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Abstract

Water resource is being stressed due to increasing levels of social demands, particularly
in emerging and least developed nations. The arid and agro-based country of Pakistan
is highly dependent on Indus Basin Irrigation System (IBIS), one of the biggest con-
tiguous irrigation networks in the world, mainly fed by the Indus River, and its Eastern
tributaries Jhelum, Chenab, Ravi, and Sutlej. With limited water resources, irrigated
agriculture needs to improve its efficiency and equitable distribution. This study aims to
develop a flexible network model that involves a series of nodes interconnected via links
to characterize the Punjab irrigation within the IBIS system. The model is calibrated
by using Bayesian Monte Carlo method, where available knowledge about gain/loss pa-
rameters is updated with the information in observed data.
After a rigorous calibration and validation, the model performance was assessed through
the use of the coefficient of determination (R2), Nash–Sutcliffe Efficiency (NSE), Kling-
Gupta Efficiency (KGE), and Percent bias (PBIAS). The overall results of the proposed
network model were acceptable for both calibration and validation periods, except in
some particular barrage tails. Nevertheless, due to the complexity of the irrigation net-
work and the simultaneous calibration for the entire system, the model behavior is con-
sidered satisfactory. The optimized routing gain/loss coefficients coherently explained
the field conditions in the study area.
The findings in this study imply that zones with higher flow discharges are prone to large
uncertainties. In addition, posterior probability distributions of gain/loss coefficients
suggest an adequate identification of the parameter uncertainties, with changes in the
prior probability distributions. It also demonstrates how a selection of prior distribution
bounds and model parameters could improve the reliability and robustness of the model.
The model would be helpful to water resource managers involved in agricultural water
management in Punjab province. However, the utility of the model should be taken
with great care because there are still uncertainties in the modeling results due to the
conceptual nature and the quality of input data.
Keywords: Irrigation system, flexible network model, Bayesian Monte Carlo, calibra-
tion, uncertainty quantification.
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1. Introduction

1.1. Problem Statement

Pakistan´s economy is highly dependent on agriculture. This sector relies mostly on sur-
face irrigation systems, withdrawing more than 78% of the available water only for this
purpose because of the aridity of its lands [1]. Pakistan has a complex water landscape;
the irrigation system depends mainly on the Indus Basin, which is continuously riddled
with human interventions, such as the Indus Basin Irrigation System (IBIS). With a total
area of 0.52 million km2 of Pakistan´s territory, Indus Basin covers a big part of Punjab
province and its irrigation network. The IBIS is one of the biggest contiguous irrigation
systems around the planet, encompassing rivers, dense network links and canals. This
system is mainly fed by the Indus River and its two Eastern Jhelum-Chenab tributaries.
The irrigation network is responsible to irrigate about 8.4 million hectares of the cul-
tivable area through 58,000 outlets. The operation and maintenance of the system are
the prime responsibility of the Punjab Irrigation Department (PID). Regardless of such
a large irrigation system and its significance in the country’s economy, water security is
undermined by inequitable irrigation distribution service and hydraulic inefficiency that
contributes to low water productivity in agriculture [1].
The management of the complex Punjab Irrigation System is itself a big challenge.
Punjab water supply operation has been based on a heuristic approach, which de-
pends mainly on expert judgment and does not necessarily offer an adequate response to
changes of real-time conditions and short periods. Thus, the overall irrigation efficiency
of Punjab is only 40% [1], being a matter of concern for decision-makers.
Although the huge efforts for optimizing the surface water, it has not been enough
to ensure a stable distribution throughout the Punjab areas. Thus, there is a need to
characterize the entire Punjab network system through water distribution model capable
of handling the system constraints due to links and canal demands. Therefore, this will
help to the authorities to make more informed decisions about the water distribution.
The proposed distribution model involves a series of nodes interconnected via links,
where a water balance is satisfied at each node. Once the model is implemented, it
is necessary to verify its capability for replicating the real environment through a cal-
ibration process. Calibration consists of adjustment of unknown or partially known
parameters, in such a way that model outputs fit the observations. Because of its flexi-
bility, robustness, and reliability for dealing with complex models, Bayesian Monte Carlo
is chosen to perform such a task. This method updates statistically available knowledge
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1. Introduction

about parameters with the information in observed data. And most importantly, it is
capable of assessing the effect of parameters on model predictions.
Since simulation models imply a combination of mathematical relationships describing
some features of the nature, parameter estimates are prone to uncertainty. This param-
eter uncertainty has to be quantified to evaluate confidence limits on model response, so
that model results are meaningful. The p-factor (percentage of observations bracketed
by the uncertainty bands) and the r-factor (thickness of the uncertainty band) are used
to accomplish this task.

1.2. Research Objectives

The specific objectives of the present study are as follows:
• development of distribution model for Punjab Irrigation System, describing its

components and water routing mechanisms,
• calibration and validation of the proposed distribution model,
• uncertainty quantification of model parameters,
• correlation among model parameters.

The distribution model is expected to be useful to assist decision-makers in meeting the
objectives of maintaining an equitable water distribution and maximizing water utility.

2



2. Literature Review

2.1. Modeling Framework

Water is one of the most crucial resource for human life on Earth. This essential element
affects almost all sectors of the economy, such as agriculture, industry, energy production,
and household water supply. The volume of freshwater in the world represents only 2.5%
of total stock, and just 0.26% of global freshwater is accessible for human beings [2]. Due
to global warming, population growth, and industrialization the quality and availability
of freshwater is under threat, particularly in many developing countries such as Pakistan.
Climate change phenomena is likely to aggravate the water availability with a similar
increase in irrigation water demand by 20 times until 2050 [3]. In that context, in-
stabilities in agricultural production will negatively affect food security and the whole
economy in the near future. Out of multiple strategies, a clever alternative to alleviate
increasing water scarcity in agriculture is for instance an optimization of the irrigation
systems through efficient technologies and planning tools.
Quantification of water resources and their seasonal variability is a key element of river
basin models. These models are capable to simulate the spatial and temporal distribution
of water resources, being able to handle complex operating rules and regulations into
the system. A common feature of such models is the computation of water balance in
each point of interest and time step. The model structure comprises a series of nodes
interconnected via links, in which a water balance at each node is performed [4].

2.1.1. Node-link network structure

River basin model can be visualized as a series of nodes interconnected by links. Each
node represents an inflow, diversion point of canals, or reservoirs. Links are longitudinal
connections between nodes, that could represent rivers and demand canals [5]. The
main attributes for links are the time lags and loss/gain coefficients. Typically, these
attributes are used as parameters for model calibration [4].

2.1.2. Comparison of network models

The most commonly used network models in water resource management are MIKE
HYDRO Basin, eWater Source, and WEAP. The summary of such network models is

3



2. Literature Review

given in Table 2.1. These comparisons do not discuss all the features of each model,
rather provide a general impression of the capabilities and limitations built into such
models.

Table 2.1.: Comparison of network models.
Model MIKE HYDRO Basin WEAP eWater Source

Usage

Water availability,
infrastructure planning,
multisectoral demands,
regulation i.e. water
rights, priorities, water
quality

Adaptive agriculture
practices, canal linings,
changes in reservoir
operations, water
conservation, water
use efficiency

System operation,
integrated planning
from urban to river
basin scale, lag and
loss computations,
suitable for IWRM
studies

Ease of
use

Relatively easy to use
if user is familiar with
ArcView software

Relatively easy to use,
but requires significant
data for analysis

Moderate

Key
inputs

Water demand, water
supply, hydropower,
reservoir information:
water quality

Water demand, water
supply, scenarios,
pollution changes,
socioeconomic
projections, water
supply projections

Historic flows at
inflow nodes,
reservoir operation
details, demand at
canal heads and
for the account
holder

Key
outputs

Hydrologic volume
and flow descriptions
throughout the system,
water diversions,
water quality of
dissolved solids
and temperature

Mass balances, water
diversions, water use:
benefit/cost scenarios

Flow hydrographs
at different nodes
and canal heads

License Paid (both Mike Basin
as well as Arc View) Paid with free upgrade Paid, limited

versions are free

Code
language VB, Python, C++

Automation Server
i.e other languages
Java and Python can
directly control WEAP

Unknown

Source: [6].
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2.2. Bayesian Model Framework to Uncertainty Estimation

2.2. Bayesian Model Framework to Uncertainty Estimation

Bayesian Theorem is a statistical approach to perform stochastic calibration, where cur-
rent knowledge about a parameter is updated with observed data. In general, the Bayes
workflow relies on a definition of prior distribution capable of handling the available
knowledge about the given scientific problem. Afterward, the likelihood function is de-
termined using information about the observed data; and the combination of both prior
and likelihood function gives as a result the posterior distribution. This expresses the
updated knowledge given the observed data and prior beliefs [7]. The general form of
Bayes Theorem is given below:

p(θ | q) = p(q | θ) p(θ)
p(q) (2.1)

where,
p(θ | q) is the posterior distribution. In order to perform stochastic calibration, Bayesian
updating is used. Under such condition θ represents the hydrological model parameter
and q is the observed data. p(θ) is the prior probability, which reflects the beliefs
of the parameter values before observing data. p(q|θ) is the likelihood or conditional
probability of observed data given the parameter θ. p(q) is the marginal likelihood or
Bayesian Model Evidence. This term is used as normalizing constant and only depends
on observed data. In practice, p(q) is not essential to estimate the posterior; thus, Bayes
Theorem is often expressed as shown below:

p(θ | q)∞ p(q | θ) p(θ) (2.2)

2.2.1. Prior distribution

Prior distribution p(θ) is an important component of the Bayesian Theorem. It is ex-
pressed as Probability Density Function (PDF), either as uniform, normal, Poisson,
among others. Most of the time, this distribution is based on information from previ-
ous studies and expert knowledge. According to the level of uncertainty in the model
parameter, the prior is classified as informative, weakly informative, and diffuse [8].
Informative prior reflects a high certainty about the model parameter. In a normal dis-
tribution, it implies small variance surrounding the mean. Weakly informative prior has
a regular certainty about the parameter. Consequently, it has larger variance and less
impact in posterior results, owing to some assumption about the parameters [9]. Finally,
diffuse prior conceptually shows a high uncertainty surrounding the parameter, where all
values within the range are equally likely. Therefore, the observed data will essentially
determine the posterior results [8]. Usually, there is vague knowledge or even a lack of
information about the parameters. To overcome such issues, researchers suggest the use
of uniform distribution with lower and upper limits expressing the plausible value ranges
[10].
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2. Literature Review

2.2.2. Likelihood distribution

Likelihood p(q|θ) is the conditional probability distribution given the model parameter
θ, where the main purpose is to convey information about unknown quantities. In turn,
the likelihood function summarizes the difference between the observed and simulated
model, indicating the overall behavior assumed for measurement error or residuals. In
general, the measurement error is assumed to be normally distributed (ε(t) ∼ N(0, σ2

0))
and uncorrelated in time [11]. The Gaussian likelihood function then takes the following
expression:

p(q|θ, σ2) =
n∏
i=1

1√
2πσ2

i

exp

−
1
2

n∑
j=1

(
qobsij − qsimij (θ)

)2

σ2
i

 (2.3)

where qobsij are the observed variables, qsimij (θ) are the corresponding simulated responses
given the parameter θ, and σ2 refers to the variances of the simulation errors. This
likelihood equation allows consideration of heteroscedasticity (variance depending on
the information magnitude) of the data set [12].

2.2.3. Posterior distribution

The posterior distribution p(θ | q) describes the state of knowledge and uncertainty about
the values of unknown parameters after observing the data. Therefore, the observed data
set is a conditioning variable for posterior. In order to communicate the final results, the
posterior distribution is summarized in form of mean, median, and credible intervals [13].
Due to the complex nature of the real systems and their models, this task is sometimes
difficult to address by using equations or analytical solutions. Thus, iterative approaches
based on Monte Carlo simulations are commonly used [14].

2.2.4. Data conditioning

Oftentimes, data set used in hydrological modeling needs a preprocessing step because
residuals between predicted and observed values are heteroscedastic (unequal variance of
the residuals over a range of measured values) [15]. In order to understand this concept
lets consider the following linear regression:

yi = Xiβ + εi, i = 1, ..., n (2.4)

where yi represents the dependent variable, Xi is 1 x p vector of predictors, β is p-
dimensional column vector of coefficients, and ε is the column vector of error. One
assumption of Ordinary Least Squares is that variance of ε is constant; however, it
is not always true in practice, leading to heteroscedasticity of the error variance [16].
During the calibration of parameters in hydrological models, one assumption is that

6



2.3. Assessing Model Performance

model residuals follow a Normal distribution with constant variance and zero mean [17].
Under this supposition, the model residual is defined as:

ε(t) = qsim(t)− qobs(t),with ε(t) ∼ N(0, σ2
0) (2.5)

where t refers to time and σ2
0 is a constant error variance.

Researchers suggest that heteroscedasticity is a natural phenomenon in hydrological
systems [18]. Therefore, it is important to analyze quantitatively the heteroscedasticity
of model residuals and perform variance stabilizing techniques. Heteroscedastic testing
has been widely investigated, starting from informal diagnostics such as scatter plots to
the most sophisticated statistical tests. Visual inspection is only helpful to suggest the
presence of heteroscedasticity, the next step should be the verification of such concerns
by using formal tests [19]. Formal statistical tests such as Breusch Pagan (1979), White
(1980), and Su and Ullah (2013) have been used to examine whether the residuals are
correlated or not.
To stabilize the variance of the residuals, and thus mitigate heteroscedasticity, Box-Cox
transformation can be applied to observed and simulated data[20]:

q′obs =

qλobs−1
λ

if λ 6= 0
log qobs if λ = 0

and q′sim =

qλsim−1

λ
if λ 6= 0

log qsim if λ = 0
(2.6)

where q′obs and q′sim are the transformed observed and simulated data, respectively. λ is
the Box-Cox parameter. Now, the transformed model residual becomes:

ε(t)′ = qsim(t)′ − qobs(t)′ (2.7)

2.3. Assessing Model Performance

The model performance during calibration and validation is quantified by comparing
simulated flows with corresponding observed flows. The coefficient of determination (R2)
is a test which evaluates the linear dispersion between observations and simulations, it
describes the variance in the observed data that is explained by the model [21]. R2

interval is between 0 and 1, where values closer to 1 indicate better agreement or less
error variance, and usually values larger than 0.5 are considered as acceptable [22]. The
definition of R2 can be seen in the following equation:

R2 =


n∑
i=1

(qobsi − µobs)(qsimi − µsim)√√√√ n∑
i=1

(qobsi − µobs)2

√√√√ n∑
i=1

(qsimi − µsim)2



2

(2.8)

where µobs and µsim represent the mean of observed and simulated values, respectively.
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2. Literature Review

One of the major drawbacks of R2 is the fact that only the linear dispersion between the
observed and predicted value is evaluated, ignoring variations of minimum and maximum
values [23], therefore a conjunctive use of R2 with other indicators is suggested. The
Nash–Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) is the most popular criterion
to evaluate the goodness-of-fit of hydrological models. NSE is a dimensionless goodness-
of-fit index that evaluates the Mean Square Error (MSE) of observed and simulated data
(noise), compared to the variance in the measured value [21]. This indicator is commonly
the measure of choice for evaluating model performance because it normalizes the MSE
into the most interpretable way [24]. The NSE is calculated as shown in the following
equation:

NSE = 1−

n∑
i=1

(qobsi − qsimi )2

n∑
i=1

(qobsi − µobsi )2
(2.9)

where n is the number of time-steps. NSE values can vary from −∞ to 1 and generally
falls within 0 to 1 unless there are severe errors in the used data [25]. As usual, a NSE
= 1 indicates a perfect agreement between observed and simulated discharges; while
NSE < 0 suggests that the observed mean is a better predictor than simulation itself.
And NSE = 0 implies that simulated model has the same performance as the mean of
observed data, that means results in overall are reliable, but under the assumption that
errors during simulation are considerable [26]. Generally, the reference values of NSE
performance are classified as follows: < 0.5 as inadequate, 0.5− 0.6 as fair, 0.65− 0.75
as good, and > 0.75 as very good [27], [28], [29].

Even the fact that NSE is one of the recommended indicators for model performance,
some limitations should be taken into account [30], namely its high sensitivity to peak
flows in model calibration which is due to the squared differences in formulating this in-
dicator. Moreover, NSE is susceptible to larger model residuals, due to the heteroscedas-
ticity phenomena in high flows [31].

Kling-Gupta Efficiency (KGE, Gupta et al. 2009) is a decomposition of NSE which
addresses its several shortcomings such as the problematic interplay between the linear
correlation and flow variability error [32]. The KGE combines the correlation, variability
bias, and mean bias which are components of the mean square error [33]. In general, a
value of ≥ 0.50 is used as a threshold for the daily time step of hydrological models [29].
This indicator is defined as shown below:

KGE = 1−

√√√√(µsim
µobs

− 1
)2

+
(
σsim
σobs

− 1
)2

+ (r − 1)2 (2.10)

where σobs is the standard deviation of observed values and σsim the standard deviation
of simulated values (measure of variability). The µobs and µsim express the bias error.
And r is the linear correlation coefficient between simulated and observed values which
can lie between -1 to +1.
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2.3. Assessing Model Performance

Percent bias (PBIAS) is the deviation of streamflow discharge expressed as a percentage,
it indicates the simulated data to be larger or smaller than the observations. Negative
values suggest the model toward underestimation (underprediction), whereas positive
values mean model overestimation (overprediction). Its value ranges from −∞ to +∞,
with low magnitudes indicating high model accuracy [34]. PBIAS is calculated as a
percentage as shown in the following Equation:

PBIAS = 100 ∗


n∑
i=1

(qobsi − qsimi )
n∑
i=1

(qobsi )

 (2.11)

PBIAS values tend to be more sensible during dry years than wet years; therefore, this
fact should be contemplated when splitting the sample for calibration and validation
[34]. In general, PBIAS+/− 25% is considered as satisfactory value for daily time step
calibration of hydrological models [35].
The Table 2.2 shows a summary of the discussed model performance indicators:

Table 2.2.: Summary of model performance criterion.
N° Performance criteria Description Threshold

1 R2 Linear dispersion between
observations and simulations >0.60

2 NSE

Mean square error (MSE) of
observed and simulated data
(noise), compared to the
variance in the measured value

>0.50

3 KGE

Decomposition of the NSE, which
helps to analyze the
importance of its different components
(correlation, bias, and variability).

≥ 0.50

4 PBIAS Indicates the simulated data to be
larger or smaller than the observations +/-25%
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3. Methodology

3.1. Study Area

The area under study corresponds to Punjab province, Pakistan (Figure: 3.1). Punjab is
the epicenter of agriculture being the largest producer of major crops around Pakistan.
However, about 78% of total available water is used for irrigation [1], making the primary
consumer of water resources among other provinces [36]. In this way, Punjab province is
home to the more complex Indus Basin Irrigation System (IBIS), reportedly the largest
contiguous hydraulic infrastructure in the world [1]. The IBIS is fed by Indus and
Chenab rivers from the West, and Sutlej, Ravi, and Beas tributaries from the East [37].

Figure 3.1.: Location of the study area.
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3. Methodology

The irrigation system in Punjab comprises 13 barrages, 2 siphons across the Ravi and
Sutlej rivers, 12 interlinked canals, and 23 major canals [38]. The Indus river con-
ducts water from Tarbela Dam to Jinnah, Chasma, and Taunsa headworks, which also
connects to two link canals. Similarly, the Jhelum river provides surface water from
Mangla Dam to Rasul, which feds two major canals. The Chenab river delivers water
to Marala, Khanki, Qadirabad, and Trimmu barrage, which on the way feds four irri-
gation canals and five links. Finally, the Ravi river supplies surface water to Balloki
and Sindhnai headworks and the Sutlej river to Sulemanki, Islam, and Punjnad bar-
rage. The schematic diagram of the Punjab Irrigation System including the reservoirs,
barrages/headworks, links, and main canals is shown in Figure 3.2.
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Figure 3.2.: Schematic diagram of Punjab Irrigation System showing rivers, barrages,
major and link canals taking off from barrages.

The Punjab irrigation canals are stretched across 36,862 km length covering 9.70 Mha.
According to the Water Appointment Accordance of 1991 (IRSA 1991), Punjab province
is entitled to 56 MAF (11964.8 MCM) of surface water. Out of the total, about 37.5% of
water is lost during distribution and conveyance from river heads to canals, just before
reaching the crop fields. Furthermore, percolation, leaching, evapotranspiration, and
run-off losses represent about 25% of total water. In consequence, only the remaining
37.5% of water is available for crops [39].
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3.2. Data Requirement and Source

In this scenario, equitable and sustainable distribution of water turns more difficult being
a matter of concern for the decision-makers in the water sector. To summarize, there
is a need to characterize the entire Punjab Irrigation System by taking into account
all the constraints and its elements (dams, barrages/headworks, main and link canals).
Thus, suggest efficient strategies for distributing the surface irrigation water. Keeping
in view the operational complexities of the water supply system in Pakistan, the above-
discussed models (Table: 2.1) could not be capable to handle such a complex system
with the demand-based operation and provincial water rights. As an alternate modeling
tool, a flexible node-network model is adopted in this study.
The first part of this thesis addresses the development of a distribution model and
the second part focuses on calibration, validation, and uncertainty quantification of
parameters through the Bayesian Monte Carlo method.

3.2. Data Requirement and Source

To characterize the Punjab Irrigation System through a distribution model, good quality
of the data set needs to be ensured. Inputs about daily discharge data, link canals,
demand canals, and dams are mainly required for model development. Historical data
from April 1, 2011 to March 31, 2016, were obtained from Indus River System Authority
(IRSA), Project Monitoring and Implementation Unit (PMIU), Indus Water Treaty
(IWT): A directorate of PMIU, and Punjab Irrigation Department (PID).

3.3. Network Model

The procedure for the model development consists of three main components. The
first component refers to model inputs and pre-processing, the second part focuses on
the structure and model simulation itself, and the third component involves the model
post-processing in terms of calibration and uncertainty quantification of the parameters.

3.3.1. Model inputs

Barrages/headworks and dams

All the barrages/headworks and dams depicted in Table 3.1 are used as model inputs.
It is important to emphasize that water balance is performed at each node.

Major and link Canals

Similarly, major and link canals are incorporated as inputs in the distribution model
(Table 3.2). Each link canal has a maximum design capacity, which is a main constraint
in the model.

13
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Table 3.1.: Barrages and headworks in the Punjab surface water flow model.
Category River Name Node
Barrage Indus Jinnah JIN
Barrage Indus Chasma CHS
Barrage Indus Taunsa TNS
Barrage Jhelum Rasul RSL
Barrage Chenab Marala MRL
Barrage Chenab Khanki KNK
Headwork Chenab Qadirabad QBD
Headwork Chenab Trimmu TRM
Barrage Chenab Punjnad PNJ
Headwork Ravi Balloki BLK
Barrage Ravi Sidhnai SID
Headwork Sutlej Sulemanki SUL
Headwork Sutlej Islam ISL
Dam Indus Tarbela TRB
Dam Jhelum Mangla MNG

Time lags

The primary information source for the time delays is taken from PID. However, in this
study different values have been explored manually to check the accuracy of the time
lags. These lag values are based on a daily time step; that is, the full day is considered
only if travel time is more than 12 hours otherwise, no time lag is taken. Afterward, the
time lags between two nodes are incorporated to simulate the dynamics of water flow
routing in river reaches and link canals. The Table 3.3 shows the values used in the
model.

3.3.2. Model development

The entire distribution model was developed by using MATLAB programming software.
The model structure of the Punjab Irrigation System involves a series of nodes connected
through links, where the principle of water balance is performed at each node, in such
a way that water flowing in should be equal to water flowing out plus gains/losses.
The series of nodes represent either storage dams or barrages/headworks (junctions).
Similarly, the interconnected links physically represent the river reaches, links, and main
canals. The time-lag and gain/loss coefficients are regarded as the main attributes of
these links, the latter is used as calibration parameters. The combination of links and the
series of nodes gives a final structure of the network flow model. The Figure 3.3 shows a
part of the model structure, wherein water is routed towards the Punjnad demand node
through the TPL link and river reaches. The source nodes are Trimmu, Sidhnai, Islam,
and Taunsa. In this way, the off-taking canals at each node can get water either from
river reach or link canals.
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Table 3.2.: Major, internal and link canals in Punjab Irrigation System.
Category River Name Node Capacity (m3/s)
Link canal Indus Chasma - Jhelum CJL 614
Link canal Indus Taunsa - Punjnad TPL 340
Link canal Jhelum Upper Jhelum Canal UJC 170
Link canal Jhelum Rasul - Qadirabad RQL 538
Link canal Chenab Upper Chenab Canal UCC 100
Link canal Chenab Marala - Ravi MRL 594
Link canal Chenab Qadirabad - Balloki QBL 623
Link canal Chenab Trimmu - Sidhnai TSL 340
Link canal Ravi Balloki - Sulemanki BSL 595
Link canal Ravi Sidhnai - Maiulsi - Bhawal SMBL 340
Major canal Indus Thal canal THAL 255
Major canal Indus Chasma Right Bank CRBC 51
Major canal Indus Greater Thal Canal GTC 113
Major canal Indus D.G Khan Canal DGK 252
Major canal Indus Muzaffargarh Canal MZGH 235
Internal canal Jhelum Upper Chenab Internal UCC int 396
Major canal Jhelum Lower Jhelum Canal LJC 184
Major canal Jhelum Rangpur Canal RGP 76
Major canal Jhelum Haveli internal canal HAV int 40
Major canal Ravi Sidhnai Canal SIDC 1274
Major canal Chenab Lower Chenab Canal LCC 348
Internal canal Chenab Marala Internal Canal MR int 51
Major canal Ravi Lower Bari Doab Canal LBDC 258
Major canal Ravi Lower Depalpur Canal LDC 119
Major canal Sutlej Eastern Sadiqia Canal ESC 164
Major canal Sutlej Fordwah Canal FC 96
Major canal Sutlej Upper Pakpattan Canal UPC 159
Major canal Sutlej Upper Bhawal and Qaim QC-UBC 91
Major canal Jhelum Punjnad - Abbasia PN+AB 14158

Gain/loss coefficient estimation

In the distribution model, the conveyance gains and losses take place within the river
reaches and link canals. A simple linear regression between two nodes was used to
estimate these gain/loss coefficients in such a way that flow routing is simulated in each
section. Those values are used as calibration parameters in the modeling system.
In Figure 3.3, Punjnad upstream is considered as a dependent variable, whereas the
source nodes (Taunsa, Trimmu, Sidhani, Islam) are assumed as independent variables.
In case, there is only one source node (e.g. Mangla to Rasul), a simple linear regression
between the nodes is applied. Similarly, if there are two or more source nodes, multiple
linear regression is applied. To calculate the coefficients of linear regression the following
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Table 3.3.: Time lags in river reaches and canals
Reach and month wise lags

Reach Months
From to 4 5 6 7 8 9 10 11 12 1 2 3
Tarbela Jinnah 2 1 1 1 1 1 1 1 1 2 2 2
Jinnah Chasma 1 1 1 1 1 1 1 1 1 1 1 1
Chasma Taunsa 4 3 3 2 2 2 2 2 2 4 4 4
Taunsa Guddu 4 3 3 3 3 3 3 3 3 4 4 4
Mangla Rasul 1 0 0 0 0 0 0 0 0 1 1 1
Rasul Trimmu 5 4 4 3 3 4 4 4 4 5 5 5
Marala Khanki 1 1 1 1 1 1 1 1 1 1 1 1
Khanki Qadirabad 0 0 0 0 0 0 0 0 0 0 0 0
Qadirabad Trimmu 5 4 4 3 3 4 4 4 4 5 5 5
Trimmu Punjnad 7 6 6 5 5 5 5 5 5 7 7 7
Balloki Sidhnai 9 8 8 7 7 8 8 8 8 9 9 9
Sidhnai Punjnad 7 6 6 5 5 5 5 5 5 7 7 7
Sulemanki Islam 4 3 3 2 2 3 3 3 3 4 4 4
Islam Punjnad 8 6 6 5 5 5 5 5 5 8 8 8
Punjnad Guddu 2 2 2 2 2 2 2 2 2 2 2 2
CJL head Tail 2 2 2 2 2 2 2 2 2 2 2 2
TPL head Tail 3 3 3 3 3 3 3 3 3 3 3 3
UJC head Tail 2 1 1 1 1 1 1 2 2 2 2 2
RQL head Tail 1 0 0 0 0 0 0 0 0 1 1 1
QBL head Tail 4 3 3 3 3 3 3 3 3 4 4 4
BSL head Tail 1 1 1 1 1 1 1 1 1 1 1 1
UCCL head Tail 3 3 3 3 3 3 3 3 3 3 3 3
MRL head Tail 3 3 3 3 3 3 3 3 3 3 3 3
TSL head Tail 2 2 2 2 2 2 2 2 2 2 2 2
HAV head Tail 2 2 2 2 2 2 2 2 2 2 2 2

equation was used:
y = mx or y = mx1 +mx2 + ...mxn (3.1)

where x is the independent variable, y is the dependant variable, and m is the slope
coefficient corresponding to each x value.

Optimized flow paths, ranking and decision matrix

As mentioned earlier, there are various paths from where the demand for main canals
is fulfilled. The algorithm to find the optimum flow path between the nodes consists
of verifying the minimum loss factors in the given section. These loss coefficients are
assigned according to the results of regression analysis. As an example, Figure 3.4
illustrates four source nodes that are feeding Sidhnai barrage. As shown, the path
Balloki-Sidhani is the prioritized route in the ranking, which implies that the main
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Figure 3.3.: Example of network structure with link canals, main canals, barrages and
inflows at Punjnad node.

source of water supply for Sidhnai is Balloki barrage. Similarly, if Balloki’s demand is
not fulfilled yet, Trimmu barrage feds the water through TSL and HAV links. In this
way, the Marala link provides water only if the demand with the main source has not
been fully covered.

3.3.3. Calibration and validation

Model calibration involves finding suitable parameter values that best describe the nat-
ural system behavior. The regression parameters were calibrated for flow routing from
the source nodes up to the demand nodes. In the framework of determining the good
reliability of this complex system, Bayesian Monte Carlo method was applied since it is
flexible, robust, and more suited for dealing with complicated problems. A schematic
flowchart of the proposed Bayesian framework is shown in Figure 3.5.
About model extent, the simulation was performed from April 1, 2011 to March 31,
2016. From which, about two-third of the total discharge measurements were used for
calibration and the remaining one-third for validation. In order to get an acceptable
convergence, a total of ns = 100, 000 Monte Carlo realizations of parameters θ were
performed.
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In order to develop the Monte Carlo method for calibration, a set of prior vague knowl-
edge about the gain/loss parameters was considered and represented by non-informative
(diffuse) prior distributions. These uncertain coefficients were drawn from uniform dis-
tribution as several authors suggest. The upper and lower bounds between U [0.7, 1.3]
were chosen for all parameters based on the result of the preliminary regression analysis
and because the given range covers both gain and losses equally. Additionally, defined
lower and upper bounds consider almost one-third (30%) of the total discharge as losses
or gains. It should be kept in mind that the calibration process was applied simultane-
ously in all river reaches (15) and link canals (10). Based on the scope of this study, the
model only deals with the water distribution up to the head of the main canals. Hence,
there is no need to address the system gains and losses from the main canal head up to
the tail or farm level.

After an exploratory analysis of the residuals between simulations and observations,
heteroscedasticity issues were identified as discussed in Section 2.2.4. To mitigate this
problem, a Box–Cox transformation with parameter λ = 0.001 was applied to both
measured qobs and simulated qsim discharge series:

q′ = qλ − 1
λ

(3.2)

Under the assumption of the required statistical hypotheses, such as normal distribu-
tion of measurement error, time independence of the residuals (ε(t) ∼ N(0, σ2

0), and
homoscedasticity as explained in Section 2.2.4, the likelihood function takes the form:

p(q|θ, ui) =
ns∏
i=1

1√
2πns|R′|

exp
[
−1

2 (q′sim − q′obs)
T
R′−1 (q′sim − q′obs)

]
(3.3)

in which ns is the number of observations and R′ expresses the ns xns covariance matrix
of measurement errors with entries on the main diagonal, indicating that these values
are uncorrelated.

Once the prior and the likelihood function is defined, the posterior of the model pa-
rameters were then estimated. The Rejection Sampling: filtration of prior via uniform
distribution was applied since it is the most direct approach for determining the poste-
rior. The main principle of this technique is to apply a correction form to the likelihood
p(q|θ) by assigning weights wi to each realization θ as shown below:

wi = p(q|θ)
max(p(q|θ)) ≥ ui (3.4)

The likelihood realization is accepted as the ensemble of the posterior distribution if
the weight wi is greater or equal than the random number ui, which is obtained from
a uniform distribution u(0, 1). The expression max(p(q|θ) is the maximum likelihood
value from all ns Monte Carlo realizations [40]. It is worth mentioning that the point in
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the parameter range that maximizes the likelihood is named the Maximum Likelihood
Estimate (MLE).
In reference to the model performance criteria, NSE>0.50, R2 > 0.60, KGE≥ 0.50, and
PBIAS+/−25% were used as threshold values [35], [28], [29] as shown in Table 2.2 . NSE
and R2 were estimated with the help of MATLAB programming tool, correspondingly
the KGE and PBIAS were calculated by using HydroGOF Rstudio package.

3.3.4. Uncertainty quantification

A reliable modeling approach must necessarily include quantification of its uncertainty.
Within this framework, uncertainty assessment serves to verify the accurateness and
preciseness of the proposed network model. Sources of uncertainty in hydrological mod-
els include errors in the input and output data, model definition, and parameter sets.
Suitable analysis of these multiple uncertainty effects is still a big challenge. Due to the
complex nature of the model, the uncertainty analysis in this thesis was focused on the
impact of the parameters in the output discharges.
Uncertainty bounds were assigned by calculating the 2.5 and 97.5 percentiles from the
posterior samples to generate a range with a 95% confidence level [41]. The uncertainties
were quantified by p− and r−factor indicators. The p−factor expresses the percentage of
observations plus its error enveloped by the uncertainty bands and its value ranges from
0 to 1, where 1 implies total bracketing of the observed data by the given bounds (perfect
simulation) [42]. In general, a value of p−factor>0.70 or 0.75 is recommended. But, it is
subject to the project scale and input data [43]. On the other hand, r−factor measures
the thickness of the envelope, and it is calculated as the ratio of the average width
between the 2.5 and 97.5 percentiles and the standard deviation of the measurements.
Its value varies between 0 and ∞, and usually, a limit of < 1.5 is acceptable [42], [43].
The p- and r-factors are closely dependant on each other, which suggests that a higher
p−factor can be achieved only at the expense of a larger r−factor. Thus, a balance
between both indicators has to be satisfied to generate acceptable calibrated parameters
[44], [45]. The r−factor is described by the following expression:

r − factor =

1
n

n∑
i=1

(
yMi,97.5% − yMi,2.5%

)
σobs

(3.5)

where yMi,97.5% and yMi,2.5% are the upper and lower uncertainty bands, respectively.
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4. Results

4.1. Calibration and Validation

The network model was simulated from April 1, 2011 to March 31, 2016. From which
about two-third of the total discharge measurements were used for calibration and the
remaining one-third for validation. To assess the simulation model performance, the cali-
bration and validation were performed at the outflow or downstream of the 12 barrages/-
headworks, which are distributed in the whole Punjab Irrigation System. The goodness-
of-fit indicators, Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), Percent
bias (PBIAS), and the coefficient of determination (R2) are summarized in Table 4.1.
In the following, the results of the model performance are explained according to the
statistical indicators. By taking a closer look at the model performance in terms of
NSE, the Indus zone (Jinnah, Chasma, and Taunsa) presents high values, implying a
good agreement between simulations and observations; while in Jhelum-Chenab zone,
the NSE suggests moderate model behavior. But can still simulate the discharge with
such accuracy. In Ravi and Sutlej zone, the model performance is still acceptable, except
in Sidhnai barrage, where simulation is quite modest in both calibration and validation
periods as shown by NSE = 0.48 and 0.40, respectively.
Concerning to KGE indicator, the obtained results are also satisfactory. In Indus zone,
Jinnah barrage with KGE=0.89 and 0.92 is rather well simulated for both calibration
and validation periods, respectively. Similarly, further south where Chasma and Taunsa
barrages are located, the observations are quite well reproduced by the simulations.
In Jhelum-Chenab zone, the simulated model captures with high accuracy the overall
dynamics of the flow as indicated by the KGE. In Ravi and Sutlej zones, given the
complexity of the system, KGE indicator still suggests a good simulation of discharge
dynamics. Giving more attention to Islam barrage, the KGE implies that the calibration
period (0.64) gives a higher model performance than the validation period (0.41).
The performance of the network model in terms of R2 has as well satisfactory results,
even taking into account that this indicator only evaluates the linear dispersion between
observed and simulated discharges.
Finally, the PBIAS performance was satisfactory (+/−25%) at most barrages, except for
Chasma, Islam, and Punjand. The negative -26% and -30% of PBIAS at Chasma barrage
suggest an underestimation of simulated flow. On the other hand, a positive PBIAS at
Islam barrage indicates an overestimation of simulated discharge in both calibration and
validation periods. Now, by exploring in more detail the model performance between
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the irrigation zones, Western Indus, Jhelum, and Chenab performs better than Eastern
Sutlej and Ravi river reaches.

Table 4.1.: Summary of model performance.

Barrage Calibration Validation
NSE KGE PBIAS [%] R2 NSE KGE PBIAS [%] R2

Jinnah ds 0.94 0.89 8 0.97 0.93 0.92 2 0.94
Chasma ds 0.76 0.58 -26 0.96 0.78 0.56 -30.2 0.95
Taunsa ds 0.86 0.72 -17.7 0.95 0.84 0.64 -23.8 0.94
Rasul ds 0.69 0.82 -2 0.75 0.82 0.78 18.8 0.84
Trimmu ds 0.72 0.83 -8.4 0.74 0.78 0.81 -16 0.80
Khanki ds 0.73 0.79 -1.8 0.73 0.63 0.73 -3.7 0.63
Qadirabad ds 0.78 0.78 19.2 0.80 0.68 0.82 8.1 0.72
Balloki ds 0.66 0.68 -21.8 0.68 0.62 0.69 -4.1 0.62
Sidhnai ds 0.48 0.72 -11.2 0.56 0.40 0.71 4.2 0.51
Sulemanki ds 0.86 0.83 -10.6 0.86 0.80 0.86 -6.5 0.81
Islam ds 0.78 0.64 34.9 0.80 0.64 0.41 56.9 0.75
Punjnad ds 0.75 0.65 30.3 0.76 0.71 0.80 -10.9 0.72

The optimized or calibrated parameters are shown in Table 4.2, where gains and losses
are indicated among the river reaches and link canals. In the Indus zone, losses are high
at the Jinnah-Chasma section (-25%), while there is a small net gain in the Tarbela-
Jinnah and Chasma-Taunsa reaches. In the Jhelum zone, there is a 9% gain from Mangla
to Rasul, but significant losses in the Rasul-Trimmu reach (-27%). In Chenab river, gains
are quite high in the first two sections starting from Marala to Qadirabad; while in the
section Qadirabad-Punjnad, considerable losses are observed. Correspondingly, in Ravi
river losses are high in Sidhnai-Punjnad section. In Sutlej river, gains and losses are not
significant compared to other rivers. Regarding the river links, most of them present
considerable losses, only Taunsa-Punjnad (TPL), Marala link (MRL link), and Upper
Chenab Canal (UCC) have +8%, -4%, and -5% gains/losses, respectively. The remaining
link canals that take water from Jhelum, Ravi, and Sutlej rivers present high losses.
Finally, it is worth mentioning that there are two farming seasons in Pakistan named
Kharif (April to September) and Rabi (October to March). In this way, supplementary
information about the observed and simulated volumes for both seasons can be found
in Appendix (Table A.3 and A.4) section.

4.2. Uncertainty Quantification

Figure 4.1, 4.2, and 4.3 show the time series plots of Maximum Likelihood Estimate
(MLE), observed, and the Ensemble Mean from posterior sampling throughout the cal-
ibration and validation periods. The illustrations include as well the uncertainty band
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Table 4.2.: Summary of calibrated model parameters.
River/link Reach Routing coefficient Gain/loss (+/-)%
Indus Tarbela - Jinnah 1.07 +7
Indus Jinnah - Chasma 0.75 -25
Indus Chasma - Taunsa 1.07 +7
Indus Taunsa - Guddu 0.99 -1
Jhelum Mangla - Rasul 1.09 +9
Jhelum Rasul - Trimmu 0.73 -27
Chenab Marala - Khanki 1.15 +15
Chenab Khanki - Qadirabad 1.16 +16
Chenab Qadirabad - Trimmu 0.75 -25
Chenab Trimmu - Punjnad 0.70 -30
Ravi Balloki - Sidhnai 1.13 +13
Ravi Sidhnai - Punjnad 0.82 -18
Sutlej Sulemanki - Islam 0.99 -1
Sutlej Islam - Punjnad 1.01 +1
Sutlej Punjnad - Guddu 0.96 -4
CJ link Head to tail 0.94 -6
TPL link Head to tail 1.08 +8
UJC link Head to tail 0.72 -28
RQL Head to tail 0.81 -19
MR link Head to tail 0.96 -4
UCC link Head to tail 0.95 -5
QBL Head to tail 0.74 -26
TSL link Head to tail 0.76 -24
HAV link Head to tail 0.85 -15
BSL link Head to tail 0.80 -20

at 2.5 and 97.5 percentiles for the cumulative probability distribution of the simulated
discharges. By looking at the statistical p- and r-factors, at most of the barrages the
model performance is "satisfactory" (p-factor>0.70 and r-factor<1.5) in both calibra-
tion and validation periods. In Indus zone, the uncertainties generally look large as
illustrated by shaded regions. For instance in Jinnah barrage, values of p-factor=0.75
and r-factor=0.70 indicate large uncertainties during the validation period. Similarly,
in Taunsa barrage values of r-factor=1.80 and 1.14 during calibration and validation
periods suggest large uncertainties in the model. On the other hand, in Jhelum-Chenab
zone, uncertainty bounds are quite tight compared with the Indus zone. For example,
in Khanki barrage, the width of the uncertainty bounds is small as suggested by r-factor
(0.42 and 0.23), although a few simulated data are bracketed within the given bounds
as indicated by p-factor (0.75 and 0.67). In the case of Rasul barrage, there are rel-
atively more uncertainties during calibration as expressed by low p-factor (0.73) and
high r-factor (1.28). In Ravi and Sutlej rivers, the percentage of simulated discharges
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bracketed by the given bounds are significantly acceptable, except in the Islam barrage
where the p-factor for calibration was 0.67. Regarding the r-factor in Balloki, Sulemanki,
and Islam barrages, the values indicate small width of the uncertainty bounds; while in
Sidhnai barrage there is large uncertainty.

4.3. Correlation Between Model Parameters

Figure 4.4 shows the posterior probability distributions for the 15 river reach model
parameters and 10 link canals. The proposed method accurately infers the given param-
eters and quantifies corresponding uncertainties. As indicated in the off-diagonal, the
parameters show slight posterior correlations with each other. Along the main diagonal
the kernel smoothing density shows the distribution of posteriors. These posterior dis-
tributions represent our uncertainty in the parameters after combining the information
in the data and our prior beliefs. Based on this, Jhelum-Chenab zone (mng-rsl, mrl-
knk, knk-qbd) shows the most probable parameter values accurately compared to other
zones. Regarding the link canals, posterior rql, qbl, and bsl indicate the most likely
values correctly.
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4.3. Correlation Between Model Parameters

Figure 4.1.: Time series plot of Indus zone (a, b, c) and Punjnad barrage (d) includ-
ing Maximum Likelihood Estimate (MLE), Ensemble Mean, and observed
values. Uncertainty was defined by computing 97.5 and 2.5% levels of the
cumulative distribution of the output variables.
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4. Results

Figure 4.2.: Time series plot of Jhelum-Chenab zone (a, b, c, d) including Maximum
Likelihood Estimate (MLE), Ensemble Mean, and observed values.

28



4.3. Correlation Between Model Parameters

Figure 4.3.: Time series plot of Jhelum-Chenab zone with nodes lying on Ravi (a, b)
and Sutlej (c, d) including Maximum Likelihood Estimate (MLE), Ensemble
Mean, and observed values.
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4. Results

(a) Corner plot showing the results of the posterior river reaches.

(b) Corner plot showing the results of the posterior link canals.

Figure 4.4.: Plot of posterior parameters. The distribution of each parameter is shown
in the kernel smoothing density along the diagonal. The off-diagonal panel
shows 2D joint posterior densities of each parameter, with contour levels of
the joint probability densities at 10%, 20%, and 90% confidence intervals.
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5. Discussions

Performance ratings for the recommended statistics at daily time step are presented in
Table 4.1. According to the evaluation guidelines in [35], [28], and [29] for assessing the
model performance, overall results in terms of NSE showed satisfactory values (>0.50).
It is worth noting that the NSE value was high in Indus zone, oscillating between 0.76
and 0.94 during calibration and validation periods. On the other hand, in Jhelum-
Chenab zone, the NSE indicates moderate, but still a satisfactory agreement between
simulations and observations. This situation is in part because NSE measures the relative
error; hence, small absolute errors can generate a large relative error at low discharges,
resulting in low NSE values. Meanwhile, in Sidhnai barrage (Ravi river), NSE was below
the threshold value. This larger discrepancy between observed and simulated discharges
could be a result of the complex branching upstream of the barrage. Considering that
the calibration was performed simultaneously for the entire system, and NSE>0.50 was
achieved in 11 out of the 12 barrages, model performance in Sidhnai barrage is assumed
to be satisfactory.
If the model performance is evaluated by using KGE indicator, the results show a good
agreement between observations and simulations at most barrages, except for the vali-
dation period of Islam barrage (KGE=0.41). Albeit with high R2 (0.75), this low KGE
metric may occur because of variability, mean bias, and coefficient of variation of the
observed discharges [24].
Accordingly, R2 indicates that most of the observed dispersion is explained by the sim-
ulated discharge on all barrages. However, underestimation and overestimation are not
accounted for by this index. By looking at the PBIAS evaluation guidelines, the distri-
bution model can be judged as satisfactory (+/−25%), suggesting a good representation
of the overall water balance among the assessed sites. But, in some barrages, the sim-
ulations tend to be over− or even underestimated. For instance, calibration/validation
at Chasma barrage indicated underestimation of simulated flows. Whereas, at Islam
barrage, the PBIAS denoted a tendency of the network model to overestimate the sim-
ulations. From the above situation, differences in water balance between observed and
simulated flow at Chasma and Islam are significantly high. This may explain the poor
model performance in terms of KGE and NSE. At Punjnad barrage, PBIAS values also
imply that the model overestimates simulated flow during calibration and underestimates
it during validation.
In some cases like in Punjnad and Islam barrages, model performance was not similar
in the validation period from that in the calibration period, as shown in Table 4.1. One
probable reason would be that the hydroclimate conditions during the validation period
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5. Discussions

may change and do not behave as same as the hydrologic conditions in the calibration
period [46].

To summarize, given the complexity of the irrigation system, with such a diversity of
water uses and intense water management along the course of the rivers, the model
behavior is considered satisfactory. However, there is a discrepancy between observed
and simulated values at some nodes. Therefore, more local modeling with an improved
algorithm would produce a better simulation. Of course, a calibration process is generally
not sufficient to make well-informed decisions, as there is no guarantee that a model
performs well under future climate conditions. In this context, uncertainty quantification
associated with the hydrologic model is valuable.

Managing the Punjab Irrigation System requires an understanding of water losses and
gains throughout the network. Losses include evaporation from barrages and infiltration
from the river to groundwater. There are unmeasured water withdrawals within the
network that is treated as losses, as well. On the other hand, gains include unmeasured
contributions from minor tributaries and drains, direct runoffs, and exfiltration from
groundwater. The obtained routing coefficients during the calibration process can ex-
plain the physical hydrologic dynamics in the region. For instance, in the Indus zone, net
losses are high within the Jinnah-Chasma reach. These losses are partially compensated
by moderate gains in the Tarbela-Jinnah and Chasma-Taunsa reaches. As suggested by
previous studies, losses below Tarbela Dam are likely to be groundwater recharge which
sustains the hot and dry parts of the basin. In the Jhelum-Chenab zone, there is a net
gain overall (Mangla-Rasul, Marala-Qadirabad). Nevertheless, there are still significant
net losses along the Rasul-Trimmu, Trimmu-Punjnad, and Qadirabad-Trimmu reaches.
These losses are likely to be prime groundwater recharge for the lower agricultural areas.
Such losses may partly be compensated by net gains in the Ravi river [1].

In general, model uncertainties are due to conceptual simplifications, processes taking
place in the evaluated system but not included in the model, processes that are included
in the model, but their occurrences are unaccountable because of limited data, and input
quality data [43]. By analyzing the statistical indicators for quantifying uncertainties,
the results showed that the Indus zone presents larger uncertainties as suggested by
r-factor (average thickness of the uncertain band); nevertheless, there are quite larger
observed data bracketed by the 2.5 and 97.5 percentile bands. It is known that a higher
r-factor can be achieved only at the expense of a lower p-factor because both indicators
are dependant on each other. Regarding the Jhelum-Chenab, Ravi, and Sutlej zone,
overall results show small uncertainties, except at the Sidhnai barrage. These findings
showed that zones with higher flow discharges are expected to be more sensitive to the
uncertainties.

A major drawback in the Bayesian Monte Carlo sampling is that it may not converge
toward the most probable region. This problem occurs when the parameters are non-
informative and the prior range is too wide to incorporate all possible values. In this
case, the probability of sampling the important region decreases. Conversely, if the
prior range is kept small, there is a chance of cutting off important regions [47]. In
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this manner, according to the posterior probability distribution shown in Figure 4.4,
some of them may not efficiently determine the most probable value of the parameters
accurately.
The decrease in measurement error (covariance matrix R) affects the shape of the poste-
rior distribution, as well as the weights of the likelihood function. By reducing measure-
ment error (or increasing information in the data) the posterior uncertainty bands may
shrink. However, given the complexity of the system and the extent of the evaluated
area, this assumption may be incorrect.
Finally, by using the most complex models, calibration and uncertainty analysis methods
may produce better results from what is shown here. However, a simple but robust model
structure such as presented in this study can minimize the possibility of increasing the
number of parameters and then reduce its uncertainty. Thus, the amount of parameter
uncertainty quantified in this study may represent one of the optimistic cases from a
hydrological modeling viewpoint.
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6. Conclusions and Recommendations

In this study, a node-link network model was developed to characterize the irrigation
system in Punjab province, Pakistan. The model was calibrated at the outflow of the
barrages/headworks by using Bayesian Monte Carlo method. Particular attention was
paid to quantifying the uncertainty of the output values.
Based on the results of this study, one can drawn the following conclusions:

• From the results, it has been demonstrated that satisfactory model performance
can be achieved when using a simple model structure. Our results can be con-
sidered relatively robust given the complexity of the system and the extent of the
evaluated area.

• The results in this study indicate a high model performance in the Indus zone;
whereas, moderate model behavior in the Jhelum-Chenab zone.

• The lower NSE, PBIAS, and KGE values at Balloki, Sidhnai, and Sulemanki bar-
rages suggest that the flexible modeling approach could take more training and
setting up time, especially if it is used for predictions.

• The optimized routing coefficients reported by model calibration explained coher-
ently the field conditions in the region. In this way, this modeling approach may
help the water authorities to have an additional tool in decision-making processes
to manage the irrigation system in the Punjab province.

• The posterior parameter distribution can shrink by reducing the measurement
error. However, given the complexity of the system and the extent of the evaluated
area, this assumption may be incorrect in this study.

• Findings in this study suggest that informative prior knowledge can help to reduce
the uncertainty of model parameters and allow better assessment of the model
outputs.

• Results in this study showed that zones with higher flow discharges are expected
to be more sensitive to large uncertainties.

Some aspects have not been taken into account in this study, which can be seen as
recommendations for future research.

• The proposed flexible hydrological model is an effective tool for understanding ir-
rigation system dynamics in the Punjab province. Follow-up work to this study
could focus on incorporating time lags as model parameters. It may lead to up-
grading the model and help for approaching the issues of uncertainty due to model
structures.
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6. Conclusions and Recommendations

• Simulations in some barrage outflows (Balloki, Sidhnai, and Sulemanki) are rela-
tively modest. Therefore, is recommended more local modeling with an improved
algorithm.

• Despite the results of parameter calibration, the applicability of the model should
be taken with great care because there are still uncertainties in the modeling results
due to the conceptual nature and the quality of input data.

• This network model encompasses only up to the Tarbela Dam in Indus zone;
therefore, the impact of reservoirs on the upstream of it needs to be analyzed.
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A. Appendix

A.1. Main script file of network model framework created in
MATLAB.

1 f unc t i on sim = Distr ibut ion_model (mc_ujc , mc_mng_rsl , mc_rql ,
mc_rsl_trm , mc_ucc , mc_mrl , mc_mrl_knk ,mc_knk_qbd , mc_qbl ,
mc_qbd_trm , mc_bsl , mc_blk_sid , mc_sul_isl , mc_isl_pnj ,
mc_trb_jin , mc_jin_chs , mc_cjl , mc_chs_tns , mc_tpl ,
mc_tns_gud , mc_tsl , mc_hav , mc_trm_pnj , mc_sid_pnj ,
mc_pnj_gud)

load ( ’ Dis t r ibut ion_data .mat ’ ) % f o r SI un i t s
3 %% Mangla

dem . ass_ujc_int = ze ro s ( l ength (dem . ujc_int ) , 1) ;
5 f o r i =1: l ength (dem . ujc_int )

i f dem . ujc_int ( i ) > c o e f f . cap_len (1 )
7 dem . ass_ujc_int ( i )= c o e f f . cap_len (1 ) ;

e l s e
9 dem . ass_ujc_int ( i )= dem . ujc_int ( i ) ;

end
11 end

dem . ass_ujc_l = ze ro s ( l ength (dem . u jc_l ink ) , 1) ;
13 f o r i =1: l ength (dem . u jc_l ink )

i f dem . u jc_l ink ( i ) > c o e f f . cap_len (21)
15 dem . ass_ujc_l ( i )= c o e f f . cap_len (21) ;

e l s e
17 dem . ass_ujc_l ( i )= dem . u jc_l ink ( i ) ;

end
19 end

av . av_ujc_link = i n f .mng_out − dem . ass_ujc_int ;
21 l o s s . loss_ujc_ht = round (dem . ass_ujc_l − dem . ass_ujc_l ∗mc_ujc ) ;

i n f . u j c_ta i l = dem . ass_ujc_l − l o s s . loss_ujc_ht ;
23 % Arr i va l date

date . ujc_ard = date . i n i t i a l + lag . lag_ujc ;
25 date . ujc_adj = NaT( length ( date . ujc_ard ) ,1 ) ;

date . ujc_adj (1 ) = date . ujc_ard (2 ) −1;
27 f o r k = 2 : l ength ( date . i n i t i a l )
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date . ujc_adj ( k ) = date . ujc_adj (k−1) +1;
29 end

% Conversion from date to numbers
31 date . ujc_ard = datenum( date . ujc_ard ) ;

date . ujc_adj_numb = datenum( date . ujc_adj ) ;
33 maxim . max_ujc = max( lag . lag_ujc ) ;

cont = 0 ;
35 % Time−lag adjustemnt

f o r j = 1 : l ength ( date . i n i t i a l )−maxim . max_ujc
37 cn =1;

f o r i = 1 : maxim . max_ujc
39 i f date . ujc_adj_numb( j ) == date . ujc_ard ( j + i − 1)

cont ( cn ) = i n f . u j c_ta i l ( j + i − 1) ;
41 end

end
43 i f isempty ( cont ) == 1

cn = 1 ;
45 cont ( cn ) = i n f . u j c_ta i l ( j + i − 1) ;

end
47 i n f . ujc_adj_inf ( j , 1 ) = mean( cont ) ;

end
49 %% Alt e rna t i v e time_lag adjustment

adj_t . ujc_unique = unique ( date . ujc_adj_numb ( : , 1 ) ) ;
51 adj_t . u jc = accumarray ( date . ujc_ard , i n f . u j c_ta i l , [ ] , @mean) ;

i n f . ujc_adj_inf = adj_t . u jc ( adj_t . ujc_unique ) ;
53 %%

% Maximum capac i ty o f cana l s and l i n k s
55 i n f . dsrel_mng = ze ro s ( l ength ( i n f . mng_out) , 1) ;

f o r i =1: l ength ( i n f . mng_out)
57 i f i n f . mng_out( i ) − dem . ass_ujc_int ( i ) − dem . ass_ujc_l ( i ) < 0

i n f . dsrel_mng ( i ) = 0 ;
59 e l s e

i n f . dsrel_mng ( i ) = i n f .mng_out( i ) − dem . ass_ujc_int ( i ) −
dem . ass_ujc_l ( i ) ;

61 end
end

63 .
.

65 .
% S im i l a r code s t r u c tu r e i s app l i ed f o r remaining barrages

67 end
Link-network model of Punjab Irrigation System.
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A.2. Volume difference between observed and simulated model for Kharif and Rabi season.

A.2. Volume difference between observed and simulated
model for Kharif and Rabi season.

Pakistan has two crop seasons named "Kharif" and "Rabi". Kharif refers to the summer
growing period (beginning of the first rains) starting from April to the end of September,
with major crops being rice, corn and cotton. Rabi or dry sowing season, begins in
October and is harvested at the end of March. The main Rabi crops include wheat,
barley, and millet.

Table A.1.: Volume difference (∆V) between observed and simulated results in Indus
and Jhelum-Chenab zones.

Year Jinnah Chasma Taunsa Rasul Khanki Qadirabad
m3 m3 m3 m3 m3 m3

2011-I -72323 183515 108228 -2692 22553 -11388
2011-II -26448 22325 18975 8409 2825 -1840
2012-I -52054 214389 104285 -7614 14 -15908
2012-II -13017 58910 45907 5102 -7654 -6652
2013-I -86435 308628 140047 249 2173 -20992
2013-II 8763 50494 41223 8752 -1672 -1539
2014-I -61079 202561 134371 -161 -1119 -24782
2014-II 14060 73750 54925 -27703 6593 2520
2015-I -72374 325745 207072 -26222 -727 -19883
2015-II 31256 77814 56344 -19344 1192 4700

Table A.2.: Volume difference (∆V) between observed and simulated results in Ravi and
Sutlej zones.

Year Trimmu Balloki Sidhnai Sulemanki Islam Punjnad
m3 m3 m3 m3 m3 m3

2011-I 13144 15838 7707 10887 -158 -22029
2011-II 1391 896 1394 1858 -247 -6381
2012-I -5352 1388 -2755 4087 -6765 -27567
2012-II 1772 5145 5340 -1230 -4534 -1140
2013-I 9205 3191 -4075 1241 -10013 -20526
2013-II 6859 6360 5068 -641 -4160 6734
2014-I 24365 1694 -16248 1598 -8040 -11990
2014-II 20215 1771 4396 -2050 -3388 26240
2015-I 25498 1981 5638 4167 -14028 -78
2015-II 17175 822 755 850 -5185 19045
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A.3. Simulated and observed volumes for Kharif and Rabi.

Table A.3.: Barrage downstream volumes of observed and simulated values during Kharif
season (April to September).

Barrage Volume (m3) 2011-I 2012-I 2013-I 2014-I 2015-I

Jinnah Obs 750334 748770 921037 753947 974763
Sim 822657 800824 1007472 815026 1047137

Percent bias % 9.6 7.0 9.4 8.1 7.4

Chasma Obs 754113 770175 1001843 782274 1082466
Sim 570598 555786 693215 579713 756721

Percent bias % -24.3 -27.8 -30.8 -25.9 -30.1

Taunsa Obs 626198 623585 781178 655223 933027
Sim 517970 519300 641131 520852 725955

Percent bias % -17.3 -16.7 -17.9 -20.5 -22.2

Rasul Obs 69715 61301 45596 114115 123425
Sim 72407 68915 45347 114276 149647

Percent bias % 3.9 12.4 -0.5 0.1 21.2

Trimmu Obs 99676 64109 119489 168839 229087
Sim 86532 69461 110284 144474 203589

Percent bias % -13.2 8.3 -7.7 -14.4 -11.1

Punjnad Obs 76635 35578 119330 116535 213750
Sim 98664 63145 139856 128525 213828

Percent bias % 28.7 77.5 17.2 10.3 0.04

Khanki Obs 144003 131615 168842 190118 194321
Sim 121450 131601 166669 191237 195048

Percent bias % -15.7 0.0 -1.3 0.6 0.4

Qadirabad Obs 88801 71530 119909 139073 166880
Sim 100189 87438 140901 163855 186763

Percent bias % 12.8 22.2 17.5 17.8 11.9

Balloki Obs 41776 25064 46017 45960 53719
Sim 25938 23676 42826 44266 51738

Percent bias % -37.9 -5.5 -6.9 -3.7 -3.7

Sidhnai Obs 24454 15234 27752 20220 55067
Sim 16747 17989 31827 36468 49429

Percent bias % -31.5 18.1 14.7 80.4 -10.2

Sulemanki Obs 65789 18665 42211 16219 47152
Sim 54902 14578 40970 14621 42985

Percent bias % -16.5 -21.9 -2.9 -9.9 -8.8

Islam Obs 46775 7532 30275 6326 28211
Sim 46933 14297 40288 14366 42239

Percent bias % 0.3 89.8 33.1 127.1 49.7
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Table A.4.: Barrage downstream volumes of observed and simulated values during Rabi
season (October to March).

Barrage Volume (m3) 2011-II 2012-II 2013-II 2014-II 2015-II

Jinnah Obs 226421 267880 264139 255793 244966
Sim 252869 280897 255376 241733 213710

Percent bias % 11.7 4.9 -3.3 -5.5 -12.8

Chasma Obs 192089 247655 234392 242029 229828
Sim 169764 188745 183898 168279 152014

Percent bias % -11.6 -23.8 -21.5 -30.5 -33.9

Taunsa Obs 172264 214625 209461 206650 193732
Sim 153289 168718 168238 151725 137388

Percent bias % -11.0 -21.4 -19.7 -26.6 -29.1

Rasul Obs 43789 43527 58791 84473 96313
Sim 35380 38425 50039 112176 115657

Percent bias % -19.2 -11.7 -14.9 32.8 20.1

Trimmu Obs 13122 19521 23977 84035 73356
Sim 11731 17749 17118 63820 56181

Percent bias % -10.6 -9.1 -28.6 -24.1 -23.4

Punjnad Obs 12384 14809 18741 75628 62981
Sim 18765 15949 12007 49388 43936

Percent bias % 51.5 7.7 -35.9 -34.7 -30.2

Khanki Obs 9273 23533 22289 44107 24266
Sim 6448 31187 23961 37514 23074

Percent bias % -30.5 32.5 7.5 -14.9 -4.9

Qadirabad Obs 6500 14086 14648 34401 26571
Sim 8340 20738 16187 31881 21871

Percent bias % 28.3 47.2 10.5 -7.3 -17.7

Balloki Obs 4377 9770 13602 15141 6720
Sim 3481 4625 7242 13370 5898

Percent bias % -20.5 -52.7 -46.8 -11.7 -12.2

Sidhnai Obs 7958 8762 9968 20258 10384
Sim 6564 3422 4900 15862 9629

Percent bias % -17.5 -60.9 -50.8 -21.7 -7.3

Sulemanki Obs 3807 5567 5853 7590 10461
Sim 1949 6797 6494 9640 9611

Percent bias % -48.8 22.1 11.0 27.0 -8.1

Islam Obs 1681 2136 2192 6087 4232
Sim 1928 6670 6352 9475 9417

Percent bias % 14.7 212.3 189.8 55.7 122.5

A.4. Model performance and posterior parameters.
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Figure A.1.: Results of model performance for the section A-A’ and B-B’ in network
model. The values in the boxplot depict the median of NSE for calibration
and validation periods.
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Figure A.2.: Results of model performance for the section C-C’, D-D’ and E-E’ in net-
work model. The values in the boxplot depict the median of NSE for
calibration and validation periods.
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Figure A.3.: Violin plot of posterior river reach parameters, representing a combination
of the box plot with a kernel density plot.
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Figure A.4.: Violin plot of posterior link canal parameters. The white dot represents
the median and the thick gray bar in the center represents the interquartile
range.
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