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ABSTRACT 

Mesoscale Models for the Study of Emergent Behaviors Arising from 

Protein Interactions  

by 

Carlos A. Bueno Basurco 

Proteins are versatile biopolymers in living systems; they exhibit a great 

diversity of functions depending on the order in which their amino acids are 

arranged. Most protein functions, like mechanical or regulatory functions, only 

emerge from the interactions with other proteins and macromolecules. This 

dissertation describes how we have developed and adapted new computational 

models to investigate emergent structural and dynamic properties of protein 

interactions. 

Chapter 1 presents a review of the two systems of interest to be explored in 

successive chapters: the regulation of the actin cytoskeleton and the control of DNA 

transcription by the nuclear factor kappa B (NF-κB). It also introduces some models 

developed to study the interactions of protein with actin filaments and with DNA. 

Chapters 2 and 3 focus on protein interactions in the actin cytoskeleton 

network. Chapter 2 describes how we have estimated the mechanical and dynamical 

properties of actin networks using polymer theory. We developed a simplified 

mathematical mean-field model of F-actin polymerization, cross-linking, and 

branching based on mass action kinetics. Then we obtained an analytical solution to 
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the connectivity, rigidity, and force percolation transitions using a generalized 

version of the Flory-Stockmayer theory. Chapter 3 describes how we used a 

computational mechano-chemical model to simulate the conditions where the actin 

networks exhibit rare sudden movements. We show that actin networks containing 

Arp2/3 undergo sudden releases of strain known as “cytoquakes”.  

Chapters 4 and 5 focus on DNA-protein interactions. Chapter 4 describes a 

new implementation to simulate protein and DNA dynamics for large systems that 

we developed. This new procedure retains the accuracy of previous methods our 

group developed with a 30-fold speedup and eases the introduction of new potential 

energy terms. Chapter 5 describes how we used this protein and DNA model to 

explain why the NF-κB heterodimer, a transcription factor, can bind the DNA with 

more affinity than the corresponding NF-κB homodimer. We determined that a 

higher affinity in the heteromer protein-protein interface can help us explain this 

feature. We also measured the energy landscape, frustration, and low-frequency 

vibrations of the complexes. 

In conclusion, these novel methods and models reproduce protein 

interactions in cells. These models have elucidated the origin of several emergent 

behaviors, such as force percolation and marginal stability in actin networks, as well 

as signal transduction by protein-DNA complexes. 
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Chapter 1 

Introduction 

“All models are wrong, but some models are useful.”- George E. P. Box 

1.1. Motivation 

Living systems are characterized by complex, chaotic interactions that 

paradoxically give rise to ordered and predictable behaviors at the cellular level [1]. 

Individual isolated components of the cell cannot reproduce the behaviors that arise 

from the interactions of many molecules and their environment [2]. Although 

computational advances have accelerated the modeling of individual molecules [3], 

biological time scales remain inaccessible to detailed models due to their complexity 

[4]. Averaging properties of large groups of molecules using simple rules allows us 

to bridge the gap between theory and simulation and explain complex emergent 

behaviors on time scales and size scales relevant to living cells [5]. 
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The complexity of living organisms is a result of evolution. While DNA is the 

molecule responsible for transmitting genetic information across generations, 

proteins generate complexity in living systems due to the various physicochemical 

properties of their monomers and the vast available sequence space [6]. The protein 

sequence mainly determines its 3D structure and functions [7]. Proteins seldom 

work in isolation; their functions are highly dependent on the environment in which 

they are found. Most structural, regulatory, or signaling functions, require the 

presence of multiple other components of the cell system and are challenging to 

study experimentally and theoretically. 

A classic example of a complex system in the cell is the actin cytoskeleton. 

Actin networks enable cells to grow, migrate and support themselves. Actin is one of 

the most abundant proteins in eukaryotic cells and is involved in more protein-

protein interactions than any other known protein [8]. Actin binds to itself, forming 

filaments in the cell known as F-actin. Actin also binds capping proteins, severing 

proteins, motor proteins, crosslinker proteins, nucleation factors, elongation factors, 

and many other actin-binding proteins [8,9]. The interaction of actin with these 

actin-binding proteins determines not only the structural properties of individual 

actin filaments but also the structure and dynamics of the actin network [10,11].  

Another example of emergent properties arising from protein interactions 

can be found in the nucleus of the cell. Several proteins, for example histones, 

transcription factors, and helicases, interact with the DNA to control the translation 

of genes and the replication of DNA. A fascinating example is NF-κB, which forms 
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dimers that bind the DNA, regulate DNA transcription, and determine cell survival. 

Paradoxically experimental observations have found that the NF-kB heterodimer 

binds with more affinity than expected as a sum of the monomer interactions, 

suggesting an emergent property arising from the dimer interactions. 

This dissertation focusses on the emergent behaviors arising from the 

interactions of actin with actin-binding proteins, the interactions of proteins with 

DNA, and computational and analytical methods developed to study these 

interactions. The emergent behaviors are observed at different scales, so the 

theories and models used to understand these systems correspond to different 

fields of physics. The first problem was studied using insights from polymer physics, 

soft active matter, and condensed matter. In contrast, the second problem utilizes 

theories related to protein folding and assembly as well as molecular biophysics. 

1.2. Protein interactions with actin filaments 

1.2.1. Actin filaments 

Actin was first discovered in muscle extracts by Straub in 1942 [12]. Since 

then, actin has also been found in all eukaryotic cells [13], and actin homologs have 

been identified in bacterial cells [14]. Actin networks are the primary drivers of cell 

movement [15], including muscle contraction, cell protrusion [16], and neuronal 

plasticity [17]. Actin is present both in the cytoplasm and in the nucleus as globular 

actin (G-actin), the monomeric form of actin, or as filamentous actin (F-actin). F-

actin is composed of hundreds to thousands of F-actin protomers [18].  
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The monomeric form of actin, G-actin, is a globular protein of around 42 kDa 

and 375 amino acids and is made up of four subdomains: A1, A2, A3, and A4. The 

subdomain A1 is attached to the structurally related subdomain A3 [8]. Subdomains 

A1 and A3 face toward the minus (pointed) end of the filament, while subdomains 

A2 and A4 face towards the plus (barbed) end of the filament. The A3 and A4 

subdomains can be grouped into a large domain, close to the actin filament center, 

while the A1 and A2 subdomains form a small domain closer to the actin filament 

surface [19].  

In the cell, G-actin polymerizes to F-actin. The F-actin structure was 

elucidated first in 1963 by Hanson and Lowy [20] and can be described as a left-

handed helix or a right-handed double-helix. Actin has a width of around 9-9.5 nm. 

When it is described as a double-helix, it has a half-helical length of around 36 nm, 

which corresponds to 13 F-actin protomers approximately [21]. Actin filaments are 

semiflexible polymers with a persistence length of around 17 µm [22]. The 

structural properties of the helix not only depend on the bound nucleotide (ATP vs. 

ADP) and cations (calcium or magnesium) that are bound to the protomers, but also 

depend on the actin isoform [23], additional proteins bound to the fiber such as 

cofilin [24] or Arp2/3 [25,26], and the mechanical stresses supported by the fiber 

[27].  

Actin filaments are in constant dynamic turnover because they have higher 

affinity for new actin monomers at the plus end compared to the minus end [28]. 

Actin polymerization is an active process; ATP-actin binds with more affinity to the 
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plus end of the filament, where it then hydrolyzes to Actin-ADP and ultimately 

dissociates more frequently from the minus end [29]. At steady-state, the 

continuous growth of the filament at the plus end accompanied by the shrinking at 

the minus end is known as actin treadmilling [30]. Actin treadmilling is a non-

equilibrium process that consumes free energy in the form of ATP, generates force, 

and participates in cell motility. 

1.2.2. Actin-binding proteins 

Actin treadmilling is highly regulated in cells by capping proteins, nucleation 

factors, severing proteins, actin-monomer-binding proteins, and actin polymerases 

[9], which control the kinetics of filament polymerization and depolymerization. 

Actin crosslinkers, such as α-actinin or fascin, alter the higher-order structures and 

dynamics of the network by creating larger assemblies such as bundles, asters, or 

isotropic networks, as well as steering the forces in the network [31]. Most actin-

binding proteins bind to the same conserved binding site in F-actin [32]. 

Two actin-binding proteins of interest are myosin motors and Arp2/3. 

Myosin motors can also act as crosslinkers and generate forces in the actin networks 

by walking along the actin filaments, acting as a second non-equilibrium force-

exerting process in actin networks [33,34]. Non-muscle myosin IIA (NMIIA) can 

form minifilaments, bipolar ensembles of around 10-30 individual myosin motors, 

that can generate contractility in actin networks [35]. Arp2/3 acts as a nucleator of 

new actin filaments and as a brancher. Arp2/3 binds on the side of an actin filament 
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and creates a nucleation point that allows a new actin filament to grow at an angle 

of 70 degrees from the parent filament [36]. 

Actin-binding proteins interact in complex ways with the actin network. For 

example, it has been reported that actin networks can only contract under specific 

concentrations of crosslinkers and motors [37] and that crosslinkers modulate the 

distinct steady-state dynamics of actin networks [38]. It has also been shown that 

fascin and α-actinin can phase-separate in filament bundles [39]. 

Actin networks also play a central role in forming new memories in the brain, 

known as long-term potentiation (LTP) [40,41]. During long-term potentiation, the 

presynaptic neuron axon sends high-frequency electrical signals to the post-

synaptic neuron [40,42]. High-frequency electric signals trigger a signaling cascade 

in the dendritic spine, allowing it to grow and become more susceptible to further 

signals from the presynaptic neuron [42].  

Numerous proteins mediate the growth of the post-synaptic dendrite, and 

their interaction with actin is necessary to form the characteristic mushroom shape 

of the mature dendritic spine. It has been shown that filopodia are formed instead of 

the mushroom shape when Arp2/3 is absent [43], when α-actinin is knocked-down 

or overexpressed [44], or when myosin is inhibited [45,46]. Other proteins, such as 

CPEB or CAMKII, also play a vital role in the maturation of the dendritic spine and 

have been described elsewhere [47–50]. 

Because of these interactions, it is helpful to consider actin networks as a 

system with multiple overlapping transitions happening as a function of the 
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concentration of actin-binding proteins. Some aspects of interest in this system are, 

for example, whether the system is connected or disconnected (connectivity 

percolation) [51], whether it deforms as a liquid or as a solid (rigidity percolation) 

[52], or whether it is capable of transmitting forces across the system (force 

percolation) [53,54]. The system can also separate on regions of different 

composition (phase-separate) [37], undergo alignment of filaments [55–57], and 

aggregate as a glass [58,59] or in a periodic structure as a crystal [60]. 

1.2.3. Mesoscopic models for actin networks 

Some coarse-grained models have been developed to study interactions in 

dynamic actin networks that can simulate the effects of treadmilling, motor activity, 

and crosslinker connectivity in actin networks, such as AFINES [61], Cytosim [62], 

and MEDYAN. MEDYAN (Mechanochemical Dynamics of Active Networks) is a 

coarse-grained mechanochemical model of actin networks that has been developed 

by Papoian and coworkers. [63–67].  

MEDYAN models stochastic chemical reactions and deterministic mechanical 

representations of active systems such as the actin cytoskeleton or microtubules. 

This model treats unbound molecules as diffusive entities and bound molecules as 

structural mechanical entities. Diffusive entities, which are not bound to filaments, 

do not have specific positions but can react chemically with other entities at a rate 

determined by the local concentration. They can also diffuse between discrete 

compartments in the system. On the other hand, mechanical entities have specific 

positions and experience forces depending on their relative position to other 
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molecules. In this dissertation, we have used MEDYAN to model actin networks 

containing NMIIA, Arp2/3, actin, and α-actinin [59]. A complete description of 

MEDYAN can be found in Chapter 3. 

To obtain a more analytical insight into the connectivity percolation, rigidity 

percolation, and force percolation of the modeled cytoskeletal networks we also 

employ the theory of Flory and Stockmayer [68,69], which describes the conversion 

of monomers into heavy insoluble gels by branching and cross-linking. Tavares et al. 

recently generalized the Flory-Stockmayer theory [70,71] to handle complex 

polyfunctional monomers, like the F-actin protomer [53]. A complete description of 

the Flory-Stockmayer theory can be found in Chapter 2. 

1.3. Protein interactions with DNA 

More than 1000 proteins in the human proteome interact with DNA, of which 

around half are transcription factors [72].  The other half includes proteins with 

functions such as DNA repair, DNA replication, and association with chromatin [73]. 

Some proteins, such as the histones, bind the DNA non-specifically mainly through 

electrostatic interactions with the DNA phosphate groups. On the other hand, 

transcription factors are thought to bind to a specific sequence motif in the DNA, 

perhaps by interacting directly with the nucleobases.  

To study protein-DNA interactions, atomistic models have been created for 

proteins and DNA, which can be used to study fast conformational 

transitions[74,75]. These atomistic models struggle to simulate the time and size 
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scales relevant to understand more complex phenomena. DNA is the longest 

molecule found in a cell, and models of different scales can be used to understand 

the emerging phenomena arising from its interactions with proteins, from the 

atomistic scale to the mesoscale and chromosome-scale models [76]. 

Several coarse-grained DNA models have been developed to represent the 

DNA in the mesoscale. Among them, the martini DNA model, which models each 

nucleic acid using 6-7 sites per nucleotide [77], and the SIRAH DNA model [78,79], 

which models the DNA with six sites per nucleotide, have been used in combination 

with protein models to study protein-DNA interactions[80,81]. Another DNA 

Coarse-grained model is oxDNA [82,83] which has been used in combination with 

an anisotropic network model of proteins to simulate histone-DNA complexes [84]. 

In this dissertation we focus on the 3SPN.2 coarse-grained DNA model in 

combination with the AWSEM coarse-grained protein model. 

1.3.1. 3SPN.2 

3SPN.2 is a Coarse-Grained DNA model developed by the de Pablo group that 

models the DNA molecule using three sites per nucleotide: the phosphate group site, 

the sugar site and the nucleobase site [85]. 3SPN.2 provides a flexible 

representation of the DNA backbone, nucleobases interactions, and electrostatics, 

while 3SPN.2C, a modification of the 3SPN.2 potential, incorporates the DNA 

sequence-dependent curvature [86]. The 3SPN.2 model has been used in 

conjunction with the AICG2+ protein model for protein-DNA simulations [87] of 

histones[88,89] and transcription factors [90] and to study the opening of cohesin’s 
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SMC ring [91]. AICG2+ also implements protein-RNA interactions and protein-lipid 

interactions [92,93]. 

1.3.2. AWSEM 

The Associative memory, Water-mediated, Structure and Energy Model 

(AWSEM) is a coarse-grained protein model. Our group has used 3SPN.2C in 

combination with the AWSEM to study protein-nucleic acid complexes, such as the 

nucleosome [94], SMC complexes [95], NF-κB DNA complexes [96], T7 helicase [97], 

and CPEB3 [49].AWSEM parameters were optimized by a machine learning strategy 

based on the principles of the energy landscape theory of protein folding and 

specifically the Principle of Minimal Frustration [98]. AWSEM represents each 

amino acid with three explicit particles, which correspond to the carbon-α (CA), 

oxygen (O), and carbon-β (CB) atoms [98], while the positions of other backbone 

atoms can be calculated directly from their coordinates using the assumption of a 

planar peptide bond 

The AWSEM Hamiltonian includes a backbone potential, a contact potential, a 

burial potential, a hydrogen bonding potential, and an associative memory potential 

based on bioinformatic input [98]. Also, depending upon the problem of interest, 

AWSEM may include a desolvation barrier potential [99], an electrostatic potential 

[100], and a membrane potential [101]. AWSEM has performed among the top 10 

forcefields in the recent CASP13 protein folding competition [102,103]. A more 

detailed description of the AWSEM forcefield and the 3SPN.2 forcefield can be found 

in Chapter 4 and in Appendix C. 
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Chapter 2 

Connectivity and rigidity percolation of 

cytoskeletal networks. 

This chapter is a slightly modified version of an article published in the PLOS 

Computational Biology journal [53].  

2.1. Introduction 

Actomyosin networks are essential for crucial aspects of muscular 

contraction, cellular locomotion, endocytosis, the sensing of obstacles in the 

environment, and even for the synaptic plasticity of dendritic spines [17]. In muscle 

cells actin filaments and the accompanying myosin minifilaments are parallel and 

organized, and the mechanism of contraction is relatively well understood [104]. On 

the other hand, in non-muscle cells, actomyosin networks are non-equilibrium 

dynamic systems of actin filaments connected by actin-binding proteins [9,105]. The 

non-muscle actin filaments can be randomly oriented, or can form branched bundles 

[106,107], asters [66,108], or meshes [109,110]. The filaments can be in a 

homogeneous solution [106], form a distinct phase [37], or may display more 



 

12 

complex architectures [111]. For example in neurons, the complex structure of 

actomyosin networks in the dendritic spines are regulated by actin-binding proteins 

such as non-muscle myosin IIA heavy chain (NMIIA) motors, α-actinin, actin-related 

protein complex 2/3 (Arp2/3), and calcium/calmodulin-dependent protein kinase II 

(CaMKII) [47,112]. 

Crosslinkers, like α-actinin, bind actin filaments at binding sites located on 

the sides of the filaments [113]. When the system has become sufficiently connected 

by α-actinin, the network rheology changes. The network behaves as an elastic solid 

when the concentration of α-actinin is less than the bundling threshold, but the 

network behaves as a viscous fluid when the α-actinin concentration is higher than 

the bundling threshold [106]. The stiffness of the network changes by several orders 

of magnitude even for small alterations of cross-linker concentration [114]. Other 

crosslinkers lead to a similar pattern of mechanical response depending on their 

structures and sizes [115]. Arp2/3 is also an actin crosslinker, but it binds and caps 

the minus end of a daughter filament. Thus Arp2/3 acts both as a nucleator and as a 

brancher [25]. Experimentally, Arp2/3 has been shown to nucleate actin filaments 

and form branched actomyosin networks [116]. Branched actin networks display 

different dynamical and rheological behavior than do randomly crosslinked 

networks [10,59,105]. This variety of behaviors allows actin networks with Arp2/3 

to carry out distinct cellular functions. Branched actin networks can also display 

rare convulsive large scale remodeling events called avalanches or “cytoquakes” 

[59,117]. 
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Advances in reconstituting actin myosin systems have given insight into how 

actin interacts with specific actin-binding proteins [118]. A reconstituted network is 

able to contract when the system has more than a threshold concentration of 

motors but only over a limited window of concentration of linkers [37]. Changing 

the concentration of crosslinkers in a reconstituted system with myosin affects the 

steady state dynamics of actin networks [38]. Experiments have also shown that at 

high myosin density, crosslinkers are not needed to promote contractility on 

cellular length scales [119]. 

The variety of orientations, architectures and biochemical compositions of 

actin networks makes it difficult to develop a grand unifying theory that can explain 

all aspects of cytoskeletal contraction. Nevertheless, one of the most important 

factors determining the behavior of an actomyosin network is the connectivity of 

the network. This connectivity modulates non-monotonically the network’s ability 

to contract [37,38,106]. Motor activity is also needed to allow actin networks to 

contract and modulates contractility in a non-monotonic way. Motors encourage 

contractility at medium levels of activity, but decrease contractility when their 

activity is high but their processivity is low [120–122]. The buckling of the filaments 

is also necessary for the contraction of highly connected actomyosin networks 

[26,34,123–126]. Other structural features such as filament bundling [127], the 

alignment of the filaments [56], branching by Arp2/3 [25], shrinking of the actin 

filaments [128] and global changes in the actin network architecture [129] also 

modulate the ability of the network to contract. All of these features depend on the 

biochemical composition of the actomyosin system [26].  
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Several models have been developed to simulate interactions between actin-

binding proteins and actin filaments such as MEDYAN [67], Cytosim [62], and 

AFINES [61]. We have previously studied the reorganization of actin networks 

caused by Arp2/3 using the MEDYAN model, which includes mechanochemical 

feedback on the binding and unbinding of actin-binding proteins to actin filaments 

and represents actin filaments as mechanical objects [59]. The completeness of 

these simulation models is a virtue, but in this paper, we develop a simple analytical 

model that allows us to highlight and appreciate how the connectivity of the 

cytoskeletal network develops in time and influences the dynamics and rheology of 

actomyosin systems. 

We previously have explored an actin contractility model focused on the load 

response of individual actin filaments and active motor-like events [34,125,130–

134] and explicitly connected the concept of rigidity percolation with glass 

transitions in network materials [135]. In work related to the present effort, Zilman 

and Safran have predicted the structural behavior of non-motorized actin networks 

with a single crosslinker type using a theoretical mean-field model based on the 

Flory polymer theory [136]. These models however do not deal explicitly with the 

branching nature of Arp2/3, which is a key biochemical component in cortical actin. 

The approach taken here is based on the seminal work of Flory and Stockmayer on 

condensation polymer networks in a Bethe lattice[68,137]. A recent generalization 

of Flory’s work allows us to model branched networks where multivalent 

monomers have multiple different binding sites, an important feature of biological 

actin networks [71]. We also highlight the distinction between connectivity 
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percolation, also called conductivity percolation, which simply monitors the 

existence of an infinite cluster that is connected and rigidity percolation which 

determines when the infinite cluster becomes elastically stable [138–140]. Alvarado 

et al. have proposed a schematic phase diagram for active systems, with 4 regimes, 

where the network can be described as being an active solution, a prestressed gel, 

able to undergo global contractions or only local contractions [54].  

In the present analysis we have developed a macroscopic chemical kinetic 

model based on binding and unbinding kinetics of actin-binding proteins. We found 

that the transient concentrations obtained from the chemical kinetic model are 

comparable with the results of a coarse-grained mechanochemical model 

(MEDYAN) before the percolation transition. We also showed how the mechanism of 

binding between actin-binding proteins and actin filaments and the binding 

cooperativity can alter the concentrations needed to observe connectivity 

percolation. The calculations show that low concentrations of motors are not able to 

produce contractile motions in the actin networks without additional linkers, but 

that at high concentrations motors are sufficient to produce contractile motions. We 

also locate the connectivity percolation transition as a function of linker 

composition and explore how the rigidity percolation transition differs from the 

connectivity percolation transition when the connections made by the linkers are 

not themselves individually rigid. We find that, unlike other actin-binding proteins, 

Arp2/3, an actin brancher that generates complex architectures, modulates the 

actomyosin percolation in the network in a non-monotonic way. In conclusion, the 

present model based on the Flory-Stockmayer theory allows us to determine how 
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the biochemical composition, branching, and the linker binding mechanism are 

linked to the connectivity in the system and the observation of contraction. 

2.2. Results 

2.2.1. Macroscopic chemical kinetics laws recapitulate MEDYAN 

simulations of binding stoichiometries 

We used a macroscopic kinetic description to predict the number of both the 

connections made during the growth, and the number of plus and minus ends of the 

actin filaments, which determines the length and their treadmilling rate. We 

compared the transient concentrations of the different kinds of F-actin binding 

species obtained from a chemical kinetic model to the predicted transient 

concentrations of F-actin binding species obtained using MEDYAN. MEDYAN is a 

state-of-the-art coarse-grained mechanochemical model of the actomyosin 

networks. MEDYAN, unlike the chemical kinetic model, includes stochastic chemical 

reactions, mechanical representations and mechanochemical feedback of far-from-

equilibrium systems. The chemical kinetic model allows us to find an analytical 

solution to the percolation of actomyosin networks over time. 

In the main, the transient concentrations from the chemical kinetic model 

and MEDYAN simulations agree with each other as shown in Fig 2.1. For both 

models we started the system with small filaments of F-actin that act as nucleators. 

During the first part of the trajectories, G-actin polymerizes into F-actin filaments 

and actin binding sites become available for actin-binding proteins, such as α-
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actinin, myosin, and Arp2/3 for them to bind. As the simulation progresses the 

binding and unbinding rates even up and the concentrations of bound actin-binding 

proteins reach a steady state. 

Late in the growth of the network there are some differences between the 

transient concentrations of bound sites predicted by the chemical kinetic model and 

those from the MEDYAN simulation. First, the concentration of F-actin monomer 

direct connections ([Fm ⋅ Fp]) obtained from MEDYAN was slightly lower than the 

chemical kinetic model result (purple lines in Fig 2.1). We attribute this small 

difference to the fact that, in MEDYAN, the polymerization rate of those filaments 

that are near the wall is decreased by mechanochemical feedback when they collide 

with the wall. The chemical kinetic model does not take such mechanochemical 

feedback or wall interactions into account. 

The concentration of bound motors ([Fc ⋅ M ⋅ Fc]) obtained from the MEDYAN 

simulation does not differ from the concentration of bound motors in the 

macroscopic chemical kinetic model (yellow lines in Fig 2.1). On the other hand, the 

concentrations of bound linkers ([Fc ⋅ L ⋅ Fc]) obtained from MEDYAN differs from 

the concentrations of bound linkers calculated using the chemical kinetic model 

(orange lines in Fig 2.1). This discrepancy arises from the heterogeneous 

distribution of the binding sites in the system. In the chemical kinetic model, a 

homogeneous distribution of binding sites and an isotropic network conformation is 

assumed, while in MEDYAN the distribution is spatially heterogeneous and the 

filaments can form bundles. The heterogeneous distribution of binding sites in 
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MEDYAN implies that fewer binding sites are available at a given time to be bound 

by linkers due to the small distance of search that is possible for linkers that have 

already been bound (dCmin = 30 nm, dCmax = 40 nm). The concentration of bound 

motors ([FC ⋅ M ⋅ FC]) acquired from MEDYAN and from macroscopic kinetics are 

similar because the search distance for a motor is greater than the search distance 

for a linker in the MEDYAN model (dMmin = 175 nm, dCmax = 225 nm). 

Finally, the concentration of bound branchers ([Fc ⋅ B ⋅ Fm]) found in 

MEDYAN is greater than the concentration of bound branchers obtained from the 

chemical kinetic model (red lines in Fig 2.1). This difference is a consequence of the 

results for other species that we have just discussed. The large concentration of non-

polymerized G-actin molecules in the system with Arp2/3 (Fig 2.1B) predicted by 

the MEDYAN model comes from there being a slower effective polymerization rate 

caused by collisions between actin filaments and the boundary. The resulting larger 

concentration of available binding sites allows the branching reaction to occur faster 

in MEDYAN compared with what happens in the macroscopic chemical kinetic 

model. The concentrations at steady state of the bound species in MEDYAN tend to 

converge to those from the chemical kinetic model. 
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Fig 2.1. Time course of concentrations of bound species provided from the 

macroscopic chemical kinetic model (solid lines) and the MEDYAN simulations (dots) 

of actomyosin networks.  

Results for networks without Arp2/3 are shown in (A) and results with Arp2/3 are shown 

in (B). The average MEDYAN concentrations are plotted as dotted lines. Fraction of F-

actin monomers in finite clusters obtained from the chemical kinetic model are shown in 

(C) without Arp2/3 and results with Arp2/3 are shown in (D). [Fm ⋅ Fp] is the concentration 

of plus sites of F-actin monomers bound to a minus site of another actin monomer. [Fc ⋅ L 

⋅ Fc] is the concentration of F-actin monomer binding sites bound to another F-actin 

monomer binding site through a linker (α-actinin). [Fc ⋅ M ⋅ Fc] is the concentration of actin 

monomer binding sites bound to another actin monomer binding site through a motor 

(NMIIA). [Fc ⋅ B ⋅ Fm] is the concentration of actin monomer binding sites bound to a minus 

site of another actin monomer through a brancher (Arp2/3). 

2.2.2. Actomyosin networks undergo two sol-gel transitions when modeled 

using the two-step model of linker binding 

Some actomyosin models simplify the binding of linkers and motors to F-

actin filaments as a one-step reaction, binding two actin filaments at the same time 

[62,67]. Other models consider a two-step model for actin binding, where each 

reaction happens at different moments [106,141,142]. Here we examine the effect of 
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a two-step non-cooperative model on the percolation of actin networks where both 

actin-binding domains have the same affinity to actin-binding sites.  

As they grow, actomyosin networks undergo a sol-gel transition. In the two-

step model of linker binding, both heads of the linker bind independently to the 

actin-binding sites (non-cooperative binding). At an intermediate linker 

concentration, a maximum concentration of crosslinker connections ([Fc ⋅ L ⋅Fc]) is 

found. Above this linker concentration the binding sites have become saturated with 

linkers, increasing the single bound linker concentration ([Fc ⋅ L]). The number of 

crosslinker connections is maximum when the concentration of linkers is equal to 

the concentration of binding sites, as shown in Fig 2.2. 

 

Fig 2.2. Percentage of binding sites to the total number of binding sites in different states 

for a two-step linker binding model is shown as a function of the total number of linkers in 

a system. 

Fc is the percentage of the concentration of free binding sites to the total concentration of 

binding sites. Fc ⋅ L is the percentage of the concentration of binding sites bound to a linker 
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to the total concentration of binding sites. Fc ⋅ L ⋅ Fc is the percentage of the concentration 

of crosslinks to the total concentration of binding sites. The total concentration of binding 

sites [Fc]T in the system is 25 μM, kc
+=1 µM-1s-1, kc

- =1s-1. 

For this model both heads of the linker have the same probability to bind to 

an actin-binding site, independent of the state of the opposite head. The number of 

connections in this system depends on multiple factors, including the total 

concentration of binding sites ([Fc]T), the total concentration of linkers ([L]T), and 

the linker binding equilibrium constant (Kc). The number of connections formed in 

the system is shown in a 2D plot by normalizing the number of connections with the 

total concentration of binding sites.  

The maximum concentration of crosslinker connections ([Fc ⋅ L ⋅ Fc]) for this 

system occurs when the binding constant (Kc) is larger than the total concentration 

of binding sites ([Fc]T) and the total linker concentration ([L]T) is equal to the total 

concentration of binding sites ([Fc]T) (Fig 2.3). A small survey of experiments in the 

literature shows that the first connectivity percolation transition has been observed 

when the system is not saturated by linkers. (Fig 2.4). 
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Fig 2.3. Heatmap of the proportion of the concentration of crosslinks to the concentration 

of total binding sites as a function of the linker binding equilibrium constant and the 

concentration of linkers.  

All axes have been normalized by the concentration of total binding sites in the system. 

[L]T is the total linker concentration, [Fc]T is the total concentration of binding sites, [Fc ⋅ 

L ⋅ Fc] is the concentration of crosslinks, and Kc is the linker binding equilibrium constant. 
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Fig 2.4. Plot showing the location of different experiments on actin crosslinking plotted in 

the two-step model phase space.  

The curved lines indicate percolation transitions for filaments of different sizes. The dotted 

black line indicates the region where the maximum number of crosslinks can be observed. 

[L]T is the total linker concentration, [Fc]T is the total concentration of binding sites, and 

Kc is the linker binding equilibrium constant. The experimental concentrations of linkers 

and equilibrium constants were obtained from literature. [37,106,143,144] 

2.2.3. Arp2/3 complex changes the percolation threshold 

To understand the effects of motors and Arp2/3 complexes on the 

connectivity of the actomyosin network we included them in the analysis of the 

macroscopic chemical kinetic model and calculated the probability that an actin 
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monomer is in a finite cluster (Ps). When Ps < 1, there is at least one infinite cluster 

in the system, and the system has formed a gel. 

Motors connect the system in much the same way as linkers do since they 

also connect two binding sites. Therefore, motor binding increases the crosslinking 

probability (pc) in an additive manner with linker binding (Fig 2.5A). Including 0.5 

μM Arp2/3 to the system reduces the total number of linkers or motors required to 

gelate the network (Fig 2.5B).  

 

Fig 2.5. Fraction of actin monomers in finite clusters (Ps) without Arp2/3 (left) and with 

Arp2/3 (right).  

The color indicates the probability that an F-actin monomer is in a finite cluster. The white 

line indicates the connectivity percolation transition. The system is not gelated when Ps = 

1, while the system is gelated when Ps < 1. [L]T is the total linker concentration, [M]T is 

the total motor concentration, and [G]T is the total G-actin concentration. The total 

concentration of G actin in the system was 25 μM and the total concentration of Arp2/3 on 

the simulations with Arp2/3 was 0.5 μM.  
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Increasing the Arp2/3 concentration decreases the concentrations of linkers 

or motors needed to gelate the network. Only at high Arp2/3 concentrations do we 

find that the system is unable to form a gel even in the presence of high linker 

concentration (Fig 2.6). This is due to the saturation of binding sites by Arp2/3 

which competes with linker binding, and the saturation of minus sites (Fm) which 

compete with polymerization. 

 

Fig 2.6. Fraction of actin monomers in finite clusters (Ps) as a function of Arp2/3 

concentration and crosslinker concentration with the exception of motors.  

The color indicates the probability that an F-actin monomer is in a finite cluster. The system 

is not gelated when Ps = 1, while the system is gelated when Ps < 1. [L]T is the total linker 

concentration, [M]T is the total motor concentration, and [G]T is the total actin 

concentration. The total concentration of G actin in the system was 25 μM. 
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2.2.4. Contraction occurs when the network is gelated by motors and 

linkers and not gelated by only linkers 

Linkers and motors behave differently in actomyosin networks. Motors tend 

to walk over filaments, exerting forces in the network, while linkers act as structural 

beams making the network more rigid. In the previous section we defined 

percolation as occurring when the network is simply fully connected by a 

combination of linkers and motors, but it is also possible to define a connectivity 

percolation limit monitoring when the system is connected by linkers alone (Fig 

2.7). 

 

Fig 2.7. Fraction of actin monomers in finite clusters (Ps) including motor and linker 

crosslinks (A) or only when considering linker crosslinks (B). 

The color indicates the probability that an F-actin monomer is in a finite cluster. The system 

is not gelated when Ps = 1, while the system is gelated when Ps < 1. [L] T is the total linker 

concentration, [M]T is the total motor concentration, and [G]T is the total actin 

concentration 



 

27 

Taking into consideration the different behavior of motors and linkers, we 

see there are three regimes for our system (Fig 2.8). In a first regime at low 

concentrations of motors and passive linkers (purple region in Fig 2.8) the system 

cannot form a gel. In a second regime at high motor concentration and low linker 

concentration (white region in Fig 2.8) the system is gelated by motors but does not 

form a gel by linkers considered by themselves. Finally in a third regime at high 

linker concentration the system is gelated by linkers and motors acting together 

(green region in Fig 2.8).  

When both the linker and motor connections with the actin are individually 

rigid, the number of degrees of freedom lost by binding equals the total number of 

degrees of freedom of the actin monomer, therefore the threshold for connectivity 

percolation will be the same as for rigidity percolation. Noting this, we suggest that 

these three regimes can explain the different mechanical behaviors manifested by 

the actomyosin network. In regime 1, the system is floppy and cannot transmit or 

exert forces. In regime 2, the motors can exert forces to the system and the system is 

able to contract. In regime 3, the linkers provide structure to the network so the 

network can transmit forces, but the network has become so rigid that it is unable to 

contract significantly through motor action. 
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Fig 2.8. Schematic phase diagrams of actomyosin systems as a function of linker and motor 

concentrations of actomyosin networks without Arp2/3 (A) and with Arp2/3 (B).  

In region (1) the system is not gelated. In region (2) the system is not gelated only by linker 

connections, but the system is connected fully when we also consider the motor 

connections. In region (3) the system is gelated just by linkers alone. [L]T is the total linker 

concentration, [M]T is the total motor concentration, and [G]T is the total actin 

concentration. 

When the individual linker connections are flexible, the number of degrees of 

freedom of the system depends on the number and the rigidity of individual linker 

connections. A totally rigid connection takes away 6 degrees of freedom from the 

system, while a connection that only preserves the distance between two monomers 

would only take away one degree of freedom from the system. Fascin, a small 

globular crosslinker , creates rigid connections [145] that take away 6 degrees of 

freedom once formed, while forming a crosslink with α-actinin, takes away only 1 

degree of freedom when the system is at rest, since the actin-binding domain of 
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alpha actinin can rotate and bend with respect to the rod domain [146]. In general, 

as the linker connections become more flexible, more linker connections are 

required to reach the rigidity percolation transition (Fig 2.9). 

 

Fig 2.9.- Rigidity percolation limits including both motor and linker crosslinks (left lines) 

or those found when only considering linker crosslinks (right lines). 

The number indicates the rigidity of the crosslinkers (bcLc). We assume that the connections 

between plus and minus sites, the connections between binding sites and minus sites, and 

the connections between motors and binding sites are rigid (bp→m = bc→m = bcMc = 6). [L]T 

is the total linker concentration, [M]T is the total motor concentration, and [G]T is the total 

actin concentration. The color of the background indicates the probability that an actin is 

in a finite cluster (Ps). 

2.3. Discussion 

2.3.1. Arp2/3 changes the requirements for the network to percolate 

There are 3 possible regimes of mechanical behavior that depend on 

connectivity. In the regime where neither linkers nor motors form a percolated 
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cluster, any forces exerted by the motors cannot be transmitted through the system 

over large distances; the system therefore does not contract and will exhibit only 

local fluctuations. In the regime where the linkers alone do not form a percolation 

cluster, but the motors and linkers together do, the system is not yet rigid, but the 

forces can be transmitted throughout the system, allowing global contraction. In the 

regime where the linkers by themselves percolate, the system becomes highly rigid 

so that the motors are unable to contract the system. At high motor concentrations, 

motors also act as crosslinkers and can form a percolation cluster and allow by 

themselves contraction. This picture obtained from the Flory-Stockmayer kinetic 

analysis agrees with experimental results that indicate that contraction can occur at 

high motor concentrations even without the presence of other crosslinkers [119]. 

Arp2/3 increases the connectivity and the rigidity of the network, allowing 

the system to exhibit global contraction at smaller concentrations of crosslinkers 

and motors. Arp2/3 also makes the network rigid at smaller concentrations of 

linkers. At high concentrations of Arp2/3, however Arp2/3 reduces the average size 

of the filaments, and when the concentration of Arp2/3 becomes larger than the 

concentration of F-actin monomers, the network becomes disconnected. The limit 

for rigidity percolation coincides with the limit for connectivity percolation when 

the individual motor and linker connections are rigid by themselves. 

Each newly formed connection between F-actin monomers and an actin 

cluster adds a new monomer and six degrees of freedom to the cluster in the Bethe 

lattice percolation model. When these connections are rigid, each connection also 



 

31 

removes six degrees of freedom from the cluster, keeping the cluster as a rigid 

object. In contrast when the connections are flexible so that monomers can bend or 

slide while remaining together, each connection removes only up to five degrees of 

freedom, allowing the cluster to remain flexible.  

If the crosslinks formed by the linkers and the motors are rigid, the three 

connectivity percolation regimes shown in Fig 2.10 coincide with the rigidity 

percolation regimes. The rigidity assumption is valid if the linkers and the motors 

do not bend or slide along filaments. The assumption of complete rigidity may be 

strictly valid for only some crosslinkers such as fascin and espin. Arp2/3 branchers 

and the connections formed between actin monomers act as rigid connections. For 

more flexible crosslinkers such as α-actinin and filamin, the rigidity approximation 

does not hold since these types of crosslinkers show high flexibility between their 

actin-binding domains and the rod domains [146]. Rigidity and force propagation 

through other mechanisms in the actin network, such as hydrodynamics, could also 

play a significant factor in contraction. These mechanisms are outside of the scope 

of this paper. 

An actin system having only highly flexible linkers will not reach rigidity 

percolation regimes unless closed loops are formed in the system. The chemical 

kinetics model combined with the Flory-Stockmayer theory, is implemented on a 

Bethe lattice, which does not contain closed loops. Bethe lattice models can be made 

to account for rigid percolation regimes by anchoring multiple monomers to a single 

boundary, as shown in previous literature [138,147]. A complete theoretical 
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treatment of a rigidity percolation model of actomyosin networks must deal with 

the formation of closed loops in such networks. 

2.3.2. The actin network is in the sol state when the linker concentration is 

much greater than the actin concentration 

In our previous works [59], we modeled linker binding as a termolecular 

reaction in which a linker must simultaneously bind two actin filaments, forming a 

crosslink. Termolecular reactions in biology can however be decomposed into two 

separate bimolecular steps. Here we explored the behavior of a non-cooperative 

linker binding where the binding sites are distributed homogeneously. The binding 

rate constants for these actin-binding domains with actin filaments are independent 

of each other. Under this condition, actin-binding domains of different linkers 

compete for filament binding, inhibiting the formation of crosslinks between two 

distinct filaments in the system (see Fig 2.2). This mechanism causes the network to 

remain a sol when the linker concentration is much greater (10-100 times) than the 

actin concentration (see Fig 2.4). However, previous experiments have shown that 

the actin-binding domains of some linkers such as α-actinin and filamin bind 

independently to actin filaments in a cooperative way, when actin bundles form 

[106]. A full theoretical treatment of cytoskeletal percolation must deal both with 

the bundling of actin filaments and the cooperativity of linker binding. 
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2.3.3. The difference between the chemical kinetic model and MEDYAN can 

be attributed to the heterogeneous distribution when the system is 

percolated 

Despite the results from chemical kinetic differential equations and from 

MEDYAN showing similar trends, there are noticeable differences of the transient 

concentrations of plus sites bound to minus sites ([Fm ⋅ Fp]), bound linkers ([Fc ⋅ L ⋅ 

Fc]), bound branchers ([Fc ⋅ B ⋅ Fm]) in the systems between the two models. These 

differences occur once the system has formed a percolation cluster. The differences 

for the transient concentration of plus sites bound to minus sites ([Fm ⋅ Fp]) are 

caused by the diminishing polymerization rate of those filaments that are near the 

boundary due to the mechanochemical feedback in MEDYAN. An infinite system 

without boundary has been assumed in the chemical kinetic model, therefore this 

mechanical feedback does not occur in that model. We attribute the discrepancy in 

the transient concentrations of the bound linkers ([Fc ⋅ L ⋅ Fc]) to the heterogeneous 

distribution of the binding sites in the system in MEDYAN. In the chemical kinetic 

model, in contrast a homogeneous distribution of binding sites is assumed.  

There are two types of structural connections formed between actin 

monomers: lateral connections and longitudinal connections. In this work, we have 

only used only the lateral connection in our model to calculate the connectivity 

percolation. This assumption excludes cyclic connections which are not defined in 

this version of the Flory-Stockmayer theory [70]. There is also a slight difference 

between the number of binding sites and the number of actin monomers on a 
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filament since binding sites may exist on the interface of two or more actin 

monomers instead of on a single F-actin monomer. Nevertheless, as the length of an 

actin filament increases, this difference tends to be negligible. In the chemical 

kinetic description, we have not included the connections of a single linker or a 

motor to a single binding site (Fc ⋅ L and Fc ⋅ M). These connections do not alter the 

connectivity percolation since they do not connect actin monomers to larger 

networks. We have also simplified the connections made by a brancher to a single 

binding site (Fc ⋅ B ⋅ Fm). We recognize that it is possible that a brancher may 

simultaneously connect to multiple F-actin monomers. Nevertheless, the 

connections between branchers, mother filaments, and daughter filaments do not 

alter the connectivity percolation since actin monomers attached to branchers are 

already in the same cluster.  

The heterogeneous distribution of binding sites in MEDYAN causes fewer 

binding sites to be available to be bound by linkers due to the small search distance 

of the α-actinin linkers (dCmin = 30 nm, dCmax = 40 nm). The difference in the 

concentration of bound branchers ([Fc ⋅ B ⋅ Fm]) can be explained because of the 

lower concentration of non-polymerized G-actin in the chemical kinetic model. This 

lesser concentration of G-actin is due to a faster effective polymerization rate in the 

chemical kinetic model than that of the MEDYAN model since collisions between 

actin filaments and the boundary are not represented in the chemical kinetic model. 

The faster effective polymerization rate leads to an increase of available binding 

sites ([Fc]) in the chemical kinetic model, which in turn allows the branching 

reaction to occur earlier. Finite-size effects exist in MEDYAN. While such effects can 



 

35 

be reproduced in a chemical kinetic model, we consider the chemical kinetic model, 

which assumes an infinite system, to be sufficient to explain the processes 

happening during the early stages of the connectivity percolation in the network.  

2.4. Conclusion 

In this work, we have used a generalization of the Flory-Stockmayer theory 

of percolation to show three possible phase regimes for a cytoskeletal network 

depending on the connectivity achieved by motors, linkers and branchers. These 

connections give rise to local or global contraction depending on the percolation 

regime. Actin-binding proteins modulate the structure and dynamics of the network, 

allowing the cell to exhibit different behavior and functions. We also show that 

Arp2/3 increases the connectivity of the network when the concentration of Arp2/3 

is lower than the concentration of F-actin monomers. 

2.5. Methods 

We have modeled reactions between actin filaments (F-actin), monomeric 

globular actins (G-actin), and actin-binding proteins using either a mass action 

chemical kinetics model described by a system of ordinary differential equations, 

which we call the chemical kinetic model, or a stochastic mechanochemical model 

(MEDYAN). We have quantified the number of connections between F-actin 

monomers in the system and then used a mean field model based on the Flory-
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Stockmayer theory [68–70] to calculate whether the system should behave like a 

liquid (sol state) or like a semi-solid (gel state).  

2.5.1. Mass action chemical kinetics model 

We have modeled five actin binding and unbinding processes in the 

actomyosin networks using a chemical kinetic model based on mass action kinetics. 

The equations from the chemical kinetic model parallel the chemical reactions 

described in MEDYAN [63–67], a mechanochemical model of actomyosin networks 

detailed in a section below. The reactions, shown in Table 2.1, include the 

polymerization and depolymerization at both the plus ends (Fp) and the minus ends 

(Fm) of actin filaments, along with the binding and the unbinding of α-actinin linkers 

(L), NMIIA motors (M), and the Arp2/3 complex (B) to F-actin. To account for the 

NMIIA minifilaments, a motor (M) consists of 22.5 myosin molecules, which 

corresponds to the average number of motor heads in the MEDYAN model [59,66]. 

The rates for these reactions are shown in Table A in S1 Text. The chemical kinetic 

model assumes a homogeneous system with perfect mixing, and we do not model 

the spatial effects of the diffusion of chemical species. The chemical kinetic model 

also assumes an infinite volume, so the stochasticity of the processes is averaged 

out. 
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Reaction Description 

𝑭𝒑 + 𝑮
𝒌𝒑

−
⇄
𝒌𝒑

+

𝑭𝒑 ⋅ 𝑭𝒎 + 𝑭𝒑 + 𝑭𝒄 Actin polymerization at the plus end 

𝑭𝒎 + 𝑮
𝒌𝒎

−
⇄
𝒌𝒎

+

𝑭𝒑 ⋅ 𝑭𝒎 + 𝑭𝒎 + 𝑭𝒄 Actin polymerization at the minus end 

𝑭𝒄 + 𝑩 + 𝑮
𝒌𝑩

−
⇄
𝒌𝑩

+

𝑭𝒄 ⋅ 𝑩 ⋅ 𝑭𝒎 + 𝑭𝒑 + 𝑭𝒄 Brancher binding 

𝑭𝒄 + 𝑳 + 𝑭𝒄
𝒌𝑪

−
⇄
𝒌𝑪

+

𝑭𝒄 ⋅ 𝑳 ⋅ 𝑭𝒄 Linker binding 

𝑭𝒄 + 𝑴 + 𝑭𝒄
𝒌𝑴

−
⇄
𝒌𝑴

+

𝑭𝒄 ⋅ 𝑴 ⋅ 𝑭𝒄 Motor binding 

Table 2.1. Reactions included in the chemical kinetic model. 

We have used mass-action kinetics to model the binding of G-actin (G), 

motors (M), linkers (L), and branchers (B) to actin filaments (F) as well as their 

unbinding. The kinetic equations replicate the MEDYAN reactions, where a three-

body reaction takes place (see section I.A of the Appendix A for more details). We 

have also included a two-step binding reaction of linkers (L) to actin filaments (F) 

based on experimental observations (see section I.B of the Appendix A for more 

details). We have defined three different interfaces for the F-actin monomers: the 

plus site (Fp), the minus site (Fm), and the ABP binding site (Fc) since actin, motors, 
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linkers, and branchers can be connected to the actin filament monomers through 

these interfaces as shown in Fig 2.10.  

 

Fig 2.10. Diagram of connections of F-actin monomers to other F-actin monomers. 

The F-actin monomers are shown in blue and have 3 sites: the plus site (p), the minus site 

(m), and the binding site (c). The dotted lines indicate connections from the site of an F-

actin monomer to another F-actin monomer. The connections are formed by 

polymerization (black dotted lines), linkers (L), motors (M) or branchers (B). The actin 

cluster can be represented as a treelike cluster, where the particle in the center is the root, 
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and can be connected to up to 3 particles in the first layer, 6 particles in the second layer, 

and so on. 

2.5.2. Flory-Stockmayer Theory 

The theory of Flory and Stockmayer [68,69] describes the conversion of 

monomers first into soluble low molecular weight polymers and then into heavy 

insoluble gels by branching and crosslinking. In these theories the polymers are 

described using a mean field model, where the probability of finding a bound 

functional group depends only on the nature of the functional group. When the 

fraction of reacted polymers reaches a threshold, then the weighted average 

monomer size becomes infinite.  

Tavares et al. recently developed a generalization of the Flory-Stockmayer 

theory to describe patchy colloids [70,71], which can be understood as polyfunctional 

branched monomers. We have used this generalization of the Flory-Stockmayer 

theory to calculate when the percolation transitions occur. The crosslinking 

probabilities (θα→β) were calculated using the ratio of the concentration of species in 

the bound state ([α ⋅ β]) to the total concentration of the species ([α]T) as quantified 

from the chemical kinetic model or the MEDYAN simulations (Equation 2.1). 

𝜃𝛼→𝛽 =
[𝛼 ⋅ β]

[𝛼]𝑇
=

[𝛼 ⋅ β]

[𝛼] + [𝛼 ⋅ β]
 Equation 2.1 

Where θα→β is the probability of having an F-actin monomer connected 

through the site α to the site β of another F-actin monomer, and α and β can be the 

plus site (p), the minus site (m), or the actin-binding site (c) (Fig 2.10). 
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The probabilities of having an F-actin monomer connected to another F-actin 

monomer from one site to another are shown in Equation 2.2. 

𝜃𝑝→𝑚 =
[𝐹𝑝 ⋅ 𝐹𝑚]

[𝐹𝑝 ⋅ 𝐹𝑚] + [𝐹𝑝]
 

𝜃𝑚→𝑝 =
[𝐹𝑝 ⋅ 𝐹𝑚]

[𝐹𝑝 ⋅ 𝐹𝑚] + [𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚] + [𝐹𝑚]
 

𝜃𝑐→𝑐 =
2[𝐹𝑐 ⋅ 𝐿 ⋅ 𝐹𝑐] + 2[𝐹𝑐 ⋅ 𝑀 ⋅ 𝐹𝑐]

2[𝐹𝑐 ⋅ 𝐿 ⋅ 𝐹𝑐] + 2[𝐹𝑐 ⋅ 𝑀 ⋅ 𝐹𝑐] + [𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚] + [𝐹𝑐]
 

𝜃𝑐→𝑚 =
[𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚]

2[𝐹𝑐 ⋅ 𝐿 ⋅ 𝐹𝑐] + 2[𝐹𝑐 ⋅ 𝑀 ⋅ 𝐹𝑐] + [𝐹𝑐]
 

𝜃𝑚→𝑐 =
[𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚]

[𝐹𝑝 ⋅ 𝐹𝑚] + [𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚] + [𝐹𝑚]
 

Equation 2.2 

Where θp→m and θm→p are the probability that an F-actin monomer plus site 

(Fp) is connected to the minus site (Fm) of another F-actin monomer and vice versa 

through actin filament polymerization. The probability that F-actin monomer 

binding site (Fc) is connected to the binding site (Fc) of another F-actin monomer is 

denoted as θc→c. Connections through the binding sites are formed by motor and 

linker binding. Finally, θc→m and θm→c are the probability that F-actin monomer 

binding site (Fc) is connected to the minus site (Fm) of another F-actin monomer, 

and vice versa through brancher binding. 

[Fp ⋅ Fm] is the concentration of plus sites bound to minus sites, as in 

polymerized F-actin, [Fc ⋅ L ⋅ Fc] is the concentration of pairs of F-actin monomers 

bound through the binding sites with linkers, [Fc ⋅ M ⋅ Fc] is the concentration of 

pairs of F-actin monomers bound through the binding sites with motors, and [Fc ⋅ B ⋅ 
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Fm] is the concentration of F-actin monomers bound with a brancher. [Fp] is the 

concentration of unbound plus sites of F-actin monomers, [Fm] is the concentration 

of unbound minus sites of F-actin monomer and [Fc] is the concentration of 

unbound binding sites. The probability that an F-actin is connected to an infinite 

cluster is detailed in the section I.C of the Appendix A, the solution for a simple case 

of linkers and actin is detailed in the section I.D of Appendix A. 

2.5.3. Rigidity Percolation 

To understand how a rigid lattice is formed in the network we use Maxwell 

counting, which has also been used as a first step to understand the rigidity of 

glasses [138,139,147–153]. In short this counting procedure is based on the fact 

that the number of floppy modes per connection (f) is related to the number of 

degrees of freedom per F-actin monomer (g) minus the number of constraints given 

by other connections. (Equation 2.3) 

𝑓 = 𝑔 − ∑ 𝜃𝛼𝑏

𝑧

𝛼

= 6 −
1

2
 ∑ ∑ 𝑏𝛼→𝛽

𝜃𝛼→𝛽 (1 −
𝑃𝑠

𝑄𝛼

𝑃𝑠

𝑄 𝛽
)

(1 − 𝑃𝑠)
𝛽𝛼

 Equation 2.3 

Where p is the probability of forming a contact, z is the coordination number 

and b is the number of constraints given by the connection. Every F-actin monomer 

has 6 degrees of freedom in 3D space (g = 6): 3 translational degrees of freedom and 

3 rotational degrees of freedom. In addition, the F-actin can connect through 3 

possible sites (z = 3). When an F-actin monomer connects to another F-actin 

monomer, the system loses degrees of freedom depending on the rigidity of the 

connection, 𝑏. For this model we considered that each direct connection between 
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two F-actin monomers accounts for a loss of 6 degrees of freedom (b = 6) since we 

assume each actin filament is a rigid object. For example, when there is no 

connection between two F-actin monomers there would be two separate filaments 

with 6 degrees of freedom each (a total of 12 degrees of freedom). When the 

connection forms, the system contains only one rigid filament with 6 degrees of 

freedom.  

Similarly, rigid connections of two F-actin monomers with linkers, motors, 

and branchers also account for a loss of 6 degrees of freedom (b = 6). The 

connectivity percolation is the same as the rigidity percolation (b = g) when the 

connections are rigid. 

On the other hand, when the connections of two F-actin monomers with 

linkers and motors are floppy (b < 6) the connectivity percolation is not the same as 

the rigidity percolation, since more than one connection is needed to make the 

system rigid.  

2.5.4. Coarse-grained mechanochemical model of actomyosin systems 

(MEDYAN)  

We have used an elegant coarse-grained mechanochemical model of 

actomyosin systems called MEDYAN (Mechanochemical Dynamics of Active 

Networks) developed by Papoian and his group [63–67]. MEDYAN models both 

stochastic chemical reactions and deterministic mechanical representations of far-

from-equilibrium systems. In this study, we have included some important actin-
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binding proteins in actomyosin networks: non-muscle myosin IIA heavy chain 

(NMIIA) motors, α-actinin linkers, and actin-related protein complex 2/3 (Arp2/3) 

branchers, all in a fixed geometry (See section I.E of the Appendix A for more 

details). 
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Chapter 3 

The role of the Arp2/3 complex in 

shaping the dynamics and structures 

of branched actomyosin networks 

This chapter is a slightly modified version of an article published in the 

Proceedings of the National Academy of Sciences [59]. 

3.1. Introduction 

Actomyosin networks are systems of actin filaments that are organized both 

by their interaction with myosin and passive cross-linkers. The non-equilibrium 

activity of actomyosin networks gives cells the ability to grow, move and divide 

[105,154]. The contraction of actomyosin networks has been recapitulated in vitro 

using reconstituted solutions of actin filaments containing several types of actin-

binding proteins that merely act as cross-linkers along with active myosins 

[26,37,38,155]. Contractility of the network appears to require a threshold 

concentration of myosin and the presence of ATP but is only seen at an intermediate 

concentration of bivalent cross-linkers. Early studies of reconstituted solutions of 
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actin filaments in vitro generally lacked many of the key constituents of the 

cytoskeleton, notably the actin-related protein 2/3 (Arp2/3) complex. The Arp2/3 

complex specifically alters the topology of actin filament networks by forming 

branches. One of many examples of actomyosin networks with the Arp2/3 complex 

is the dendritic spine. Dendritic spines are small membranous actin-filled 

protrusions attached to neuronal dendrites whose morphological plasticity is 

commonly hypothesized to underlie learning and retrieving memory [40,154,156]. 

While the structure of the Arp2/3 complex has been explored extensively 

[33,106,115,116,118,157–161], how the Arp2/3 complex changes the architectural 

dynamics of the actomyosin network raises many questions.  Indeed, recent 

experimental studies have shown that the Arp2/3 complex qualitatively changes the 

dynamics of the network [26,38,162].  

Here, we employ a powerful computational software for flexibly modeling 

the complexity of cytoskeletons, MEDYAN, that was developed by Papoian and his 

group [63–67]. The MEDYAN computational framework incorporates a stochastic 

description of individual chemical reaction events appropriate to the nanoscale and 

simultaneously employs a deterministic treatment of the mechanics of the cellular 

assembly at micron scales through cycles of mechanochemical feedback. Using a 

predecessor of the MEDYAN model, Papoian and his group have modeled 

unmotorized branched actin networks and have studied the effects of branchers and 

capping proteins on the speed of protrusion of a flexible membrane [163–166]. The 

mechano-chemical aspects of MEDYAN make it possible to investigate how the 

nucleation and branching initiated by the Arp2/3 complex change the dynamics and 
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structures of actomyosin systems. Here, we report on a computational investigation 

of how branchers influence network contractility.  

Several other computational frameworks have been developed for modeling 

the dynamics of actomyosin networks [34,61,62,125,167]. One code, Cytosim, 

models the actomyosin network at the mesoscopic scale [62] but lacks the 

mechanochemical feedback which is critical to describe active processes. Another 

code, AFiNES [61], has been used to study a two-dimensional model of an 

actomyosin network and describes network rheology under mechanical stress. 

AFiNES lacks, however, the volume exclusion for actin filaments which we believe is 

important for correctly determining the mechanics of jammed states. MEDYAN 

captures all these features which we believe are crucial to understanding the actual 

biological system. 

Contractile motions of actomyosin networks can be caused by the forces 

generated by motors (across actin filaments) but may also be driven by 

compression and expansion (along actin filaments) due to polymerization. These 

forces deform the network and build up strains through the expenditure of free 

energy [168,169]. These strains then feed back into various biochemical processes. 

Our focus is on exploring the contrast between the dynamics of branched and 

unbranched networks, via conducting simulations both with and without Arp2/3. 

We show that the branched networks (with Arp2/3) can become marginally 

unstable. Fluctuations continually cause local collapse events which are directly 

connected to this marginal stability. In systems that are far-from equilibrium and 
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active, marginal stability does not occur at a specific concentration but depends on 

both the initial configuration of the network and the history of the system. The 

marginal stability of branched actomyosin assemblies resembles what is found in 

jammed granular assembles and colloidal glasses [134,170,171].  

3.2. Results 

3.2.1. Linkers modulate contraction in unbranched actomyosin networks 

Our basic approach is the simulation of actin molecular assemblies in 

solution with various mixtures of actin binding proteins, all in a fixed geometry. To 

study unbranched networks, we considered nine different concentration ratios of 

non-muscle myosin IIA heavy chain (NMIIA) motor proteins to actin monomers 

(𝑥𝑚:𝐴) and eight concentration ratios of α-actinin linker molecules to actins (𝑥𝛼:𝐴) in 

our simulations. In total then we studied 72 distinct actomyosin network assembly 

scenarios. All simulations were confined to a 1 µm × 1 µm × 1 µm box with 25 µM of 

actin in total. The concentration of actin, 25 µM, was specifically chosen to replicate 

the in vitro experiments from the Weitz group [37]. The monomers, the filaments, 

the motors, the linkers, and the branchers were initially distributed randomly 

within a cubic container. Other various physical parameters characterizing 

simulated systems are described in detail in Table S3 in Appendix B. In our 

discussion we will highlight four representative conditions of 𝑥𝑚:𝐴 and 𝑥𝛼:𝐴 from 

these scenarios to elucidate the role of linkers in unbranched networks: (1) low 

motor and low linker concentrations (𝑥𝑚:𝐴 = 0.01 and 𝑥𝛼:𝐴 = 0.01), (2) high motor 
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and low linker concentrations (𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.01), (3) high motor and high 

linker concentration (𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.5), and (4) medium motor and medium 

linker concentrations (𝑥𝑚:𝐴 = 0.05 and 𝑥𝛼:𝐴 = 0.1). Note that for every combination 

of motor and linker to actin ratios, sixteen simulation replicates were performed, 

differing only in their random initializations. The average length of a filament in 

unbranched networks is approximately 0.85 µm. Throughout the simulations, we 

recorded the structure of the networks once every 10 seconds. In addition to 

plotting the time courses of these parameters, in some cases we have also plotted 

the changes of the parameters that take place between successive pairs of snapshots 

to highlight when large sudden changes in the parameters occur.  

In order to follow the assembly process, we show in Figure 3.1 how the 

radius of gyration of the whole system (𝑅𝑔) normalized by the “initial” 𝑅𝑔 value (𝑅𝑔
𝑖 ), 

𝑅𝑔/𝑅𝑔
𝑖 , changes with time. 𝑅𝑔

𝑖  is actually the radius of gyration measured after an 

initialization run without motors of 10 seconds, so as to allow the filament length 

distribution to reach a steady-state before the motors are turned on. When an 

actomyosin network contracts due to the motor action, the radius ratio 𝑅𝑔/𝑅𝑔
𝑖  will 

become less than 1, while, in contrast, when 𝑅𝑔/𝑅𝑔
𝑖  becomes greater than 1 it 

indicates that the system has expanded during assembly.  Unbranched actomyosin 

systems with low motor concentration (𝑥𝑚:𝐴 = 0.01) and low linker concentration 

(𝑥𝛼:𝐴 = 0.01) expand rather slowly (Figure 3.1A) in comparison with what occurs for 

the other three conditions.  The expansions are caused by actin polymerization 
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without any significant countervailing forces being exerted by motors that would 

pull the actin filaments together.  

Adding linkers leads to a competition between actin polymerization and 

motor pulling. This competition accounts for the differing extent of contraction. We 

calculated 〈𝑅𝑔/𝑅𝑔
𝑖 〉, which is the average of the normalized radius of gyration ratio 

taken over all replicates for a given condition, varying motor and linker 

concentrations for both unbranched and branched networks. The radius ratios 

〈𝑅𝑔/𝑅𝑔
𝑖 〉 achieved at steady state for the high motor concentration and high linker 

concentration systems (𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.5, Figure 3.1C) are approximately 

16% lower than the steady state ratios 〈𝑅𝑔/𝑅𝑔
𝑖 〉 for high motor concentration and 

low linker concentration systems (𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.01, Figure 3.1B). 

Contractility is only manifested for unbranched systems when the motor 

concentration exceeds a threshold of 𝑥𝑚:𝐴 =0.01 (Figure 3.1B, C, and D).  

Assembly dynamics depends on the fraction of the linkers that are 

unmotorized. For the unbranched systems with 𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.01 (high  

motor and low linker concentrations), whose time-courses of the radius ratio 

𝑅𝑔/𝑅𝑔
𝑖   are depicted in Figure 3.1B, the pulling forces from motors lead to the rapid 

reduction in the radius ratio 𝑅𝑔/𝑅𝑔
𝑖  during the first 130 seconds. When we increased 

the concentration of linkers to 𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.5, the actin network contracts 

much more slowly as shown in Figure 3.1C. These results semi-quantitively agree 

with the experimental data from the Weitz lab [37] who studied these unbranched 

system.  
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Figure 3.1. Time courses of the ratio 𝑅𝑔/𝑅𝑔
𝑖  indicate contractile or extensile motion in 

unbranched actomyosin networks at several conditions of motors and linkers. 

(A) Systems with low motor and low linker concentrations (𝑥𝑚:𝐴 = 0.01 and 𝑥𝛼:𝐴 = 0.01). 

(B) Systems with high motor and low linker concentrations (𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.01). 

(C) Systems with high motor and high linker concentrations (𝑥𝑚:𝐴 = 0.5 and 𝑥𝛼:𝐴 = 0.5). 

(D) Systems with medium motor and medium linker concentrations (𝑥𝑚:𝐴 = 0.05 and 𝑥𝛼:𝐴 

= 0.1). The pink-dotted lines show the single exponential fits to the sets of the time courses 

of 𝑅𝑔/𝑅𝑔
𝑖  for each simulation condition. The traces for simulation replicates are indicated 

with light gray lines and their averages are shown in black lines. τ is the single exponential 

fitting time constant (see Appendix B for more details). 
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3.2.2. Branched actomyosin networks display convulsive movements 

Next, we included Arp2/3 protein complexes to simulate branched networks. 

The radius of gyration ratios 𝑅𝑔/𝑅𝑔
𝑖  for the branched networks (Figure 3.2) behave 

differently during assembly from what was seen for the unbranched networks 

(Figure 3.1). The branched networks with low concentrations of motors and low 

concentrations of linkers (𝑥𝑚:𝐴 = 0.01 and 𝑥𝛼:𝐴 = 0.01, Figure 3.2A) contract rather 

than expand as did the unbranched assemblies (Figure 3.1A). The overall 

contraction of the branched assemblies results from the creation of branches that 

inhibit actin polymerization and depolymerization. Adding a brancher prevents the 

actin depolymerization reaction at the minus end of a daughter filament because the 

brancher positions itself at the branch junction once a daughter filament has been 

created from its mother filament. When there is depolymerization at the minus end 

of a filament that is faster than the dissociation of a brancher from the filament, the 

brancher will inhibit the depolymerization reactions at the minus end of a mother 

filament. Actin polymerization and depolymerization which require actin turnover 

are thus significantly inhibited by the presence of branchers. The concentration of 

filamentous actin (F-actin) in the branched simulations is larger than the 

concentration of F-actin in the unbranched simulations. The increased F-actin 

concentration is due to the capping of the minus end of the mother and the daughter 

filaments, as well as the new F-actin plus ends created by Arp2/3 nucleation. 

Nevertheless, due to the increased number of total filaments, the average length of a 

filament is in fact reduced when Arp2/3 is added. The average length of a filament in 

branched networks is approximately 0.16 µm. Unbranched networks turn out to 



 

52 

consist of long and parallel filaments displaying liquid crystalline order, while 

branched networks are comprised of short and bifurcated filaments and appear 

more nearly isotropic.  

 

Figure 3.2.  The time courses of radius gyration ratios for contractile and extensile motions 

in branched actomyosin networks at several conditions of motors and linkers. 

(A-D) The indications for concentrations of motors and linkers are the same as those used 

in Figure 3.1. τ is the single exponential fitting time constant (see SI for more details).   
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The contraction of branched networks occurs in a more irregular fashion 

than does the contraction of unbranched assemblies. The contraction of the 

assemblies is rather intermittent, occurring by unpredictable abrupt drops of the 

radius of gyration ratio 𝑅𝑔/𝑅𝑔
𝑖 . These convulsive events are inherently stochastic 

and hence do not occur at the same time in different simulation replicate runs. 

These abrupt drops of 𝑅𝑔/𝑅𝑔
𝑖  occur very quickly. Individually, these events have a 

duration of less than 10 seconds. The sharpest drops can be as large as 20%. These 

drops, which we call avalanches, are observed more frequently at higher 

concentrations of motors (Figure 3.2B and C) than at lower concentrations (Figure 

3.2A). For the range of parameters studied in our simulations, we have never 

observed such discrete and large-scale avalanches in the unbranched actomyosin 

networks created whenever Arp2/3 was absent.   

To get a better picture of the mechanism underlying the avalanches, we 

examined changes in the ratio of the radius of gyration after an event and we have 

also visualized snapshots of the system to uncover the corresponding structural 

changes. Snapshots for medium motor concentration and medium linker 

concentration (𝑥𝑚:𝐴 = 0.05 and 𝑥𝛼:𝐴 = 0.1) are shown in Figure 3.3. Δ(𝑅𝑔/

𝑅𝑔
𝑖 ) corresponds to the successive temporal changes of the radius of gyration ratios 

𝑅𝑔/𝑅𝑔
𝑖 . An abrupt drop in the radius of gyration ratio occurs after 440 seconds 

(Figure 3.3A). At this point, we note that the network contains several regions of 

high tension. These regions are shown in a white color inside a blue square in Figure 

3.3B. The tension is rather heterogeneously distributed immediately prior to the 
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avalanche. The high-tension regions are created by the stalling of motors. Once the 

motors have successfully reorganized the actin filaments, the regions of high tension 

disappear as shown in Figure 3.3C. No motor or linker unbinding was seen 

immediately prior to an avalanche. Instead a motor, which was previously walking 

on a short filament and on a filament bound by Arp2/3 branchers, became jammed 

before an avalanche was triggered. 

 

Figure 3.3. Changes in the tension of a branched network occur during an avalanche. 

(A) The time courses of the successive values of temporal changes over a 10 second time 

interval in the ratio of the radius of gyration normalized by the 𝑅𝑔 value at 10 second. The 

quantity Δ(𝑅𝑔/𝑅𝑔
𝑖 ) is shown for a branched network simulation with medium motor and 

medium linker concentrations (𝑥𝑚:𝐴 = 0.05 and 𝑥𝛼:𝐴 = 0.1) over time. (B-C) Two snapshots 

of actin filaments, motors, and linkers where the tension is indicated by color; these show 

the morphology of the network before (B) and after (C) the abrupt drop of Δ(𝑅𝑔/𝑅𝑔
𝑖 ) when 

an avalanche occurs. The dimensions of the cubic simulation box are 1 μm × 1 μm ×

1 μm. A blue square highlights a concentrated high-tension region that can be seen prior 

to the Δ(𝑅𝑔/𝑅𝑔
𝑖 ) drop which then becomes a dispersed low-tension area after the Δ(𝑅𝑔/𝑅𝑔

𝑖 ) 

drop. 
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3.2.3. Mechanistic insights into the convulsive movements during an 

avalanche 

The mean of the displacements of the center of mass of each actin filament at 

time 𝑡 (𝛿𝑥𝐹(𝑡)) is defined by Equation 3.1 

𝛿𝑥𝐹(𝑡) =
1

𝑁
∑ |𝐶𝑜𝑀𝑖(𝑡) − 𝐶𝑜𝑀𝑖(𝑡 − 1)

𝑁

𝑖

| Equation 3.1 

where 𝐶𝑜𝑀𝑖 is the center of mass of filament 𝑖 and 𝑁 is the number of 

filaments in a system. The 𝛿𝑥𝐹 between each successive pair of snapshots (black 

curves) turns out to be a useful parameter to identify and characterize avalanches, 

as shown in Figure 3.4.  

In addition, we studied the changes in the shapes of the actin assemblies 

using the shape parameter (𝑆). This is defined for an actomyosin network by 

Equation 3.2 [172].  

𝑆 = 27
|∏ (𝜆𝑖 − �̅�)3

𝑖=1 |

(𝑡𝑟𝑇)3
 Equation 3.2 

𝑇 is the geometrical inertia tensor of an assembly as described in Equation 

3.3, while the 𝜆𝑖 are the eigenvalues of the inertia tensor 𝑇, and �̅� is the average 

eigenvalue of the inertia tensor 𝑇. 

𝑇𝛼𝛽 =
1

2𝑁2
∑ (𝑟𝑖𝛼 − 𝑟𝑗𝛼)(𝑟𝑖𝛽 − 𝑟𝑗𝛽)

𝑁

𝑖,𝑗=1

 Equation 3.3 
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Here 𝑁 is the number of beads in the network. Each bead represents an end 

of a cylindrical actin segment. 𝑟𝑖𝛼 is the projection of bead 𝑖 on the 𝛼 axis where 𝛼 

can be 𝑥, 𝑦, 𝑧. 

There appear to be two types of avalanches that display differences in their 

shape and in the size of the reconfigured regions. In one group, corresponding to 

shear events, the temporal changes are manifested by large changes of the shape 

parameter (Δ𝑆) between successive pairs of snapshots, changes that occur through 

filament sliding (e.g. labeled as Avalanche 1 in Figure 3.4). A second group of 

avalanches involve collapses of local regions and are characterized by significant 

changes in the normalized radius of gyration ratio between successive pairs of 

snapshots (e.g. labeled as Avalanche 2 in Figure 3.4). We believe that the type of 

avalanches described here are examples of two extremes of a broad distribution of 

avalanches. 
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Figure 3.4. Examples of avalanches in a branched network containing 16 motors and 3000 

linkers. 
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In Panel A, the time course of the changes in the ratio of the radius of gyration normalized 

by the 𝑅𝑔 value at the initial 10 second point between successive pairs of snapshots that 

are separated by 10 seconds, Δ(𝑅𝑔/𝑅𝑔
𝑖 ), is plotted in red. In Panel B, the time course of the 

changes in the shape parameter between successive pairs of snapshots that are separated 

by 10 seconds, Δ𝑆, is plotted in blue. In both Panels A and B, the time course of the mean 

filament displacement 𝛿𝑥𝐹  is plotted in black. 

The underlying mechanism for these abrupt behaviors seems to reflect the 

rather wide distribution of sizes of filamentous actin (F-actin) connectivity clusters 

in the network. We calculated the distributions of connectivity cluster sizes and 

used those distributions to compute the weighted averages of the cluster size (𝑁𝑤) 

found in both the unbranched and the branched networks. This was done for all 72 

concentration scenarios while also analyzing whether avalanches occur or not.  The 

weighted mean cluster size (𝑁𝑤) was calculated in units of actin monomers. 𝑁𝑤 

represents the average cluster size of randomly selected monomers and is defined 

as the ratio between the first moment and the second moment of the cluster size 

distribution 𝑝(𝑛) as shown in Equation 3.4. 

𝑁𝑤 =
∑ 𝑛2𝑝(𝑛)𝑛

∑ 𝑛𝑝(𝑛)𝑛
 Equation 3.4 

Here 𝑛 is the number of actin monomers in a cluster and 𝑝(𝑛) is the 

probability of finding a cluster of size 𝑛 in the system. 

The weighted mean cluster size of F-actins, 𝑁𝑤, provides a parameter 

describing heterogeneity of the cluster sizes of a network. Assemblies with a small 

value of 𝑁𝑤 contain multiple small and isolated clusters that are not connected to 

the rest of the system through motors, linkers or branchers. A network with a large 
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value of 𝑁𝑤 contains at least one large cluster of actins all of which are mechanically 

linked. 

In Figure 3.5, we plot histograms of the weighted mean cluster size (𝑁𝑤) for 

the unbranched and branched networks. Panel A shows that for the unbranched 

networks, there are two predominant actin cluster sizes: one peak for small clusters 

having at most 2,000 actin monomers and another peak for large clusters with more 

than 12,000 actin monomers. The smaller connectivity clusters are typically 

isolated, while there is usually only a single cluster of more than 12,000 actin 

monomers. The unbranched networks with many small and isolated F-actin 

connectivity clusters generally are only weakly connected through motors or 

linkers, while the networks with large F-actin connectivity clusters have become 

fully connected thereby allowing force to be transmitted globally throughout the 

networks. 

In Panel B, we see that branched networks have a rather wide distribution of 

𝑁𝑤 (Figure 3.5B) with a broad continuous range of intermediate size actin clusters. 

To characterize an event as an avalanche during an individual trajectory, we 

calculated the Z-score of the mean filament displacement 𝛿𝑥𝐹 between each 

successive pair of snapshots separated by 10 seconds. We classified an event as 

being an avalanche when the mean filament displacement 𝛿𝑥𝐹  between each 

successive pair of snapshots is sufficiently large: that is, we require the Z-score 

relative to the displacements for other intervals to exceed 5 in order for the interval 

to be classified as having an avalanche event. As shown in Figure 3.5B, there is a 
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significant difference in cluster size distributions for snapshots when an avalanche 

occurs and when there has been no avalanche. This comparison of the distributions 

of the actin cluster sizes suggests that forces build up in the branched systems with 

large connectivity clusters eventually resulting in an avalanche. Avalanches rarely 

occur in networks containing only small and isolated actin clusters. 

 

Figure 3.5. Probability densities of the weighted mean cluster size (𝑁𝑤) of the unbranched 

networks (A) and branched networks (B). 

The branched networks were further analyzed in the event of no avalanche (blue curve) or 

avalanches (red curve). 1,152 simulations were carried out and analyzed both for the 

unbranched networks and for the branched networks. 
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3.3. Discussion 

3.3.1. Contractility of actomyosin networks depends on their topologies 

Consistent with earlier studies, we find that the contraction of unbranched 

actomyosin networks depends on the concentrations of motor protein and linkers 

[26,37,38,155]. The “phase diagram” of macroscopic contractility is re-entrant: 

systems having an intermediate value of linker concentration contract more 

robustly than do systems with either a high or a low concentration of linkers. Re-

entrance of the transition with changing linker concentration was one of the key 

findings of several experimental studies [26,37]. These studies show that the 

macroscopic contractility in actin reconstituted systems requires a threshold 

concentration of motors but is strongest with an intermediate concentration of 

linkers. In our simulations, re-entrance arises because when the concentration of 

linkers is low the network is not mechanically connected while at high linker 

concentrations the network of an unbranched actomyosin system becomes too rigid 

for the motors to displace fibers significantly.  

Structural differences between branched actomyosin networks and the 

unbranched systems lead to their having a different phase diagram. The branched 

networks with low concentrations of motor globally contract more than do 

unbranched networks with the same low motor concentrations. These contractions 

apparently are caused by the Arp2/3 branchers inhibiting the polymerization and 
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depolymerization of the actin fibers, which would otherwise favor the expansion of 

the network. In our model, an Arp2/3 brancher initially deposits at the branched 

junction and, once there, nucleates a daughter filament. Given that the 

depolymerization rate at the minus end of an actin filament is faster than the 

dissociation rate for branchers, the Arp2/3 branchers effectively inhibit actin 

filament polymerization and depolymerization. 

The relaxation times of the branched actomyosin networks are longer than 

those of the unbranched systems, by as much as a factor of four. The slowing due to 

the addition of branchers can be explained by two effects: 1) motors are not able to 

walk past branchers and 2) on average, the actin filaments of the branched 

networks are considerably shorter than the filaments of the unbranched networks. 

The persistence of motor walking in the unbranched networks, which contain 

longer filaments, drives fast relaxation. In the branched networks, on the other 

hand, the motors constantly unbind and rebind to short actin filaments that are 

studded with branches, thereby slowing the relaxation. 

3.3.2. The non-equilibrium dynamics of the branched actomyosin 

networks displays the behavior of jammed assemblies  

The trajectories for the branched actomyosin networks show a large number 

of sudden variations of individual filament displacements. These events are not seen 

in the trajectories for the unbranched systems at the same concentrations of motors 

and linkers. Branched networks also have a larger variation in actin cluster size 

compared with what is seen for their unbranched counterparts. In branched 
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networks, sudden releases of strain energy occur that lead to local contraction and 

filament sliding. We call these rare events avalanches. Avalanches in general are 

triggered by motor driven movements which then in turn cause bound motors to 

disengage, bound linkers to rupture, and bent filaments to recoil. 

It has been suggested that such avalanches occur during the remodeling of 

the cytoskeleton in vivo [117,173]. In these experiments, beads attached to the 

actomyosin cortex in cells undergo large, step-like displacements over several 

micrometers. Taken together with the present simulations, these findings suggest 

that branched actomyosin networks form marginally stable states reminiscent of 

jammed granular systems or colloidal glasses [134,170]. The mechanical properties 

of jammed systems depend on their past history, a signature that the system 

remains far from equilibrium [170]. Our findings suggest that the branched 

networks are more likely to become marginally stable and jammed than the 

unbranched networks. This feature seems to arise because branched networks have 

a wider distribution of F-actin cluster sizes than their unbranched counterparts 

have. In the branched assemblies, motors can change the conformation of the 

networks in a convulsive avalanche-like manner once there has been a sufficient 

buildup of high tension locally in the network [174].  

Actin-binding proteins such as the Arp2/3 complex alter the non-equilibrium 

and history-dependent properties of actomyosin by changing the morphology of the 

networks. A full theoretical treatment of cytoskeletal dynamics must deal both with 

their assembly and their glassy preparation dependence. 
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3.4. Methods  

3.4.1. Coarse-grained mechanochemical model of actomyosin systems 

(MEDYAN) 

We have used a computational implementation of a coarse-grained 

mechanochemical model of actomyosin systems (Mechanochemical Dynamics of 

Active Networks or MEDYAN) [67] developed by Papoian and his group. MEDYAN 

models the stochastic nature of reactions and the diffusion of chemical entities 

(which we will refer to as “the chemical model”) and provides simultaneously a 

coarse-grained physical representation of filaments, branchers, motors, and linkers 

(which we will refer to as “the mechanical model”).  The coarse-grained actomyosin 

system is initialized with F-actin filaments that are made up of segments consisting 

of 10 G-actin monomers each, non-muscle myosin IIA heavy chain (NMIIA) motor 

proteins (i.e. motors), α-actinin cross-linking proteins (i.e. linkers), and actin-related 

protein 2/3 (Arp2/3) branching protein complexes (i.e. branchers). The simulations 

of branched assemblies of filaments include the Arp2/3 protein complexes while the 

unbranched simulations of filaments do not. Figure 3.6 shows a typical snapshot of a 

simulation of unbranched filaments (Figure 3.6A) and branched filaments (Figure 

3.6B). The monomers (G-actin), the filaments (F-actin), the motors (NMIIA), the 

linkers (α-actinin) and the branchers (Arp2/3) were initially distributed randomly 

within a cubic container. 
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Figure 3.6. Typical snapshots of MEDYAN simulations without Arp2/3 protein complexes 

(A) or with Arp2/3 protein complexes (B). 

A red cylinder represents an F-actin filament. A black bead represents a positive (or a 

barbed) end of an F-actin filament. A white bead represents a negative (or a pointed end) 

of an F-actin filament. A green cylinder represents an α-actinin linker protein. A blue 

cylinder represents an ensemble of NMIIA motor proteins. A yellow bead represents 

Arp2/3 protein complexes. The angle between the mother and its daughter filaments 

through a brancher is 70° as reported experimentally [116,159]s.  

 

We have included the polymerization reactions of F-actin at both the plus 

and the minus ends of the fibers, the depolymerization reactions of F-actin from 

both the plus and the minus ends, the binding and the unbinding reactions of α-

actinin linkers, the binding and the unbinding reactions of NMIIA motors, the 

walking reactions of NMIIA, the branching reaction of F-actin, and the destruction 
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reaction of short F-actin no longer than one segment in our model. We did not 

include the unbinding reactions of branchers because of the known high stability of 

Arp2/3-actin protein complexes [116,159].  We also did not include linker cross-

linking between the first binding sites of mother and its daughter filaments due to 

geometric constraints. The motors, the linkers, and the branchers occupied same 

binding sites on the filaments.  

All simulations were confined to a 1 µm × 1 µm × 1 µm box with 25 µM of 

actin in total. The concentration of actin, 25 µM, was specifically chosen to replicate 

the in vitro experiments from the Weitz group [37]. We considered nine different 

concentration ratios of motor proteins to actin monomers (𝑥𝑚:𝑎) and eight 

concentration ratios of linker molecules to actins (𝑥𝛼:𝑎) in our simulations. We set 

𝑥𝑚:𝑎 to be 0.0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0 whereas 𝑥𝛼:𝑎 was set to be 

0.0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1.0. All branched simulations contained 0.5 µM 

of Arp2/3 branchers in total to create sufficient branching structures in the 

simulation. Moreover, we used the filament branching rate of 0.0001 s-1 and the 

short filament destruction rate of 1.0 s-1. Furthermore, we have also included actin 

filament bending, stretching, branching, and exclusion volume potentials, motor and 

linker stretching harmonic potentials, and filament-boundary interaction potential 

(see SI for more details). The reaction rates and the parameters of our model are 

listed in Tables S1, S2, and S3. 
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3.4.2. Cluster size distribution 

To analyze how each monomer in a filament connects to another, we defined 

a cluster as a group of monomers in an F-actin that are connected through the plus 

ends (p), the minus ends (m), or through binding sites (c) as shown in Figure 3.7A 

motor (M) or a linker (L) can connect two actin monomers through their binding 

sites (c). A brancher (B) connects two F-actin monomers through the binding site (c) 

of one to the minus end (M) of the other one.  

 

Figure 3.7. Schematic diagram of a cluster. 

A cluster is a group of F-actin monomers (F) that are connected through their binding sites 

(c), the plus ends (p) or the minus ends (m). The motor (M) and the linkers (L) connect the 
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F-actin monomers through the binding sites. The brancher (B) connects two F-actin 

monomers by binding on the minus end (m) of one and on the binding site (c) of the other 

one.  
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Chapter 4 

OpenAWSEM with Open3SPN2: A fast, 

flexible, and accessible framework for 

large-scale coarse-grained 

biomolecular simulations 

This chapter is a slightly modified version of an article published in the PLoS 

computational biology journal [175]. OpenAWSEM is available at 

https://github.com/npschafer/openawsem website, and Open3SPN2 is available at 

https://github.com/cabb99/open3spn2 website.  

4.1. Introduction 

In recent decades, experimental methods for studying biological systems 

have made great strides providing dynamic and structural information across a 

range of scales. Nevertheless, most experimental probes are still very indirect, with 

a wide gap between what can be measured directly and what scientists want to 

understand and visualize. Modern theoretical frameworks for organizing our 

thinking along with computational simulation codes begin to allow the detailed 

https://github.com/npschafer/openawsem
https://github.com/cabb99/open3spn2
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mechanisms of biomolecular assemblies to be laid bare. The development of 

physical simulation models allows mechanistic ideas that are often only inferred 

indirectly from structural biology to be tested rigorously in a quantitative way 

rather than remaining attractive but qualitative hypotheses. Biomolecular 

simulations, in fact, are now beginning to uncover previously unforeseen 

mechanisms on the molecular level. 

When writing down a mathematical description of the forces acting on 

biomolecules, an important first decision to make is what degree of detail is needed 

to represent the relevant motions of the biomolecules within their environment. In 

particular, one must decide which of the atomic degrees of freedom should be kept 

and which can be averaged over. Retaining all of the atomic degrees of freedom 

gives rise to the popular all-atom models of biomolecules immersed in a solvent 

which is also described in atomic detail. While these models are computationally 

costly to simulate, they can be quite accurate and have recently been used 

successfully to fold small proteins and even now begin to allow study of the 

dynamics of larger systems [3,176]. The great amount of detail in the all-atom 

representation often leads us to forget that all-atom models today still make 

physical assumptions like the additivity of the intermolecular forces, which may not 

be fully accurate in all situations. Averaging over the solvent degrees of freedom 

yields tremendous computational cost savings. The gain in efficiency arises from 

two factors: first, when we simulate a solvated biomolecule in full atomic detail, 

most of the atoms belong to the solvent. Eliminating them from detailed 

consideration then greatly reduces the number of computational operations needed 
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to follow the dynamics. Second, as parts of the biomolecule move through the 

solvent, they are constantly buffeted by collisions with the nearby solvent 

molecules. These collisions dramatically slow down the large-scale motions that 

usually are of the most interest, yet in the main these frictional effects do not change 

the structural character of the motions. 

Averaging over all the solvent degrees of freedom while retaining a fully 

atomically detailed representation of the biomolecule thus already yields significant 

computational advantages. While solvent averaging alone increases computational 

efficiency, additional computational savings can be had by simplifying the 

representation of the biomolecule itself. Here again, there are two ways 

computational time is saved. First, there is a direct savings related to the need to 

compute a still smaller number of forces. Second, one can choose to intentionally 

speed up certain internal motions that are otherwise slow in a typical all-atom 

model by lowering torsional barriers, such as the rotation of backbone 

Ramachandran dihedral angles. Opting for a coarse-grained representation of a 

biomolecule, by facilitating sampling, greatly expands the number of biological 

questions that can be effectively studied. 

While it is convenient to average over the solvent and detailed side chain 

degrees of freedom, the thermodynamic effects of the solvent and the side chains 

are subtle—considerably more subtle than the buried surface area model. In 

proteins, it is well known that bulk aqueous solvent gives rise to an effective 

hydrophobic attraction between non-polar residues [177]. This effect motivated the 
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buried surface area approximation. It is less widely known that specifically bound 

water molecules also mediate interactions between pairs of polar residues; these 

give rise to an effective hydrophilic interaction [178,179]. These water-mediated 

interactions are quite important in protein complexes. One efficient way of handling 

such phenomena is to alias such interactions back onto the protein degrees of 

freedom. Doing this leads to strongly nonadditive forces. It is commonly believed 

that averaging over any of the degrees of freedom lowers the reliability of a model. 

For biomolecules, however, the all-atom force fields have themselves generally been 

parameterized by experimental data just as the coarse-grained models are. The 

greater freedom of formulating coarse grained models however has long 

encouraged the use of machine learning strategies to determine these parameters. 

Such machine learning increases the accuracy of the description [180]. The resulting 

sophisticated coarse-grained models have proved surprisingly effective in 

describing biomolecular dynamics both in folding and function, even in a 

quantitative sense [181]. 

4.2. Design and implementation 

The coarse-grained protein folding force field known as the Associative 

memory, water-mediated, structure and energy model (AWSEM) is the latest 

iteration of a series of coarse-grained models that have been primarily developed in 

the Wolynes and Papoian groups over the last several decades [98]. AWSEM 

employs a detailed backbone representation along with a single interaction site for 

each side chain. The AWSEM force field includes an implicit solvent model with a 
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hydrophobic burial term along with explicit water-mediated nonadditive 

interactions between the residues. AWSEM-MD is an implementation of the AWSEM 

model in the LAMMPS molecular dynamics package [182]. AWSEM-MD has been 

successful in predicting the structures of globular α-helical proteins [98], both 

designed and natural α/β proteins [101], and polytopic α-helical membrane 

proteins [183]. AWSEM-MD has also been used to study protein association 

[184]and aggregation [185]. Recently, AWSEM-MD has been used to predict the 

folds of large proteins by incorporating co-evolutionary information [186]and 3D 

template information [187]. It has also performed quite well in the CASP13 

competition [102].  

Nucleic acids are important partners with proteins in biology and it is 

desirable to study their dynamics with compatible computational tools. 3SPN.2 is a 

Coarse-Grained DNA model developed by the de Pablo group that models the DNA 

molecule using 3-sites-per-nucleotide: a particle for the phosphate group, a particle 

for the sugar and a particle for the nucleobase [85]. 3SPN.2 provides a flexible 

representation for the DNA backbone and employs a detailed representation of the 

base pairing interaction and DNA electrostatics. 3SPN.2C also describes the DNA 

sequence dependent curvature [86]. 3SPN.2C has already been used in combination 

with AWSEM to study protein-DNA complexes, such as the nucleosome [94] and NF-

κB DNA complexes [96]. 

As the force fields that are used to model protein and protein-DNA systems 

become more complicated, and as the systems being studied become larger, the 
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software used to model these systems must also evolve. The challenges are clear: for 

example, in a recent study of chromosome organization proteins [95], AWSEM 

combined with co-evolutionary information was used to study a protein complex 

having a total of 3964 residues. For these large systems, even relatively short 

simulation runs of 100 ns laboratory time took up to 24 hours to obtain using 

LAMMPS code. In the present paper, we will show how the OpenMM framework can 

be used to speed up such simulations using GPUs and how OpenMM framework 

allows one to introduce novel interactions in the simulation force field models with 

relative ease. 

The LAMMPS simulation package employs a parallelization scheme that is 

based on spatial decomposition, with each CPU handling a separate contiguous 

region of space. Information about the forces that act across the boundaries of these 

domains is passed between the processors at each timestep. This parallelization 

scheme is relatively simple to implement due to its nearly universal structure with 

respect to different forcefields. This approach to parallelization scales very well for 

simulations of bulk liquids and solids, where the system has a nearly uniform 

density. For simulations of biomolecules with an implicit solvent forcefield, like 

AWSEM and 3SPN2, however, spatial decomposition can be inefficient because the 

systems have highly heterogeneous local densities. Processors that compute the 

interactions inside of the mostly empty boxes will ordinarily then be idle while 

waiting for the processors that compute the interactions inside of those boxes that 

are full of atoms. A spatial-decomposition scheme that dynamically adjusts the sizes 

of the CPU-domains can only partially compensate for this effect. For implicit 
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solvent models, the force-based parallelization scheme employed by OpenMM turns 

out to be much more efficient, especially when implemented on GPUs [188]. 

OpenMM was developed with the intention of being compatible with multiple 

hardware platforms including GPUs. It provides a high level application 

programming interface (API) that removes the burden of writing platform specific 

codes. Traditionally, computational scientists have designed forcefields for single 

CPUs and then only later would spend time modifying their codes to support 

simulations on multiple CPUs and even more time on adding GPU support. With 

OpenMM, one only needs to write down the equations describing the forcefields 

once, and the software automatically compiles optimized code that can be run on all 

platforms including a single CPU, multiple CPUs, and GPUs (with both CUDA and 

OpenCL support). 

OpenMM provides various flexible custom force templates to ease the 

implementation of forcefields with new functional forms. To implement 

OpenAWSEM and Open3SPN2, we used the custom force template that best fits each 

term in the Hamiltonians. For example, the “CustomNonbondedForce” is the best 

choice for the excluded volume term, which acts between every pair of atoms, while 

the “CustomBondForce” supports a very wide range of functional forms and is 

appropriate for terms that involve only a small subset of the system’s atoms. 

Another interesting situation that OpenMM flexibly encodes is AWSEM’s water-

mediated interaction. Since the water-mediated interactions depend on the local 

density around each interacting atom, the local density around each residue has to 

be computed first before computing the mediated interactions. This two-stage 
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feature can be implemented using the “CustomGBForce” template, which was 

originally intended to support another two stage energy term: the Generalized 

Born-type potentials. 

The custom force templates allow for rapid prototyping of new potential 

terms. For each new potential, only the energy formula needs to be specified, while 

its derivatives are automatically computed for the purposes of computing the forces. 

By automating the derivative calculation, even non-experts can design and 

implement new force fields readily. In this paper, we will illustrate this capability of 

the OpenMM framework by introducing two new features into AWSEM. The first 

new feature is a contact term that depends on the degree of burial of a residue in a 

biological membrane. This energy can be used to describe proteins that have both 

cytoplasmic parts that are surrounded by water, and other parts that are buried in a 

membrane, which are thus surrounded by lipid primarily. The second new 

nonadditive potential we introduce and explore is a many-body disulfide bond term 

that prevents the unphysical clustering of Cysteines that can occur when disulfide 

bonds are modeled using a naïve pair potential that must per force be very strong. 

This potential allows us to recapitulate the early experiments of Anfinsen on 

ribonuclease that started the experimental study of protein folding mechanism 

[7,189]. 
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4.3. Results 

4.3.1. Protein-only simulations benchmark 

When AWSEM was first implemented using LAMMPS 8 years ago, dynamic 

studies of proteins mostly focused on proteins having less than a thousand residues. 

This limited focus was due both to the computational cost of studying larger system, 

and partly, to the scarcity of experimentally solved structures of large biological 

machines. The structures of larger proteins and their complexes are now being 

obtained at an unprecedented pace, thanks especially to the development of Cryo-

EM structure determination methods. One recently solved large protein; gamma 

secretase has drawn lots of attention due to its role in Alzheimer’ disease. Gamma 

secretase contains 1542 residues [190]. Figure 4.1 shows comparative benchmark 

results for simulations using OpenAWSEM and using LAMMPS for proteins with 

various lengths. For a protein with 3724 residues (PDBid: 4qqw), a simulation of 4 

million steps corresponding roughly to 20μs in laboratory time took more than 200 

hours (8 days) using LAMMPS. The same simulation takes only about 8 hours using 

OpenAWSEM, thus making millisecond simulations feasible within a few days. 
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Figure 4.1 Benchmark timing results for AWSEM simulations with the LAMMPS and the 

OpenMM implementations on a linear scale (left) and on a log scale (right). 

The x-axis is the number of residues in the proteins that are being simulated. The y-axis 

shows the number of computer hours needed to run a 1 million-step simulation. Each 

protein was simulated 5 times using each implementation. The lines are quadratic fits. The 

simulation protein set was chosen to have a wide range of protein sequence lengths ranging 

from 164 residues to 3724 residues. 

4.3.2. DNA-only simulations benchmark 

To test the scaling of the runtime of Open3SPN2 for nucleic acids, we ran 

several random DNA sequences of different lengths using the 3SPN2.C forcefield. 

The DNA strands were simulated using LAMMPS and using OpenMM for 1 hour and, 

from these test runs, we estimated the time needed to run 1 million steps. As shown 

in Figure 4.2, the OpenMM implementation of 3SPN2.C reduces the simulation time 

of long DNA strands ranging in size from 250 bp up to 1.5kb DNA strands. For short 

sequences the GPU is underutilized, and the greater overhead associated with using 

the GPU results in longer overall simulation times. For the 1.5 kb case, we found a 

fourfold improvement in simulation speed. For longer DNA strands, the speedup 

will be greater due to better scaling. This improvement in the simulation speed 

allows the study of DNA dynamics on much longer timescales even for more 

complex systems such as DNA origamis or small sections of chromosomes. 
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Figure 4.2. Benchmark timing results for 3SPN2 simulations with the LAMMPS 

implementation of 3SPN2 and the OpenMM implementation of 3SPN2 on a linear scale 

(left) and on a log scale (right). 

The x-axis is the number of nucleotides in the DNA that is being simulated. The y-axis 

shows the number of computer hours that are needed to run a 1 million-timestep simulation. 

Each DNA length was simulated 5 times using each implementation. The lines are 

quadratic fits. The DNA lengths range from 110 nucleotides to 1580 nucleotides. 

 

4.3.3. Protein-DNA simulations benchmark 

To assess the speedup of DNA-protein simulations we selected several 

protein-DNA complexes that have a diverse range of lengths for both the protein and 

the DNA sequences. We included in this test set only structures from the PDB that 

contained a single protein chain and a single DNA chain. We simulated each complex 

5 times for 1 hour using each implementation and estimated how much time would 

be required to run 1 million steps. Figure 4.3 shows an improvement of the 

simulation speed of protein-DNA complexes by 1 to 2 orders of magnitude. The 

largest structure that we simulated was RecA, a protein with 2050 amino acids, in 

complex with a 18 nucleotides ssDNA (PDBid: 3cmu). In this case, we obtained a 

300-fold speedup. 
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Figure 4.3. Benchmark results for AWSEM-3SPN2 simulations of protein-DNA 

complexes using the LAMMPS and the OpenMM implementations of both forcefields on 

a linear scale (left) and on a log scale (right). 

The x-axis shows the PDB ID. The y-axis shows the computer hours needed to simulate 

for 1 million steps. Each complex was simulated 5 times using each implementation. The 

protein length ranges from 52 nucleotides to 2050 amino acids, while the DNA length 

ranges from 2 to 40 nucleotides. 

4.3.4. Protein-DNA interface prediction example 

As an example of simulating protein-DNA interactions, we characterized the 

capability of the AWSEM-3SPN2 Hamiltonian to predict the correct protein-DNA 

binding interface of the sporulation specific transcription factor Ndt80 (PDBid: 

1mnn). At a constant temperature of 300K, the protein and DNA in the crystal 

structure were first pulled apart and run for 2.5 million steps; following this, a weak, 
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non-specific force was used to pull them back together while being run for another 

2.5 million steps. Following this, the pulling force was released, and the complex 

was simulated for another 5 million steps to let it relax. To reduce the effects of 

binding to only a short length of DNA, we extended the crystallized DNA by adding 

DNA made with 100 A/T base pairs to both ends of the double stranded DNA using 

the 3DNA package [191]. 

The OpenAWSEM-Open3SPN2 cross-interaction is given by electrostatic 

interactions between the DNA phosphates and charged residues of the protein, as 

well as excluded volume terms. The current implementation lacks specific 

interactions that depend on the nucleotide type and amino acid type. Therefore, 

would it not through indirect DNA conformation-mediated effects, the protein 

would not be expected to prefer binding to any particular stretch of nucleotides on 

the DNA. The part of the protein surface that binds to the DNA and the orientation of 

the bound protein with respect to the DNA, however, is somewhat specific. To 

evaluate the quality of the DNA-protein interface, while focusing on finding the 

native binding pocket of the protein, we quantified the quality of the docking in 

terms of the number of contacts that the protein makes with any location along the 

DNA. A residue in the protein is said to make such a “symmetrized” contact with 

DNA when the Cβ atom in the residue is closer than 1.8 nm to a Phosphate of DNA in 

the crystal structure and where also, in the predicted structure, this Cβ atom is 

found within 1.8nm of a Phosphate of the DNA. For PDB ID 1mnn, there are 135 

such native contacts. The interface energy is defined as the sum of protein-DNA 

excluded volume energy and the electrostatic interaction energy between the 
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protein and the DNA. As can be seen in Figure 4.4, there is a strong correlation 

between the protein-DNA interface energy and the quality of the protein-DNA 

interface, and the orientation of bound protein relative to the DNA matches that 

found by experiment. 

 

Figure 4.4 Scatter plot of the interaction energy between the DNA and the protein versus 

the fraction of the symmetrized native contacts formed at each time frame during the last 

7.5 million steps of simulations from 10 runs. 

The average energy as a function of the number of symmetrized native contacts is indicated 

with blue line. A simulation snapshot showing the overlap of the crystal structure (colored 

in red) and the predicted structure (colored in cyan) that has the lowest interface energy. 
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There is a high correlation between the protein-DNA interface energy and the number of 

symmetrized contacts, indicating that the binding process is funneled to the correct 

interface. The overlap figure was created by aligning only the protein parts of the crystal 

structure and the predicted structure. We see that the DNA in both structures turns out to 

be aligned quite well, showing good structural agreement between the lowest energy 

simulated structure and the experimental structure. 

4.3.5. Potentials that depend on locations of residues relative to a 

membrane 

The water-mediated potential introduced by Papoian et al. [98] 

acknowledged that residues interact not only when they are directly in contact but 

also when they perturb the surrounding water, which in turn changes the energetics 

of more distant residues. The parameters for this potential were optimized using an 

energy landscape theory inspired machine learning algorithm [181,192–195]. 

Energy landscape theory provides a recipe whereby a transferable energy function 

can be learned by searching for the most funnel like landscape in a class of energy 

models. The funnel-like character of the landscape is measured by a Z score, 𝑍 =

 (𝐸𝑛𝑎𝑡𝑖𝑣𝑒 − 𝐸𝑚𝑔)/𝜎(𝐸𝑚𝑔). This quantity is then maximized while maintaining Emg 

constant. Emg is the average energy of a set of misfolded decoy structures. Using 

this strategy leads to an optimal set of parameters to discriminate between properly 

folded and misfolded structures. In the simplest model these parameters are the 

strengths of the interactions for different types of residue pairs at various distances 

and how these interactions vary with the local density of protein and by contrast 

with the local density of solvent water. The AWSEM potential has proved to be very 

successful in structure prediction and has allowed exploration of many aspects of 
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protein functional motions [184,185]. The water-mediated potential was originally 

designed for globular proteins, but the same optimization scheme was used also to 

find a transferable energy function that would fold membrane proteins, [183] in 

their membrane environment; the residue pair interactions then are mediated by 

lipids instead of by water. Following the same procedures as used for the globular 

proteins, the parameters for proteins that are found entirely inside the membrane 

were optimized to discriminate proper folds. Many proteins, however, have some of 

their parts inside the membrane while other parts of the protein remain outside in 

the cytoplasm. To study such systems we need a potential that can dynamically 

switch from being water-mediated to lipid mediated based on the position of the 

residues relative to the bilayer. Figure 4.5 shows the schematic of this potential. 

 

Figure 4.5. A schematic figure for the Z-dependent contact potential. 
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The residues outside of the membrane, where the membrane boundary is indicated by the 

two colored lines, interact using the globular parameters. The residues inside the membrane 

interact using the membrane-optimized parameters. If one residue is inside, while another 

one is outside, the pair interacts as if they both were in water. In the heat maps on the left 

side of the figure, red color indicates a favorable interaction between the pair of residues 

indicated on the horizontal and vertical axes, whereas blue color indicates an unfavorable 

interaction. Separate heat maps are shown for the direct, low-density, and high-density 

interaction matrices in the water (globular) and membrane environments. 

Here, we introduce a z-dependent contact term that allows such dynamic 

switching. The interactions smoothly transition between the membrane mediated 

interactions and water-mediated interactions depending on the location of the 

interacting residues with respect to the membrane as measured by a height z. We 

define the new contact potential term 𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡 through the following equations: 

𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = ∑ 𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑖, 𝑗)

𝑗−𝑖>9

  Equation 4.1 

𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑖, 𝑗) = (1 − 𝛼𝑖𝛼𝑗)𝑉𝑤𝑎𝑡𝑒𝑟(𝑖, 𝑗) + 𝑘𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝛼𝑖𝛼𝑗𝑉𝑚𝑒𝑚𝑏(𝑖, 𝑗) Equation 4.2 

𝛼𝑖 =
1

2
(tanh(𝜂(𝑏 + 𝑧𝑖)) + tanh(𝜂(𝑏 − 𝑧𝑖))) Equation 4.3 

where 𝑏 =  1.5𝑛𝑚, 𝜂 = 10𝑛𝑚−1. 𝑉𝑤𝑎𝑡𝑒𝑟(𝑖, 𝑗) and 𝑉𝑚𝑒𝑚𝑏(𝑖, 𝑗) are the contact 

terms for water mediated and membrane mediated interactions as defined in 

previous paper [98,183]. 

Since both sets of parameters in the Hamiltonian were previously optimized 

without acknowledging the presence of the other terms, we also need to introduce a 

new parameter 𝑘𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 that controls the relative strength of the membrane 

mediated and the water-mediated interactions. A high 𝑘𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒favors forming 
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contacts inside the membrane, while a low 𝑘𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒favors forming contacts in water. 

To determine the optimal value of 𝑘𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒, we again employ the energy landscape 

optimization learning scheme. The decoys for implementing this scheme were 

generated by shifting the proteins vertically and rotating them. One then optimizes 

the 𝑘𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒while keeping the previously determined parameters fixed. This 

machine learning scheme was employed using a test set obtained by downloading 

the complete Alpha-helical polytopic database, a total of 1561 proteins, from the 

Orientations of Proteins in Membranes (OPM) database. [196]. The advantage of the 

OPM database over the traditional RCSB protein data bank is that it also spatially 

aligns membrane proteins relative to the membrane. The training proteins must 

have significant parts both inside and outside the membrane. Therefore, for each 

protein, we computed the fraction of the residues that are found inside the 

membrane 

𝜒 =
1

𝐿
∑(𝑎𝑏𝑠(𝑧𝑖) < 15Å)

𝐿

𝑖=1

  Equation 4.4 

where zi is the z coordinate of CA of residue i, L is the protein length. For 

training we only kept those proteins with χ between 0.2 and 0.8. We also removed 

those proteins that have more than 2000 residues in order to speed up the 

optimization. This yielded a set of 1116 training proteins. For each protein, we then 

generated 240 decoys. These were generated first by rotating them along the x axis 

with 12 different orientation at: 0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165 

degrees, and then shifting the structure vertically by 20 different displacements: -

40, -36, -32, -28, -24, -20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36 angstroms 
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along the z-axis. To carry out this optimization, the total energies are evaluated 

using the following equations: 

𝐸 = 𝑘𝑤𝑎𝑡𝜙𝑤𝑎𝑡 + 𝑘𝑚𝑒𝑚𝑏𝜙𝑚𝑒𝑚𝑏 + 𝑘𝑚𝑒𝑚𝑏𝑏𝑢𝑟𝑖𝑎𝑙
𝜙𝑚𝑒𝑚𝑏𝑏𝑢𝑟𝑖𝑎𝑙

 Equation 4.5 

𝜙𝑤𝑎𝑡 = ∑ (1 − 𝛼𝑖𝛼𝑗)𝑉𝑤𝑎𝑡𝑒𝑟(𝑖, 𝑗)

𝑗−𝑖>9

 Equation 4.6 

𝜙𝑚𝑒𝑚𝑏 = ∑ 𝛼𝑖𝛼𝑗𝑉𝑚𝑒𝑚𝑏(𝑖, 𝑗)

𝑗−𝑖>9

 Equation 4.7 

𝜙𝑚𝑒𝑚𝑏𝑏𝑢𝑟𝑖𝑎𝑙
= ∑ 𝐴(𝜎𝑖)Θ(𝑧𝑖, 𝑧𝑚 = 15Å)

𝑖

 Equation 4.8 

Θ(𝑧𝑖, 𝑧𝑚) =
1

2
(tanh(𝑘𝑚(𝑧𝑚 + 𝑧𝑖)) + tanh(𝑘𝑚(𝑏 − 𝑧𝑖))) 

Equation 4.9 

 

In these expression the values of A(𝜎𝑖) are the amino acid hydrophobicities 

on the octanol scale of Wimley and White [197–200]. We include 𝜙𝑚𝑒𝑚𝑏𝑏𝑢𝑟𝑖𝑎𝑙
 here 

because the membrane burial term also depends on the position of protein with 

respect to the membrane [201]. In the machine learning algorithm thus we want to 

find the values of 𝑘𝑤𝑎𝑡 , 𝑘𝑚𝑒𝑚𝑏 , and 𝑘𝑚𝑒𝑚𝑏𝑏𝑢𝑟𝑖𝑎𝑙
 that maximize the Z score for the 

correct positioning and orientations of the proteins with the membrane. Since some 

decoys are more similar to the native positioning than are others, we reweighted the 

decoys when computing the decoy averages in 〈𝜙〉𝑚𝑔. 

〈𝜙〉𝑚𝑔 =
1

∑ (1 − 𝜃𝑑)𝑁
𝑑=1

∑(1 − 𝜃𝑑)𝜙𝑑

𝑁

𝑑=1

 Equation 4.10 

where N is the number of decoys. For each decoy, the fraction of residues 

that have the same pattern of burial as the native structure is defined to be 𝜃𝑑 . Two 
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residues are said to have the same burial assignment when either they are both 

inside the membrane or they are both in the cytoplasm. 

𝜃𝑑 =
1

𝐿
∑ 𝛿𝑖

𝐿

𝑖=1

 Equation 4.11 

𝛿𝑖 = {
1 𝑖𝑓 𝑎𝑏𝑠(𝑧𝑖

0) < 15Å = 𝑎𝑏𝑠(𝑧𝑖) < 15Å 

0 𝑖𝑓 𝑎𝑏𝑠(𝑧𝑖
0) < 15Å ≠ 𝑎𝑏𝑠(𝑧𝑖) < 15Å

 Equation 4.12 

 , where (𝑧𝑖) is the z coordinate of CA of residue i in the native(decoy) 

structure. The optimal values of the coefficients that maximize the Z score turn out 

to be 1, 3.3, 3.3 for 𝜙𝑤𝑎𝑡 , 𝜙𝑚𝑒𝑚𝑏 , and 𝜙𝑚𝑒𝑚𝑏𝑏𝑢𝑟𝑖𝑎𝑙
  respectively. 

 

To demonstrate the effectiveness of the force field obtained in this way, we 

selected from the database 15 proteins that have both membrane and globular 

parts. The folding of membrane proteins is sometimes thought to have two stages. 

[202]The first stage is imagined to be the insertion of the transmembrane helices 

into the membrane. In vivo this process is sometimes helped by the translocon 

[203]. The second stage of membrane folding is then the rearrangement of the now 

buried helices inside the membrane. To imitate the first stage, we used PureseqTM 

[204]first to provide an initial idea of the topology with respect to the membrane. 

Based on the PureseqTM prediction result, we wrote a script to assign each residue 

to three different regions: cytoplasmic, membrane or extracellular. Each residue is 

then pulled into its preliminarily predicted region according to the resulting initial 

assignment using a force field that only contains the backbone terms. Then, a force 
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is applied to the two ends of the protein while applying a strong membrane term, so 

that the helices become well separated but still live within the membrane. Finally, 

the residue type dependent membrane potential is introduced along with the 

contact terms and an annealing protocol of 8 million steps is followed with the 

temperature decreasing from 800 to 200. The results for the structure prediction 

runs using the z-dependent contact term are compared with the results using the 

original contact potential in the Figure 4.6. 

 

Figure 4.6. Structure prediction results using the three contact potential schemes evaluated 

using Qwater (left) and Qmem (right). 

Qwater measures the structural similarity to the native structure using only the residues 

that are outside of the membrane, whereas Qmem measures the structural similarity of the 

structures for those residues found inside the membrane. The closer the similarity score is 

to 1.0, the more native like is the prediction. The hybrid potential in general performs better 

than either the pure globular protein model or the pure membrane model. 

Figure 4.7 shows the aligned structures of the native structures and the 

predicted structures using the new membrane burial depth dependent contact 

potential. 
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Figure 4.7. Overlay of the native structures and the best Qwater and Qmem structures using 

the membrane burial depth dependent contact potential. 

For each protein, the upper figure shows the part of the protein that is found buried in the 

membrane and the lower part of the figure shows the globular domain. 

The AWSEM annealing yields an improved assignment of the location of the 

helices relative to the purely sequence based method PureseqTM that was used for 

initial structures. In Figure 4.8, we see that for 10 out of 15 proteins tested, the 

fraction of correctly assigned location is increased after the folding. In this test set, 

3kp9, 5xpd, 1u19 now have more than 10 additional residues that take on their 

correct native location assignments compared to what is used initially based on the 

PureseqTM results. 
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Figure 4.8. The fraction of correct location assignments of the residues relative to the 

membrane using a purely sequence-based method (PureseqTM) and that yielded by 

running OpenAWSEM simulations (AWSEM). 

4.3.6. Describing many-body saturating disulfide bonds 

The disulfide bond forms a very strong interaction between two Cysteines. 

These bonds restrain the dynamics of the protein and often control protein stability 

and function. Very often the smaller extracellular proteins are dominantly stabilized 

by a large number of disulfide linkages. If treated as a pair interaction, the strong 

disulfide bonds tend to condense and cluster. The covalent chemical bond, in 

contrast to the pair interacting potential, saturates: only one bond can be formed by 

each Cysteine, not more. The famous protein ribonuclease A was originally studied 

by Christian Anfinsen. It has four disulfide bonds. Monitoring the formation of these 

bonds was a key part of Anfinsen’s exploration [7]. Two of the four bonds have been 
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shown to be important for conformational stability and the other two are needed for 

catalytic activity [205]. Because covalent chemical bonds saturate, a simple pair-

wise potential cannot model accurately Anfinsen’s experiment. The saturation effect 

is critical: when there are only two cystines, they form a single strong disulfide 

bond, but when a third Cystine comes near to the two Cystines that have already 

formed a bond, the third Cystine shouldn’t feel any strong attracting force. This is a 

many-body effect. In this study, we tackled this saturation problem by developing a 

saturable many-body disulfide bond interaction using the openAWSEM framework. 

In this potential, displayed in Equation 4.13, the saturation is accounted for using a 

density variable 𝜌𝑖
𝑐𝑦𝑠

 that reflects the number of Cystines around residue 𝑖 

smoothed by a tanh function. The disulfide interaction term is then a pair 

interaction that is modulated by two 𝜌𝑖
𝑐𝑦𝑠

 dependent switching functions, 𝜃𝑖𝑗
𝑛𝑒𝑎𝑟 and 

𝜃𝑖𝑗
𝑠𝑚𝑎𝑙𝑙 . These two switching functions are defined in Equation 4.16 and Equation 

4.17. 

 

𝑉𝑑𝑖𝑠𝑢𝑙𝑓𝑖𝑑𝑒 = ∑𝑉𝑖𝑗 Equation 4.13 

𝑉𝑖𝑗 = 𝜃𝑖𝑗
𝑛𝑒𝑎𝑟𝜃𝑖𝑗

𝑠𝑚𝑎𝑙𝑙𝛼(𝑟𝑖𝑗) Equation 4.14 

𝛼(𝑟𝑖𝑗) =
1

2
(tanh (𝜅(𝑟𝑖𝑗 − 𝑟𝑐)) − 1) Equation 4.15 

𝜃𝑖𝑗
𝑛𝑒𝑎𝑟 =

1

2
(tanh (𝜅𝑠(0.2 − |𝜌𝑖

𝑐𝑦𝑠
− 𝜌𝑗

𝑐𝑦𝑠
|)) + 1) Equation 4.16 

𝜃𝑖𝑗
𝑠𝑚𝑎𝑙𝑙 =

1

2
(tanh (𝜅𝑠 (2.2 − (𝜌𝑖

𝑐𝑦𝑠
+ 𝜌𝑗

𝑐𝑦𝑠
))) + 1) Equation 4.17 
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𝜌𝑖
𝑐𝑦𝑠

= ∑
1

2
(1 − tanh(𝜅(𝑟 − 𝑟𝑐)))

|𝑗−𝑖|>1

 
Equation 4.18 

 

where 𝑖, 𝑗 label all the Cystine residues, and rij is the Cb distance between 

residue i and j. κs is set to 20, so that 𝜃𝑖𝑗
𝑛𝑒𝑎𝑟 is 0 when the difference between 𝜌𝑖

𝑐𝑦𝑠
 

(the Cystine density around residue i) and 𝜌𝑖
𝑐𝑦𝑠

 (the Cystine density around residue 

j) is larger than 0.4, and 𝜃𝑖𝑗
𝑛𝑒𝑎𝑟 is 0 when the sum of those two densities is larger than 

2.4. The parameters introduced to quantify the rapidity of saturation were 

calibrated using a database search for disulfide bonds in known crystallographic 

structures. To determine a reasonable potential well size κ for determining the 

Cystine density, our survey showed that the Cb-Cb distances between residues that 

form disulfide bonds fall in the range of 3.6 Å to 4.1 Å. We therefore chose a 0.5 Å 

interval over which to turn on the interaction by setting  𝜅 = 10Å−1 and 𝑟𝑐 = 4.2Å in 

Equation 4.18. 

To illustrate the efficiency of using the new nonadditive Cystine density 

dependent disulfide bond term, we simulated the folding of ribonuclease A (1fs3), 

bovine pancreatic trypsin inhibitor (1bpi), alpha thrombin (1ppb) and several other 

cystine rich proteins selected from [206]. We tested 3 different strengths for the 

new potential, (k = 0, 2, 5), as well as the model that has the pairwise additive 

potential, which we call “original”. We can see from Figure 4.9 that as the strength of 

the saturable disulfide bond term increases, the predictions become closer to the 

correct structure (as evaluated by the Q value). The saturable disulfide bond term 
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significantly improves the structure prediction quality for ribonuclease A. This 

improvement is mainly due to the correct formation of the Cys26-Cys84 bond, 

which was also shown by experiment to be essential for protein stability [205]. 

 

Figure 4.9. Structure prediction results for six disulfide rich proteins using various 

strengths of the saturable disulfide bond interaction. 

We plot the best Q from 20 simulated annealing runs that started from 

different random velocity seeds for each different value of the disulfide interaction 

strength. As the strength of the disulfide interactions increases, the best Q increases. 

1tcg, 1lmm, 1bpi and 1ppb all have 3 disulfide bond. 1fs3 has 4 disulfide bonds, and 

1hn4 has 7 disulfide bonds. The relatively modest best Q for thrombin (1ppb) 

probably comes from the fact that we have only modeled the main chain of the 

molecule, but thrombin also has a short chain that has been experimentally shown 

to be important for function [207]. 



 

95 

The new disulfide bond term helps specifically to form the native disulfide 

bonds, rather than allow the formation of mispaired Cysteines as shown in Figure 

4.10. Even though in some cases (1tcg, 1lmm and 1ppb), the prediction quality 

measured by Q was not significantly affected by using the saturable disulfide 

interaction, the fraction of correct disulfide bonds was improved in all six proteins 

we tested. 

 

Figure 4.10. The fractions of correct disulfide bonds in the predictions of several disulfide 

rich proteins. 

These fractions are shown for several different strengths of the saturable interaction. At 

full strength, nearly all the pairs form correctly. 

When we follow the annealing trajectories for these disulfide rich proteins, 

we find that, consistent with the funneled nature of the energy landscape, disulfide 

bonds do not always form in a specific unique order, and indeed non-native 

disulfide bonds occasionally form and revert back to being unpaired, finally 
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achieving a native like structure. Of course, we must bear in mind that in the 

laboratory this process must involve chemically tuning the oxidation of these bonds. 

Figure 4.11 shows the sequence of formation of disulfide bonds from each frame in a 

simulated annealing trajectory of ribonuclease A. As the extended protein starts to 

fold from high temperature, some non-native disulfide bonds do form, but, in the 

end, the protein is funneled to form the correct native disulfide bonds. 

 

Figure 4.11. The formation of disulfide bonds in a single annealing trajectory with k = 5. 

Following the trajectory in time, disulfide pairs are darkened in when they are formed. Red 

indicates that a native disulfide bond has been formed. Blue indicates that a non-native 

disulfide bond has formed. The alignment of the best Q structure from this trajectory with 

the crystal structure is shown in SI. Its Q value is 0.77. 

As shown in Figure 4.12, using the standard AWSEM, only one native 

disulfide bond (residue 58 and residue 110) ends up being formed in most of the 20 

trajectories, while the other native pairs(26-84, 40-95, 65-72) are rarely formed. In 
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comparison, using the new Cystine density dependent disulfide bond potential, all 

the native pairs are finally formed. 

 

Figure 4.12. The average formation of disulfide bonds as a function of time over the 20 

annealing runs, with the patterns from the standard AWSEM shown on the left and patterns 

from the nonadditive disulfide potential runs with k = 5 shown on the right. 

Red indicates that native disulfide bond has formed. Blue indicates the formation of a non-

native disulfide bond. The darker the color, the larger fraction of the trajectories that form 

this disulfide bond during this time frame. We see that, occasionally, even with the full 

strength saturable interactions, sometimes non-native disulfides persist after the rapid 

annealings. 

4.4. Discussion 

We have described a new computational simulation framework for carrying 

out coarse grained protein-DNA simulations: OpenAWSEM and Open3SPN2. In this 

new framework, simulations using GPUs can achieve speedups of a factor of thirty 

for the simulation of proteins that have more than two thousand residues. Large 

lengths of DNA also can be studied more efficiently than existing CPU-based 
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implementations. The minimal time scale for protein folding is at least microseconds 

[208], which indicates the size of the computational burden required to study such 

systems via all-atom simulations. With OpenAWSEM, folding and functional 

mechanisms of even very large proteins can be simulated within a reasonable 

amount of clock time (hours or days), thereby opening the door for a wide range of 

functional biomolecular dynamics studies. The codes are written entirely with 

Python 3, including the user interfaces. The computationally costly part of the 

simulations is handled by the OpenMM library, which was coded with efficiency in 

mind. Python 3 provides great code readability and modification efficiency, and 

since the codes are automatically compiled while running, the time spent in 

compilation of the code is eliminated. Also, using the automatic computation of the 

derivatives of the Hamiltonian instead of explicitly coding the forces greatly 

simplifies the introduction and implementation of new energy terms to 

accommodate new physics. To illustrate this feature of OpenAWSEM, we have 

designed and implemented two sophisticated potentials for some specialized folding 

situations. One of these involves the introduction of a membrane burial dependent 

contact potential to describe proteins that are only partially buried in membranes. 

We have demonstrated that using this potential for structure prediction leads to 

more accurate structures than when the proteins are treated as uniformly living in 

one environment or the other. Another energy term that was easy to code was a 

density dependent disulfide bonding potential that mimicks the saturation of 

chemical bonds. Introducing this term generally improved structure predictions and 

also allowed us to computationally recapitulate Anfinsen’s Nobel prize winning 
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experiments on ribonuclease. These two new potentials serve to illustrate the 

flexibility and extendability of the OpenAWSEM framework and will encourage the 

design of future coarse grained force fields for large biomolecular simulations using 

this computational software framework. 

4.5. Methods 

4.5.1. Simulation setup 

The default values of the parameters in the annealing protocol for all the 

simulations performed in this study are given below. We maintained those values as 

being consistent with those typically used in the LAMMPS implementation of 

AWSEM-MD. (listed in S1 Document) We point out that for many problems involving 

very large systems, these run parameters should be revised for optimal efficiency. 

As a default in the structure prediction runs, we used the langevin integrator with 

friction of 1ps−1, time steps of nominal 5fs, and temperature going from 800K to 

200K during simulated annealing. The simulations were carried out for 8 million 

steps. This corresponds roughly to 40 μs of laboratory time. Default forces included 

in our study are the connectivity, chain, chi, exclude volume, rama, rama modulated 

by proline, rama modulated by secondary structure input file “ssweight”, contact, 

beta, pap and fragment memory terms. Each term can be turned on and off and vary 

in strength and setting in the force_setups.py file. All OpenAWSEM and Open3SPN2 

simulations were carried out with Nvidia V100 and all LAMMPS version simulations 

were carried out with Intel Xeon CPU E5-2650 v2 on the Rice NOTS server. 
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4.5.2. Q-value definition 

The Q-value is a measure of how similar a predicted structure is to the 

correct native structure. To evaluate the quality of the protein predictions we used 

the Q value which is defined in Equation 4.19 

𝑄 =
2

(𝑁 − 2)(𝑁 − 3)
∑ 𝑒

−
(𝑟𝑖𝑗−𝑟𝑖𝑗

𝑁)
2

2𝜎𝑖𝑗
2

𝑖<𝑗−2

 Equation 4.19 

where N is the total number of residues, 𝑖 and 𝑗 are sequence positions, 𝑟𝑖𝑗 is 

the distance between the CA of residue 𝑖 and the CA of residue 𝑗. 𝑟𝑖𝑗
𝑁 is the distance 

between CA of residue i and CA of residue j in native structure, 𝜎𝑖𝑗 = (1 +

|𝑖 − 𝑗|0.15)Å. For 𝑄𝑤𝑎𝑡𝑒𝑟, 𝑁 is the number of residues outside of the membrane, and 

the sum is taken over all those residues. For 𝑄𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒, 𝑁 is the number of residues 

outside the membrane, and 𝜎𝑖𝑗 = 2(1 + |𝑖 − 𝑗|0.15)Å. 

4.6. Acknowledgments 

The authors would like to thank Dr. Peter Eastman the developer of OpenMM 

for helpful discussions during the development of the OpenAWSEM and Open3SPN2 

package. WL, CB, NPS, SJ, XC, MC, XG, AD and PGW were supported by the Center for 

Theoretical Biological Physics and sponsored by an NSF grant (PHY- 2019745) and 

by the D. R. Bullard-Welch Chair at Rice University, Grant C-0016. CB, PGW were 

supported by the PoLS Student Research Network sponsored by the NSF Division of 



 

101 

Physics grant 1522550. JM and JJP were supported by NSF grant BIO/MCB 1818328. 

The funders had no role in study design, data collection and analysis, decision to 

publish, or preparation of the manuscript. 

 



 

102 

Chapter 5 

Resolving the NF-κB Heterodimer 

Binding Paradox: Strain and 

Frustration Guide the Binding of 

Dimeric Transcription Factors 

This chapter is a slightly modified version of an article published in the 

Journal of the American Chemical Society and has been adapted here with 

permission from Potoyan et al. [209]. Copyright 2022 American Chemical Society. 

5.1. Introduction 

Transcription factor oligomers regulate the flow of genetic information 

[210]. Even at the dimer level, different combinations of partners bind differently to 

specific genomic regions and can thereby trigger different sequences of downstream 

events, eventually leading to different cell fates [210,211]. There are many reasons 

why forming and acting as oligomers may be biologically adaptive for 

transcriptional regulation. The combinatorial diversity of pairing can allow a finer 

tuning of gene expression by turning a limited number of transcription factor coding 
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genes into a much larger pool of disparate transcription factor complexes with 

widely varying binding specificity toward different regulatory genomic sequences. 

The association of proteins by itself can then serve as a switch or a control point for 

exerting further levels of post-translational regulation [211]. Finally, 

oligomerization can be seen as adding nonlinearity to the system-wide kinetic 

network, which allows the response to changes in protein copy numbers to be more 

sensitive [212]. Such nonlinearity also offers noise buffering benefits [213,214] and 

can turn steady states of regulatory networks into oscillatory attractor patterns 

[215]. We thus see that uncovering the fundamental principles behind transcription 

factor association and DNA recognition may lead to a deeper understanding of basic 

cell biology and perhaps may allow one to devise better therapeutic strategies to 

intervene when regulatory networks fail. 

In this chapter, we look at these basic questions by focusing on one specific 

important gene regulatory system that involves the transcription factor NF-κB. This 

transcription factor is the central regulator of an extensive and complex genetic 

broadcasting system [216]. We have shown that the behavior of this broadcasting 

network is controlled by the kinetic features of transcription factor binding and 

release from DNA [96,217]. The NF-κB family of proteins has many members, and 

these function in various combinations of homodimers and heterodimers. The 

heterodimeric form, made of two different subunits, p50p65, happens to be the 

most abundant in cells. This heterodimer binds to DNA significantly more strongly 

than do either of the p50p50 and p65p65 homodimers [218]. The steady-state ratio 

of different dimers in cells is clearly controlled via intricate gene regulatory 
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pathways, which cannot be explained solely by DNA binding affinities or 

dimerization equilibrium constants [219]. A priori, if binding to DNA were made up 

of individual additive contributions from each monomer, we would expect the 

heterodimer to have an affinity somewhat between the affinities of the two 

homodimers, not to be dramatically stronger than either of them. The fact that the 

heterodimer binds more strongly than either homodimer is, therefore, something of 

a paradox. 

Using a combination of gel mobility shift and fluorescence anisotropy assays, 

Phelps et al. [218,220] have established that p65p50 binds to the κb target site of 

immunoglobulin enhancer with an affinity of ∼10 nM; p50p50 has a weaker affinity 

of ∼50 nM, and p65p65 has the weakest affinity of all three dimers at ∼150 nM. 

These measurements were all done at near-physiological conditions. The genome-

wide patterns of binding are expected to be more complex, with different dimers 

displaying a distribution of affinities that show mutually exclusive preferences for 

some sequences. Nevertheless, protein binding microarray experiments [221] have 

shown that the distributions for 10-bp κb sites with different flanking bases still 

place p65p50 consistently as a stronger binder than both the p50p50 and p65p65 

dimers. The tight binding of the heterodimeric NF-κB complex is apparently not an 

accident. In fact, cells have elaborated a mechanism we have termed “molecular 

stripping” to rapidly and completely remove the heterodimeric NF-κB from its many 

genomic target sites [96,217,222,223] (Figure 5.1A). The relative concentration of 

free and bound heterodimeric forms is thus under kinetic control. The homodimers, 

on the other hand, because of their weak binding, do not need molecular stripping, 
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since their dissociation is sufficiently rapid [224] (Figure 5.1A). Their relative 

concentrations of DNA-bound and free forms can equilibrate thermodynamically. 

The steady-state composition of the different dimers will thus be seen to be under 

kinetic, not thermodynamic, control owing to the strong heterodimeric association 

and molecular stripping. 

 

Figure 5.1. DNA-NFkB interactions. 

(A) Simplified kinetic scheme that depicts the kinetics of interconversion between DNA-

bound, free, and Iκb-bound NFkB dimers. Due to a combination of factors including large 

number of binding sites and, on average, higher affinities, the p65p50 heterodimer of NF-

κB relies on molecular stripping for generating a timely response to appropriate external 

signals. For the p65p65 and p50p50 homodimers, either there is no molecular stripping 

(p50p50 lacks NLS domain) or any effect of stripping is negligible because of the low 

binding affinity (p65p65). The nearly irreversible stripping process indicated by the red 

arrow renders the heterodimer population under kinetic control. (B) Free energy profiles 

of DNA dissociation from different NF-κB–DNA complexes. The p50p65 heterodimer is 

shown in blue, p65p65 homodimer is shown in green, and p50p50 homodimer is shown in 
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red. (C) Representative structures from the simulations of NF-κB dimers bound to the same 

20-bp-long DNA segment. 

In the present work, we are concerned with understanding the basic 

molecular features that resolve the “binding paradox” by using predictive coarse-

grained models for energy landscapes of the proteins and the DNA in order to 

simulate the structural and mechanical changes that accompany the dissociation of 

these transcription factors from the DNA-bound complexes. 

To set the stage for describing the nature of these changes and the 

computational tools used for analyzing them, it is instructive to first briefly survey 

some basic tenets of the theory of protein dynamics. The modern view of protein 

dynamics is provided by energy landscape theory [225]. A key notion from this 

theory is that the landscape overall resembles a funnel, allowing rapid sampling of 

the global conformational space of foldable proteins. The funnel-like shape of the 

global energy landscape is a result of the evolutionary minimization of the conflict 

between different residual interactions in proteins, which is also known as 

“frustration”. This principle of minimal frustration [226,227] explains that evolution 

has sculpted funnel-like landscapes for proteins in order to eliminate deep kinetic 

traps, which would otherwise lead to unreasonably long folding times. The funnel 

topography ensures rapid and reliable folding into functional states. Because of the 

funnel-like shape of the landscape, most conformational changes can be described 

either as arising from distortions of the native structure or as arising from the 

making and breaking of native interactions; completely non-native structures are 
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rare as mechanistic intermediates (but do arise on occasion). The funnel-like shape 

of the folding landscape can also be exploited for deriving potentials for protein 

structure prediction using machine learning strategies [228]. The resulting 

optimized landscapes provide predictive force fields that can be used to simulate 

functional dynamics, as is done in the present work. The bottom of the funnel has 

low but nonzero entropy and contains highly structured conformations which can 

occupy multiple distinct structural basins. The multiplicity of these basins arises 

partly from the residual frustration [229]. The frustration can be readily quantified 

by computational tools such as the Frustratometer [230]. Residual frustration is not 

necessarily an accident of nature coming from some failure of evolutionary 

optimization but can signal an adaptation to facilitate ligand-induced functional 

allosteric changes of protein conformational states [227]. Because of the multibasin 

character of most functional proteins, the dynamics of native proteins is anisotropic 

[229,231]. While individual minima can be well described by quasi-harmonic local 

fluctuations with a good fit to crystallographic B factors, jumps among the different 

basins are accomplished via larger amplitude changes also known as 

“proteinquakes” [232,233]. Such large-amplitude motions involve high-order 

nonlinear deformations, “cracking” [234–237], and local unfolding [229], all of 

which require going beyond the harmonic approximations in the energy intrinsic to 

the idea of elasticity [229,231]. These large-amplitude motions occur predominantly 

by moving along the directions of some of the few low-frequency soft modes which 

can be extracted by techniques such as principal component analysis (PCA) of 

fluctuations in long molecular dynamics simulation runs. Thus, one can use concepts 
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from the elasticity theory of materials [232], multibasin approximations [238,239], 

and linear response theory [240,241] to predict and explain the basis of ligand-

induced structural changes. Below we use an array of these tools to characterize the 

protein dynamics in the NF-κB complexes to uncover the structural and dynamic 

resolution of the “binding paradox” of NF-κB transcription factors. In particular, our 

analysis in some sense should also be considered an extension of the approach first 

introduced by Miyashita et al. [232], where elasticity theory was employed for 

scrutinizing the allosteric movements of adenylate kinase in terms of mechanical 

strain and strain-induced cracking. A novelty of the present approach is the use of a 

nonstandard set of collective coordinates: the principal components of pair 

distances involved in the space of physical contacts. These new collective variables 

enable us to carry out very detailed quantification and visualization of how the 

mechanical strain results from stretching numerous individual physical contacts 

distributed within and between protein domains. Similarly, we introduce a binary-

valued representation of the dynamical contacts (0 = broken, 1 = unbroken) in order 

to visualize the specific cracking transitions where numerous contacts become 

completely broken. We call the principal components associated with the contact 

pair distances “strain PCs” and the principal components of the fluctuations of the 

binary contact observables “cracking PCs”. These two kinds of collective coordinates 

allow us to visualize the rich cooperative interplay between straining and cracking 

of specific contacts, shedding light on how the allosteric coupling between the dimer 

interaction interface and the DNA binding interface is made possible through soft 

modes of motion of different NF-κB dimers, which then contribute to the differences 
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in their binding affinities. We also pinpoint how energetic frustration in the 

heterodimeric interface allows the heterodimer to have greater flexibility at this key 

hinge, which enables the heterodimer to bind more intimately to its DNA targets 

than do the more rigid and unfrustrated homodimers, which cannot clamp down as 

effectively onto the DNA. We believe the tools introduced in the present analysis of 

the NF-κB system shed light on the relationship between binding affinity and 

molecular architecture of transcription factors in general and also can be used to 

analyze and understand other systems. Our calculations can be further tested 

through protein engineering studies that probe how transcription factor–DNA 

interactions can be changed through seemingly remote mutations. 

5.2. Methods 

We use physics-based, coarse-grained predictive protein and DNA models in 

order to simulate the process of DNA dissociation from the NF-κB–DNA bound 

complexes as well as to generate equilibrium conformational ensembles for the 

endpoint states of the free and DNA-bound NF-κB dimers. We use the predictive 

protein energy landscape model provided by the Associative memory, Water-

mediated, Structure and Energy Model (AWSEM) developed in the Wolynes’s group 

[98] together with the 3 Sites Per Nucleotide (3SPN.2C) model for DNA developed 

by de Pablo’s group [86,242]. The total Hamiltonian, 𝐻𝑡𝑜𝑡  =  𝐻𝐴𝑊𝑆𝐸𝑀  +  𝐻3𝑆𝑃𝑁 . 2𝐶 +

 Hpp−DNA , consists of terms describing both the interactions within the protein 

components and within the DNA and the interactions between the two molecular 

species. Besides steric terms preventing molecular overlap, the interactions 
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between protein and DNA are largely electrostatic. We have chosen to approximate 

these electrostatic interactions with a simple mean-field Debye–Hückel potential, 

𝐻𝑝𝑝−𝐷𝑁𝐴 = ∑
𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗
𝑒

−
𝑟𝑖𝑗

𝜅𝐷

𝑖,𝑗

 Equation 5.1 

where ε, the dielectric constant, is set to 80, and κD, the Debye length, is set to 

10 nm in order to approximate the physical environment of the cell. 

To carry out simulations, we use as initial input the crystal structures 

provided in the Protein Data Bank (PDB) for p65p65 (2RAM), p65p50 (1LE5), and 

p50p50 (1SVC) NF-κB dimers. The raw PDB structures of the dimers, however, are 

missing important structural moieties which we had to computationally reconstruct 

before running the equilibrium sampling of dimers and their complexes. The 

reconstruction of structures with complete sequences has been made possible by 

using the predictive force field of AWSEM [98], which allows us to rapidly locate and 

sample equilibrium configurations consistent with crystal structures. 

For the constant-temperature simulations, we perform routine minimization 

and equilibration protocols for all structures before running long-time-scale 

production runs, which are then subjected to analysis. A 20-bp DNA fragment with 

the same sequence that was used in the in vitro experiments [224] on molecular 

stripping is used for simulating DNA-bound NF-κB complexes. The orientation of the 

DNA has been constrained, however, in all of the windows of the umbrella sampling 

simulations to remain parallel to the initial orientation in DNA-bound complex. By 

this constraining of the orientation, we exclude contributions from rotational 
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entropy as the DNA dissociates, as well as finite chain effects of DNA, so as to make 

sure that one measures the free energy of DNA detachment without any 

contributions from sliding to the end of a short fragment. 

We have carried out several kinds of PCA on the conformational ensembles 

generated via constant-temperature sampling (equivalent to 500 μs of real time 

[96]) as well as on ensembles sampled along the DNA dissociation coordinate 

(equivalent to 10 μs of real time [96]). Cartesian principal components are 

computed using the ordinary Cartesian coordinates of the Cα atoms of the long 

protein chains [r3N(t)]. We then use the principal eigenvectors found for the free 

NF-κB dimers as a basis for projecting the trajectories of complexes of NF-κB bound 

with DNA. This allows us to compare directly how the same twist/breathing modes 

evolve upon binding to the DNA. 

To compute the contact-based principal components, we have used the same 

structural ensembles as were used for the Cartesian PCA. First we use a trajectory-

averaged structure to define the Cα Cartesian coordinates 〈𝑟3𝑁〉. The coordinates of 

this averaged structure 〈𝑟3𝑁〉 are then used to compute the set of all pairwise 

distances, 𝑑𝑖𝑗
′ , which we use for fiducial purposes. Next these pairwise distances are 

filtered to exclude contacts with sequence spacing closer than four amino acid 

residues apart as well as those that are farther apart than 10–12 Å in the 3D 

averaged structure. Once these pairs of interactions are defined, the set of pairwise 

distances, filtered in the same way, is then computed for all the snapshots of the 

trajectory 𝑑𝑖𝑗(𝑡). By this means, we have selected only those nonbonded contact 



 

112 

pairs which contribute significantly to the energy of elastic strain. For the strain 

PCA, we monitor the absolute magnitudes of the contact distances 𝑑𝑖𝑗(𝑡). To 

compute the cracking principal components, we use binary quantities 𝑞𝑖𝑗 = 0,1 to 

indicate the extent of contact formation, where 𝑞𝑖𝑗 = 0 corresponds to a contact 

being broken when the pairs become too far separated, 𝑑𝑖𝑗(𝑡) > 8Å, while 𝑞𝑖𝑗 = 1 

corresponds to a contact having been formed with a close distance, 𝑑𝑖𝑗(𝑡) < 8Å. 

Using these contact definitions, we can quantify the elastic energy of proteins by a 

uniform quasi-harmonic approximation [232], 

Δ𝐸𝑒𝑙𝑎𝑠𝑡(𝑡) =
1

2
〈∑(𝑑𝑖𝑗(𝑡) − 𝑑𝑖𝑗

𝑟𝑒𝑓
 )

𝑖,𝑗

2

〉 Equation 5.2 

where ⟨ ⟩ denotes the ensemble average, and 𝑑𝑖𝑗
𝑟𝑒𝑓

 denotes the pairwise 

distances of the reference structure. One can also estimate the fractional energetic 

contribution from any individual strain or cracking principal component, 𝑃𝐶𝑛(𝑡), by 

using a similar quasi-harmonic approximation: 

Δ𝐸𝑃𝐶𝑛
(𝑡) =

1

2𝜆𝑛
2

〈(𝑃𝐶𝑛(𝑡) − 𝑃𝐶𝑛
𝑟𝑒𝑓

)
2

〉  Equation 5.3 

where 𝑃𝐶𝑟𝑒𝑓 is the value for the average reference structure, and 𝜆𝑛 is the 

eigenvalue associated with the nth principal component. 

5.3. Results and Discussion 

When binding to DNA or to other ligands, many proteins are forced to 

undergo large-scale conformational rearrangements, where some intramolecular 
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contacts inevitably must break in order to form new contacts that are more suited to 

the ligand. This is the basis of allosteric communication. 

The dissociation of stably bound protein–DNA complexes is a slow process. A 

rare, activated event is needed for unbinding to occur. We therefore used umbrella 

sampling simulations with a center-of-mass distance restraint between the DNA and 

NF-κB dimers in order to extract relevant free energy profiles along this zeroth-

order reaction coordinate (see Methods and Appendix D). Through such 

simulations, we are able to determine binding affinities at least qualitatively. The 

most important result of this analysis is that simulations using the AWSEM force 

field actually do recapitulate the “paradoxical” pattern of dissociation observed in 

the experiments in which the heterodimer binds more strongly to the DNA than do 

either of homodimers (Figure 5.1B). The predicted differences in binding affinities 

mirror those found by experiment. The ratios of the predicted to the measured 

binding free energy, 

𝜂 =
Δ𝐹𝐴𝑊𝑆𝐸𝑀−3𝑆𝑃𝑁.2𝐶

ΔFexp
 Equation 5.4 

for the various dimers are as follows: The p65p50 heterodimer binds with a 

predicted affinity that is about right, η ≈ 1. The predictions of the binding free 

energies for p50p50 and p65p65 are each larger than are the experimental values: 

for the p50p50 homodimer η ≈ 2, while η ≈ 3 for the p65p65 homodimer. We can 

see that, in quantitative terms, the magnitude of the paradoxical discrepancy is 

somewhat underestimated by the simulation in comparison with experiment, but 

nevertheless the predicted disparities in the binding energies show very clearly that 
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the heterodimer binding is much stronger than binding of either homodimer, as is 

seen in the laboratory. 

The model we use has no DNA sequence-specific effects other than those that 

would come from the sequence-dependent shapes of the DNA grooves that are 

encoded in the 3SPN.2C Hamiltonian. We note that NF-κB binding is known to be 

relatively promiscuous, [243] suggesting this is a reasonable approximation. While 

any additional specific interactions in the Hamiltonian could change the picture 

quantitatively, we see that the large free energy difference between the binding of 

the heterodimer and the homodimers is already captured by the present purely 

electrostatic sequence-independent model of the direct protein–DNA interactions 

(Figure 5.1B). These results then suggest that the model is sufficiently realistic to 

justify extracting more of the relevant structural features that give rise to the 

observed dissociation trends. In Figure 5.1C, we show sampled configurations of the 

final DNA-bound structures of the various dimers. We immediately see that the 

thermodynamic binding differences are also accompanied by large-scale structural 

differences in the DNA-bound species. 

By calculating the average elastic and electrostatic energy changes (see 

Materials and Methods) between the structural ensembles of the DNA-bound and 

the DNA-free NF-κB dimers, we see that the structural changes in the dimers upon 

DNA binding are accompanied by a changing balance between elastic energy and 

electrostatic energy. These two energies play off each other in a seesaw fashion. 

There is significant lowering in the internal elastic energy for the p65p50 
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heterodimer, which exceeds the energetic stabilization of the p65p65 and p50p50 

homodimers (Figure 5.2). On the other hand, the electrostatic stabilization upon 

DNA binding appears comparable for p65p50 and p50p50 dimers but is less 

favorable for the p65p65 homodimer. Thus, both our calculations and the 

experiments point out that resolving the binding paradox requires one to look 

beyond the protein–DNA interaction surface itself and to inquire further into the 

way transcription factors are built to see how their inner elastic strains and the 

wiring of their contacts enables these proteins to sterically accommodate and 

release the DNA. 

 

Figure 5.2. Differences in elastic and electrostatic energies between DNA-bound and free 

forms of NF-κB. 

(A) Differences in average protein elastic energies between DNA-bound and free forms of 

NF-κB: 𝛥𝛥𝐸𝑒𝑙𝑎𝑠𝑡(𝑝𝑟𝑜𝑡: 𝐷𝑁𝐴)  =  𝛥𝐸𝑒𝑙𝑎𝑠𝑡(𝑝𝑟𝑜𝑡: 𝐷𝑁𝐴) –  𝛥𝐸𝑒𝑙𝑎𝑠𝑡(𝑝𝑟𝑜𝑡).  

(B) Differences in average electrostatic energies (estimated at a mean-field Debye–Hückel 

level) between the DNA-bound and free forms of NF-κB: 𝛥𝛥𝐸𝑒𝑙𝑒𝑐(𝑝𝑟𝑜𝑡: 𝐷𝑁𝐴)  =

 𝛥𝐸𝑒𝑙𝑒𝑐(𝑝𝑟𝑜𝑡: 𝐷𝑁𝐴) –  𝛥𝐸𝑒𝑙𝑒𝑐(𝑝𝑟𝑜𝑡). 

We therefore carried out long-timescale (equivalent to ∼102 μs in laboratory 

time) constant-temperature simulations of the homo- and heterodimeric forms of 

NF-κB in their free and DNA-bound forms. We then analyzed the ensembles of 
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conformations generated in this way using several types of PCA. PCA provides a way 

of decoupling correlated fluctuations to find dominant collective coordinates that 

may function as reaction coordinates in exploring conformational transitions 

[229,244,245]. This analysis allows us to uncover how the accommodation of the 

protein to the DNA is made possible not only by rigid-body domain motions and 

localized strain rearrangements but also ultimately by cracking at specific sites in 

the dimer interfaces. These dimer interfaces apparently have evolved to be 

frustrated in the ground-state conformation so as to facilitate their rupture. 

To disentangle these different collective motions, we employ several 

different forms of PCA. One of these analyses is the conventional PCA based on 

describing protein conformations using the Cartesian positions of residues in three-

dimensional space [246]. Many papers [96,229,244,245] have documented that 

these Cartesian principal components generally track the rigid-body motions of 

protein subdomains relative to each other. 

Two other different kinds of PCA give further insight into the way these 

motions occur and allow us to identify the specific contacts whose local stretching 

and contraction contribute to the changes in elastic energy. We use one form 

employing pair distances in the space of physical contacts that shows where the 

molecule stretches and contracts (strain PCA) and a distinct form of analysis 

involving another set of observables that measures whether any contacts are 

completely made or broken (cracking PCA), which thereby monitors cracking (see 

Materials and Methods). Years ago, cracking PCA in contact space was used to 
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predict and follow the subtle conformational changes induced by phosphorylation, a 

common form of post-translational modifications in proteins [241,247]. Finally, by 

following both the dominant conventional Cartesian principal components and the 

strain principal components, we find the specific locally strained contacts which are 

most correlated with the global structural changes in binding. 

As visualized by Cartesian PCA, the dominant thermal motions of the free NF-

κB dimers are domain twisting and breathing motions of the two DNA-binding 

domains relative to each other [96]. These motions account for over 90% of the 

thermal fluctuations in the Cartesian coordinates of the protein (Appendix D). The 

twist motion persists in the DNA-bound form, where it now appears as a shearing 

motion accompanied by one-dimensional sliding along the DNA. The breathing 

motion in the free protein dimers, on the other hand, is suppressed by binding DNA, 

which fills the cavity between the NF-κB binding domains. The suppression of the 

twist mode and the activation of the breathing mode, therefore, are seen as 

important contributors to the dissociation of NF-κB–DNA complexes. In a previous 

paper [96], we have shown how the naturally evolved inhibitor protein IκB 

facilitates dissociation by freezing the domain twist in an open state. In this way, IκB 

holds one of the domains of NF-κB in a twisted configuration so that one of the 

domains can no longer make strong electrostatic contact with the DNA, thereby 

allowing the DNA to escape the embrace of NF-κB more easily since it now contacts 

only a single NF-κB domain. In the absence of IκB, the dissociation can only take 

place by means of energetically costly thermal fluctuations, which accomplish the 

domain twist and allow the breathing motion and thus DNA escape. 
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While the Cartesian principal components give a global picture of the 

motions needed for binding in each of the individual dimers, the energetic 

differences between these dimers come from changes that are localized in the 

protein structure (Figure 5.1C). These structural changes are captured by the local 

forms of PCA (Figure 5.3), which allow us to pin down those specific contacts that 

facilitate the global motions that are highlighted in the Cartesian principal 

components. The principal components of the fluctuations of the relative distances 

involved in local individual contacts localize the pivots for the large-amplitude 

motions of the molecule. We used these strain principal components to detect the 

regions most prone to deformation and cracking. Thus, when the strain becomes 

large enough, we see that some specific contacts break while others may form 

(Figure 5.4 and Figure 5.5). The principal components of the correlated fluctuations 

of occupation of contacts thus detect and localize the sites of cracking; i.e., they 

locate the fault lines that initiate the “proteinquake”. 

While globally the main principal Cartesian motions appear similar for all of 

the dimeric forms of NF-κB (Figure 5.3 and Appendix D), the localized strain 

motions that drive these global motions are quite different for the heterodimer and 

for the homodimers. The strain principal components thus allow quantification of 

the type and magnitude of various contact contributions to the overall elastic energy 

changes (Figure 2). Additionally, using the correlations between Cartesian and 

strain principal components, we find that the twist results in a rather cooperative 

contact straining/breaking at the dimerization interface, while the breathing motion 

and lower amplitude thermal motions take place via a coordinated exchange of 
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contacts, some contacts being made and others being broken more or less at the 

same time. This pattern is seen by computing the principal components of the 

binary contact probability fluctuations that monitor cracking (Appendix D). 

 

Figure 5.3. Distributions of Cartesian and strain PCs for all three dimers of NF-κB in their 

free and DNA-bound structural ensembles. 

(A) Distribution of twist and first strain PC for p65p65 and p65p65–DNA. (B) Distribution 

of twist and first strain PC for p65p50 and p65p50–DNA. (C) Distribution of twist and first 

strain PC for p50p50 and p50p50–DNA. 
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Projecting the conformational ensemble of the DNA-bound NF-κB complex 

onto the first strain principal component, we see that, upon binding to DNA, the 

multiple conformational states of the free p65p50 heterodimer NF-κB coalesce into 

one single macrostate (Figure 5.3). For the homodimers we see an opposite pattern, 

where the relatively more rigid dimer interface in the free dimer becomes more 

dynamic and the strain principal component distribution bifurcates into multiple 

states upon binding to DNA. This change in the strain PCs indicates that there is 

global frustration (i.e., frustration at a distance) between, on the one hand, the 

tendency of NF-κB dimers to form more stable rigid dimers through contacts in the 

dimerization interface and, on the other hand, their need to allow some 

conformational flexibility at the dimerization interface so as to be stronger DNA 

binders. 

These local structural changes contribute toward the total elastic energy, 

which in the case of both homodimers is less favorable in the DNA-bound form than 

in the free form (Figure 5.2). The fluctuations of the first strain principal component 

in heterodimer p65p50 happen to be the most correlated with the global twist mode 

(Appendix D). On the other hand, owing to the greater rigidity of the homodimers, 

the global twist mode is most correlated with a minor principal component, the 11th 

strain principal component, PC11 (Appendix D). This high-order principal 

component makes a factor of ∼10 smaller contribution to the total fluctuations than 

does the first strain principal component. The first 10 strain principal components 

in both homodimers are uncorrelated with global motions of domains relative to 

each other but rather correspond to a variety of intradomain local deformations. 
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This is why the total internal elastic energy of homodimers quantified by the quasi-

harmonic approximation is much lower than it is for the p65p50 heterodimer 

(Figure 5.2). If one compares the average electrostatic free energy stabilization upon 

DNA binding, then electrostatically the p65p50 heterodimer appears to be 

comparable to p50p50. We see that what truly sets these dimers apart from each 

other is the nature of the elastic energy changes upon the DNA binding. 

We therefore now turn to an analysis of the local frustration patterns in NF-

κB dimers to understand why these local deformations are so different in these 

different dimeric molecules while their global motions may appear to be not too 

different from each other. In Figure 5.4, we show the frustration pattern of the 

native contact map along with the strain principal component and the 

corresponding contact occupation principal component that shows where there is 

cracking in the region of high strain (see also Appendix D). We see that frustration, 

strain, and cracking are all quite well colocalized at a specific fault in the protein, 

much like the fault lines in seismology. 
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Figure 5.4. Frustration in NF-κB dimers. 

Contact maps color-coded to show the frustration patterns (lower triangle) and the main 

contacts that contribute to strain motion (upper triangle) (PC1) for p65p650, p65p50, and 

p50p50 dimers. The color bar at the right indicates the magnitude of fluctuation in strain 

PC motion. The color of the contacts for the frustration patterns shown in both the contact 

map and the three-dimensional structures is indicated as red for highly frustrated contacts 

and green for minimally frustrated contacts. 

Using the PCA in the space of the pairwise distances between residues in 

physical contacts from constant-temperature equilibrium sampling allows us to 

easily identify the most strained contacts present in the free NF-κB dimers (Figure 

5.4). These contacts form along the interface between the dimerization domains of 

NF-κB. These contacts, therefore, contribute significantly to the total changes in 

elastic energy during the accommodation of the DNA, as quantified by the quasi-

harmonic approximations used by Miyashita et al. [232] (Figure 5.2). The dimer 

interface region also turns out to be more frustrated in the heterodimer than it is in 



 

123 

either of the homodimers (Figure 5.4). The fault in the p65p50 heterodimer has 

apparently evolved to be easy to break. The more frustrated interfacial contacts of 

the heterodimer are precisely localized (Figure 5.4) so as to favor the shear motions 

that enable the twist mode in both the free and the DNA-bound forms. 

The role of frustration can be quantified by following the changes in the 

number of frustrated contacts along the twist-like motion for each dimer (Figure 

5.5). We find that the heterodimer stands out as the only dimer that forms more 

contacts and becomes less frustrated at the end of the twist motion, while both the 

p65p65 and p50p50 homodimers break more contacts and become more frustrated 

as the dimer deviates from its equilibrium-averaged configuration to accommodate 

better the DNA. This shows that the high mobility of the heterodimer correlates with 

its unusually high binding affinity to the DNA. The accommodating motions are 

facilitated by the positioning of frustrated contacts near the dimerization interface 

region (Figure 5.4). 

 

Figure 5.5. Change in the frustration along the twist modes. 

(A) Change in the total number of all contacts. (B) Change in the total number of frustrated 

contacts as the dimeric molecules traverse along the twist coordinate. 
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In both the free p65p65 and p50p50 homodimers, the protein dimerization 

interface is less frustrated (Figure 5.4 and Appendix D) than in the heterodimer. 

Thus, the homodimers are indeed correspondingly more rigid, so that the twist 

motion is suppressed in these homodimers to a great extent compared to the 

heterodimer. The low frustration of the dimerization domain interfaces in 

homodimers likely follows from symmetry principles [248,249]. Indeed, both 

directed evolution experiments and simulations have provided ample evidence that 

symmetric associations are energetically most stable and are therefore more likely 

to be discovered by evolution [250]. There are symmetry arguments for the 

apparent over-representation of homodimers in the functional protein universe 

[251]. Thus, we suspect that heterodimerization in NF-κB has been selected by 

evolution to be the dominant form, thanks to its manifesting a more beneficial trade-

off between thermodynamic stability and allosteric functional DNA binding that is 

needed to allow kinetic control of a large genetic broadcasting network [216]. 

Finally, by computing the protein elastic energy for each conformational 

ensemble along the DNA dissociation coordinate and by monitoring the cracking 

contacts along with the strain contacts in the quasi-harmonic approximation, we see 

that the elastic energy is strongly correlated with the rupture of interdomain 

contacts in the NF-κB as it pulls away from DNA (Figure 5.6). By comparing these 

events during passive DNA dissociation to what happens when the IκB induces the 

dissociation of the DNA and strips the heterodimer p65p50 from DNA sites, we see 

that IκB’s catalytic action can be traced to reducing the large elastic barrier (Figure 
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5.6C), which allows DNA to dissociate with less breakage of the dimerization 

interdomain contacts. 

 

Figure 5.6. Profiles of the elastic energy along the DNA dissociation coordinate for DNA 

dissociation from IκB-bound (red) and IκB-free (blue) heterodimer p50p65 forms. 

(A) Change in the total elastic energy of NF-κB. (B) Elastic energy associated with the 

cracking PC1, which is localized at the dimerization interface of the p65p50 heterodimer. 

(C) Structures that correspond to transition states in the cracking PC1 profile, which 

monitors making/breaking of contacts at the dimerization interface. Contacts between the 

dimerization domains are highlighted, with red lines indicating cracked contacts (qij = 0) 

and blue ones indicating uncracked ones (qij = 1). 

5.4. Conclusion 

In the present work, we have tried to illustrate the way the interactions 

between the dimerization interfaces of protein domains in transcription factors 

determine the nature of the allosteric motions when the complexes bind to DNA. 

The differences in the free energy landscapes of the binding and dissociation of 
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heterodimers and homodimers from DNA reflect the conflicts between the elastic 

energies determined by the flexibility of dimerization interfaces of the transcription 

factors and the need for forming a strong electrostatic contact at the interface 

between the DNA and the DNA-binding domains of the protein complexes. We have 

carried out long-timescale simulations with a coarse-grained predictive protein-

DNA force field showing the way DNA binding modulates the elastic deformations of 

the free transcription factors. Employing principal component analysis in the space 

of physical contacts along with the more conventional principal component analysis 

in the space of Cartesian coordinates of all backbone atoms allows us to understand 

how frustration at the dimeric interfaces controls motional flexibility by lubricating 

the fault that leads to the “proteinquake” necessary for DNA binding. The more 

frustrated interface of the heterodimer p50p65 leads to increased conformational 

disorder in the free form of the heterodimer, allowing p50p65 to bind more 

intimately to DNA than do either of the two homodimers, p65p65 and p50p50, 

which by having less frustrated and thus more rigid dimerization interfaces are 

prevented from optimally accommodating the DNA. 
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I. Methods 

A. Mass action chemical kinetics model 

We quantified the concentration of the F-actin interfaces and their states (bound or 

unbound) using a mass action chemical kinetics model. Each F-actin monomer has 3 interfaces: 

the plus site (Fp), the minus site (Fm), and the binding site (Fc). The change of the concentration of 

plus sites bound to minus sites over time (
𝑑[𝐹𝑝⋅𝐹𝑚]

𝑑𝑡
) is given by the rate of polymerization at both 

ends, from which is subtracted the rate of depolymerization at both ends (Equation A). The 

polymerization rate on the plus end is proportional to the G-actin concentration ([G]), the 

concentration of unbound plus sites ([Fp]), and the rate constant for the polymerization on the plus 

end (kp
+). The polymerization rate on the minus end is also proportional to the G-actin 

concentration ([G]), the concentration of unbound minus sites ([Fm]), and the rate constant for the 

polymerization on the minus end (km
+). The depolymerization rates do not depend on the G-actin 

concentration ([G]), only on the concentration of unbound plus or minus sites and on the respective 

rate constant (kp
-, km

-). Free G-actin monomers ([G]) are consumed during the polymerization, so 

the change of G-actin concentration over time is the negative of the change of the concentration of 

plus sites bound to minus sites over time.  

𝑑[𝐹𝑝 ⋅ 𝐹𝑚]

𝑑𝑡
= −

𝑑[𝐺]

𝑑𝑡
= 𝑘𝑝

+[𝐹𝑝][𝐺] + 𝑘𝑚
+ [𝐹𝑚][𝐺] − 𝑘𝑝

−[𝐹𝑝] − 𝑘𝑚
− [𝐹𝑚] 

Equation A 

The change of the concentration of unbound plus sites over time (
𝑑[𝐹𝑝]

𝑑𝑡
) is given by the rate 

of creation of new filaments by branching, from which is subtracted the rate of destruction by 

unbranching (Equation B). The rate of creation of new filaments by branching is proportional to 

the concentration of unbound binding sites ([Fc]), the concentration of unbound minus sites ([Fm]), 

the concentration of unbound branchers ([B]), and the brancher binding rate constant (kB
+). The 

rate of destruction of filaments by unbranching is proportional to the concentration of bound 

branchers ([Fc ⋅ B ⋅ Fm]), and the brancher unbinding rate constant (kB
-).  
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𝑑[𝐹𝑝]

𝑑𝑡
= 𝑘𝐵

+[𝐹𝑐][𝐺][𝐵] − 𝑘𝐵
−[𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚] Equation B 

On the other hand, since the branching reaction does not create new unbound minus sites 

(Fm), the concentration of unbound minus sites ([Fm]) is constant over time (Equation C). We did 

not include the actin filament nucleation or destruction processes in the chemical kinetics model. 

𝑑[𝐹𝑚]

𝑑𝑡
= 0 Equation C 

The change of the concentration of bound branchers over time (
𝑑[𝐹𝑐⋅𝐵⋅𝐹𝑚]

𝑑𝑡
) is proportional 

to the creation rate of filaments by branching and is also the negative of the change in brancher 

concentration over time (
𝑑[𝐵]

𝑑𝑡
) (Equation D).  

𝑑[𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚]

𝑑𝑡
= −

𝑑[𝐵]

𝑑𝑡
= 𝑘𝐵

+[𝐹𝑐][𝐺][𝐵] − 𝑘𝐵
−[𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚] Equation D 

Unless stated otherwise, the linker binding reaction occurs in a single step and the change 

in unbound linker concentrations over time (
𝑑[𝐿]

𝑑𝑡
) is given by the linker unbinding rate, from which 

is subtracted the linker binding rate. The linker unbinding rate is proportional to the concentration 

of bound linkers ([c ⋅ L ⋅ c]) and the linker unbinding rate constant (kc
-). The linker binding rate is 

proportional to the concentration of unbound linkers ([L]), the square of the concentration of free 

binding sites ([Fc]), the linker binding rate constant (kc
+,) and the spatial factor for the linker 

binding reaction (αL). The change of the concentration of bound linker over time (
𝑑[𝑐⋅𝐿⋅𝑐]

𝑑𝑡
) is the 

negative of the concentration of unbound linkers (Equation E).  

𝑑[𝐿]

𝑑𝑡
= −

𝑑[𝑐 ⋅ 𝐿 ⋅ 𝑐]

𝑑𝑡
= −𝛼𝐿𝑘𝐶

+[𝐹𝑐]2[𝐿] + 𝑘𝐶
−[𝑐 ⋅ 𝐿 ⋅ 𝑐] Equation E 

The change of the unbound motor concentration over time (
𝑑[𝑀]

𝑑𝑡
) is given by the motor 

unbinding rate, subtracted by the motor binding rate. The motor unbinding rate is proportional to 
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the concentration of bound motors ([c ⋅ M ⋅ c]) and the motor unbinding rate constant (kM
-). The 

motor binding rate is proportional to the concentration of unbound motors ([M]), the square of the 

concentration of free binding sites ([Fc]), the motor binding rate constant (kM
+), and the spatial 

factor for the motor binding reaction (αM). The change of the concentration of bound motor over 

time (
𝑑[𝑐⋅𝑀⋅𝑐]

𝑑𝑡
) is the negative of the concentration of unbound motors (Equation F).  

𝑑[𝑀]

𝑑𝑡
= −

𝑑[𝑐 ⋅ 𝑀 ⋅ 𝑐]

𝑑𝑡
= −𝛼𝑀𝑘𝑀

+ [𝐹𝑐]2[𝑀] + 𝑘𝑀
− [𝑐 ⋅ 𝑀 ⋅ 𝑐] Equation F 

Finally, the change of the concentration of free binding sites over time (
𝑑[𝐹𝑐]

𝑑𝑡
) increases due 

to actin polymerization and decreases when the motor, linker, or brancher binds to a binding site 

(Equation G). A single free binding site becomes bound during the branching reaction, while two 

free actin binding sites become bound during the linker and motor binding reactions. 

𝑑[𝐹𝑐]

𝑑𝑡
= 𝜒𝑘𝑝

+[𝐹𝑝][𝐺] − 𝜒𝑘𝑝
−[𝐹𝑝] + 𝜒𝑘𝑚

+ [𝐹𝑚][𝐺] − 𝜒𝑘𝑚
− [𝐹𝑚] 

−𝑘𝐵
+[𝐹𝑐][𝐺][𝐵] + 𝑘𝐵

−[𝐹𝑐 ⋅ 𝐵 ⋅ 𝐹𝑚] 

−2𝛼𝐶𝑘𝐶
+[𝐹𝑐]2[𝐿] + 2𝑘𝐶

−[𝐹𝑐 ⋅ 𝐿 ⋅ 𝐹𝑐] 

−2𝛼𝑀𝑘𝑀
+ [𝐹𝑐]2[𝑀] + 2𝑘𝑀

− [𝐹𝑐 ⋅ 𝑀 ⋅ 𝐹𝑐] 

 

Equation G 

This set of ordinary differential equations is based on the reactions of the Mechanochemical 

Dynamics of Active Networks (MEDYAN) model [1–6], developed by Papoian and his group (see 

section E of the supplementary information for more details). To make our set of equations 

comparable with the kinetic scheme of the MEDYAN model, we made the estimate that there is 

only one binding site for every 10 monomers, so unless stated otherwise 𝜒 = 0.1. The spatial factor 

is defined as the probability that two actin binding sites are within the search distance in a 

homogeneous mixture.  
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Table A. Parameters used in the chemical kinetic model 

Description Constant Value Units 

Polymerization rate coefficient on the 

plus end 𝑘𝑝
+ 11.6 µM−1s−1   

Depolymerization rate coefficient on 

the plus end 𝑘𝑝
− 1.4 s−1  

Polymerization rate coefficient on the 

minus end 𝑘𝑚
+  1.3 µM−1s−1 

Depolymerization rate coefficient on 

the plus end 𝑘𝑚
−  0.8 𝑠−1 

Linker binding rate coefficient 𝑘𝐶
+ 0.7 µM−1s−1 

Linker unbinding rate coefficient 𝑘𝐶
− 0.3 𝑠−1 

Motor binding rate coefficient 𝑘𝑀
+  0.7 µM−1s−1 

Motor unbinding rate coefficient 𝑘𝑀
−  1.7 𝑠−1 

Brancher binding rate coefficient 𝑘𝐵
+ 0.0001 µM−2s−1   

Brancher unbinding rate coefficient 𝑘𝐵
− 1 × 10−10 𝑠−1 

Linker minimum search distance  𝑑𝐶
𝑚𝑖𝑛 30 𝑛𝑚 

Linker maximum search distance 𝑑𝐶
𝑚𝑎𝑥 40 𝑛𝑚 

Motor minimum search distance 𝑑𝑀
𝑚𝑖𝑛 175 𝑛𝑚 

Motor maximum search distance 𝑑𝑀
𝑚𝑎𝑥 225 𝑛𝑚 

171



6 

B. The two-step model for the linker binding reaction 

The affinity of the actin-binding proteins to single filaments has been shown to be 

important for domain separation of crosslinkers in experiments [7,8]. To reflect these experimental 

findings, we studied an alternative chemical kinetic model for linker binding. In this alternative 

model, each head of the linker binds an actin filament independently with the same binding affinity 

without cooperativity. We only included the polymerization, the depolymerization reactions, the 

linker binding, and the unbinding reactions (Table B). 

Table B. Reactions included in the two-step chemical kinetic model for linker binding 

REACTION DESCRIPTION 

𝑭𝒑 + 𝑮
𝒌𝒑

−
⇄
𝒌𝒑

+

𝑭𝒑 ⋅ 𝑭𝒎 + 𝑭𝒑 + 𝑭𝒄 
Actin polymerization and depolymerization at plus end 

𝑭𝒎 + 𝑮
𝒌𝒎

−
⇄
𝒌𝒎

+

𝑭𝒑 ⋅ 𝑭𝒎 + 𝑭𝒎 + 𝑭𝒄 
Actin polymerization and depolymerization at minus end 

𝑭𝒄 + 𝑳
𝒌𝑪

−
⇄

𝟐𝒌𝑪
+

𝑭𝒄 ⋅ 𝑳 
Linker binding and unbinding 

𝑭𝒄 ⋅ 𝑳 + 𝑭𝒄
𝒌𝑪

−
⇄
𝒌𝑪

+

𝑭𝒄 ⋅ 𝑳 ⋅ 𝑭𝒄 
Crosslinker formation and dissociation 

In this model, the concentrations of the unbound plus sites (Fp) , the unbound minus sites 

(Fm), the plus sites bound to minus sites (Fp.Fm), and unbound G-actin (G) follow the Equation C, 

Equation A, and Equation B respectively assuming there is no brancher present. The concentration 

of free binding sites (Fc) is shown in Equation H. 

𝑑[𝐹𝑐]

𝑑𝑡
= −2 𝑘𝑐

+[𝐹𝑐][𝐿] − 𝑘𝑐
+[𝐹𝑐  ⋅ 𝐿][𝐹𝑐] +  𝑘𝑐

−[𝐹𝑐  ⋅ 𝐿] + 𝑘𝑐
−[𝐹𝑐  ⋅ 𝐿 ⋅ 𝐹𝑐]

+ 𝑘𝑝
+[𝐹𝑝][𝐺]  + 𝑘𝑚

+ [𝐹𝑚][𝐺] − 𝑘𝑝
−[𝐹𝑝] −  𝑘𝑚

− [𝐹𝑚] 

Equation H 
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The concentration of linkers in the different states: unbound (L), single bound (Fc ⋅ L), and 

double bound (Fc ⋅ L ⋅ Fc), are shown in Equation I, Equation J, and Equation K respectively. 

𝑑[𝐿]

𝑑𝑡
= −2 𝑘𝑐

+[𝐹𝑐][𝐿] + 𝑘𝑐
−[𝐹𝑐  ⋅ 𝐿] Equation I 

𝑑[𝐹𝑐 ⋅ 𝐿]

𝑑𝑡
= 2 𝑘𝑐

+[𝐹𝑐][𝐿] − 𝑘𝑐
+[𝐹𝑐  ⋅ 𝐿][𝐹𝑐] −  𝑘𝑐

−[𝐹𝑐  ⋅ 𝐿] + 𝑘𝑐
−[𝐹𝑐  ⋅ 𝐿 ⋅ 𝐹𝑐] Equation J 

𝑑[𝐹𝑐 ⋅ 𝐿 ⋅ 𝐹𝑐]

𝑑𝑡
= 𝑘𝑐

+[𝐹𝑐  ⋅ 𝐿][𝐹𝑐] −  𝑘𝑐
−[𝐹𝑐  ⋅ 𝐿 ⋅ 𝐹𝑐] Equation K 

C. Probability that an F-actin monomer is not connected to an infinite cluster 

(Ps) 

The probability that an F-actin monomer is not connected to an infinite cluster through the 

site α (Qα), is the sum of two terms. The first term is the probability of the site not being connected 

to another site (1 - θα). The second term is the probability that the site is connected to another F-

actin monomer, with the condition that the neighboring bound F-actin monomer is not connected 

to an infinite cluster (Equation L).  

𝑄𝛼 = 1 − 𝜃𝛼 + ∑
𝜃𝛼→𝛽 

𝑄𝛽
𝛽

∏ 𝑄𝛾

𝛾

 Equation L 

In this equation 𝜃𝛼 = ∑ 𝜃𝛼→𝛽𝛽 , and α, β, and γ can be the plus site (p), the minus site (m), 

or the actin binding site (c). The probability that an F-actin monomer is not connected to an infinite 

cluster through any site (Ps) is the product of the probabilities of the F-actin monomer not being 

bound to an infinite cluster from each site (Qα). (Equation M). 

𝑃𝑠 = ∏ 𝑄𝛼

𝛼

 Equation M 
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  In this equation 𝛼 can be the plus site (p), the minus site (m), or the binding site (c). 

The system of equations given by Equation M has a trivial solution when Qp = Qm = Qc = 1, which 

is the only solution when Ps=1 and the system is not percolated. This system can be solved exactly 

to calculate the fraction of actin monomers in finite clusters given the connectivity probabilities 

(𝜃𝛼) (Figure A). 

 

Figure A. Fraction of actin monomers in finite clusters (Ps) as a function of the crosslinking 

probabilities between plus and minus sites (θp→m), binding sites (θc→c), and binding sites to minus 

sites (θc→m). The color indicates the probability that an F-actin monomer is in a finite cluster. 
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Figure B. Rigidity percolation boundaries as a function of the crosslinking probabilities 

between plus and minus sites (θp→m), binding sites (θc→c), binding sites and minus sites (θc→m), 

and the rigidity of the crosslinkers (bc→c). We assume that the connections between plus and minus 

sites, as well as the connections between binding sites and minus sites are rigid (bp→m = bc→m = 6) 

 

D. Analytical solution of the Flory-Stockmayer equations for a system without 

branchers  

We solved analytically the Flory-Stockmayer equations for a system where there is only 

actin and bivalent crosslinkers, like α-actinin or filamin. For this system, we calculated the 
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minimum concentration of linkers needed to percolate the system as a function of the connectivity 

probabilities (θα→β). The probability of an actin monomer to be in a finite cluster is calculated by 

𝑃𝑠 = ∏ 𝑄𝛼𝛼 , as shown in Equation M, where 𝛼 can be the plus site (p), the minus site (m) or a 

binding site (c). 𝑄 is the probability that a site is not connected to an infinite cluster, as shown in 

Equation L. The analytical solution for Q for this system can be expressed by the following set of 

equations: 

𝑄𝑝 = 1 − 𝜃𝑝→𝑚 + 𝜃𝑝→𝑚𝑄𝑝𝑄𝑐 

𝑄𝑚 = 1 − 𝜃𝑚→𝑝 + 𝜃𝑚→𝑝𝑄𝑚𝑄𝑐 

𝑄𝑐 = 1 − 𝜃𝑐→𝑐 + 𝜃𝑐→𝑐𝑄𝑝𝑄𝑚 

In this system all connected minus sites are bound to plus sites. Then θp = θp→m = θm→p = 

θm = θa, where we define θa as the probability of an F-actin minus site or plus site to be bound. We 

also define θc = θc→c as the probability that an F-actin binding site is bound. The previous system 

of equations can be reduced to the following set of equations. 

𝑄𝑝 = 1 − 𝜃𝑎 + 𝜃𝑎𝑄𝑝𝑄𝑐 

𝑄𝑚 = 1 − 𝜃𝑎 + 𝜃𝑎𝑄𝑚𝑄𝑐 

𝑄𝑐 = 1 − 𝜃𝑐 + 𝜃𝑐𝑄𝑝𝑄𝑚 

This set of equations has two solutions: a trivial solution Qc = Qp = Qm = 1, and a non-

trivial solution as shown below. 

𝑄𝑐 =
1

𝜃𝑎
−

𝜃𝑐

2
− √

𝜃𝑐  (4 − 4𝜃𝑎 + 𝜃𝑎𝜃𝑐)

4𝜃𝑎
 

𝑄𝑝 = 𝑄𝑚 = √
 (4 − 4𝜃𝑎 + 𝜃𝑎𝜃𝑐)

4𝜃𝑎𝜃𝑐
−

1

2
 

The system percolates when 𝑃𝑠 = ∏ 𝑄𝛼𝛼 < 1, which occurs when: 
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𝜃𝑐 =  
1 − 𝜃𝑎

2𝜃𝑎
 

The average length of the filament (〈L〉) is related to θa by the following equation: 

〈𝐿〉 =
1

1 − 𝜃𝑎
 

This equation shows that the percolation of the actomyosin network requires crosslinking. 

If the actin does not polymerize (θa = 0), all F-actin monomers need to be crosslinked for the 

system to be percolated (θc = 1). As the degree of polymerization increases, the length of the 

filament decreases and less crosslinkers are required to percolate the system. The proportion of 

crosslinkers required to percolate the network decreases hyperbolically as the length of the 

filament increases (Figure C). 

 

Figure C.  Minimum crosslinking probability (θc) needed to percolate a system containing 

only linkers as a function of the average filament length (〈L〉)  
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E. Coarse-grained mechanochemical model of actomyosin systems (MEDYAN) 

We have used a coarse-grained mechanochemical model of actomyosin systems called 

MEDYAN (Mechanochemical Dynamics of Active Networks) developed by Papoian and his 

group [1–4,6]. MEDYAN models both stochastic chemical reactions and deterministic mechanical 

representations of far-from-equilibrium systems. In this study, we have included some important 

actin-binding proteins in actomyosin networks: non-muscle myosin IIA heavy chain (NMIIA) 

motors, α-actinin linkers, and actin-related protein complex 2/3 (Arp2/3) branchers, all in a fixed 

geometry.   

MEDYAN represents actin filaments, linkers, motors, and branchers mechanically. For 

example, the actin filaments in MEDYAN are modeled as stretchable and bendable rods that have 

repulsive interactions with other filaments and the boundary. In our simulations a motor mini 

filament is an ensemble of, on average, 22.5 NMIIA subunits. MEDYAN simulations model 

chemical reactions stochastically using reaction-diffusion equations. Our MEDYAN simulations 

employ eight different compartments therefore allowing us to consider heterogeneous distributions 

of chemical species. Lastly, MEDYAN simulations consider mechanochemical feedback between 

the mechanical representations and the chemical reactions in the system. For example, the 

unbinding reaction of motors is modeled using a catch bond; hence motors are more likely to stay 

bound to a filament when pulling forces are applied to the motor. 

We simulated a system containing 15000 actin monomers, 300 branchers, 333 motor mini-

filaments, and 1500 linkers in a 1μm3 cubic box, which corresponds to an actin concentration of 

25μM, a linker concentration of 2.5 μM, a motor concentration of 12.5 μM, and a brancher 

concentration of 0.5 μM. The branchers were introduced after 1 second. The parameters for the 

simulations are the same as the ones shown in Table A. The simulations were run with and without 
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branchers. Sample snapshots of the simulation are shown in Figure D. We followed the same 

procedure as described by in our previous work [5]. We compared the concentration of bound 

species to the concentration of bound species found in the chemical kinetic model. To compare the 

discrete snapshots of MEDYAN to the continuum chemical kinetic model, we ran 5 different 

simulations with different snapshot intervals, each 0.001s, 0.01s, 0.1s, 1s, and 10s, and interpolated 

the obtained data using a linear interpolation with the closest snapshots to obtain a mean 

MEDYAN concentration. G-actin monomers, F-actin filaments, α-actinin linkers, NMIIA motors, 

and Arp2/3 branchers were initially distributed randomly inside a cubic container. All MEDYAN 

simulations were enclosed in a 1 μm × 1 μm × 1 μm container with 25 µM of actin in total as 

described in our previous work [5].  

 

Figure D. Typical snapshot of MEDYAN simulation of an unbranched network simulation 

(A) and a branched network simulation (B). Blue cylinders represent actin filaments, green 

cylinders represent motor mini-filaments, cyan cylinders represent crosslinkers, white beads 

represent the minus end, black beads represent the plus end, and orange beads represent branchers. 
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MEDYAN software package 

MEDYAN models the dynamics of actomyosin networks using rounds of four mechanochemical 

steps. First, the chemical reactions that will take place are chosen using a stochastic reaction-

diffusion model. Second, the topology of the actomyosin network is updated according to the 

chemical reactions that occurred during the previous step. Third, we minimize the energy of the 

network with this updated topology. Fourth, the forces exerted on the network components are 

used to update the chemical rates. Rounds of these four steps are performed repeatedly. A diagram 

of this process is shown in Figure S1. 

Step 1: The chemical model  

For the chemical reaction step, we considered the polymerization reactions of F-actin on both 

the plus ends (𝑘𝑝+) and the minus ends (𝑘𝑝−), the depolymerization reactions of F-actin on both 

the plus ends (𝑘𝑑𝑝+) and the minus ends (𝑘𝑑𝑝−), the binding (𝑘𝑏𝑙) and the unbinding (𝑘𝑢𝑏𝑙) 

reactions of α-actinin linkers, the binding (𝑘𝑏𝑚) and the unbinding reactions (𝑘𝑢𝑏𝑚) of NMIIA 

motors, the walking reactions (𝑘𝑤𝑚) of NMIIA motors, the branching reaction of F-actin (𝑘𝑏𝑓), 

and the destruction reaction of short F-actin no longer than two monomers (𝑘𝑑𝑓). New to this 

current study, we modeled the Arp2/3 binding to actin filaments as an irreversible reaction because 

the stability of the Arp2/3-actin protein complexes is known from experiments to be high (1-3). 

All simulations were confined to a 1 μm × 1 μm × 1 μm box with 25 µM of actin in total. The 

concentration of actin, 25 µM, was specifically chosen to replicate the concentrations of the in 

vitro experiment by the Weitz group (4). Table S1 compiles the reaction rates used in our 

simulations. 

 

Step 2: Update of mechanical representations 

 

 After the changes of the chemical composition had been computed, we updated the 

mechanical representation in the simulated system. For example, if a polymerization reaction 

occurs during the previous step, the mechanical model then will change the representation of the 

cylinder to reflect the addition of an actin monomer. This change in polymer size may move the 

system to a mechanically unstable configuration. The system will be returned to a stable 

configuration in the next step. 

 

Step 3: The mechanical model 

In our simulations, MEDYAN mechanically represents filaments, branchers, motors, and 

linkers inside a rigid box. An F-actin filament is modeled as a semi-flexible rod that is bendable, 

stretchable, but however, non-twistable (5). The bending potential 𝑈𝑖
𝑏𝑒𝑛𝑑 of the semi-flexible rod 

is described in Equation S1.  

𝑈𝑖
𝑏𝑒𝑛𝑑 = 𝐾𝑏𝑒𝑛𝑑[1 − cos (𝜃𝑖,𝑖+1)] (S1) 

where 𝐾𝑏𝑒𝑛𝑑 is the bending energy constant and 𝜃𝑖,𝑖+1 is the angle between the cylindrical segment 

𝑖 and the neighboring cylindrical segment 𝑖 + 1. The stretching potential of the semi-flexible rod 

𝑈𝑖
𝑠𝑡𝑟𝑒𝑡𝑐ℎ is described in Equation S2. 
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𝑈𝑖
𝑠𝑡𝑟𝑒𝑡𝑐ℎ =

1

2
𝐾𝑠𝑡𝑟𝑒𝑡𝑐ℎ(|𝑙𝑖⃗⃗ | − 𝑙0)

2
 

 

(S2) 

where 𝐾𝑠𝑡𝑟𝑒𝑡𝑐ℎ is the stretching energy constant, 𝑙𝑖⃗⃗  is the vector between endpoints of the 𝑖𝑡ℎ 

cylindrical monomer segment, and 𝑙0 is the equilibrium length of a cylinder. The stretch elasticity 

constant for actin was chosen for computational efficiency. The exact value of this constant was 

shown to have a negligible effect on the actin dynamics. 

The polymer branching potential 𝑈𝑖,𝑗
𝑏𝑟𝑎𝑛𝑐ℎ is described in Equation S3. 

𝑈𝑖,𝑗
𝑏𝑟𝑎𝑛𝑐ℎ = 𝑈𝑖,𝑗

𝑏𝑟𝑎𝑛𝑐ℎ,𝑠𝑡𝑟𝑒𝑡𝑐ℎ + 𝑈𝑖,𝑗
𝑏𝑟𝑎𝑛𝑐ℎ,𝑎𝑛𝑔𝑢𝑙𝑎𝑟

 (S3) 

where the cylindrical segment 𝑖 is the mother filament and the cylindrical segment j is the daughter 

filament.  

The branched polymer stretching potential 𝑈𝑖,𝑗
𝑠𝑡𝑟𝑒𝑡𝑐ℎ is described in Equation S4 

𝑈𝑖,𝑗
𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 𝐾𝑠𝑡𝑟𝑒𝑡𝑐ℎ

𝑏𝑟𝑎𝑛𝑐ℎ(|𝑑𝑖,𝑗
⃗⃗ ⃗⃗  ⃗| − 𝑑0)

2
 

(S4) 

where 𝐾𝑠𝑡𝑟𝑒𝑡𝑐ℎ
𝑏𝑟𝑎𝑛𝑐ℎ is the stretching constant of branched polymers, 𝑑𝑖,𝑗

⃗⃗ ⃗⃗  ⃗ is the distance between the 

binding site in cylinder 𝑖 and the minus end of cylinder j, and 𝑑0 is the equilibrium length of 𝑑𝑖,𝑗
⃗⃗ ⃗⃗  ⃗.  

The branched filament angular potential 𝑈𝑖,𝑗
𝑎𝑛𝑔𝑢𝑙𝑎𝑟

 is described in Equation S5. 

𝑈𝑖,𝑗
𝑎𝑛𝑔𝑢𝑙𝑎𝑟

= 𝐾𝑎𝑛𝑔𝑢𝑙𝑎𝑟
𝑏𝑟𝑎𝑛𝑐ℎ [1 − cos (𝜃𝑖,𝑗 − 𝜃0)] (S5) 

 

where 𝐾𝑎𝑛𝑔𝑢𝑙𝑎𝑟
𝑏𝑟𝑎𝑛𝑐ℎ  is the angular energy constant for the branched polymer, 𝜃𝑖,𝑗 is the angle between 

mother 𝑖 and daughter 𝑗 polymers as defined by the angle between the vector defined from the 

minus end to the plus end of the mother filament and the vector defined from the minus end to the 

plus end of the daughter filament. 𝜃0 is the equilibrium angle between branched polymers.  

The motor stretching harmonic potential 𝑈𝑖,𝑗
𝑚𝑜𝑡𝑜𝑟 is described in Equation S6.  

𝑈𝑖,𝑗
𝑚𝑜𝑡𝑜𝑟 =

1

2
𝐾𝑚𝑜𝑡𝑜𝑟 (|𝑙𝑖𝑗

𝑚⃗⃗⃗⃗ − 𝑙0
𝑚⃗⃗⃗⃗ |)

2

 
(S6) 

where 𝐾𝑚𝑜𝑡𝑜𝑟 is the stretching energy constant of motors, 𝑙𝑖𝑗
𝑚 is the instantaneous length of the 

motor, as measured by the distance between the binding sites it is bound to, and 𝑙0
𝑚 is the 

equilibrium length of the motor. Linkers are also modeled with a stretching harmonic potential 

analogous to the potential described in S7 but with a different stretching energy constant 𝐾𝑙𝑖𝑛𝑘𝑒𝑟. 

For the implementation of the motor stretching harmonic potential in MEDYAN, please refer to 

(5). Motors can bind simultaneously to pairs of actin cylinders whose binding sites are separated 

by a distance between 175 to 225 nm. Linkers can bind simultaneously to pairs of actin cylinders 

whose binding sites are separated by a distance between 30 to 40 nm.  
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Arp2/3 nucleates daughter filaments by first binding to a mother filament. The angle 

between the mother and its daughter filament is approximately 70° (1.22 radians). Linkers are not 

allowed to bind pairs of binding sites immediately downstream towards the plus ends from a 

brancher.  

The exclusion volume potential 𝑈𝑖,𝑗
𝑣𝑜𝑙 between two cylindrical segments on two adjacent polymers 

is given in Equation S7. 

𝑈𝑖,𝑗
𝑣𝑜𝑙 = ∫ ∫ 𝛿𝑈 (|𝑟𝑖⃗⃗ − 𝑟�⃗⃗� |)𝑑𝑙𝑖𝑑𝑙𝑗

𝑙𝑗𝑙𝑖

 (S7) 

  

where the pair potential 𝛿𝑈 (|𝑟𝑖⃗⃗ − 𝑟�⃗⃗� |) for pure excluded volume repulsion is the inverse fourth-

power of distance 
1

(𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗)
4 where 𝑖 and 𝑗 are the indices for the two interacting cylindrical 

segments. For the implementation of the exclusion volume potential in MEDYAN, please refer to 

(5). 

The interaction potential between a filament and the boundary of the cubic container 𝑈𝑖
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

 is 

described in Equation S8. 

𝑈𝑖
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= {𝐾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑒
−
𝑑𝑖
𝜆

 𝑑𝑖 ≤ 𝑑𝑐𝑢𝑡𝑜𝑓𝑓

0 𝑑𝑖 > 𝑑𝑐𝑢𝑡𝑜𝑓𝑓

 (S8) 

 

where 𝐾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is the repulsive energy constant, 𝑑𝑖 is the closest distance between each boundary 

and the ith cylindrical segment, and 𝜆 is the screening length. The calculation of the interaction 

potential between a filament and the boundary was done after energy minimization. Table S2 lists 

all parameters of the mechanical model used in our simulations. 

In this mechanical model phase, MEDYAN minimizes the energy of the system using a 

Polak–Ribière conjugate gradient method. After the energy minimization is finished, a new 

mechanical configuration of the system—including new locations and stress profiles of filaments, 

bound motors and linkers, and branchers—is formed. 

Step 4: Update of chemical rates 

Having reached a new configuration after the minimization step, the different components 

in the system such as motors, linkers or filament ends are subject to different stresses. During this 

step the forces acting on the components change the reaction rates by modifying the rate constants. 

For example: a polymerization reaction is less likely to occur on a plus end of a filament that is 

located closer to the boundary since the plus end of the filament experiences greater repulsion 

boundary forces. The unbinding reaction of linkers is modeled using a slip bond and the unbinding 

reaction of motors is modeled using a catch bond. Hence, linker is more likely to unbind when 

pulling forces are applied to the linker and motor is less likely to unbind when pulling forces are 

applied to the motor. Table S3 lists all mechanochemical parameters used in our simulations. 
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The radius of gyration (𝑅𝑔) of actomyosin networks with varying concentrations of motor 

and linker proteins can be used to distinguish contracted and non-contracted systems 

We calculated the radius of gyration (𝑅𝑔) of the actin filaments to quantify the contraction 

of actomyosin networks. The radius of gyration of the actin filaments 𝑅𝑔 is described in Equation 

S9.  

𝑅𝑔 = √
1

𝑁
∑(𝐶𝑖 − 𝐶𝑜𝑀)2

𝑁

𝑖

 
(S9) 

where 𝑁 is the total number of cylinders, 𝐶𝑖  is the center of mass of cylinder 𝑖, and CoM is the 

center of mass of the network. We calculated 𝑅𝑔 for networks with different concentration ratios 

of motor and linker to actin for both unbranched and branched networks. We plotted the ratio of 

the instantaneous radius of gyration, 𝑅𝑔, to the radius of gyration at 10 s, 𝑅𝑔
𝑖 , (𝑅𝑔/𝑅𝑔

𝑖 ) for both 

systems. 𝑅𝑔
𝑖  is measured at 10 seconds because the filament length distribution is allowed to reach 

a steady-state before the motors are added at 10 s. Note that for every combination of motor and 

linker to actin ratio, sixteen simulation replicates were performed, differing only in their random 

initializations. We calculated 〈𝑅𝑔/𝑅𝑔
𝑖 〉, which is the average of the normalized radius of gyration 

ratio taken all replicates for a given condition of each actomyosin network with varying motor and 

linker concentrations for both unbranched and branched networks.  

Next, we fitted these 〈𝑅𝑔/𝑅𝑔
𝑖 〉(𝑡) using Equation S10. 

〈𝑅𝑔/𝑅𝑔
𝑖 〉(𝑡)  =  𝐴 − 𝐵 · 𝑒−

𝑡
𝜏 

(S10) 

where 𝐴, 𝐵, and 𝜏 are parameters of the fitting equation, 𝑡 is time in seconds, and 𝜏 is the 

exponential time constant. The difference of 𝐵 and 𝐴, (𝐴 − 𝐵) is the 〈𝑅𝑔/𝑅𝑔
𝑖 〉 at 𝑡 = 0 while A is 

the 〈𝑅𝑔/𝑅𝑔
𝑖 〉 at the steady-state.  

 

A state diagram of the boundary interaction energy shows that the contractility is re-entrant 

for unbranched actomyosin networks  

 

We chose the total boundary interaction energy as a complementary measure of 

contractility to the radius of gyration 𝑅𝑔. Smaller values of the total boundary interaction energy 

correspond to more contracted systems. While the radius of gyration (𝑅𝑔) of the actin filaments 

can be used to distinguish between contracted and non-contracted actomyosin networks, 𝑅𝑔 is not 

the only parameter that can be used to quantify the degree of contractedness. A comparison of the 

radii of gyration and boundary interaction energies for contracted and non-contracted system is 

shown in Figure S2. The 𝑅𝑔 and the boundary interaction energy of the less contracted network 

(Figure S2A) are 0.34 μm and 0.0071 pN nm respectively, while the 𝑅𝑔 and the boundary 

interaction energy of the more contracted network (Figure S2B) are 0.22 μm and 0.0014 pN nm 

respectively. We observe that in this case the boundary interaction energy better distinguishes 

between contracted and non-contracted systems.  

State diagram of the boundary interaction energy of unbranched actomyosin networks is 

shown in Figures S3.  We observe a re-entrant feature—where, above a motor threshold 
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concentration, the systems with intermediate concentrations of linker are more contracted than the 

systems with either high or low concentration of linker—for the unbranched networks. The re-

entrant feature is observed for unbranched systems with 𝑥𝑚:𝐴 approximately between 0.05 and 0.2 

as highlighted by the dotted green lines in Figure S3. 

A plot comparing the distributions of the mean filament displacements 𝛿𝑥𝑓 for both 

unbranched network and branched network simulations is shown in Figure S4. The displacements 

of the branched networks have a rather wide distribution compared with that for their unbranched 

counterparts. Defining a specific threshold of 𝛿𝑥𝑓 to classify an avalanche is somewhat arbitrary 

since filament displacements of a network depend on their past topology and history. Therefore, 

we use the Z-score relative to the displacements for other intervals to classify an event as being an 

avalanche rather than using a simple displacement cutoff. 
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Figure S1. MEDYAN software package flow diagram (adapted from Fig 4 in Ref. (5)). 
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Figure S2. Comparison of two unbranched actomyosin networks with different degrees of 

contractedness. The 𝑅𝑔 and the boundary interaction energy of the less contracted network (A) are 

0.34 μm and 0.0071 pN nm respectively, while the 𝑅𝑔 and the boundary interaction energy of the 

more contracted network (B) are 0.22 μm and 0.0014 pN nm respectively. 
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Figure S3. State diagram of the boundary interaction energy of the unbranched actomyosin 

networks at 2000 s. The area surrounded by dotted green lines highlights the re-entrant feature of 

contractility for the unbranched networks.   
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Figure S4. A plot of the distributions of the mean filament displacements 𝛿𝑥𝑓 of both 

unbranched network and branched network simulations.  
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Table S1: Reaction rates used in the chemical models for MEDYAN simulations in this study. 

Symbols Reaction rates 

𝑘𝑝+ 11.6 µM−1 s −1
  (6) 

𝑘𝑝− 1.3 µM−1 s −1 (6) 

𝑘𝑑𝑝+ 1.4 s-1 (6) 

𝑘𝑑𝑝− 0.8 s-1 (6) 

𝑘𝑏𝑙 0.7 µM−1 s −1 (7) 

𝑘𝑢𝑏𝑙 0.3 s-1 (7) 

𝑘𝑏𝑚 0.7 µM−1 s −1 (8) 

𝑘𝑢𝑏𝑚 1.7 s-1 (5) 

𝑘𝑤𝑚 0.2 s-1 (5) 

𝑘𝑏𝑓 0.0001 s-1 (limited to number of branchers) 

𝑘𝑑𝑓 1.0 s-1 (only applied to 1 actin segment filament) 
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Table S2: Parameters of the mechanical models used for the MEDYAN simulations in this study. 

Symbol Constants 

𝐾𝑏𝑒𝑛𝑑 2690 pN.nm 

𝐾𝑠𝑡𝑟𝑒𝑡𝑐ℎ 100 pN/nm 

𝐾𝑠𝑡𝑟𝑒𝑡𝑐ℎ
𝑏𝑟𝑎𝑛𝑐ℎ 100 pN/nm 

𝑑0 6 nm 

𝐾𝑎𝑛𝑔𝑢𝑙𝑎𝑟
𝑏𝑟𝑎𝑛𝑐ℎ  100 pN.nm 

𝜃0 ~70° (2, 9) 

𝐾𝑚𝑜𝑡𝑜𝑟 2.5 pN/nm 

𝐾𝑙𝑖𝑛𝑘𝑒𝑟 8.0 pN/nm 

𝐾𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 41 pN.nm (equivalent to 10 kbT) 

𝜆 2.7 nm 

𝑑𝑐𝑢𝑡𝑜𝑓𝑓 200 nm 

 

  

194



Table S3: Parameters of the mechanochemical models used for the MEDYAN simulations in this 

study. 

Description Constants 

NMIIA motor head stall force 15 pN 

NMIIA motor head unbinding force 12.62 pN 

α-actinin characteristic unbinding length 0.24 nm 

Actin polymerization characteristic length 2.7 nm 

Motor walking speed 0.2 steps/s 
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1 OpenAWSEM

In AWSEM coarse grained simulations, the amino acids are represented by six
particles, (CA, CB, O, C, N and H) except for Proline and Glycine both of which
are represented by five particles. For Proline, no hydrogen is connected to the
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nitrogen inside its amide group. Glycine has no CB. Among those 6 particles in
the standard representation, C, N and H are designated as ”virtual sites” which
means their coordinates are not dynamical variables but instead are computed
based on the positions of the other particles, which are dynamical variables.

The standard AWSEM potential is made up of several term:

VAWSEM = Vcon + Vchain + Vchi + Vrama + Vexcl + Vcontact + Vbeta + Vpap + Vfrag
(1)

1.1 Connectivity term

The connectivity term is designed to maintain the bonded distances between
Cαi and Oi, Cβi and Cαi+1. and between Oi to Cαi+1.

Vcon = kcon(

N∑
i

(rCαiOi − r0CαO)2 +
∑

resi!=GLY

(rCαiCβi − r
0
Cαβ)2 (2)

+

N−1∑
i

((rCαiCαi+1
− r0CαCαi+1

)2 + (rOiCαi+1
− r0OCαi+1

)2)) (3)

1.2 Chain term

The chain term models the positions of C’ and N atoms.

Vchain = λchain[

N∑
i=2

(rNiCβi − r0NiCβi
)2 +

N−1∑
i=1

(rC′iCβi − r0C′iCβi
)2 +

N−1∑
i=2

(rNiC′ − r0NC′)
2]

(4)

We implemented the connectivity term and the chain term using ”Harmon-
icBondForce”.

1.3 Chirality term

The chirality term is used to fix the direction of the Cβi relative to the plane
formed by C ′i, Cαi and Ni.

Vχ = λχ
∑

(χi − χ0)2 (5)

χi =
(rC′iCαi × rCαiNi )

|rC′iCαi × rCαiNi |
·
rCαiCβi
|rCαiCβi |

(6)

1.4 Rama term

The rama term is used to fix the φ, ψ angles within a reasonable range.

Vrama = −λrama
N−1∑
i=2

∑
j

Wje
−σj(ωφj (cos(φi−φ

0
j )−1)

2+ωψj (cos(ψi−ψ
0
j )−1)

2) (7)

The chirality term Vχ and Rama term was implemented using ”CustomCom-
poundBondForce”.
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Table 1: parameters

Parameter Value Units

λcon 120 kcal/Å2 mol

λchain 120 kcal/Å2 mol
λχ 60 kcal/ mol

λrama 2 kcal/ mol

λexcl 20 kcal/Å2 mol

r0CαiCαi+1
3.816 Å

r0CαiCOi 2.40 Å

r0COiCαi 2.76 Å

r0CαiCβi 1.53 Å

r0NiCβi 2.46 Å

r0C′iCβi
2.52 Å

r0NiC′i
2.46 Å

χ0 -0.71 Å3

General Case Alpha Helix Beta Sheet Proline

W 1.3149 1.32016 1.0264 2.0 2.0 2.17 2.15
σ 15.398 49.0521 49.0954 419.0 15.398 105.52 109.09
ωφ 0.15 0.25 0.65 1.0 1.0 1.0 1.0
φ0 -1.74 -1.265 1.041 -0.895 -2.25 -1.153 -0.95
ωψ 0.65 0.45 0.25 1.0 1.0 0.15 0.15
ψ0 2.138 -0.318 0.78 -0.82 2.16 2.4 -0.218

1.5 Excluded Volume term

The excluded volume term prevents the overlapping of backbone atoms.

Vexcl = λexcl
∑
ij

[H(rCiCj − rCex)(rCiCj − rCex)2 +H(rOiOj − rOex)(rOiOj − rOex)2]

(8)

H(r) = { 1 x ≥ 0
0 x ≤ 0

(9)

The excluded volume term used ”CustomNonbondedForce”. All the parameters
are the same as those defined in the original AWSEM paper. The parameters
are defined in Table 1
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1.6 Contact term

The transferable interactions have the form:

Vcontact = Vdirect + Vwater (10)

Vdirect =
∑
j−i>9

γij(ai, aj)Θ
I
i,j (11)

Vwater(i, j) =
∑
j−i>9

ΘII
i,j(σ

wat
ij γwatij (ai, aj) + σprotij γprotwatij (ai, aj)) (12)

Θµ
i,j =

1

4
(1 + tanh(η(rij − rµmin)))(1 + tanh(η(rµmax − rij))) (13)

σwaterij =
1

4
(1− tanh(ησ(ρi − ρ0)))(1− tanh(ησ(ρj − ρ0))) (14)

σprotij = 1− σwaterij (15)

1.7 β-hydrogen bonding and P-AP terms

We made some modification of these terms in order to make more efficient
implementation of the force fields.

θi,j = exp(− (rOiNj − rON )2

2σ2
ON

− (rOiHj − rOH)2

2σ2
OH

) (16)

θj,i = exp(− (rOjNi − rON )2

2σ2
ON

− (rOjHi − rOH)2

2σ2
OH

) (17)

θj,i+2 = exp(− (rOjNi+2
− rON )2

2σ2
ON

− (rOjHi+2
− rOH)2

2σ2
OH

) (18)

V 1ij = λ1(i, j)θi,j (19)

V 2ij = λ2(i, j)θi,jθj,i (20)

V 3ij = λ3(i, j)θi,jθj,i+2 (21)

Vij = V 1ij + V 2ij + V 3ij (22)

Vbeta = −kbeta
∑
ij

Vij (23)

In previous the LAMMPS implementation, Vbeta = −kbeta
∑
ij Vijvivj , the addi-

tional term vivj was used to ensure that the hydrogen bonds do not occur within
a span of 5 residues that is shorter than 12Å. Now this constraint is incorporated
onto the pap term. The Vbeta defined here can be fit into the ”CustomHbond-
Force” template. Since for V 2ij , we can define Oi, Ni, Hi, the oxygen, hydrogen
and nitrogen of residue i as the donor, and Nj , Hj , Oj as the acceptor. We could
have implemented the exact same version as the LAMMPS version using ”Cus-
tomCompoundBondForce”, but computing bonded forces is much slower than
computing non-bonded forces like ”CustomHbondForce”. When two residues
are far apart, computing their interaction is unnecessary.
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vi =
1

2
(1 + tanh(µ1 ∗ (rcaicai+4

− rcHB))) (24)

θ1i,j =
1

2
(1 + tanh(ηpap ∗ (r0 − rcainj ))) (25)

θ2i,j =
1

2
(1 + tanh(ηpap ∗ (r0 − rcai+4nj+4))) (26)

θ3i,j =
1

2
(1 + tanh(ηpap ∗ (r0 − rcai+4nj−4))) (27)

Vi,j = (γ1(i, j) + γ2(i, j)θ1i,jθ
2
i,j + γ3i, jθ

3
i,j)vi (28)

Vpap =
∑
i,j

kpapVi,j (29)

Figure 1: No significant different between structure prediction results using new
and old beta hydrogen bonding term and pap term implementation.

2 Open3SPN2

The open3SPN2 software framework implements the 3SPN.2 [1] forcefields for
A-DNA and B-DNA, and the 3SPN.2C [2] forcefield. The 3SPN.2 forcefield
has been previously parametrized taking into account the free energy of nucleic
acid hybridization, the intra strand base stacking energy, the DNA persistence
length and the width of minor and major groves [1]. The 3SPN.2C forcefield is an
extension of the 3SPN.2 forcefield that is able to reproduce sequence dependent
curvature in the DNA [2].

In 3SPN.2 and 3SPN.2C each residue is represented by a three sites: a phos-
phate site (P), a sugar site (S) and a nucleobase site (B), where the nucleobase
can be adenine (A), guanine (G), cytosine(C), or thymine (T). The 3SPN.2 po-
tentials are the sum of eight terms (see equation 30). Three of this terms are
bonded terms, which include a two-site bond term (VBond), a three-site angle
term (VAngle), and a four-site dihedral term (VDihedral). Another three terms
depend on the angles between nucleobases. Among them is a three-site stacking
term (VStacking) between consecutive nucleotides, a four-site basepairing term
(VBasePair) between complementary nucleobases, and a five-site cross-stacking
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term (VCrossStacking). The last two non-bonded terms depend only on the pair-
wise distances between sites and include an exclusion term (VExclusion) and an
electrostatics term (VElectrostatics).

V3SPN2 =VBond + VAngle + VDihedral + VStacking + VBasePair

+ VCrossStacking + VExclusion + VElectrostatics
(30)

For 3SPN.2C a reference atomistic structure needs to be created using the
3DNA software [3]. The reference structure is given by a set of base-step and
base-pair geometric parameters (Tables 2 and 3) suited for protein-DNA bind-
ing [2]. The base step-parameters depend on the type of the base (Bo) and the
type of the neighboring sequence-adjacent base (Bn). The base-pair parame-
ters depend only on the type of the base (Bo), since we expect a Watson-Crick
basepair (Bp) After the atomistic reference structure is created, the structure
is Coarse Grained and the distances, angles and dihedrals from the structure
will become the equilibrium distances, angles and dihedrals for the 3SPN.2C
forcefield.

Table 2: open3SPN2 base-step reference geometric parameters

Bo Bn twist (◦) roll (◦) tilt (◦) shift (Å) slide (Å) rise (Å)

A A 35.31 0.76 −1.84 −0.05 −0.21 3.27
A T 31.21 −1.39 0 0 −0.56 3.39
A C 31.52 0.91 −0.64 0.21 −0.54 3.39
A G 33.05 3.15 −1.48 0.12 −0.27 3.38
T A 36.2 5.25 0 0 0.03 3.34
T T 35.31 0.76 1.84 0.05 −0.21 3.27
T C 34.8 3.87 1.52 0.27 −0.03 3.35
T G 35.02 5.95 0.05 0.16 0.18 3.38
C A 35.02 5.95 −0.05 −0.16 0.18 3.38
C T 33.05 3.15 1.48 −0.12 −0.27 3.38
C C 33.17 3.86 0.4 0.02 −0.47 3.28
C G 35.30 4.29 0 0 0.57 3.49
G A 34.8 3.87 −1.52 −0.27 −0.03 3.35
G T 31.52 0.91 0.64 −0.21 −0.54 3.39
G C 34.38 0.67 0 0 −0.07 3.38
G G 33.17 3.86 −0.4 −0.02 −0.47 3.28

Table 3: open3SPN2 base-pair reference geometric parameters

Bo Bp buckle (◦) propeller (◦) opening (◦) shear (Å) stretch (Å) stagger (Å)

A T 1.8 −15 1.5 0.07 −0.19 0.07
T A −1.8 −15 1.5 −0.07 −0.19 0.07
C G −4.9 −8.7 −0.6 0.16 −0.17 0.15
G C 4.9 −8.7 −0.6 −0.16 −0.17 0.15
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2.1 Bonded terms

The bond term is a quartic function of the pairwise distance between two sites
that doesn’t include the cubic term. The coefficient for the quartic term is
100 times greater per Å2 than the coefficient for the harmonic term (Eq. 31).
The quartic function allows the bond to have a wider well than an harmonic
potential with a comparable coefficient (Figure 2).

VBond =

Bonds∑
i

kbi(rbi − rob i)2 + 100kbi(rbi − rob i)4 (31)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

r(Å)

0

50

100
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200

250

300

E
(k
J
/m
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)

E = 100kr2

E = kr2 + 100kr4

Figure 2: The harmonic potential function is shown in blue, compared with
the open3SPN2 quartic potential function with kb = 0.143403kcal/mol/Å. The
open3SPN2 bond potential function shows a wider well than a comparable har-
monic potential function.

There are 6 types of bonds defined for each forcefield: a bond from a phos-
phate (P ) to a sugar(S), a bond between a sugar (S) and the phosphate of the
next residue (P1), and four bonds from the sugar to the nucleobase that depend
on the nucleobase type (Figure 3).
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(2) 𝑆-𝑃

(1) 𝑃-𝑆

(3) 𝑆-𝐴

(5)𝑆-𝐺

(4) 𝑆-𝑇

(6)𝑆-𝐶

SE
N

SE
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N
T

ISE
N

SE

S

P

STA

P

SS CG

PP

PP

S S

Figure 3: List of bonds in the 3SPN.2 and 3SPN.2C forcefields. Each square
encloses a residue, which contains a phosphate site (P), a sugar site (S) and a
nucleobase site (A, C, T, or G). The 6 types or bonds are listed from 1 to 6.

The parameters of the bonds are listed on the table 4, where i is the first site
type, j is the second site type, rob is the equilibrium distance of the bond, and kb
is the coefficient for the harmonic term. In 3SPN.2C the equilibrium distances
(rob ) are computed from a reference structure generated using the equilibrium
base-pair and base-step parameters, so they are not shown in the table.
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Table 4: open3SPN2 bond parameters

Forcefield i j rob (Å) kb(kcal/mol/Å
2
)

3SPN.2 (A-DNA) P S 4.157 0.143 403
3SPN.2 (A-DNA) S P1 3.78 0.143 403
3SPN.2 (A-DNA) S A 4.697 0.143 403
3SPN.2 (A-DNA) S T 4.22 0.143 403
3SPN.2 (A-DNA) S G 4.852 0.143 403
3SPN.2 (A-DNA) S C 4.066 0.143 403
3SPN.2 (B-DNA) P S 3.899 0.143 403
3SPN.2 (B-DNA) S P1 3.559 0.143 403
3SPN.2 (B-DNA) S A 4.67 0.143 403
3SPN.2 (B-DNA) S T 4.189 0.143 403
3SPN.2 (B-DNA) S G 4.829 0.143 403
3SPN.2 (B-DNA) S C 4.112 0.143 403
3SPN.2C P S — 0.143 403
3SPN.2C S P1 — 0.143 403
3SPN.2C S A — 0.143 403
3SPN.2C S T — 0.143 403
3SPN.2C S G — 0.143 403
3SPN.2C S C — 0.143 403

1 The suffix 1 in the names of the sites indicates that the site is part
of the next residue.
— The equilibrium distances (rob ) for the 3SPN.2C forcefield is se-

quence dependent and computed from a template created based on the
geometric parameters.

The angle term is an harmonic function of the angle θa between 3 sites i, j
and k, where j is the center site. The term coefficient (ka) is 200 kJ/mol/rad2

in the 3SPN.2 forcefield. There are 10 possible angles: P-S-P, S-P-S, P-S-B
and B-P-S, where B can be any nucleobase (A,C,T,G) (Figure 4 and their
parameters are listed in the table 5.

VAngle =

Angles∑
i

kai(θai − θaoi )2 (32)
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(1) 𝑆-𝑃-𝑆

(2)𝑃-𝑆-𝑃

(3)𝐴-𝑆-𝑃

(4)𝑇-𝑆-𝑃

(5)𝐺-𝑆-𝑃

(6)𝐶-𝑆-𝑃

(7)𝑃-𝑆-𝐴

(9)𝑃-𝑆-𝐺

(8)𝑃-𝑆-𝑇

(10)𝑃-𝑆-𝐶

Figure 4: List of angles in the 3SPN.2 and 3SPN.2C forcefields. Each square
encloses a residue, which contains a phosphate site (P), a sugar site (S) and a
nucleobase site (A, C, T, or G). The 10 types of angles are listed from 1 to 10.

Table 5: Open3SPN.2 angle parameters

Forcefield i j k θoa (◦)

3SPN.2 (A-DNA) S P1 S1 92.77
3SPN.2 (A-DNA) P S P1 91.24
3SPN.2 (A-DNA) A S P1 104.86
3SPN.2 (A-DNA) T S P1 110.58
3SPN.2 (A-DNA) G S P1 103.86
3SPN.2 (A-DNA) C S P1 106.94
3SPN.2 (A-DNA) P S A 103.71
3SPN.2 (A-DNA) P S T 93.27
3SPN.2 (A-DNA) P S G 107.49
3SPN.2 (A-DNA) P S C 97.58
3SPN.2 (B-DNA) S P1 S1 94.49
3SPN.2 (B-DNA) P S P1 120.15
3SPN.2 (B-DNA) A S P1 112.07
3SPN.2 (B-DNA) T S P1 116.68
3SPN.2 (B-DNA) G S P1 110.12
3SPN.2 (B-DNA) C S P1 114.34
3SPN.2 (B-DNA) P S A 103.53
3SPN.2 (B-DNA) P S T 92.06
3SPN.2 (B-DNA) P S G 107.4
3SPN.2 (B-DNA) P S C 96.96

In 3SPN.2C the equilibrium angles (θoa) are computed from a reference struc-
ture generated using the equilibrium base-pair and base-step parameters. The
equilibrium constant also depends on the nucleobase type (Bo) and the neigh-
boring bases (Bn) as shown in the table 7.
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Table 7: Open3SPN.2C angle parameters

Forcefield i j k kakcal/mol/rad
2 θoa (◦) Bo Bn

3SPN.2C S P1 S1 355 — A A
3SPN.2C S P1 S1 464 — A C
3SPN.2C S P1 S1 368 — A G
3SPN.2C S P1 S1 147 — A T
3SPN.2C S P1 S1 273 — C A
3SPN.2C S P1 S1 165 — C C
3SPN.2C S P1 S1 478 — C G
3SPN.2C S P1 S1 368 — C T
3SPN.2C S P1 S1 442 — G A
3SPN.2C S P1 S1 228 — G C
3SPN.2C S P1 S1 165 — G G
3SPN.2C S P1 S1 464 — G T
3SPN.2C S P1 S1 230 — T A
3SPN.2C S P1 S1 442 — T C
3SPN.2C S P1 S1 273 — T G
3SPN.2C S P1 S1 355 — T T
3SPN.2C P S P1 300 — any any
3SPN.2C A S P1 460 — A A
3SPN.2C A S P1 442 — A C
3SPN.2C A S P1 358 — A G
3SPN.2C A S P1 370 — A T
3SPN.2C T S P1 120 — T A
3SPN.2C T S P1 383 — T C
3SPN.2C T S P1 206 — T G
3SPN.2C T S P1 460 — T T
3SPN.2C G S P1 383 — G A
3SPN.2C G S P1 336 — G C
3SPN.2C G S P1 278 — G G
3SPN.2C G S P1 442 — G T
3SPN.2C C S P1 206 — C A
3SPN.2C C S P1 278 — C C
3SPN.2C C S P1 278 — C G
3SPN.2C C S P1 358 — C T
3SPN.2C P S A 460 — A A−1
3SPN.2C P S A 206 — A C−1
3SPN.2C P S A 383 — A G−1
3SPN.2C P S A 120 — A T−1
3SPN.2C P S T 370 — T A−1
3SPN.2C P S T 358 — T C−1
3SPN.2C P S T 442 — T G−1
3SPN.2C P S T 460 — T T−1
3SPN.2C P S G 358 — G A−1
3SPN.2C P S G 278 — G C−1
3SPN.2C P S G 278 — G G−1
3SPN.2C P S G 206 — G T−1
3SPN.2C P S C 442 — C A−1
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Table 7: Open3SPN.2C angle parameters (continued)

Forcefield i j k ka(kJ/mol) θoa (◦) Bo Bn

3SPN.2C P S C 278 — C C−1
3SPN.2C P S C 336 — C G−1
3SPN.2C P S C 383 — C T−1

1 The suffix 1 in the names of the sites indicates that the site is part of the next
residue.
−1 The neighboring base on the 5’ direction or behind in the sequence.
— The equilibrium angles (θoa) for the 3SPN.2C forcefield is sequence dependent
and computed from a template based on the geometric parameters.

The open3SPN2 forcefield includes two dihedral potentials, a gaussian po-
tential and a cosine potential (Eq. 33).

VDihedral =

Dihedrals∑
i

−kGie
−(φi−φ

o
i )

2

2σ2
i + kCi(1− cos(φi − φoi )) (33)

Where kG is the coefficient for the gaussian potential, kC is the coefficient
for the cosine potential, φ is the dihedral angle between the sites i, j, k, and l.
The parameters are listed in the table 8.

In 3SPN.2 only the gaussian potential is used, while in 3SPN.2C a mixture
of the gaussian potential and the cosine potential is used for the dihedrals S-
P-S-P and P-S-P-S. 3SPN.2C also adds a dihedral potential for the dihedrals
B-S-P-S and S-P-S-B, where B can be any nucleobase (Figure 5). In 3SPN.2C
the equilibrium angles (φoD) are computed from a template structure generated
using the equilibrium basepair and base stacking parameters.
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A

N
T
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N

SE

S

P
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P

SS CG

PP

PP

S S

(7) S-P-S-A (4) T-S-P-S

(5) G-S-P-S

(6) C-S-P-S

(8) S-P-S-T

(1) S-P-S-P, (9) S-P-S-G

(10) S-P-S-C

(2) P-S-P-S, (3) A-S-P-S

Figure 5: List of dihedrals in the 3SPN.2 and 3SPN.2C forcefields. Each square
encloses a residue, which contains a phosphate site (P), a sugar site (S) and a
nucleobase site (A, C, T, or G). The 10 types or dihedrals are listed from 1 to
10. 3SPN.2 only includes the dihedrals (1) and (2).
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Table 8: Open3SPN.2C dihedral parameters

Forcefield i j k l KC(kcal/mol) KG(kcal/mol) σ(rad) φo (◦)

3SPN.2 (A-DNA) S P1 S1 P2 0 1.434034 0.3 -9.58
3SPN.2 (A-DNA) P S P1 S1 0 1.434034 0.3 -328.4
3SPN.2 (B-DNA) S P1 S1 P2 0 1.434034 0.3 -359.17
3SPN.2 (B-DNA) P S P1 S1 0 1.434034 0.3 -334.79
3SPN.2C S P1 S1 P2 0.478011 1.67304 0.3 —
3SPN.2C P S P1 S1 0.478011 1.67304 0.3 —
3SPN.2C A S P1 S1 0.478011 0 0.3 —
3SPN.2C T S P1 S1 0.478011 0 0.3 —
3SPN.2C G S P1 S1 0.478011 0 0.3 —
3SPN.2C C S P1 S1 0.478011 0 0.3 —
3SPN.2C S P1 S1 A1 0.478011 0 0.3 —
3SPN.2C S P1 S1 T1 0.478011 0 0.3 —
3SPN.2C S P1 S1 G1 0.478011 0 0.3 —
3SPN.2C S P1 S1 C1 0.478011 0 0.3 —

1 The suffix 1 in the names of the sites indicates that the site is part
of the next residue.
— The equilibrium dihedral angles (φo) for the 3SPN.2C forcefield
is sequence dependent and computed from a template based on the
geometric parameters.

2.2 Stacking, BasePairing and CrossStacking terms

The Stacking, BasePairing and CrossStacking terms are non-bonded tems that
depend on the distance between the nucleobases (rBS , rBP , and rCS respec-
tively), as well as angles defined between the residues. All the terms include
a modulating function (f) of an angle (θ). The modulating function can be
understood as depending in the position of the second nucleobase relative to
two cones in 3D space. If the second nucleobase is inside the interior cone, the
modulating function is equal to 1, and if it is outside the cone, the modulating
function is equal to 0. Between this two cones the modulating function has a
value between 1 and 0 that depends on the angle (Eq 34). The coefficient K
defines the width of the conical section.

f(θ|K, θo) =


1 π

2 > |K(θ − θo)|
1− cos2(K(θ − θo)) π

2 < |K(θ − θo)| 6 π

0 π < |K(θ − θo)|
(34)

For the stacking term KBS = 6, which defines a inner cone of 30 degrees and
an outer cone of 60 degrees. The stacking potential is a mixture of a repulsive
potential and an attractive potential. The depth of the attractive well is ε
and fluctuates with the modulating function. The steepness of the repulsive
potential is αBS = 3Å−2. The parameters are listed in the table 9.

FBS(θBS) = f(θBS |KBS , θ
o
BS) (35)
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VBS =
∑
i

{
εi(1− e−αBS(rBSi−rBS

o
i )

2

)− εiFBS(θBSi) , rBSi < rBS
o
i

εi(1− e−αBS(rBSi−rBS
o
i )

2

)FBS(θBSi)− εiFBS(θBSi) , rBSi > rBS
o
i

(36)
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Figure 6: Important variables used for the stacking term. Each square encloses
a residue, which contains a phosphate site (P), a sugar site (S) and a nucleobase
site. The nucleobases shown are the reference nucleobase (Bo), the neighboring
nucleobase (Bn), the base-pairing nucleobase (Bp) and the cross-stacking nucle-
obase (Bc). The variables shown are the distance between Bo and Bn (rBS),
and the angle between S, Bo, and Bn (θBS).

Table 9: open3SPN2 base stacking parameters

DNA Bo Bn ε(kcal/mol) rBS
o(Å) θoBS(◦)

3SPN.2 (A-DNA) A A 3.439293 4.022 108.32
3SPN.2 (A-DNA) A T 3.427342 3.344 96.74
3SPN.2 (A-DNA) A G 3.166826 4.261 111.32
3SPN.2 (A-DNA) A C 3.467973 3.737 97.36
3SPN.2 (A-DNA) T A 2.478489 4.794 103.33
3SPN.2 (A-DNA) T T 3.193117 4.031 94.85
3SPN.2 (A-DNA) T G 2.471319 5.064 105.36
3SPN.2 (A-DNA) T C 3.080784 4.445 94.51
3SPN.2 (A-DNA) G A 3.539675 3.855 108.25
3SPN.2 (A-DNA) G T 3.721319 3.217 95.59
3SPN.2 (A-DNA) G G 3.568356 4.077 111.66
3SPN.2 (A-DNA) G C 3.678298 3.592 96.71
3SPN.2 (A-DNA) C A 2.729446 4.499 111.39
3SPN.2 (A-DNA) C T 3.056883 3.708 102.73
3SPN.2 (A-DNA) C G 2.51434 4.772 113.47
3SPN.2 (A-DNA) C C 3.164436 4.116 102.14
3SPN.2 (B-DNA) A A 3.439293 3.716 101.15
3SPN.2 (B-DNA) A T 3.427342 3.675 85.94
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3SPN.2 (B-DNA) A G 3.166826 3.827 105.26
3SPN.2 (B-DNA) A C 3.467973 3.744 89
3SPN.2 (B-DNA) T A 2.478489 4.238 101.59
3SPN.2 (B-DNA) T T 3.193117 3.984 89.5
3SPN.2 (B-DNA) T G 2.471319 4.416 104.31
3SPN.2 (B-DNA) T C 3.080784 4.141 91.28
3SPN.2 (B-DNA) G A 3.539675 3.576 100.89
3SPN.2 (B-DNA) G T 3.721319 3.598 84.83
3SPN.2 (B-DNA) G G 3.568356 3.664 105.48
3SPN.2 (B-DNA) G C 3.678298 3.635 88.28
3SPN.2 (B-DNA) C A 2.729446 4.038 106.49
3SPN.2 (B-DNA) C T 3.056883 3.798 93.31
3SPN.2 (B-DNA) C G 2.51434 4.208 109.54
3SPN.2 (B-DNA) C C 3.164436 3.935 95.46
3SPN.2C A A 3.303059 3.58 100.13
3SPN.2C A T 3.597036 3.56 90.48
3SPN.2C A G 3.183556 3.85 104.39
3SPN.2C A C 3.781071 3.45 93.23
3SPN.2C T A 2.186902 4.15 102.59
3SPN.2C T T 2.973231 3.93 93.32
3SPN.2C T G 2.289675 4.32 103.7
3SPN.2C T C 3.133365 3.87 94.55
3SPN.2C G A 3.288719 3.51 95.45
3SPN.2C G T 3.487094 3.47 87.63
3SPN.2C G G 3.530115 3.67 106.36
3SPN.2C G C 3.625717 3.42 83.12
3SPN.2C C A 2.210803 4.15 102.69
3SPN.2C C T 2.968451 3.99 96.05
3SPN.2C C G 2.110421 4.34 100.46
3SPN.2C C C 3.34847 3.84 100.68

The modulating function for the base pair term depends on the angles be-
tween the sugar (S), the base(Bo) and the complementary base(Bn). There are
two angles that can be defined on this way(θBP1,θBP2). It also depends on the
cosine of the dihedral between both sugars and bases (S-B-B-S) (φBP ). The
cone for basepairing is much narrower (KBP = 12) where the inner cone is 15
degrees and the outer cone is 30 degrees.

FBP =
1 + cos(φBP )

2
f(θBP1|KBP , θBP1

o
1)f(θBP1|KBP , θBP1

o
2) (37)

The steepness parameter, αBP , is 2nm−2. The parameters are listed on the
table 10.

VBP =
∑
i

{
εi(1− e−αBP (rBP i−rBP oi )

2

)− εiFBP , rBP i < rBP
o
i

εi(1− e−αBP (rBP i−rBP oi )
2

)FBP − εiFBP , rBP i > rBP
o
i

(38)
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Table 10: open3SPN2 basepairing parameters

Forcefield Bo Bp roBP (Å) εBP (kcal/mol) φBP (◦) θBP1 (◦) θBP2 (◦)

3SPN.2 (A-DNA) A T 5.861 3.99874 50.17 160.91 140.49
3SPN.2 (A-DNA) G C 5.528 5.06241 38.33 165.25 147.11
3SPN.2 (B-DNA) A T 5.941 3.99874 -38.35 156.54 135.78
3SPN.2 (B-DNA) G C 5.530 5.06241 -42.98 159.81 141.16
3SPN.2C A T 5.82 3.44292 -38.18 153.17 133.51
3SPN.2C G C 5.52 4.35873 -35.75 159.5 138.08
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Figure 7: Important variables used for the base-pairing term. Each square
encloses a residue, which contains a phosphate site (P), a sugar site (S) and a
nucleobase site. The nucleobases shown are the reference nucleobase (Bo), the
neighboring nucleobase (Bn), the base-pairing nucleobase (Bp) and the cross-
stacking nucleobase (Bc). The variables shown are the distance between Bo
and Bp (rBP ), the angle between the sugar from the the reference nucleotide,
Bo, and Bp (θBP1), the angle between the sugar from the the base-pairing
nucleotide, Bp, and Bo (θBP2), and the dihedral between the sugar from the
the reference nucleotide, Bo, and Bp and the sugar from the the base-pairing
nucleotide (φBP ).

The CrossStacking potential has only an attractive potential. the modulat-
ing function depends on the angle between the sugar, the base, and the cross-
stacking base. It also depends on the vector angle between defined between the
sugar-base vectors. K for the first angle is 8, while for the second angle is 12.
α is 2nm−2.

VCS =
∑
i

{
−εiFCS , rCSi < rCS

o
i

εi(1− e−αi(rCSi−rCS
o
i )

2

)FCS − εiFCS , rCSi > rCS
o
i

(39)

FCS = f(φCS |KBP , φCS
o)f(θCS |KCS , θ

o
CS) (40)
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Figure 8: Important variables used for the cross-stacking term. Each square
encloses a residue, which contains a phosphate site (P), a sugar site (S) and a
nucleobase site. The nucleobases shown are the reference nucleobase (Bo), the
neighboring nucleobase (Bn), the base-pairing nucleobase (Bp) and the cross-
stacking nucleobase (Bc). Some variables shown are the distance between Bo
and Bc (rCS1), the angle between S, Bo, and Bc (θCS1). This variables are also
mirrored for the base-pairing nucleotide. Also shown are the vectors Bi and Bj ,
which are defined as the vectors originating from the sugar to the nucleobase
of the reference nucleotide and the base-pairing nucleotide respectively. φCS is
the vector angle between Bi and Bj .
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Table 11: open3SPN2 CrossStacking parameters

Forcefield Bo Bp Bc φoCS (◦) θCS1 (◦) θCS2 (◦) rCS1 (Å) rCS2 (Å) εCS1 (kcal/mol) εCS2 (kcal/mol)

3SPN.2 (A-DNA) A T A 126.57 147.44 130.5 7.344 4.624 0.522452 0.522452
3SPN.2 (A-DNA) A T T 126.57 148.97 138.73 8.081 5.095 0.662942 0.662942
3SPN.2 (A-DNA) A T G 126.57 146.21 126.68 7.187 4.464 0.677075 0.712197
3SPN.2 (A-DNA) A T C 126.57 150.17 134.18 7.99 5.162 0.46634 0.60683
3SPN.2 (A-DNA) T A A 126.57 138.42 130.41 8.081 5.095 0.662942 0.662942
3SPN.2 (A-DNA) T A T 126.57 141.67 134.68 8.755 5.693 0.522452 0.522452
3SPN.2 (A-DNA) T A G 126.57 136.64 127.69 7.952 4.896 0.60683 0.46634
3SPN.2 (A-DNA) T A C 126.57 141.64 131.38 8.697 5.724 0.712197 0.677075
3SPN.2 (A-DNA) G C A 134.71 147.67 130.57 7.187 4.464 0.677075 0.712197
3SPN.2 (A-DNA) G C T 134.71 148.28 140.17 7.952 4.896 0.60683 0.46634
3SPN.2 (A-DNA) G C G 134.71 146.84 126.44 7.019 4.315 0.901943 1.1478
3SPN.2 (A-DNA) G C C 134.71 150.02 135.31 7.844 4.968 0.269738 0.269738
3SPN.2 (A-DNA) C G A 134.71 145.83 132.69 7.99 5.162 0.46634 0.60683
3SPN.2 (A-DNA) C G T 134.71 148.39 138.21 8.697 5.724 0.712197 0.677075
3SPN.2 (A-DNA) C G G 134.71 144.24 129.73 7.844 4.968 0.269738 0.269738
3SPN.2 (A-DNA) C G C 134.71 148.74 134.45 8.63 5.759 1.1478 0.901943
3SPN.2 (B-DNA) A T A 116.09 154.38 116.88 6.208 5.435 0.522452 0.522452
3SPN.2 (B-DNA) A T T 116.09 159.1 121.74 6.876 6.295 0.662942 0.662942
3SPN.2 (B-DNA) A T G 116.09 152.46 114.23 6.072 5.183 0.677075 0.712197
3SPN.2 (B-DNA) A T C 116.09 158.38 119.06 6.811 6.082 0.46634 0.60683
3SPN.2 (B-DNA) T A A 116.09 147.1 109.42 6.876 6.295 0.662942 0.662942
3SPN.2 (B-DNA) T A T 116.09 153.79 112.95 7.48 7.195 0.522452 0.522452
3SPN.2 (B-DNA) T A G 116.09 144.44 107.32 6.771 6.028 0.60683 0.46634
3SPN.2 (B-DNA) T A C 116.09 151.48 110.56 7.453 6.981 0.712197 0.677075
3SPN.2 (B-DNA) G C A 124.93 154.69 119.34 6.072 5.183 0.677075 0.712197
3SPN.2 (B-DNA) G C T 124.93 157.83 124.72 6.771 6.028 0.60683 0.46634
3SPN.2 (B-DNA) G C G 124.93 153.43 116.51 5.921 4.934 0.901943 1.1478
3SPN.2 (B-DNA) G C C 124.93 158.04 121.98 6.688 5.811 0.269738 0.269738
3SPN.2 (B-DNA) C G A 124.93 152.99 114.6 6.811 6.082 0.46634 0.60683
3SPN.2 (B-DNA) C G T 124.93 159.08 118.26 7.453 6.981 0.712197 0.677075
3SPN.2 (B-DNA) C G G 124.93 150.53 112.45 6.688 5.811 0.269738 0.269738
3SPN.2 (B-DNA) C G C 124.93 157.17 115.88 7.409 6.757 1.1478 0.901943
3SPN.2C A T A 110.92 154.04 116.34 6.42 5.58 0.449831 0.449831
3SPN.2C A T T 110.92 158.77 119.61 6.77 6.14 0.570793 0.570793
3SPN.2C A T G 110.92 153.88 115.19 6.27 5.63 0.582961 0.613202
3SPN.2C A T C 110.92 157.69 120.92 6.84 6.18 0.401518 0.52248
3SPN.2C T A A 110.92 148.62 107.4 6.77 6.14 0.570793 0.570793
3SPN.2C T A T 110.92 155.05 110.76 7.21 6.8 0.449831 0.449831
3SPN.2C T A G 110.92 147.54 106.33 6.53 6.07 0.52248 0.401518
3SPN.2C T A C 110.92 153.61 111.57 7.08 6.64 0.613202 0.582961
3SPN.2C G C A 120.45 153.91 121.61 6.27 5.63 0.582961 0.613202
3SPN.2C G C T 120.45 155.72 124.92 6.53 6.07 0.52248 0.401518
3SPN.2C G C G 120.45 151.84 120.52 5.74 5.87 0.776573 0.988256
3SPN.2C G C C 120.45 157.8 124.88 6.86 5.66 0.232244 0.232244
3SPN.2C C G A 120.45 152.04 112.45 6.84 6.18 0.401518 0.52248
3SPN.2C C G T 120.45 157.72 115.43 7.08 6.64 0.613202 0.582961
3SPN.2C C G G 120.45 151.65 110.51 6.86 5.66 0.232244 0.232244
3SPN.2C C G C 120.45 154.49 115.8 6.79 6.8 0.988256 0.776573

2.3 Non-bonded terms

The exclussion potential contains the repulsive section of a lennard jones po-
tential.

VExclusion =
∑
ij

εr
[(

σij
rij

)12
− 2

(
σij
rij

)6]
+ εr , r < σij

0 , r > σij

(41)

The electrostatics potential is based on the Debye-Huckel potential.

VElectrostatics =
∑
ij

qiqje
−
rij
λD

4πε0ε (T,C) rij
(42)

The dielectric coefficient depends on the temperature and the concentration
of ions.

λD =

√
ε0ε (T,C) ri,j
2βNAe2cI

(43)
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Table 12: open3SPN2 Exclussion and electrostatics parameters

Forcefield Particle ε (kcal/mol) r (Å) mass (Da) charge (e)

3SPN.2 (A-DNA) P 0.239006 4.5 94.9696 -0.6
3SPN.2 (A-DNA) S 0.239006 6.2 83.1104 0
3SPN.2 (A-DNA) A 0.239006 4.46 134.122 0
3SPN.2 (A-DNA) T 0.239006 5.5 125.1078 0
3SPN.2 (A-DNA) G 0.239006 4.2 150.1214 0
3SPN.2 (A-DNA) C 0.239006 5.7 110.0964 0
3SPN.2 (B-DNA) P 0.239006 4.5 94.9696 -0.6
3SPN.2 (B-DNA) S 0.239006 6.2 83.1104 0
3SPN.2 (B-DNA) A 0.239006 5.4 134.122 0
3SPN.2 (B-DNA) T 0.239006 7.1 125.1078 0
3SPN.2 (B-DNA) G 0.239006 4.9 150.1214 0
3SPN.2 (B-DNA) C 0.239006 6.4 110.0964 0
3SPN.2C P 0.239006 4.5 94.9696 -0.6
3SPN.2C S 0.239006 6.2 83.1104 0
3SPN.2C A 0.239006 5.4 134.122 0
3SPN.2C T 0.239006 7.1 125.1078 0
3SPN.2C G 0.239006 4.9 150.1214 0
3SPN.2C C 0.239006 6.4 110.0964 0

2.4 Protein-DNA Excluded Volume term

To prevent protein and DNA overlap each other, we added a Lennard-Jones
interaction between protein atoms and protein atoms.

VLJ(r) =

{
4ε[(σr )12 − (σr )6]− Ecut r < rc

0 r ≥ rc
(44)

with ε = 0.03 kcal/mol, σ = 5.7Å, rc = 2.5σ and Ecut = 4ε[(σ/rc)
12 − (σ/rc)

6]
The detail of calibration of parameters for this term and the next term can be
found in the SI of ref [4].

2.5 Protein-DNA Electrostatics term

The protein and DNA electrostatic interaction is modeled as a Debye-Huckel
term.

VDH = kelec
∑
i<j

qiqj
εrrij

e−rij/lD (45)

where kelec = (4πε0)−1 = 332.24kcal Å/mol, εr = 78, lD = 9.6Å, qi and qj
are charges of residue i and j. The distance rij is the distance between the P
atom of DNA residue i and the CB atom of protein residue j. Among protein
residues, q = 1 for arginine and lysine and q = −1 for aspartate and glutamate.
the charge of protein residue is assigned to CB atom. The charge of q = −0.6
is assigned to the P atom of DNA.
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3 Energy validation of the OpenMM implemen-
tation of AWSEM, 3SPN.2, and 3SPN.2C

3.1 Energy evaluation comparison with LAMMPS AWSEM

We ran a short simulation of protein phage 434 repressor (PDBID: 1r69) using
LAMMPS AWSEM. The structures are saved every 4000 steps. The energies
of each energy terms for the first 6 frames evaluated using both OpenMM and
LAMMPS implementation are shown here.

Scheme Frame Chain Chi Con Excluded Rama Burial Water Frag Mem

0 OpenAWSEM 0 11.22 24.90 18.88 59.50 -236.05 -53.08 -21.00 -331.41
0 LAMMPS 0 11.13 24.99 224.57 59.53 -232.28 -53.08 -21.00 -331.41
1 OpenAWSEM 1 33.69 9.11 63.93 3.52 -281.10 -54.55 -36.98 -323.85
1 LAMMPS 1 33.56 9.14 77.72 3.52 -277.75 -54.55 -36.98 -323.85
2 OpenAWSEM 2 31.17 6.26 46.97 6.91 -288.55 -55.54 -36.49 -327.89
2 LAMMPS 2 31.10 6.28 48.74 6.89 -284.84 -55.54 -36.49 -327.89
3 OpenAWSEM 3 22.94 7.50 46.28 7.82 -293.50 -57.06 -32.85 -327.66
3 LAMMPS 3 22.87 7.53 46.99 7.83 -290.39 -57.06 -32.85 -327.66
4 OpenAWSEM 4 24.39 6.77 51.75 6.68 -284.85 -56.07 -38.37 -324.24
4 LAMMPS 4 24.29 6.79 54.58 6.68 -282.27 -56.07 -38.38 -324.25
5 OpenAWSEM 5 27.66 8.29 47.92 4.34 -286.99 -57.27 -30.29 -325.43
5 LAMMPS 5 27.56 8.29 48.75 4.34 -283.10 -57.27 -30.30 -325.43
6 OpenAWSEM 6 5.41 1.77 0.90 0.85 -300.72 -57.81 -37.07 -331.64
6 LAMMPS 6 5.35 1.78 0.90 0.85 -297.06 -57.81 -37.07 -331.64

Note, the small difference (less than 1 percent) between these two imple-
mentations in the multiple terms like the chain term are due the coordination
conversion from LAMMPS output format ”lammpstrj” to OpenAWSEM format
”pdb”. In ”lammpstrj” format, the positions of atoms are save as the relative
position to the simulation box. The difference in the Con term is due a small
design change: OpenAWSEM doesn’t have the bond between CB and CA for
Glycine, but LAMMPS include this bond by using virtual HB as CB.

3.2 Energy evaluation comparison with LAMMPS 3SPN.2
and 3SPN.2C

We ran three short simulations in lammps using the USER-3SPN2 package of
a double stranded DNA with sequence ATACAAAGGTGCGAGGTTTCTAT-
GCTCCCACG. The simulations were run for 50000 steps with a timestep of 0.02
ps using the forcefields 3SPN.2 for A-form DNA, B-form DNA and 3SPN.2C
respectively. The simulations were ran at a temperature of 300K and a salt
concentration of 100mM. A snapshot was taken every 2000 steps.

To make a fair comparison of the implementations in openMM and LAMMPS
we recomputed the energies of the resulting 25 frames. We also implemented
this comparisons as unit tests in the open3SPN2 software package. The results
for the last 6 frames are shown in the tables below.
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Forcefield Frame Scheme Angle Basepair Bond CrossStacking Dihedral Electrostatics Exclusion Stacking Etotal (kcal/mol)

ADNA 20 LAMMPS 59.32 -120.75 32.94 -23.62 -157.27 14.14 0.60 -170.80 -365.44
ADNA 20 OpenMM 59.32 -120.75 32.94 -23.62 -157.27 14.14 0.60 -170.80 -365.44
ADNA 21 LAMMPS 55.73 -123.53 28.93 -25.83 -162.05 15.32 0.31 -177.98 -389.10
ADNA 21 OpenMM 55.73 -123.54 28.93 -25.83 -162.05 15.32 0.31 -177.98 -389.10
ADNA 22 LAMMPS 62.99 -125.08 25.42 -23.48 -155.80 14.37 0.93 -170.82 -371.46
ADNA 22 OpenMM 62.99 -125.08 25.42 -23.48 -155.80 14.37 0.93 -170.82 -371.47
ADNA 23 LAMMPS 53.84 -119.08 25.86 -22.89 -158.21 14.69 0.12 -178.91 -384.58
ADNA 23 OpenMM 53.84 -119.08 25.86 -22.89 -158.21 14.69 0.12 -178.91 -384.58
ADNA 24 LAMMPS 52.63 -128.30 21.00 -25.61 -159.19 13.59 0.20 -177.21 -402.90
ADNA 24 OpenMM 52.63 -128.29 21.00 -25.61 -159.19 13.59 0.20 -177.21 -402.90
ADNA 25 LAMMPS 64.75 -123.48 28.13 -26.96 -160.75 14.24 0.18 -169.62 -373.51
ADNA 25 OpenMM 64.75 -123.48 28.13 -26.96 -160.75 14.24 0.18 -169.62 -373.51
BDNA 20 LAMMPS 65.46 -127.77 27.30 -30.59 -155.67 11.75 0.29 -173.75 -382.97
BDNA 20 OpenMM 65.46 -127.77 27.30 -30.59 -155.67 11.75 0.29 -173.75 -382.97
BDNA 21 LAMMPS 49.08 -125.87 26.10 -30.35 -157.98 11.39 0.55 -178.76 -405.84
BDNA 21 OpenMM 49.08 -125.87 26.10 -30.35 -157.98 11.39 0.55 -178.76 -405.85
BDNA 22 LAMMPS 57.63 -131.75 27.05 -29.72 -159.12 11.16 0.05 -176.13 -400.83
BDNA 22 OpenMM 57.63 -131.75 27.05 -29.72 -159.12 11.16 0.05 -176.13 -400.83
BDNA 23 LAMMPS 48.37 -132.69 24.26 -31.00 -156.43 11.40 0.24 -177.33 -413.19
BDNA 23 OpenMM 48.37 -132.69 24.26 -31.00 -156.43 11.40 0.24 -177.33 -413.19
BDNA 24 LAMMPS 54.43 -135.04 25.73 -28.52 -155.46 11.01 0.62 -169.71 -396.96
BDNA 24 OpenMM 54.43 -135.04 25.73 -28.52 -155.46 11.01 0.62 -169.71 -396.96
BDNA 25 LAMMPS 65.59 -128.54 23.00 -29.56 -155.69 11.37 0.73 -167.10 -380.20
BDNA 25 OpenMM 65.59 -128.54 23.00 -29.56 -155.69 11.37 0.73 -167.10 -380.20
B curved 20 LAMMPS 50.13 -104.57 19.94 -23.45 -181.98 10.24 0.21 -172.50 -401.98
B curved 20 OpenMM 50.13 -104.57 19.94 -23.45 -181.98 10.24 0.21 -172.50 -401.98
B curved 21 LAMMPS 64.00 -92.13 27.78 -22.03 -179.08 10.52 0.32 -173.11 -363.73
B curved 21 OpenMM 64.00 -92.13 27.78 -22.03 -179.08 10.52 0.32 -173.11 -363.73
B curved 22 LAMMPS 62.70 -108.68 20.72 -25.38 -184.63 10.37 0.27 -171.34 -395.96
B curved 22 OpenMM 62.70 -108.68 20.72 -25.38 -184.63 10.37 0.27 -171.34 -395.96
B curved 23 LAMMPS 52.67 -112.61 17.80 -25.01 -188.50 10.12 0.24 -167.98 -413.28
B curved 23 OpenMM 52.67 -112.61 17.80 -25.01 -188.50 10.12 0.24 -167.98 -413.28
B curved 24 LAMMPS 60.59 -102.59 20.37 -19.99 -182.96 10.09 1.00 -159.94 -373.44
B curved 24 OpenMM 60.59 -102.59 20.37 -19.99 -182.96 10.09 1.00 -159.94 -373.44
B curved 25 LAMMPS 58.18 -99.51 33.32 -19.96 -181.88 10.06 0.25 -163.45 -362.98
B curved 25 OpenMM 58.18 -99.51 33.33 -19.96 -181.88 10.06 0.25 -163.45 -362.98

4 Tutorial

4.1 open3SPN2

4.1.1 Example DNA system

The following code is also available at https://github.com/cabb99/open3spn2/
tree/master/examples/from_sequence

1 # Initialize the DNA from a sequence.

2 # DNA type can be changed to ’A’ or ’B’

3

4 seq=’ATACAAAGGTGCGAGGTTTCTATGCTCCCACG ’

5 dna=open3SPN2.DNA.fromSequence(seq ,dna_type=’B_curved ’)

6

7 # Compute the topology for the DNA structure.

8 # Since the dna was generated from the sequence using X3DNA ,

9 # it is not necesary to recompute the geometry.

10

11 dna.computeTopology(template_from_X3DNA=False)

12

13 # Create the system.

14 # To set periodic boundary conditions (periodicBox =[50 ,50 ,50]).

15 # The periodic box size is in nanometers.

16 dna.periodic=False

17 s=open3SPN2.System(dna , periodicBox=None)

18

19 #Add 3SPN2 forces

20 s.add3SPN2forces(verbose=True)

21

22 import simtk.openmm

23 import simtk.openmm.app

24 import simtk.unit

25 import sys

26 import numpy as np

27

21

218

https://github.com/cabb99/open3spn2/tree/master/examples/from_sequence
https://github.com/cabb99/open3spn2/tree/master/examples/from_sequence


28 #Initialize Molecular Dynamics simulations

29 s.initializeMD(temperature =300 * simtk.unit.kelvin ,platform_name=’

OpenCL ’)

30 simulation=s.simulation

31

32 #Set initial positions

33 simulation.context.setPositions(s.coord.getPositions ())

34

35 energy_unit=simtk.openmm.unit.kilojoule_per_mole

36 #Total energy

37 state = simulation.context.getState(getEnergy=True)

38 energy = state.getPotentialEnergy ().value_in_unit(energy_unit)

39 print(’TotalEnergy ’,round(energy ,6),energy_unit.get_symbol ())

40

41 #Detailed energy

42 energies = {}

43 for force_name , force in s.forces.items ():

44 group=force.getForceGroup ()

45 state = simulation.context.getState(getEnergy=True , groups =2**

group)

46 energies[force_name] =state.getPotentialEnergy ().value_in_unit(

energy_unit)

47

48 for force_name in s.forces.keys():

49 print(force_name , round(energies[force_name ],6),energy_unit.

get_symbol ())

50

51 #Add simulation reporters

52 dcd_reporter=simtk.openmm.app.DCDReporter(f’output.dcd’, 1000)

53 energy_reporter=simtk.openmm.app.StateDataReporter(sys.stdout ,

1000, step=True ,time=True ,

54 potentialEnergy=True , temperature=True)

55 simulation.reporters.append(dcd_reporter)

56 simulation.reporters.append(energy_reporter)

57

58 #Run simulation

59 simulation.step (10000)

60

4.1.2 Example Protein-DNA system

The following code is also available at https://github.com/cabb99/open3spn2/
tree/master/examples/Protein_DNA

1 # If you want to specify the package address

2 # you can add them to the PYTHONPATH environment variable.

3 # Also you can add them on the run time uncommenting the lines

below

4 # import sys

5 # open3SPN2_HOME = ’/Users/weilu/open3spn2/’

6 # openAWSEM_HOME = ’/Users/weilu/openmmawsem/’

7 # sys.path.insert(0, open3SPN2_HOME)

8 # sys.path.insert(0, openAWSEM_HOME)

9

10 #Import openAWSEM , open3SPN2 and other libraries

11 import open3SPN2

12 import ffAWSEM

13 import pandas

14 import numpy as np

15 import simtk.openmm

16 from functools import partial
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17 import sys

18

19 #Fix the system (adds missing atoms)

20 fix=open3SPN2.fixPDB("1lmb.pdb")

21

22 #Create a table containing both the proteins and the DNA

23 complex_table=open3SPN2.pdb2table(fix)

24

25 # Create a single memory file

26 ffAWSEM.create_single_memory(fix)

27

28 #Generate a coarse -grained model of the DNA molecules

29 dna_atoms=open3SPN2.DNA.CoarseGrain(complex_table)

30

31 #Generate a coarse -grained model of the Protein molecules

32 protein_atoms=ffAWSEM.Protein.CoarseGrain(complex_table)

33

34 #Merge the models

35 Coarse=pandas.concat ([ protein_atoms ,dna_atoms],sort=False)

36 Coarse.index=range(len(Coarse))

37 Coarse[’serial ’]=list(Coarse.index)

38

39 #Save the protein_sequence

40 ffAWSEM.save_protein_sequence(Coarse ,sequence_file=’protein.seq’)

41

42 # Create a merged PDB

43 ffAWSEM.writePDB(Coarse ,’clean.pdb’)

44

45 #Create the merged system

46 pdb=simtk.openmm.app.PDBFile(’clean.pdb’)

47 top=pdb.topology

48 coord=pdb.positions

49 forcefield=simtk.openmm.app.ForceField(ffAWSEM.xml ,open3SPN2.xml)

50 s=forcefield.createSystem(top)

51

52 #Create the DNA and Protein Objects

53 dna=open3SPN2.DNA.fromCoarsePDB(’clean.pdb’)

54 with open(’protein.seq’) as ps:

55 protein_seq=ps.readlines ()[0]

56 protein=ffAWSEM.Protein.fromCoarsePDB(’clean.pdb’,

57 sequence=protein_seq)

58 dna.periodic=False

59 protein.periodic=False

60

61 #Copy the AWSEM parameter files

62 ffAWSEM.copy_parameter_files ()

63

64 #Clear Forces from the system (optional)

65 keepCMMotionRemover=True

66 j=0

67 for i, f in enumerate(s.getForces ()):

68 if keepCMMotionRemover and i == 0 and f.__class__ == simtk.

openmm.CMMotionRemover:

69 # print(’Kept ’, f.__class__)

70 j += 1

71 continue

72 else:

73 # print(’Removed ’, f.__class__)

74 s.removeForce(j)

75 if keepCMMotionRemover == False:

76 assert len(s.getForces ()) == 0, ’Not all the forces were

removed ’
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77 else:

78 assert len(s.getForces ()) <= 1, ’Not all the forces were

removed ’

79

80 #Initialize the force dictionary

81 forces ={}

82 for i in range(s.getNumForces ()):

83 force = s.getForce(i)

84 force_name="CMMotionRemover"

85

86 #Add 3SPN.2 forces

87 for force_name in open3SPN2.forces:

88 print(force_name)

89 force = open3SPN2.forces[force_name ](dna)

90 if force_name in [’BasePair ’,’CrossStacking ’]:

91 force.addForce(s)

92 else:

93 s.addForce(force)

94 forces.update ({ force_name:force})

95

96 #Add AWSEM forces

97 ft=ffAWSEM.functionTerms

98 openAWSEMforces = dict(Connectivity=ft.basicTerms.con_term ,

99 Chain=ft.basicTerms.chain_term ,

100 Chi=ft.basicTerms.chi_term ,

101 Excl=ft.basicTerms.excl_term ,

102 rama=ft.basicTerms.rama_term ,

103 rama_pro=ft.basicTerms.rama_proline_term ,

104 contact=ft.contactTerms.contact_term ,

105 frag = partial(ft.templateTerms.

fragment_memory_term ,

106 frag_file_list_file = "./

single_frags.mem",

107 npy_frag_table = "./

single_frags.npy",

108 UseSavedFragTable = False ,

109 k_fm = 0.04184/3) ,

110 beta1 = ft.hydrogenBondTerms.beta_term_1 ,

111 beta2 = ft.hydrogenBondTerms.beta_term_2 ,

112 beta3 = ft.hydrogenBondTerms.beta_term_3 ,

113 pap1 = ft.hydrogenBondTerms.pap_term_1 ,

114 pap2 = ft.hydrogenBondTerms.pap_term_2 ,

115 )

116 protein.setup_virtual_sites(s)

117

118 #Add DNA -protein interaction forces

119 for force_name in open3SPN2.protein_dna_forces:

120 print(force_name)

121 force = open3SPN2.protein_dna_forces[force_name ](dna ,protein)

122 s.addForce(force)

123 forces.update ({ force_name: force})

124

125 #Fix exclussions

126 for force_name in openAWSEMforces:

127 print(force_name)

128 if force_name in [’contact ’]:

129 force = openAWSEMforces[force_name ](protein ,

130 withExclusion=False ,

131 periodic=False)

132 print(force.getNumExclusions ())

133 open3SPN2.addNonBondedExclusions(dna ,force)

134 print(force.getNumExclusions ())
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135 elif force_name in [’Excl’]:

136 force = openAWSEMforces[force_name ]( protein)

137 print(force.getNumExclusions ())

138 open3SPN2.addNonBondedExclusions(dna ,force)

139 print(force.getNumExclusions ())

140 else:

141 force = openAWSEMforces[force_name ]( protein)

142 s.addForce(force)

143 forces.update ({ force_name: force})

144

145 #Initialize the simulation

146 temperature =300 * simtk.openmm.unit.kelvin

147 platform_name=’OpenCL ’ #’Reference ’,’CPU ’,’CUDA ’, ’OpenCL ’

148 integrator = simtk.openmm.LangevinIntegrator(temperature ,

149 1 / simtk.openmm.unit.picosecond ,

150 2 * simtk.openmm.unit.femtoseconds)

151 platform = simtk.openmm.Platform.getPlatformByName(platform_name)

152 simulation = simtk.openmm.app.Simulation(top ,s, integrator ,

platform)

153 simulation.context.setPositions(coord)

154 energy_unit=simtk.openmm.unit.kilojoule_per_mole

155 state = simulation.context.getState(getEnergy=True)

156 energy = state.getPotentialEnergy ().value_in_unit(energy_unit)

157 print(energy)

158

159 #Obtain total energy

160 energy_unit=simtk.openmm.unit.kilojoule_per_mole

161 state = simulation.context.getState(getEnergy=True)

162 energy = state.getPotentialEnergy ().value_in_unit(energy_unit)

163 print(’TotalEnergy ’,round(energy ,6),energy_unit.get_symbol ())

164

165 #Obtain detailed energy

166 energies = {}

167 for force_name , force in forces.items():

168 group=force.getForceGroup ()

169 state = simulation.context.getState(getEnergy=True ,

170 groups =2** group)

171 energies[force_name] =state.getPotentialEnergy ().value_in_unit(

energy_unit)

172

173 for force_name in forces.keys():

174 print(force_name , round(energies[force_name ],6),

175 energy_unit.get_symbol ())

176

177 #Add simulation reporters

178 dcd_reporter=simtk.openmm.app.DCDReporter(f’output.dcd’, 10000)

179 energy_reporter=simtk.openmm.app.StateDataReporter(sys.stdout ,

10000, step=True ,time=True , potentialEnergy=True , temperature=

True)

180 simulation.reporters.append(dcd_reporter)

181 simulation.reporters.append(energy_reporter)

182

183 #Run simulation

184 simulation.minimizeEnergy ()

185 simulation.context.setVelocitiesToTemperature(temperature)

186 simulation.step (100000)

187

188

189
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5 Supplementary figures

5.1 Structure prediction results using three contact po-
tential schemes evaluated using the overall Q

Figure 9: Structure prediction results using three contact potential
schemes evaluated using the overall Q.

5.2 Example of over saturation of disulfide bonds observed
in original AWSEM simulation.

Figure 10: Example of over saturation of disulfide bonds observed in
original AWSEM simulation. One cystine is in contact with three other
cystines.

5.3 Bets Q for each run.
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Figure 11: Best Q value for each run. a large strength of the disulfide bond
potential leads to higher Q value. The annealing indexes are given by sorting
their Q value from high to low.
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5.4 The predicted structure of alpha-thrombin(PDB: 1ppb)
aligned with the crystal structure.

Figure 12: Left: The structure alignment of predicted structure(red)
and crystal structure(white). Right: The complete thrombin crystal
structure. Overall,the lower left region(the C terminal region; residue 168-
259) is well aligned. But there is a partial mirror image shown in upper right,
residue 150 is shown as sphere as an indication of the mirror image. This
partial native folding might due to that we didn’t model the short chain that is
experimentally proven to be important for thrombin function [5].

5.5 The predicted structure of ribonuclease A(PDB: 1fs3)
aligned with the crystal structure.

Figure 13: The structure alignment of predicted structure(red) and
crystal structure(white). The sphere is the CB of Cystines. All Cystine
pairs in the predicted structure is matched with the Cystine pairs in crystal
structure.
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Appendix D 



 Supporting Information to 

Resolving the NFκB hetero-dimer binding paradox: Strain and frustration guide the 
binding of dimeric transcription factors.

Davit A. Potoyan, Carlos Bueno, Weihua Zheng, Elizabeth A. Komives, Peter G. Wolynes.

A. Simulation protocols.

All the simulations reported this work have been carried out using a custom built 
force field which combines the electrostatically enhanced version of AWSEM for proteins 
(1) with the 3SPN.2C force field for the DNA (2). This force field has been implemented 
in the LAMMPS suite (version Oct. 9th 2012) for molecular dynamics simulations (3,4). 
All the simulations reported in this work follow the standard protocols of energy 
minimization and subsequent equilibration under constant molecular number, volume and 
temperature conditions (NVT ensemble). The  following PDB structures of NF � B were 
used for setting up NVT simulations: 2RAM for p65p65, 1ILE for p65p50 and 1SVC for 
p50p50. Some of these structures were missing N-terminal DNA binding domains which 
were reconstructed by running simulated annealing runs with AWSEM starting from 
modified PDB structures which were supplemented with the missing residues.  We used 
T=300K as the temperature for all simulations including the ones using enhanced 
sampling via harmonic umbrella potentials.  The equations of motion were integrated 
using the Langevin thermostat with a damping constant of 2000 femtoseconds. The time 
step for simulations was 5 femtoseconds which ensured proper energy conservation and 
smooth dynamics. Following the minimization with conjugate gradient and short 
equilibration steps we ran a set of 50-60 independent simulations initiated from different 
randomly assigned velocity distributions. The convergence of the simulations was  
assessed by testing two or more subsets of simulations for consistency in thermodynamic 
measures such as the domain-domain distances, principal components and potential of 
mean force profiles. 

All free and DNA bound ΝF � B  complexes were subjected to two kinds of 
simulations: long constant temperature runs used for computing principal components 
and umbrella sampling runs used for extracting potentials of mean force. To convert 
simulation time using the coarse grained force field to real time we used FRET estimates 
of domain motions which take place on the order of 1-10 micro-seconds (5). Close to 
~100 domain motions were registered in the simulations which allowed us to estimate the 
real simulation time to be over 500 microseconds.
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Principal component analysis of the free NF � B dimers was performed on structural 
ensembles generated by constant temperature simulation runs.  Routine backbone RMSD 
alignment of all structures was made prior to all cartesian PCA. 

We used the positions of all the backbone Cα atoms of protein chains for the 
conventional Cartesian Principal Component analysis. This was done using the python 
libraries of MDAnalysis (6). For analyzing the DNA bound NF � B dimers we have used 
the eigenvectors of the respective free forms. The principal components obtained by 
projecting Cartesian coordinates of NF � B-DNA structural ensemble on the eigenvectors 
of NF � B quantify relative changes in the low frequency modes upon DNA binding.   

To obtain dissociation free energy profiles we have used umbrella sampling 
simulations with center of mass distance defined between the DNA and dimerization two 
domains of NF � B. All of the umbrella sampling simulations were initiated from pre-
equilibrated NF � B-DNA constant temperature runs. In order to remove entropic 
contributions due to overall rotational and translational motions of DNA we subjected all 
of the umbrellas to the same orientational constraint. This orientational constraint keeps 
DNA molecules parallel to the orientation in the initial structure of the DNA bound 
complexes. The orientational constraint is realized by defining a collective variable by 
using the quaternions of the double helical DNA. The orientation angle has been 
constrained to remain close to zero indicating a parallel orientation of the DNA to the 
starting configuration by adding a harmonic bias term with a spring constant of 100 kcal/
mol 2. This biasing term essentially suppressed any rotational motion of the DNA 
around the zero angle with respect to the orientation of the DNA in the bound complex 
while leaving intact the internal motions of the DNA molecule. Free energy profiles were 
obtained by using the Weighted Histogram Analysis Method (7) on the center of mass 
distance extracted from simulations with umbrella sampling. 

B. Description of AWSEM+3SPN.2C force fields

AWSEM is a predictive coarse-grained protein force field. Each residue is 
represented via 3 atoms: Cα, Cβ and Ο.  AWSEM is an implicit solvent model  which 
captures the solvent environment through parameters which were trained using energy 
landscape based algorithms along with a protein structural databases (3,4).

A sequence-independent backbone term, Vbackbone, maintains polypeptide like 
conformations for the chain. This term enforces planarity of the peptide bond and the 
chirality of the Cβ atom.  A tertiary contact term, Vcontact, models both physical contacts 
induced by direct interaction between pairs of closely packed residues and water or 
protein mediated interactions between pairs of residues that are far apart in space. The 
nature of these interactions which could be be either water-mediated or protein-mediated, 
is determined by the local protein density of the two residues. Therefore this effective 
potential is non-additive. A burial term, Vburial, models the burial environment of residues 
which can be either exposed, partially buried or completely buried depending on 
hydrophobicity. A hydrogen bonding potential, VHB, has two parts. The first part is 
sequence independent, long range and favors cooperative β sheets formation; the second 
part is sequence dependent and is more sensitive with respect to the distance and relative 
orientation of the interacting residues. The relative contribution of each of these energy 
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functions is determined by scaling factors which ranged from 0 to 1. The scale of each 
energy term is adjusted so as to better capture the optimal balance of forces that shape 
secondary and tertiary levels of protein structure in the environment of DNA molecule. 
The values of scaling factors which we have used in all our simulations are: Vbackbone = 0.6,  
Vcontact=0.75 Vburial=1.0 and VHB=0.5.

The associative memory term, VAM,  models local-in-sequence interactions (3  
sequence separation �  9). Combining known protein structures along with an algorithm 
for aligning a target sequence to those structures, AWSEM can be used to limit or guide 
the local secondary structure conformational search. We used PDB structures 1LE5 for 
(p65p50),  1SVC (p50p50) and 2RAM (p65p50) as the only memories determining the 
local in sequence interactions. Employing the single memory setting, the local secondary 
structure of each protein is weakly biased towards the respective crystal structures. 
Unlike the local secondary structures, however,  all of the intra- and inter-residue tertiary 
interactions are fully predicted by the physics based transferable interactions in AWSEM 
potential. The details of AWSEM force-field are described in depth in the publication by 
Davtyan et al. (3). The Debye Huckel term VDH,  models the electrostatic interactions 
between charges in protein-protein, DNA-DNA and protein-DNA atom contacts in a 
mean field approximation. We chose the Debye screening parameter to be �  
in order to roughly mimic the ionic screening at ~100 mM which corresponds to a 
physiological concentration of monovalent ions at temperature T=300 K when using a 
dielectric constant for water ε~80. The cutoff for this potential is set to be four times the 
Debye length at 40nm. The role of electrostatic interactions and their modeling in the 
context of AWSEM is discussed in greater depth in the publication of Tsai et al (1). The 
AWSEM code is available for download free of charge including numerous examples and 
tutorials which can all be accessed at https://github.com/adavtyan/awsemmd/wiki 

The 20bp DNA molecule which is used in NF � B-DNA simulations is modeled by 
using the 3SPN.2C coarse grained force field (2). Both AWSEM and 3SPN.2C codes 
have been ported onto LAMMPS package http://lammps.sandia.gov. In the 3SPN.2C 
force field nucleic acids are mapped onto three coarse-grained sites, each corresponding 
to sugar, phosphate and base groups. The 3SPN.2C is a physics based and empirically 
parametrized force field consisting of bonded interactions represented by Vbond , Vangle 
and Vdihed terms which model harmonic fluctuations in bonds, angles and dihedral angles 
respectively. The non-bonded interactions are modeled by a stacking term Vstack, a base-
pairing term Vbp, an excluded volume term Vexcl, a solvent mediated interaction Vsolve and 
an electrostatic term which is modeled by Debye Huckel potential VDH Consistent with 
interactions in AWSEM.  An in depth description of  the 3SPN.2C force field can be 
found in the paper by Freeman et al (2). Besides the electrostatic interactions between 
protein and DNA charged atoms which are modeled by Debye Huckel terms, we also 
have a Lennard Jones potential between all protein-DNA pairs which accounts for the 
excluded volume effects.
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Fig. S1.  Shown are the cumulative percentages of eigenvalues for the Cartesian 
principal components of the (A) free and (B) DNA bound NFκB dimers.  

Fig. S2.  Shown are the cumulative percentages of eigenvalues for the strain principal 
components of the (A) free and (B) DNA bound NFκB dimers.  

A B

Fig S3. Shown are the correlation coefficients (Y-axis) quantifying correlation between 
different local strain models (X-axis) and global twist and breathing modes of different 
free and DNA bound NFκB molecules. 
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Fig S4. Shown are raw trajectories of principal components corresponding to cracking, 
straining and global cartesian motion. (A) 1st principal opponents of p65p50 hetero-
dimer  (B) 2nd principal components of p65p50 hetero-dimer. 
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