(es3/2

− s3/2−1), s > 0

and
H(t) := H0(t2/3) =

3
2

t(et−1)−3(et− t−1), t > 0.

Thus, H ′(t) =
3
2
(et(t − 1) + 1) > 0 for all t > 0 which implies that H is increasing.

Consequently, H0 is also increasing in [0,+∞). Moreover, since H0 is an even function we
conclude that

3G(s)≤ sg(s), for all s 6= 0. (4.5)

From (4.4) and (4.5), we observe that g satisfies (A2). Similar arguments apply for the
function f .
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(c) We observe that

0 <
G(s)
g(s)

=
2(es3/2− s3/2−1)

3s1/2(es3/2−1)
, for all s > 0.

This and the fact that G(s) is an even function and g is an odd function, we have

lim
|s|→+∞

G(s)
|g(s)|

= lim
s→+∞

G(s)
g(s)

= 0.

Thus, g satisfies the condition (A3). Similar arguments apply for the function f .

(d) Since g is an odd function, we have

lim
|s|→+∞

|g(s)|
eα|s|3/2 = lim

s→+∞

g(s)

eαs3/2 = lim
s→+∞

3s1/2(es3/2−1)

2eαs3/2 =

+∞, α < 1

0, α > 1.

Thus, g satisfies condition (A5) with β0 = 1.

(e) Similar to (d), f satisfies condition (A4) with α0 = 1.

(f) Since
sg(s)
es3/2

=
3s3/2(es3/2−1)

2es3/2
, for all s > 0

and g is an odd function, we obtain

lim
|s|→+∞

sg(s)

e|s|3/2 = lim
s→+∞

sg(s)

es3/2 =+∞.

Similar arguments apply for the function f . Consequently condition (A6) follows.

(g) As α0 = β0 = 1, p = 3, q = 3/2, a = 1 and b = 3/2, the condition (A7) holds.

Remark 4.3. For the function f given by Example 4.2, we can not guarantee that f satisfies
condition (A8), which would imply

F(1) = e−2≥Cθ ,a,b, for all θ > 2 and a,b ∈ [0,2].

Thus, condition (A8) turns out to be necessary.

Example 4.4. Let V the function given by Example 4.2 and consider the following continuous
functions defined on R

f1(s) = g1(s) = A|s|s, for all s ∈ R,

for some constant A > 0,

f2(s) =

3s2(es3−1
)
, 0≤ s < 1,

(e−1)
[
(3s2−1)es3−s + s2], 1≤ s,
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and

g2(s) =

3
2s1/2(es3/2−1

)
, 0≤ s < 1,

(e−1)
[
(3

2s1/2−1)es3/2−s + s1/2], 1≤ s,

where f2(−s) =− f2(s) and g2(−s) =−g2(s), for all s≥ 0. Setting f = f1+ f2 and g = g1+g2.
Then, similarly as Example 3.3 the functions f and g satisfy conditions (A1), (A2) with µ = ν = 3,
and conditions (A4)− (A5) with α0 = β0 = 1. Moreover, condition (A8) is satisfied with θ = 3
and A sufficiently large.

Remark 4.5. The function f given by Example 4.4 satisfies

0 <
s f (s)

es3 =
As3 + s(e−1)

[
(3s2−1)es3−s + s2]
es3 , for all s≥ 1.

Thus, using last relation and the fact that f is an odd function we obtain

lim
|s|→∞

s f (s)
e|s|3

= 0.

Thus, f fails to satisfy (A6).

The following theorems contain our main results.

Theorem 4.6. Suppose that V satisfies (V1)−(V2) and f and g satisfy (A1)−(A7). Then, system
(4.1) possesses a nontrivial weak solution.

Theorem 4.7. Suppose that V satisfies (V1)− (V2) and f and g satisfy (A1)− (A2),(A4)− (A5)

and (A8). Then, system (4.1) possesses a nontrivial weak solution.

4.2 Preliminary results
In this section we state some results that it will be used in this chapter. First, we recall

the following result obtained by Lu and Tang (2016).

Proposition 4.8. Let 1 < s < +∞, 0 < β < N. Then, there exists a positive constant C =

C(N,s,β ) such that for any 0 < α ≤ (1−β/N)α∗N,s where α∗N,s = (Nω
1/N
N )s/(s−1) and for any

u ∈W 1L2,s(R2) the following inequality hold:

sup
‖∇u‖s

N,s+‖u‖s
N,s≤1

∫
RN

Φ(α|u|s/(s−1))

|x|β
dx≤C, (4.6)

where

Φ(t) = et−
k0

∑
k=0

tk

k!
and k0 =

[∣∣∣(s−1)N
s

∣∣∣].
The inequality in (4.6) is sharp, in the sense that for any α > (1−β/N)α∗N,s the supremum
become infinity.
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Remark 4.9. (i) The inequality given by Proposition 4.8 is still valid if we consider the supre-
mum over all functions u in W 1L2,s(R2) such that ‖∇u‖N,s ≤ 1 and ‖u‖N,s ≤M where M

is a positive constant. Moreover, in this case C =C(N,s,β ,M)> 0.

(ii) As in Proposition 2.48, we have

‖∇u‖s
2,s +V0‖u‖s

2,s ≤ ‖∇u‖s
2,s +‖V 1/su‖s

2,s = ‖u‖s
(s).

Thus, u ∈W (s), with ‖u‖(s) ≤ 1, implies that ‖∇u‖2,s ≤ 1 and ‖u‖2,s ≤V−1
0 . Consequently,

by (i), Theorem 4.8 is still valid if we consider the supremum over all functions u in W (s)

such that ‖u‖(s) ≤ 1.

(iii) A careful look at the proof of Proposition 4.8(Lu and Tang (2016)) shows that

∫
RN

Φ(α|u|s/(s−1))

|x|β
dx <+∞, for all α > 0, 0≤ β < N and u ∈W 1L2,s(R2). (4.7)

Since we are interested in the case N = 2, from now on we denote α∗p = α∗2,p = (4π)q/2

and α∗q = α∗2,q = (4π)p/2, where p and q are given by (V2).

4.2.1 The concentrating and hole functions

Now, we recall some important definitions and results presented in Cassani and Tarsi
(2015), Cassani and Tarsi (2009), where it were provided some special functions which will be
useful in the linking geometry in order to prove Theorem 4.6.

We consider the following modified Moser-sequence:

Mk,p(x) =



(logk)
p−1

p

√
4π

(1−δk,p)
p−1

p , |x|2 ≤ 1
k

(1−δk,p)
p−1

p

(logk)
1
p
√

4π

log(
1
|x|2

), 1
k < |x|2 ≤ 1,

(4.8)

where δk will be fixed later such that δk→ 0 as n→+∞. Then, we have

M∗k,p(s) =



(logk)
p−1

p

√
4π

(1−δk,p)
p−1

p , 0≤ s≤ π

k

(1−δk,p)
p−1

p

(logk)
1
p
√

4π

log(
π

s
), π

k < s≤ π,
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whereas

|∇Mk,p|(x) =


0, |x|2 ≤ 1

k

(1−δk,p)
p−1

p

(logk)
1
p
√

π|x|
, 1

k < |x|2 ≤ 1,

and

|∇M∗k,p|(s) =


(1−δk,p)

p−1
p

(logk)
1
p

√
s+ π

s

, 0≤ s < π
(
1− 1

k

)

0, π
(
1− 1

k

)
≤ s≤ π.

Lemma 4.10. For the sequence given by (4.8), the followings estimates hold as k→+∞

‖∇Mk,p‖p
2,p = (1−δk,p)

p−1 +O(
1

logk
)

and
‖V 1/pMk,p‖p

2,p ≤ (1−δk,p)
p−1‖V‖L∞(B1)O(

1
logk

),

where δk,p→ 0 as k→+∞.

Using Lemma 4.10, we obtain

‖Mk,p‖p
(p) = ‖∇Mk,p‖p

2,p +‖V
1/pMk,p‖p

2,p

= (1−δk,p)
p−1
(

1+O(
1

logk
)+
‖V 1/pMk,p‖p

2,p

(1−δk,p)p−1

)
.

Thus, we can choose δk,p, depending on ‖V‖L∞(B1), p and k such that

‖Mk,p‖(p) = 1.

Note also that
|δk,p| ≤ ‖V‖L∞(B1)

1
logk

as k→+∞.

For each d > 0, define ud(x) = u( x
d ). Thus,

‖∇ud‖p
2,p = ‖∇u‖p

2,p and ‖V 1/pud‖p
2,p = dp‖V 1/p

1/d u‖p
2,p. (4.9)

For Mk,p defined by (4.8), we consider

Mk,p;d(x) := Mk,p(
x
d
), (4.10)

where we denoted by δk,p,d instead of δk,p to emphasize the dependence on d. By (4.9), we have

‖Mk,p;d‖p
(p) = ‖∇Mk,p‖p

2,p +dp‖V 1/p
1/d Mk,p‖p

2,p

= (1−δk,p)
p−1

(
1+O(

1
logk

)+
dp‖V 1/p

1/d Mk,p‖p
2,p

(1−δk,p)p−1

)
.
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Similarly, we can choose δk,p,d depending on ‖V‖L∞(Bd), p,d and k such that

‖Mk,p;d‖(p) = 1.

Note also that
|δk,p,d| ≤C‖V‖L∞(Bd)

dp

logk
, as k→+∞. (4.11)

Lemma 4.11. Let p,q > 1 be conjugate exponents, and let Mk,q,Mk,p be the normalized concen-
trating sequences defined in (4.8). Then, Mk,q 6=−M̃k,p. Furthermore, as k→+∞∫

R2

(
∇Mk,p;d∇Mk,q;d +V (x)Mk,p;dMk,q;d

)
dx

≥
(

1−
C‖V‖L∞(Bd)d

p

logk

)[
O
( logk

k

)
+V0

(
1+

1
8logk

)]
,

where the constant C and the quantity O
( logk

k

)
depend only on k.

Now, we consider the hole functions ζm : R2→ R as follows

ζm(x) :=


0, |x| ≤ 1

m

2+2
log |x|
logm

, 1
m < |x|< 1√

m

1, |x| ≥ 1√
m .

(4.12)

Then,

|∇ζm|(x) =

 0, |x| ≤ 1
m or |x| ≥ 1√

m
2

|x| logm
, 1

m < |x|< 1√
m ,

µ|∇ζm|(s) =


0, s≥ 2m

logm

π

( 4
s2 log2 m

− 1
m2

)
, 2

√
m

logm < s < 2m
logm

π

( 1
m
− 1

m2

)
, 0≤ s≤ 2

√
m

logm ,

and

|∇ζm|∗(t) =


0, t ≥ π

( 1
m −

1
m2

)
2

logm

√
π√

t + π

m2

, 0≤ t < π
( 1

m −
1

m2

)
.

Let {ei}i∈N be an orthonormal basis of eigenfunctions for the operator (−∆+V ) in H1
V (R2) :=

{u ∈ H1(R2) :
∫
R2 V (x)u2 dx < ∞}. By Lemma 3 in Cassani and Tarsi (2015), the sequence

{ei}i∈N provides also a dense system in W (q) as well as W (p). For each n ∈ N, consider the
following finite dimensional subspace:

En := Span{e1, . . . ,en}.

We define the set
En,m := {um := ζmu : u ∈ En}.



92 Chapter 4. Singular Hamiltonian system with critical exponential growth in R2

Lemma 4.12. One can choose m = m(n)→+∞, as n→+∞, such that the following estimates
hold

‖um−u‖(p) ≤ δ (n)‖u‖(p) and ‖um−u‖(q) ≤ δ (n)‖u‖(q), u ∈ En

where δ (n)→ 0, as n→+∞.

Remark 4.13. Let Mk,p;d,Mk,q;d as defined in (4.10). By construction, for any um ∈ En,m, we
have

supp um∩ supp Mk,p;d =∅ and supp um∩ supp Mk,q;d =∅

for any k > 0, provided that d ≤ 1/m.

4.3 Variational setting
In this section, we describe the functional setting that allows us to treat (4.1) variationally.

The natural functional associated to (4.1) is given by J : E :=W (q)×W (p)→ R, where

J(u, ṽ) =
∫
R2

(
∇u∇ṽ+V (x)uṽ

)
dx−

∫
R2

F(u)
|x|b

dx−
∫
R2

G(ṽ)
|x|a

dx. (4.13)

Lemma 4.14. Let α > 0, p,q > 1 and r > 1. Then, the following inequalities holds:

(i) (
eα|t|p−1

)r ≤ erα|t|p−1, for all t ∈ R.

(ii) For each β > αr there exists a positive constant C =C(β ) such that(
eα|t|q−α|t|q−1

)r ≤C
(
eβ |t|q−β |t|q−1

)
, for all t ∈ R.

Proof.

(i) Given r ≥ 1, the function h(s) = (1+ s)r− sr−1 is increasing in [0,+∞) and h(0) = 0,
taking s = eα|t|p−1 we obtain

0≤ erα|t|p− (eα|t|p−1)r−1,

which implies (i).

(ii) Since

lim
|t|→0

(eα|t|q−α|t|q−1)r

eβ |t|q−β |t|q−1
= 0

and

lim
|t|→∞

(eα|t|q−α|t|q−1)r

eβ |t|q−β |t|q−1
= 0

the conclusion follows.
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�

Proposition 4.15. Assume (A1),(A4) and (A5). Then, J is well defined and belongs to the class
C 1(E,R) with

J′(u, ṽ)(φ , ψ̃) =
∫
R2

(
∇u∇ψ̃ +V (x)uψ̃ +∇ṽ∇φ +V (x)ṽφ

)
dx−

∫
R2

f (u)
|x|b

φ dx−
∫
R2

g(ṽ)
|x|a

ψ̃ dx,

for all (φ , ψ̃) ∈ E.

Proof. Let u ∈W (q) and ṽ ∈W (p). By Hölder’s inequality in Lorentz spaces and assumption
(V2), we have ∣∣∣∫

R2
∇u∇ṽ dx

∣∣∣≤ ‖∇u‖2,q‖∇ṽ‖2,p ≤ ‖u‖(q)‖ṽ‖(p) (4.14)

and∣∣∣∫
R2

V (x)uṽ dx
∣∣∣= ∣∣∣∫

R2
V (x)1/quV (x)1/pṽ dx

∣∣∣≤ ‖V 1/qu‖2,q‖V 1/pṽ‖2,p ≤ ‖u‖(q)‖ṽ‖(p). (4.15)

From (A1) and (A4), there exists C > 0 such that

| f (s)| ≤ |s|+C(e(α0+1)|s|p−1), for all s ∈ R. (4.16)

Thus, applying Young’s inequality and Lemma 4.14-(i), we obtain

|F(u)| ≤ |u|2 +C|u|(e(α0+1)|u|p−1)≤C|u|2 +C(e2(α0+1)|u|p−1).

Then, ∣∣∣∫
R2

F(u)
|x|b

dx
∣∣∣≤C

∫
R2

|u|2

|x|b
dx+C

∫
R2

(e2(α0+1)|u|p−1)
|x|b

dx. (4.17)

Let r > 1 such that br < 2. By Hölder’s inequality, we find∫
R2

|u|2

|x|b
dx≤

∫
{x∈R2:|x|≤1}

|u|2

|x|b
dx+

∫
R2
|u|2 dx

≤
[∫
{x∈R2:|x|≤1}

|u|2r′ dx
]1/r′[∫

{x∈R2:|x|≤1}

1
|x|rb dx

]1/r

+‖u‖2
2.

From Proposition 2.47, we have ∫
R2

|u|2

|x|b
dx <+∞.

Combining this with (4.17) and Remark 4.9-(iii), we obtain∫
R2

F(u)
|x|b

dx <+∞, for all u ∈W (q). (4.18)

Similarly, G(ṽ)/|x|a belongs to L1(R2) for all ṽ ∈W (p). Thus, from (4.14), (4.15) and (4.18), we
conclude that J is well defined in E. Consider J1,J2,J3 : E→ R defined by

J1(u, ṽ) =
∫
R2

(
∇u∇ṽ+V (x)uṽ

)
dx,
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J2(u, ṽ) =
∫
R2

F(u)
|x|b

dx and J3(u, ṽ) =
∫
R2

G(ṽ)
|x|a

dx.

By (4.14) and (4.15), we have

|J1(u, ṽ)| ≤ 2‖u‖(q)‖ṽ‖(p), for all (u, ṽ) ∈ E.

Thus, J1 is a continuous bilinear function. Then, J1 ∈ C ∞(E,R) and

J′1(u, ṽ)(φ , ψ̃) =
∫
R2

(
∇u∇ψ̃ +V (x)uψ̃ +∇ṽ∇φ +V (x)ṽφ

)
dx, for all (φ , ψ̃) ∈ E.

Now, fix u and φ in W (q), for given x ∈ R2 and consider h : R→ R defined by

h(t) =
F
(
u(x)+ tφ(x)

)
|x|b

.

Let (tn) any sequence in R such that tn→ 0, we can assume that 0 < |tn| ≤ 1 for all n≥ 1. For
any n≥ 1, by the Mean value theorem there exists θn = θn(tn,x) ∈ (0,1) such that

F(u+ tnφ)−F(u)
|x|b

= h(tn)−h(0) = h′(θntn)tn =
f (u+θntnφ)tnφ

|x|b
. (4.19)

Define
hn(x) :=

F(u+ tnφ)−F(u)
tn|x|b

=
f (u+θntnφ)φ

|x|b
.

Since f is continuous, we have

lim
n→∞

hn(x) = lim
n→∞

F(u+ tnφ)−F(u)
tn|x|b

=
f (u)φ
|x|b

, for all x ∈ R2.

Note that |u+θntnφ | ≤ |u|+ |φ | := w ∈W (q). From (4.16), we have

|hn(x)|=
| f (u+θntnφ)φ |

|x|b

≤
|u+θntnφ ||φ |+C

(
e(α0+1)|u+θntnφ |p−1

)
|φ |

|x|b

≤
|w||φ |+C

(
e(α0+1)|w|p−1

)
|φ |

|x|b

≤
|w|2 + |φ |2 +C

(
e2(α0+1)|w|p−1

)
+C|φ |2

2|x|b
.

Using Hölder’s inequality and Remark 4.9 -(iii), we have

|w|2 + |φ |2 +C
(
e2(α0+1)|w|p−1

)
+C|φ |2

2|x|b
∈ L1(R2).

By Dominated convergence theorem, we obtain

J′2(u)φ = lim
n→∞

J2(u+ tnφ)− J2(u)
tn

= lim
n→∞

∫
R2

F(u+ tnφ)−F(u)
tn|x|b

dx

= lim
n→∞

∫
R2

hn(x)dx

=
∫
R2

f (u)φ
|x|b

dx.
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Now, we prove the continuity of the Fréchet derivative. Let (un) be a sequence in W (q) such
that un → u in W (q)., and hence un → u in W 1L2,q(R2). By Proposition 2.44, there exists a
subsequence (not renamed) (un) and û ∈W 1L2,q(R2) such that

|un(x)| ≤ û(x), almost everywhere in R2, (4.20)

and
un(x)→ u(x), almost everywhere in R2. (4.21)

For r > 1 such that rb < 2, from (4.16) and Lemma 4.14-(i), we have

| f (s)|r ≤ 2|s|r +2Cr(er(α0+1)|s|p−1
)
, for all s ∈ R.

By (4.20), we get

| f (un)− f (u)|r

|x|rb ≤ 2r| f (un)|r

|x|rb +
2r| f (u)|r

|x|rb

≤ 2r
( |un|r

|x|rb +
|u|r

|x|rb

)
+2rCr

(er(α0+1)|un|p−1
|x|rb +

er(α0+1)|u|p−1
|x|rb

)
≤ 2r

( |û|r
|x|rb +

|u|r

|x|rb

)
+2rCr

(er(α0+1)|û|p−1
|x|rb +

er(α0+1)|u|p−1
|x|rb

)
.

Using Hölder’s inequality and Remark 4.9-(iii), we get

2r
( |û|r
|x|rb +

|u|r

|x|rb

)
+2rCr

(er(α0+1)|û|p−1
|x|rb +

er(α0+1)|u|p−1
|x|rb

)
∈ L1(R2).

Moreover, from (4.21) and the fact that f is continuous, yields

| f (un)− f (u)|r

|x|rb → 0, almost everywhere in R2.

By Dominated convergence theorem, we have∥∥∥ f (un)− f (u)
|x|b

∥∥∥
r
→ 0. (4.22)

Since

|〈J′2(un)− J′2(u),φ〉| ≤
∫
R2

∣∣∣ f (un)− f (u)
|x|b

∣∣∣|φ |dx

≤
∥∥∥ f (un)− f (u)

|x|b
∥∥∥

r
‖φ‖r′

≤C
∥∥∥ f (un)− f (u)

|x|b
∥∥∥

r
‖φ‖(q),

by (4.22), we have

sup
‖φ‖(q)≤1

|〈J′2(un)− J′2(u),φ〉| ≤C
∥∥∥ f (un)− f (u)

|x|b
∥∥∥

r
→ 0.
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Hence, J2 belongs to C 1(E,R). Similar arguments prove that J3 belongs to C 1(E,R). Further-
more J ∈ C 1(E,R). �

As a consequence of Proposition 4.15, critical points of J correspond to the weak
solutions of (4.1).

Lemma 4.16. Let α , a, β , b be positive numbers and r ≥ 1. Then,

(i) Let u ∈W (q) such that ‖u‖(q) ≤M with αMp/α∗q +b/2 < 1. Then, there exists a positive
constant C =C(α,b,M,r) such that∫

R2
|u|r
(
eα|u|p−1

)
|x|b

dx≤C‖u‖r
(q).

(ii) Let ṽ ∈W (p) such that ‖ṽ‖(p) ≤M with βMq/α∗p +a/2 < 1. Then, there exists a positive
C =C(β ,a,M,r) such that∫

R2
|ṽ|r
(
eβ |ṽ|q−β |ṽ|q−1

)
|x|a

dx≤C‖ṽ‖r
(p).

Proof. Choose t > 1 close to 1 such that tαMp/α∗q + tb/2 < 1 and rt ′ ≥ 1, where t ′ = t/(t−1).
Using Hölder’s inequality and Lemma 4.14-(i), we obtain∫

R2
|u|r
(
eα|u|p−1

)
|x|b

dx≤
(∫

R2

(
eα|u|p−1

)t

|x|tb
dx
)1/t
‖u‖r

rt ′

≤
(∫

R2

e
tαMp(

|u|
‖u‖(q)

)p

−1
|x|tb

dx
)1/t
‖u‖r

rt ′.

By Proposition 4.8, we have ∫
R2
|u|r
(
eα|u|p−1

)
|x|b

dx≤C‖u‖r
rt ′.

Using the continuous embedding W (q) ↪→ Lrt ′(R2), we conclude the proof of (i). Similar argu-
ments proves (ii). �

Lemma 4.17. Let s > 1, 0 < r < 2 and {un ∈W (s) : ‖un‖(s) = 1} be a sequence converging
weakly to the zero function in W (s). Then, for every 0 < α < (1− r/2)α∗s , we can find a
subsequence (not renamed) such that

(i)

lim
n→∞

∫
R2

eα|un|
s

s−1 −1
|x|r

dx = 0, if 1 < s≤ 2.

(ii)

lim
n→∞

∫
R2

eα|un|
s

s−1 −α|un|
s

s−1 −1
|x|r

dx = 0, if 2 > s.
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Proof. We begin proving (i). Let ε > 0 such that α + ε < (1− r/2)α∗s . Since,

lim
|t|→0

eα|t|
s

s−1 −1
|t|

= 0 and lim
|t|→∞

eα|t|
s

s−1 −1

|t|
(
e(α+ε)|t|

s
s−1 −1

) = 0,

there exists a constant C > 0 such that

eα|t|
s

s−1 −1≤C|t|+C|t|(e(α+ε)|t|
s

s−1 −1), for all t ∈ R.

Hence,

∫
R2

eα|un|
s

s−1 −1
|x|r

dx≤C
∫
R2

|un|
|x|r

dx+C
∫
R2
|un|
(
e(α+ε)|un|

s
s−1 −1

)
|x|r

dx. (4.23)

Taking t > 1 such that t(α + ε)/α∗s + tr/2 < 1, we have∫
R2

|un|
|x|r

dx≤
∫
{x∈R2:|x|≤1}

|un|
|x|r

dx+‖un‖1

≤
(∫
{x∈R2:|x|≤1}

1
|x|tr

dx
)1/t(∫

{x∈R2:|x|≤1}
|un|t

′
dx
)1/t ′

+‖un‖1 (4.24)

≤C‖un‖t ′+‖un‖1.

In order to estimate the second integral in (4.23), we use Hölder’s inequality and Lemma 4.14 to
get ∫

R2
|un|
(
e(α+ε)|un|

s
s−1 −1

)
|x|r

dx≤ ‖un‖t ′
(∫

R2

(
et(α+ε)|un|

s
s−1 −1)

|x|tr
dx
)1/t

.

Since ‖un‖(s) = 1 and t(α + ε)/α∗s + tr/2 < 1, by Proposition 4.8, there exists C > 0 such that

∫
R2
|un|

(e(α+ε)|un|
s

s−1 −1)
|x|r

dx≤C‖un‖t ′. (4.25)

Replacing (4.24) and (4.25) in (4.23), using the compact embeddings of W (s) in Lt ′(R2) and the
fact that un ⇀ 0 in W (s), we get a subsequence (not renamed) such that

lim
n→∞

∫
R2

(eα|un|
s

s−1 −1)
|x|r

dx = 0.

Arguing similarly we prove (ii). �

Let

λ1,b := inf
u∈W (q)\0

‖u‖2
(q)∫

R2 u2/|x|b dx
and λ̃1,a := inf

ũ∈W (p)\0

‖ũ‖2
(p)∫

R2 ũ2/|x|a dx
. (4.26)

By Hölder’s inequality and continuous embeddings, the numbers λ1,b and λ̃1,a are positive.
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4.3.1 On Palais-Smale sequences

Lemma 4.18. Assume (A1)− (A2),(A4)− (A5) and let (un, ṽn) be a sequence in E such that
|J(un, ṽn)| ≤ d and

|J′(un, ṽn)(φ , ψ̃)| ≤ εn‖(φ , ψ̃)‖, for all φ ,ψ ∈ {0,un,vn}. (4.27)

Then, ‖(un, ṽn)‖ ≤ c for every n ∈ N and for some positive constant c.

Proof. Taking (φ , ψ̃) = (un, ṽn) in (4.27), we have∣∣∣2∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx−

∫
R2

f (un)un

|x|b
dx−

∫
R2

g(ṽn)ṽn

|x|a
dx
∣∣∣≤ εn‖(un, ṽn)‖.

Thus, ∫
R2

f (un)un

|x|b
dx+

∫
R2

g(ṽn)ṽn

|x|a
dx≤

∣∣∣2∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx
∣∣∣+ εn‖(un, ṽn)‖.

Since ∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx = J(un, ṽn)+

∫
R2

F(un)

|x|b
dx+

∫
R2

G(ṽn)

|x|a
dx,

we get∫
R2

f (un)un

|x|b
dx+

∫
R2

g(ṽn)ṽn

|x|a
dx≤ 2d +2

∫
R2

F(un)

|x|b
dx+2

∫
R2

G(ṽn)

|x|a
dx+ εn‖(un, ṽn)‖.

Using (A2), we obtain∫
R2

F(un)

|x|b
dx≤ 1

µ

∫
R2

f (un)un

|x|b
dx and

∫
R2

G(ṽn)

|x|a
dx≤ 1

ν

∫
R2

g(ṽn)ṽn

|x|a
dx.

Thus, (
1− 2

µ

)∫
R2

f (un)un

|x|b
dx+

(
1− 2

ν

)∫
R2

g(ṽn)ṽn

|x|a
≤ 2d + εn‖(un, ṽn)‖.

Hence, there exists c > 0 such that∫
R2

f (un)un

|x|b
dx≤ c+ εn‖(un, ṽn)‖ and

∫
R2

g(ṽn)ṽn

|x|a
dx≤ c+ εn‖(un, ṽn)‖. (4.28)

On the other hand, taking (φ , ψ̃) = (vn,0) in (4.27), we get∫
R2

(
∇vn∇ṽn +V (x)vnṽn

)
dx≤

∫
R2

f (un)vn

|x|b
dx+ εn‖(vn,0)‖.

This means,

‖vn‖2
(q) ≤

∫
R2

f (un)vn

|x|b
dx+ εn‖vn‖(q).

Defining
Tn =

vn

‖vn‖(q)
,
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we can write

‖vn‖(q) ≤
∫
R2

f (un)Tn

|x|b
dx+ εn. (4.29)

Let α1 > α0 and 0 < α2 < (1−b/2)α∗q . From (A1) and (A4), there exists λ > 0 such that

| f (s)| ≤ λeα1|s|p, for all s ∈ R. (4.30)

Applying Lemma 3.10 in (4.29) with s = | f
(
un(x)

)
|/λ , t = α

1/p
2 |Tn(x)|, r = p and r′ = q, we

obtain

‖vn‖(q) ≤
λ

α
1/p
2

∫
R2

1
|x|b
| f (un)|

λ
α

1/p
2 |Tn|dx+ εn

≤ λ

α
1/p
2

[∫
R2

(eα2|Tn|p−1)
|x|b

dx+
1

qλ q

∫
{x∈R2:| f (un)

λ
|≤e1/pq}

| f (un)|q

|x|b
dx (4.31)

+
1
λ

∫
{x∈R2:| f (un)

λ
|≥e1/pq}

| f (un)|
|x|b

ln1/p | f (un)|
λ

dx

]
+ εn.

From (4.30), we have∫
{x∈R2:| f (un)

λ
|≥e1/pq}

| f (un)|
|x|b

ln1/p | f (un)|
λ

dx≤ α
1/p
1

∫
R2

f (un)un

|x|b
dx. (4.32)

Since ‖Tn‖(q) = 1 and α2 < (1−b/2)α∗q , by Proposition 4.8, there exists C > 0 such that

∫
R2

eα2|Tn|p−1
|x|b

dx≤C. (4.33)

Now, we estimate the second integral in (4.31). From assumption (A1), given ε̄ > 0 there exists
0 < δ ≤ 1 such that

| f (t)| ≤ ε̄
1/q|t|, for all |t| ≤ δ .

Thus,

| f (t)|q ≤ ε̄|t|q ≤ ε̄|t|, for all |t| ≤ δ . (4.34)

Note also that

| f (t)| ≤ λe
1
pq ≤ λe

1
pq

δ
1

q−1
|t|

1
q−1 , for all {|t| ≥ δ : | f (t)| ≤ λe

1
pq }.

This means,

| f (t)|q ≤ c̄|t|| f (t)|, for all {|t| ≥ δ : | f (t)| ≤ λe
1
pq }. (4.35)

where c̄(ε) = (λe
1
pq )q−1/δ . From (4.34) and (4.35), we get

| f (t)|q ≤ ε̄|t|+ c̄| f (t)||t|, for all {t ∈ R : | f (t)| ≤ λe
1
pq }.
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By (4.28), there exist c1,c2 > 0 (c2 is independent of ε̄) such that∫
{x∈R2: | f (un)|

λ
≤e1/pq}

| f (un)|q

|x|b
dx≤

∫
{x∈R2:| f (un)

λ
|≤e1/pq}

ε̄|un|+ c̄ f (un)un

|x|b
dx

≤ ε̄

∫
R2

|un|
|x|b

dx+ c̄
∫
R2

f (un)un

|x|b
dx

≤ ε̄c2‖un‖(q)+ c̄
(
c+ εn‖(un, ṽn)‖

)
≤ c̄c1 + ε̄c2‖un‖(q)+ εn‖(un, ṽn)‖.

Combining this with (4.32) and (4.33) in (4.31), there exist c1,c2 > 0 (c2 is independent of ε̄)
such that

‖vn‖(q) ≤ c1 + ε̄c2‖un‖(q)+ c1

∫
R2

f (un)un

|x|b
dx+ εn‖(un, ṽn)‖. (4.36)

On the other hand, taking (φ , ψ̃) = (0, ũn) in (4.27), we can obtain d1,d2 > 0 (d2 is independent
of ε̄) such that

‖ũn‖(q) ≤ d1 + ε̄d2‖ṽn‖(p)+d1

∫
R2

g(ṽn)ṽn

|x|a
dx+ εn‖(un, ṽn)‖. (4.37)

Using (4.36), (4.37) and (4.28), there exist k1,k2 > 0 (k2 is independent of ε) such that

‖(un, ṽn)‖ ≤ k1 + ε̄k2‖(un, ṽn)‖+ εn‖(un, ṽn)‖.

Hence, taking ε̄ sufficiently small we conclude that (un, ṽn) is a bounded sequence in E. �

Remark 4.19. In the previous Lemma, using the fact that (un, ṽn) is bounded in E and replacing
in (4.28), there exists C > 0 such that∫

R2

f (un)un

|x|b
dx≤C and

∫
R2

g(ṽn)ṽn

|x|a
dx≤C, for all n≥ 1.

In the next result, we repeat the same type of arguments developed in Lemma 4.3 in
Souza (2012).

Lemma 4.20. Let (un, ṽn) be a sequence in E such that J(un, ṽn) → c, J′n(un, ṽn) → 0 and
(un, ṽn)⇀ (u, ṽ) in E. Then, up to a subsequence

f (un)

|x|b
→ f (u)
|x|b

and
g(ṽn)

|x|a
→ g(ṽ)
|x|a

in L1(R2).

Proof. Note that, f (un)/|x|b ∈ L1(R2) for all n ≥ 1 and f (u)/|x|b ∈ L1(R2). Thus, for given
ε > 0 there exists δ > 0 such that∫

A

| f (u)|
|x|b

dx < ε, if |A|< δ , (4.38)

for every mensurable A⊂ R2. Consider

Ωn = {x ∈ R2 : |u(x)| ≥ n}.
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Since u ∈ L1(R2) , we have |Ωn| → 0 and there exists M̂ > 0 such that

|{x ∈ R2 : |u(x)|> M̂}|< δ . (4.39)

Let M = max{M̂,
C
ε
}, where C > 0 is given by Remark 4.19. Then,

∣∣∣∫
R2

| f (un)|
|x|b

− | f (u)|
|x|b

dx
∣∣∣≤ I1,n + I2,n + I3,n (4.40)

where
I1,n =

∫
{x∈R2:|un(x)|≥M}

| f (un)|
|x|b

dx,

I2,n =
∫
{x∈R2:|u(x)|≥M}

| f (u)|
|x|b

dx

and
I3,n =

∣∣∣∫
{x∈R2:|un(x)|≤M}

| f (un)|
|x|b

dx−
∫
{x∈R2:|u(x)|≤M}

| f (u)|
|x|b

dx
∣∣∣.

From Remark 4.19, we have

I1,n =
∫
{x∈R2:|un(x)|≥M}

| f (un)un|
|x|b|un|

dx≤ 1
M

∫
{x∈R2:|un(x)|≥M}

f (un)un

|x|b
dx≤ C

M
≤ ε.

Using (4.38) and (4.39), we obtain

I2,n =
∫
{x∈R2:|u(x)|≥M}

| f (u)|
|x|b

dx≤ ε

and

I3,n ≤
∣∣∣∫

R2

( | f (un)|
|x|b

− | f (u)|
|x|b

)
χ{x∈R2:|un(x)|≤M} dx

∣∣∣
+
∣∣∣∫

R2

| f (u)|
|x|b

(
χ{x∈R2:|un(x)|≤M}−χ{x∈R2:|u(x)|≤M}

)
dx
∣∣∣

≤
∫
R2

hn dx+
∫
{x∈R2:|u(x)|≥M}

| f (u)|
|x|b

dx

≤
∫
R2

hn dx+ ε,

where hn = (
| f (un)|
|x|b

− | f (u)|
|x|b

)
χ{x∈R2:|un(x)|≤M}. Then, hn→ 0 almost everywhere in R2. Using

the continuity of f and the fact that f (s) = o(s), as s→ 0, there exists c2 > 0 such that | f (s)| ≤
c2|s| if |s| ≤M. We can assume that un→ u almost everywhere in R2 and |un|/|x|b ≤ h0 almost
everywhere in R2, for some h0 ∈ L1(R2). Thus,

|hn| ≤
| f (un)|
|x|b

χ{x∈R2:|un(x)|≤M}+
| f (u)|
|x|b

χ{x∈R2:|un(x)|≤M} ≤ c2
|un|
|x|b

+
| f (u)|
|x|b

≤ c2h0 +
| f (u)|
|x|b

,

almost everywhere in R2 and since c2h0 + f (u)/|x|b ∈ L1(R2), by Dominated convergence
theorem, we have ∫

R2
hn dx≤ ε, for all n large enough.
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Then, for n sufficiently large

I3,n ≤ 2ε.

Thus, we get ∫
R2

f (un)

|x|b
dx→

∫
R2

f (u)
|x|b

dx.

Similarly, we have ∫
R2

g(ṽn)

|x|a
dx→

∫
R2

g(ṽ)
|x|a

dx.

�

Lemma 4.21. Assume (A1)− (A5) and let (un, ṽn) be a sequence in En such that J(un, ṽn)→ c,
J′n(un, ṽn)→ 0 and (un, ṽn)⇀ (u, ṽ) in E. Then, up to a subsequence

F(un)

|x|b
→ F(u)
|x|b

and
G(ṽn)

|x|a
→ G(ṽ)
|x|a

in L1(R2).

Proof. By (A1) and (A4), there exists C1 > 0 such that

| f (s)| ≤ |s|+C1|s|e(α0+1)|s|p, for all s ∈ R.

In particular, there exists C > 0 such that

F(s)≤
∫ s

0
| f (t)|dt ≤C|s|2, for all |s| ≤ s0.

Combining this with (A3), we obtain

F(s)≤C|s|2 +M f (s), for all s ∈ R. (4.41)

Let r > 1 be such that br < 2. We can assume up to subsequence that |un|2→ |u|2 in Lr′(R2)

and in L1(R2). Thus, there exist g1 ∈ Lr′(R2) and g2 ∈ L1(R2) such that |un|2 ≤ g1(x) and
|un|2 ≤ g2(x) almost everywhere in R2. Then,

|un|2

|x|b
≤ g1(x)
|x|b

χB1(x)+g2(x), almost everywhere in R2. (4.42)

Using the fact that 1/|x|b in Lr(B1), by Hölder’s inequality, we have

g1

|x|b
χB1 +g2 ∈ L1(R2). (4.43)

By Lemma 4.20, f (un)/|x|b→ f (u)/|x|b in L1(R2). Thus, there exists g3 in L1(R2) such that
f (un)/|x|b ≤ g3 almost everywhere in R2. Combining this with (4.42) and (4.43) in (4.41), we
get

F(un)

|x|b
≤C|un|2 +M f (un)

|x|b
≤Cg1(x)
|x|b

χB1(x)+Cg2(x)+Mg3(x), almost everywhere in R2
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and

C
g1

|x|b
χB1 +Cg2 +Mg3 in L1(R2).

Using the fact that un → u in L1(R2) for a subsequence, F is continuous and Dominated
convergence theorem, we obtain∫

R2

F(un)

|x|b
dx→

∫
R2

F(u)
|x|b

dx.

Similar arguments apply to function G. �

4.4 Theorem 4.6

This section is devoted to prove Theorem 4.6.

4.4.1 The geometry of the Linking theorem

Let consider y(x) = Mk,q;d(x) and z̃(x) = Mk,p;d(x). Thus, ‖(y, z̃)‖ = 2 and by Lemma
4.11, z̃ 6=−ỹ. Define

Fn,m = En,m×En,m⊕R(y, z̃),

which is a finite dimensional subspace of E. Let

E+
n,m := {(v, ṽ) : v ∈ En,m} and E−n,m := {(v,−ṽ) : v ∈ En,m},

where m = m(n) as in Lemma 4.12. Consider

∂Bρ ∩F+
n,m ⊂ Fn,m, where F+

n,m := E+
n,m⊕R(y, z̃)

and

Qn,m = {w+ s(y, z̃) : w = (ω,−ω̃) ∈ E−n,m,‖w‖ ≤ R0,0≤ s≤ R1}.

Lemma 4.22. There exist ρ,σ > 0 such that J(z)≥ σ , for all z ∈ ∂Bρ ∩F+
n,m.

Proof. For ε > 0 given by (A1), there exists δ > 0 such that

|F(s)| ≤ ε|s|2 and |G(s)| ≤ ε|s|2, for all |s|< δ . (4.44)

From (A1), (A4) and (A5), there exists C > 0 such that

|F(s)| ≤C|s|4
(
e2α0|s|p−1

)
and |G(s)| ≤C

∣∣s|4(e2β0|s|q−2β0|s|q−1
)
, for all |s| ≥ δ .

(4.45)
From (4.44) and (4.45), for some constant C > 0, we obtain

|F(s)| ≤ ε|s|2 +C|s|4
(
e2α0|s|p−1

)
, for all s ∈ R (4.46)
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and
|G(s)| ≤ ε|s|2 +C|s|4

(
e2β0|s|q−2β0|s|q−1

)
, for all s ∈ R. (4.47)

Let (u+ sy, ũ+ sz̃) ∈ F+
n,m with ‖(u+ sy, ũ+ sz̃)‖ ≤ ρ1 for ρ1 > 0 sufficiently small such that

2α0ρ
p
1 /α∗q +b/2 < 1 and 2β0ρ

q
1/α∗p +a/2 < 1. By Lemma 4.16, there exists C > 0 such that

∫
R2

F(u+ sy)
|x|b

dx≤ ε

∫
R2

|u+ sy|2

|x|b
dx+C‖u+ sy‖4

(q) (4.48)

and ∫
R2

G(ũ+ sz̃)
|x|a

dx≤ ε

∫
R2

|ũ+ sz̃|2

|x|a
dx+C‖ũ+ sz̃‖4

(p). (4.49)

From (4.48) and (4.26), we have∫
R2

F(u+ sy)
|x|b

dx≤ ε

λ1,b
‖u+ sy‖2

(q)+C‖u+ sy‖4
(q)

Using Remark 4.13, we obtain∫
R2

F(u+ sy)
|x|b

dx≤ ε

λ1,b

(
‖u‖2

(q)+ s2‖y‖2
(q)

)
+C
(
‖u‖4

(q)+ s4‖y‖4
(q)

)
. (4.50)

Similarly, we obtain∫
R2

G(ũ+ sz̃)
|x|a

dx≤ ε

λ̃1,a

(
‖ũ‖2

(p)+ s2‖z̃‖2
(p)

)
+C
(
‖ũ‖4

(p)+ s4‖z̃‖4
(p)

)
. (4.51)

Thus,

J(u+ sy, ũ+ sz̃) =
∫
R2

(
∇(u+ sy)∇(ũ+ sz̃)+V (x)(u+ sy)(ũ+ sz̃)

)
dx

−
∫
R2

F(u+ sy)
|x|b

dx−
∫
R2

G(ũ+ sz̃)
|x|a

dx

≥ s2
∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx

+
1
2
‖u‖2

(q)−
ε

λ1,b

(
‖u‖2

(q)+ s2‖y‖2
(q)

)
−C
(
‖u‖4

(q)+ s4‖y‖4
(q)

)
+

1
2
‖ũ‖2

(p)−
ε

λ̃1,a

(
‖ũ‖2

(p)+ s2‖z̃‖2
(p)

)
−C
(
‖ũ‖4

(p)+ s4‖z̃‖4
(p)

)

Since ‖y‖(q) = ‖z̃‖(p) = 1, we have

J(u+ sy, ũ+ sz̃)≥ s2
∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx

+
(

1− ε

λ1,b
−C‖u‖2

(q)

)
‖u‖2

(q)−
ε

λ1,b
s2−Cs4

+
(

1− ε

λ̃1,a
−C‖ũ‖2

(p)

)
‖ũ‖2

(p)−
ε

λ̃1,a
s2−Cs4.
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Then,

J(u+ sy, ũ+ sz̃)≥ s2
(∫

R2

(
∇y∇z̃+V (x)yz̃

)
dx− εC1−C2s2

)
+
(
2− εC1−C2ρ

2
2

)
ρ

2
2 .

where ‖u‖(q) = ‖ũ‖(p) = ρ2. Using Lemma 4.11, there exists C3 > 0 such that∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx≥C3, for k sufficiently large.

Taking ρ1, ρ2, s1 and ε positives and sufficiently small such that C3− εC1−C2s2
1 ≥C3/2 and

2− εC1−ρ2
2 ≥ 0. Set ρ = min{ρ1,ρ2,s1}, there exists σ > 0 such that

J(u+ sy, ũ+ sz̃)≥ C3ρ2

2
= σ ,

where ‖(u+ sy, ũ+ sz̃)‖= ρ . �

Lemma 4.23. There exist R0 > 0 and R1 > ρ (independent of n and k) such that J(ϑ)≤ 0 for
all ϑ ∈ ∂Qn,m, where

Qn,m = {w+ s(y, z̃) : w = (ω,−ω̃) ∈ E−n,m,‖w‖ ≤ R0,0≤ s≤ R1}.

Proof. Note that, the boundary ∂Q is composed of three parts.

(i) If ϑ ∈ ∂Q∩E−n,m, ϑ = (ω,−ω̃). Thus,

J(ω,−ω̃)=−
∫
R2

(
∇ω∇ω̃+V (x)ωω̃

)
dx−

∫
R2

F(ω)

|x|b
dx−

∫
R2

G(−ω̃)

|x|a
dx≤−‖ω‖2

(q)≤ 0

since F and G are nonnegative functions.

(ii) If ϑ = (ω,−ω̃) +̃ s(y, z̃) = (ω + sy,−ω̃ + sz̃) ∈ ∂Qn,m, with ‖(ω,−ω̃)‖ = R0 and 0 ≤
s≤ R1, we obtain

J(ω + sy,−ω̃ + sz̃) =
∫
R2

(
∇(ω + sy)∇(−ω̃ + sz̃)+V (x)(ω + sy)(−ω̃ + sz̃)

)
dx

−
∫
R2

F(ω + sy)
|x|b

dx−
∫
R2

G(−ω̃ + sz̃)
|x|a

dx.

Using the fact that F and G are nonnegatives and Remark 4.13, we obtain

J(ω + sy,−ω̃ + sz̃)≤−‖ω‖2
(q)+ s2

∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx

≤−‖ω‖2
(q)+ s2‖y‖(q)‖z̃‖(p)

≤−
R2

0
2

+R2
1.

Then, J(ϑ)≤ 0 provided that R0 =
√

2R1.
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(iii) Let ϑ = (ω,−ω̃) + R1(y, z̃), ‖(ω,−ω̃)‖ ≤ R0. Then,

J(ω +R1y, ω̃ +R1z̃) =−‖ω‖2
(q)+R2

1

∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx (4.52)

−
∫
R2

F(ω +R1y)
|x|b

dx−
∫
R2

G(ω̃ +R1z̃)
|x|a

dx.

Using (A1) and (A2), there exists C > 0 such that

F(t)≥C|t|θ − t2 and G(t)≥C|t|θ − t2, for all t ∈ R.

By the last inequalities and Remark 4.13, we have

−
∫
R2

F(ω +R1y)
|x|b

dx≤
∫
R2

|ω +R1y|2

|x|b
dx−C

∫
R2

|ω +R1y|θ

|x|b
dx

≤
∫
R2

|ω|2

|x|b
dx+R2

1

∫
R2

|y|2

|x|b
dx−C

∫
R2

|ω|θ

|x|b
dx−CRθ

1

∫
R2

|y|θ

|x|b
dx

≤ 1
λ1,b
‖ω‖2

(q)+
R2

1
λ1,b
‖y‖2

(q)−CRθ
1

∫
R2

|y|θ

|x|b
dx

≤
R2

0
2λ1,b

+
R2

1
λ1,b

−CRθ
1

∫
R2

|y|θ

|x|b
dx.

Since y 6= 0 and R0 =
√

2R1,

−
∫
R2

F(ω +R1y)
|x|b

dx≤
2R2

1
λ1,b
−CRθ

1 , for some C > 0. (4.53)

Similarly, we have

−
∫
R2

G(ω̃ +R1z̃)
|x|a

dx≤
2R2

1

λ̃1,a
−CRθ

1 . (4.54)

Then, using (4.53) and (4.54) in (4.52), we obtain

J(ω +R1y, ω̃ +R1z̃)≤ R2
1

(
1+

2
λ1,b

+
2

λ̃1,a

)
−CRθ

1 .

Since θ > 2, taking R1 sufficiently large, we get J(ϑ)≤ 0.

�

4.4.2 Approximation finite dimensional

We define the sets

Γn,m = {γ ∈ C (Qn,m,Fn,m) : γ(ϑ) = ϑ , for all ϑ ∈ ∂Qn,m}.

and the numbers
cn,m = inf

γ∈Γn,m
max

ϑ∈Qn,m
J(γ(ϑ)). (4.55)

The proof of the following results proceeds along some lines as the proof of Lemma 9 in Cassani
and Tarsi (2015).
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Lemma 4.24. The sets Qn,m and ∂Bρ ∩F+
n,m link, that is

γ(Qn,m)∩ (∂Bρ ∩E+
n ) 6= /0, for all γ ∈ Γn,m, (4.56)

for ρ given by Lemma 4.22.

Combining Lemma 4.22 and (4.55), we have

cn,m ≥ σ , for all n≥ 1. (4.57)

Note also that, since the identity map I : Qn,m→ Fn,m belongs to Γn,m, for every ϑ = (ω,−ω̃)+

s(y, z̃) ∈ Qn,m, we obtain

cn,m ≤ sup
ϑ∈Qn,m

J(ϑ)≤ R2
1. (4.58)

Denote by Jn,m the restriction of J to the finite-dimensional space Fn,m. By Remark 3.7 in Jn,m

and using (4.57) and (4.58), we get the following result:

Proposition 4.25. For each n,m ≥ 1 (m = m(n) as in Lemma 4.12), the functional Jn,m has a
Palais-Smale sequence at level cn,m. More precisely, there is a sequence (u j, ṽ j)⊂ Fn,m such that

Jn,m(u j, ṽ j)→ cn,m ∈ [σ ,R2
1]

and

J′|Fn,m
(u j, ṽ j)→ 0.

Proposition 4.26. Assume that f and g satisfy (A1)− (A5) and let (u j, ṽ j) be a sequence in Fn,m

given by Proposition 4.25. Then,

(i) The sequence (u j, ṽ j) is bounded sequence in Fn,m and there exists C > 0 such that∫
R2

f (u j)u j

|x|b
dx≤C,

∫
R2

g(ṽ j)ṽ j

|x|a
dx≤C,

∫
R2

F(u j)

|x|b
dx≤C, and

∫
R2

G(ṽ j)

|x|a
dx≤C,

for all j ≥ 1.

(ii) For each sequence (u j, ṽ j), there exists (un,m, ṽn,m)∈Fn,m and a subsequence (not renamed)
(u j, ṽ j) such that

(u j, ṽ j)→ (un,m, ṽn,m) in Fn,m.

Furthermore,

Jn,m(un,m, ṽn,m) = cn,m ∈ [σ ,R2
1]

and

J′|Fn,m
(un,m, ṽn,m) = 0.
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(iii) The sequence (un,m, ṽn,m) is bounded in E and there exists C > 0 such that∫
R2

f (un,m)un,m

|x|b
dx≤C,

∫
R2

g(ṽn,m)ṽn,m

|x|a
dx≤C,

∫
R2

F(un,m)

|x|b
dx≤C and

∫
R2

G(ṽn,m)

|x|a
dx≤C,

for all n ∈ N.

Proof.

(i) From Lemma 4.18, the sequence (u j, ṽ j) is bounded in Fn,m. Moreover, by Remark 4.19
and assumption (A2), we get the estimates in (i).

(ii) Since (u j, ṽ j) is bounded, Fn,m is finite dimensional and J is of class C 1 the assertion
follows.

(iii) Using the sequence (un,m, ṽn,m) in Lemma 4.18 for the case en,m = 0, we get the bound-
edness of the sequence. Using again Remark 4.19 and assumption (A2) we obtain, the
estimates.

�

4.4.3 Estimate of the minimax level

Proposition 4.27. There exists k ∈ N such that for any sequence

(un,m, ṽn,m) ∈ R(Mk,q, 1
m
,Mk,p, 1

m
)⊕E−

satisfying the following conditions:

(i) The sequence (un,m, ṽn,m) is bounded in E.

(ii) The sequence (un,m, ṽn,m) converge weakly to (0,0) in E and

un,m→ 0, ṽn,m→ 0 in Lr(R2), for all r ≥ 1.

Then,

sup
n∈N

J(un,m, ṽn,m)<
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

.

Proof. On the contrary, for each fixed k in N, there exist a nonnegative sequence εn→ 0 and a
sequence

ηn,k = τn,k(Mk,q, 1
m
,Mk,p, 1

m
)+(un,k,−ũn,k), with un,k ∈ En,m
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such that

‖ηn,k‖ ≤C =C(k),

ηn,k ⇀ 0 in E,

τn,kMk,q, 1
m
+un,k→ 0, τn,kMk,p, 1

m
− ũn,k→ 0 in Ls(R2), for all s≥ 1

and

J(ηn,k)≥
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− εn.

In particular, we have

sup
t≥0

J(tηn,k)≥ J(ηn,k)≥
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− εn.

Since J(tηn,k)→−∞ as t→+∞ and J(0) = 0, there exists t̂ > 0 such that

sup
t≥0

J(tηn,k) = max
t≥0

J(tηn,k) = J(t̂ηn,k).

We can assume without loss of generality that t̂ = 1, that is

J′(ηn,k)ηn,k = 0 and J(ηn,k)≥
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− εn.

Then,

2
∫
R2

∇(τn,kMk,q, 1
m
+un,k)∇(τn,kMk,p, 1

m
− ũn,k)dx

+2
∫
R2

V (x)(τn,kMk,q, 1
m
+un,k)(τn,kMk,p, 1

m
− ũn,k)dx

=
∫
R2

f (τn,kMk,q, 1
m
+un,k)(τn,kMk,q, 1

m
+un,k)

|x|b
dx

+
∫
R2

g(τn,kMk,p, 1
m
− ũn,k)(τn,kMk,p, 1

m
− ũn,k)

|x|a
dx

and ∫
R2

∇(τn,kMk,q, 1
m
+un,k)∇(τn,kMk,p, 1

m
− ũn,k)dx

+
∫
R2

V (x)(τn,kMk,q, 1
m
+un,k)(τn,kMk,p, 1

m
− ũn,k)dx

−
∫
R2

F(τn,kMk,q, 1
m
+un,k)

|x|b
dx−

∫
R2

G(τn,kMk,p, 1
m
− ũn,k)

|x|a
dx

≥ 4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− εn.
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Since ‖Mk,q, 1
m
‖(q) = ‖Mk,p, 1

m
‖(p) = 1, ‖un,k‖(q) = ‖ũn,k‖(p) and using the fact that the support

sets of un,k, ũn,k and the concentrating functions are disjoint, we obtain

2τ
2
n,k ≥ 2(τ2

n,k−‖un,k‖2
(q))≥

∫
R2

f (τn,kMk,q, 1
m
+un,k)(τn,kMk,q, 1

m
+un,k)

|x|b
dx

+
∫
R2

g(τn,kMk,p, 1
m
− ũn,k)(τn,kMk,p, 1

m
− ũn,k)

|x|a
dx (4.59)

and

τ
2
n,k−‖un,k‖2

(q)−
∫
R2

F(τn,kMk,q, 1
m
+un,k)

|x|b
−
∫
R2

G(τn,kMk,p, 1
m
− ũn,k)

|x|a
dx

≥ 4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− εn. (4.60)

Using that F and G are nonnegative functions in (4.60), we obtain

τ
2
n,k ≥

4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− εn. (4.61)

Define

sn,k = τ
2
n,k−

4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

≥−εn. (4.62)

By (A6), given R > 0 there exists TR such that

t f (t)≥ Reα0t p
and tg(t)≥ Reβ0tq

, for all |t| ≥ TR.

Thus, ∫
R2

f (τn,kMk,q, 1
m
+un,k)(τn,kMk,q, 1

m
+un,k)

|x|b
dx

+
∫
R2

g(τn,kMk,p, 1
m
− ũn,k)(τn,kMk,p, 1

m
− ũn,k)

|x|a
dx (4.63)

≥ R
∫
{x∈B 1

m
:|τn,kM

k,q, 1
m
|≥TR}

e
α0|τn,kM

k,q, 1
m
|p

|x|b
dx

+R
∫
{x∈B 1

m
:|τn,kM

k,p, 1
m }
|≥TR}

e
β0|τn,kM

k,p, 1
m
|q

|x|a
dx,

where we used the fact that the functions un,k and ũn,k are zero in B 1
m

. From the definition of the
concentrate function, we have

Mk,q, 1
m
(x) =

(logk)
q−1

q

√
4π

(1−δk,q, 1
m
)

q−1
q , if |x| ≤ 1

m
√

k
.

From (4.61), for this given R > 0, there exists nR and kR (kR independent of n) sufficiently large
such that

τn,kMk,q, 1
m
(x) = τn,k

(logk)
q−1

q

√
4π

(1−δk,q, 1
m
)

q−1
q ≥ TR, if |x| ≤ 1

m
√

k
. (4.64)
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for n≥ nR and k ≥ kR. Combining (4.59) with (4.63), we get

τ
2
n,k ≥

R
2

∫
B 1

m
√

k

e
α0τ

p
n,k

lnk
(4π)p/2 (1−δ

k,q, 1
m
)

|x|b
dx+

R
2

∫
B 1

m
√

k

e
β0τ

q
n,k

lnk
(4π)q/2 (1−δ

k,p, 1
m
)

|x|a
dx

=
πRe

α0τ
p
n,k

lnk
(4π)p/2 (1−δ

k,q, 1
m
)

2(2−b)m2−bk(1−b/2)
+

πRe
β0τ

q
n,k

lnk
(4π)q/2 (1−δ

k,p, 1
m
)

2(2−a)m2−ak(1−a/2)
(4.65)

≥ πR
2(2−d0)m2−d0

(
e

α0τ
p
n,k

lnk
(4π)p/2 (1−δ

k,q, 1
m
)−(1−b/2) lnk

+ e
β0τ

q
n,k

lnk
(4π)q/2 (1−δ

k,p, 1
m
)−(1−a/2) lnk)

where d0 = min{a,b}. We emphasize that up to now, we have fixed n (and consequently, m),
where k can be arbitrarily chosen independently of n (k ≥ KR). By (4.11), we have

|δk,q, 1
m
| ≤C‖V‖L∞(B1/m)

1
mq/2 lnk

and |δk,p, 1
m
| ≤C‖V‖L∞(B1/m)

1
mp/2 lnk

.

Increasing nR if necessary, we have

(1−δk,q, 1
m
)≥ 1−C

V1

lnk
, and (1−δk,p, 1

m
)≥ 1−C

V1

lnk
where V1 = ‖V‖L∞(B1).

Using these estimates in (4.65), we get

τ
2
n,k ≥

πR
2(2−d0)m2−d0

(
e

α0τ
p
n,k

lnk
(4π)p/2 (1−C V1

lnk )−(1−b/2) lnk
+ e

β0τ
q
n,k

lnk
(4π)q/2 (1−C V1

lnk )−(1−a/2) lnk
)
.

Using Young’s inequality (X p/p+Y q/q≥ XY ) with

X = p1/pe
α0
p τ

p
n,k

lnk
(4π)p/2 (1−C V1

lnk )−
(1−b/2) lnk

p and Y = q1/qe
β0
q τ

q
n,k

lnk
(4π)q/2 (1−C V1

lnk )−
(1−a/2) lnk

q ,

we find

τ
2
n,k ≥

πRp1/pq1/q

2(2−d0)m2−d0
e

(
α0
p τ

p
n,k

lnk
(4π)p/2 +

β0
q τ

q
n,k

lnk
(4π)q/2

)
(1−C V1

lnk )−
(1−b/2) lnk

p − (1−a/2) lnk
q . (4.66)

Using again Young’s inequality, we get

α0

p
τ

p
n,k

lnk
(4π)p/2 +

β0

q
τ

q
n,k

lnk
(4π)q/2 ≥ α

1/p
0 β

1/q
0

τ2
n,k

4π
lnk.

Replacing in (4.66), we have

τ
2
n,k ≥

πRp1/pq1/q

2(2−d0)m2−d0
eα

1/p
0 β

1/q
0

τ2
n,k
4π

(1−C V1
lnk ) lnk− (1−b/2) lnk

p − (1−a/2) lnk
q , (4.67)

for n≥ nR and k ≥ kR. Consider

R := 2(2−d0)m3−d0.

Since m depends on n, and k depends on R, kR depends on n. With this choice, we obtain

τ
2
n,k ≥ πmp1/pq1/qe

[
α

1/p
0 β

1/q
0

τ2
n,k
4π

(1−C V1
lnk )−

(1−b/2)
p − (1−a/2)

q

]
lnk, (4.68)
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for k ≥ kR. If the sequence {τ2
n,k}n≥n0 is unbounded, using (4.68) we get a contradiction. Thus,

{τ2
n,k}n≥n0 is a bounded sequence. In particular, without loss of generality, we can assume that

there exists s ∈ R such that

τ
2
n,k = sn,k +

4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

→ s+
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

, as n→+∞.

Moreover, by (4.62), s≥ 0. From (A7), we can suppose without loss of generality that

α
1/p
0

(1−b/2)1/p
>

β
1/q
0

(1−a/2)1/q
. (4.69)

Now by (4.65), we have

τ
2
n,k ≥ πme

α0τ
p
n,k

lnk
(4π)p/2 (1−C V1

lnk )−(1−b/2) lnk
. (4.70)

Writing

τ
2
n,k = s+

4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

+on(1)

and replacing in (4.70), we obtain

τ
2
n,k ≥ πme

α0

(
s+ 4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

+on(1)
)p/2

lnk
(4π)p/2 (1−C V1

lnk )−(1−b/2) lnk

≥ πme
α0

(
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

+on(1)
)p/2

lnk
(4π)p/2 (1−C V1

lnk )−(1−b/2) lnk

≥ πme

(
α

1/2
0 (1−b/2)1/2(1−a/2)p/2q

β
p/2q
0

+on(1)
)

lnk(1−C V1
lnk )−(1−b/2) lnk

≥ πme

(
α

1/2
0 (1−b/2)1/2(1−a/2)p/2q

β
p/2q
0

+on(1)−(1−b/2)
)

lnk−
CV1α

1/2
0 (1−b/2)1/2(1−a/2)p/2q

β
p/2q
0

+on(1)
.

Using (4.69), we have

0 < δ :=
α

1/2
0 (1−b/2)1/2(1−a/2)p/2q

β
p/2q
0

− (1−b/2).

Thus,

s+
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

+on(1)≥ πme

(
δ+on(1)

)
lnk−

CV1α
1/2
0 (1−b/2)1/2(1−a/2)p/2q

β
p/2q
0

+on(1)
.

Taking n→+∞ (and hence k→+∞, where we used the fact TR→+∞ as R→+∞ and (4.64)),
we get a contradiction and the proposition follows. �
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4.4.4 Proof of Theorem 4.6

Proof. By Proposition 4.26, there exists a sequence (un,m, ṽn,m) ∈ Fn,m such that

Jn,m(un,m, ṽn,m) = cn,m ∈ [σ ,R2
1] (4.71)

and
J′n,m(un,m, ṽn,m)(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ Fn,m. (4.72)

Moreover, the sequence (un,m, ṽn,m) is bounded in E. Thus, we can assume that there exists
(u, ṽ) ∈ E such that (un,m, ṽn,m)⇀ (u,v) in E and

un,m→ u and ṽn,m→ ṽ in Lr(R2), for all r ≥ 1. (4.73)

Taking respectively (0, ψ̃) and (φ ,0), in (4.72), with (φ , ψ̃) ∈ Fn,m∩
(
C ∞

0 (R2)×C ∞
0 (R2)

)
, we

have ∫
R2

(
∇un,m∇ψ̃ +V (x)un,mψ̃

)
dx =

∫
R2

g(ṽn,m)ψ̃

|x|a
dx

and ∫
R2

(
∇ṽn,m∇φ +V (x)ṽn,mφ

)
dx =

∫
R2

f (un,m)φ

|x|b
dx.

Taking the limit as n→ +∞, using Lemma 4.21 and the fact that
⋃+∞

n=1 Fn,m ∩
(
C ∞

0 (R2)×
C ∞

0 (R2)
)

is dense in E, we obtain∫
R2

(
∇u∇ψ̃ +V (x)uψ̃

)
dx =

∫
R2

g(ṽ)ψ̃
|x|a

dx, for all ψ̃ ∈W (p)

and ∫
R2

(
∇ṽ∇φ +V (x)ṽφ

)
dx =

∫
R2

f (u)φ
|x|b

dx, for all φ ∈W (q).

Thus, (u, ṽ) ∈ E is a solution of the system .

It remains to prove that (u, ṽ) is a nontrivial weak solution. Assume, by contradiction,
that u≡ 0 (which implies that ṽ≡ 0). Thus, we can assume that

un,m→ 0 and ṽn,m→ 0 in Lr(R2), for all r ≥ 1. (4.74)

Taking (0, ṽn,m) and (un,m,0) in (4.72) we have∫
R2

(
∇un,m∇ṽn,m +V (x)un,mṽn,m

)
dx =

∫
R2

g(ṽn,m)ṽn,m

|x|a
dx =

∫
R2

f (un,m)un,m

|x|b
dx. (4.75)

From Proposition 4.27, there exists δ ′ > 0 such that

cn,m ≤
4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

−δ
′.

Moreover, there exists δ > 0 such that(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− δ ′

4

)(
1− δα0

1−b/2

)−1/p
≤ 4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− δ ′

8
(4.76)
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and

(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− δ ′

4

)(
1− δβ0

1−a/2

)−1/q
≤ 4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

− δ ′

8
.

Taking (vn,m,0) in (4.72), we obtain

‖vn,m‖2
(q) =

∫
R2

f (un,m)vn,m

|x|b
dx≤

∫
R2

| f (un,m)||vn,m|
|x|b

dx (4.77)

Set

Vn,m =
√

4π

(1−b/2
α0

−δ

)1/p vn,m

‖vn,m‖(q)
. (4.78)

Applying Lemma 3.10 in (4.77) with s = | f (un,m)|/α
1/p
0 , t = α

1/p
0 |Vn,m|, r = p and r′ = q, we

obtain

√
4π

(1−b/2
α0

−δ

)1/p
‖vn,m‖(q) ≤

∫
R2

| f (un,m)||Vn,m|
|x|b

dx

≤
∫
R2

(eα0|Vn,m|p−1)
|x|b

dx+
1

α
q/p
0 q

∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}

| f (un,m)|q

|x|b
dx (4.79)

+
1

α
1/p
0

∫
{x∈R2: | f (ṽn,n)|

α
1/p
0

≤e1/pq}

| f (un,m)|
|x|b

[
ln
( | f (un,m)|

α
1/p
0

)]1/p
dx.

As in proof of Lemma 3.15, Vn,m ⇀ 0 in W (q), and from (4.78), we have

‖Vn,m‖p
(q) <

(4π)p/2(1−b/2)
α0

.

This combined with Lemma 4.17, yields

∫
R2

(eα0|Vn,m|p−1)
|x|b

dx = on(1). (4.80)

Now, we estimate the second integral of (4.79). Using (A1) there exists δ > 0 such that

| f (t)| ≤ |t|, for all |t| ≤ δ .

We observe that

| f (t)| ≤ | f (t)|
δ
|t|, for all |t| ≥ δ .

Thus, there exists C > 0 such that

| f (t)|q ≤C|t|q, for all
{

t ∈ R :
| f (t)|
α

1/p
0

≤ e1/pq}
. (4.81)
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Let r > 1 such that rb < 2, using Hölder’s inequality, (4.81) and (4.74), we have∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}

| f (un,m)|q

|x|b
dx

≤C
∫
{x∈B1: | f (un,m)|

α
1/p
0

≤e1/pq}

|un,m|q

|x|b
dx+C

∫
{x∈R2\B1: | f (un,m)|

α
1/p
0

≤e1/pq}
|un,m|q dx (4.82)

≤C
(∫

B1

1
|x|rb dx

)1/r
‖un,m‖q

r′q +C‖un,m‖q
q

= on(1).

Let
ξ =

δ ′min{α0,β0}

4
(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

−δ ′
) , (4.83)

by (A1) and (A4), there exists Cξ > 0 such that

| f (t)| ≤Cξ e(α0+ξ )|t|p, for all t ∈ R.

Thus, ∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}

| f (un,m)|
|x|b

[
ln
( | f (un,m)|

α
1/p
0

)]1/p
dx

≤
∫
R2

| f (un,m)|
|x|b

[
ln
(Cξ e(α0+ξ )|un,m|p

α
1/p
0

)]1/p
dx (4.84)

≤
∫
R2

| f (un,m)|
|x|b

[
ln1/p ( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m|

]
dx.

For each n ∈ N consider

Tn :=
{

x ∈ R2 : ln1/p
( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m| ≤ (α0 +2ξ )1/p|un,m|

}
.

Thus,∫
R2

| f (un,m)|
|x|b

[
ln1/p ( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m|

]
dx

≤
∫
R2\Tn

| f (un,m)|
|x|b

[
ln1/p ( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m|

]
dx+(α0 +2ξ )1/p

∫
Tn

f (un,m)un,m

|x|b

≤ ln1/p ( Cξ

α
1/p
0

)∫
R2\Tn

| f (un,m)|
|x|b

dx+(α0 +2ξ )1/p
∫
R2

f (un,m)un,m

|x|b
dx. (4.85)

Observe that

R2\Tn = {x ∈ R2 : |un,m|< d1}, where d1 =

ln1/p ( Cξ

α
1/p
0

)
(α0 +2ξ )1/p− (α0 +ξ )1/p

.
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Thus,
R2\Tn ⊆ {x ∈ R2 : | f (un,m)| ≤ d2}, where d2 = max

|s|≤d1
| f (s)|.

Using similar arguments as the integral in (4.82), we can conclude that∫
R2\Tn

| f (un,m)|
|x|b

dx = on(1). (4.86)

From (4.84), (4.85) and (4.86), we obtain∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}

| f (un,m)|
|x|b

[
ln
( | f (un,m)|

α
1/p
0

)]1/p
dx≤ (α0 +2ξ )1/p

∫
R2

f (un,m)un,m

|x|b
dx+on(1).

(4.87)
Using this, (4.80) and (4.82) in (4.79), we have

√
4π

(1−b/2
α0

−δ

)1/p
‖vn,m‖(q) ≤ (1+

2ξ

α0
)1/p

∫
R2

f (un,m)un,m

|x|b
dx+on(1). (4.88)

Taking (0, ũn,m) in (4.72), we obtain

‖ũn,m‖2
(p) =

∫
R2

g(ṽn,m)ũn,m dx.

Analogously, we can obtain
√

4π

(1−a/2
β0

−δ

)1/q
‖ũn,m‖(p) ≤ (1+

2ξ

β0
)1/q

∫
R2

g(ṽn,m)ṽn,m

|x|a
dx+on(1). (4.89)

By Lemma 4.21, we have∫
R2

F(un,m)

|x|b
dx→ 0 and

∫
R2

G(ṽn,m)

|x|b
dx→ 0, (4.90)

which imply ∫
R2

(
∇un,m∇ṽn,m +V (x)un,mṽn,m

)
dx = J(un,m, ṽn,m)+on(1).

By Proposition 4.27, we find∫
R2

f (un,m)un,m

|x|b
dx+

∫
R2

g(ṽn,m)ṽn,m

|x|a
dx≤ 2

(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

−δ
′
)
+on(1).

Using (4.88), (4.89) and (4.83), we have
√

4π

(1−b/2
α0

−δ

)1/p
‖vn,m‖(q)+

√
4π

(1−a/2
β0

−δ

)1/q
‖ũn,m‖(p)

≤
(

1+
2ξ

α0

)1/p ∫
R2

f (un,m)un,m

|x|b
dx+

(
1+

2ξ

β0

)1/q ∫
R2

g(ṽn,m)ṽn,m

|x|a
dx+on(1)

≤
(

1+
2ξ

min{α0,β0}

)(∫
R2

f (un,m)un,m

|x|b
dx+

∫
R2

g(ṽn,m)ṽn,m

|x|a
dx
)
+on(1)

≤ 2
(

1+
2ξ

min{α0,β0}

)(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/p
0

−δ
′
)
+on(1)

≤ 2
(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

− δ ′

2

)
+on(1).
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Now, we can suppose that, for all n≥ 1

√
4π

(1−b/2
α0

−δ

)1/p
‖vn,m‖(q)+

√
4π

(1−a/2
β0

−δ

)1/q
‖ũn,m‖(p)

≤ 2
(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

− δ ′

4

)
.

Thus, we can assume that

‖vn,m‖(q) ≤
1√
4π

(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

− δ ′

4

)(1−b/2
α0

−δ

)−1/p

or

‖ũn,m‖(p) ≤
1√
4π

(4π(1−b)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

− δ ′

4

)(1−a/2
β0

−δ

)−1/q
.

Suppose that the second inequality holds. Rewritting

‖ũn,m‖(p) ≤
β

1/q
0√

4π(1−a/2)1/q

(4π(1−b/2)1/p(1−a/2)1/q

α
1/p
0 β

1/q
0

− δ ′

4

)(
1− δβ0

1−a/2

)−1/q
,

and using (4.76), we obtain

‖ũn,m‖(p) ≤
β

1/q
0√

4π(1−a/2)1/q

(4π(1−b/2)1/p(1−a)1/q

α
1/p
0 β

1/q
0

− δ ′

8

)
≤ (4π)1/2(1−b/2)1/p

α
1/p
0

−
δ ′β

1/q
0

8
√

4π(1−a/2)1/q
.

In particular, α
1/p
0 ‖un,m‖(q) < (4π)1/2(1−b/2)1/p. Thus, we can find r > 1 and η > 0 such that

r(α0 +η)‖un,m‖p
(q) < (4π)p/2(1− rb/2). (4.91)

By (A1 and (A4), there exists C1 > 0 such that

| f (s)| ≤ |s|+C1
(
e(α0+η)|s|p−1

)
, for all s ∈ R.

From Hölder’s inequality with r′ = r/(r−1), Lemma 4.14 and Proposition 4.8, we have∫
R2

f (un,m)un,m

|x|b
dx≤

∫
R2

|un,m|2

|x|b
dx+C1

∫
R2

|un,m|
(
e(α0+η)|un,m|p−1

)
|x|b

dx

≤C2‖un,m‖2
2r′+‖un,m‖2

2 +C2‖un,m‖r′

∫
R2

(
e(α0+η)|un,m|p−1

)r

|x|rb dx

≤C2‖un,m‖2
2r′+‖un,m‖2

2 +C2‖un,m‖r′

∫
R2

(
er(α0+η)|un,m|p−1

)
|x|rb dx

≤C2‖un,m‖2
2r′+‖un,m‖2

2 +C3‖un,m‖r′.

Using (4.74), we get ∫
R2

f (un,m)un,m

|x|b
dx→ 0.
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Replacing in (4.75), we have∫
R2

(
∇un,m∇ṽn,m +V (x)un,mṽn,m

)
dx→ 0.

Combining the last limit with (4.90), we get

J(uu,m, ṽn,m)→ 0,

which gives a contradiction with the fact that cn,m ≥ σ . Thus, (u, ṽ) is a nontrivial weak solution.

�

4.5 Theorem 4.7
This section is to prove Theorem 4.7.

4.5.1 The geometry of the Linking theorem

Lemma 4.28. There exist ρ,σ > 0 such that J(z)≥ σ , for all z ∈ ∂Bρ ∩E+.

Proof. Given ε > 0 for assumptions (A1),(A4) and (A5) there exists C > 0 such that

|F(s)| ≤ ε|s|2 +C|s|3
(
e2α0|s|p−1

)
, for all s ∈ R

and
|G(s)| ≤ ε|s|2 +C|s|3

(
e2β0|s|q−2β0|s|q−1

)
, for all s ∈ R.

Thus, taking ρ1 > 0 such that 2α0ρ
p
1 /α∗q +b/2 < 1 and 2β0ρ

q
1/α∗p +a/2 < 1, by Lemma 4.16,

there exists C > 0 such that∫
R2

F(u)
|x|b

dx≤ ε

∫
R2

|u|2

|x|b
dx+C‖u‖3

(q), for all ‖u‖(q) ≤ ρ1.

and ∫
R2

G(ũ)
|x|a

dx≤ ε

∫
R2

|ũ|2

|x|a
dx+C‖ũ‖3

(p), for all ‖ũ‖(p) ≤ ρ1.

Thus,

J(u, ũ) =
∫
R2

(
∇u∇ũ+V (x)uũ

)
dx−

∫
R2

F(u)
|x|b

dx−
∫
R2

G(ũ)
|x|a

dx

≥ 1
2
‖u‖2

(q)− ε

∫
R2

|u|2

|x|b
dx−C‖u‖3

(q)

+
1
2
‖ũ‖2

(p)− ε

∫
R2

|ũ|2

|x|a
dx−C‖ũ‖3

(p)

≥ (
1
2
− ε

λ1,b
)‖u‖2

(q)−C‖u‖3
(q)+(

1
2
− ε

λ̃1,a
)‖ũ‖2

(p)−C‖ũ‖3
(p)
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which implies

J(u, ũ)≥
(1

2
− ε

λ1,b
−C‖u‖(q)

)
‖u‖2

(q)+
(1

2
− ε

λ̃1,a
−C‖ũ‖(p)

)
‖ũ‖2

(p).

Chosen ρ2,ε > 0, sufficiently small such that

1
2
− ε

λ1,b
−Cρ2 ≥

1
4

and
1
2
− ε

λ̃1,a
−Cρ2 ≥

1
4
.

Hence,

J(u, ũ)≥ ρ2

4
= σ > 0, for all ‖(u, ũ)‖= ρ,

where 0 < ρ ≤min{ρ1,ρ2}. �

We observe that, from inequality given in (4.2), we can choose m0 ∈ (0,1) and ε > 0
such that

Cθ ,a,b >
56+32

√
3

δθ ,a,bRθ−2
1

, where R2
1 =

m0R2

(1+ ε)
. (4.92)

Let

M1 =
2m0π1/2(1−a/2)1/q

β
1/q
0

and M2 =
2m0π1/2(1−b/2)1/p

α
1/p
0

. (4.93)

Thus, we can write

R2
1 =

(4π)1/2

1+ ε
max

{
M1(1−b/2)1/p

α
1/p
0

(µ−2)
2µ

,
M2(1−a/2)1/q

β
1/q
0

(ν−2)
2ν

}
. (4.94)

Lemma 4.29. Let Q = {r(e1, ẽ1) +̃ (ω,−ω̃) : ‖ω‖(q) ≤ (3 + 2
√

3)R1,0 ≤ r ≤ R1}, where
R1 > 0 is given by (4.94). Then, J(z) ≤ 0 for all z ∈ ∂Q, where ∂Q is the boundary of Q in
R(e1, ẽ1) +̃ E−.

Proof. Note that, the boundary ∂Q is composed of three parts.

(i) If z ∈ ∂Q∩E−, we have z = (u,−ũ). Thus,

J(u,−ũ) =−
∫
R2

(
∇u∇ũ+V (x)uũ

)
dx−

∫
R2

F(u)
|x|b

dx−
∫
R2

G(−ũ)
|x|a

dx≤−‖u‖2
(q) ≤ 0,

since F and G are nonnegative functions.
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(ii) If z = r(e1, ẽ1) +̃ (ω,−ω̃) = (re1 +ω, ˜re1−ω) ∈ ∂Q, with ‖ω‖(q) = (3+ 2
√

3)R1 and
0≤ r ≤ R1, in this case, we obtain

J(z) =
∫
R2

(
∇(re1 +ω)∇( ˜re1−ω)+V (x)(re1 +ω)( ˜re1−ω)

)
dx

−
∫
R2

F(re1 +ω)

|x|b
dx−

∫
R2

G( ˜re1−ω)

|x|a
dx

≤
∫
R2

(
∇(re1 +ω)∇( ˜re1−ω)+V (x)(re1 +ω)( ˜re1−ω)

)
dx

=−
∫
R2

∇(re1−ω)∇( ˜re1−ω)dx−
∫
R2

V (x)(re1−ω)( ˜re1−ω)dx

+
∫
R2

∇(2re1)∇( ˜re1−ω)dx+
∫
R2

V (x)(2re1)( ˜re1−ω)dx

≤−‖re1−ω‖2
(q)+2‖∇(re1)‖2,q‖∇( ˜re1−ω)‖2,p

+2‖V 1/qre1‖2,q‖V 1/p ˜(re1−ω)‖2,p

≤−‖re1−ω‖2
(q)+2‖re1‖(q)‖re1−ω‖(q)+2‖re1‖(q)‖re1−ω‖(q)

≤−‖re1‖2
(q)+2‖re1‖(q)‖ω‖(q)−‖ω‖2

(q)+4‖re1‖(q)
(
‖re1‖(q)+‖ω‖(q)

)
.

Since ‖e1‖(q) = 1 and 0≤ r ≤ R1, we have

J(z)≤−‖ω‖2
(q)+6r‖ω‖(q)+3r2 ≤−‖ω‖2

(q)+6R1‖ω‖(q)+3R2
1.

Using the fact that ‖ω‖(q) = (3+2
√

3)R1, we get J(z)≤ 0.

(iii) Let z = R1(e1, ẽ1) +̃ R1(ω,−ω̃) = (R1(e1 + ω),R1 ˜(e1−ω)) with ‖ω‖(q) ≤ 3 + 2
√

3.
Then, by (A8), we have

J(z) = R2
1

∫
R2

(
∇(e1 +ω)∇u(ẽ1−ω)+V (x)(e1 +ω)(ẽ1−ω)

)
dx

−
∫
R2

F
(
R1(e1 +ω)

)
|x|b

dx−
∫
R2

G
(
R1 ˜(e1−ω)

)
|x|a

dx

≤ R2
1‖∇(e1 +ω)‖2,q‖∇(ẽ1−ω)‖2,p +R2

1‖V 1/q(e1 +ω)‖2,q‖V 1/p(ẽ1−ω)‖2,p

−Cθ ,a,bRθ
1

∫
R2

|e1 +ω|θ

|x|b
dx−Cθ ,a,bRθ

1

∫
R2

|ẽ1−ω|θ

|x|a
dx

≤ R2
1‖e1 +ω‖(q)‖ẽ1−ω‖(p)+R2

1‖e1 +ω‖(q)‖ẽ1−ω‖(p)

−Cθ ,a,bRθ
1

∫
R2

|e1 +ω|θ

|x|b
dx−Cθ ,a,bRθ

1

∫
R2

|ẽ1−ω|θ

|x|a
dx

≤ 2R2
1‖e1 +ω‖(q)‖e1−ω‖(q)−Cθ ,a,bRθ

1 inf
‖ω‖(q)≤3+2

√
2

∫
R2

( |e1 +ω|θ

|x|b
+
|ẽ1−ω|θ

|x|a
)

dx

≤ 2R2
1(‖e1‖(q)+‖ω‖(q))2−Cθ ,a,bRθ

1 inf
‖ω‖(q)≤3+2

√
2

∫
R2

( |e1 +ω|θ

|x|b
+
|ẽ1−ω|θ

|x|a
)

dx

≤ (56+32
√

3)R2
1−Cθ ,a,bRθ

1 δθ ,a,b.

Now, using (4.92) in the last inequality, we obtain J(z)≤ 0.
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4.5.2 Finite-dimensional approximation

Let {ei}i∈N be an orthonormal basis of eigenfunctions for the operator (−∆+V ) in
H1

V (R2) := {u ∈ H1(R2) :
∫
R2 V (x)u2 dx < ∞}. By Lemma 3 in Cassani and Tarsi (2015), the

sequence {ei}i∈N provides also a dense system in W (p) as well as W (q). For each n ∈N, consider
the following finite dimensional subspaces:

E+
n = Span{(ei, ẽi) : i = 1,2, . . . ,n}, E−n = Span{(ei,−ẽi) : i = 1,2 . . . ,n},

and

En = E+
n ⊕E−n .

Define

Γn = {γ ∈ C
(
Qn,E−n ⊕̃ R(e1, ẽ1)

)
: γ(z) = z, for all z ∈ ∂Qn},

where Qn = Q∩En and Q as in Lemma 4.29, and set

cn = inf
γ∈Γ

max
z∈Qn

J(γ(z)). (4.95)

Using Lemma 5.5 in Figueiredo, Ó and Ruf (2005), we have

γ(Qn)∩ (∂Bρ ∩E+
n ) 6= /0, for all γ ∈ Γn, (4.96)

for ρ given by Lemma 4.28. Thus, combining Lemma 4.28 with (4.96), we have

cn ≥ σ , for all n≥ 1. (4.97)

Note also that, since the inclusion map In : Qn→ E−n ⊕̃ R(e1, ẽ1) belongs to Γn, we have, for
z = r(e1, ẽ1)+(u,−ũ) ∈ Qn,

J(z) = r2‖e1‖2
(q)−‖u‖

2
(q)−

∫
R2

F(re1 +u)
|x|b

dx−
∫
R2

G(r̃e1−u)
|x|a

dx≤ R2
1. (4.98)

Let denote Jn the restriction of J to the finite-dimensional space En. Then, applying Linking
theorem (Theorem 3.6) for Jn and noticing (4.97) and (4.98), we get the following result.

Proposition 4.30. For each n∈N, the functional Jn has a critical point at level cn. More precisely,
there is zn = (un, ṽn) ∈ En such that

Jn(zn) = cn ∈ [σ ,R2
1] (4.99)

where σ and R1 are given by Lemma 4.28 and (4.92), respectively, and

J′n(zn)(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ En.
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Lemma 4.31. Let (un, ṽn) be the sequence given by Proposition 4.30. Moreover, assume that
(un, ṽn)⇀ (0,0) in E. Then, up to a subsequence

‖un‖(q) ≤M2 or ‖ṽn‖(p) ≤M1, for all n ∈ N.

for M1 and M2 given by (4.93).

Proof. If ‖un‖(q)→ 0 or ‖ṽn‖(p)→ 0 the claim follows. Thus, we can assume that there exists a
positive constant d such that

‖un‖(q) ≥ d and ‖ṽn‖(p) ≥ d, for all n ∈ N. (4.100)

Using the fact that |J(un, ṽn)| ≤ R2
1 and

J′(un, ṽn)(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ En, (4.101)

and employing similar arguments as in to Lemma 4.18, we obtain(
1− 2

µ

)∫
R2

f (un)un

|x|b
dx+

(
1− 2

ν

)∫
Ω

g(ṽn)ṽn

|x|a
dx≤ 2R2

1.

Then, ∫
R2

f (un)un

|x|b
dx≤ 2µ

µ−2
R2

1 (4.102)

and ∫
R2

g(ṽn)ṽn

|x|a
dx dx≤ 2ν

ν−2
R2

1. (4.103)

On the other hand, taking (φ , ψ̃) = (vn,0) in (4.101), we get

‖vn‖(q) ≤
∫
R2

f (un)Tn

|x|b
dx, (4.104)

where
Tn =

vn

‖vn‖(q)
.

Define

ξ := min
{

εα0(1−b/2)(4π)
p
2

α0 +(1−b/2)(4π)
p
2 + εα0

,
εβ0(1−a/2)(4π)

q
2

β0 +(1−a/2)(4π)
q
2 + εβ0

}
(4.105)

where ε > 0 is given by (4.92). Consider α1 = α0 +ξ and α2 = (1−b/2)(4π)
p
2 −ξ . By (A1)

and (A4), there exists λ > 0 such that

| f (s)| ≤ λeα1|s|p, for all s ∈ R. (4.106)

Applying Lemma 3.10 in (4.104) with s = | f
(
un(x)

)
|/λ , t = α

1/p
2 |Tn(x)|, r = p and r′ = q, we

obtain

‖vn‖(q) ≤
λ

α
1/p
2

[∫
R2

(eα2|Tn|p−1)
|x|b

dx+
1

qλ q

∫
{x∈R2:| f (un)

λ
|≤e1/pq}

| f (un)|q

|x|b
dx (4.107)

+
1
λ

∫
{x∈R2:| f (un)

λ
|≥e1/pq}

| f (un)|
|x|b

ln1/p | f (un)|
λ

dx

]
.
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By (4.106), we have∫
{x∈R2:| f (un)

λ
|≥e1/pq}

| f (un)|
|x|b

ln1/p | f (un)|
λ

dx≤ α
1/p
1

∫
R2

f (un)un

|x|b
dx.

Since ‖Tn‖(q) = 1, Tn ⇀ 0 in W (q) and α2 < (1−b/2)(4π)
p
2 , by Lemma 4.17 we can suppose

that ∫
R2

(
eα2|Tn|p−1

)
|x|b

dx = on(1).

Similar to the integral given in (4.82), we obtain∫
{x∈R2:| f (un)

λ
|≤e1/pq}

| f (un)|q

|x|b
dx = on(1)

Using these estimates in (4.107), we have

‖vn‖(q) ≤
α

1/p
1

α
1/p
2

∫
R2

f (un)un

|x|b
dx+on(1).

From (4.102), we get

‖vn‖(q) ≤
(

αo +ξ

(1−b/2)(4π)
p
2 −ξ

)1/p 2µ

µ−2
R2

1 +on(1). (4.108)

Similarly, we have

‖ũn‖(p) ≤
(

βo +ξ

(1−a/2)(4π)
q
2 −ξ

)1/q 2ν

ν−2
R2

1 +on(1). (4.109)

Now, if we have in (4.94)

R2
1 =

M1(1−b/2)1/p(4π)1/2

(1+ ε)α
1/p
0

(µ−2)
2µ

and replacing in (4.108), we get

‖vn‖(q) ≤
M1

(1+ ε)

(1−b/2)1/p(4π)1/2

α
1/p
o

(
αo +ξ

(1−b/2)(4π)
p
2 −ξ

)1/p
+on(1)

=
M1

(1+ ε)

(
α0 +ξ

α0

(1−b/2)(4π)p/2

(1−b/2)(4π)
p
2 −ξ

)1/p
+on(1).

From (4.105), we have

0 <
α0 +ξ

α0

(1−b/2)(4π)p/2

(1−b/2)(4π)
p
2 −ξ

≤ 1+ ε.

Thus,

‖vn‖(q) ≤
M1

(1+ ε)
(1+ ε)1/p +on(1)≤

M1

(1+ ε)1/q
+on(1).
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We can assume without loss of generality that

‖ṽn‖(p) = ‖vn‖(q) ≤M1, for all n ∈ N,

On the other hand, if we have in (4.94)

R2
1 =

M2(1−a/2)1/p(4π)1/2

(1+ ε)β
1/q
0

(ν−2)
2ν

,

and replacing in (4.109), we can assume that

‖un‖(q) ≤M2, for all n ∈ N,

this complete the proof. �

4.5.3 Proof of Theorem 4.7

Proof. By Proposition 4.30, there exists a sequence (un, ṽn)⊂ En such that

Jn(un, ṽn) = cn ∈ [σ ,R2
1] (4.110)

and
J′n(un, ṽn)(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ En. (4.111)

From Lemma 4.18, we have that the sequence (un, ṽn) is bounded in E. Thus, without loss of
generality, we can assume that there exists (u, ṽ) ∈ E such that (un, ṽn)⇀ (u, ṽ) in E and

un→ u and ṽn→ ṽ in Lr(R2), for all r ≥ 1.

Taking (0, ψ̃) and (φ ,0) in (4.111) with (φ , ψ̃) ∈ En∩
(
C ∞

0 (R2)×C ∞
0 (R2)

)
, we obtain∫

R2

(
∇un∇ψ̃ +V (x)unψ̃

)
dx =

∫
R2

g(ṽn)ψ̃

|x|a
dx (4.112)

and ∫
R2

(
∇ṽn∇φ +V (x)ṽnφ

)
dx =

∫
R2

f (un)φ̃

|x|b
dx. (4.113)

Taking limits in (4.112) and (4.113), as n→+∞, by Lemma 4.20 and the fact that
⋃+∞

n=1 En∩(
C ∞

0 (R2)×C ∞
0 (R2)

)
is dense in E, we obtain∫

R2

(
∇u∇ψ̃ +V (x)uψ̃

)
dx =

∫
R2

g(ṽ)ψ̃
|x|a

dx, for all ψ ∈W (q)

and ∫
R2

(
∇ṽ∇φ +V (x)ṽφ

)
dx =

∫
R2

f (u)φ̃
|x|b

dx, for all φ ∈W (q).

Thus, (u, ṽ) ∈ E is a weak solution of (4.1). It remains to prove that (u, ṽ) is a nontrivial weak
solution. Assume, by contradiction, that u≡ 0 (which implies that ṽ≡ 0). Thus, we can assume
that

un→ 0 and ṽn→ 0 in Lr(R2), for all r ≥ 1. (4.114)
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From Lemma 4.31, we can assume without loss of generality that

‖un‖(q) ≤M2 =
2m0π1/2(1−b/2)1/p

α
1/p
0

, for all n ∈ N.

Note that, α0Mp
2 /α∗q +b/2 < 1. Chosen r1 > 1 such that α0r1Mp

2 /α∗q +b/2 < 1. From (A1) and
(A4), there exists C > 0 such that

| f (s)| ≤ |s|+C|s|
(
er1α0|s|p−1

)
, for all s ∈ R. (4.115)

Using (4.115), Hölder’s inequality with r2 > 1 such that α0r1r2Mp
2 /α∗q + r2b/2 < 1 and Lemma

4.14, we have∫
R2

f (un)un

|x|b
dx≤

∫
R2

|un|2

|x|b
dx+C

∫
R2
|un|2

(
er1α0|un|p−1

)
|x|b

dx

≤
(∫

B1

1
|x|r2b dx

)1/r2
‖un‖2

2r′2
+‖un‖2

2 +C‖un‖2
2r′2

(∫
R2

(
eα0r1r2|un|p−1

)
|x|r2b dx

)1/r2

≤C1‖un‖2
2r′2

+‖un‖2
2 +C1‖un‖2

2r′2
,

where in the last inequality we have used Proposition 4.8. From (4.114), we get∫
R2

f (un)un

|x|b
→ 0.

Taking (0, ṽn) and (un,0) in (4.111), we have∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx =

∫
R2

g(ṽn)ṽn

|x|a
dx =

∫
R2

f (un)un

|x|b
dx.

Thus, ∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx→ 0 and

∫
R2

g(ṽn)ṽn

|x|a
dx→ 0.

By (A2), we obtain ∫
R2

F(un)

|x|b
dx→ 0 and

∫
R2

G(ṽn)

|x|a
dx→ 0.

Finally, we conclude that

J(un, ṽn) =
∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx−

∫
R2

F(un)

|x|b
dx−

∫
R2

G(ṽn)

|x|a
dx→ 0,

which gives a contradiction with (4.110). Thus (u, ṽ) is a nontrivial weak solution. �
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CHAPTER

5
HAMILTONIAN SYSTEMS WITH CRITICAL
EXPONENTIAL GROWTH AND COERCIVE

POTENTIALS

In this chapter we discuss the existence of nontrivial solutions for the Hamiltonian system{
−∆v+V (x)v = Q1(x) f (u), x ∈ R2,

−∆u+V (x)u = Q2(x)g(v), x ∈ R2,
(5.1)

where V,Q1,Q2 are continuous functions and the nonlinearities f and g possess critical exponen-
tial growth.

5.1 Introduction and main result
Since we are interested in find solutions with p,q lying on the exponential critical

hyperbola, we consider p > 1 and q = p/(p−1). We make the following assumption on (V ):

(V ) V ∈ C (R2,R), V (x)≥V0 > 0 for all x ∈ R2 and there exists a≥ 0 such that

liminf
|x|→∞

V (x)
|x|a

> 0.

For i = 1,2 we assume

(Qi) Qi ∈ C (R2\{0},R) , Qi(x) > 0 for x 6= 0 and there exists di <
a

max{p,q}−1
− 1 and

bi >−2 such that

0 < lim
|x|→0

Qi(x)
|x|bi

<+∞ and limsup
|x|→∞

Qi(x)
|x|di

<+∞.

Concerning the functions f and g, we suppose the following assumptions:
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(B1) f ,g∈C (R), f (s)= o(sη1) and g(s)= o(sη2), as s→ 0, where η1 =max{1/(q−1),min{p,q}}
and η2 = max{1/(p−1),min{p,q}}.

(B2) There exist constants µ > 2 and ν > 2 such that

0 < µF(s)≤ s f (s) and 0 < νG(s)≤ sg(s), for all s 6= 0,

where F(s) =
∫ s

0 f (t)dt and G(s) =
∫ s

0 g(t)dt.

(B3) There exist positive constants M and s0 such that

0 < F(s)≤M| f (s)| and 0 < G(s)≤M|g(s)|, for all |s|> s0.

(B4) There exists α0 > 0 such that

lim
|s|→∞

| f (s)|
eα|s|p =

+∞, α < α0

0, α > α0.

(B5) There exists β0 > 0 such that

lim
|s|→∞

|g(s)|
eβ |s|q =

+∞, β < β0

0, β > β0.

(B6) The following limits holds

lim
|s|→+∞

s f (s)
eα0|s|p

=+∞ and lim
|s|→+∞

sg(s)
eβ0|s|q

=+∞.

(B7) For bi given by (Qi), i = 1,2 and α0, β0 given by (B4) and (B5), respectively, then

(
α0 min{1,1+ b1

2 }
(1+ b1

2 )
2

)1/p
>
(

β0

min{1,1+ b2
2 }

)1/q

or (
β0 min{1,1+ b2

2 }
(1+ b2

2 )
2

)1/q
>
(

α0

min{1,1+ b1
2 }

)1/p
.

Remark 5.1. In (B1), we have η1 > 1 and η2 > 0, this imply that f (s) = g(s) = o(s), as s→ 0.

Next we state the main result of this chapter.

Theorem 5.2. Suppose that V satisfies (V ), Qi satisfy (Qi) for i = 1,2 and the nonlinearities f

and g satisfy (B1)− (B7) . Then, (5.1) possesses a nontrivial weak solution.
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5.2 Preliminaries
We define the following Lorentz-Sobolev space W 1L2,s

V (R2) as the closure of the set

{u ∈ C ∞
0 (R2) : ‖∇u‖s

2,s +‖V 1/su‖s
2,s <+∞},

with respect to the quasinorm

‖u‖W 1L2,s
V (R2)

:=
(
‖∇u‖s

2,s +‖V 1/su‖s
2,s

)1/s
.

We denote the space W 1L2,s
V (R2) as E(s) and the quasinorm ‖ · ‖W 1L2,s

V (R2)
as ‖ · ‖(s).

Lemma 5.3. (See Cassani and Tarsi (2009).) If u ∈ L2,s(R2). Then,

|u∗(r)| ≤
( s

2
)1/s‖u‖2,s

r1/2 , for all r > 0.

By Lemma 5.3, for all u ∈W 1L2,s
V (R2), we have(

V 1/su
)∗
(r)≤

( s
2

)1/s‖u‖(s)
r1/2 , for all r > 0. (5.2)

Let A be a measurable set in R2. We denote

W 1L2,s
V (A) := {u|A : u ∈W 1L2,s

V (R2)},

for each λ ≥ 1 and i = 1,2, we set

Lλ (A,Qi) := {u :
∫

A
Qi(x)|u|λ dx <+∞}

endowed with the norm

‖u‖Lλ (A,Qi)
=

[∫
A

Qi(x)|u|λ dx
]1/λ

.

In particular, we denote Lλ (A,1) := Lλ (A), ‖u‖Lλ (A) = ‖u‖Lλ (A,1) and ‖u‖λ = ‖u‖Lλ (R2).

Lemma 5.4. Let 1 ≤ λ < +∞, s > 1 and 0 < r < R < +∞. For i = 1,2, the embedding
W 1L2,s

V (BR\Br) ↪→ Lλ (BR\Br,Qi) is compact.

Proof. We observe that, there exist D1 > 0 and D2 > 0 such that D1≤V (x)≤D2 for all x∈BR\Br.
Thus, the quasinorms of W 1L2,s

V (BR\Br) and W 1L2,s(BR\Br) are equivalents. Moreover, arguing
as in the proof of Lemma 2.38, the space W 1L2,s(BR\Br) is compactly embedded in Lλ (BR\Br)

for all λ ≥ 1. Thus,

W 1L2,s
V (BR\Br)↪→Lλ (BR\Br), for all λ ≥ 1.

Since Qi is continuous on R2\{0} there exist D3 > 0 and D4 > 0 such that D3 ≤ Qi(x)≤ D4 for
all x ∈ BR\Br, i = 1,2. Thus,

Lλ (BR\Br) ↪→ Lλ (BR\Br,Qi), for all λ ≥ 1,

and the proof follows. �
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Lemma 5.5. Let 1≤ λ <+∞, s > 1 and R > 0. Then, the embedding W 1L2,s
V (BR) ↪→ Lλ (BR)

is continuous.

Proof. Since V (x)≥V0 for all x ∈ R2, as in the proof of Proposition 2.48, the space W 1L2,s
V (BR)

is continuously embedded in W 1L2,s(BR). Arguing as in Lemma 2.38, the proof follows.

�

From conditions (V ) and (Qi) for i = 1,2 there exist positive constants C1,C2,C3,C4,R0

and r0 such that
C1|x|a ≤V (x), for all |x| ≥ R0, (5.3)

Qi(x)≤C2|x|di, for all |x| ≥ R0, i = 1,2 (5.4)

and
C3|x|bi ≤ Qi(x)≤C4|x|bi, for all 0 < |x|< r0, i = 1,2. (5.5)

Proposition 5.6. Assume (V ) and (Qi) for i = 1,2 and let s = q or s = p. Then, the following
embeddings

W 1L2,s
V (R2)↪→Lλ (R2,Qi), for all λ ≥min{p,q}

are compact.

Proof. We prove for s = q and Q1, without loss of generality, we consider the case where q≥ 2.
This implies that min{p,q}= p = q/(q−1). In order to prove the continuity of the embedding,
it is sufficient to show that

Sλ := inf
u 6=0

u∈E(q)

‖u‖(q)
‖u‖Lλ (R2,Q1)

= inf
‖u‖

Lλ (R2,Q1)
=1

u∈E(q)

‖u‖(q) > 0.

In fact, on the contrary, there exists a sequence (un) such that

‖un‖Lλ (R2,Q1)
= 1 and ‖un‖(q) = on(1). (5.6)

Thus,∫
R2

Q1(x)|un|λ dx =
∫
|x|≤r

Q1(x)|un|λ dx+
∫

r≤|x|≤R
Q1(x)|un|λ dx =

∫
|x|≥R

Q(x)|un|λ dx (5.7)

where R > R0 and 0 < r < r0 will be determined later on. Using (5.4), we have∫
|x|≥R

Q1(x)|un|λ dx≤C2

∫
|x|≥R
|x|d1|un|λ dx

=C2C−q/λ

1

∫
|x|≥R
|x|d1− aλ

q

(
(C1|x|a)1/q|un|

)λ

dx

≤C2C−q/λ

1

∫
|x|≥R
|x|d1− aλ

q

(
V 1/q|un|

)λ

dx
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Using Hardy-Littlewood inequality, we have

∫
|x|≥R

Q1(x)|un|λ dx≤C−q/λ

1 C2

∫ +∞

0

(χ{|x|≥R}

|x|
aλ

q −d1

)∗
(r)
((

V 1/q|un|
)λ
)∗

(r)dr.

Since d1 +1 < a
q−1 and q

q−1 ≤ λ , then, d1 +1 < aλ

q . Moreover, a direct calculation shows that

(χ{|x|≥R}

|x|β
)∗

=
( 1

R2 + r/π

)β/2
, for all β > 0

Using Lemma 5.3, we obtain

∫
|x|≥R

Q1(x)|un|λ dx≤C−q/λ

1 C2π

(q
2

)1/q ∫ +∞

0

( 1
R2 + r/π

) aλ

2q−
d1
2 ‖(V 1/qun)

λ‖2,q

r1/2 dr

≤C−q/λ

1 C2π

(q
2

)1/q
‖un‖λ

(q)

∫ +∞

0

( 1
R2 + r/π

) aλ

2q−
d1
2 1

r1/2 dr.

Note that 1
2 +δ = aλ

2q −
d1
2 for some δ > 0, Then, for some constant CR,q depending on R and q

we have

∫
|x|≥R

Q1(x)|un|λ dx≤C
(q

2

)1/q
‖un‖λ

(q)

∫ +∞

0

( 1
R2 + r/π

) 1
2+δ 1

r1/2 dr =CR,q‖un‖λ

(q) = on(1).

(5.8)
Now, we estimate

∫
|x|≤r Q(x)|un|λ dx with 0 < r < min{r0,1}. We consider two cases:

Case 1: b1 > 0. Using (5.5) and Lemma 5.5, we have∫
|x|≤r

Q1(x)|un|λ dx≤C4

∫
|x|≤r
|x|b1|un|λ dx

≤C4rb1

∫
|x|≤1
|un|λ dx

≤C4rb1‖un‖λ

(q)

= on(1).

Case 2: −2 < b1 ≤ 0. By (5.5), we have∫
|x|≤r

Q1(x)|un|λ dx≤C4

∫
|x|≤r
|x|b1|un|λ dx

Taking δ = δ (b1)> 0 such that 0 < b̄1 = δ −b1 < 2, we can write

∫
|x|≤r

Q1(x)|un|λ dx≤C4

∫
|x|≤r
|x|b1|un|λ dx≤C4

∫
|x|≤r

|un|λ

|x|b̄1
dx
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Taking θ > 1 such that 0 < b̄1θ < 2 and using Hölder’s inequality, we find∫
|x|≤r

Q1(x)|un|λ dx≤C4

(∫
|x|≤r

dx
|x|b̄1θ

)1/θ(∫
|x|≤r
|un|λθ ′ dx

)1/θ ′

≤C4

(2πr2−b̄1θ

2− b̄1θ

)1/θ

‖un‖λ

Lλθ ′(Br)

≤C4

(2πr2−b̄1θ

2− b̄1θ

)1/θ

‖un‖λ

(q)

≤C4

( 2π

2− b̄1θ

)1/θ

‖un‖λ

(q),

where we have used Lemma 5.5 and the fact that 0 < r ≤ 1. From (5.6), we have∫
|x|≤r

Q1(x)|un|λ dx = on(1). (5.9)

Thus, from (5.8) and (5.9) in (5.7), we get∫
R2

Q1(x)|un|λ dx =
∫

r≤|x|≤R
Q1(x)|un|λ dx+on(1).

Using Lemma 5.4 and (5.6), for a subsequence (not renamed), we obtain∫
R2

Q1(x)|un|λ dx→ 0, as n→+∞

which contradicts (5.6). Now, we prove the compactness. Let (un) be a sequence in W 1L2,q
V (R2)

such that un ⇀ 0 weakly in W 1L2,q
V (R2). Then, there exists C0 > 0 such that ‖un‖(q) ≤C0. From

(5.8), we have∫
|x|≥R

Q1(x)|un|λ dx≤C−q/λ

1 C2π

(q
2

)1/q
‖un‖λ

(q)

∫
∞

0

( 1
R2 + r/π

) 1
2+δ 1

r1/2 dr =
C

R2δ
.

We observe there exists C > 0 such that∫
∞

0

( 1
R2 + r/π

) 1
2+δ 1

r1/2 dr =
√

π

R2δ

∫
∞

0

( 1
1+ z

) 1
2+δ 1

z1/2 dz =
C

R2δ
.

Thus, for given ε > 0 there exists R > 0 such that∫
|x|≥R

Q1(x)|un|λ dx≤ ε

3
. (5.10)

On the other hand, from the proofs of cases 1 and 2, there exits C > 0 such that∫
|x|≤r

Q1(x)|un|λ dx≤Crb1, if b1 > 0

and ∫
|x|≤r

Q1(x)|un|λ dx≤Cr
2−b̄1θ

θ , if −2 < b1 ≤ 0.
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where b̄1θ < 2. Thus, we can find r > 0 sufficiently small such that∫
|x|≤r

Q1(x)|un|λ dx≤ ε

3
, (5.11)

Moreover, by Lemma 5.4, there exists n0 ∈ N such that∫
r≤|x|≤R

Q1(x)|un|λ dx≤ ε

3
, for all n≥ n0 (5.12)

From (5.10), (5.11) and (5.12), we have∫
R2

Q1(x)|un|λ dx≤ ε, for all n≥ n0,

and the proof is complete. �

5.2.1 A Trudinger-Moser type inequality

In the following, we present a Trudinger-Moser type inequality suitable for the spaces
introduced in this chapter.

Lemma 5.7. (See Lam and Lu (2012).) Let 0≤ λ < 1, 1 < s < ∞ and a(t,r) be a nonnegative
measurable function on R× [0,∞) such that

a(t,r)≤ 1, 0 < t < r

and
sup
r>0

([∫ 0

−∞

+
∫ +∞

r

](
a(t,r)

)s/s−1 dt
)(s−1)/s

:= γ <+∞

Then, there exists C =C(γ,s) such that for every nonnegative function ψ satisfying

∫ +∞

−∞

ψ(t)s dt ≤ 1,

we have ∫ +∞

0
e−Φ(r) dr ≤C,

where
Φ(r) = λ r−λ

(∫ +∞

−∞

ψ(t)a(t,r)dt
)s/(s−1)

.

In the next result, we follow Lu and Tang (2016) to prove a version of singular Trudinger-
Moser inequality for E(s).

Proposition 5.8. Let s = p or s = q and i∈ {1,2}. Then, there exists C =C(s,Qi,V,α)> 0 such
that

sup
‖u‖(s)≤1

∫
R2

Qi(x)
(

eα|u|s/(s−1)
−1
)

dx≤C, 0 < α < α
∗
s,bi

,

where
α
∗
s,bi

= min
{
(
√

4π)s/(s−1),(
√

4π)s/(s−1)
(

1+
bi

2

)}
.
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Proof. Consider u ∈ E(s) with ‖u‖(s) ≤ 1. Take

I =
∫
R2

Qi(x)
(

eα|u|s/(s−1)
−1
)

dx = I1 + I2, (5.13)

where

I1 =
∫
|x|≤R

Qi(x)
(

eα|u|s/(s−1)
−1
)

dx and I2 =
∫
|x|≥R

Qi(x)
(

eα|u|s/(s−1)
−1
)

dx,

for R >
√

2πR2
0. From (5.3) and (5.4), we have

I2 =
∫
|x|≥R

Qi(x)
(

eα|u|s/(s−1)
−1
)

dx≤C2

∫
|x|≥R
|x|di

(
eα|u|s/(s−1)

−1
)

dx

=C2

∫
|x|≥R
|x|di

+∞

∑
j=1

α j|u| js/(s−1)

j!
dx

=C2

+∞

∑
j=1

α j

j!

∫
|x|≥R
|x|di|u| js/(s−1) dx

=C2

+∞

∑
j=1

α j

j!

∫
|x|≥R
|x|di− ja

s−1

(
|x|a/s|u|

) js/(s−1)
dx

≤C2

+∞

∑
j=1

α j

C j/(s−1)
1 j!

∫
|x|≥R
|x|di− ja

s−1

(
V 1/s|u|

) js/(s−1)
dx.

Using Hardy-Littlewood inequality, we have

∫
|x|≥R
|x|di− ja

s−1

(
V 1/s|u|

) js/(s−1)
dx≤

∫ +∞

0

( χ{|x|≥R}

|x|
ja

s−1−di

)∗
(r)
((

V 1/s|u|
) js

s−1
)∗

(r)dr.

Since di <
a

max{p,q}−1 −1, then, we have di <
a

s−1 −1 for s = p or s = q. Thus, using Lemma
5.3, we obtain

∫
|x|≥R
|x|di− ja

s−1

(
V 1/s|u|

) js/(s−1)
dx≤ π

( s
2

)1/s ∫ +∞

0

( 1
R2 + r/π

) ja
2(s−1)−

di
2 ‖(V 1/su)

js
s−1‖2,s

r1/2 dr

≤ π

( s
2

)1/s
‖u‖

js
s−1
(s)

∫ +∞

0

( 1
R2 + r/π

) ja
2(s−1)−

di
2 1

r1/2 dr.

Observe that there exists δ0 > 0 such that 1
2 +δ0 =

a
2(s−1) −

di
2 . Then,

∫ +∞

0

( 1
R2 + r/π

) ja
2(s−1)−

di
2 1

r1/2 dr ≤
∫ +∞

0

( 1
R2 + r/π

) a
2(s−1)−

di
2 1

r1/2 dr

≤
∫ +∞

0

( 1
R2 + r/π

) 1
2+δ0 1

r1/2 dr

=C4(a,di,s,R).
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Thus,

I2 =
∫
|x|≥R

Qi(x)
(

eα|u|s/(s−1)
−1
)

dx≤C2C4π
( s

2
)1/s

+∞

∑
j=1

α j‖u‖
js

s−1
(s)

C j/(s−1)
1 j!

≤C2C4π
( s

2
)1/s

+∞

∑
j=1

1
j!

(
α

C1/(s−1)
1

) j

=C5(R,α,a,di,s).

Now, we estimate the integral I1. Now, we estimate the integral I1.

Case 1: bi ≥ 0. In this case, by continuity of Qi, there exists C6 =C6(Qi,R)> 0 such that

I1 ≤C6

∫
|x|<R

(eα|u|s/(s−1)
−1)dx =C6

∫
R2

χ{|x|≤R}
(
eα|u|s/(s−1)

−1
)

dx.

By Hardy-Littlehood inequality and the fact that (χ{|x|≤R})
∗ = χ{0≤t≤πR2}, we have

I1 ≤C6

∫
πR2

0

(
eα|u∗(t)|s/(s−1)

−1
)

dt ≤C6

∫
πR2

0
eα|u∗(t)|s/(s−1)

dt. (5.14)

From Lemmas 2 and 3 in Cassani and Tarsi (2009), for each u ∈W 1L2,s(R2), we have

u∗(r)−u∗(πR2)≤ 1√
4π

{∫
πR2

r

|∇u|∗(θ)√
θ

dθ +
1√
r

∫ r

0
|∇u|∗(θ)dθ

}
. (5.15)

Consider v defined by

v(r) :=

{
u∗(r)−u∗(πR2), 0≤ r ≤ πR2,

0, r > πR2.
(5.16)

Observe that

(m+n)q ≤ mq +q2q−1mq−1n+q2q−1nq, for m,n≥ 0, q > 1.

Given ε > 0, by Young’s inequality, we have

(m+n)q ≤ mq +
(

εq
q−1

) q−1
q

mq−1q2q−1
(

εq
q−1

) 1−q
q

n+q2q−1nq ≤ (1+ ε)mq +Cε,qnq.

Then,
|u∗(r)|s/(s−1) ≤ (1+ ε)|v(r)|s/(s−1)+Cε,s|u∗(πR2)|s/(s−1). (5.17)

Now, we estimate u∗(πR2). From (5.2), we have

V 1/s
0 u∗(πR2)≤

(
V 1/su

)∗
(πR2)≤

( s
2

)1/s ‖u‖s

π1/2R
≤
( s

2

)1/s 1
π1/2R0

Thus, there exists CR0 =C(R0,s)> 0 such that

|u∗(r)|s/(s−1) ≤ (1+ ε)|v(r)|s/(s−1)+CR0 . (5.18)



136 Chapter 5. Hamiltonian systems with critical exponential growth and coercive potentials

From (5.14) and (5.18), we find

I1 ≤C6

∫
πR2

0
eα(1+ε)|v(t)|s/(s−1)+CR dt ≤C6eCR0

∫
πR2

0
eα(1+ε)|v(t)|s/(s−1)

dt.

Taking t = πR2e−r,

I1 ≤C6πR2eCR0

∫ +∞

0
eα(1+ε)|v(πR2e−r)|s/(s−1)−r dr.

Taking θ = πR2e−t in (5.15), we obtain

v(πR2e−r)≤
√

πR2
√

4π

{∫ r

0
|∇u|∗(πR2e−t)e−t/2 dt + er/2

∫ +∞

r
|∇u|∗(πR2e−t)e−t dt

}
.

(5.19)
Since α < α∗s,bi

=
√

4π
s/(s−1)

(bi ≥ 0), we can find ε > 0 sufficiently small such that(
α(1+ ε)

)(s−1)/s
<
√

4π . Then,

(
α(1+ ε)

)s−1/sv(πR2e−r)≤
√

πR2
{∫ r

0
|∇u|∗(πR2e−t)e−t/2 dt

+ er/2
∫ +∞

r
|∇u|∗(πR2e−t)e−t dt

}
,

which implies (
α(1+ ε)

)s−1/sv(πR2e−r)≤
∫ +∞

−∞

ψ(t)a(t,r)dt, (5.20)

where

a(t,r) :=


0, t ≤ 0,
e(r−t)/2, r < t,

1, 0 < t ≤ r

(5.21)

and

ψ(t) :=

{ √
πR2|∇u|∗(πR2e−t)e−t/2, t ≥ 0,

0, t < 0.
(5.22)

Note that, [∫ 0

−∞

+
∫ +∞

r

](
a(t,r)

)s/s−1 dt =
2(s−1)

s
(5.23)

and ∫ +∞

−∞

ψ(t)s dt =
(
πR2)s/2

∫ +∞

0

(
|∇u|∗(πR2e−t)

)se−st/2 dt.

Taking r = πR2e−t , we obtain

∫ +∞

−∞

ψ(t)s dt =
∫

πR2

0

(
|∇u|∗(r)r1/2)s dr

r
≤ ‖∇u‖2,s ≤ ‖u‖(s) ≤ 1. (5.24)

By Lemma 5.7, we have ∫ +∞

0
e−Φ(r) dr ≤C,
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where
Φ(r) = r−

(∫ +∞

−∞

ψ(t)a(t,r)dt
)s/(s−1)

. (5.25)

From (5.20) and (5.25), we get

I1 ≤CR

∫ +∞

0
eα(1+ε)|v(πR2e−r)|s/(s−1)−r dr ≤CR

∫ +∞

0
e−Φ(r) dr =C7.

Case 2: bi < 0. Using (5.5) and the continuity of Qi, there exists CQi > 0 such that

I1 =
∫
|x|<r0

Qi(x)
(

eα|u|s/(s−1)
−1
)

dx+
∫

r0≤|x|<R
Qi(x)

(
eα|u|s/(s−1)

−1
)

dx

≤C3

∫
|x|<R
|x|bi

(
eα|u|s/(s−1)

−1
)

dx+CQi

∫
|x|<R

(
eα|u|s/(s−1)

−1
)

dx

≤C3

∫
|x|<R
|x|bi

(
eα|u|s/(s−1)

−1
)

dx+C7,

where we use the case 1 in the last integral. By Hardy-Littlewood inequality, we have

I1 ≤C3

∫
πR2

0
πtbi/2(eα|u∗(t)|s/(s−1)

−1
)

dt +C7.

Using (5.18), we obtain

I1 ≤C3πeCR0

∫
πR2

0
tb1/2eα(1+ε)|v(t)|s/(s−1)+CR0 dt +C7.

Taking t = πR2e−r, we find

I1 ≤C3(πR2)1+bieCR

∫ +∞

0
eα(1+ε)|v(πR2e−r)|s/(s−1)−(1+bi/2)r dr+C7. (5.26)

We can find ε = ε(α,s) > 0 such that
(

α(1+ ε)
)(s−1)/s

<
√

4π

(
1+

bi

2

)(s−1)/s
. Thus,

replacing in (5.18), we obtain(
α(1+ ε)

)(s−1)/sv(πR2e−r)≤
(

1+
bi

2

)(s−1)/s ∫ +∞

−∞

ψ(t)a(t,r)dt, (5.27)

where a(t,r) and ψ(t) are given by (5.21) and (5.22) respectively. By Lemma 5.7 with
0 < λ = (1+bi/2)< 1, (5.23) and (5.24), we have∫ +∞

0
e−Φ(r) dr ≤C, (5.28)

where
Φ(r) = (1+bi/2)r− (1+bi/2)

(∫ +∞

−∞

ψ(t)a(t,r)dt
)s/(s−1)

.

Using (5.27) and (5.28) in (5.26), we obtain

I1 ≤C3(πR2)1+bi/2eCR0

∫ +∞

0
eα(1+ε)|v(πR2e−r)|s/(s−1)−(1+bi/2)r dr+C7

≤C3(πR2)1+bi/2eCR0

∫ +∞

0
e(1+bi/2)

(∫+∞

−∞
ψ(t)a(t,r)dt

)(s−1)/s
−(1+bi/2)r dr+C7

=C3(πR2)1+bi/2eCR0

∫ +∞

0
e−Φ(r) dr+C7

=C8.
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Thus, using estimates I1 and I2 the proof follows.

�

Proposition 5.9. Let s > 1 and (un) be a sequence in E(s) and let u ∈ E(s) be such that

un→ u in E(s).

Then, there exist a subsequence (unk) and a function h ∈ E(s) such that

|unk(x)| ≤ h(x), for all k ≥ 1 and almost everywhere in R2.

Proof. Since E(s) ↪→W 1L2,s(R2), we can assume that un→ u almost everywhere in R2. Moreover,
we can extract a subsequence (unk), denoted by (uk) such that

‖uk+1−uk‖(s) ≤
1

22k , for all k ≥ 1.

Set

gn(x) =
n

∑
k=1
|uk+1(x)−uk(x)|.

Then, (gn) ∈ E(s) and ‖gn‖(s) ≤ 1 for all n≥ 1. That is

‖∇gn‖2,s ≤ 1 and ‖V 1/sgn‖2,s ≤ 1, for all n≥ 1.

Since (V 1/sgn(x)) is nondecreasing almost everywhere in R2 and supn≥1 ‖V 1/sgn‖2,s ≤ 1, by
Proposition 2.31, there exists g0 ∈ L2,s(R2) such that

V 1/sgn→ g0 in L2,s(R2). (5.29)

From (V ) and arguing as Proposition 2.48, we obtain

‖gn−
g0

V 1/s
‖2,s = ‖(V 1/sgn−g0)

1
V 1/s
‖2,s ≤

2

V 1/s
0

‖V 1/sgn−g0‖2,s

Thus, gn→ g0/V 1/s in L2,s(R2). Moreover, using the fact that (∇gn) is bounded in
(
L2,s(R2)

)2,
from Lemma 2.43, gn→ g0/V 1/s in W 1L2,s(R2). In particular,

‖∇(gn−
g0

V 1/s
)‖2,s→ 0

and using (5.29), we get
‖V 1/s(gn−

g0

V 1/s

)
‖2,s→ 0.

Thus,
gn→ g := g0/V 1/s in E(s).

Using again the fact that E(s) ↪→W 1L2,s(R2), we can assume that gn→ g almost everywhere in
R2. On the other hand, for l > k ≥ 2, we have

|ul(x)−uk(x)| ≤ |ul(x)−ul−1(x)|+ · · ·+ |uk+1(x)−uk(x)| ≤ gl−1(x)−gk−1(x)≤ gl−1(x).
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Taking l→+∞, we obtain

|u(x)−uk(x)| ≤ g(x) almost everywhere in R2.

Thus,
|uk(x)| ≤ h(x) almost everywhere in R2.

where h := g+ |u| ∈ E(s). �

We observe that, by Proposition 2.57, we can construct a map tilde from E(q) to E(p)

and the set E = E(q)×E(p) endowed with the operations given by (2.60) and (2.61) satisfies the
same properties given by Lemma 2.54.

5.3 Variational setting
In this section, we describe the functional J : E → R, associated to the system (5.1)

which is given by

J(u, ṽ) =
∫
R2

(
∇u∇ṽ+V (x)uṽ

)
dx−

∫
R2

Q1(x)F(u)dx−
∫
R2

Q2(x)G(ṽ)dx.

Proposition 5.10. Assume (B1),(B4) and (B5). Then, the functional J is well defined and
belongs to the class C 1(E,R) with

J′(u, ṽ)(φ , ψ̃) =
∫
R2

(
∇u∇ψ̃ +V (x)uψ̃ +∇ṽ∇φ +V (x)ṽφ

)
dx (5.30)

−
∫
R2

Q1(x) f (u)φ dx−
∫
R2

Q2(x)g(ṽ)ψ̃ dx,

for all (φ , ψ̃) ∈ E.

Proof. Let u ∈ E(q) and ṽ ∈ E(p). By Hölder’s inequality in Lorentz spaces, we have∣∣∣∫
R2

∇u∇ṽ dx
∣∣∣≤ ‖∇u‖2,q‖∇ṽ‖2,p ≤ ‖u‖(q)‖ṽ‖(p) (5.31)

and∣∣∣∫
R2

V (x)uṽ dx
∣∣∣= ∣∣∣∫

R2
V (x)1/quV (x)1/pṽ dx

∣∣∣≤ ‖V 1/qu‖2,q‖V 1/pṽ‖2,p ≤ ‖u‖(q)‖ṽ‖(p). (5.32)

Using (B1) and (B4), there exists C > 0 such that

| f (s)| ≤ |s|+C(e(α0+1)|s|p−1), for all s ∈ R. (5.33)

Thus, there exists C > 0 such that

|F(u)| ≤C|u|2 +C(e(α0+1)|u|p−1).

Using Proposition 5.8 and Corollary 5.6, we obtain∣∣∣∫
R2

Q1(x)F(u)dx
∣∣∣≤C

∫
R2

Q1(x)|u|2 dx+C
∫
R2

Q1(x)(e2(α0+1)|u|p−1)dx <+∞. (5.34)
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Similarly, Q2(x)G(ṽ) belongs to L1(R2) for all ṽ ∈ E(p). Thus, from (5.31), (5.32) and (5.34),
we conclude that J is well defined in E. Moreover, using Proposition 5.9 and arguing as in proof
of Lemma 4.13, we can prove that J ∈ C 1(E,R) and J′ is given by (5.30). �

We say that (u, ṽ) ∈ E is a weak solution of (5.1) if∫
R2

(
∇u∇ψ̃ +V (x)uψ̃ +∇ṽ∇φ +V (x)ṽφ

)
dx =

∫
R2

Q1(x) f (u)φ dx+
∫
R2

Q2(x)g(ṽ)ψ̃ dx,

for all (φ , ψ̃) ∈ E. Consequently, critical points of the functional J correspond to the weak
solutions of (5.1).

Lemma 5.11. Let s = q or s = p, α > 0 and r ≥ 1. Then, if u ∈ E(s) is such that ‖u‖(s) ≤M

with αMs/(s−1) < α∗q,bi
, then there exists a positive constant C =C(α,M,r,s) such that∫

R2
Qi(x)|u|r

(
eα|u|s/(s−1)

−1
)

dx≤C‖u‖r
(s).

Proof. Consider the case s = q and s/(s−1) = p. Choose t > 1 close to 1 such that tαMp < α∗q,bi

and set t ′ = t/(t−1). Thus, using Hölder’s inequality and Lemma 4.14, we obtain∫
R2

Qi(x)|u|r
(
eα|u|p−1

)
dx≤

(∫
R2

Qi(x)
(
eα|u|p−1

)t dx
)1/t(∫

R2
Qi(x)|u|rt ′ dx

)1/t ′

≤
(∫

R2
Qi(x)

(
etα|u|p−1

)
dx
)1/t(∫

R2
Qi(x)|u|rt ′ dx

)1/t ′

≤
(∫

R2
Qi(x)

(
e

tαMp(
|u|
‖u‖(q)

)p

−1
)

dx
)1/t
‖u‖r

Lrt′(R2,Qi)
.

By Proposition 5.8, we have∫
R2

Qi(x)|u|r
(
eα|u|p−1

)
dx≤C‖u‖r

Lrt′(R2,Qi)
.

Finally, we use the continuous embedding E(q) ↪→ Lrt ′(R2,Qi). �

Lemma 5.12. Let s = q or s = p and {un ∈W (s) : ‖un‖(s) = 1} be a sequence converging weakly
to the zero function in E(s). Then, for every 0 < α < α∗q,bi

, we can find a subsequence (not
renamed) such that

lim
n→∞

∫
R2

Qi(x)
(
eα|un|s/(s−1)

−1
)

dx = 0.

Proof. We prove in the case s = q. Let ε > 0 such that α + ε < α∗q,bi
. Since,

lim
|t|→0

eα|t|p−1
|t|p

= 1 and lim
|t|→∞

eα|t|p−1
|t|
(
e(α+ε)|t|p−1

) = 0,

then, there exists c > 0 such that

eα|t|p−1≤ c|t|p + c|t|(e(α+ε)|t|p−1), for all t ∈ R.
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Hence,∫
R2

Qi(x)
(
eα|un|p−1

)
dx≤ c

∫
R2

Qi(x)|un|p dx+ c
∫
R2

Qi(x)|un|
(
e(α+ε)|un|p−1

)
dx. (5.35)

By Hölder’s inequality and Lemma 4.14, in the second integral of (5.35), we get∫
R2

Qi(x)|un|
(
e(α+ε)|un|p−1

)
dx≤ ‖un‖Lt′(R2,Qi)

(∫
R2

Qi(x)
(
et(α+ε)|un|p−1)

)
dx
)1/t

.

Since ‖un‖(s) = 1 and t(α + ε)< α∗q,bi
, by Proposition 5.8, we obtain c > 0 such that∫

R2
Qi(x)|un|(e(α+ε)|un|p−1)dx≤ c‖un‖Lp(R2,Qi)

+ c‖un‖Lt′(R2,Qi)
. (5.36)

Replacing (5.36) in (5.35), using the compact embeddings of E(q) in Lp(R2,Qi) and in Lt ′(R2,Qi)

and the fact that un ⇀ 0 in E(q), we get a subsequence (not renamed) such that

lim
n→∞

∫
R2

Qi(x)
(
eα|un|p−1

)
dx = 0.

�

Denote

λQ1 := inf
u∈E(q)\0

‖u‖2
(q)∫

R2 Q1(x)u2/dx
and λ̃Q2 := inf

ũ∈E(p)\0

‖ũ‖2
(p)∫

R2 Q2(x)ũ2 dx
. (5.37)

By Hölder’s inequality and continuous embeddings we have that λQ1 and λ̃Q2 are positives
numbers.

5.3.1 On Palais-Smale sequences

Lemma 5.13. Assume (B1)− (B2),(B4)− (B5) and let (un, ṽn) be a sequence in E such that
|J(un, ṽn)| ≤ d and

|J′(un, ṽn)(φ , ψ̃)| ≤ εn‖(φ , ψ̃)‖, for all φ ,ψ ∈ {0,un,vn}. (5.38)

Then, ‖(un, ṽn)‖ ≤ c for every n ∈ N and for some positive constant c.

Proof. Taking (φ , ψ̃) = (un, ṽn) in (5.38), we have∣∣∣2∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx−

∫
R2

Q1(x) f (un)un dx−
∫
R2

Q2(x)g(ṽn)ṽn dx
∣∣∣≤ εn‖(un, ṽn)‖.

Thus,∫
R2

Q1(x) f (un)un dx+
∫
R2

Q2(x)g(ṽn)ṽn dx≤
∣∣∣2∫

R2

(
∇un∇ṽn +V (x)unṽn

)
dx
∣∣∣+ εn‖(un, ṽn)‖.

Since∫
R2

(
∇un∇ṽn +V (x)unṽn

)
dx = J(un, ṽn)+

∫
R2

Q1(x)F(un)dx+
∫
R2

Q2(x)G(ṽn)dx,
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we get∫
R2

Q1(x) f (un)un dx+
∫
R2

Q2(x)g(ṽn)ṽn dx

≤ 2d +2
∫
R2

Q1(x)F(un)dx+2
∫
R2

Q2(x)G(ṽn)dx+ εn‖(un, ṽn)‖.

Using (B2), we obtain ∫
R2

Q1(x)F(un)dx≤ 1
µ

∫
R2

Q1(x) f (un)un dx

and ∫
R2

Q2(x)G(ṽn)dx≤ 1
ν

∫
R2

Q2(x)g(ṽn)ṽn dx.

Hence,(
1− 2

µ

)∫
R2

Q1(x) f (un)un dx+
(

1− 2
ν

)∫
R2

Q2(x)g(ṽn)ṽn ≤ 2d + εn‖(un, ṽn)‖.

Thus, there exists c > 0 such that∫
R2

Q1(x) f (un)un dx≤ c+ εn‖(un, ṽn)‖ and
∫
R2

Q2(x)g(ṽn)ṽn dx≤ c+ εn‖(un, ṽn)‖. (5.39)

On the other hand, taking (φ , ψ̃) = (vn,0) in (5.38), we get∫
R2

(
∇vn∇ṽn +V (x)vnṽn

)
dx≤

∫
R2

Q1(x) f (un)vn dx+ εn‖(vn,0)‖.

This means,
‖vn‖2

(q) ≤
∫
R2

Q1(x) f (un)vn dx+ εn‖vn‖(q).

Set
Tn =

vn

‖vn‖(q)
.

Then, we can write
‖vn‖(q) ≤

∫
R2

Q1(x) f (un)Tn + εn. (5.40)

Let α1 > α0 and 0 < α2 < α∗q,b1
. By (B1) and (B4), there exists λ > 0 such that

| f (s)| ≤ λeα1|s|p, for all s ∈ R. (5.41)

Applying Lemma 3.10 in (5.40) with s = | f
(
un(x)

)
|/λ , t = α

1/p
2 |Tn(x)|, r = p and r′ = q, we

obtain

‖vn‖(q) ≤
λ

α
1/p
2

∫
R2

Q1(x)
| f (un)|

λ
α

1/p
2 |Tn|dx+ εn

≤ λ

α
1/p
2

[∫
R2

Q1(x)(eα2|Tn|p−1)dx+
1

qλ q

∫
{x∈R2:| f (un)

λ
|≤e1/pq}

Q1(x)| f (un)|q dx (5.42)

+
1
λ

∫
{x∈R2:| f (un)

λ
|≥e1/pq}

Q1(x)| f (un)| ln1/p | f (un)|
λ

dx

]
+ εn.
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From (5.41), we have∫
{x∈R2:| f (un)

λ
|≥e1/pq}

Q1(x)| f (un)| ln1/p | f (un)|
λ

dx≤ α
1/p
1

∫
R2

Q1(x) f (un)un dx. (5.43)

Since ‖Tn‖(q) = 1 and 0 < α2 < α∗q,b1
, by Proposition 5.8, there exists C > 0 such that∫

R2
Q1(x)

(
eα2|Tn|p−1

)
dx≤C. (5.44)

Now, we estimate the second integral in (5.42). From (B1), given ε̄ > 0 there exists δ > 0 such
that

| f (t)| ≤ ε̄
1

q−1 |t|
1

q−1 , for all |t| ≤ δ ,

which implies
| f (t)|q ≤ ε̄| f (t)t|, for all |t| ≤ δ . (5.45)

Note also that

| f (t)|q−1 ≤ (λe
1
pq )q−1 |t|

δ
, for all {|t| ≥ δ : | f (t)| ≤ λe

1
pq }. (5.46)

Then, from (5.45) and (5.46), we get

| f (t)|q ≤ c̄| f (t)t|, for all {t ∈ R : | f (t)| ≤ λe
1
pq }, (5.47)

where c̄ = max{(λe
1
pq )q−1/δ , ε̄}. By (5.39), there exist c1 > 0 such that∫

{x∈R2: | f (un)|
λ
≤e1/pq}

Q1(x)| f (un)|q dx≤ c̄
∫
{x∈R2:| f (un)

λ
|≤e1/pq}

Q1(x) f (un)un dx

≤ c1 + εn‖(un, ṽn)‖

which together with (5.43) and (5.44) in (5.42), gives that there exist c > 0 such that

‖vn‖(q) ≤ c+ c
∫
R2

Q1(x) f (un)un dx+ εn‖(un, ṽn)‖. (5.48)

On the other hand, taking (φ , ψ̃) = (0, ũn) in (5.38), we can obtain d > 0 such that

‖ũn‖(q) ≤ d +d
∫
R2

Q2(x)g(ṽn)ṽn dx+ εn‖(un, ṽn)‖. (5.49)

Using (5.48), (5.49) and (5.39), there exist k > 0 such that

‖(un, ṽn)‖ ≤ k+ εn‖(un, ṽn)‖.

Hence, (un, ṽn) is a bounded sequence. �

Remark 5.14. In the previous Lemma, using the fact that (un, ṽn) is a bounded sequence in E

and replacing in (5.39), we can find a positive constant C such that∫
R2

Q1(x) f (un)un dx≤C and
∫
R2

Q2(x)g(ṽn)ṽn dx≤C, for all n≥ 1.
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The following lemmas can be proved arguing as in Souza (2012), Souza (2011) and
using some estimates developed as in proof of Proposition 5.8.

Lemma 5.15. Let (un, ṽn) be a sequence in E such that J(un, ṽn)→ c, J′n(un, ṽn)→ 0 and (un, ṽn)

converges weakly to (u, ṽ) in E. Then, up to a subsequence

Q1(x) f (un)→ Q1(x) f (u) and Q2(x)g(ṽn)→ Q2(x)g(ṽ) in L1
loc(R

2).

Lemma 5.16. Assume (H1)− (H4) and let (un, ṽn) be a sequence in En such that J(un, ṽn)→ c,
J′n(un, ṽn)→ 0 and (un, ṽn)⇀ (u, ṽ) in E. Then, up to a subsequence

Q1(x)F(un)→ Q1(x)F(u) and Q2(x)G(ṽn)→ Q2(x)G(ṽ) in L1(R2).

5.3.2 Linking geometry

Let {ei}i∈N be an orthonormal basis of eigenfunctions for the operator (−∆+V ) in
H1

V (R2) := {u ∈ H1(R2) :
∫
R2 V (x)u2 dx < ∞}. By Lemma 3 in Cassani and Tarsi (2015), the

sequence {ei}i∈N provides also a dense system in E(q) and E(p). For each n ∈ N, consider the
following finite dimensional subspace:

En := Span{e1, . . . ,en}.

We define the set

En,m := {um := ζmu : u ∈ En}.

where ζm is given by (4.12) and m = m(n) as in Lemma 4.12. Let y(x) = Mk,q;d(x) and z̃(x) =

Mk,p;d(x). By Lemma 4.11, ‖(y, z̃)‖= 2 and z̃ 6=−ỹ. Set

Fn,m = En,m×En,m⊕R(y, z̃),

E+
n,m := {(v, ṽ) : v ∈ En,m} and E−n,m := {(v,−ṽ) : v ∈ En,m}.

Consider

∂Bρ ∩F+
n,m ⊂ Fn,m, where F+

n,m := E+
n,m⊕R(y, z̃)

and

Qn,m = {w+ s(y, z̃) : w = (ω,−ω̃) ∈ E−n,m,‖w‖ ≤ R0,0≤ s≤ R1},

where ρ , R0 and R1 are positives numbers which will be chosen in the following lemmas.

Lemma 5.17. There exist ρ,σ > 0 such that J(z)≥ σ , for all z ∈ ∂Bρ ∩F+
n,m.

Proof. Given ε > 0 for assumption (B1) and (B4), there exists C > 0 such that

|F(s)| ≤ ε|s|2 +C|s|4
(
e2α0|s|p−1

)
, for all s ∈ R (5.50)
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Let (u+ sy, ũ+ sz̃) ∈ F+
n,m with ‖(u+ sy, ũ+ sz̃)‖ ≤ ρ1 with ρ1 > 0 sufficiently small such that

2α0ρ
p
1 < α∗q,b1

. By Lemma 5.11, there exists C > 0 such that∫
R2

Q1(x)F(u+ sy)dx≤ ε

∫
R2

Q1(x)|u+ sy|2 dx+C‖u+ sy‖4
(q). (5.51)

From (5.51) and (5.37), we have∫
R2

Q1(x)F(u+ sy)dx≤ ε

λQ1

‖u+ sy‖2
(q)+C‖u+ sy‖4

(q).

By Remark 4.13,∫
R2

Q1(x)F(u+ sy)dx≤ ε

λQ1

(
‖u‖2

(q)+ s2‖y‖2
(q)

)
+C
(
‖u‖4

(q)+ s4‖y‖4
(q)

)
. (5.52)

Similarly, we obtain∫
R2

Q2(x)G(ũ+ sz̃)dx≤ ε

λ̃Q2

(
‖ũ‖2

(p)+ s2‖z̃‖2
(p)

)
+C
(
‖ũ‖4

(p)+ s4‖z̃‖4
(p)

)
. (5.53)

Thus,

J(u+ sy, ũ+ sz̃) =
∫
R2

(
∇(u+ sy)∇(ũ+ sz̃)+V (x)(u+ sy)(ũ+ sz̃)

)
dx

−
∫
R2

Q1(x)F(u+ sy)dx−
∫
R2

Q2(x)G(ũ+ sz̃)dx

≥ s2
∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx

+
1
2
‖u‖2

(q)−
ε

λQ1

(
‖u‖2

(q)+ s2‖y‖2
(q)

)
−C
(
‖u‖4

(q)+ s4‖y‖4
(q)

)
+

1
2
‖ũ‖2

(p)−
ε

λ̃Q2

(
‖ũ‖2

(p)+ s2‖z̃‖2
(p)

)
−C
(
‖ũ‖4

(p)+ s4‖z̃‖4
(p)

)
.

Since ‖y‖(q) = ‖z̃‖(p) = 1, we have

J(u+ sy, ũ+ sz̃)≥ s2
∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx

+
(

1− ε

λQ1

−C‖u‖2
(q)

)
‖u‖2

(q)−
ε

λQ1

s2−Cs4

+
(

1− ε

λ̃Q2

−C‖ũ‖2
(p)

)
‖ũ‖2

(p)−
ε

λ̃Q2

s2−Cs4.

Then,

J(u+ sy, ũ+ sz̃)≥ s2
(∫

R2

(
∇y∇z̃+V (x)yz̃

)
dx− εC1−C2s2

)
+
(

2− εC1−C2ρ
2
2

)
ρ

2
2 .

where ‖u‖(q) = ‖ũ‖(p) = ρ2 > 0. Using Lemma 4.11, there exists C3 > 0 such that∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx≥C3, for k sufficiently large.
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Taking ρ1 > 0, ρ2 > 0, s1 > 0 and ε > 0 sufficiently small such that C3− εC1−C2s2
1 ≥C3/2

and 2− εC1−C2ρ2
2 ≥ 0 and setting ρ = min{ρ1,ρ2,s1}, there exists σ > 0 such that

J(u+ sy, ũ+ sz̃)≥ C3ρ2

2
= σ ,

where ‖(u+ sy, ũ+ sz̃)‖= ρ . �

Lemma 5.18. There exist R0 > 0 and R1 > ρ (independent of n and k) such that J(ϑ)≤ 0, for
all ϑ ∈ ∂Qn,m, where

Qn,m = {w+ s(y, z̃) : w = (ω,−ω̃) ∈ E−n,m,‖w‖ ≤ R0,0≤ s≤ R1}

Proof. Notice that the boundary ∂Qn,m of the set Qn,m is composed of three parts.

(i) If ϑ ∈ ∂Q∩E−n,m, ϑ = (ω,−ω̃), and hence

J(ω,−ω̃) =−
∫
R2

(
∇ω∇ω̃ +V (x)ωω̃

)
dx−

∫
R2

Q1(x)F(ω)dx−
∫
R2

Q2(x)G(−ω̃)dx≤ 0

because Q1F and Q2G are nonnegative functions.

(ii) If ϑ = (ω,−ω̃) +̃ s(y, z̃) = (ω + sy,−ω̃ + sz̃) ∈ ∂Qn,m, with ‖(ω,−ω̃)‖ = R0 and 0 ≤
s≤ R1, we obtain

J(ω + sy,−ω̃ + sz̃) =
∫
R2

(
∇(ω + sy)∇(−ω̃ + sz̃)+V (x)(ω + sy)(−ω̃ + sz̃)

)
dx

−
∫
R2

Q1(x)F(ω + sy)dx−
∫
R2

Q2(x)G(−ω̃ + sz̃)dx.

Using the fact that Q1F and Q2G are nonnegatives and Remark 4.13, we obtain

J(ω + sy,−ω̃ + sz̃)≤−‖ω‖2
(q)+ s2

∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx

≤−‖ω‖2
(q)+ s2‖y‖(q)‖z̃‖(p)

≤−
R2

0
2

+R2
1.

Hence, J(ϑ)≤ 0 provided R0 ≥
√

2R1. Thus, we can take R0 =
√

2R1, for R1 > 0 to be
determined later.

(iii) If ϑ = (ω,−ω̃) + R1(y, z̃), with ‖(ω,−ω̃)‖ ≤ R0 for R0 given by case (ii), then

J(ω +R1y,−ω̃ +R1z̃) =−‖ω‖2
(q)+R2

1

∫
R2

(
∇y∇z̃+V (x)yz̃

)
dx (5.54)

−
∫
R2

Q1(x)F(ω +R1y)dx−
∫
R2

Q2(x)G(−ω̃ +R1z̃)dx.

From (B1) and (B2), there exists C > 0 such that

F(t)≥C|t|θ − t2 and G(t)≥C|t|θ − t2, for all t ∈ R.
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By the last inequalities and Remark 4.13, we have

−
∫
R2

Q1(x)F(ω +R1y)dx

≤
∫
R2

Q1(x)|ω +R1y|2 dx−C
∫
R2

Q1(x)|ω +R1y|θ dx

≤
∫
R2

Q1(x)|ω|2 dx+R2
1

∫
R2

Q1(x)|y|2 dx−C
∫
R2

Q1(x)|ω|θ dx−CRθ
1

∫
R2

Q1(x)|y|θ dx

≤ 1
λQ1

‖ω‖2
(q)+

R2
1

λQ1

‖y‖2
(q)−CRθ

1

∫
R2

Q1(x)|y|θ dx

≤
R2

0
2λQ1

+
R2

1
λQ1

−CRθ
1

∫
R2

Q1(x)|y|θ dx.

Since y 6= 0 and R0 =
√

2R1, for some C > 0 we obtain

−
∫
R2

Q1(x)F(ω +R1y)dx≤
2R2

1
λQ1

−CRθ
1 . (5.55)

Similarly, we have

−
∫
R2

Q2(x)G(−ω̃ +R1z̃)dx≤
2R2

1

λ̃Q2

−CRθ
1 . (5.56)

Then, using (5.55) and (5.56) in (5.54), we obtain

J(ω +R1y,−ω̃ +R1z̃)≤ R2
1

(
1+

2
λQ1

+
2

λ̃Q2

)
−CRθ

1 .

Since θ > 2, taking R1 sufficiently large, we get J(ϑ)≤ 0.

�

5.3.3 Approximation finite dimensional

Let consider

Γn,m = {γ ∈ C (Qn,m,Fn,m) : γ(ϑ) = ϑ , for all ϑ ∈ ∂Qn,m}.

and set

cn,m = inf
γ∈Γn,m

max
ϑ∈Qn,m

J(γ(ϑ)). (5.57)

Lemma 5.19. (See Cassani and Tarsi (2009).) The sets Qn,m and ∂Bρ ∩F+
n,m link, that is

γ(Qn,m)∩ (∂Bρ ∩E+
n ) 6= /0, for all γ ∈ Γn,m, (5.58)

for ρ > 0 given by Lemma 5.17.
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Thus, combining Lemma 5.17 with (5.57), we have

cn,m ≥ σ , for all n≥ 1. (5.59)

Note also that, since the identity map I : Qn,m→Fn,m belongs to Γn,m, for ϑ = (ω,−ω̃)+s(y, z̃)∈
Qn,m, we have

cn,m ≤ sup
ϑ∈Qn,m

J(ϑ)≤ R2
1. (5.60)

Denote Jn,m the restriction of J to the finite-dimensional space Fn,m. Then, applying the Linking
theorem for Jn,m and noticing (5.59) and (5.60), we get the following result:

Proposition 5.20. For each n,m ≥ 1 (m = m(n) as in Lemma 4.12), the functional Jn,m has a
Palais-Smale sequence at level cn,m. More precisely, there is a sequence (u j, ṽ j)⊂ Fn,m such that

Jn,m(u j, ṽ j)→ cn,m ∈ [σ ,R2
1]

and
J′|Fn,m

(u j, ṽ j)→ 0.

Proposition 5.21. Assume that f and g satisfy (B1)− (B5) and let (u j, ṽ j) be a sequence in Fn,m

given by Proposition 5.20. Then,

(i) The sequence (u j, ṽ j) is bounded in Fn,m and there exists C > 0 such that for each j ≥ 1,
we have ∫

R2
Q1(x) f (u j)u j dx≤C,

∫
R2

Q2(x)g(ṽ j)dx≤C,∫
R2

Q1(x)F(u j)dx≤C, and
∫
R2

Q2(x)G(ṽ j)dx≤C.

(ii) For each sequence (u j, ṽ j)in Fn,m there exist (un,m, ṽn,m) ∈ Fn,m and a subsequence (not
renamed) (u j, ṽ j) such that

(u j, ṽ j)→ (un,m, ṽn,m) in Fn,m.

Furthermore,
Jn,m(un,m, ṽn,m) = cn,m ∈ [σ ,R2

1]

and
J′|Fn,m

(un,m, ṽn,m) = 0.

(iii) The sequence (un,m, ṽn,m) is bounded in E and there exists C > 0 such that∫
R2

Q1(x) f (un,m)un,m dx≤C,
∫
R2

Q2(x)g(ṽn,m)ṽn,m dx≤C,

∫
R2

Q1(x)F(un,m)dx≤C and
∫
R2

Q2(x)G(ṽn,m)dx≤C,

for all n ∈ N.
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Proof.

(i) By Lemma 5.13, the sequence (u j, ṽ j) is bounded in Fn,m. Moreover, by Remark 5.14 and
(B2), we get the estimates given in (i).

(ii) Since (u j, ṽ j) is bounded, Fn,m is finite dimensional and J is of the class C 1, the assertion
follows.

(iii) Using the sequence (un,m, ṽn,m) in Lemma 5.13, for the case en,m = 0, we get the bounded-
ness of the sequence, using again Remark 5.14 and (B2), we obtain the estimates.

�

5.3.4 Estimate of the minimax level

Proposition 5.22. There exists k ∈ N such that for any sequence

(un,m, ṽn,m) ∈ R(Mk,q; 1
m
,Mk,p; 1

m
)⊕E−

such that

(i) The sequence (un,m, ṽn,m) is bounded in E

(ii) The sequence (un,m, ṽn,m) converges weakly to (0,0) in E and

un,m→ 0, ṽn,m→ 0 in Lλ (R2), for all λ ≥min{p,q}.

Then,

sup
n∈N

J((un,m, ṽn,m))<
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
.

Proof. On the contrary, for each k fixed in N, there exist a sequence (τn,k), a nonnegative
sequence εn→ 0 and a sequence

ηn,k = τn,k(Mk,q; 1
m
,Mk,p; 1

m
)+(un,k,−ũn,k), un,k ∈ En,m

such that

‖ηn,k‖ ≤C =C(k),

ηn,k ⇀ 0 in E,

τn,kMk,q; 1
m
+un,k→ 0, τn,kMk,p; 1

m
− ũn,k→ 0 in Lλ (R2), for all λ ≥min{p,q},

and

J(ηn,k)≥
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− εn.
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In particular, we have

sup
t≥0

J(tηn,k)≥ J(ηn,k)≥
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− εn.

Since J(0) = 0 and J(tηn,k)→−∞ and t→+∞, there exists t̂ > 0 such that

sup
t≥0

J(tηn,k) = max
t≥0

J(tηn,k) = J(t̂ηn,k).

We can assume without loss of generality that t̂ = 1, that is

J′(ηn,k)ηn,k = 0 and J(ηn,k)≥
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− εn.

Then,

2
∫
R2

∇(τn,kMk,q; 1
m
+un,k)∇(τn,kMk,p; 1

m
− ũn,k)dx

+2
∫
R2

V (x)(τn,kMk,q; 1
m
+un,k)(τn,kMk,p; 1

m
− ũn,k)dx

=
∫
R2

Q1(x) f (τn,kMk,q; 1
m
+un,k)(τn,kMk,q; 1

m
+un,k)dx

+
∫
R2

Q2(x)g(τn,kMk,p; 1
m
− ũn,k)(τn,kMk,p; 1

m
− ũn,k)dx

and ∫
R2

∇(τn,kMk,q; 1
m
+un,k)∇(τn,kMk,p; 1

m
− ũn,k)dx

+
∫
R2

V (x)(τn,kMk,q; 1
m
+un,k)(τn,kMk,p; 1

m
− ũn,k)dx

−
∫
R2

Q1(x)F(τn,kMk,q; 1
m
+un,k)dx−

∫
R2

Q2(x)G(τn,kMk,p; 1
m
− ũn,k)dx

≥
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− εn.

Since ‖Mk,q; 1
m
‖(q) = ‖Mk,p; 1

m
‖(p) = 1, ‖un,k‖(q) = ‖ũn,k‖(p) and the support sets of un,k, ũn,k and

the concentrating functions are disjoint, we obtain

2τ
2
n,k ≥ 2(τ2

n,k−‖un,k‖2
(q))≥

∫
R2

Q1(x) f (τn,kMk,q; 1
m
+un,k)(τn,kMk,q; 1

m
+un,k)dx

+
∫
R2

Q2(x)g(τn,kMk,p; 1
m
− ũn,k)(τn,kMk,p; 1

m
− ũn,k)dx (5.61)

and

τ
2
n,k−‖un,k‖2

(q)−
∫
R2

Q1(x)F(τn,kMk,q; 1
m
+un,k)−

∫
R2

Q2(x)G(τn,kMk,p; 1
m
− ũn,k)dx

≥
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− εn. (5.62)

Since F and G are nonnegative functions from (5.62), we obtain

τ
2
n,k ≥

(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− εn.
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Denote

sn,k := τ
2
n,k−

(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
≥−εn. (5.63)

From (H5), for any R > 0 there exists TR > 0 such that

t f (t)≥ Reα0t p
and tg(t)≥ Reβ0tq

, for all |t| ≥ TR.

Thus, ∫
R2

Q1(x) f (τn,kMk,q; 1
m
+un,k)(τn,kMk,q; 1

m
+un,k)dx

+
∫
R2

Q2(x)g(τn,kMk,p; 1
m
− ũn,k)(τn,kMk,p; 1

m
− ũn,k)dx (5.64)

≥ R
∫
{x∈B 1

m
:|τn,kM

k,q; 1
m
|≥TR}

Q1(x)e
α0|τn,kM

k,q; 1
m
|p

dx

+R
∫
{x∈B 1

m
:|τn,kM

k,p; 1
m }
|≥TR}

Q2(x)e
β0|τn,kM

k,p; 1
m
|q

dx,

where we have used the fact that the functions un,k and ũn,k are zero in B 1
m

. From the definition
of the concentrate function, we have

Mk,q; 1
m
(x) =

(logk)
q−1

q

√
4π

(1−δk,q, 1
m
)

q−1
q , if |x| ≤ 1

m
√

k
.

From (5.63), we can fixed n sufficiently large such that

τn,kMk,q; 1
m
(x) = τn,k

(logk)
q−1

q

√
4π

(1−δk,q, 1
m
)

q−1
q ≥ TR, if |x| ≤ 1

m
√

k
,

for k ≥ kR, for some kR sufficiently large. Note that kR is independent of n. From (5.11), (5.61)
and (5.64), we get

τ
2
n,k ≥

R
2

∫
B 1

m
√

k

Q1(x)e
α0τ

p
n,k

lnk
(4π)p/2 (1−δ

k,q, 1
m
)
dx+

R
2

∫
B 1

m
√

k

Q2(x)e
β0τ

q
n,k

lnk
(4π)q/2 (1−δ

k,p, 1
m
)
dx

≥ πRC3e
α0τ

p
n,k

lnk
(4π)p/2 (1−δ

k,q, 1
m
)

2(2+b1)m2+b1k(1+b1/2)
+

πRC3e
β0τ

q
n,k

lnk
(4π)q/2 (1−δ

k,p, 1
m
)

2(2+b2)m2+b2k(1+b2/2)
(5.65)

≥ πR
2(2+b0)m2+b0

(
e

α0τ
p
n,k

lnk
(4π)p/2 (1−δ

k,q, 1
m
)−(1+ b1

2 ) lnk
+ e

β0τ
q
n,k

lnk
(4π)q/2 (1−δ

k,p, 1
m
)−(1+ b2

2 ) lnk)
where b0 = max{b1,b2}. We observe that until now, we have fixed n (and consequently, m),
where k can be arbitrarily chosen, sufficiently large and independent of n (that is k ≥ KR). By
(4.11), we have

|δk,q, 1
m
| ≤C‖V‖L∞(B1/m)

1
mq/2 lnk

and |δk,p, 1
m
| ≤C‖V‖L∞(B1/m)

1
mp/2 lnk

.

Taking n0 ∈ N such that

(1−δk,q, 1
m
)> 1−C

V1

lnk
and (1−δk,p, 1

m
)> 1−C

V1

lnk
, where V1 = ‖V‖L∞(B1) ≥V0.
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for all n≥ n0 and for some C > 0. Replacing in (5.65), we get

τ
2
n,k ≥

πRC3

2(2+b0)m2+b0

(
e

α0τ
p
n,k

lnk
(4π)p/2 (1−C V1

lnk )−(1+
b1
2 ) lnk

+ e
β0τ

q
n,k

lnk
(4π)q/2 (1−C V1

lnk )−(1+
b2
2 ) lnk

)
.

Using Young’s inequality X p/p+Y q/q≥ XY in last inequality with

X = p1/pe
α0
p τ

p
n,k

lnk
(4π)p/2 (1−C V1

lnk )−
(1+b1/2) lnk

p and Y = q1/qe
β0
q τ

q
n,k

lnk
(4π)q/2 (1−C V1

lnk )−
(1+b2/2) lnk

q ,

we obtain

τ
2
n,k ≥

πRC3 p1/pq1/q

(2+b0)m2+b0
e

(
α0
p τ

p
n,k

lnk
(4π)p/2 +

β0
q τ

q
n,k

lnk
(4π)q/2

)
(1−C V1

lnk )−
(1+b1/2) lnk

p − (1+b2/2) lnk
q . (5.66)

By Young’s inequality again, we get

α0

p
τ

p
n,k

lnk
(4π)p/2 +

β0

q
τ

q
n,k

lnk
(4π)q/2 ≥ α

1/p
0 β

1/q
0

τ2
n,k

4π
lnk.

Replacing in (5.66), we have

τ
2
n,k ≥

πRC3 p1/pq1/q

(2+b0)m2+b0
eα

1/p
0 β

1/q
0

τ2
n,k
4π

(1−C V1
lnk ) lnk− (1+b1/2) lnk

p − (1+b2/2) lnk
q . (5.67)

for all n≥ n0 and k ≥ kR. We now choose k depending on n. For any n arbitrarily large, take

R := 2C3m3+b0(2+b0), where m = m(n)

and consequently, k ≥ kR = k(n). With this choice, we obtain

τ
2
n,k ≥ πmp1/pq1/qe[α

1/p
0 β

1/q
0

τ2
n,k
4π

(1−C V1
lnk )−

(1+b1/2)
p − (1+b2/2)

q ] lnk. (5.68)

If the sequence {τ2
n,k}n≥n0 is unbounded, using (5.68), we get a contradiction. Thus, the sequence

{τ2
n,k}n≥n0 is a bounded. In particular, without loss of generality, we can assume that there exists

s ∈ R such that

τ
2
n,k = sn,k +

(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
→ s+

(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
.

Moreover, by (5.63), s≥ 0. From (H6), we can suppose without loss of generality that(
α0 min{1,1+ b1

2 }
(1+ b1

2 )
2

)1/p
>
(

β0

min{1,1+ b2
2 }

)1/q
. (5.69)

By (5.65), we have

τ
2
n,k ≥ πme

α0τ
p
n,k

lnk
(4π)p/2 (1−C V1

lnk )−(1+b1/2) lnk
, (5.70)

writing

τ
2
n,k = s+

(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
+on(1),
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and replacing in (5.70), we obtain

τ
2
n,k ≥ πme

α0

(
s+
(α∗q,b1

α0

)1/p(α∗p,b2
β0

)1/q
+on(1)

)p/2
lnk

(4π)p/2 (1−C V1
lnk )−(1+b1/2) lnk

≥ πme
α0

(
4π(min{1,1+b1/2})1/p(min{1+b2/2})1/q

α
1/p
0 β

1/q
0

+on(1)
)p/2

lnk
(4π)p/2 (1−C V1

lnk )−(1+b1/2) lnk

≥ πme

(
α

1/2
0 (min{1,1+b1/2})1/2(min{1,1+b2/2})p/2q

β
p/2q
0

+on(1)
)

lnk(1−C V1
lnk )−(1+b1/2) lnk

≥ πme

(
α

1/2
0 (min{1,1+b1/2})1/2(min{1,1+b2/2})p/2q

β
p/2q
0

+on(1)−(1+b1/2)
)

lnk
×

e
−
(CV1α

1/2
0 (min{1,1+b1/2})1/2(min{1,1+b2/2})p/2q

β
p/2q
0

+on(1)
)
.

From (5.69),

0 < δ :=
α

1/2
0 (min{1,1+b1/2})1/2(min{1,1+b2/2})p/2q

β
p/2q
0

− (1+b1/2).

Thus,

s+
(α∗q,b1

α0

) 1
p
(α∗p,b2

β0

) 1
q
+on(1)≥ πme

(
δ+on(1)

)
lnk−

(CV1α
1/2
0 (min{1,1+b1/2})1/2(min{1,1+b2/2})p/2q

β
p/2q
0

+on(1)
)
.

Taking n→+∞ (and hence k→+∞), we get a contradiction and the claim of the Proposition
follows.

5.4 Proof of Theorem 5.2

Proof. From Proposition 5.21, there exists a sequence (un,m, ṽn,m) ∈ Fn,m such that

Jn,m(un,m, ṽn,m) = cn,m ∈ [σ ,R2
1] (5.71)

and

J′n,m(un,m, ṽn,m)(φ , ψ̃) = 0, for all (φ , ψ̃) ∈ Fn,m. (5.72)

Moreover, the sequence (un,m, ṽn,m) is bounded in E. Thus, we can assume that there exists
(u, ṽ) ∈ E such that (un,m, ṽn,m)⇀ (u,v) in E and

un,m→ u and ṽn,m→ ṽ in Lr(R2), for all r ≥min{p,q}.

Taking (0, ψ̃) and (φ ,0) in (5.72) with (φ , ψ̃) ∈ Fn,m∩
(
C ∞

0 (R2)×C ∞
0 (R2)

)
, we have∫

R2

(
∇un,m∇ψ̃ +V (x)un,mψ̃

)
dx =

∫
R2

Q2(x)g(ṽn,m)ψ̃ dx
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and ∫
R2

(
∇ṽn,m∇φ +V (x)ṽn,mφ

)
dx =

∫
R2

Q1(x) f (un,m)φ dx.

Taking the limit as n→ +∞ and using Lemma 5.16 and the fact that
⋃+∞

n=1 Fn,m∩
(
C ∞

0 (R2)×
C ∞

0 (R2)
)

is dense in E, we obtain∫
R2

(
∇u∇ψ̃ +V (x)uψ̃

)
dx =

∫
R2

Q2(x)g(ṽ)ψ̃ dx, for all ψ̃ ∈ E(p)

and ∫
R2

(
∇ṽ∇φ +V (x)ṽφ

)
dx =

∫
R2

Q1(x) f (u)φ dx, for all φ ∈ E(q).

Thus, (u, ṽ) ∈ E is a solution of the system. Now, we prove that (u, ṽ) is a nontrivial solution.
Assume by contradiction that (u≡ 0 which implies that ṽ≡ 0). Thus, we can assume that

un,m→ 0 and ṽn,m→ 0 in Lr(R2), for all r ≥min{p,q}. (5.73)

Taking (0, ṽn,m) and (un,m,0) in (5.72), we have∫
R2

(
∇un,m∇ṽn,m +V (x)un,mṽn,m

)
dx =

∫
R2

Q2(x)g(ṽn,m)ṽn,m dx =
∫
R2

Q1(x) f (un,m)un,m dx.

(5.74)
By Proposition 5.22, there exists δ ′ > 0 such that

cn,m ≤
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
−δ

′.

Moreover, there exists δ > 0 such that[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

4

][
1− δα0

α∗q,b1

]−1/p

≤
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

8
(5.75)

and [(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

4

][
1− δβ0

α∗p,b2

]−1/q

≤
(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

8
.

Taking (vn,m,0) in (5.72), we obtain

‖vn,m‖2
(q) =

∫
R2

Q1(x) f (un,m)vn,m dx≤
∫
R2

Q1(x)| f (un,m)||vn,m|dx. (5.76)

Let

Vn,m =
(α∗q,b1

α0
−δ

)1/p vn,m

‖vn,m‖(q)
. (5.77)

Applying Lemma 3.10 in (5.76) with s = | f (un,m)|/α
1/p
0 , t = α

1/p
0 |Vn,m|, r = p and r′ = q, we

obtain(α∗q,b1

α0
−δ

)1/p
‖vn,m‖(q) ≤

∫
R2

Q1(x)| f (un,m)||Vn,m|dx

≤
∫
R2

Q1(x)(eα0|Vn,m|p−1)dx+
1

α
q/p
0 q

∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}
Q1(x)| f (un,m)|q dx (5.78)

+
1

α
1/p
0

∫
{x∈R2: | f (un,n)|

α
1/p
0

≤e1/pq}
Q1(x)| f (un,m)|

[
ln
( | f (un,m)|

α
1/p
0

)]1/p
dx.
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Note that Vn,m ⇀ 0 in E(q) and

‖Vn,m‖p
(q) <

α∗q,b1

α0
.

Thus, by Lemma 5.12, we have∫
R2

Q1(x)(eα0|Vn,m|p−1)dx = on(1). (5.79)

Now, we estimate the second integral of (5.78). From (B1), we can find C > 0 such that

| f (t)|q ≤C|t|q, for all {t ∈ R :
| f (t)|
α

1/p
0

≤ e1/pq}. (5.80)

Since we can suppose that un,m→ 0 in Lq(R2,Q1), then,∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}
Q1(x)| f (un,m)|q dx≤C

∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}
Q1(x)|un,m|q dx = on(1).

(5.81)
For

ξ =
δ ′min{α0,β0}

4
[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
−δ ′

] ,
by (B1) and (B4), there exists Cξ > 0 such that

| f (t)| ≤Cξ e(α0+ξ )|t|p, for all t ∈ R.

Hence,∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}
Q1(x)| f (un,m)|

[
ln
( | f (un,m)|

α
1/p
0

)]1/p
dx

≤
∫
R2

Q1(x)| f (un,m)|
[

ln
(Cξ e(α0+ξ )|un,m|p

α
1/p
0

)]1/p
dx (5.82)

≤
∫
R2

Q1(x)| f (un,m)|
[

ln1/p ( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m|

]
dx.

For each n ∈ N, denote

Tn :=
{

x ∈ R2 : ln1/p
( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m| ≤ (α0 +2ξ )1/p|un,m|

}
.

Thus,∫
R2

Q1(x)| f (un,m)|
[

ln1/p ( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m|

]
dx

≤
∫
R2\Tn

Q1(x)| f (un,m)|
[

ln1/p ( Cξ

α
1/p
0

)
+(α0 +ξ )1/p|un,m|

]
dx (5.83)

+(α0 +2ξ )1/p
∫

Tn

Q1(x) f (un,m)un,m dx

≤ ln1/p ( Cξ

α
1/p
0

)∫
R2\Tn

Q1(x)| f (un,m)|dx+(α0 +2ξ )1/p
∫
R2

Q1(x) f (un,m)un,m dx.
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Observe that

R2\Tn = {x ∈ R2 : |un,m|< d1}, where d1 =

ln1/p ( Cξ

α
1/p
0

)
(α0 +2ξ )1/p− (α0 +ξ )1/p

.

Thus,

R2\Tn ⊆ {x ∈ R2 : | f (un,m)| ≤ d2}, where d2 = max
|s|≤d1

| f (s)|.

By (B1), we can find a constant C > 0 such that | f (s)| ≤ C|s|min{p,q} for all s ∈ R such that
| f (s)| ≤ d2. Thus, by Lemma 5.6, we get∫

R2\Tn

Q1(x)| f (un,m)|dx≤C
∫
R2\Tn

Q1(x)|un,m|min{p,q} dx = on(1). (5.84)

From (5.82), (5.83) and (5.84), we obtain∫
{x∈R2: | f (un,m)|

α
1/p
0

≤e1/pq}
Q1(x)| f (un,m)|

[
ln
( | f (un,m)|

α
1/p
0

)]1/p
dx (5.85)

≤ (α0 +2ξ )1/p
∫
R2

Q1(x) f (un,m)un,m dx+on(1).

Using this, (5.79) and (5.81) in (5.78), we have

(α∗q,b1

α0
−δ

)1/p
‖vn,m‖(q) ≤

(
1+

2ξ

α0

)1/p ∫
R2

Q1(x) f (un,m)un,m dx+on(1). (5.86)

Taking (0, ũn,m) in (5.72), we find

‖ũn,m‖2
(p) =

∫
R2

Q2(x)g(ṽn,m)ũn,m dx.

Analogously, we can obtain

(α∗p,b2

β0
−δ

)1/q
‖ũn,m‖(p) ≤

(
1+

2ξ

β0

)1/q ∫
R2

Q2(x)g(ṽn,m)ṽn,m dx+on(1). (5.87)

By Lemma (5.16), we have∫
R2

Q1(x)F(un,m)dx→ 0 and
∫
R2

Q2(x)G(ṽn,m)dx→ 0, (5.88)

which implies ∫
R2

(
∇un,m∇ṽn,m +V (x)un,mṽn,m

)
dx = J(un,m, ṽn,m)+on(1).

Thus,∫
R2

Q1(x) f (un,m)un,m dx+
∫
R2

Q(x)g(ṽn,m)ṽn,m dx≤ 2
[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
−δ

′
]
+on(1).
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Using (5.86), (5.87) and the assumption on ξ , we have(α∗q,b1

α0
−δ

)1/p
‖vn,m‖(q)+

(α∗p,b2

β0
−δ

)1/q
‖ũn,m‖(p)

≤
(

1+
2ξ

α0

)1/p ∫
R2

Q1(x) f (un,m)un,m dx+
(

1+
2ξ

β0

)1/q ∫
R2

Q2(x)g(ṽn,m)ṽn,m dx+on(1)

≤
(

1+
2ξ

min{α0,β0}

)(∫
R2

Q1(x) f (un,m)un,m dx+
∫
R2

Q2(x)g(ṽn,m)ṽn,m dx
)
+on(1)

≤ 2
(

1+
2ξ

min{α0,β0}

)[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
−δ

′
]
+on(1)

≤ 2
[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

2

]
+on(1).

We can assume that(α∗q,b1

α0
−δ

)1/p
‖vn,m‖(q)+

(α∗p,b2

β0
−δ

)1/q
‖ũn,m‖(p) ≤ 2

[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

4

]
,

for all n ∈ N. Thus, we can assume

‖vn,m‖(q) ≤
[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

4

](α∗q,b1

α0
−δ

)−1/p

or

‖ũn,m‖(p) ≤
[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

4

](α∗p,b2

β0
−δ

)−1/q
.

Supposing the second and using (5.75), we have

‖ũn,m‖(p) ≤
(

β0

α∗p,b2

)1/q
[(α∗q,b1

α0

)1/p(α∗p,b2

β0

)1/q
− δ ′

8

]
≤
(α∗q,b1

α0

)1/p
− δ ′

8

(
β0

α∗p,b2

)1/q
.

In particular, α0‖un,m‖p
(q) < α∗p,b2

for all n ≥ 1. Thus, we can find r > 1 and η > 0 such that
r′ = r/(r−1)≥ 2 and

r(α0 +η)‖un,m‖p
(q) < α

∗
p,b2

. (5.89)

By (B1) and (B4), there exists C1 > 0 such that

| f (s)| ≤ |s|+C1
(
e(α0+η)|s|p−1

)
, for all s ∈ R.

By Hölder’s inequality , Lemma 4.14 and Proposition 5.8, we have∫
R2

Q1(x) f (un,m)un,m dx

≤
∫
R2

Q1(x)|un,m|2 dx+C1

∫
R2

Q1(x)|un,m|
(
e(α0+η)|un,m|p−1

)
dx

≤ ‖un,m‖L2(R2,Q1)
+C1‖un,m‖Lr′(R2,Q1)

∫
R2

Q1(x)
(
e(α0+η)|un,m|p−1

)r dx

≤ ‖un,m‖L2(R2,Q1)
+C1‖un,m‖Lr′(R2,Q1)

∫
R2

Q1(x)
(
er(α0+η)|un,m|p−1

)
dx

≤ ‖un,m‖L2(R2,Q1)
+C2‖un,m‖Lr′(R2,Q1)

.
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Using (5.73), we get ∫
R2

Q1(x) f (un,m)un,m dx→ 0.

Replacing in (5.74), we have∫
R2

(
∇un,m∇ṽn,m +V (x)un,mṽn,m

)
dx→ 0.

Combining this with (5.88), we get

J(uu,m, ṽn,m)→ 0,

which gives a contradiction with the fact that cn,m ≥ σ . Thus, (u, ṽ) is a nontrivial weak solution.

�
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CHAPTER

6
HAMILTONIAN SYSTEMS WITH

POTENTIALS WHICH CAN VANISH AT
INFINITY

In this chapter we study the following Hamiltonian system{
−∆u+V (x)u = g(v), x ∈ R2,

−∆v+V (x)v = f (u), x ∈ R2,
(6.1)

where the functions f and g possess critical exponential growth and the potential V can be vanish
at infinity.

6.1 Introduction

First, we recall the assumptions on V

(V1) V ∈ C (R2,R) is a radially symmetric positive function.

(V2) There exist constants a,b,R0,La and Lb, with 0 < a < 2, b ≤ a, R0 > 1, La ≥ Ra
0 and

LaRb−a
0 ≤ Lb ≤ L(2−b)/(2−a)

a π2(a−b)/(2−a), such that

La

|x|a
≤V (x)≤ Lb

|x|b
, for all |x| ≥ R0.

(V3) V (x) = 1 for all |x| ≤ 1 and V (x)≥ 1 for all 1 < |x|< R0, for R0 given by (V2).

Before stating the assumption on the nonlinearities of f and g, we define the energy
space which will be use to set the variational structure. Following Albuquerque, Ó and Medeiros
(2016), we let H1

V,rad(R
2) denote the subspace of the radially symmetric functions in the closure
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of C ∞
0 (R2) with respect to the norm

‖u‖= ‖u‖H1
V

:=
(∫

R2
|∇u|2 +V (x)u2 dx

)1/2
.

For 1≤ p <+∞, we define

Lp
V,rad(R

2) := {u : R2→ R;u is measurable, radial and
∫
R2

V (x)|u|p dx <+∞}

endowed with the norm

‖u‖Lp
V
=

(∫
R2

V (x)|u|p dx
)1/p

.

Thus,

H1
V,rad(R

2) = {u ∈ L2
V,rad(R

2) : |∇u| ∈ L2(R2)}.

We note that H1
V,rad(R

2) is a Hilbert space endowed with inner product

〈u,v〉 :=
∫
R2

(
∇u∇v+V (x)uv

)
dx, u,v ∈ H1

V,rad(R
2).

Now, we state a basic embedding result (see Su, Wang and Willem (2007a), Su, Wang and
Willem (2007b), for a proof).

Lemma 6.1. Suppose V satisfies (V1)− (V3). Taking R0,a and b given by (V2), consider a∗ =

(4+2a)/(2−a) and b∗ = 2(2−2b+a)/(2−a). Then,

(i) The embedding H1
V,rad(R

2) ↪→ Lp(R2) is continuous for a∗ ≤ p < ∞ and compact for
a∗ < p < ∞.

(ii) The embedding H1
V,rad(R

2) ↪→ Lp
V,rad(R

2) is continuous for b∗ ≤ p < ∞ and compact for
b∗ < p < ∞.

(iii) The embedding H1
V,rad(BR) ↪→ H1

0 (BR) is continuous for R≥ 1.

Remark 6.2. 1. As we will see further on (Lemma 6.14), conditions (V1)− (V3) will be
employed to show that we obtain Sobolev embedding inequalities as above with constants
that do not depend on La.

2. As a consequence of (iii) and Sobolev embedding theorem, the space H1
V,rad(R

2) is
compactly immersed in Lp(BR) for all 1≤ p <+∞.

Concerning the functions f and g, we suppose the following assumptions:

(H1) f ,g ∈ C (R) and f (s) = g(s) = 0 for all s≤ 0.

Taking b∗ ∈ R as in Lemma 6.1, consider
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(H2) There exist constants µ > b∗ and ν > b∗ such that

0 < µF(s)≤ s f (s), 0 < νG(s)≤ sg(s), for all s > 0,

where F(s) =
∫ s

0
f (t)dt and G(s) =

∫ s

0
g(t)dt.

(H3) There exist constants s1 > 0 and M > 0 such that

0 < F(s)≤M f (s) and 0 < G(s)≤Mg(s), for all s > s1.

Setting µ and ν given by (H2) and a given by (V2), we suppose:

(H4) There exists θ ≥ 4a/(2−a) such that f (s) =O(sµ−1+θ ) and g(s) =O(sν−1+θ ) as s→ 0+.

(H5) There exists α0 > 0 such that

lim
s→∞

f (s)
eαs2 =

0, α > α0,

+∞, α < α0,
and lim

s→∞

g(s)
eαs2 =

0, α > α0,

+∞, α < α0.

(H6) For α0 > 0 given by (H5), we have

liminf
t→+∞

t f (t)
eα0t2 >

4e
α0

and liminf
t→+∞

tg(t)
eα0t2 >

4e
α0

.

In the literature, the condition (H5) says that f and g have critical growth in the Trudinger-
Moser sense (see Adimurthi (1990) and also Figueiredo, Miyagaki and Ruf (1995)).

The following theorem contains our main result.

Theorem 6.3. Suppose that V satisfies (V1)− (V3) and f and g satisfy (H1)− (H6). Then, there
exists L∗ = L∗( f ,g,µ,ν ,α0,θ ,a,b,R0)> 0 such that system (6.1) possesses a nontrivial weak
solution (u,v) ∈ H1

V,rad(R
2)×H1

V,rad(R
2) provided that La ≥ L∗, namely (u,v) ∈ H1

V,rad(R
2)×

H1
V,rad(R

2) satisfies∫
R2

(
∇u∇ψ +V (x)uψ +∇v∇φ +V (x)vφ

)
dx =

∫
R2

( f (u)φ +g(v)ψ) dx,

for all (φ ,ψ) ∈ H1
V,rad(R

2)×H1
V,rad(R

2).

6.2 Preliminaries
In the first result of this section, we follow Su, Wang and Willem (2007b) to prove a

version of the Strauss result (Strauss (1977)) for the functions of our space.

Lemma 6.4. Suppose that (V1) and (V2) hold. Then

|w(x)| ≤ ‖w‖
L1/4

a π1/2|x| 2−a
4
, for all |x| ≥ R0,

for every w ∈ H1
V,rad(R

2).
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Proof. Let w ∈ C ∞
0,rad(R

2), w(x) = φ(r) where |x|= r we have

d(r
2−a

2 φ 2(r))
dr

=
(2−a)φ 2(r)

2ra/2 +2r
2−a

2 φ
′(r)φ(r)≥ 2r

2−a
2 φ
′(r)φ(r).

Thus, we obtain for all r ≥ R0

−
∫ +∞

r

d(s
2−a

2 φ 2(s))
ds

ds = r
2−a

2 φ
2(r)− lim

r→+∞
r

2−a
2 φ

2(r) = r
2−a

2 φ
2(r).

Thus,

r
2−a

2 φ
2(r) =

∫ +∞

r
−d(s

2−a
2 φ 2(s))
ds

ds

≤
∫ +∞

r
−2s

2−a
2 φ
′(s)φ(s)ds

≤ 2
∫ +∞

r
|φ ′(s)|

√
s|φ(s)|

√
s

sa/2 ds

≤ 2
(∫ +∞

r
|φ ′(s)|2s ds

)1/2(∫ +∞

r

|φ(s)|2

sa s ds
)1/2

≤ 1

πL1/2
a

(
2π

∫ +∞

r
|φ ′(s)|2s ds

)1/2(
2π

∫ +∞

r

La

sa |φ(s)|
2s ds

)1/2

≤ 1

πL1/2
a

(∫
R2\Br

|∇w|2 dx
)1/2(∫

R2\Br

V (x)w2 dx
)1/2

≤ 1

πL1/2
a

∫
R2
(|∇w|2 +V (x)w2)dx.

�

Inspired by similar arguments developed in Albuquerque, Alves and Medeiros (2014), Ó
(1997), Ruf (2005), we establish the following version of the Trudinger-Moser inequality which
will be used throughout this paper.

Proposition 6.5. Assume V satisfies (V1) and (V2). Then,

∫
R2

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx <+∞, for all u ∈ H1

V,rad(R
2) and α > 0 (6.2)

where ja = [|4/(2−a)|]. Furthermore, if 0 < α < 4π , there exists a positive constant c =

c(α,a,R0) such that

sup
u∈H1

V,rad ,‖u‖≤1

∫
R2

(
eαu2
−

ja

∑
j=0

α j|u|2 j

j!

)
dx≤ c. (6.3)

Proof. Set r > 0. For every u ∈ H1
V,rad(R

2), we have

∫
R2

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx =

(∫
Br

+
∫
R2\Br

)(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx. (6.4)
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In order estimate the first integral on the right hand side of (6.4), we define the function

v(x) =

u(x)−u(rx0), 0≤ |x| ≤ r,

0, |x|> r.

where x0 ∈ R2 such that |x0|= 1. Fix ε > 0. By Young’s inequality, we get

|u(x)|2 ≤ (1+ ε)|v(x)|2 +(1+
4
ε
)|u(rx0)|2.

By Lemma 6.4, for r ≥max{R0,(1+
4
ε
)

2
2−a}, we obtain

|u(x)|2 ≤ (1+ ε)|v(x)|2 +(1+
4
ε
)
‖u‖2

r
2−a

2
≤ (1+ ε)|v(x)|2 +‖u‖2,

which implies ∫
Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx≤

∫
Br

eα|u|2 dx

≤
∫

Br

eα

(
(1+ε)|v|2+‖u‖2

)
dx

≤ eα‖u‖2
∫

Br

eα(1+ε)|v|2 dx.

Since v ∈ H1
0 (Br), we have∫

Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx <+∞, for all u ∈ H1

V,rad(R
2). (6.5)

Moreover, if ε > 0 is sufficiently small such that α(1+ε)≤ 4π and noticing that ‖u‖≤ 1 implies
that ‖∇v‖L2(Br)

≤ 1, by (??), we find

∫
Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx≤ eα‖u‖2

sup
‖∇v‖L2(Br)

≤1

∫
Br

eα(1+ε)|v|2 dx≤ ceα‖u‖2
,

for all u ∈ H1
V,rad(R

2) such that ‖u‖ ≤ 1, for some positive constant c = c(α,a,R0). Thus,

sup
‖u‖≤1

∫
Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx≤ c. (6.6)

By Lemma 6.4, we have∫
R2\Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx =

∫
R2\Br

+∞

∑
j= ja+1

α j|u|2 j

j!
dx

≤
+∞

∑
j= ja+1

α j‖u‖2 j

j!

∫
R2\Br

1

|x|
(2−a) j

2

dx

= 2π

+∞

∑
j= ja+1

α j‖u‖2 j

j!

∫ +∞

r
s
(a−2) j

2 +1 ds.
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Since (a−2) j
2 +2≤ (a−2)( ja+1)

2 +2 < 0 for all j ≥ ja +1, we obtain∫ +∞

r
s
(a−2) j

2 +1 ds≤
∫ +∞

r
s
(a−2)( ja+1)

2 +1 ds

=
1( (2−a)( ja+1)

2 −2
)
r
(2−a)( ja+1)

2 −2
.

Thus, ∫
R2\Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx≤ 2πeα‖u‖2( (2−a)( ja+1)

2 −2
)
r
(2−a)( ja+1)

2 −2
. (6.7)

Hence, ∫
R2\Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx <+∞, for all u ∈ H1

V,rad(R
2).

This last inequality combined with (6.5) gives (6.2). Furthermore, from (6.7), we obtain

sup
‖u‖≤1

∫
R2\Br

(
eα|u|2−

ja

∑
j=0

α j|u|2 j

j!

)
dx≤ c, (6.8)

for some positive constant c = c(α,a,R0). Finally, using (6.6) and (6.8), we obtain (6.3).

�

The following result may be proved in much the same way as Lemma 2.2 in Ó, Medeiros
and Severo (2008).

Lemma 6.6. Let α > 0 and m> 1. Then, for each n>m there exists a positive constant C =C(n)

such that (
eαt2
−

ja

∑
j=0

α jt2 j

j!

)m
≤C

(
enαt2

−
ja

∑
j=0

n jα jt2 j

j!

)
, for all t ∈ R.

Lemma 6.7. Let {un ∈ H1
V,rad(R

2);‖un‖ = 1} be a sequence converging weakly to the zero
function in H1

V,rad(R
2). Then, for every 0 < α < 4π , we can find a subsequence (not renamed)

such that

lim
n→∞

∫
BR

(
eα|un|2−

ja

∑
j=0

α j|un|2 j

j!

)
dx = 0,

where R≥ 1.

Proof. Let ε > 0 such that α + ε < 4π . We have the following limits

lim
|t|→0

eαt2−∑
ja
j=0

α jt2 j

j!
|t|

= 0 and lim
|t|→∞

eαt2−∑
ja
j=0

α jt2 j

j!

|t|
(

e(α+ε)t2−∑
ja
j=0

(α + ε) jt2 j

j!

) = 0.

Thus, there exists C > 0 such that

eαt2
−

ja

∑
j=0

α jt2 j

j!
≤C|t|+C|t|

(
e(α+ε)t2

−
ja

∑
j=0

(α + ε) jt2 j

j!

)
for all t ∈ R.



6.2. Preliminaries 165

Hence, ∫
BR

(
eα|un|2−

ja

∑
j=0

α j|un|2 j

j!

)
dx≤C

∫
BR

|un|dx

+C
∫

BR

|un|
(

e(α+ε)|un|2−
ja

∑
j=0

(α + ε) j|un|2 j

j!

)
dx. (6.9)

In order to estimate the last integral, we use Hölder inequality for r > 1 such that r(α + ε)< 4π

and taking r0 > r close to r such that r0(α + ε)< 4π , by Lemma 6.6, we get∫
BR

|un|
(

e(α+ε)|un|2−
ja

∑
j=0

(α + ε) j|un|2 j

j!

)
dx

≤C‖un‖Lr′(BR)

(∫
BR

(
e(α+ε)|un|2−

ja

∑
j=0

(α + ε) j|un|2 j

j!

)r
dx
) 1

r

≤C‖un‖Lr′(BR)

(∫
BR

(
er0(α+ε)|un|2−

ja

∑
j=0

(
r0(α + ε)

) j|un|2 j

j!

)
dx
) 1

r
.

Using ‖un‖= 1 for n≥ 1 and the fact that r0(α + ε)< 4π in Proposition 6.5, we obtain∫
BR

|un|
(

e(α+ε)|un|2−
ja

∑
j=0

(α + ε) j|un|2 j

j!

)
dx≤C‖un‖Lr′(BR)

(6.10)

Replacing (6.10) in (6.9), yields∫
BR

(
eα|un|2−

ja

∑
j=0

α j|un|2 j

j!

)
dx≤C‖un‖L1(BR)

+C‖un‖Lr′(BR)
. (6.11)

Using that un ⇀ 0 in H1
V,rad(R

2) and Remark 6.2 for a subsequence, we have∫
BR

(
eα|un|2−

ja

∑
j=0

α j|un|2 j

j!

)
dx→ 0.

�

Throughout what follows, we define the product space

E = H1
V,rad(R

2)×H1
V,rad(R

2),

endowed with the inner product

〈(u,v),(φ ,ψ)〉E =
∫
R2

(
∇u∇φ +V (x)uφ +∇v∇ψ +V (x)vψ

)
dx

for all (u,v),(φ ,ψ) ∈ E, to which corresponds the norm

‖(u,v)‖= ‖(u,v)‖E =
(
‖u‖2 +‖v‖2)1/2

.

We say that (u,v) ∈ E is a weak solution of (6.1) if∫
R2

(
∇u∇ψ +V (x)uψ +∇v∇φ +V (x)vφ

)
dx =

∫
R2

( f (u)φ +g(v)ψ) dx, (6.12)

for all (φ ,ψ) ∈ E.
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6.2.1 The auxiliary functional

Given R≥ R0, we define a function f̃ : R2× [0,+∞)→ [0,+∞) by

f̃ (x, t) =

 f (t), |x| ≤ R,

f̂ (x, t), |x|> R.

where f̂ : R2× [0,+∞)→ [0,+∞) is defined by f̂ (x, t) = min{ f (t),V (x)tµ−1}, for µ > b∗ given
by (H2). Similarly, we define g̃ : R2× [0,+∞)→ [0,+∞) by

g̃(x, t) =

g(t), |x| ≤ R,

ĝ(x, t), |x|> R.

where ĝ :R2× [0,+∞)→ [0,+∞) is defined by ĝ(x, t) =min{g(t),V (x)tν−1}, with ν > b∗ given
by (H2). Moreover, we set f̃ (x, t) = 0 and g̃(x, t) = 0 for t ≤ 0.

Lemma 6.8. Suppose that f and g satisfy (H1)− (H2).Then,

0 < µF̃(x, t)≤ t f̃ (x, t) and 0 < νG̃(x, t)≤ tg̃(x, t) for all t > 0,

where µ,ν > b∗ are given by (H2), F̃(x, t) =
∫ t

0 f̃ (x,s)ds and G̃(x,s) =
∫ t

0 g̃(x,s)ds.

Proof. If |x| ≤ R, we have f̃ (x, t) = f (t), and hence

t f̃ (x, t)
µ

=
t f (t)

µ
≥ F(t) = F̃(x, t).

If |x|> R and f̃ (x, t) =V (x)tµ−1, we obtain

t f̃ (x, t)
µ

=
V (x)tµ

µ
=
∫ t

0
V (x)sµ−1 ds

≥
∫ t

0
min{ f (s),V (x)sµ−1}ds

=
∫ t

0
f̂ (x,s)ds =

∫ t

0
f̃ (x,s)ds

= F̃(x, t).

If |x|> R and f̃ (x, t) = f (t), we get

t f̃ (x, t)
µ

=
t f (t)

µ
≥ F(t) =

∫ t

0
f (s)ds

≥
∫ t

0
min{ f (s),V (x)sµ−1}ds

=
∫ t

0
f̂ (x,s)ds =

∫ t

0
f̃ (x,s)ds

= F̃(x, t).
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Similar arguments apply to function g̃. �

Using the functions f̃ and g̃, we consider the following auxiliary functional J̃ : E→ R
defined by

J̃(u,v) =
∫
R2

(
∇u∇v+V (x)uv

)
dx−

∫
R2

F̃(x,u)dx−
∫
R2

G̃(x,v)dx,

for all (u,v) ∈ E. From the conditions on f̃ and g̃, the functional J̃ is well defined.

Fix 1 ≤ p < +∞. We consider the subspace Ξp = H1
V,rad(R

2)∩Lp
V (R2) endowed with

the norm

‖u‖Ξp := ‖u‖H1
V (R2)+‖u‖Lp

V (R2).

Lemma 6.9. If un→ u in Ξp, then there exist a subsequence (wn) of (un) and g in Lp
V (R2) such

that, almost everywhere in R2, wn(x)→ u(x) and

|u(x)|, |wn(x)| ≤ g(x).

Proof. Note that we can assume that un→ u almost everywhere in R2. Also we can extract a
subsequence (wn) of (un) such that

‖w j+1−w j‖Lp
V (R2) ≤

1
2 j for all j ≥ 1.

Let us define

gn(x) := |w1(x)|+
n

∑
j=1
|w j+1(x)−w j(x)| and g(x) := |w1(x)|+

+∞

∑
j=1
|w j+1(x)−w j(x)|.

Thus, |u(x)|, |wn(x)| ≤ g(x) almost everywhere in R2. By the monotone convergence theorem,
gn→ g almost everywhere in R2. Furthermore, (V gp

n) is a non-decreasing sequence and∫
R2

V gp
n dx = ‖gn‖p

Lp
V (R2)

≤
(
‖w1‖Lp

V (R2)+
n

∑
j=1
‖w j+1−w j‖Lp

V (R2)

)p
≤
(
‖g1‖Lp

V (R2)+1
)p
.

By the monotone convergence theorem, we have
∫
R2

V gp dx <+∞, that is, g ∈ Lp
V (R2).

�

Lemma 6.10. The functional J̃ belongs to C 1(E,R) and

J̃′(u,v)(φ ,ψ) =
∫
R2

(
∇u∇ψ +V (x)uψ +∇v∇φ +V (x)vφ

)
dx

−
∫
R2

f̃ (x,u)φ dx−
∫
R2

g̃(x,v)ψ dx,

for all (u,v), (φ ,ψ) ∈ E.
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Proof. Setting J̃F1 : H1(BR)→ R and J̃F2 : Ξµ → R defined by

J̃F1(u) =
∫
R2

F̃(x,u)χBR(x)dx and J̃F2(u) =
∫
R2

F̃(x,u)
(
1−χBR(x)

)
dx.

We recall the existence of an extension operator P : H1(BR)→ H1(R2) such that Pu|BR = u.
Thus, from Ó (1997), for all u ∈ H1(BR) and α > 0, we have∫

BR

(eα|u|2−1)dx =
∫

BR

(eα|Pu|2−1)dx≤
∫
R2
(eα|Pu|2−1)dx <+∞,

which implies ∫
BR

eα|u|2 <+∞, for all u ∈ H1(BR),α > 0. (6.13)

We observe that
J̃F1(u) =

∫
BR

F̃(x,u)dx, for all u ∈ H1(BR).

Note also that for α > α0 there exists c > 0 such that

f (s)≤ ceα|s|2 for all s ∈ R. (6.14)

Thus, for |x| ≤ R, we have

|F̃(x, t)|= |
∫ t

0
f̃ (x,s)ds| ≤

∫ t

0
f (s)ds≤ c

∫ |t|
0

eα|s|2 ds≤ c
2
(e2α|t|2 + |t|2). (6.15)

From (6.13), (6.15) and the embedding of H1(BR) in L2(BR), we obtain∫
BR

F̃(x,u)dx <+∞, for all u ∈ H1(BR).

Thus, J̃F1 is well defined. Now, set u,v ∈ H1(BR) and 0 < |t|< 1. By the mean value theorem,
there exists θ(x, t) ∈ (0,1) such that

F̃(x,u+ tv)− F̃(x,u)
t

= f̃ (x,u+θ(x, t)tv)v. (6.16)

Since the function f̃ (x, t) is continuous in the second variable, it follows that

lim
t→0

F̃(x,u+ tv)− F̃(x,u)
t

= f̃ (x,u).

Moreover, using (6.14) in (6.16) and the fact that f̃ (x, t)≤ f (t), we get∣∣∣∣∣ F̃(x,u+ tv)− F̃(x,u)
t

∣∣∣∣∣≤ ceα(|u|+|v|)2
|v| ≤ c

2
(e2α(|u|+|v|)2

+ |v|2) ∈ L1(BR).

From the dominated convergence theorem, we find

J̃′F1
(u)v = lim

t→0

J̃F1(u+ tv)− J̃F1(u)
t

= lim
t→0

∫
Ω

F̃(x,u+ tv)− F̃(x,u)
t

dx

=
∫

BR

lim
t→0

F̃(x,u+ tv)− F̃(u)
t

dx

=
∫

BR

f̃ (x,u)v dx.
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In order to prove the continuity of J̃F1 , let (un) be a sequence in H1(BR) such that un→ u in
H1(BR). Arguing similarly as Proposition 2.7 in Ó, Medeiros and Severo (2008), we can assume
that un→ u almost everywhere in BR and there exists v ∈H1(BR) such that |un(x)| ≤ v(x) almost
everywhere in BR. Consequently,

| f̃ (x,un)− f̃ (x,u)|2 ≤ 2c(e2α|v|2 + e2α|u|2) ∈ L1(BR),

and by the continuity of f̃ almost everywhere in BR, we get

| f̃ (x,un)− f̃ (x,u)|2→ 0 almost everywhere in BR.

By Lebesgue’s dominated convergence theorem, we obtain

‖J̃′F1
(un)− J̃′F1

(un)‖= sup
‖v‖H1(BR)

≤1
|< J̃′F1

(un)− J̃′F1
(u),v > |

= sup
‖v‖H1(BR)

≤1

∣∣∫
BR

(
f̃ (x,un)− f̃ (x,u)

)
v dx
∣∣

≤ sup
‖v‖H1(BR)

≤1
‖ f̃ (x,un)− f̃ (x,u)‖L2(BR)

‖v‖L2(BR)

= on(1).

Thus, J̃F1 ∈ C 1(H1(BR),R). Since H1
V,rad(R

2) ↪→ H1(BR) continuously, it follows that J̃F1 ∈
C 1(H1

V,rad(R
2),R). In other hand, F̃(x,s)(1− χBR(x)) is a Carathéodory function in (x,s) ∈

R2×R and

| f̃ (x,s)
(
1−χBR(x)

)
| ≤V (x)|s|µ−1, for all (x,s) ∈ R2×R.

Using Lemma 6.9 and arguing similarly as Lemma 17.1 in Kavian (1993), we have J̃F2 ∈
C 1(Ξµ ,R) and since the embedding H1

V,rad(R
2) ↪→Ξµ is continuous, we have J̃F2 ∈C 1(H1

V,rad(R
2),R).

Thus,
J̃F(u) =

∫
R2

F̃(x,u)dx, for all u ∈ H1
V,rad(R

2),

is of class C 1 in H1
V,rad(R

2) and

J̃′F(u)(φ) =
∫
R2

f̃ (x,u)φ dx, for all φ ∈ H1
V,rad(R

2).

A similar result holds for the function G̃ and the conclusion follows. �

6.3 The geometry of the linking theorem
This section is devoted to set the geometry of the linking theorem of the auxiliary

functional. We begin by considering the following subspaces:

E+ = {(u,u) ∈ E} and E− = {(u,−u) ∈ E},

so that
E = E+⊕E−.
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Lemma 6.11. Suppose (V1),(V2), (H1),(H4) and (H5) holds. Then, there exist σ ,ρ > 0 such
that J̃(z)≥ σ for all z ∈ ∂Bρ ∩E+.

Proof. From (H4) we have f (s) = g(s) = o(sa∗−1). Thus, there exists δ > 0 such that

| f (s)|, |g(s)| ≤ |s|a
∗−1, for all |s|< δ .

By critical growth, there exist constants c > 0 and q≥ a∗ such that

| f (s)|, |g(s)| ≤ c|s|q−1
(

e2α0|s|2−
ja

∑
j=0

2 jα
j

0 |s|2 j

j!

)
, for all |s| ≥ δ .

From these estimates, we get a constant c > 0 such that

|F̃(x,s)| ≤ |F(s)| ≤ c|s|a
∗
+ c|s|q

(
e2α0|s|2−

ja

∑
j=0

2 jα
j

0 |s|2 j

j!

)
and

|G̃(x,s)| ≤ |G(s)| ≤ c|s|a
∗
+ c|s|q

(
e2α0|s|2−

ja

∑
j=0

2 jα
j

0 |s|2 j

j!

)
.

By Lemma 6.6 and Proposition 6.5, we obtain∫
R2
|u|q
(

e2α0|u|2−
ja

∑
j=0

2 jα
j

0 |u|2 j

j!

)
dx

≤ ‖u‖q
2q

(∫
R2

(
e2α0|u|2−

ja

∑
j=0

2 jα
j

0 |u|2 j

j!

)2
dx
)1/2

≤ c‖u‖q
2q

(∫
R2

(
e6α0|u|2−

ja

∑
j=0

6 jα
j

0 |u|2 j

j!

)
dx
)1/2

≤ c‖u‖q
2q

provided that ‖u‖ ≤ ρ1 for some ρ1 > 0 such that 6α0ρ2
1 < 4π . Thus,∫

R2
F̃(x,u)dx≤ c‖u‖a∗

a∗+ c‖u‖q
2q and

∫
R2

G̃(x,u)dx≤ c‖u‖a∗
a∗+ c‖u‖q

2q.

By Lemma 6.1, we obtain

J̃(u,u)≥ ‖u‖2−
∫
R2

F̃(x,u)dx−
∫
R2

G̃(x,u)dx

≥ ‖u‖2− c‖u‖a∗− c‖u‖q.

Therefore, we can find ρ,σ > 0, ρ sufficiently small, such that J̃(z)≥ σ > 0, for z ∈ ∂Bρ ∩E+.

�

Let e ∈ H1
V,rad(R

2) be a fixed nonnegative function such that ‖e‖= 1 and set

Qe = {r(e,e)+(ω,−ω) : ‖(ω,−ω)‖ ≤ R0,0≤ r ≤ R1},

where the positive constants R0 and R1 will be chosen in the next lemma.
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Lemma 6.12. Suppose that (V1)− (V2) and (H1)− (H2) are hold. Then, there exist positive
constants R0 and R1, which depend on e, such that

J̃(z)≤ 0, for all z ∈ ∂Qe.

Proof. Notice that the boundary ∂Qe of the set Qe in the space R(e,e)⊕E− is composed of
three parts.

(i) If z ∈ ∂Q∩E−, we have J̃(u,u)≤ 0. In fact, for all z = (u,−u) ∈ E−,

J̃(z) =−‖u‖2−
∫
R2

F̃(x,u)dx−
∫
R2

G̃(x,−u)dx≤ 0

because F̃ and G̃ are nonnegative functions.

(ii) If z = r(e,e) + (ω,−ω) = (re+ω,re−ω)∈ ∂Qe, with ‖(ω,−ω)‖= R0 and 0≤ r≤ R1,

J̃(z) = r2‖e‖2−‖ω‖2−
∫
R2

F̃(x,re+ω)dx−
∫
R2

G̃(x,re−ω)dx

≤ R2
1‖e‖2−‖ω‖2 = R2

1−
R2

0
2
.

Thus, J̃(z)≤ 0 if R0 =
√

2R1.

(iii) If z = R1(e,e) + (ω,−ω) ∈ ∂Qe, with ‖(ω,−ω)‖ ≤ R0, it follows from Lemma 6.8 the
existence of c > 0 and ϑ > 2 such that

F̃(x,s), G̃(x,s)≥ c|s|ϑ − s2, for all (x,s) ∈ B1(0)× [0,+∞).

Thus,

J̃(z) = R2
1‖e‖2−‖ω‖2−

∫
R2

F̃(x,R1e+ω)dx−
∫
R2

G̃(x,R1e−ω)dx

≤ R2
1−

∫
B1

F̃(x,R1e+ω)dx−
∫

B1

G̃(x,R1e−ω)dx

≤ R2
1 +

∫
B1

(
|R1e+ω|2 + |R1e−ω|2− c|R1e+ω|ϑ − c|R1e−ω|ϑ

)
dx

≤ R2
1 + c(R2

1−Rϑ
1 ).

Finally, we take R1 > 0 sufficiently large such that J̃(z)≤ 0.

�

Lemma 6.13. Given 0 < a < 2 and ja = [|4/(2−a)|], there exists a constant ca = c(a)> 1 such
that

st ≤
(

et2
−

ja

∑
j=0

t2 j

j!

)
+ s ln1/2 s, for all t ≥ 0, s≥ ca. (6.17)
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Proof. Fix s > 0 and consider the following strictly concave function

t 7→ st−
(

et2
−

ja

∑
j=0

t2 j

j!

)
.

Thus, there exists a unique ts where the supremum is attained. Then,

s = tset2
s +
(

tset2
s −

ja

∑
j=1

2t2 j−1
s

( j−1)!

)
.

Observe that there exists d = d(a)> 1 such that

tet2
−

ja

∑
j=1

2 jt2 j−1

( j−1)!
≥ 0 for all t ≥ d.

We consider two cases:

(i) ts ≥ d;

(ii) 0≤ ts ≤ d and ed2 ≤ s.

If (i) holds, then s≥ et2
s , hence that ts ≤ ln1/2 s and finally that sts ≤ s ln1/2 s. If (ii) holds, then

sts ≤ sd ≤ s ln1/2 s. We observe that

sup
t≥0

{
st−

(
et2
−

ja

∑
j=0

t2 j

j!

)}
≤ sts ≤ s ln1/2 s, for all s≥ ca = ed2

.

�

Let a,b,R0,La and Lb be constants given by (V2). Setting p≥ b∗, define the constant

SV (La) := inf
06=u∈H1

V,rad

∫
R2(|∇u|2 +V (x)u2)dx(∫

R2 V (x)|u|p dx
)2/p

,

and for each p≥ a∗, we define the constant

S(La) := inf
06=u∈H1

V,rad

∫
R2(|∇u|2 +V (x)u2)dx(∫

R2 |u|p dx
)2/p

.

We observe that in the case of V satisfies (V1) and (V2), from Lemma 6.1, these constants are
positive.

In order to prove that these constants are independent of La, we assume that V also
satisfies (V3), more precisely:

Lemma 6.14. Suppose that V satisfies (V1)− (V3). Then,

(a) For every p≥ b∗, we have
SV := inf

La≥Ra
0

SV (La)> 0.
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(b) For every p≥ a∗, we have

S := inf
La≥Ra

0

S(La)> 0.

Proof.

(a) If Sp
V = 0 there exist sequences (Ln,a) and (Ln,b) such that Ln,a ≥ Ra

0, Ln,aRb−a
0 ≤ Ln,b ≤

L(2−b)/(2−a)
n,a π2(a−b)/(2−a) and SVn(Ln,a) → 0. Thus, there exists a sequence (un) such

that un ∈ H1
Vn,rad(R

2),
∫
R2(|∇un|2 +Vn(x)u2

n)dx = on(1) and
∫
R2 Vn(x)|un|p dx = 1. Using

the fact that Vn(x) = 1 in B1 for each n ≥ 1 and the Sobolev embedding there exists
c = c(p)> 0 such that∫

B1

Vn(x)|un|p dx =
∫

B1

|un|p dx≤ c
(∫

B1

(|∇un|2 +Vn(x)u2
n)dx

)p/2
= on(1).

By the Strauss lemma Strauss (1977) and the fact that Vn(x)≥ 1 in BR0\B1, there exists
c = c(p)> 0 such that∫

BR0\B1

Vn(x)|un|p dx≤
∫

BR0\B1

Vn(x)|un|p−2|un|2 dx

≤ c
(∫

BR0\B1

(|∇un|2 +u2
n)dx

)(p−2)/2 ∫
BR0\B1

Vn(x)u2
n dx

≤ c
(∫

BR0\B1

(|∇un|2 +Vn(x)u2
n)dx

)(p−2)/2 ∫
BR0\B1

Vn(x)u2
n dx

= on(1).

By Lemma 6.4 and since p≥ b∗ we have

∫
R2\BR0

Vn(x)|un|p dx≤ Ln,b

∫
R2\BR0

|un|p−2

|x|b−a
|un|2

|x|a
dx

≤
Ln,b‖un‖p−2

H1
Vn

L(p−2)/4
n,a π(p−2)/2

∫
R2\BR0

1
|x|b−a+(2−a)(p−2)/4

u2
n
|x|a

dx

≤
Ln,b‖un‖p−2

H1
Vn

L(p+2)/4
n,a π(p−2)/2Rb−a+(2−a)(p−2)/4

0

∫
R2\BR0

Ln,a

|x|a
u2

n dx

≤
Ln,b‖un‖p−2

H1
Vn

L(2−b)/(2−a)
n,a π2(a−b)/(2−a)

∫
R2\BR0

Ln,a

|x|a
u2

n dx

≤ ‖un‖p−2
H1

Vn

∫
R2\BR0

Vn(x)u2
n dx

= on(1).

Thus,
∫
R2

Vn(x)|un|p dx→ 0 a contradiction.
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(b) If S = 0, similarly to part (a) there exists a sequence (un) and (Ln,a) such that
∫
R2(|∇un|2+

Vn(x)u2
n)dx = on(1) and

∫
R2 |un|p dx = 1. By Sobolev embedding there exists c = c(p)> 0

such that ∫
B1

|un|p dx≤ c
(∫

B1

(|∇un|2 +Vn(x)u2
n)dx

)p/2
= on(1).

By Sobolev embedding and the fact that Vn(x)≥ 1 in BR0\B1 we have

∫
BR0\B1

|un|p dx≤ c
(∫

BR0\B1

(|∇un|2 +u2
n)dx

)p/2

≤ c
(∫

BR0\B1

(|∇un|2 +Vn(x)u2
n)dx

)p/2

= on(1).

By Lemma 6.4 we have

∫
R2\BR0

|un|p dx≤
∫
R2\BR0

|un|p−2

|x|−a
|un|2

|x|a
dx

≤
‖un‖p−2

H1
Vn

L(p+2)/4
n,a π(p−2)/2R−a+(2−a)(p−2)/4

0

∫
R2\BR0

Ln,a

|x|a
u2

n dx

≤ ‖un‖p−2
H1

Vn

∫
R2\BR0

Vn(x)u2
n dx

= on(1).

Thus,
∫
R2
|un|p dx→ 0 a contradiction.

�

Lemma 6.15. For each p≥ b∗ and q≥ a∗, there exist positive constants c = c(p,a,b,R0) and
d = d(p,a,R0) such that

‖u‖Lp
V
≤ c‖u‖H1

V
, for all u ∈ H1

V,rad(R
2)

and

‖u‖Lq ≤ d‖u‖H1
V
, for all u ∈ H1

V,rad(R
2).

Proof. By Lemma 6.14, it is sufficient to consider c = S−1/2
V and d = S−1/2. �

Lemma 6.16. Let (un,vn) ∈ E such that |J̃(un,vn)| ≤ d and

|J̃′(un,vn)(φ ,ψ)| ≤ εn‖(φ ,ψ)‖, for all φ ,ψ ∈ {0,un,vn}, where εn→ 0. (6.18)

Then, ‖(un,vn)‖ ≤ c for every n ∈ N and for some positive constant c.
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Proof. Taking (φ ,ψ) = (un,vn) in (6.18), we have∫
R2

f̃ (x,un)un dx+
∫
R2

g̃(x,vn)vn dx

≤
∣∣∣2∫

R2

(
∇un∇vn +V (x)unvn

)
dx
∣∣∣+ εn‖(un,vn)‖.

This combined with Lemma 6.8 and the fact that |J̃(un,vn)| ≤ d , we have∫
R2

f̃ (x,un)un dx+
∫
R2

g̃(x,vn)vn dx

≤ 2d +2
∫
R2

F̃(x,un)dx+2
∫
R2

G̃(x,vn)dx+ εn‖(un,vn)‖

≤ 2d +
2
µ

∫
R2

f̃ (x,un)un dx+
2
ν

∫
R2

g̃(x,vn)vn dx+ εn‖(un,vn)‖.

Thus, there exists c > 0 such that∫
R2

f̃ (x,un)un dx+
∫
R2

g̃(x,vn)vn dx≤ c+ εn‖(un,vn)‖. (6.19)

Taking (φ ,ψ) = (0,un) in (6.18), we obtain

‖un‖2 ≤
∫
R2

g̃(x,vn)un dx+ εn‖un‖.

Setting, for every n ∈ N, the sets

T1,n = {x ∈ R2 : |x|> R,g(vn)≤V (x)vν−1
n } (6.20)

and
T2,n = {x ∈ R2 : |x|> R,g(vn)>V (x)vν−1

n }, (6.21)

we can write
‖un‖2 ≤

∫
BR∪T1,n

g(vn)un dx+
∫

T2,n

V (x)vν−1
n un dx+ εn‖un‖.

Thus, for n ∈ N such that un 6= 0, we have

‖un‖− εn ≤
∫

BR∪T1,n

g(vn)
un

‖un‖
dx+

∫
T2,n

V (x)vν−1
n

un

‖un‖
dx. (6.22)

By Young’s inequality and Lemma 6.15, there exists a positive constant c = c(ν ,a,b,R0) such
that ∫

T2,n

V (x)vν−1
n

un

‖un‖
dx≤ ν−1

ν

∫
T2,n

V (x)vν
n dx+ c. (6.23)

Set Un =
un

‖un‖
. There exists λ = λ (g)> 0 such that

|g(s)| ≤ λe(α0+1)|s|2 for all s ∈ R. (6.24)

Using Lemma 6.13 with s = |g(vn(x))|/λ and t = |Un(x)|, we get∫
{x∈BR∪T1,n:| g(vn)

λ
|>ca}

g(vn)Un dx≤ I1,n + I2,n. (6.25)
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where

I1,n = λ

∫
{x∈BR∪T1,n:| g(vn)

λ
|>ca}

(
e|Un|2−

ja

∑
j=0

|Un|2 j

j!

)
dx

and
I2,n =

∫
{x∈BR∪T1,n:| g(vn)

λ
|>ca}
|g(vn)| ln1/2 |g(vn)

λ
|dx.

From Proposition 6.5 and (6.24), for c = c(g,a,R0)> 0, we have∫
{x∈BR∪T1,n:| g(vn)

λ
|>ca}

g(vn)Un dx≤ c+
√

α0 +1
∫
{x∈BR∪T1,n:| g(vn)

λ
|>ca}

g(vn)vn dx. (6.26)

On the other hand, by Young’s inequality∫
{x∈BR∪T1,n:| g(vn)

λ
|≤ca}

g(vn)Un dx≤ I3,n + I4,n (6.27)

where
I3,n =

a∗−1
a∗

∫
{x∈BR∪T1,n:| g(vn)

λ
|≤ca}
|g(vn)|

a∗
a∗−1 dx

and
I4,n =

1
a∗

∫
{x∈BR∪T1,n:| g(vn)

λ
|≤ca}
|Un|a

∗
dx.

Since g(t) = o(ta∗−1), there exists 0 < δ0 < 1 such that

|g(t)|
1

a∗−1 ≤ |t|, for all |t| ≤ δ0.

Thus,
|g(t)|

a∗
a∗−1 ≤ g(t)t, for all |t| ≤ δ0

and

|g(t)|
a∗

a∗−1 ≤ c
1

a∗−1
a

δ0
g(t)t, for all t ∈ {|t| ≥ δ0 : |g(t)| ≤ ca}.

Since ca > 1, we obtain

|g(t)|
a∗

a∗−1 ≤ c
1

a∗−1
a

δ0
g(t)t, for all t ∈ {t ∈ R : |g(t)| ≤ ca}. (6.28)

Using (6.28) and Lemma 6.1 in (6.27), there exist positive constants β = β (a,g) and c = c(a)

such that∫
{x∈BR∪T1,n:| g(vn)

λ
|≤ca}

g(vn)Un dx≤ β

∫
{x∈BR∪T1,n:| g(vn)

λ
|≤ca}

g(vn)vn dx+ c‖Un‖a∗
a∗. (6.29)

Combining (6.26), (6.29) with Lemma 6.15, there exists c = c(g,α0,a,R0)> 0 such that∫
BR∪T1,n

g(vn)Un dx≤ c+ c
∫

BR∪T1,n

g(vn)vn dx. (6.30)

From (6.23) and (6.30) in (6.22), there exists c = c(g,ν ,α0,a,b,R0)> 0 such that

‖un‖ ≤ c+ c
∫

BR∪T1,n

g(vn)vn dx+ c
∫

T2,n

V (x)vν
n dx+ εn. (6.31)
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By (6.19), we have ∫
BR∪T1,n

g(vn)vn dx+
∫

T2,n

V (x)vν
n dx≤ c+ εn‖(un,vn)‖.

Thus, there exists c > 0 such that

‖un‖ ≤ c+ εn‖(un,vn)‖+ εn.

Similarly, we get
‖vn‖ ≤ c+ εn‖(un,vn)‖+ εn.

We finally obtain
‖(un,vn‖ ≤ c+ εn‖(un,vn)‖+ εn.

which implies that ‖(un,vn)‖ ≤ c, for every n ∈ N, for some positive constant c. �

Lemma 6.17. Suppose that (V1)− (V2) and (H1)− (H5) hold. If (un,vn)⊂ E is a sequence such
that (un,vn)⇀ (u,v) in E, J̃(un,vn)→ c and J̃′(un,vn)→ 0. Then,

(i) f̃ (x,un)→ f̃ (x,u) in L1(BR1) and g̃(x,un)→ g̃(x,u) in L1(BR1), where R1 ≥ 1.

(ii) F̃(x,un)→ F̃(x,u) in L1(R2) and G̃(x,un)→ G̃(x,u) in L1(R2).

Proof. We give the proof for the functions f̃ and F̃; similar arguments apply to the other
functions. According to Remark 6.2, we can assume that un → u in L1(BR1). Moreover, by
the exponential growth of f and Proposition 6.5, we have that f̃ (x,un) ∈ L1(BR1) and since
J̃′(un,vn)(un,vn) = on(1) there exists c > 0 such that∫

R2
f̃ (x,un)un dx+

∫
R2

g̃(x,vn)vn dx≤ c.

Using Figueiredo, Miyagaki and Ruf (1995, Lemma 2.10), we conclude that (i) holds for the
function f̃ .

From (i), given R1 ≥ R, where R is given by the definition of f̃ , we obtain∫
BR1

f̃ (x,un)dx→
∫

BR1

f̃ (x,u)dx.

Thus, there exists p ∈ L1(BR1) such that

f (un)≤ p(x) almost everywhere in BR1. (6.32)

From (H1) and (H3), we obtain

F(t)≤ max
t∈[0,s0]

F(t)+M f (t), for all t ∈ R. (6.33)

Using (6.32) and (6.33), we have

F̃(x,un)≤ F(un)≤ max
t∈[0,s0]

F(t)+Mp(x), for all x ∈ BR1. (6.34)
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By Lebesgue’s dominated convergence theorem, we obtain∫
BR1

F̃(x,un)dx→
∫

BR1

F̃(x,u)dx.

Consequently, to prove that ∫
R2

F̃(x,un)dx→
∫
R2

F̃(x,u)dx,

it is sufficient to show that given δ > 0, there exists R1 > 0 such that∫
R2\BR1

F̃(x,un)dx < δ and
∫
R2\BR1

F̃(x,u)dx < δ .

Note that
F̃(x,un)≤

1
µ

V (x)|un|µ , for all x ∈ R2\BR1. (6.35)

Hence, ∫
R2\BR1

F̃(x,un)dx≤ 1
µ

∫
R2\BR1

V (x)|un|µ dx

≤ 2µ−1

µ

(∫
R2\BR1

V (x)|un−u|µ dx+
∫
R2\BR1

V (x)|u|µ dx
)
.

Using the compactness of the embedding H1
V,rad(R

2) ↪→ Lµ

V,rad(R
2) and the weak convergence

(un,vn)⇀ (u,v) in E, we can choose R1 > 0 sufficiently large such that∫
R2\BR1

F̃(x,un)dx < δ .

Since F̃(·,u) ∈ L1(R2), we may assume that∫
R2\BR1

F̃(x,u)dx < δ .

Combining all the above estimates, since δ > 0 is arbitrary, we have∫
R2

F̃(x,un)dx→
∫
R2

F̃(x,u)dx.

�

6.4 Estimates
In this section we establish the estimates for the auxiliary functional that are used to

prove Theorem 6.3. We start with the definition of Moser type functions. Consider k ∈ N. Let
δk > 0 be a sequence which will be fixed such that δk→ 0, as k→+∞. The Moser type functions
are defined by

ek =
1√
2π



√
lnk (1−δk)

1/2, |x| ≤ 1
k
,

ln(
1
|x|

)
(1−δk)

1/2
√

lnk
,

1
k
< |x| ≤ 1,

0, |x|> 1.
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We have
‖∇ek‖2

2 = 1−δk

and ∫
R2

V (x)e2
k dx≤ (1−δk)

( lnk
k2 +

1
4lnk

)
.

Then, we may choose δk, depending on k, such that

‖ek‖= 1, for all k ≥ 1.

Furthermore, we can note that

δk ≤ (1−δk)
( lnk

k2 +
1

4lnk

)
≤ lnk

k2 +
1

4lnk
.

Thus,
δk lnk ≤ 1/2, for k sufficiently large . (6.36)

Proposition 6.18. Suppose that (H1)− (H6) hold. Then, there exists k0 ∈ N such that

sup
R(ek0 ,ek0)⊕E−

J̃(u,v)<
4π

α0
.

Proof. Suppose, by contradiction, that for all k ∈ N

sup
R(ek,ek)⊕E−

J̃(u,v)≥ 4π

α0
,

Thus, for all fixed k ≥ 1, there exist a nonnegative sequence ζn→ 0, as n→ ∞, and a sequence

ηn,k = τn,k(ek,ek)+(un,k,−un,k), un,k ∈ H1
V,rad(R

2),

such that
J̃(ηn,k)≥

4π

α0
−ζn.

Let h : [0,+∞)→ R be the function defined by h(t) = J̃(tηn,k). Since h(0) = 0 and lim
t→+∞

h(t) =

−∞, there exists a maximum point t̂. We may assume, without loss of generality, that t̂ = 1, so
that

J̃(ηn,k)≥
4π

α0
−ζn and J̃′(ηn,k)ηn,k = 0.

This means that

τ
2
n,k‖ek‖2−‖un,k‖2−

∫
R2

F̃(x,τn,kek +un,k)dx−
∫
R2

G̃(x,τn,kek−un,k)dx

≥ 4π

α0
−ζn

and

τ
2
n,k‖ek‖2−‖un,k‖2 =

∫
R2

f̃ (x,τn,kek +un,k)(τn,kek +un,k)dx

+
∫
R2

g̃(x,τn,kek−un,k)(τn,kek−un,k)dx.
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Hence,
τ

2
n,k ≥

4π

α0
−ζn (6.37)

and

τ
2
n,k ≥

∫
R2

f̃ (x,τn,kek +un,k)(τn,kek +un,k)+
∫
R2

g̃(x,τn,kek−un,k)(τn,kek−un,k). (6.38)

Set l > 0 such that
liminf
t→+∞

t f (t)
eα0t2 , liminf

t→+∞

tg(t)
eα0t2 > l >

4e
α0

. (6.39)

Thus, given ε > 0, there exists Rε > 0 such that

t f (t), tg(t)≥ (l− ε)eα0t2
, for all t ≥ Rε . (6.40)

Using (6.37), there exists k0 > 0 such that

(1−δk)
1/2

τn,k

√
lnk

2π
≥ Rε , for all k ≥ k0.

Since,

ek(x) = (1−δk)
1/2

√
lnk
2π

, for all x ∈ B1/k,

we get

max{τn,kek +un,k,τn,kek−un,k} ≥ τn,k(x)ek(x)≥ Rε , for all x ∈ B1/k and k ≥ k0.

Combining (6.38) with (6.40), gives

τ
2
n,k ≥

∫
R2

f̃ (x,τn,kek +un,k)(τn,kek +un,k)dx

+
∫
R2

g̃(x,τn,kek−un,k)(τn,kek−un,k)dx

≥
∫

B1/k

f (τn,kek +un,k)(τn,kek +un,k)dx

+
∫

B1/k

g(τn,kek−un,k)(τn,kek−un,k)dx

≥ (l− ε)
∫

B1/k

eα0(1−δk)
lnk
2π

τ2
n,k ,

for every k ≥ k0. Setting sn,k := τ2
n,k−

4π

α0
, we get

4π

α0
+ sn,k ≥ (l− ε)

∫
B1/k

eα0(1−δk)
lnk
2π

( 4π

α0
+sn,k)

= (l− ε)πesn,kα0
lnk
2π e−

α0
2π

( 4π

α0
+sn,k)δk lnk

,

for every k ≥ k0. Using (6.36), we find

4π

α0
+ sn,k ≥ (l− ε)πe

α0sn,k
2π

(lnk−1/2)e−1. (6.41)
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Inequality (6.41) implies that (sn,k) is bounded for each k ≥ k0. Therefore, there exists sk ∈ R
such that limsup

n→∞

sn,k = sk. By (6.37), sk ≥ 0. Using the last limit in (6.41) and taking k→+∞

we see that necessarily sk = 0 for each k ≥ 1. Then, lim
n→∞

sn,k = 0. Using this in (6.41), yields

4π

α0
≥ (l− ε)πe−1.

This contradicts (6.39) because ε > 0 is arbitrary. �

6.5 Finite-dimensional approximation
Since the functional J̃ is strongly indefinite on the space E (i.e. positive and negative

definite on infinite-dimensional subspaces), the standard linking theorems cannot be applied. In
order to overcome this problem, we consider a finite-dimensional approximation.

Taking k0 given by Proposition 6.18, we consider e = ek0 ∈ H1
V,rad(R

2) and {ei}i∈N a
Hilbert basis of 〈e〉⊥. We set

E+
n = Span{(ei,ei) : i = 1,2, . . . ,n},

E−n = Span{(ei,−ei) : i = 1,2 . . . ,n},

En = E+
n ⊕E−n .

We use the following notation:

Hn = R(e,e)⊕En, H+
n = R(e,e)⊕E+

n , H−n = R(e,e)⊕E−n .

Furthermore, define the class of mappings

Γn = {γ ∈ C (Qn,Hn) : γ(z) = z,∀z ∈ ∂Qn},

where Qn = Qe∩Hn, and set
cn = inf

γ∈Γn
max
z∈Qn

J̃(γ(z)). (6.42)

Let us denote by J̃n the restriction of J̃ to the finite-dimensional space Hn. We obtain that the
linking geometry holds for J̃n. Using Lemma 5.5 in Figueiredo, Ó and Ruf (2005) we have

γ(Qn)∩ (∂Bρ ∩H+
n ) 6= /0 for all γ ∈ Γn, (6.43)

for ρ given by Lemma 6.11. Thus, combining Lemma 6.11 and (6.43) we have

cn ≥ σ > 0 for all n≥ 1.

Since the inclusion mapping In : Qn→Hn belongs to Γn, for z = r(e,e)+(u,−u) ∈Qn, we have

J̃(z) = r2‖e‖2−‖u‖2−
∫
R2

F̃(x,re+u)dx−
∫
R2

G̃(x,re−u)dx≤ R2
1. (6.44)
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Thus,
cn ≤ R2

1, for all n≥ 1. (6.45)

Therefore, applying the linking theorem for J̃n, we have the following result (see Rabinowitz
(1986) for a proof):

Proposition 6.19. Suppose that V satisfies (V1) and (V2) and f and g satisfy (H1), (H2), (H4)

and (H5). Then, for each n ∈ N, the functional J̃n has a critical point at level cn. More precisely,
there is zn = (un,vn) ∈ Hn such that

J̃(zn) = cn ∈ [σ ,R2
1], (6.46)

where σ and R1 > 0 are given by Lemma 6.11 and Lemma 6.12, respectively, and

J̃′n(zn)(φ ,ψ) = 0, for all (φ ,ψ) ∈ Hn, (6.47)

that is, for every (φ ,ψ) ∈ Hn, we have{ ∫
R2 ∇un∇ψ +V (x)unψ dx =

∫
R2 g̃(x,vn)ψ dx,∫

R2 ∇φ∇vn +V (x)φ vn dx =
∫
R2 f̃ (x,un)φ dx.

(6.48)

By Proposition 6.18, there exists δ > 0 such that

cn ≤max
Qn

J̃(z)≤ sup
R(e,e)⊕E−n

J̃(z)≤ sup
R(e,e)⊕E−

J̃(z)≤ 4π

α0
−δ , (6.49)

for every n ∈ N.

Proposition 6.20. Suppose that V satisfies (V1)− (V2) and f and g satisfy (H1)− (H6). Then, J̃

possesses a nontrivial critical point.

Proof. By Proposition 6.19, there is a sequence (un,vn) ∈ Hn satisfying (6.46) and (6.47). By
Lemma 6.16, (un,vn) is bounded in E. Then we can find a subsequence (not renamed) and there
exists (u,v) ∈ E such that (un,vn) converges weakly to (u,v) in E. Taking (0,ψ) and (φ ,0) in
(6.48), where φ and ψ are arbitrary functions in C ∞

0,rad(R
2)∩Hn, we get∫

R2

(
∇un∇ψ +V (x)unψ

)
dx =

∫
R2

g̃(x,vn)ψ dx (6.50)

and ∫
R2

(
∇vn∇φ +V (x)vnφ

)
dx =

∫
R2

f̃ (x,un)φ dx. (6.51)

Using Lemma 6.17, we obtain∫
R2

f̃ (x,un)φ dx→
∫
R2

f̃ (x,u)φ dx, for all φ ∈ C ∞
0,rad(R

2)∩Hn

and ∫
R2

g̃(x,vn)ψ dx→
∫
R2

g̃(x,v)ψ dx, for all ψ ∈ C ∞
0,rad(R

2)∩Hn.
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Taking the limit in (6.50) and (6.51) as n→ ∞, and using the fact that C ∞
0,rad(R

2)∩
(⋃

n∈NHn

)
is dense in H1

V,rad(R
2), yields∫

R2

(
∇u∇ψ +V (x)uψ

)
dx =

∫
R2

g̃(x,v)ψ dx, for all ψ ∈ H1
V,rad(R

2) (6.52)

and ∫
R2

(
∇v∇φ +V (x)vφ

)
dx =

∫
R2

f̃ (x,u)φ dx, for all φ ∈ H1
V,rad(R

2). (6.53)

Then, (u,v) ∈ E is a critical point of J̃. To conclude the proof, it only remains to prove that u and
v are nontrivial. Suppose, by contradiction, that u≡ 0. From (6.53), we also have v≡ 0. Then,
we can assume that

un→ 0 and vn→ 0 in Lr
V,rad(R

2), for all r > b∗. (6.54)

We claim that there exists σ > 0 such that ‖un‖ ≥ σ > 0 for all n ≥ 1. In fact, suppose that,
contrary to our claim, there exists a subsequence (not renamed) such that ‖un‖→ 0, as n→ ∞.
From this, we get ∫

R2

(
∇un∇vn +V (x)unvn

)
dx→ 0. (6.55)

Taking (φ ,ψ) = (un,0) and (φ ,ψ) = (0,vn) in (6.48), we get∫
R2

(
∇un∇vn +V (x)unvn

)
dx =

∫
Ω

f̃ (x,un)un dx =
∫

Ω

g̃(x,vn)vn dx. (6.56)

Using Lemma 6.17 and (6.54), we obtain

lim
n→∞

∫
R2

F̃(x,un)dx = 0 and lim
n→∞

∫
R2

G̃(x,vn)dx = 0.

Consequently,

J̃(un,vn)→ 0, as n→ ∞,

in contradiction with (6.46), which completes the proof of the claim.

Taking (φ ,ψ) = (0,un) in (6.48), we get

‖un‖2 =
∫
R2

g̃(x,vn)un dx≤
∫

BR

g(vn)un dx+
∫
R2\BR

V (x)vν−1
n un dx. (6.57)

By Young’s inequality, we find∫
R2\BR

V (x)vν−1
n

un

‖un‖
dx≤ ν−1

ν

∫
R2\BR

V (x)vν
n dx+

1
νσν

∫
R2\BR

V (x)uν
n dx. (6.58)

Using (6.54), we have ∫
R2\BR

V (x)vν−1
n

un

‖un‖
dx = on(1).

From (6.57), we obtain,

‖un‖ ≤
∫

BR

g(vn)
un

‖un‖
dx+on(1). (6.59)
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Thus, (4π

α0
−δ

)1/2
‖un‖ ≤

∫
BR

g(vn)ūn dx+on(1),

where ūn = (
4π

α0
−δ )1/2 un

‖un‖
. From Lemma 6.13, with s = |g(vn)|/

√
α0 and t =

√
α0|ūn|, we

get (4π

α0
−δ

)1/2
‖un‖ ≤

∫
{x∈BR:| g(vn)√

α0
|>ca}

(
eα0|ūn|2−

ja

∑
j=0

α
j

0 |ūn|2 j

j!

)
dx

+
∫
{x∈BR:| g(vn)√

α0
|>ca}

∣∣∣g(vn)√
α0

∣∣∣ ln1/2
∣∣∣g(vn)√

α0

∣∣∣dx

+
∫
{x∈BR:| g(vn)√

α0
|≤ca}

g(vn)ūn dx+on(1).

Since ‖ūn‖2 <
4π

α0
, by Lemma 6.7 the first integral tends to zero, while by Young’s inequality in

the third integral, we have∫
{x∈BR:| g(vn)√

α0
|≤ca}

g(vn)ūn dx =
a∗−1

a∗

∫
{x∈BR:| g(vn)√

α0
|≤ca}
|g(vn)|

a∗
a∗−1 dx

+
1
a∗

∫
{x∈BR:| g(vn)√

α0
|≤ca}
|ūn|a

∗
dx

= on(1)

where we used Lebesgue dominated theorem and Remark 6.2 because ūn ⇀ 0 in H1
V,rad(R

2).
Thus, (4π

α0
−δ

)1/2
‖un‖ ≤

∫
BR

∣∣∣g(vn)√
α0

∣∣∣ ln1/2
∣∣∣g(vn)√

α0

∣∣∣dx+on(1). (6.60)

Given ε ∈
(

0,
α0δ

4(4π

α0
−δ )

)
, where δ > 0 is given by (6.49), there exists Cε > 0 such that

|g(s)| ≤Cεe(α0+ε)s2
, for all s ∈ R.

By (6.60), we get(4π

α0
−δ

)1/2
‖un‖ ≤

∫
BR

∣∣g(vn)√
α0

∣∣ ln1/2
(Cεe(α0+ε)v2

n

√
α0

)
dx+on(1).

Thus,(4π

α0
−δ

)1/2
‖un‖ ≤

1
√

α0

∫
BR

|g(vn)|
(

ln1/2(
Cε√
α0

)+(α0 + ε)1/2|vn|
)
+on(1). (6.61)

Let In =
∫

BR

|g(vn)|
(

ln1/2(
Cε√
α0

)+(α0 + ε)1/2|vn|
)

and set

Σn := {x ∈ BR : ln1/2(
Cε√
α0

)≤
(
(α0 +2ε)1/2− (α0 + ε)1/2

)
|vn|}.
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Hence,

In = ln1/2
( Cε√

α0

)∫
BR\Σn

|g(vn)|dx+(α0 + ε)1/2
∫

BR\Σn

g(vn)vn dx

+
∫

Σn

|g(vn)|
(

ln1/2(
Cε√
α0

)+(α0 + ε)1/2|vn|
)

dx

≤ ln1/2
( Cε√

α0

)∫
BR\Σn

|g(vn)|dx+(α0 + ε)1/2
∫

BR\Σn

g(vn)vn dx

+(α0 +2ε)1/2
∫

Σn

g(vn)vn dx.

Thus,

In ≤ ln1/2
( Cε√

α0

)∫
BR\Σn

|g(vn)|dx+(α0 +2ε)1/2
∫

BR

g(vn)vn dx. (6.62)

Since g(t) = o(t), as t→ 0, there exists δ0 > 0 such that |g(s)| ≤ |s| , for |s| ≤ δ0. We can assume
that vn→ 0 almost uniform in BR. Thus, given ε̂ > 0, there exists Ωε̂ ⊂ BR such that |Ωε̂ |< ε̂ ,
|vn(x)| ≤ δ0 for x∈BR\Ωε̂ and n sufficiently large. Let M =

√
ln(Cε/

√
α0 )/(

√
α0 +2ε−

√
α0 + ε ),

for n sufficiently large. Hence,∫
BR\Σn

|g(vn)|dx =
∫
(BR\Σn)∩Ωc

ε̂

|g(vn)|dx+
∫
(BR\Σn)∩Ωε̂

|g(vn)|dx

≤
∫
(BR\Σn)∩Ωc

ε̂

|vn|dx+ sup
[−M,M]

|g(s)|
∫
(BR\Σn)∩Ωε̂

dx

≤
∫

BR

|vn|dx+ sup
[−M,M]

|g(s)|ε̂.

Since ε̂ > 0 is arbitrary and vn→ 0 ∈ L1(BR), we get∫
BR\Σn

|g(vn)|dx = on(1). (6.63)

Combining (6.62) and (6.63) with (6.61), we obtain(4π

α0
−δ

)1/2
‖un‖ ≤

(
1+

2ε

α0

)1/2
∫

BR

g(vn)vn dx+on(1). (6.64)

Arguing similarly, we get(4π

α0
−δ

)1/2
‖vn‖ ≤

(
1+

2ε

α0

)1/2
∫

BR

f (un)un dx+on(1). (6.65)

By Lemma 6.17, we have∫
R2

F̃(x,un)dx→ 0 and
∫
R2

G̃(x,un)dx→ 0. (6.66)

Using Proposition 6.18 and (6.66), we obtain

|〈(un,vn)〉| ≤ on(1)+
4π

α0
−δ . (6.67)
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Since J̃′n(un,vn)(un,vn) = 0, we have∫
R2

f̃ (x,un)un dx+
∫
R2

g̃(x,vn)vn dx = 2|〈(un,vn)〉|. (6.68)

By (6.67) and (6.68), we find∫
BR

f (un)un dx+
∫

BR

g(vn)vn dx≤ 2(
4π

α0
−δ )+on(1). (6.69)

Combining (6.64), (6.65) and (6.69), we obtain(4π

α0
−δ

)1/2
(‖un‖+‖vn‖)

≤
(

1+
2ε

α0

)1/2(∫
BR

f (un)un dx+
∫

BR

g(vn)vn dx
)
+on(1)

≤ 2
(

1+
2ε

α0

)1/2(4π

α0
−δ

)
+on(1).

Thus, for every n ∈ N,

‖un‖+‖vn‖ ≤ 2
(

1+
2ε

α0

)1/2(4π

α0
−δ

)1/2
+on(1)≤ 2

(4π

α0
− δ

2

)1/2
+on(1),

which implies

‖un‖+‖vn‖ ≤ 2
(4π

α0
− δ

4

)1/2
, for all n sufficiently large.

Without loss of generality we can assume that

‖un‖ ≤
(4π

α0
− δ

4

)1/2
, for all n sufficiently large.

Thus, there exists c > 0 such that

| f (s)| ≤ |s|a
∗−1 + c

(
e(α0+ε)|s|2−

ja

∑
j=0

(α0 + ε) j|s|2 j

j!

)
, for all s ∈ R.

For p > 1 sufficiently close to 1 such that p(α0 + ε)
(4π

α0
− δ

4

)
< 4π , we obtain∫

R2
f̃ (x,un)un dx

=
∫

BR

f (un)un dx+on(1)

≤ ‖un‖a∗
a∗+ c

∫
BR

(
e(α+ε)|un|2−

ja

∑
j=0

(α0 + ε) j|un|2 j

j!

)
|un|dx+on(1)

≤ ‖un‖a∗
a∗+ c‖un‖p′

(∫
BR

(
e(α+ε)|un|2−

ja

∑
j=0

(α0 + ε) j|un|2 j

j!

)p
dx
)1/p

+on(1)

≤ ‖un‖a∗
a∗+ c‖un‖p′

∫
BR

(
ep0(α+ε)|un|2−

ja

∑
j=0

p j
0(α0 + ε) j|un|2 j

j!

)
dx+on(1),
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where in the last inequality we used Lemma 6.6 for p0 > p such that

p0(α0 + ε)
(4π

α0
− δ

4

)
< 4π.

Using Proposition 6.5 and Lemma 6.1-(i), we get∫
R2

f̃ (x,un)un dx→ 0.

Consequently, by (6.56), we get
lim
n→∞

J̃(un,vn) = 0,

which is a contradiction with (6.46). This complete the proof. �

Lemma 6.21. Let (u,v) be the critical point of J̃ given by Proposition 6.20. Then, there exist
positive constants d1 = d1(g,ν ,α0,a,b,R0) and d2 = d2( f ,µ,α0,a,b,R0) such that

‖u‖ ≤ d1 and ‖v‖ ≤ d2.

Proof. Let (un,vn) be the sequence given Proposition 6.19 converging weakly to (u,v) in E.
Following the argument used in the proof of Lemma 6.16 and using Proposition 6.18, we get

µ−2
µ

∫
R2

f̃ (x,un)un dx+
ν−2

ν

∫
R2

g̃(x,vn)vn dx≤ 8π

α0
+on(1).

In particular, ∫
R2

g̃(x,vn)vn dx≤ 8πν

(ν−2)α0
+on(1). (6.70)

Moreover, there exists c = c(g,ν ,α0,a,b,R0)> 0 such that

‖un‖ ≤ c+ c
∫

BR∪T1,n

g(vn)vn dx+ c
∫

T2,n

V (x)vν
n dx+on(1). (6.71)

where T1,n and T2,n are defined in Proposition 6.18. From (6.70) and (6.71), we obtain

‖un‖ ≤ c+
8νcπ

α0(ν−2)
+on(1).

Consequently, there exists a constant d1 = d1(g,ν ,α0,a,b,R0)> 0 such that

‖u‖ ≤ liminf
n→∞

‖un‖ ≤ d1.

Similar arguments apply to function v. �

6.6 Proof of Theorem 6.3
Let (u,v) ∈ E given by Proposition 6.20. We start showing that

f̃ (x,u(x)) = f (u(x)) and g̃(x,v(x)) = g(v(x)) for all x ∈ R2. (6.72)
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Notice that
f̃ (x,u(x)) = f (u(x)) in {x ∈ R2 : u(x) = 0}∪BR0

and
g̃(x,v(x)) = g(v(x)) in {x ∈ R2 : v(x) = 0}∪BR0.

Thus, we can assume that u(x) 6= 0 and v(x) 6= 0 for |x| ≥ R0. From (H5), there exists a positive
constant C =C( f ,g,θ) such that

f (t)
tµ−1 ,

g(t)
tν−1 ≤Ctθ e(α0+1)t2

, for all t > 0.

By Lemma 6.4, we have

f (u)
uµ−1 ≤C

‖u‖θ e
(α0+1) ‖u‖

2

|x|
2−a

2

|x|( 2−a
4 )θ

and
g(v)
vν−1 ≤C

‖v‖θ e
(α0+1) ‖v‖

2

|x|
2−a

2

|x|( 2−a
4 )θ

,

for every |x| ≥ R0. Using Lemma 6.21 for d = max{d1,d2}, we get

f (u)
uµ−1 ,

g(v)
vν−1 ≤

Cdθ e(α0+1)d2

|x|( 2−a
4 )θ

, for all |x| ≥ R0.

Set L∗ =Cdθ e(α0+1)d2
. Since θ ≥ 4a

2−a
, for La ≥ L∗, we get

f (u)
uµ−1 ,

g(v)
vν−1 ≤

La

|x|a
, for all |x| ≥ R0.

From (V2), we obtain
f (u)
uµ−1 ,

g(v)
vν−1 ≤V (x), for all |x| ≥ R0.

Thus, if |x| ≥ R0 we have f̃ (x,u(x)) = min{ f (u(x)),V (x)u(x)µ−1} = f (u(x)). Hence, (6.72)
follows. Consequently since (u,v) is a critical point of J̃, we can use (6.72) to obtain∫

R2

(
∇u∇ψ +V (x)uψ +∇v∇φ +V (x)vφ

)
dx =

∫
R2

f (u)φ dx+
∫
R2

g(v)ψ dx

for all (φ ,ψ) ∈ E, that is, system (6.1) possesses a nontrivial weak solution.
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