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ABSTRACT 

 

 

Peru, Ecuador, and Colombia have identified a total of 23 threatened species, including mammals, 

birds, and plants, which are also a part of their reports for SDG 15. These countries are keen to 

monitor the risk of extinction of these species and ensure their protection. As part of the Life on 

Land Project, we aim to assist these countries in approximating the IUCN Red List index using 

species occurrence data, climatic data, and variables such as Human Footprint (HFP) in different 

climate change scenario. To achieve this, we conducted a general review of climate drivers and 

climate change for the three countries and explored climate data to estimate the variation of 

temperature (℃) and annual precipitation (mm) change under current climate conditions and in 

RCPs-2050 climate change scenarios (2.6, 4.5, and 8.5). Our results indicated that the average 

annual temperature for 2050, using a baseline of 1970-2000, is expected to increase by over 1 ℃ 

in some areas and over 4 ℃ in others. For annual precipitation, an increase is also predicted, 

although few global circulation models show a reduction. We also conducted a median comparison 

to see the differences between the baseline and the RCPs in 2050, indicating that the medians are 

different. Density plots were used to illustrate the shift to the right for the temperature case, 

confirming the anticipated temperature increase by 2050 in the three RCPs. Finally, we used the 

R package (SDM) to estimate habitat suitability probability for the spectacled bear and the páramo 

ecoregion. Our findings indicated that climate change impacts their areas with high probability of 

occurrence to a great extent, and their habitats are also affected by HFP. These methods for 

exploring climate data and assessing habitat suitability are replicable and can be used with other 

environmental variables.
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CHAPTER ONE 

 

INTRODUCTION TO THESIS 

 

 

The Anthropocene caused a fast loss of biodiversity due to human impact; terrestrial 

vertebrates have decreased by 60% since 1970, and there have been far more vertebrate extinctions 

than expected, at least 100 times more (Gonçalves-Souza et al., 2020; Johnson et al., 2017). 

Although South America is known for its abundance of biodiversity, the region is facing 

significant challenges as natural habitats are being converted to other uses at alarming rates; the 

analysis of species habitat and ecoregions and their vulnerability to climate change and human 

activity can identify areas that need management attention for the conservation of biodiversity and 

valuable goods and services in this region (Jarvis et al., 2010; Sayre et al., 2008). For example, the 

tropical forest, the most productive and biodiverse terrestrial ecosystems on earth, are more 

vulnerable to climate change than savannas or grasslands (Jarvis et al., 2010).  

Climate change will bring about certain changes in temperature and precipitation patterns 

in South America. Specifically, there will likely be more summer rainfall in the south-eastern 

subtropical region, less winter rainfall throughout most of the continent, and decreased rainfall 

throughout the southern Andes in all seasons (Chou et al., 2014). Also, Peru is one of the 20 

countries most vulnerable to climate change due to its geography, diversity of ecosystems and 

microclimates, and its effects are already perceptible in several regions (Altea, 2020). Climate 

change in Southern Ecuador is expected to increase precipitation and temperature, leading to more 

climatic variation that could impact ecosystems and their services  (Eguiguren-Velepucha et al., 

2016). Also, Colombian glaciers lose between 50 centimeters and one meter in thickness per year; 
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therefore, falling back between ten and twenty meters per year (Costa-Posada, 2017). Another 

effects of climate change in Colombia are the significant reductions in water supply, significant 

alterations in the integrity of high mountain ecosystems, and dramatic losses of biodiversity (Ruiz 

et al., 2008). Therefore, it is important to know the past, present, and future climate for Peru, 

Ecuador, and Colombia. The IPCC developed the Representative Concentration Pathways (RCPs), 

these scenarios include time series of emissions and concentrations of the full set of greenhouse 

gases (GHGs), aerosols and chemically active gases, as well as land use and land cover (Moss et 

al., 2010). 

Recent experiments showed that climatic changes on the scale of years to decades can 

change species distributions and abundances and alter biotic interactions (Blois et al., 2013). 

Climate change will increasingly threaten biodiversity in the future, potentially becoming as 

significant a threat as land use change by 2070 (Lebreton, 2011). The combined effects of both 

pressures are expected to lead to a cumulative loss average of 37.9% of species of vertebrate 

communities in the framework of "business as usual" (Newbold, 2018). Although Species 

Distribution Models (SDMs) show promise, incorporating multispecies, dispersal, and community 

interactions is essential; and species behavior change is causing extinctions in vulnerable habitats 

where migration is necessary for survival, but no routes exist due to habitat fragmentation (Mooney 

et al., 2009). Modeling species is challenging due to the differing observation timescales of the 

past and present; however, controlling the time frame for calculating rates of biotic and climate 

change can help mitigate this issue (Blois et al., 2013). 

Species Distribution Models (SDMs) are essential for ecology, evolution, and conservation 

biology and it is through that SDMs we understand environmental relationships and predict species 
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distribution in both environmental and geographic space (Fletcher & Fortin, 2019; Guisan et al., 

2017; Guisan & Zimmermann, 2000). SDMs are numerical tools used to predict species 

distribution by combining occurrence or abundance data with environmental estimates. They can 

be used to predict new sites within the range of environments sampled by the training data or to 

predict new and unsampled geographic domains in future or past climates (Elith & Leathwick, 

2009). Studying habitat distribution under different climate scenarios allows conservators to assess 

the vulnerability of species and ecosystems to climate change (Ksiksi et al., 2019).  

The United Nations General Assembly (UNGA) in 2015 adopted the 17 Sustainable 

Development Goals (SDGs) to end poverty, protect the planet, and ensure prosperity for all by 

2030 (Biermann et al., 2017). The targets for SDG 15, Life on Land, including sustainably 

managing forests, combating desertification, halting, and reversing land degradation, and halting 

biodiversity loss (Franco et al., 2020). The integrated nature of the SDG objectives means that 

progress towards one objective is also linked through complex feedback to other objectives, which 

imposes demands on science and research to support national implementation (Allen et al., 2019).  

Spatial data is essential to implementing and reporting on projects that deliver on the SDGs, 

including SDG 15 (Kussul et al., 2017). To support Peru, Ecuador and Colombia, the NASA-

funded Project called “Maintaining Life on Land (SDG15) under Scenarios of Land Use and 

Climate Change in Colombia, Ecuador, and Peru” arose in 2019.  

The United Nations Development Programme (UNDP) is the leading agency in the United 

Nations (UN) system in assisting governments to integrate the SDGs into their national 

development plans and policies. The UNDP and the Governments of Peru, Ecuador, and Colombia 

have joined forces with premier research organizations to support countries to deliver on SDG 15. 
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One of the components of this NASA-funded Project was Forecasting vertebrate species and 

ecoregions response to climate and land-use change. To respond to this component, the potential 

distribution of vertebrate species and ecoregions of importance to the three countries will be 

analyzed under current climate conditions (Baseline 1970-2000) and under climate change 

scenarios for the year 2050 (RCPs 2.6, 4.5 and 8.5).  Finally, the use of a methodology to estimate 

occurrence probabilities for species and ecoregions in different climatic ecoregions and human 

footprint maps to the three countries in the Red List Index (RLI) was examined. 

Most climate change assessments focus primarily on species and do not directly estimate 

how entire ecosystems can change (Ponce-Reyes et al., 2017). The vulnerability of species to 

climate change has been inferred using species distribution models.  

The general objective of this work is to analyze the possible effects of climate change and 

human footprint (HFP) on priority vertebrate species and ecoregions for Peru, Ecuador, and 

Colombia in terms of probability of occurrence through the SDMs and to establish a methodology 

with a pilot species and ecoregion so that decision makers or researchers can replicate with other 

species or ecoregions and thus contribute to their conservation and management through the 

voluntary reports of SDG 15. 

Finally, this research had five general objectives, a. Synthesize the literature on climate 

change scenarios and global circulation models and their effects on temperature and precipitation 

in our area of study. b. Summarize the General Global Circulation Models (GCMs) for temperature 

and annual precipitation (mm) for Peru, Ecuador and Colombia and their Ecoregions in a context 

of Climate Change. c. Compare differences for temperature and precipitation between the 2050 

RCPs and the baseline (1970-2000). d. Perform a normal distribution analysis of temperature and 
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precipitation as well as a comparison of medians using non-parametric tests for these two variables 

at the ecoregion level for the baseline and climate change scenarios and f. Develop a pilot 

methodology for modeling species and ecoregions using climatic variables and HFP (Human 

Footprint) for the three countries. After this introduction (Chapter I), the following three chapters 

are shown below. 

Dissertation Outline 

Chapter 2, one of the requirements for the modeling of species’ habitat and ecoregions is 

to have standardized information on bioclimatic variables. Thus, a review of climatic data with 10-

minutes and 30-second resolutions and General Circulation Models (GCMs) and their changes for 

temperature and precipitation variables in a baseline (1970-2000) and in three climate change 

scenarios at the country level (Peru, Ecuador, and Colombia) as well as for three ecoregions 

Sechura Desert, Páramo y Napo Tropical Forest was made using the R package called GCM 

compareR and "ccafs" (Climate Change, Agriculture, and Food Security) (Fajardo et al., 2020; 

Navarro-Racines et al., 2020). Climatic data search is important because the countries lack 

homogenized data between them as well as with the ecoregion maps.  Then, an exploration of the 

data was done through normality tests and median comparisons using the Anderson-Darling test.  

To calculate if there are statistically significant changes in medians of the temperature (C°) and 

the annual precipitation (mm) as well as their spatial change the Kruskal-Wallis Nonparametric 

Test using the R Package ‘palmerpenguins’ in the software R-4.2.1 (Gorman, 2022; M. Horst et 

al., 2022) was performed for the Baseline and the three 2050 RCPs in the three ecoregions.  

Chapter 3 focuses on developing a methodology for habitat modeling of a pilot species and 

ecoregion present in Peru, Ecuador, and Colombia. Here we use the R package called SDM R for 
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the modeling (Naimi & Araújo, 2016; Naimi & Araujo, 2019). Here we make use of observed data 

for the occurrence of the spectacled bear as well as the Páramo ecoregion. This data is then curated 

and validated. Pseudo-absences were generated using a buffer, for the spectacled bear considering 

the home range of the maximum value recorded in the literature, which is 150 km, and for the 

Páramo ecoregion a buffer of 100 km was generated. Then the abiotic variables included for the 

modeling were the 19 Bioclimatic variables (WorldClim), elevation and human footprint (HFP-

2009) (Venter et al., 2018). Collinearity analyses were then performed using Pairwise correlation 

coefficients and Variance Inflation Factor (VIF) value. We also explored which variables could 

have the greatest effect on the modeling through the getVarImp (Relative Importance) function, 

Random Forest, and decision trees.  Finally, we modeled the pilot species and ecoregion under 

current climate conditions (1970-2000) and for the three climate change scenarios in 2050 (RCPs 

2.6, 4.5 and 8.5). It should be noted that the HFP is important because it helps us to integrate 

human pressure either in the habitat of our pilot species or in the habitat of the ecoregion.  

Chapter 4 focuses on general conclusions from the previous chapters as well as advantages and 

possible improvements that are expected to be made in the methodology explored in this research 

to help policy makers for the conservation of species and ecoregions in South America. 
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CHAPTER TWO 

 

 

ASSESSING THE IMPACTS OF CLIMATE CHANGE USING GENERAL CIRCULATION 

MODELS (GCMs): A STUDY OF TEMPERATURE (℃) AND ANNUAL PRECIPITATION 

(mm) MEDIANS FOR A BASELINE AND THREE 2050 RCPs IN PERU, ECUADOR, AND 

COLOMBIA. 
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Abstract 

Climate change is a global concern, and its impact on environmental variables such as 

temperature and annual precipitation is unknown spatially in the Desert, Andes, and Rainforest 

Ecoregions for Peru, Ecuador, and Colombia. In this study, we conducted a general review of 

climate drivers for South America and explored climate data using the GCM compareR package. 

Our results showed that all global circulation models demonstrated increases in 

temperature for Peru, Ecuador, and Colombia. On the other hand, most GCMs showed increases 

in precipitation. We conducted non-parametric tests (Kruskal-Wallis Test) to assess if the medians 

of temperature and precipitation in the Sechura Desert, Páramo, and Napo Tropical Forest 

ecoregions are equal for both the baseline and the climate change scenarios. 

We rejected the null hypothesis that the medians are equal for both temperatures and 

precipitation in the baseline vs 2050 RCPs (2.6, 4.5, and 5.8). A spatial analysis was conducted to 

visualize the variations in temperature and precipitation between the RCPs versus the baseline, 

and the spatial variation at the country or ecoregion level can be observed. 

In conclusion, climate change is likely to have a significant impact on the environmental 

variables of temperature and precipitation in South American ecoregions. Our study provides 

important insights into the potential impacts of climate change on these important ecosystems. 

Introduction 

The Earth's climate has warmed, and precipitation regimes have changed over the last 100 

years (Thuiller, 2007). Alarming consequences of climate change on biodiversity have been 

suggested. It was mentioned that in the next century, many plants and animals will become extinct 

(Willis & Bhagwat, 2009). Climate change may have effects on different levels of Biodiversity 
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such as Genetics, Physiology, Phenology, Dynamics, Distribution, Interspecific Relationships, 

Community Productivity, Ecosystem Services, and Biome Integrity (Bellard et al., 2012).  

Latin America is home to a large concentration of plant and animal species and is estimated 

to be home to one-third of the world's terrestrial biodiversity (Raven et al., 2020); it was also found 

that 43% of all tree species on Earth are found in South America and that 40% of the world's 

undiscovered tree species are found there (Gatti et al., 2022) 

The greatest risks of species extinction because of climate change are in South America, 

Australia, and New Zealand (Urban, 2015). and the risks of species extinction due to climate 

change are not only expected to increase but to accelerate as global temperatures rise and changes 

in rainfall patterns (Papalexiou & Montanari, 2019). 

Climate change is a statistically significant variation in the average state of the climate or 

its variability, which persists for a prolonged period (decades or more) and its origin may be due 

to internal natural processes or external factors, such as persistent changes in the atmosphere or 

land use (Arguez & Vose, 2011; WMO, 2018). These changes have been observed over the past 

30 years, patterns of temperature, precipitation, humidity, and other environmental variables 

influencing flora, fauna, ecosystems, ecoregions, and biomes (Arguez & Vose, 2011; Elsen et al., 

2022; Kharin et al., 2013).  

Thus, in 1988 the Intergovernmental Panel on Climate Change (IPCC) was created to 

facilitate comprehensive assessments of climate change, its causes, potential impacts, and response 

strategies (Agrawala, 1998). The first Assessment Report of the IPCC was completed in 1990, it 

provided the basis for the United Nations Framework Convention on Climate Change (UNFCCC), 

which included the 1990 IPCC Scenario A (SA90) and the 1992 IPCC Scenarios (IS92) were used 
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in the Special Report on Emissions Scenarios (SRES) in 2000, in the Third Assessment Report 

(TAR) in 2001, and in the Fourth Assessment Report (AR4) in 2007 (Strandsbjerg Tristan 

Pedersen et al., 2021).  

Then the Fifth Assessment Report (AR5) on Climate Change was published between 2013 

and 2014 where the IPCC chose to use scenarios developed by the scientific community and four 

scenarios were elaborated, called Representative Concentration Pathways (RCPs), these represent 

different GHG emissions trajectories and are named according to the forced radiation they are 

expected to cause in the atmosphere in 2100 and are measured in W/m² and these are RCPs 2.6. 

4.5, 6.0, and 8.5 (Riahi et al., 2007; van Vuuren et al., 2017), and the lowest trajectory represents 

2 °C above pre-industrial levels and the highest trajectory is 8.5 a global warming of 4.5 °C or 

more above pre-industrial levels. In 2016 the first publications on Shared Socioeconomic Pathways 

(SSPs) were launched and thanks to these the IPCC's Sixth Assessment Report (AR6) on climate 

change was published in 2021 (J. S. T. Pedersen et al., 2020). 

As computational systems have advanced, more regional, or local analyses are now 

possible. For example, there are IPCC climate reference regions for subcontinental analysis of 

climate model data for South America where they indicate that for RCP 8.5 (2081-2100) a 

temperature increase of greater than 4 °C is expected compared to 1986-2005 (Kharin et al., 2013). 

The proportion of extremely warm DJF days was observed to have at least doubled in 

recent decades in northern South America; less significant increases were observed in southern 

South America (Feron et al., 2019). Also, in future projections for 2010-2040 and 2070-2100, 

general warming is indicated throughout South America (SA) and in all its seasons, as well as 

more intense precipitation is estimated, but annual precipitation (mm) decreases, as well as delays 
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in rainy seasons are expected throughout SA compared to the 1960-1990 baseline (Reboita et al., 

2014). 

Warming is projected over South America (SA) and is of greater amplitude in the ETA 

Scenario forced by HadGEM2-ES RCP 8.5 (2011-2040, 2041-2070, and 2071-2100), warming 

begins in central and southeastern Brazil and progresses strongly toward the northern part of the 

SA and more intense precipitation is expected, but annual precipitation is decreasing compared to 

the 1961-1990 baseline (Chou et al., 2014).  

Ideally, we should have monthly observed temperature and precipitation data for minimum 

periods of 30 years for Peru, Ecuador, and Colombia and with a resolution of greater than 1 km, 

but for now we have annual meteorological data ≥ 1 km standardized for these areas, which can 

help us to understand the effects of the variation of these variables in ecoregions and/or vertebrate 

species for the areas under study. For instance, the spatiotemporal variability of precipitation and 

temperature trends (minimum, maximum, and average) was analyzed in 47 stations in the Brazilian 

Amazon for the period 1973-2013, the results showed that these had an increasing trend of 

approximately 0.04 °C per year and precipitation did not show a marked trend (Almeida et al., 

2017).  

In two climate change scenarios (RCPs 4.5 and 8.5), a reduction in precipitation of 2.4 to 

11% by 2050 and 2070, respectively, and an increase in average annual temperature from 1.7 ˚C 

(HadGEM2-ES 2041-2060) and 3.7 ˚C (GFDL-CM3 2061-2080) in the Uribia-Guajira area 

compared to the baseline from 1976 to 2005 (IDEAM) are expected (Ospina et al., 2017).  

Evaluating climate data for Peru, Ecuador, and Colombia is difficult because of different 

interpolation methods, different periods for baselines, the selection of different global circulation 
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models for climate change studies, and the lack of meteorological stations in their territories. The 

National Meteorological and Hydrological Services of Peru, Ecuador, and Colombia have few 

meteorological and hydrological stations in high-altitude areas as well as in Amazonian areas 

(Condom et al., 2020; Gubler et al., 2020; Navarro-Racines et al., 2020).  

Also, analyzing minimum temperatures in the Andes is very complex in terms of error and 

uncertainty concerning maximum temperatures because of the altitude variation (Navarro-Racines 

et al., 2020), and before using the SDMs, bioclimatic variables from different databases such as 

WorldClim must be analyzed. For example, variables derived from temperature and precipitation 

in our area of interest can provide preliminary information on the ecology of the species under 

study (Booth, 2022). 

For this reason, we explored different databases for bioclimatic variables such as "ccafs" 

(Climate Change, Agriculture, and Food Security) with 10 minutes resolution and WorldClim 

(Global Climate Data) with 30 seconds resolution because they are standardized for the three 

countries (Fick & Hijmans, 2017; Navarro-Racines et al., 2020); in terms of Coordinate Reference 

Systems (CRS), resolution, and spatial extent. 

A literature review and exploratory analysis of changes for two variables, temperature (°C), 

and annual precipitation (mm) for a baseline (1970-2000) and Climate Change Scenarios for 2050 

(RCPs 2.6, 4.5, and 8.5) in three countries (Peru, Ecuador, and Colombia) and ecoregions (Sechura 

Desert, Páramos, and Napo Tropical Forest) were carried out because our research question aims 

to investigate how the annual mean temperature (°C) and annual precipitation (mm) will change 

between the baseline and the three RCP scenarios (2.6, 4.5, and 8.5) in 2050.  
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Then, statistical analyses of these environmental variables were then carried out for these 

representative ecoregions, one from the Coast, one from the Andes, and one from the Tropical 

Rainforest. The purpose of this analysis was to investigate whether there is any significant 

difference between the means or medians of temperature and precipitation in the baseline and the 

2050-RCPs (2.6, 4.5, and 8.5) within these ecoregions. The study aims to provide insights into the 

potential impact of climate change on these regions. 

Methods 

Study Area 

In this research, an analysis of climate change at the level of three countries Peru, Ecuador, 

and Colombia (Figure 2.1a), and in three ecoregions Sechura Desert, Páramo, and Napo Tropical 

Forest (Figure 2.1b) will be carried out. The Peruvian territory is located between the coordinates 

0º and 18º 20’ of South Latitude and 68º 30’ and 81º 25’ of West Longitude, covering an area of 

1 285 215 km². Much of the territory comprises the Andes Mountains, which extend from South 

to North, along the South American Continent. The Cordillera de Los Andes determines different 

geomorphological units, typical of a continental environment and a marine environment 

(INGEMMET, 1995).  

Then, Ecuador is Located on the west coast and straddles the equator. Ecuador has a total 

area of about 280 000 km2. Ecuador has a wide range of natural formations and climates, from the 

desert-like southern coast to the snowcapped peaks of the Andes Mountains to the plains of the 

Amazon River Basin. After that, Ecuador is bounded on the west by the Pacific Ocean, on the 

north by Colombia, and on the east and south by Peru (Moreno et al., 2018).  
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Lastly, Colombia is located between latitudes 12° 24' north and 4° 17' south, and longitudes 

66° 7' and 79° west and it has an area of 1 141 748 km². Colombia's topography has four general 

elements: the Andes Mountain system, which is united in a single knot at the border with Ecuador 

and then divides into three major mountain ranges that extend in a north-south direction and are 

known as the Cordillera Oriental, the Cordillera Central, and the Cordillera Occidental. The group 

of high mountains in the northeast of the country, between the Guajira peninsula and the 

Magdalena River valley, is known as the Sierra Nevada. The Bogotá Sabana is in the central-

eastern part of the country, on the western side of the Eastern Cordillera. Finally, the great plains 

in the southeastern part of the country that extends from the Eastern Cordillera to the east and 

southeast of the country to the basins of the Orinoco and Amazon rivers, being an area much larger 

than the mountainous and inhabited sector of the country. The great plains of the Orinoco and 

Amazon are uninhabited except for the tribes (Bell, 2012).  

In addition, these countries have 47 ecoregions according to Resolve 2017, but for climate 

change studies we will use the Sechura Desert, Páramos like Santa Marta, Northern Andean, 

Cordillera Central and Cordillera de Mérida (Part of Venezuela) and Napo Tropical Forest 

ecoregions. The three ecoregions under study are described below (Figures 2.1a and 2.1b) 

(Dinerstein et al., 2017; Olson et al., 2001). 

The Sechura Desert is in the western subtropical part of South America, bordering the 

Pacific Ocean to the west and extending between 20 and 100 km towards the Andean zone and it 

is characterized by open shrub and tree stands (Block & Richter, 2000; Schipper J, 2017b). The 

climate of the ecoregion is warm in summer and humid in winter, with average annual temperatures 

of 22 ºC (Schipper J, 2017b). Precipitation in this ecoregion varies with altitude, from 0 mm/year 
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to 250 mm/year and this ecoregion is characterized by little vegetation cover, but it can be affected 

by the El Niño phenomenon (Block & Richter, 2000; Fuentes-Castillo et al., 2020; Guerrero et al., 

2013; Schipper J, 2017b).  

The Páramo has the richest high mountain flora in the world and has a high degree of 

endemism  (Schipper, 2017); for example, this region is home to the spectacled bear and the 

Andean tapir, both of which are endangered. The descriptions for the types of páramos used in this 

research are shown below. 

First, the páramos of Santa Marta are the northernmost occurrence of this type of habitat 

in South America and are in the Sierra Nevada de Santa Marta, an isolated mountain massif that 

breaks away from the Andes and rises to 5775 masl along the shores of the Caribbean Ocean in 

northern Colombia. The climate is influenced by northeasterly trade winds and rising humid air 

currents. Most of the rainfall occurs from May to September, with an estimated rainfall of less than 

1800 mm/year; the average annual temperature is 6 °C. The northern part is more rugged and 

receives more precipitation than the southern part. 

Second, the Northern Andean Páramo has a temperature range that goes from below 

freezing to 30 ºC, the upper zone of the ecoregion receives more than 2000 mm/year of 

precipitation, and it has an average humidity of 80 % because it is in the Intertropical Convergence 

Zone (ITCZ), this slows tree growth and gives way to a tropical alpine grassland environment.  

Third, the Cordillera Central Páramo extends in the vicinity of the Marañón Valley, from 

the extreme south of Ecuador to the northwest of Peru, and ranges in altitude from 3200 m to about 

4500 m. The climate is cold and humid, and temperatures can drop below 0 ºC. The typical 
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landscape is that of treeless vegetation dominated by grass and the shrubby alpine grassland is 

surrounded by montane cloud forest like the Polylepis transition forest. 

In the end, the Cordillera de Merida Páramo its altitude ranges from 3000 m to 

approximately 4000 m and these mountains are the highest peaks of the Andes in northwestern 

Venezuela. Precipitation ranges between 500-1000 mm/year and in the dry season (December-

March) less than 80 mm is accumulated. Snowfall is frequent in the highlands, especially during 

the wet season, although accumulation is unusual. The mean annual temperature at 4 000 m is 2.8 

ºC with a daily fluctuation of 6 ºC. At lower altitudes, daytime temperatures reach 21 ºC but can 

drop to 0 ºC at night.  

In the Napo Moist Forests, its topography varies between lowlands and undulating also it 

has swampy lands by the river systems (Schipper J, 2017a). The climate is humid tropical, with a 

subtle dry season. The average annual temperature is 26 °C and can range from 12 to 38 °C. This 

ecoregion receives the highest annual rainfall in the Amazon, with up to 4000 mm in the west and 

2500-3000 mm in the east. Three main vegetation types occur in this rainforest ecoregion: terra 

firme forest, várzea forest, and igapó swamp forest, but they are tall, evergreen tropical rainforests. 

These forests are among the richest in biodiversity of species in the entire Amazon basin, and are 

among the most diverse in the world, with 219 species of mammals and 649 bird species recorded. 

This ecoregion is also an evolutionary and dispersal center for neotropical butterflies with high 

endemism. 

Summary of the GCMs for Climate Change 

The R package called GCM compareR and "ccafs" (Climate Change, Agriculture, and Food 

Security) was used (Figure 2.2) (Fajardo et al., 2020; Navarro-Racines et al., 2020) to access the 
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Global Circulation Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 

(CMIP5) for the RCPs 2.6, 4.5 and 8.5 - 2050 and it allowed us to access data for 19 bioclimatic 

variables, these environmental variables were derived from monthly temperature and precipitation 

(Fajardo et al., 2020). By having temperature (°C) and annual precipitation (mm) data we could 

infer dry or rainy scenarios as well as analyze ensembles for different scenarios from published 

climate databases such as WorldClim, CHELSA, or CGIAR (Fajardo et al., 2020; Fick & Hijmans, 

2017; Nũez et al., 2009; Poggio et al., 2018).  

On the other hand, different climate change studies were analyzed for the three countries, 

especially changes in temperature (°C) and annual precipitation (mm) for different climate change 

scenarios up to 2050, as well as their effects on ecoregions.  

From some research, temperature, and precipitation maps for climate change RCPs 

scenarios for 2050 were rebuilt using the ArcGis ver. 10.7 georeferencing tools in the three 

countries (García et al., 2021). In this way, more detailed climate information was extracted based 

on their coordinate system, and an overlay of our study areas with the rebuilt maps was then 

performed to have a clearer spatial interpretation. 

Exploratory analysis for temperature and precipitation analysis 

For the analysis of temperature (°C) and annual precipitation (mm) for 2050 under the RCP 

2.6, 4.5, and 8.5 scenarios, 25 GCMs were used at the country level, and 26, 24, and 25 GCMs 

were used for ecoregions such as the Sechura Desert, Páramo, and Napo Moist Forest, respectively. 

The ensembles for the RCPs (2.6, 4.5, and 8.5) were made different GCMs for each RCP from the 

GCM Downscaled Data Portal of “ccafs: (CCAFS-CLIMATE) (http://ccafs-

climate.org/data_spatial_downscaling/). Also, it should be noted that the number of GCMs varies 

http://ccafs-climate.org/data_spatial_downscaling/
http://ccafs-climate.org/data_spatial_downscaling/
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depending on their availability for each country or ecoregion and its resolution is 10 minutes ~ 

18.5 km at the equator.  

Statistical analysis: comparison medians at the ecoregion level 

First, exploratory analyses of the temperature (°C) and annual precipitation (mm) medians 

were performed using the R package "ggridges" (Thrun et al., 2020). This package allows us to 

analyze the normality of temperature (°C) and annual precipitation (mm) in the three ecoregions 

under study.  

The evaluation of the normal or non-normal distribution of the data for these variables for 

baseline and RCPs allowed us to select the parametric and nonparametric tests for the comparison 

of means or medians correspondingly (Ramsey & Schafer, 2013). The R package called “nor.test” 

was also used to analyze the normality analyses of the temperature and precipitation data for the 

baseline and the three climate change scenarios. The Anderson-Darling test, QQ plots, and 

histograms were used from this package (Gross & Ligges, 2022).  

The statistical analysis of medians comparisons for temperature (C°) and precipitation 

(mm) for the baseline (1970-2000) and the RCPs 2050 climate change scenarios ensembles (2.6, 

4.5, and 8.5) was performed using the Kruskal-Wallis Nonparametric Test using the R Package 

‘palmerpenguins’ in the software R-4.2.1 (Gorman, 2022; M. Horst et al., 2022) in the Sechura 

Desert, Páramo, and Napo Moist Forest ecoregions.  

The ensembles for the RCPs (2.6, 4.5, and 8.5) were made using 14 GCMs for each RCP 

from the WorldClim Database (https://www.WorldClim.org/data/v1.4/cmip5_30s.html) with a 

resolution of 30 seconds ~ 1 km at the equator. These GCMs were BCC-CSM1-1, CCSM4, 

CNRM-CM5, GFDL-CM3, GISS-E2-R, HadGEM2-AO, HadGEM2-ES, IPSL-CM5A-LR, 

https://www.worldclim.org/data/v1.4/cmip5_30s.html
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MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MRI-CGCM3, MPI-ESM-LR and NorESM1-M 

(For their names and origin, see Table S2.2). The Kruskal-Wallis is a nonparametric statistical test 

that assesses the differences among three or more independently sampled groups on a single, non-

normally distributed continuous variable for non-normally distributed data (Gooch, 2011; Siegel, 

1957).  

Results 

Drivers of climate in South America 

To comprehend the climate, we must define meteorology and climatology. Meteorology is 

the study of the atmosphere and the phenomena within it on scales ranging from minutes to weeks 

and it focuses on atmospheric variables and Climatology is the study of climates or long-term 

average atmospheric conditions over a place (Coleman, 2015; Reboita et al., 2022).  

The weather is essentially the behavior of the atmosphere during the present time 

(Coleman, 2015; Lazaridis, 2011). The variables to characterize the weather for a particular place 

and time are usually temperature, precipitation, relative humidity (RH), cloud cover, wind speed, 

wind direction, and atmospheric pressure; and climate is the state of the atmosphere based on the 

record of observation and internationally accepted 30-year averages or climate in a wider sense is 

the state, including a statistical description, of the climate system (Arguez & Vose, 2011; Coleman, 

2015; Hulme, 2020). 

Also, the climate of South America is very complex beyond the elements and factors of 

climate. The Andes Mountain range is the longest in the world (Boschman, 2021; Espinoza et al., 

2020; Schellart, 2017) and extends from 11°N to 53°S, this mountain range crosses seven countries 
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and is characterized by a great variety of ecosystems, and they are related to the climatic contrast 

on its east and west sides, as well as throughout its latitudinal extent (Espinoza et al., 2020). 

The Sechura Desert or the Atacama-Sechura Desert is one of the driest and oldest deserts 

on Earth (Guerrero et al., 2013). The formation of deserts such as the Sechura and Atacama 

(hyperarid) is due to these factors (Guerrero et al., 2013; Rundel et al., 1991): a. subtropical 

atmospheric subsidence; b. the Humboldt current, which runs from south to north and is cold, 

preventing precipitation in the coastal regions; and (3) the rain shadow effect of the Andes 

Mountains, which stops moist air from reaching the Pacific coast. A classification of aridity was 

made according to annual precipitation and is as follows: mesic > 250 mm/y, semiarid < 250 mm/y, 

arid < 50 mm/y, and hyperarid ≤ 5 mm/y (Figure 2.3) (Guerrero et al., 2013). But we could not 

analyze the climate drivers of these deserts on their own because they are also due to the 

relationship they have with other ecoregions. 

The hydroclimatic relationship between the Coast, Andes, and tropical forests has these 

factors (Espinoza et al., 2020):  

a. The large-scale mean atmospheric circulation that characterizes the hydroclimate of the 

Andes: at latitudes 5°S, trans-Andean flow is predominant, producing a complex rainfall 

regime over northern Peru, Ecuador, and Colombia. During the austral summer, when the 

mature phase of the South American Monsoon System (SAMS) occurs, the mountains of 

the southern tropical Andes between latitudes 8-27°S act as a topographic barrier to the 

warm and humid flow from the Amazon region; these flows are crucial for the advection 

of moisture into the tropical Andes; however, studies suggest that land use change in the 

southern and southeastern Amazon basin has reduced their ability to regulate low flows. 
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b. The regular cycles of precipitation: the latitudinal presence of the ITCZ (Intertropical 

Convergence Zone), westerly winds, the complex Andean orography, as well as local 

circulations and temperature gradients, are the main factors that explain the regular 

precipitation cycles over the Andes. Finally, Low-Level Jets (LLJs) are observed on the 

two sides of the Andes and at different latitudes, which are induced by mechanical blocking 

of incident flow and/or diabatic heating on mountain gradients and these are important 

because they transport moisture over large meridional distances, except in the case of jets 

west of the Andes in subtropical latitudes as seen in Figure 2.4. 

Changes in atmospheric pressure or altitude cause changes in wind direction, and this also 

influences the climate of South America. According to (Espinoza et al., 2020), the following 

results were obtained in Figure 2.5; additionally, moisture advection from the Amazon region is 

predominant during the austral summer (Figure 2.5 a, b, c, and d). However, at latitudes of 5°S, 

where the altitude of the mountains is lower, trans-Andean flows are predominant throughout the 

year, producing a complex rainfall regime over this region. One of the rainiest places on Earth 

(Lloró; 5°30′N, 76°32′W) is located along the Pacific coast of Colombia, with an annual 

precipitation of 13 000 mm, due to the dynamics of the low-level Chocó jet enhanced by 

atmosphere-ocean-land surface interactions (Espinoza et al., 2020; Sierra et al., 2021; Yepes et al., 

2019). 

Climate change review, exploration, and statistical analysis 

General Circulation Models (GCMs) help to understand the impacts of climate change on 

our planet. This section presents two parts, the first is a review of the literature on the expected 
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effects of climate change in our study areas and the second is an exploratory review of GCMs at 

10 minutes resolution and statistical analysis of temperature (°C) and annual precipitation (mm) 

for the RCPs 2.6, 4.5 and 8.5 for the Sechura Desert, Páramo, and Napo Moist Forest at 30 seconds 

resolution.  

Climate change and its scenarios 

In the history of our planet, it has been demonstrated that climate change could have natural 

as well as anthropogenic origins, so this research will analyze climate change events during the 

Anthropocene, using a baseline from 1970 to 2000, as well as its projections for the RCPs 2050 

scenarios (Representative Concentration Pathways).  

Climate change refers to a statistically significant variation in the mean state of the climate 

or in its variability that persists over an extended period, usually decades or longer (WMO, 2018). 

Furthermore, climate change may be due to internal natural processes or external forcings, or to 

persistent anthropogenic changes in the composition of the atmosphere or land use. Article 1 of 

the United Nations Framework Convention on Climate Change (UNFCCC) defines climate change 

as "a change of climate which is attributed directly or indirectly to human activity that changes the 

composition of the global atmosphere and which is in addition to natural climate variability 

observed over comparable periods" (IPCC, 2000; UN, 1992; WMO, 2018, 2022). 

According to (Stuart Chapin et al., 2012), the climate on our planet is a dynamic system 

and in different millennia we have had glacial periods (Figure 2.6) and sea level changes, caused 

mainly by the distribution of solar energy and atmospheric composition. In other ways, continental 

drift, mountain formation, and erosion have modified atmospheric and oceanic circulation patterns 

over longer time scales. Solar radiation has increased by 30% over the last four billion years as the 
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sun matured, but there are also predictable variations in the earth's orbit that influence the amount 

of solar radiation our planet receives at different times and latitudes such as eccentricity, tilt, and 

precession. The periodicities of these orbital parameters are approximately 100 000, 41 000, and 

23 000 years. The interactions between these Milankovitch cycles of solar input correlate with 

glacial and interglacial cycles. Analysis of these cycles indicates that the Earth would not naturally 

enter another ice age for at least 30 000 years, so natural cycles of solar input will not substantially 

compensate for human-induced climate warming.  

The Anthropocene began around 1750 with the onset of the industrial revolution and is 

characterized by human domination of the biosphere (Figure 2.6) (Stuart Chapin et al., 2012). 

Anthropogenic emissions of greenhouse gases have increased since the pre-industrial era, largely, 

because of economic and population growth (He & Silliman, 2019; Stuart Chapin et al., 2012). As 

a result, atmospheric concentrations of carbon dioxide, methane, and nitrous oxide have reached 

levels unparalleled in at least the last 800000 years. The effects of emissions, as well as other 

anthropogenic factors, have been detected throughout the climate system and are likely to have 

been the dominant cause of the warming observed since the second half of the 20th century (IPCC, 

2014b, 2014a; Salinger, 2005).  

The estimated human contribution to global warming is shown in Figure 2.7 (IPCC, 2014a, 

2014b), this figure is for the period 1951-2010, the land temperature has increased by about 0.6°C 

seen in the black bar whiskers with an uncertainty interval of 5% to 95%, due to greenhouse gases 

or homogeneously mixed, other anthropogenic forcings (including the cooling effect of aerosols 

and the effect of land use changes), combined anthropogenic forcings, natural forcings, and natural 
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internal variability (which is the element of climate variability that arises spontaneously in the 

climate system, even in the absence of forcings).  

Climate scientists mentioned that global mean temperature and atmospheric carbon 

concentrations began to take on importance between the 1970s and 1980s, which gave climate 

change a global object to be studied on a global scale as well as its periodic assessments; thus, in 

1990 the Intergovernmental Panel on Climate Change (IPCC) has been fundamental to the 

construction of a global ontology of climate change (Livingston et al., 2018). The IPCC was 

established by the World Meteorological Organization (WMO) and the United Nations 

Environment Programme (UNEP-UN) to assess scientific, technical, and socio-economic 

information for understanding the risk of human-induced climate change (IPCC, 2012, 2014b). 

The 1994 IPCC assessment of the IS92 scenarios concluded that the scenarios were innovative and 

groundbreaking for that date, both regionally and globally; however, improvements should be 

made due to new global meteorological data, greenhouse gas data, as well as changing clean air 

policies adopted by some countries were having an effect (IPCC, 2021). The IPCC has produced 

four generations of emissions scenarios (J. T. S. Pedersen et al., 2022). Three were developed 

under its leadership: the 1990 Scientific Assessment (SA90), the 1992 IPCC Scenarios (IS92), and 

the Special Report on Emission Scenarios (SRES). The fourth comprises the Representative 

Concentration Pathways (RCPs) and the Shared Socioeconomic Pathways (SSPs), which served 

as the basis for Phases 5 and 6 of the Climate Model Intercomparison Project (CMIP5/CMIP6). 

The RCPs have been used in the scenario-based literature informing the IPCC Fifth Assessment 

Report (AR5), while the SSP/RCP combination will be used for the IPCC Sixth Assessment Report 
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(AR6). CMIP6 selected the SSP/RCP combinations to be highlighted in AR6 (Figure 2.8) (J. S. T. 

Pedersen et al., 2020).   

On the other hand, as mentioned above, in this research we will analyze and use the RCP 

scenarios in South America. The RCPs are a set of four pathways developed by the IPCC and 

published in 2014 (AR5) and they were developed based on the concentration trajectory of 

greenhouse gases in the atmosphere (IPCC, 2014a). The four RCPs cover the range of radiative 

forcing values for the year 2100 and they are 2.6, 4.5, 6.0, and 8.5 W/m2 (Chou et al., 2014; IPCC, 

2014b; J. T. S. Pedersen et al., 2022).  

For the development of the RCPs, seven steps were considered seven steps within three 

groups; for example, Integrated Assessment Models (IAMs), Processing and Completion, and RCP 

repository (Figure 2.9), where the RCPs are based on scenarios published in the existing literature 

in terms of emissions and concentrations, they provide information on all components of radiative 

forcing that are needed as input for climate and atmospheric chemistry modeling such as 

greenhouse gas emissions and land use, and this data was harmonized over the base year for 

emissions and land use for historical and future period analyses (2100) (van Vuuren et al., 2011).  

The RCPs should not be interpreted as forecasts or absolute limits, nor should they be viewed 

as prescriptive policies (Carlsen et al., 2017; van Vuuren et al., 2011). The RCPs describe a set of 

possible developments in emissions and land use, based on consistent scenarios representative of 

the current literature (van Vuuren et al., 2011). The RCPs scenarios encompass time series of 

emissions and concentrations of the full range of greenhouse gases and aerosols and chemically 

active gases, as well as land use and land cover. The word "representative" means that each 

concentration trajectory provides one of many possible scenarios that would lead to specific 
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radiative forcing characteristics. The word trajectory emphasizes that only long-term concentration 

levels are of interest, but also indicates the path followed over time to arrive at the outcome in 

question (Riahi et al., 2017; van Vuuren et al., 2017). Representative concentration trajectories 

generally refer to the part of the concentration trajectory up to the year 2100, for which models 

have been used to model the concentration trajectory 2100, for which the integrated assessment 

models have generated the corresponding emissions scenarios (IPCC, 2014b, 2014a).  

− RCP 2.6: Trajectory in which radiative forcing peaks at about 3 W/m2 before 2100 and 

then decreases (the corresponding extended concentration trajectory under the assumption 

of constant emissions after 2100). 

− RCP 4.5 and RCP6.0: Two intermediate stabilization trajectories in which radiative forcing 

stabilizes at about 4.5 W/m2 and 6.0 W/m2 after 2100 (the corresponding extended 

concentration trajectory under the assumption that concentrations are constant after 2150). 

− RCP 8.5: High trajectory for which radiative forcing reaches values >8.5 W/m2 in 2100 

and continues to increase for a time lag (the corresponding extended concentration 

trajectory assuming constant emissions after 2100 and constant concentrations after 2250). 

Climate change review in ecoregions 

In South America (SA), the effects of climate change on temperature and precipitation for 

2050-2080 were analyzed with a baseline from 1980 to 2005; the results showed that for the austral 

summer (DJF) and winter (JJA), there will be an increase in the frequency and intensity of extreme 

daily rainfall events over the southeast and extreme north of South America; furthermore, in the 

Amazon during DJF, there is a statistically significant increase in the number of consecutive dry 

days and a decrease in the number of consecutive wet days (Reboita et al., 2022). In addition, 



32 

 

deforestation, fires, and deaths associated with extreme weather conditions such as droughts, have 

generated the Amazon forests are threatened to become a savannah (Stark et al., 2020), as a result, 

studies of climate change in this type of Biome are urgently needed.  

Some dynamic vegetation models have been used, and the results of the projections show 

that some areas of tropical rainforest in the Amazon region are replaced by deciduous forests and 

grasslands in the RCP 4.5 scenario and only by grasslands in the RCP 8.5 scenario at the end of 

this century; however, a reduction of the Amazon biome can generate a positive feedback of the 

temperature increase and affect the regional hydrological cycle (Lyra et al., 2016). Also, warming 

is projected throughout South America, with greater amplitude in the Eta scenario forced by 

HadGEM2-ES RCP 8.5 based on the baseline period, 1961-1990, and three-time slices 2011-2040, 

2041-2070 and 2071-2100, and for the two emission scenarios RCP 4.5 and RCP 8.5 and 

precipitation in DJF, there will be the greatest reduction from NO to CS regions, an area generally 

occupied by the South Atlantic Convergence Zone (SACZ) (Chou et al., 2014). Other research 

related to the formation of savannas for future climates (RCP 8.5) in the Amazon and Northern 

Brazil where it is stated that there is a possible increase in the aridity of 33.8% and 36.9% (UNEP 

index) and 4.6% and 13.9% (Budyko index) respectively, by the end of the 21st century (Fernandez 

et al., 2019). Otherwise, preserving the Amazon is of great importance for the hydrological cycle, 

for example, the fraction of the mean annual precipitation that has been transpired by trees in the 

Amazon basin can be as high as 50% (blue color on the right side of the Andes Mountains, 

highlands of Peru) (Figure 2.10) (Espinoza et al., 2020; Staal et al., 2018). More studies are needed 

to understand the hydrological relationship between the Andes and the Amazon rainforest in the 

context of climate change. 
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In general, climate change studies and analyses of temperature and precipitation for the 

Sechura, Páramos, and Napo ecoregions are very scarce (Table S2.1), and studies are usually 

presented for all South America.  

In scenarios of climate change (2035-2065 RCP 8.5 - 1 km of resolution), the Sechura 

desert is expected in most of the zones, there will be no changes that will affect its biome, however, 

in some zones, there may be an increase in vertical structure as well as in humidity compared to 

1981-2010 climate data (Table S2.1) (Zevallos & Lavado-Casimiro, 2022). Also, in the northern 

zone of the Sechura Desert by 2100 (26 GCMs from CMIP5 in the four RCPs scenarios with a 

resolution of 1° × 1°), the temperature is expected to increase by over 1.5 °C and the annual 

precipitation from 50 to over 150 mm/year relative to the pre-industrial period (1861-1890) (Torres 

et al., 2022).  

In Peru, Ecuador, Colombia, and Venezuela for the A1B 2010-2039 and A1B 2040-2069 

scenarios, the páramo shows a loss of potential and remaining area concerning the year 2000 

(Tovar et al., 2013). In the potential areas, part of the páramo will be replaced by forest biomes, 

but the páramo appears to be more affected by land use change than by climate change. Projections 

suggest that the páramo shows an upward shift and an average loss of 31.4% is projected for the 

potential distribution, but only 25% for the remnant areas (A1B, 2010-2039) (Table S2.1) (Josse 

et al., 2009; Tovar et al., 2013). In this way, Páramos located at the highest elevations, are the most 

at risk due to the lack of upland areas for migration (Tovar et al., 2013). Also, Páramos have soils 

with high organic matter content as well as high humidity, which conditions their presence 

(Hofstede & Llambí, 2020; Tovar et al., 2013). 
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Then, the Tropical forests are threatened by deforestation, fragmentation, land use change, 

and climate change in South America (Morris, 2010). However, vegetation also regulates climate, 

so it was found that exposure to heat stress due to deforestation was comparable to the effect of 

climate change under RCP 8.5 (2073-2100) compared to a historical period (1980-2010) in the 

Napo ecoregion (Alves de Oliveira et al., 2021), and increases in its mean annual temperature and 

annual precipitation for 2030, 2050 and 2080; for example, the RCP 8.5 (5 km resolution) for 2080 

shows an increase in average temperature for this ecoregion of 4.2 ˚C and 349 mm in annual 

precipitation compared to a 1981 to 2010 baseline (Table S2.1) (Beltrán-Tolosa et al., 2020). 

Temperature and precipitation: exploratory and statistical analysis 

For the analysis of temperature and precipitation for 2050 under the RCP 2.6, 4.5, and 8.5 

scenarios, 25 GCMs were used at the country level, and 26, 24, and 25 GCMs (10 minutes of 

resolution) were used for ecoregions such as the Sechura Desert, Páramo, and Napo Moist Forest, 

respectively; it should be noted that the number of GCMs varies depending on their availability 

for each country or ecoregion. For details of the GCMs such as the average temperature and 

precipitation values for the baseline and their names and origins, see these tables in the 

supplementary data (Tables S2.2, S2.3, S2.4, S2.5, and S2.6).  

Table 2.1 shows the changes in average annual temperatures (°C) for the three countries 

and three ecoregions. The second column shows annual average temperatures for the baseline 

(1970-2000) for these areas. The temperature variations for RCPs 2.6, 4.5, and 8.5 are shown 

below, where the minimum and maximum values of the differences between the mean 

temperatures of the set of GCMs for 2050 of the three RCPs relative to the baseline were selected. 
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These differences in minimum values, maximum values, and ensembles all have positive signs, so 

it is expected that the annual mean temperature will increase in all study areas and all scenarios. 

In addition, Table 2.2 below shows the changes in annual precipitation (mm) for the three 

countries and the three ecoregions. The second column shows the average annual precipitation 

from 1970 to 2000 for these zones. The annual precipitation changes for RCPs 2.6, 4.5, and 8.5 

are shown below, where the differences between the annual precipitation of the 2050 RCPs with 

the baseline indicate that annual precipitation will increase (where the sign is positive) in all study 

zones and all scenarios; however, some GCMs have negative signs, which indicate that there is a 

reduction in the annual precipitation by 2050 in the three RCPs. Then, the GCMs indicating the 

greatest reduction in precipitation (negative sign), as well as the GCMs indicating the greatest 

increase in precipitation (positive sign), were selected for these RCPs. Finally, all ensembles for 

the three RCPs indicated that annual precipitation would increase by 2050. 

The spatial variation of the differences of the 25 GCMs (10 minutes resolution) for the 

temperature (°C) vs. annual precipitation (mm) variables for the three countries for the three RCPs 

vs. the baseline are shown in Figures 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16. Figures S2.1, S2.2, and 

S2.3 show the annual precipitation (mm) versus temperature (°C) variables in the three countries 

for the three RCPs 2050. These figures help us to identify the GCMs with low annual precipitation 

and low temperature or high annual precipitation and high temperature or low annual precipitation 

and high temperature or high annual precipitation and low temperature as well as their proximity 

to the ensembles. 
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Four tables are shown below, two for temperature (°C) ensembles (Tables 2.3 and 2.4) and 

the others for precipitation (mm) (Tables 2.4 and 2.5) for the baseline and the 2050-RCPs in the 

three ecoregions (1 km resolution). These ensembles were constructed from 14 GCMs. 

The minimum temperatures of the Sechura Desert are below zero degrees and are at a higher 

altitude. Likewise, their minimum temperatures remain below zero for all three RCPs in 2050 

concerning the baseline. On the other hand, for maximum temperatures, there is an increase from 

1.82 °C, 2.17 °C, and 2.55 °C for RCPs 2.6, 4.5, and 8.5 in 2050 concerning the baseline. 

Furthermore, the minimum temperatures in the Páramo decrease only for RCP 2.6 by 0.31 °C but 

not for RCPs 4.5 and 8.5 compared to the baseline. Otherwise, maximum temperatures increase 

from 1.21 °C to 1.93 °C in 2050 at the baseline. Average temperatures increase from 1.24 °C, 1.63 

°C, and 2.11 °C for RCPs 2.6, 4.5, and 8.5 in 2050 from 1970-2000. Lastly, the minimum 

temperatures of the Napo increased for the three RCPs by 0.73 °C, 1.16 °C, and 1.65 °C compared 

to the baseline. Otherwise, maximum temperatures increase from 1.44 °C to 2.44 °C in 2050 

compared to the baseline. Average temperatures increase from 1.59 °C, 2.02 °C, and 2.56 °C for 

RCPs 2.6, 4.5, and 8.5 in 2050 compared to 1970-2000. 

The standard deviations for the temperature values for the baseline and the three climate 

change scenarios 2050 RCPs were also analyzed for each ecoregion, where the Sechura Desert has 

the highest deviations compared to the Páramo and Napo (Tables 2.3 and 2.4), possibly due to the 

large variation in altitude of this ecoregion. 

The annual precipitation was also analyzed for the 1970-2000 and the three 2050-RCPs in 

the three ecoregions (Tables 2.5 and 2.6). The Sechura desert presented the lowest annual 

precipitation with 183.72 mm (minimum precipitation of 0 and maximum of 1194 mm). For the 
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three climate change scenarios, there will also be zero precipitation values, but there will be an 

increase in the maximum annual precipitation compared to 1970-2000.  The páramo has an annual 

precipitation of 1151.41 mm with a minimum of 262.00 mm and a maximum of 3169.00 mm for 

1970-2000. The climate change scenarios for 2050-RCPs show increases in both the average 

annual precipitation and its minimum and maximum values concerning the baseline. Ultimately, 

Napo has an annual precipitation of 2977.45 mm with a minimum precipitation of 1630.00 mm 

and a maximum of 4778.00 mm. The annual precipitation for this ecoregion does not increase for 

the scenario 2.6 but it does for scenarios 4.5 and 8.5. On the other hand, the minimum and 

maximum precipitation for the three climate change scenarios increase, the maximum precipitation 

presents an increase of over 469.5 mm per year. On the other hand, the minimum and maximum 

precipitation for the three climate change scenarios (RCPs 2.6, 4.5, and 8.5) increased, the 

minimum precipitation presented an increase of over 210.21 mm and the maximum precipitation 

presented an increase of over 469.5 mm per year.  

The standard deviation for annual precipitation in the Sechura desert for 1970-2000 is 

225.50 and the standard deviations for RCPs 2.6, 4.5, and 8.5 in 2050 are above this value. For the 

Páramo the standard deviation is 329.50 in its baseline and for the three RCPs, their standard 

deviations are above this value. Lastly, the standard deviation of the Napo for the baseline is 493.47 

and this decreases for RCPs 2.6, 4.5, and 8.5 in 2050 and these are their values of 471.72, 476.07, 

and 479.75 respectively. 

The spatial variation of the differences of the ensembles made for temperature (°C) and 

annual precipitation (mm) for RCPs 2.6, 4.5, and 8.5 by 2050 from the 14 GCMs vs. the baseline 

(1 km resolution) for the three ecoregions are shown in Figures 2.17, 2.18 and 2.19. For the Sechura 
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desert in the three RCPs, temperatures with maximums of over 6.10 (°C) were observed for the 

central-southern part, while annual precipitation (mm) decreases for the coastal part but increases 

for the areas near the Andes Mountains. Also, in the Páramo ecoregion for the three RCPs, 

increases in mean annual temperature with maximums of over 10 (°C) were noted; in terms of 

precipitation, a decrease in annual precipitation is observed for the páramos of Peru, Ecuador, and 

Venezuela in most areas. In the Napo, there are pronounced temperature increases in the eastern 

part (maximum temperatures above 2.71 °C) and a decrease in temperature in the western part, 

and for annual precipitation, there is a decrease in the central part of this ecoregion and an increase 

in the northern and southwestern part. 

Sechura Ecoregion 

The distribution of temperature (ºC) and precipitation (mm) for 1970-2000 and three 

climate change scenarios for the Sechura (Desert) ecoregion respectively are shown in Figures 

2.20 and 2.21, showing the non-normal distribution of the data. In the case of temperature, there 

is a bimodal distribution (Figure 2.20), and in the case of precipitation, there is a skewed right 

distribution (mean > median) (Figure 2.21). Q-Q plots, histograms, and boxplots for temperature 

and precipitation for the baseline (1970-2000) and the three RCPs 2.6, 4.5, and 8.5 for 2050 in the 

Sechura ecoregion were analyzed and suggest that there are serious violations of normality 

assumptions (Skewed) and several atypical values for low temperatures and high precipitation 

(Figures S2.4, S2.5 and S2.6). 

The Anderson-Darling normality test was performed for the temperature (ºC) (Table S2.7) 

and precipitation data (mm) (Table S2.8) for this ecoregion, there is very strong evidence to reject 

the null hypothesis that the data follow a normal distribution for the baseline and the three RCPs 
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in 2050. Therefore, the alternative hypothesis that temperature (p-value=3.7x10-24) and 

precipitation (p-value=3.7x10-24) for the Sechura ecoregion that is not following a normal 

distribution is accepted.  

In Figure S2.6, the median temperature (ºC) obtained for this ecoregion in the baseline 

period (1970-2000) was 17.22 ºC. After that, the medians of temperature (ºC) for the RCPs 2050 

(2.6, 4.5, and 8.5) were calculated, which show an increase in units; these medians were 18.22 ºC, 

18.69 ºC, and 19.17 ºC, respectively. On the other hand, precipitation (mm) medians were 

calculated for the baseline and the RCPs (2.6, 4.5, and 8.5) for 2050 (Figure S2.6). These medians 

were 64 mm; 56.93 mm; 57.71 mm and 58.57 mm respectively. The three RCPs medians for 

precipitation are lower than the median precipitation for the baseline. 

 

Kruskal-Wallis test for Temperature (ºC) in the Sechura Ecoregion: In Figures 2.22 and 2.23, 

pairwise comparisons were made for temperature (ºC) and precipitation (mm) for the baseline and 

the three climate change scenarios for 2050 in this ecoregion.  

The Kruskal-Wallis test (Table S2.13) and Figure 2.22 showed that there is very strong (or 

convincing) (p-value < 0.001) evidence against the null hypothesis that the median for temperature 

(C°) between the baseline and the three RCPs 2050 (2.6; 4.5 and 8.5) are equal and in favor that 

there is at least one pair of differences among the four medians in the Sechura Ecoregion. 

That is, we reject H0: M1970-2000 = M26 = M45 = M85 in favor of H1: Mi ≠ Mj for some i ≠ 

j where i, j represent the temperature (C°) for the baseline and the three RCPs scenarios 1970-

2000, 26, 45 and 8.5.  
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Kruskal-Wallis test for precipitation (mm) in the Sechura Ecoregion: The Kruskal-Wallis test and 

Figure 2.23 and table S2.14 showed that there is very strong (or convincing) (p-value < 0.001) 

evidence against the null hypothesis that the median for precipitation (mm) between the baseline 

and the three RCPs 2050 (2.6; 4.5 and 8.5) are equal and in favor that there is at least one pair of 

differences among the four medians in the Sechura Ecoregion. 

That is, we reject H0: M1970-2000 = M26 = M45 = M85 in favor of H1: Mi ≠ Mj for some i ≠ j 

where i, j represent the precipitation (mm) for the baseline and the three RCPs scenarios 1970-

2000, 26, 45 and 8.5. 

Páramo Ecoregion 

The distribution of temperature (ºC) and precipitation for 1970-2000 and three climate 

change scenarios for the Páramo ecoregion respectively are shown in Figures 2.24 and 2.25. In the 

case of temperature, there is a normal distribution (Figure 2.24) for the baseline and the three 

RCPs, and in the case of precipitation, there is a Skewed Right distribution of the data for the 

baseline, and bimodal distribution for the RCPs 2.6, 4.5 and 8.5 (Figure 2.25). 

Q-Q plots, histograms, and boxplots for temperature (ºC) and precipitation (mm) for the 

baseline (1970-2000), and the three RCPs 2.6, 4.5, and 8.5 for 2050 in the Páramo ecoregion were 

analyzed and suggest that there are serious violations of normality assumptions (Skewed) and 

several atypical values for low and high temperatures (Baseline and RCPs). These atypical values 

are also observed for annual precipitation, for example in the baseline we have these values for 

both low and high precipitation and in the RCPs only for high precipitation (Figures S2.7, S2.8, 

and S2.9).  

The Anderson-Darling normality test was performed for the temperature (ºC) (Table S2.9) 



41 

 

and annual precipitation (mm) (Table S2.10) for this ecoregion. There is very strong evidence to 

reject that the data for temperature (p-value=3.7x10-24) and annual precipitation (p-value=           

3.7x10-24) follow a normal distribution for the baseline and the three RCPs in 2050. So, the 

alternative hypothesis is accepted that the temperature and precipitation for the Páramo ecoregion 

that is not following a normal distribution. 

The median temperature (ºC) obtained for this ecoregion in the baseline period (1970-2000) 

was 7.80 ºC. After that, the medians of temperature (ºC) for the RCPs 2050 (2.6, 4.5, and 8.5) were 

calculated (Figure S2.9), which show an increase in units; these medians were 9.01 ºC, 9.39 ºC, 

and 9.88 ºC, respectively. On the other hand, precipitation (mm) medians were calculated for the 

baseline and the RCPs (2.6, 4.5, and 8.5) for 2050, these medians were 1073.00 mm; 1153.50 mm; 

1166.53 mm, and 1176.64 mm respectively (Figure S2.9). The three RCPs medians for 

precipitation are lower than the median precipitation for the baseline. 

 

Kruskal-Wallis test for Temperature (ºC) in the Páramo Ecoregion: In Figures 2.26 and 2.27, 

pairwise comparisons were made for temperature (ºC) and precipitation (mm) for the baseline and 

the three climate change scenarios for 2050 in this ecoregion. 

The Kruskal-Wallis test and Figure 2.26 and Table S2.15 showed that there is very strong 

(or convincing) (p-value < 0.001) evidence against the null hypothesis that the median for 

temperature (C°) between the baseline and the three RCPs 2050 (2.6; 4.5 and 8.5) are equal and in 

favor that there is at least one pair of differences among the four medians in the Páramo Ecoregion. 

That is, we reject H0: M1970-2000 = M26 = M45 = M85 in favor of H1: Mi ≠ Mj for some i ≠ j 

where i, j represent the temperature (C°) for the baseline and the three RCPs scenarios 1970-2000, 
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26, 45 and 8.5. 

 

Kruskal-Wallis test for precipitation (mm) in the Páramo Ecoregion: The Kruskal-Wallis 

test and Figure 2.27 and Table S2.16 showed that there is very strong (or convincing) (p-value < 

0.001) evidence against the null hypothesis that the median for precipitation (mm) between the 

baseline and the three RCPs 2050 (2.6; 4.5 and 8.5) are equal and in favor that there is at least one 

pair of differences among the four medians in the Sechura Ecoregion.  

That is, we reject H0: M1970-2000 = M26 = M45 = M85 in favor of H1: Mi ≠ Mj for some i ≠ j 

where i, j represent the precipitation (mm) for the baseline and the three RCPs scenarios 1970-

2000, 26, 45 and 8.5. 

Napo Ecoregion 

The distribution of temperature (ºC) and precipitation for 1970-2000 and three climate 

change scenarios for the Napo ecoregion respectively are shown in Figures 2.28 and 2.29. In the 

case of temperature, there is a Skewed Left distribution (Figure 2.28) for the baseline and the three 

RCPs, and in the case of precipitation there is a Multimodal distribution of the data for the baseline, 

and for the RCPs 2.6, 4.5 and 8.5 (Figure 2.29).  

Q-Q plots, histograms, and boxplots for temperature and precipitation for the baseline 

(1970-2000) and the three RCPs 2.6, 4.5, and 8.5 for 2050 in the Sechura ecoregion were analyzed 

and suggest that there are serious violations of normality assumptions (Skewed) and several 

atypical values for low temperatures and high precipitation (Figures S2.10, S2.11 and S2.12). 

The Anderson-Darling normality test was performed for the temperature (Table S2.11) and 

precipitation data (Table S2.12) for this ecoregion, there is very strong evidence to reject that the 
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data follow a normal distribution for the baseline and the three RCPs in 2050. Therefore, the 

alternative hypothesis is accepted that temperature (p-value=3.7x10-24) and precipitation (p-

value=3.7x10-24) for the Napo ecoregion that is not following a normal distribution. 

The median temperature (ºC) obtained for this ecoregion in the baseline period (1970-2000) 

was 25.66 ºC. After that, the medians of temperature (ºC) for the RCPs 2050 (2.6, 4.5, and 8.5) 

were calculated, which show an increase in units; these medians were 27.35 ºC, 27.29 ºC, and 

28.34 ºC, respectively (Figure S2.12). On the other hand, precipitation (mm) medians were 

calculated for the baseline and the RCPs (2.6, 4.5, and 8.5) for 2050, these medians were 2972.00 

mm; 2823.14 mm; 2901.29 mm, and 2905.21 mm respectively (Figure S2.12). The three RCPs 

medians for precipitation are lower than the median precipitation for the baseline. 

  

Kruskal-Wallis test for Temperature (ºC) in the Napo Ecoregion: In Figures 2.30 and 2.31, 

pairwise comparisons were made for temperature (ºC) and precipitation (mm) for the baseline and 

the three climate change scenarios for 2050 in this ecoregion. 

The Kruskal-Wallis test and Figure 2.30 showed that there is very strong (or convincing) 

(p-value < 0.001) evidence against the null hypothesis that the median for temperature (C°) 

between the baseline and the three RCPs 2050 (2.6; 4.5 and 8.5) are equal and in favor that there 

is at least one pair of differences among the four medians in the Napo Ecoregion (Table S2.17). 

That is, we reject H0: M1970-2000 = M26 = M45 = M85 in favor of H1: Mi ≠ Mj for some i ≠ j where i, 

j represent the temperature (C°) for the baseline and the three RCPs scenarios 1970-2000, 26, 45 

and 8.5.  
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Kruskal-Wallis test for precipitation (mm) in the Napo Ecoregion: The Kruskal-Wallis test 

and Figure 2.31 and Table S2.18 showed that there is very strong (or convincing) (p-value < 0.001) 

evidence against the null hypothesis that the median for precipitation (mm) between the baseline 

and the three RCPs 2050 (2.6; 4.5 and 8.5) are equal and in favor that there is at least one pair of 

differences among the four medians in the Napo Ecoregion. 

That is, we reject H0: M1970-2000 = M26 = M45 = M85 in favor of H1: Mi ≠ Mj for some i ≠ 

j where i, j represent the precipitation (mm) for the baseline and the three RCPs scenarios 1970-

2000, 26, 45 and 8.5. 

Lastly, we have the density plots that indicate where the data are most dense or likely, i.e., 

these plots allow us to visualize where the average annual temperature and annual precipitation 

data for the baseline (1970-2000) and the three RCPs for 2050 (2.6, 4.5 and 8.5) are most dense 

(Figures S2.13, S2.14 and S2.15).  

In general, the temperature density curves for the three RCPs in the three ecoregions 

compared to the baseline are shifted to the right which means that they show increases in mean 

annual temperatures and the low temperatures and high temperatures increase their value. On the 

other hand, in the case of precipitation, there is a slight increase in annual precipitation for high 

values for the Sechura desert in the three RCPs compared to the baseline (Figure S2.13). Also, for 

the Páramo ecoregion, there is a decrease in density or probability for annual precipitation near or 

at 1000 mm for RCPs 2.6, 4.5, and 8.5 in 2050 compared to the baseline, but a slight increase in 

the density or probability of precipitation near or at 2500 mm is observed (Figure S2.14). Then, 

for the Napo ecoregion for the three RCPs in 2050 compared to the baseline, there is a decrease in 

precipitation density near or at values of 2300 mm and 3200 mm, but there is an increase for 
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precipitation density at values of 2700 mm up to 2900 mm (Figure S2.15). 

Discussion 

The analysis of changes in temperature and precipitation for the baseline (1970-200) and 

for the 2050 RCPs (2.6, 4.5, and 8.5) are important before using SDM models for species or 

ecoregions in the three countries, as mentioned by (Booth, 2022).  

Analyzing climate change using variables such as temperature (C°) and annual 

precipitation (mm) in three bordering countries from official data published by their National 

Meteorological and Hydrological Services is a bit complex. The Andean and Amazonian zones 

are poorly instrumented, and the number of stations varies greatly from one country to another 

(Campozano et al., 2020; Condom et al., 2020; Newell et al., 2022),  making it very difficult to 

make climate change projections jointly for the three countries. For regional Climate Change 

studies, standardized climate data is needed in terms of temporal and spatial resolution (extent, 

resolution, and Coordinate Reference Systems); for which data from Climate Change, Agriculture, 

and Food Security (“ccafs”) and WorldClim (CMIP5) were used (Fick & Hijmans, 2017; Navarro-

Racines et al., 2020).  

Some evidence considered overwhelming of climate change estimates that global 

temperature is projected to increase by up to 4 °C by 2100 (Thuiller, 2007), with alterations in 

precipitation patterns. However, in our research some GCMs (10 minutes resolution) (Tables S2.3 

and S2.6.) such as GFDL.CM3, shows already an increase in the average temperature for Peru, 

Ecuador, and Colombia above 4 ºC for RCPs 4.5 and 8.5 in 2050, and the GCM named 

IPSL.CM5A.LR also shows an increase in the average temperature above 4 ºC in the NAPO 

ecoregion for the RCP 8.5-2050.  
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Also, investigations show a reduction in precipitation under SRES (Special Report on 

Emissions Scenarios) climate change scenarios in the tropics and an increase in precipitation in 

the southeastern part of South America (Chou et al., 2014); but this research provides an analysis 

at the ecoregion level as well as the spatial distribution of precipitation for a baseline (1970-2000) 

and for three RCPs in 2050. It is also necessary to further investigate the change in 

rainfall intensities in scenarios of climate change and to see what effects these have on the changes 

in the annual precipitation value for each study zone. 

Understanding changes in climate variability and extremes is challenged by the interactions 

between changes in mean and variability (Meehl et al., 2000). The IPCC presents three 

assumptions for temperature changes in climate change environments with a normal distribution 

(Easterling et al., 2012; Folland et al., 2002; Haywood & Schulz, 2007; Kodra & Ganguly, 2014; 

Lewis & King, 2017; Olsen, 2015; Thornton et al., 2014). An increase in the mean leads to new 

temperature records, but a change in the mean implies no change in variability and the range 

between the warmest and coldest temperatures does not change. An increase in variability without 

a change in the mean implies an increase in the probability of hot and cold extremes, as well as in 

the absolute value of the extremes, and finally, an increase in the mean and variability is also 

possible, which affects the probability of hot and cold extremes, with more frequent hot events 

with more extreme high temperatures and fewer cold events. In contrast, in our research we have 

temperature data without normal distribution, but when analyzing the temperature density plots 

for the baseline and the three RCPs in 2050 for the three ecoregions. A shift to the right is observed 

for the RCPs, which implies that we will have warmer temperatures concerning the baseline 

(Figures S2.13, S2.14, and S2.15).  
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In the case of annual precipitation, it is more complex to analyze in terms of density plots 

because in no ecoregion do we have a normal distribution for this variable. In the Páramo 

Ecoregion (Figure S2.14) there is a decrease in annual precipitation close to 1000 mm and an 

increase in annual precipitation to values close to 2000 and 2300 mm. So, in the case of 

precipitation, for example, changes in total mean precipitation may be accompanied by other 

changes such as the frequency of precipitation or the shape of the distribution including its 

variability, i.e. more in-depth studies such as Intensity-Duration-Frequency of rainfall in climate 

change environments should be done (Das et al., 2022; Pendergrass & Hartmann, 2014; Sun et al., 

2019). Nonetheless, in our research at least we have minimum, maximum, and average values of 

annual precipitation which helps us to infer the change in cumulative precipitation for the baseline 

and the three climate change scenarios at the ecoregion or country level. 

Finally, no transformation of the data was performed to achieve a normal distribution for 

the following reason: the transformation of the data must be done carefully so that the transformed 

data continue to represent the same physical processes as the original data (WMO, 2018). 

Likewise, our research question was to keep the original temperature (ºC) and annual precipitation 

(mm) data for interpretation, both for the baseline and for the climate change scenarios.  

Conclusions 

A general review of changes in temperature (°C) and annual precipitation (mm) at the 

country and ecoregion level was made, which will help us to understand the variables derived from 

these, such as Bioclim variables, and to understand the possible effects of these variables on the 

distribution of species and ecoregions in environments of climate change.  

The findings of this study reveal a consistent trend across all General Circulation Models 
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(GCMs) used, indicating a projected rise in annual average temperatures by 2050 at both the 

country and ecoregion levels. Additionally, a majority of the GCMs suggest an increase in annual 

precipitation during the same period, but a more local and intensity-duration-frequency (IDF) 

analysis is needed.  

Finally, the comparison of medians was important in the statistical analysis part because it 

allowed us to compare the central tendencies of two or more data sets. The median is a measure of 

central tendency that represents the average value of a set of data when ordered in ascending or 

descending order (Prasad, 2022; Ramsey & Schafer, 2013). In many cases, the mean is used as a 

measure of central tendency, however, the extreme values of the data set strongly influence the 

mean (Ramsey & Schafer, 2013). In contrast, the median is not affected by outliers, making it a 

more robust measure of central tendency. Comparing medians helped us to establish whether there 

are significant differences between two or more data sets. In the context of climate change, 

comparing the median of temperature (°C) or annual precipitation (mm) values over two different 

periods can help us assess whether a significant change has occurred. 
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Tables 

Table 2.1 Average annual temperature (°C) differences for 2050 RCPs and baseline (1970-2000) 

(10 minutes). 

Countries and 

ecoregions 

Baseline   

T °C  

RCP2.6 RCP 4.5 RCP 8.5 

Min 

value 

Max 

value 
Ensemble 

Min 

value 

Max 

value 
Ensemble 

Min 

value 

Max 

value 
Ensemble 

Peru, Ecuador, 

and  

Colombia 

21.7 1.0 2.8 1.6 1.0 3.4 1.9 1.5 4.2 2.7 

Sechura Desert 

(Deserts & Xeric 

Shrublands) 

15.0 1.0 2.4 1.6 0.9 3.0 1.9 2.1 3.7 2.7 

Páramo (Montane 

Grasslands & 

Shrublands) 

7.5 0.9 2.4 1.5 1.1 3.0 1.8 1.7 3.8 2.6 

Napo moist 

forests (Tropical 

& Subtropical 

Moist Broadleaf 

Forests) 

25.7 0.9 3.3 1.6 1.0 4.0 2.0 1.7 4.9 2.8 

 

 

Table 2.2 Annual precipitation (mm) differences for 2050 RCPs and baseline (1970-2000) (10 

minutes). 

Countries and 

ecoregions 

Baseline 

mm 

RCP2.6 RCP 4.5 RCP 8.5 

Min 

value 

Max 

value 
Ensemble 

Min 

value 

Max 

value 
Ensemble 

Min 

value 

Max 

value 
Ensemble 

Peru, Ecuador, 

and  

Colombia 

2068.7 -117.5 144.9 48.5 -160.6 219.0 64.5 -210.4 279.2 71.4 

Sechura Desert 

(Deserts & Xeric 

Shrublands) 

190.3 -11.6 196.1 49.1 -13.2 237.3 64.3 -3.5 286.3 81.8 

Páramo (Montane 

Grasslands & 

Shrublands) 

1206.5 -98.8 241.0 73.9 -87.0 70.9 93.3 -50.2 165.2 96.2 

Napo moist 

forests (Tropical 

& Subtropical 

Moist Broadleaf 

Forests) 

2825.1 -233.7 195.3 5.0 -415.2 381.9 30.7 -487.7 472.7 40.5 
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Table 2.3 Average annual temperature (°C) for the baseline (1970-2000) and 2050 RCP 2.6 (1 

km). 

Ecoregions 

Baseline (1970-2000) RCP2.6 

x̄ 
Min 

value 

Max 

value 

Std 

Dev. 
x̄ 

Min 

value 

Max 

value 

Std 

Dev. 

Sechura Desert (Deserts & Xeric 

Shrublands) 
15.22 -3.47 23.11 5.36 16.35 -3.46 24.93 5.35 

Páramo (Montane Grasslands & 

Shrublands) 
8.00 -4.35 24.58 2.68 9.24 -4.66 25.79 2.82 

Napo moist forests (Tropical & 

Subtropical Moist Broadleaf 

Forests) 

25.64 17.88 27.13 0.75 27.23 18.61 28.53 0.73 

 

 

Table 2.4 Average annual temperature (°C) for the 2050 RCPs 4.5 and 8.5 (1 km). 

Ecoregions 

RCP 4.5 RCP 8.5 

x̄ 
Min 

value 

Max 

value 

Std 

Dev. 
x̄ 

Min 

value 

Max 

value 

Std 

Dev. 

Sechura Desert (Deserts & Xeric 

Shrublands) 
16.81 -2.89 25.28 5.32 17.3 -2.39 25.66 5.31 

Páramo (Montane Grasslands & 

Shrublands) 
9.63 -4.25 26.13 2.82 10.11 -3.86 26.51 2.84 

Napo moist forests (Tropical & 

Subtropical Moist Broadleaf 

Forests) 

27.66 19.04 28.99 0.77 28.2 19.53 29.57 0.78 

 

 

Table 2.5 Annual precipitation (mm) for the baseline (1970-2000) and RCP 2.6 (1 km). 

Ecoregions 

Baseline (1970-2000) RCP2.6 

Annual 

pp 

Min 

value 

Max 

value 

Std 

Dev. 

Annual 

pp 

Min 

value 

Max 

value 

Std 

Dev. 

Sechura Desert (Deserts & 

Xeric Shrublands) 
183.72 0.00 1194.00 225.50 207.12 0.00 1773.36 279.42 

Páramo (Montane 

Grasslands & Shrublands) 
1151.41 262.00 3169.00 329.50 1301.34 302.93 3645.21 495.85 

Napo moist forests 

(Tropical & Subtropical 

Moist Broadleaf Forests) 

2977.45 1630.00 4778.00 493.47 2854.40 1840.21 5247.50 471.72 
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Table 2.6 Annual precipitation (mm) for the RCPs 4.5 and 8.5 (1 km). 

Ecoregions 

RCP 4.5 RCP 8.5 

Annual 

pp 

Min 

value 

Max 

value 

Std 

Dev. 

Annual 

pp 

Min 

value 

Max 

value 

Std 

Dev. 

Sechura Desert (Deserts & 

Xeric Shrublands) 
209.95 0.00 1787.21 283.29 214.50 0.00 1841.86 290.47 

Páramo (Montane 

Grasslands & Shrublands) 
1307.97 307.50 3635.50 491.39 1311.11 319.43 3658.71 484.57 

Napo moist forests 

(Tropical & Subtropical 

Moist Broadleaf Forests) 

2938.57 1867.07 5336.86 476.07 2940.21 1866.00 5371.64 479.75 
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Figures 

 
                                  a                                                                            b 

Figure 2.1. a. Peru, Ecuador, and Colombia with their Ecoregions b. Ecoregions under study 

Sechura Desert, Páramos, and Napo Tropical Forest ecoregions. 

 

 

 

Figure 2.2. CompareR GCM for R (Fajardo et al., 2020). 
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Figure 2.3. Aridity classification based on annual rainfall for the Sechura Desert (Guerrero et al., 

2013). 

 

 

 

Figure 2.4. South America and its main LLJs on both sides of the Andes Mountains (Espinoza et 

al., 2020). 
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Figure 2.5. a.b Long-term mean (1981-2020) winds at 200 hPa (arrows) and precipitation (shades) 

and c,d Long-term mean (1981-2020) winds at 925 hPa (arrows) over blue marble (Data from 

NCEP/NCAR reanalysis) (Espinoza et al., 2020). 
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Figure 2.6. Geologic periods of Earth's history, showing major glacial events in dark bars and 

ecological events that strongly influenced ecosystem processes. Data are in units of millions of 

years (Ma) (Stuart Chapin et al., 2012). 

 

 

 

Figure 2.7. Contributions to the observed change in surface temperature from 1951 to 2010 

(IPCC a, 2014). 
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Figure 2.8. Climate Change Scenarios concerning the amounts of CO2 (Pedersen et al., 2020). 

 

 

 

Figure 2.9. RCPs development process (van Vuuren et al., 2011). 
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Figure 2.10. Fraction of mean annual rainfall that has been transpired by trees in the Amazon 

basin (Staal et al., 2018). 
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Figure 2.11. Differences for temperature (°C) for the RCP 2.6-2050 and the baseline (1970-

2000). 
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Figure 2.12. Differences for annual precipitation (mm) for the RCP 2.6-2050 and the baseline 

(1970-2000). 
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Figure 2.13. Differences for temperature (°C) for the RCP 4.5-2050 and the baseline (1970-

2000). 
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Figure 2.14. Differences for annual precipitation (mm) for the RCP 4.5-2050 and the baseline 

(1970-2000). 
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Figure 2.15. Differences for temperature (°C) for the RCP 8.5-2050 and the baseline (1970-2000). 

 

 

 

 

 

 

 

 



75 

 

 

 
Figure 2.16. Differences for annual precipitation (mm) for the RCP 8.5-2050 and the baseline 

(1970-2000). 
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Figure 2.17. Differences for temperature (ºC) and annual precipitation (mm) for the RCPs 2.6, 4.5 

and 8.5 for 2050 vs the baseline (1970-2000) in the Sechura ecoregion (1 km). 
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Figure 2.18. Differences for temperature (ºC) and annual precipitation (mm) for the RCPs 2.6, 4.5 

and 8.5 for 2050 vs the baseline (1970-2000) in the Páramo ecoregion (1 km). 
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Figure 2.19. Differences for temperature (ºC) and annual precipitation (mm) for the RCPs 2.6, 4.5 

and 8.5 for 2050 vs the baseline (1970-2000) in the Napo ecoregion (1 km). 

 

 

 
Figure 2.20. Distribution of temperature (ºC) for 1970-2000 and three climate change scenarios 

for the Sechura (Desert) ecoregion. 
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Figure 2.21. Distribution of precipitation (mm) for 1970-2000 and three climate change scenarios 

for the Sechura (Desert) ecoregion. 

 

 
Figure 2.22. Comparison of temperature medians (ºC) for 1970-2000 and three climate change 

scenarios for the Sechura (Desert) ecoregion. 



80 

 

 
Figure 2.23. Comparison of precipitation medians (mm) for 1970-2000 and three climate change 

scenarios for the Sechura (Desert) ecoregion. 

 

 
Figure 2.24. Distribution of temperature (ºC) for 1970-2000 and three climate change scenarios 

for the Páramo ecoregion. 
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Figure 2.25. Distribution of precipitation (mm) for 1970-2000 and three climate change scenarios 

for the Páramo ecoregion. 

 

 
Figure 2.26.  Comparison of temperature medians (ºC) for 1970-2000 and three climate change 

scenarios for the Páramo ecoregion. 
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Figure 2.27. Comparison of precipitation medians (mm) for 1970-2000 and three climate change 

scenarios for the Páramo ecoregion. 

 
Figure 2.28. Distribution of temperature (ºC) for 1970-2000 and three climate change scenarios 

for the Napo ecoregion. 
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Figure 2.29. Distribution of precipitation (mm) for 1970-2000 and three climate change scenarios 

for the Napo ecoregion. 

 

 
Figure 2.30. Comparison of temperature medians (ºC) for 1970-2000 and three climate change 

scenarios for the Napo ecoregion. 
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Figure 2.31. Comparison of precipitation medians (mm) for 1970-2000 and three climate change 

scenarios for the Napo ecoregion. 
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Abstract 

 

Peru, Ecuador, and Colombia selected the Spectacled bear and the Páramo ecoregion as 

their pilot species and ecoregion to establish a method for forecasting their habitat suitability based 

on environmental factors for reporting on the Sustainable Development Goals (SDG) 15. We used 

the SDM R package to model the habitat suitability of this species and the ecoregion. For the 

spectacled bear, we used 1192 occurrence records and 1000 pseudo-absences, and for the Páramo, 

we used 50147 occurrence records and 10000 pseudo-absences. We used 19 Bioclim variables, 

elevation, and Human Footprint in the modeling. 

The habitat suitability modeling showed a potential decline in the spectacled bear's habitat 

in two RCPs in the high category of occurrence, while for the Páramo ecoregion, there was a 

decrease in all RCPs in the high category of probability of occurrence too. We found that Random 

Forest performed better than other models within the SDM. The variables of importance in the 

modeling were assessed in the case of the spectacled bear: altitude for current conditions, but in 

the RCPs, the bio6 (Min Temperature of Coldest Month) was found. For the Páramos, the most 

important variable was elevation for both current conditions and for the RCPs 2050. 

Introduction 

There is a biodiversity crisis and the defaunation of the Anthropocene is likely to intensify 

in the future if scenarios of further habitat destruction are considered (Gonçalves-Souza et al., 

2020). Studying habitat distribution under different climate scenarios allows conservationists and 

policy makers to assess the vulnerability of species and ecoregions to climate change (Eigenbrod 

et al., 2015; Foden et al., 2019). In our Life on Land Project will support three countries, Peru, 
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Ecuador, and Colombia in the development of a procedure through Habitat Suitability 

Models (HSMs) or Species Distribution Models (SDMs) to have an approximation to this Red List 

Index based on species and ecoregions occurrences. Suitable habitat is an area within an otherwise 

inhospitable matrix in which a species can potentially or does occur (Delong & Gibson, 2012). 

The suitable habitats are studied employing species distribution models (SDMs), also called 

bioclimatic envelope models, ecological niche models, and habitat suitability models, which allow 

us to see the relationship between the geographical presence of species and environmental 

variables (Guisan and Zimmermann, 2000; Naimi and Araújo, 2016). 

The Red List Index (RLI) is an indicator called 15.5.1, this indicator in turn is part of Target 

15.5 and this target belongs to SDG 15. Thus, this index tracks the global risk of species extinction 

(Raimondo et al., 2023). Peru, Ecuador, and Colombia through the Life on Land Project selected 

priority species for conservation through the SDG 15. Thus, a table of 23 species selected by these 

countries is shown (Table 3.1) to study the probability of their occurrence in current climate 

conditions and in scenarios of climate change combined with the Human Footprint.  

The spectacled bear and the Páramo ecoregion were selected as pilots for the development 

of a methodology to estimate their probability of occurrence with abiotic variables. Also, both are 

found in the three countries and the feeding habits of spectacled bears have been reported in many 

cases within the páramos, hence the importance of modeling the habitat of the spectacled bear and 

this ecoregion (Herrera et al., 1994; Kattan et al., 2004; Suarez, 2008).  

The spectacled bear or Andean bear is the only bear species living in South America and 

is listed as Vulnerable on the IUCN Red List of Threatened Species and it is estimated that there 

are around 2500 to 10000 (02 February 2016) (Velez-Liendo & García-Rangel, 2018).   
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Tremarctos ornatus (F.G. Cuvier, 1825) is called Spectacled bear because most individuals have 

white markings around the eyes, and it is a unique representative mark for each one and its presence 

has been recorded especially in the Andean zone from western Venezuela to southern Bolivia, but 

it may also inhabit areas or habitats such as desert scrublands, páramos, grasslands and cloud 

forests (Castellanos, 2011; Del Moral Sachetti & Lameda Camacaro, 2011; Falconi et al., 2022; 

García-Rangel, 2012; Vela-Vargas et al., 2021). This bear is endangered due to the destruction of 

its habitat by activities such as agricultural expansion, grazing, mining, oil exploration and road 

construction, which induced habitat loss and fragmentation (Goldstein et al., 2006; Morrell et al., 

2021). Thus, bears have been forced to seek other sources of food, which may include crops or 

livestock; these activities may increase the likelihood of human-bear contact and conflict and could 

lead to hunting (Albarracín & Aliaga-Rossel, 2018; Can et al., 2014). 

On the other hand, the Páramos are found above the tropical montane forest biome (⁓3000 

m a.s.l.) and below the cryosphere (⁓5000 m a.s.l.) (Correa et al., 2020). In the Resolve Geoportal 

in the world, we have four Páramos as ecoregions and these are: Cordillera Central Páramo (Peru 

and Ecuador), Northern Andean Páramo (Ecuador and Colombia), Santa Marta Páramo 

(Colombia) and Cordillera de Merida Páramo (Venezuela), finally we will only study the first three 

(Schipper, 2017). Páramos are a tropical alpine biome in the northern Andes (between 11°N and 

8°S) and, to a lesser extent, in parts of Central America and dominated by grasslands, rosettes and 

shrubs but they are difficult to map due to natural and human-induced disturbances (Correa et al., 

2020). The páramos are very important for the amount of water they provide and for their 

participation in the hydrological cycle, they also help in the storage of carbon but are very 

vulnerable to human activities (Buytaert et al., 2006; Correa et al., 2020; INGEAG, 2019).  
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The Life on Land Project is currently creating updated layers for the Human Footprint, and 

the research team intends to integrate other factors such as climatic variables into its methodology. 

This will allow cooperating countries, including Peru, Ecuador, and Colombia, to replicate the 

research using their own selected variables specific to the species and ecoregions of their respective 

countries. The level of the HFP (Venter et al., 2016; Williams, Venter, Allan, et al., 2020; 

Williams, Venter, Rehbein, et al., 2020), can give us an idea of the fragmentation of the habitat of 

species and ecoregions, as well as within the methodology used in this research, we can analyze 

how much each abiotic variable is affected in the modeling and this approach will also help these 

countries meet their voluntary reporting requirements for Sustainable Development Goal 15. 

Methods 

Study Area 

Our study area is Peru, Ecuador and Colombia and the observations of spectacled bears in 

natural conditions within their territory from 1970 onwards. Our study also includes the Páramos 

within these three countries such as Cordillera Central Páramo, Northern Andean Páramo and 

Santa Martha Páramo (Figure 3.1) (Dinerstein et al., 2017b). 

Habitat suitability modeling 

Habitat suitability modeling (HSM) is a method of estimating the suitability of a site for a 

species or species concerning environmental conditions; furthermore, the HSMs are empirical 

methods that relate field observations of species to predictor environmental variables, based on a 

combination of statistically or theoretically derived response curves that reflect their ecological 
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requirements of the species and ecoregion under study (Guisan et al., 2017a; Kellner et al., 1992; 

Rowden et al., 2017), and their results are measured in the probability of occurrence from 0 to 1 

or o using four levels for their potential probability such as the spectacled bear (no potential <0.20, 

low 0.21-0.40, moderate 0.41-0.60 and high >0.61) (Falconi et al., 2022; Mori et al., 2020).  And 

using four levels for the Páramo ecoregion: 0-0.46, 0.47-0.64, 0.65-0.81 and 0.82-1 (Valencia et 

al., 2020).  

To support countries in their reporting for SDG 15, Indicator 15.5.1 Red List Index, Peru, 

Ecuador, and Colombia selected vertebrates, plants, and ecoregions to protect and conserve (Table 

3.1). Therefore, the spectacled bear and the Páramo ecoregion were designated because they are 

found in the three countries, and they were our pilot species and ecoregion to establish our HSM 

approach. For the modeling of the suitable habitat for the spectacled bear and the probability of 

occurrence of the Páramo, the SDM R package (Naimi & Araújo, 2016; Naimi & Araujo, 2019) 

was used.  

The first requirement for modeling our pilot species was to have records of occurrence with 

geographic coordinates in decimal degrees (WGS 1984) for the period named baseline (1970-

2000) or until 2022. As a result, we used data from the Global Biodiversity Information Facility 

(GBIF) (Pender et al., 2019), museums, or other research to extract the georeferences of these 

species following the recommendations for the processing of our data table with the records of our 

species (García et al., 2022; Scheldeman & van Zonneveld, 2011). A total of 1192 occurrence 

records were used for this species in Peru, Ecuador, and Colombia (Figure 3.2). The spectacled 

bear occurrence data were curated with maps elaborated by the Instituto Humboldt of Colombia 

in its BioModelos portal (Instituto Alexander von Humboldt, 2023), and for Ecuador by the 
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Pontificia Universidad Católica del Ecuador in its portal called Ecuadorian Mammals (Castellanos 

& Boada, 2022). Also, for the Páramo ecoregion, a total of 50147 occurrence records were 

generated every 1 km as points of occurrence in ArcGis ver. 10.7 using the 2017 Ecoregions maps 

from Resolve: Cordillera Central Páramo, Northern Andean Páramo and Santa Martha Páramo 

(Dinerstein et al., 2017). For the generation of pseudo-absences in the case of spectacled bear, 

1000 were generated and with a buffer of 150 km at random around the occurrences (Falconi et 

al., 2022). For the Páramo ecoregion we generated 10000 pseudo-absences (Barbet-Massin et al., 

2012) with a buffer of 100 km around the shape of this ecoregion. For the AUC within the SDM 

in R package the gRandom method was used, it randomly selected sub-absences partitions of the 

data and fits a model to each partition to estimate the test AUC (Naimi & Araújo, 2016). This 

process provides a less biased model performance estimate than a single partitioning of the data 

into training and test subsets.  

The second requirement is to have the environmental variables, in this case, the 19 

bioclimatic variables of Worldclim and the elevation (masl) variable were used (Fick & Hijmans, 

2017; Poggio et al., 2018). The bioclimatic variables were for the periods: baseline (1970-2000) 

and for the RCPs 2.6, 4.5, and 8.5 for the year 2050 (CMIP5 - HadGEM2-ES). Additionally, the 

Human Footprint (HFP) ver.3, 2018 Release (2009) variable was used and this variable ranges 

from 0 to 50 where; no pressure, mean HFP = 0; low pressure, HFP =1–2; moderate pressure, HFP 

=3–5; high pressure, HFP = 6–11; and very high pressure, HFP =12–50 (Venter et al., 2016, 2018), 

this HFP-2009 was used until the other HFPs are developed for future scenarios.  
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The HFP had to be resampled due to the different Coordinate Reference System 

(CRS), resolution, and spatial extent than the WorldClim variables in R 4.2.3 and ArcGis 10.7. 

Finally, all 21 variables have a resolution of approximately 1 km2 (Table 3.2). 

Once all the environmental variables were listed, a collinearity analysis was performed 

based on their Pairwise correlation coefficients and Variance Inflation Factor (VIF) value, and 

variables with a correlation coefficient greater than 0.7 and a VIF greater than 10 were discarded 

to avoid collinearity problems in the models for the spectacled bear and the Páramo (Naimi & 

Araújo, 2016; Naimi & Araujo, 2019). Therefore, after a collinearity analysis for the spectacled 

bear of the 21 variables for the baseline (1970-2000) we used these variables: bio13, bio14, bio15, 

bio18, bio19, bio3, bio4, bio7, elevation and HFP and for the RCPs – 2050 (2.6, 4.5 and 8.5) these 

variables: bio13, bio14, bio15, bio18, bio19, bio2, bio3, bio4, bio6 and HFP were used (From 

Table S3.1 to S3.4). The same analysis was then carried out for the Páramo ecoregion, using the 

following variables for the baseline (1970-2000): bio13, bio14, bio15, bio18, bio19, bio3, bio4, 

bio7, elevation and HFP and for the RCPs – 2050 (2.6, 4.5 and 8.5) these variables: bio13, bio14, 

bio15, bio18, bio19, bio2, bio3, bio4, elevation and HFP (From Table S3.5 to S3.8).  

Third, we selected species modeling methods based on the type of data we had (Presence). 

In the case of the spectacled bear and Páramo ecoregion, we only obtained presence data, so the 

models to be used in the R SDM package were Generalized Linear Model (GLM), Maximum 

entropy (MaxEnt), Boosted Regression Trees (BRT), Random Forests (RF), Functional Data 

Analysis (FDA) (Naimi & Araujo, 2019). These models were then evaluated in terms of their Area 

Under the Receiver Operating Characteristic Curve (AUC), Correlation coefficient (COR), True 

Skill Statistic (TSS), and Deviance to see which of these models performed best in estimating the 
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potential distribution for the spectacled bear and the Páramo ecoregion. The interpretations for 

each of our statistics are shown as follows. The AUC is widely used to evaluate models in species 

distribution and its values have the following interpretation: less than 0.7 is sub-optimal 

performance, 0.70 – 0.80 is good performance, greater than 0.8 is excellent performance and a 

value of 1 means a perfect classifier (Dormann et al., 2008; Draelos, 2019; Naimi & Araujo, 2019; 

Wunderlich et al., 2022; Zhang et al., 2018).  

Then, the Pearson Correlation Coefficient (COR) measures the strength and direction of 

the linear relationship between the predicted probability of presence and presence-absence test 

data and it ranges from -1 to 1. Where -1 means a perfect negative correlation, 0 means no 

correlation, and 1 means a perfect positive correlation, so a correlation coefficient between 0.00 

and 0.10 is considered Negligible, between 0.10 and 0.39 is weak, between 0.40 and 0.69 is 

moderate, between 0.70 and 0.89 is strong, and between 0.90 and 1.00 is very strong (Schober & 

Schwarte, 2018). However, correlation does not imply causation, and the coefficient may not 

capture other types of relationships (Naimi & Araújo, 2016b; Schober & Schwarte, 2018).  

The True Skill Statistics (TSS) was used also to measure the performance models when 

predictions are expressed as presence or absence maps (Allouche et al., 2006). The TSS values are 

classified as > 0.8 (good to excellent), 0.6–0.8 (useful), and 0.2–0.6 (poor) for the model 

performance (Samal et al., 2022; Shabani et al., 2016). Lastly, a high Deviance indicates a high 

variance in variable importance across runs, so ow deviance indicates a good fit between the model 

and the data (Aguirre-Gutiérrez et al., 2013; Crase et al., 2012; Naimi & Araújo, 2016).  

In short, the consideration for selecting the best model was that the values of the AUC, 

COR, and TSS should be closest to 1, otherwise for Deviance, it should be the lowest value (Azrag 
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et al., 2022; Kiser et al., 2022; Marsh et al., 2023; Naimi & Araújo, 2016a; Seid & Bekele, 2023; 

Torabian et al., 2018). Thus, RF was the model with better performance than the others in terms 

of AUC, COR, TSS, and Deviance for the four scenarios (1970-2000) and the three RCPs 2050 

for both the modeling of the spectacled bear and the Páramo ecoregion (From Table S3.1 to S3.8).  

To get the relative importance of the variables, the “getVarImp” function of the SDM 

package for R was used (Naimi & Araujo, 2019). Also, Random Forest and Decision Trees from 

the libraries in R “randomForest” and “tree” were used separately from the SDM package to find 

which variable has the greatest influence on the modeling of spectacled bear and Páramo for the 

baseline and RCPs in 2050 (Fukuda et al., 2013; Smith & Santos, 2020) (From Figures S3.1 to 

S3.24).  

After that, a calibration plot of the predicted probability of occurrence for the best model 

for the baseline will be developed. This plot allows the assessment of whether the probabilities of 

occurrence in the model match the observed probabilities of species occurrence for current 

conditions. After selecting the optimal model, a calibration plot of the predicted baseline 

occurrence probability for the bear and Páramo modeling. This plot allows us to evaluate whether 

the probabilities of occurrence in the model match the observed probabilities of species occurrence 

(Gomes et al., 2018; Phillips & Elith, 2010). 

Finally, an analysis is made with the ArcGis 10.7 tool called map algebra to evaluate the 

changes in potential areas (km2) for the spectacled bear and the Páramo ecoregion between the 

RCPs for 2050 versus the baseline (1970-2000). 
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Results 

Spectacled bear and Páramo ecoregion 

The potential areas for spectacled bear habitat (Figures 3.3, 3.4, 3.5 and 3.6) and the 

difference in area between the 2050 RCPs and the baseline (1970-2000) were calculated in km2 

(Table 3.3). Table 3.3 shows a reduction in bear habitat for the two RCPs (2.6 and 8.5) for the high 

category (> 0.61 High) and an increase in area for the RCP 4.5 in 2050. Also, there is a reduction 

of its potential area in RCPs 2.6 and 4.5 for the moderate (0.41 – 0.60) and no potential (<0.20) 

categories. Finally, the non-potential areas increase their areas for all three RCPs in 2050.  

Although our climate data is for the years 1970-2000 (baseline) and our HFP is for the year 

2009, it is valid to make this analysis of how this HFP is affecting the potential habitat of the 

spectacled bear because the baseline climate data can be used in a range of 30 years. Therefore, it 

was found that the HFP with very high pressure (HFP =12–50) is affecting approximately                

63 514.69 km2 which represents 18.57% of the total potential habitat of this species for the high 

category of probability of occurrence (> 0.61), as well as the other categories of potential habitat 

(Table 3.4) and (Figure 3.7). 

Next, the potential areas for the Páramo ecoregion (Figures 3.8, 3.9, 3.10 and 3.11) and 

their area difference between the 2050 RCPs and the baseline (1970-2000) were calculated in km2 

(Table 3.5). The potential areas of the Páramo were made using the 2017 Ecoregions maps from 

Resolve as masks. Areas with high potential (> 0.61 High) and low potential (0.21 - 0.40 Low) 

occurrence for the páramo decrease for all three RCPs in 2050 compared to the baseline (1970-

2000). Moderate potential and no potential zones also increase by 2050 in all three RCPs (Table 

3.5). Next, it was observed that areas with high potential (> 0.61 High) of occurrence for the 
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páramo and human footprint with very high pressure (HFP =12–50) represent 21.50%                        

(9 189.02 km2) of the total areas with high probability of occurrence of the páramo (Table 3.6 and 

Figure 3.12).  

Following, an analysis was made of the relative importance of the variables for the baseline 

(1970-2000) and the three 2050 RCPs (2.6, 4.5, and 8.5) for the spectacled bear and the Páramo. 

This analysis can be used to evaluate which variables are most important in predicting spectacled 

bear and Páramo distribution in the three countries and can help guide decisions about which 

variables to include or exclude from a model as well as conservation efforts. It can also be used to 

identify variables that may be interacting with each other and to help identify potential areas for 

future research. In the case of the spectacled bear, the most important variable for the baseline 

(1970-2000) was the elevation (masl) with 50% over the other variables (Figure S3.1), and for the 

2050 RCPs (2.6, 4.5, and 8.5) was the variable bio 6 with around 50% over the other variables for 

these three scenarios (Min Temperature of Coldest Month °C) according to “getVarImp function”, 

Random Forest and Decision Trees (Figures from S3.1 to S3.8). The elevation (masl) may no 

longer be the most important variable by 2050 due to the increase in average temperature over 

spectacled bear habitat of more than 1 °C. For the modeling of the Páramo ecoregion, the most 

important variable for the baseline (1970-2000) and the three RCPs for 2050 (2.6, 4.5 and 8.5) was 

the elevation (masl) by around 70% over the other variables for these three scenarios, according 

to the three techniques mentioned above (Figures from S3.13 to S3.24).  

Random Forest (RF) was the best-performing technique compared to the other models 

GLM, MaxEnt, BRT and FDA based on its AUC, COR, TSS, and Deviance for modeling 

spectacled bear habitat and the Páramo ecoregion (From Table S3.1 to S3.8), then the ROC 
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analysis (Receiver Operating Characteristic) for the RF (Subsampling and Bootstrap) for the 

baseline (1970 - 2000) and the three 2050 climate change scenarios are presented in Figure 3.13 

and Figure 3.14. All AUC values for the spectacled bear and Páramo ecoregion modeling with RF 

for the baseline and the three RCPs in 2050 showed an AUC greater than 0.7, which is considered 

a good model (Valavi et al., 2022). 

The probabilities predicted by the RF model for the spectacled bear and the páramo 

ecoregion for the baseline and whether they match the observed probabilities of species or 

ecoregion presence are shown in Figures 3.15 and 3.16. The observed proportion of presence sites 

vs the predicted probabilities by the RF model for the spectacled bear and Páramo ecoregion were 

0.822 and 0.925 correspondingly (Grouped into bins or quantiles). These values indicate that RF 

has a high ability to estimate the occurrence for the bear and the Páramo in the baseline. 

It is also necessary to indicate that the HFP (2009) was used for the baseline as well as for future 

scenarios to see the possible impact on the habitat of the spectacled bear or the Páramo Ecoregion. 

In the baseline (1970-2000) conditions, it was observed that there are groups of occurrences for 

the bear that are surrounded by areas of HFP with very high pressure, which may represent a 

danger for this species in the three countries due to the fragmentation of its habitat (Figure 3.7). 

Also, in areas with very high HFP pressure (2009) and areas with Páramo potential for baseline 

shows that Ecuador (4 040.30 Km2) has the largest affected area than Colombia (3 443.05 Km2) 

and Peru (1 813.51 Km2).  

Finally, this analysis of the potential habitat of the spectacled bear (pilot species) and the 

Páramo ecoregion under current climate conditions and climate change conditions for 2050 (RCPs 

2.6, 4.5 and 8.5) helped to establish the methodology for the other species and ecoregions selected 
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by Peru, Ecuador, and Colombia, and all this information will also go to the repository of the UN 

Biodiversity Lab for use in its SDG 15 reports. 

Discussion 

In ecology, SDMs and HSMs are commonly used to predict where a species is likely to be 

found based on environmental factors. To do this, researchers often use pseudoabsences to 

represent areas where the species is not expected to be found but where data is unavailable 

(Fournier et al., 2017). For example, a buffer distance of 150 km is used to generate these pseudo-

absences and exclude certain areas for the Andean bear (Falconi et al., 2022) and this value was 

used in our research. However, when studying the spectacled bear, it's important to consider the 

size of their home range (Sillero et al., 2021), which can vary based on the terrain of the area being 

studied. For example, theoretical sizes and home range estimates for spectacled bears have been 

developed by various authors, depending on whether they are males or females, age, study 

technique, time of observation and seasons of the year (García-Rangel, 2012). In Ecuador's Intag 

region, the largest home range value ever recorded for this species was reported for male bears (3) 

with radiotelemetry; this home range was 150 km², while the home range for females (5) was         

34 km² (Castellanos, 2011; Castellanos et al., 2016; García-Rangel, 2012; Rodríguez et al., 2019; 

Yerena & Torres, 1994). Also, to account for this variability, researchers may need to use different 

buffer distances or exclusion criteria depending on the specific characteristics of the ecoregions or 

geographic areas studied.  

It is critical to consider whether to use a planar or geodetic buffer, and how distances 

around points are calculated. For our research, we opted for a geodetic buffer because we needed 

to consider the Coordinate System of the Spectacled bear and the Páramo ecoregion. Geodesic 
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buffers calculate distances based on the shape of the earth's surface, which is not a perfect sphere, 

but an ellipsoid. This means that distances can vary depending on the location on the earth's surface 

and the direction of measurement (Flater, 2011). In contrast, planar buffers assume that the earth's 

surface is flat and calculates distances in a straight line, planar buffers are appropriate for small 

areas where the curvature of the earth is not considered, but for larger areas, Geodesic buffers are 

usually more accurate (Senay et al., 2013). It's important to consider that the probability of 

occurrence in SDMs or HSMs can be affected by the size of the pixels used to represent the 

environmental variables. Therefore, it's recommended to be cautious when interpreting the 

probabilities of occurrence generated by these models, as they can be influenced by the scale at 

which the data is measured. If several pseudo-absences are framed in the same pixel without 

considering the total area covered by a group of pixels, it could lead to an over or under 

representation of certain areas in the model. This could result in inaccurate predictions of species 

occurrence or habitat suitability. Therefore, it's important to carefully select the pixel size and 

ensure that pseudo-absences are distributed appropriately across the study area to minimize 

potential bias in the model. 

It is worth noting that the ecoregion maps used in our research only recognize five Páramo 

Ecoregions across Peru, Ecuador, Colombia, and Venezuela (Dinerstein et al., 2017). However, it 

is important to recognize that different classifications and sub-classifications for Páramos may 

exist in other ecosystem maps or in other countries. This can lead to discrepancies in mapping and 

managing these unique ecosystems, but the products of this work allow you to make analyses at 

the ecosystem or ecoregion level.  It is also necessary to indicate that the HFP (2009) was used for 

the baseline as well as for future scenarios to see the possible impact on the habitat of the spectacled 
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bear and Páramos. For example, in the baseline conditions, it was observed that there are groups 

of records for the bear that are isolated, surrounded by areas of HFP in very high pressure, which 

may represent a danger for this species in the three countries due to the fragmentation of its habitat.  

Finally, in our research, although it is true that the other GLM models, MaxEnt, BRT and 

FDA obtained results we obtained for modeling the spectacled bear and the Páramo Ecoregion in 

statistics such as AUC, COR, TSS, and Deviance; RF apparently will not identify other suitable 

habitats outside the home range (Sillero et al., 2021). 

Conclusion 

The study aimed to assess the occurrence probabilities of spectacled bears and the state of 

the Páramo ecoregion across three countries. This was achieved by calculating the probabilities on 

a scale of 0-1 or in categories. The results showed that potential high-category bear areas decrease 

for RCPs 2.6 and 8.5, when compared to the baseline. This reduction in potential bear habitat is a 

cause for concern as it may have a significant impact on the bear population's survival and 

distribution. Additionally, human activities were found to have a considerable impact on the bear's 

habitat suitability. In particular, the study found that human activities affect 63 514.69 km2 of the 

bear's habitat suitability in the current climate conditions. This result highlights the urgent need to 

address human activities that threaten the bear's habitat and survival. Moreover, the Páramos, a 

high-altitude biogeographic region that is home to unique and endemic flora and fauna, 

experiences a decrease in area for all RCPs in 2050 compared to the baseline. The study also found 

that human activities (HFP) affect the Páramos in current climate conditions, reducing the 

ecoregion's area by 9 189.02 km2. It is worth noting that the study recommends the use of an 

updated PFH to improve the accuracy of the results. Finally, the study compared the performance 
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of different models such as GLM models, MaxEnt, BRT, FDA, and Random Forest. The study 

found that Random Forest outperforms the other models in predicting the occurrence probabilities 

of spectacled bears and the Páramo ecoregion. This finding has significant implications for future 

research and conservation efforts as it can help identify key areas for conservation and guide the 

development of effective conservation strategies. 
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Tables 

Table 3.1. Selected Species for Peru, Colombia, and Ecuador. 

  PERU   

  Scientific name  Common name 

1 Birds Penelope albipennis  the white-winged guan 

2 Oreonaxflavicauda - Lagothrix flavicauda yellow-tailed woolly monkey 

3  Panthera onca  jaguar 

4 
Mammals 

Pecari tajacu  peccary 

5 Tapirus pinchaque  the mountain tapir 

6  Tayassu pecari  the white-lipped peccary 

7  Tremarctos ornatus  Andean bear or spectacled bear 

COLOMBIA 

1  Crax alberti blue-billed curassow or blue-knobbed 

curassow 

2 Birds Panthera onca  jaguar 

3 
 

Ateles hybridus 
brown spider monkeyor variegated spider 

monkey 

4 Mammals Tapirus pinchaque  the mountain tapir 

5 Tremarctos ornatus andean bear or spectacled bear 

6  Bassaricyon neblina  olinguito 

7 Plants Cattleya trianae National flower from Colombia 

8 Ceroxylon quindiuense  wax palm 

  ECUADOR   

1  Ateles belzebuth  white-bellied spider monkey 

2  Ateles fusciceps  black-headed spider monkey 

3  Tapirus pinchaque  the mountain tapir 

4 Mammals Tayassu pecari  the white-lipped peccary 

6  Reithrodontomys soederstroemi  Söderström’s harvestmouse 

7  Thomasomys silvestris  ucucha thomasomys 

8  Thomasomys erro  wandering thomasomys 
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Table 3.2. Bioclimatic and Human Footprint Variables. 

Variable Units 

BIO1 = Annual Mean Temperature (°C) 

BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) (°C) 

BIO3 = Isothermality (BIO2/BIO7) (×100) - 

BIO4 = Temperature Seasonality (standard deviation ×100) - 

BIO5 = Max Temperature of Warmest Month (°C) 

BIO6 = Min Temperature of Coldest Month (°C) 

BIO7 = Temperature Annual Range (BIO5-BIO6) (°C) 

BIO8 = Mean Temperature of Wettest Quarter (°C) 

BIO9 = Mean Temperature of Driest Quarter (°C) 

BIO10 = Mean Temperature of Warmest Quarter (°C) 

BIO11 = Mean Temperature of Coldest Quarter (°C) 

BIO12 = Annual Precipitation (mm) 

BIO13 = Precipitation of Wettest Month (mm) 

BIO14 = Precipitation of Driest Month (mm) 

BIO15 = Precipitation Seasonality (Coefficient of Variation) - 

BIO16 = Precipitation of Wettest Quarter (mm) 

BIO17 = Precipitation of Driest Quarter (mm) 

BIO18 = Precipitation of Warmest Quarter (mm) 

BIO19 = Precipitation of Coldest Quarter (mm) 

Elevation (30 Seconds)  masl 

Human Footprint (HFP) - 2009 - 

 

 

Table 3.3. Potential areas (km2) for the spectacled bear habitat and difference in areas between 

2050 RCPs and baseline (1970-2000). 

Potential Habitat  

1970-2000 

(C) 

km2 

2.6 

km2 

4.5 

km2 

8.5 

km2 

2.6-C 

km2 

4.5-C 

km2 

8.5-C 

km2 

<0.20 No potential 1876999.11 1917109.95 1921944.23 1904105.31 40110.84 44945.13 27106.20 

0.21 – 0.40 Low 251712.04 232114.81 233443.59 251990.12 -19597.24 -18268.45 278.08 

0.41 – 0.60 Moderate 222773.09 217694.96 189914.53 230890.41 -5078.13 -32858.57 8117.31 

> 0.61 High 342060.05 326624.58 348241.94 306558.46 -15435.48 6181.89 -35501.59 

 

Table 3.4. Potential areas (km2) for spectacled bear habitat at baseline (1970-2000) with very 

high pressure of HFP. 

Potential Habitat 
1970-2000 (C) 

km2 

<0.20 No potential 251382.45 

0.21 – 0.40 Low 57801.35 

0.41 – 0.60 Moderate 65577.44 

> 0.61 High 63514.69 
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Table 3.5. Potential areas (km2) for the Páramo ecoregion and difference in areas between 2050 

RCPs and baseline (1970-2000). 

Potential Habitat  
1970-2000 (C)  

km2 

2.6 

km2 

4.5 

km2 

8.5 

km2 

2.6-C 

km2 

4.5-C 

km2 

8.5-C 

km2 

<0.20 No potential 23.10 31.66 32.51 31.66 8.56 9.41 8.56 

0.21 – 0.40 Low 154.87 125.78 114.65 110.38 -29.09 -40.21 -44.49 

0.41 – 0.60 

Moderate 
289.20 388.45 392.73 422.68 99.25 103.53 133.48 

> 0.61 High 42721.36 42642.64 42648.63 42623.82 -78.72 -72.73 -97.54 

 

 

Table 3.6. Potential areas (km2) for the Páramo ecoregion at baseline (1970-2000) with very high 

pressure of HFP. 

Potential Habitat 
1970-2000 (C) 

km2 

<0.20 No potential 5.44 

0.21 – 0.40 Low 30.81 

0.41 – 0.60 Moderate 71.60 

> 0.61 High 9189.02 
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Figures 

 
Figure 3.1. Study area: Cordillera Central Páramo, Northern Andean Páramo and Santa Martha 

Páramo. 

 

 

 
Figure 3.2. Map of the observed distribution of the spectacled bear in Peru, Ecuador, and 

Colombia. 
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Figure 3.3. Map of the potential distribution of the spectacled bear (Baseline 1970-2000) a. Left: 

probability from 0 to 1 and b. Right: Probability in categories. 

 

 

 
Figure 3.4.Map of the potential distribution of the spectacled bear (RCP 2.6-2050) a. Left: 

probability from 0 to 1 and b. Right: Probability in categories. 
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Figure 3.5. Map of the potential distribution of the spectacled bear (RCP 4.5-2050) a. Left: 

probability from 0 to 1 and b. Right: Probability in categories. 

 

 
Figure 3.6. Map of the potential distribution of the spectacled bear (RCP 8.5-2050) a. Left: 

probability from 0 to 1 and b. Right: Probability in categories. 
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Figure 3.7. Map of the potential distribution of the spectacled bear a. Left: probability from 0 to 

1 and b. Right: Probability in categories. Both are in areas with a HFP (12-50) for the baseline 

(1970-2000). 

 

 
Figure 3.8. Map of the potential distribution of the Páramo ecoregion (Baseline 1970-2000) a. 

Left: probability from 0 to 1 and b. Right: Probability in categories. 
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Figure 3.9. Map of the potential distribution of the Páramo ecoregion (RCP 2.6-2050) a. Left: 

probability from 0 to 1 and b. Right: Probability in categories. 

 

 

 
Figure 3.10. Map of the potential distribution of the Páramo ecoregion (RCP 4.5-2050) a. Left: 

probability from 0 to 1 and b. Right: Probability in categories. 
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Figure 3.11. Map of the potential distribution of the Páramo ecoregion (RCP 8.5-2050) a. Left: 

probability from 0 to 1 and b. Right: Probability in categories. 

 

 
Figure 3.12. Map of the potential distribution of the Páramo ecoregion a. Left: probability from 0 

to 1 and b. Right: Probability in categories. Both are in areas with a HFP (12-50) for the baseline 

(1970-2000). 
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a. 

 
b. 

 
c.  

 
d.  

Figure 3.13. ROC analysis (Receiver Operating Characteristic) for the RF (Subsampling and 

Bootstrap) for the for the spectacled bear (a: Baseline, b: RCP 2.6 c: RCP 4.5 and d: RCP 8.5) 
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a. 

 
b. 

 
c. 

 
d. 

Figure 3.14. ROC analysis (Receiver Operating Characteristic) for the RF (Subsampling and 

Bootstrap) for the for the Páramo Ecoregion (a: Baseline, b: RCP 2.6 c: RCP 4.5 and d: RCP 

8.5). 
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Figure 3.15. Probability predicted by the RF model for the spectacled bear (0.822) (Baseline). 

 

 

 
Figure 3.16. Probability predicted by the RF model for the Páramo ecoregion (0.925) (Baseline). 
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CHAPTER IV 

 

 

GENERAL CONCLUSIONS 

 

 

In this research a review of South American climate drivers as well as standardized data at 

different resolutions were developed with different GCMs. This standardized climate data allowed 

us to understand the effects of climate change and its effects on temperature (℃) and annual 

precipitation (mm) variations in Peru, Ecuador, and Colombia and three ecoregions, Sechura 

Desert, Páramo, and Napo Tropical Forest. The climatic data with an approximate resolution of 10 

minutes of resolution (~ 18.5 km at the equator) helped us to have an overview of the changes in 

the patterns of these environmental variables in numerical values and spatially.  

The climate data with an approximate spatial resolution of 30 seconds (~1 km at the 

equator) helped us to make a comparison of medians with a non-parametric test (Kruskal-Wallis) 

between the Baseline (1970-2000) and the 2050 RCPs (2.6, 4.5 and 8.5) for three ecoregions where 

the null hypothesis that at least one median for either temperature or precipitation is the same for 

the baseline or the RCPs in 2050 was rejected. Density plots also help to evaluate areas with similar 

records for these variables between the baseline and RCPs.  

A process for modeling species and ecoregions habitat for different climate change 

conditions was then established, as well as including the HFP using a pilot species and a pilot 

ecoregion. Potential or suitable habitat areas for spectacled bear and páramo were quantified as 

well as their variation between the baseline and 2050 RCPs. The generation of pseudo-absences 

for other species will be a criterion for other researchers who will consider the home range of each 

species. No research has been reported for the generation of pseudo-absences for ecoregions, 
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however further testing of both buffer distance and number of pseudo-absences for areas at 

ecoregion scales is recommended. Finally, climate change affects biodiversity, but it should be 

noted that HFP is important because it helps us integrate human pressure on both our pilot species 

habitat and ecoregion habitat. It is expected that the combination of these four chapters will help 

us understand what is known about climate change and Human Footprint (HFP) in these three 

countries, estimate their effects of on vertebrate species and ecoregions and its ecological 

implications through SDMs. This methodology is replicable so that countries can use it to make a 

vulnerability analysis for the probability of occurrence (categories for each species) or non-

occurrence of the list of species under study or ecoregions and report their SDG 15 reports as well 

as establish conservation plans and programs at the national or transboundary level in different 

climate change scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 



125 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES CITED 

 

 

 

 

 

 

 

 

 

 

 

 

 



126 

 

Agrawala, S. (1998). Structural and process history of the Intergovernmental Panel on Climate 

Change. Climatic Change, 39(4), 621–642. https://doi.org/10.1023/A:1005312331477 

 

 

Aguirre-Gutiérrez, J., Carvalheiro, L. G., Polce, C., van Loon, E. E., Raes, N., Reemer, M., & 

Biesmeijer, J. C. (2013). Fit-for-purpose: species distribution model performance depends 

on evaluation criteria - Dutch Hoverflies as a case study. PLoS ONE, 8(5). 

https://doi.org/10.1371/journal.pone.0063708 

 

 

Albarracín, V., & Aliaga-Rossel, E. (2018). Bearly guilty: understanding human–Andean bear 

conflict regarding crop losses. Ethnobiology Letters, 9(2), 323–332. 

https://doi.org/10.14237/ebl.9.2.2018.1300 

 

 

Allen, C., Metternicht, G., & Wiedmann, T. (2019). Prioritising SDG targets: assessing 

baselines, gaps and interlinkages. Sustainability Science, 14(2), 421–438. 

https://doi.org/10.1007/s11625-018-0596-8 

 

 

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution 

models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 

43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x 

 

 

Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P., & Ramos, M. C. (2017). 

Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 

1973–2013. International Journal of Climatology, 37(4), 2013–2026. 

https://doi.org/10.1002/joc.4831 

 

 

Altea, L. (2020). Perceptions of climate change and its impacts: a comparison between farmers 

and institutions in the Amazonas Region of Peru. Climate and Development, 12(2), 134–

146. https://doi.org/10.1080/17565529.2019.1605285 

 

 

Alves de Oliveira, B. F., Bottino, M. J., Nobre, P., & Nobre, C. A. (2021). Deforestation and 

climate change are projected to increase heat stress risk in the Brazilian Amazon. 

Communications Earth and Environment, 2(1). https://doi.org/10.1038/s43247-021-00275-8 

 

 

Arguez, A., & Vose, R. S. (2011). The definition of the standard WMO climate normal: The key 

to deriving alternative climate normals. Bulletin of the American Meteorological Society, 

92(6), 699–704. https://doi.org/10.1175/2010BAMS2955.1 

https://doi.org/10.1023/A:1005312331477
https://doi.org/10.1371/journal.pone.0063708
https://doi.org/10.14237/ebl.9.2.2018.1300
https://doi.org/10.1007/s11625-018-0596-8
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1002/joc.4831
https://doi.org/10.1080/17565529.2019.1605285
https://doi.org/10.1038/s43247-021-00275-8
https://doi.org/10.1175/2010BAMS2955.1


127 

 

Azrag, A. G. A., Mohamed, S. A., Ndlela, S., & Ekesi, S. (2022). Predicting the habitat 

suitability of the invasive white mango scale, Aulacaspis tubercularis; Newstead, 1906 

(Hemiptera: Diaspididae) using bioclimatic variables. Pest Management Science, 78(10), 

4114–4126. https://doi.org/10.1002/ps.7030 

 

 

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences 

for species distribution models: How, where and how many? Methods in Ecology and 

Evolution, 3(2), 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x 

 

 

Bell, P. L. (2012). Geografía, topografía y clima de Colombia. Colombia: Manual Comercial e 

Industrial, 37–50. http://repositorio.banrep.gov.co/bitstream/handle/20.500.12134/478/1. 

Geografía.pdf?sequence=1&isAllowed=y 

 

 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of 

climate change on the future of biodiversity. In Ecology Letters (Vol. 15, Issue 4, pp. 365–

377). https://doi.org/10.1111/j.1461-0248.2011.01736.x 

 

 

Beltrán-Tolosa, L. M., Navarro-Racines, C., Pradhan, P., Cruz-Garcia, G. S., Solis, R., & 

Quintero, M. (2020). Action needed for staple crops in the Andean-Amazon foothills 

because of climate change. In Mitigation and Adaptation Strategies for Global Change 

(Vol. 25, Issue 6, pp. 1103–1127). Springer Science and Business Media B.V. 

https://doi.org/10.1007/s11027-020-09923-4 

 

 

Biermann, F., Kanie, N., & Kim, R. E. (2017). Global governance by goal-setting: the novel 

approach of the UN Sustainable Development Goals. Current Opinion in Environmental 

Sustainability, 26–27, 26–31. https://doi.org/10.1016/j.cosust.2017.01.010 

 

 

Block, M., & Richter, M. (2000). Impacts of heavy rainfalls in El Nino 1997/98 on the 

vegetation of Sechura Desert in Northern Peru (A preliminary report). Phytocoenologia, 

30(3–4), 491–517. https://doi.org/10.1127/phyto/30/2000/491 

 

 

Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate change and the 

past, present, and future of biotic interactions. Science, 341(6145), 499–504. 

https://doi.org/10.1126/science.1237184 

 

 

https://doi.org/10.1002/ps.7030
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://doi.org/10.1007/s11027-020-09923-4
https://doi.org/10.1016/j.cosust.2017.01.010
https://doi.org/10.1127/phyto/30/2000/491
https://doi.org/10.1126/science.1237184


128 

 

Booth, T. H. (2022). Checking bioclimatic variables that combine temperature and precipitation 

data before their use in species distribution models. Austral Ecology, 47(7), 1506–1514. 

https://doi.org/10.1111/aec.13234 

 

 

Boschman, L. M. (2021). Andean mountain building since the Late Cretaceous: A paleoelevation 

reconstruction. Earth-Science Reviews, 220, 103640. 

https://doi.org/10.1016/J.EARSCIREV.2021.103640 

 

 

Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. 

(2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 

79(1–2), 53–72. https://doi.org/10.1016/J.EARSCIREV.2006.06.002 

 

 

Campozano, L., Ballari, D., Montenegro, M., & Avilés, A. (2020). Future meteorological 

droughts in Ecuador: decreasing trends and associated spatio-temporal features derived 

from CMIP5 models. Frontiers in Earth Science, 8. 

https://doi.org/10.3389/feart.2020.00017 

 

 

Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J., & Macdonald, D. W. (2014). Resolving 

Human-Bear Conflict: A Global Survey of Countries, Experts, and Key Factors. 

Conservation Letters, 7(6), 501–513. https://doi.org/10.1111/CONL.12117 

 

 

Carlsen, H., Klein, R. J. T., & Wikman-Svahn, P. (2017). Transparent scenario development. In 

Nature Climate Change (Vol. 7, Issue 9, p. 613). Nature Publishing Group. 

https://doi.org/10.1038/nclimate3379 

 

 

Castellanos, A. (2011). Andean bear home ranges in the Intag region, Ecuador. In Ursus (Vol. 

22, Issue 1, pp. 65–73). https://doi.org/10.2192/URSUS-D-10-00006.1 

 

 

Castellanos, A., & Boada, C. (2022). Tremarctos ornatus En: Brito, J., Camacho, M. A., 

Romero, V. Vallejo, A. F. (eds). Mamíferos del Ecuador. Version 2018.0. Museo de 

Zoología, Pontificia Universidad Católica Del Ecuador. 

https://bioweb.bio/faunaweb/mammaliaweb/FichaEspecie/Tremarctos%20ornatus 

 

 

Castellanos, A., Jackson, D., & Arias, L. (2016). Guidelines for the rescue, rehabilitation release 

and post-release monitoring of Andean bears. Guidelines. www.andeanbear.org 

 

https://doi.org/10.1111/aec.13234
https://doi.org/10.1016/J.EARSCIREV.2021.103640
https://doi.org/10.1016/J.EARSCIREV.2006.06.002
https://doi.org/10.3389/feart.2020.00017
https://doi.org/10.1111/CONL.12117
https://doi.org/10.1038/nclimate3379
https://doi.org/10.2192/URSUS-D-10-00006.1
https://bioweb.bio/faunaweb/mammaliaweb/FichaEspecie/Tremarctos%20ornatus
http://www.andeanbear.org/


129 

 

Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., 

Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., & 

Marengo, J. (2014). Assessment of climate change over south America under RCP 4.5 and 

8.5 downscaling scenarios. American Journal of Climate Change, 03(05), 512–527. 

https://doi.org/10.4236/ajcc.2014.35043 

 

 

Coleman, J. S. M. (2015). Atmospheric science: meteorology and climatology. 1450(1687), 1–7. 

https://doi.org/10.1016/B978-0-12-409548-9.09492-6 

 

 

Condom, T., Martínez, R., Pabón, J. D., Costa, F., Pineda, L., Nieto, J. J., López, F., & Villacis, 

M. (2020). Climatological and hydrological observations for the South American Andes: in 

situ stations, satellite, and reanalysis data sets. In Frontiers in Earth Science (Vol. 8). 

Frontiers Media S.A. https://doi.org/10.3389/feart.2020.00092 

 

 

Correa, A., Ochoa-Tocachi, B. F., Birkel, C., Ochoa-Sánchez, A., Zogheib, C., Tovar, C., & 

Buytaert, W. (2020). A concerted research effort to advance the hydrological understanding 

of tropical páramos. Hydrological Processes, 34(24), 4609–4627. 

https://doi.org/10.1002/HYP.13904 

 

 

Costa-Posada, C. (2017). La adaptación al cambio climático en Colombia. Revista de Ingeniería, 

26, 74–80. https://www.redalyc.org/pdf/1210/121015050010.pdf 

 

 

Crase, B., Liedloff, A. C., & Wintle, B. A. (2012). A new method for dealing with residual 

spatial autocorrelation in species distribution models. Ecography, 35(10), 879–888. 

https://doi.org/10.1111/j.1600-0587.2011.07138.x 

 

 

Das, S., Kamruzzaman, M., & Islam, A. R. M. T. (2022). Assessment of characteristic changes 

of regional estimation of extreme rainfall under climate change: A case study in a tropical 

monsoon region with the climate projections from CMIP6 model. Journal of Hydrology, 

610, 128002. https://doi.org/10.1016/j.jhydrol.2022.128002 

 

 

Del Moral Sachetti, J. F., & Lameda Camacaro, F. I. (2011). Registros de ocurrencia del oso 

andino (Tremarctos ornatus Cuvier, 1825) en sus límites de distribución nororiental y 

austral. Revista Del Museo Argentino de Ciencias Naturales, 13(1), 7–19. 

http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-

04002011000100002&lng=es&nrm=iso&tlng=pt 

 

https://doi.org/10.4236/ajcc.2014.35043
https://doi.org/10.1016/B978-0-12-409548-9.09492-6
https://doi.org/10.3389/feart.2020.00092
https://doi.org/10.1002/HYP.13904
https://www.redalyc.org/pdf/1210/121015050010.pdf
https://doi.org/10.1111/j.1600-0587.2011.07138.x
https://doi.org/10.1016/j.jhydrol.2022.128002
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-04002011000100002&lng=es&nrm=iso&tlng=pt
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-04002011000100002&lng=es&nrm=iso&tlng=pt


130 

 

Delong, M. K., & Gibson, D. J. (2012). What determines “suitable habitat” for metapopulation 

studies? an analysis of environmental gradients and species assemblages in xeric forest 

openings. American Journal of Botany, 99(1), 46–54. https://doi.org/10.3732/ajb.1000236 

 

 

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., 

Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, 

C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., … Saleem, M. (2017). An ecoregion-

based approach to protecting half the terrestrial realm. BioScience, 67(6), 534–545. 

https://doi.org/10.1093/biosci/bix014 

 

 

Dormann, C. F., Purschke, O., Márquez, J. R. G., Lautenbach, S., & Schröder, B. (2008). 

Components of uncertainty in species distribution analysis: A case study of the great grey 

shrike. Ecology, 89(12), 3371–3386. https://doi.org/10.1890/07-1772.1 

 

 

Draelos, R. (2019). Measuring performance: AUC (AUROC) – Glass. 

https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/ 

 

 

Easterling, D., Rusticucci, M., Semenov, V., Alexander, L. V, Allen, S., Benito, G., Cavazos, T., 

Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., 

McInnes, K., Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C., … Midgley, P. (2012). 

Changes in climate extremes and their impacts on the natural physical environment. 109–

230. 

 

 

Eguiguren-Velepucha, P. A., Chamba, J. A. M., Aguirre Mendoza, N. A., Ojeda-Luna, T. L., 

Samaniego-Rojas, N. S., Furniss, M. J., Howe, C., & Aguirre Mendoza, Z. H. (2016). 

Tropical ecosystems vulnerability to climate change in southern Ecuador. Tropical 

Conservation Science, 9(4). https://doi.org/10.1177/1940082916668007 

 

 

Eigenbrod, F., Gonzalez, P., Dash, J., & Steyl, I. (2015). Vulnerability of ecosystems to climate 

change moderated by habitat intactness. Global Change Biology, 21(1), 275–286. 

https://doi.org/10.1111/GCB.12669 

 

 

Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and 

prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 

40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 

 

 

https://doi.org/10.3732/ajb.1000236
https://doi.org/10.1093/biosci/bix014
https://doi.org/10.1890/07-1772.1
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/
https://doi.org/10.1177/1940082916668007
https://doi.org/10.1111/GCB.12669
https://doi.org/10.1146/annurev.ecolsys.110308.120159


131 

 

Elsen, P. R., Saxon, E. C., Simmons, B. A., Ward, M., Williams, B. A., Grantham, H. S., Kark, 

S., Levin, N., Perez-Hammerle, K. V., Reside, A. E., & Watson, J. E. M. (2022). 

Accelerated shifts in terrestrial life zones under rapid climate change. Global Change 

Biology, 28(3), 918–935. https://doi.org/10.1111/gcb.15962 

 

 

Espinoza, J. C., Garreaud, R., Poveda, G., Arias, P. A., Molina-Carpio, J., Masiokas, M., Viale, 

M., & Scaff, L. (2020). Hydroclimate of the Andes Part I: main climatic features. Frontiers 

in Earth Science, 8, 1–20. https://doi.org/10.3389/feart.2020.00064 

 

 

Fajardo, J., Corcoran, D., Roehrdanz, P. R., Hannah, L., & Marquet, P. A. (2020). GCM 

compareR: A web application to assess differences and assist in the selection of general 

circulation models for climate change research. Methods in Ecology and Evolution, 11(5), 

656–663. https://doi.org/10.1111/2041-210X.13360 

 

 

Falconi, N., Finn, J. T., Fuller, T. K., DeStefano, S., & Organ, J. F. (2022). Do unpublished data 

help to redraw distributions? The case of the spectacled bear in Peru. Mammal Research. 

https://doi.org/10.1007/s13364-022-00664-0 

 

 

Fernandez, J. P. R., Franchito, S. H., & Rao, V. B. (2019). Future changes in the aridity of South 

America from regional climate model projections. Pure and Applied Geophysics, 176(6), 

2719–2728. https://doi.org/10.1007/s00024-019-02108-4 

 

 

Feron, S., Cordero, R. R., Damiani, A., Llanillo, P. J., Jorquera, J., Sepulveda, E., Asencio, V., 

Laroze, D., Labbe, F., Carrasco, J., & Torres, G. (2019). Observations and projections of 

heat waves in South America. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-

44614-4 

 

 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces 

for global land areas. International Journal of Climatology, 37(12), 4302–4315. 

https://doi.org/10.1002/joc.5086 

 

 

Flater, D. (2011). Understanding geodesic buffering. ArcUser Esri, Winter. 

https://www.esri.com/news/arcuser/0111/geodesic.html 

 

 

https://doi.org/10.1111/gcb.15962
https://doi.org/10.3389/feart.2020.00064
https://doi.org/10.1111/2041-210X.13360
https://doi.org/10.1007/s13364-022-00664-0
https://doi.org/10.1007/s00024-019-02108-4
https://doi.org/10.1038/s41598-019-44614-4
https://doi.org/10.1038/s41598-019-44614-4
https://doi.org/10.1002/joc.5086
https://www.esri.com/news/arcuser/0111/geodesic.html


132 

 

Fletcher, R., & Fortin, M. J. (2019). Spatial ecology and conservation modeling: applications 

with R. Spatial Ecology and Conservation Modeling: Applications with R, 1–523. 

https://doi.org/10.1007/978-3-030-01989-1 

 

 

Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A., 

Thomas, C. D., Wheatley, C. J., Bickford, D., Carr, J. A., Hole, D. G., Martin, T. G., 

Pacifici, M., Pearce-Higgins, J. W., Platts, P. J., Visconti, P., Watson, J. E. M., & Huntley, 

B. (2019). Climate change vulnerability assessment of species. Wiley Interdisciplinary 

Reviews: Climate Change, 10(1), e551. https://doi.org/10.1002/WCC.551 

 

 

Folland, C. K., Karl, T. R., & Jim Salinger, M. (2002). Observed climate variability and change. 

Weather, 57(8), 269–278. https://doi.org/10.1256/004316502320517353 

 

 

Fournier, A., Barbet-Massin, M., Rome, Q., & Courchamp, F. (2017). Predicting species 

distribution combining multi-scale drivers. Global Ecology and Conservation, 12, 215–226. 

https://doi.org/10.1016/j.gecco.2017.11.002 

 

 

Franco, I. B., Derbyshire, E., & Science, T. S. (2020). Actioning the Global Goals for Local 

Impact. https://doi.org/10.1007/978-981-32-9927-6 

 

 

Fuentes-Castillo, T., Hernández, H. J., & Pliscoff, P. (2020). Hotspots and ecoregion 

vulnerability driven by climate change velocity in Southern South America. Regional 

Environmental Change, 20(1). https://doi.org/10.1007/s10113-020-01595-9 

 

 

Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J., & Mouton, A. M. (2013). Habitat 

prediction and knowledge extraction for spawning European grayling (Thymallus thymallus 

L.) using a broad range of species distribution models. Environmental Modelling and 

Software, 47, 1–6. https://doi.org/10.1016/j.envsoft.2013.04.005 

 

 

García, L., Veneros, J., Chavez, S. G., Oliva, M., & Rojas-Briceño, N. B. (2022). World 

historical mapping and potential distribution of Cinchona spp. in Peru as a contribution for 

its restoration and conservation. Journal for Nature Conservation, 70. 

https://doi.org/10.1016/j.jnc.2022.126290 

 

 

García, L., Veneros, J., Chávez, S., Oliva, M., & Briceño, N. (2021). Historical world mapping 

and current distribution in Peru of Cinchona spp.: Contribution to restoration and 

https://doi.org/10.1007/978-3-030-01989-1
https://doi.org/10.1002/WCC.551
https://doi.org/10.1256/004316502320517353
https://doi.org/10.1016/j.gecco.2017.11.002
https://doi.org/10.1007/978-981-32-9927-6
https://doi.org/10.1007/s10113-020-01595-9
https://doi.org/10.1016/j.envsoft.2013.04.005
https://doi.org/10.1016/j.jnc.2022.126290


133 

 

conservation strategies. Figshare, Dataset, 126290. 

https://doi.org/10.1016/j.jnc.2022.126290 

 

 

García-Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and conservation. In 

Mammal Review (Vol. 42, Issue 2, pp. 85–119). Blackwell Publishing Ltd. 

https://doi.org/10.1111/j.1365-2907.2011.00207.x 

 

 

Gatti, R. C., Reich, P. B., Gamarra, J. G. P., Crowther, T., Hui, C., Morera, A., Bastin, J. F., de-

Miguel, S., Nabuurs, G. J., Svenning, J. C., Serra-Diaz, J. M., Merow, C., Enquist, B., 

Kamenetsky, M., Lee, J., Zhu, J., Fang, J., Jacobs, D. F., Pijanowski, B., … Liang, J. 

(2022). The number of tree species on Earth. Proceedings of the National Academy of 

Sciences of the United States of America, 119(6), e2115329119. 

https://doi.org/10.1073/PNAS.2115329119/SUPPL_FILE/PNAS.2115329119.SAPP.PDF 

 

 

Goldstein, I., Paisley, S., Wallace, R., Jorgenson, J. P., Cuesta, F., & Castellanos, A. (2006). 

Andean bear-livestock conflicts: A review. In Ursus (Vol. 17, Issue 1, pp. 8–15). 

https://doi.org/10.2192/1537-6176(2006)17[8:ABCAR]2.0.CO;2 

 

 

Gomes, V. H. F., Ijff, S. D., Raes, N., Amaral, I. L., Salomão, R. P., Coelho, L. D. S., Matos, F. 

D. D. A., Castilho, C. V., Filho, D. D. A. L., López, D. C., Guevara, J. E., Magnusson, W. 

E., Phillips, O. L., Wittmann, F., Carim, M. D. J. V., Martins, M. P., Irume, M. V., Sabatier, 

D., Molino, J. F., … Ter Steege, H. (2018). Species Distribution Modelling: contrasting 

presence-only models with plot abundance data. Scientific Reports, 8(1). 

https://doi.org/10.1038/s41598-017-18927-1 

 

 

Gonçalves-Souza, D., Verburg, P. H., & Dobrovolski, R. (2020). Habitat loss, extinction 

predictability and conservation efforts in the terrestrial ecoregions. Biological Conservation, 

246. https://doi.org/10.1016/j.biocon.2020.108579 

 

 

Gooch, J. W. (2011). Kruskal-Wallis test. Encyclopedic Dictionary of Polymers, 1, 984–985. 

https://doi.org/10.1007/978-1-4419-6247-8_15268 

 

 

Gorman, K. (2022). Package ‘palmerpenguins’ ver. 0.1.1. 

 

 

Gross, J., & Ligges, U. (2022). Package ‘nortest’ Tests for Normality. 

 

https://doi.org/10.1016/j.jnc.2022.126290
https://doi.org/10.1111/j.1365-2907.2011.00207.x
https://doi.org/10.1073/PNAS.2115329119/SUPPL_FILE/PNAS.2115329119.SAPP.PDF
https://doi.org/10.2192/1537-6176(2006)17%5b8:ABCAR%5d2.0.CO;2
https://doi.org/10.1038/s41598-017-18927-1
https://doi.org/10.1016/j.biocon.2020.108579
https://doi.org/10.1007/978-1-4419-6247-8_15268


134 

 

Gubler, S., Rossa, A., Avalos, G., Brönnimann, S., Cristobal, K., Croci-Maspoli, M., Dapozzo, 

M., van der Elst, A., Escajadillo, Y., Flubacher, M., Garcia, T., Imfeld, N., Konzelmann, T., 

Lechthaler, F., Liniger, M., Quevedo, K., Ramos, H., Rohrer, M., Schwierz, C., … 

Wüthrich, B. (2020). Twinning SENAMHI and MeteoSwiss to co-develop climate services 

for the agricultural sector in Peru. Climate Services, 20. 

https://doi.org/10.1016/j.cliser.2020.100195 

 

 

Guerrero, P. C., Rosas, M., Arroyo, M. T. K., & Wiens, J. J. (2013). Evolutionary lag times and 

recent origin of the biota of an ancient desert (Atacama-Sechura). Proceedings of the 

National Academy of Sciences of the United States of America, 110(28), 11469–11474. 

https://doi.org/10.1073/pnas.1308721110 

 

 

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat Suitability and Distribution 

Models: With Applications in R. Habitat Suitability and Distribution Models. 

https://doi.org/10.1017/9781139028271 

 

 

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. 

Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 

 

 

Haywood, J., & Schulz, M. (2007). Causes of the reduction in uncertainty in the anthropogenic 

radiative forcing of climate between IPCC (2001) and IPCC (2007). Geophysical Research 

Letters, 34(20). https://doi.org/10.1029/2007GL030749 

 

 

He, Q., & Silliman, B. R. (2019). Climate change, human impacts, and coastal ecosystems in the 

Anthropocene. Current Biology, 29(19), R1021–R1035. 

https://doi.org/10.1016/J.CUB.2019.08.042 

 

 

Herrera, A.-M., Nassar, J., Michelangeli, F., Rodriguez, J. P., & Torres, D. (1994). The 

Spectacled bear in the Sierra Nevada National Park of Venezuela. Bears: Their Biology and 

Management, 9, 149. https://doi.org/10.2307/3872695 

 

 

Hofstede, R. G. M., & Llambí, L. D. (2020). Plant diversity in Páramo-Neotropical high 

mountain humid grasslands. Encyclopedia of the World’s Biomes, 1–5, 362–372. 

https://doi.org/10.1016/B978-0-12-409548-9.11858-5 

 

 

https://doi.org/10.1016/j.cliser.2020.100195
https://doi.org/10.1073/pnas.1308721110
https://doi.org/10.1017/9781139028271
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1029/2007GL030749
https://doi.org/10.1016/J.CUB.2019.08.042
https://doi.org/10.2307/3872695
https://doi.org/10.1016/B978-0-12-409548-9.11858-5


135 

 

Hulme, M. (2020). Climates multiple: three baselines, two tolerances, one normal. Academia 

Letters. https://doi.org/10.20935/AL102 

 

 

INGEAG. (2019). El atlas de la estructura Ecológica Principal. 2019, 54. 

http://repository.humboldt.org.co/handle/20.500.11761/35044 

 

 

INGEMMET. (1995). Geología del Perú. In Instituto Geológico, Minero y Metalúrgico - 

INGEMMET. Instituto Geológico, Minero y Metalúrgico - INGEMMET. 

https://repositorio.ingemmet.gob.pe/handle/20.500.12544/176 

 

 

Instituto Alexander von Humboldt. (2023). BioModelos - Tremarctos ornatus. 

http://biomodelos.humboldt.org.co/es/species/visor?species_id=4885 

 

 

IPCC. (2000). Emissions scenarios (pp. 148-162). 

 

 

IPCC. (2012). Glossary of terms. In: Managing the risks of extreme events and disasters to 

advance climate change adaptation (pp. 555–564). 

https://doi.org/10.1002/9783527612024.oth1 

 

 

IPCC. (2014a). Climate change 2014 synthesis report summary chapter for policymakers. In 

IPCC. 

 

 

IPCC. (2014b). Summary for policymakers summary for policymakers. International Panel on 

Climate Change, 1–161. http://ebooks.cambridge.org/ref/id/CBO9781107415416A011 

 

 

IPCC. (2021, September 13). Emissions Scenarios. 

https://archive.ipcc.ch/ipccreports/sres/emission/index.php?idp=27 

 

 

Jarvis, A., Touval, J. L., Schmitz, M. C., Sotomayor, L., & Hyman, G. G. (2010). Assessment of 

threats to ecosystems in South America. Journal for Nature Conservation, 18(3), 180–188. 

https://doi.org/10.1016/j.jnc.2009.08.003 

 

 

https://doi.org/10.20935/AL102
http://repository.humboldt.org.co/handle/20.500.11761/35044
https://repositorio.ingemmet.gob.pe/handle/20.500.12544/176
http://biomodelos.humboldt.org.co/es/species/visor?species_id=4885
https://doi.org/10.1002/9783527612024.oth1
http://ebooks.cambridge.org/ref/id/CBO9781107415416A011
https://archive.ipcc.ch/ipccreports/sres/emission/index.php?idp=27
https://doi.org/10.1016/j.jnc.2009.08.003


136 

 

Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., & 

Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the 

Anthropocene. Science, 356(6335), 270–275. https://doi.org/10.1126/SCIENCE.AAM9317 

 

 

Josse, C., Cuesta, F., Navarro, G., Barrena, V., Cabrera, E., Chacón-Moreno, E., Ferreira, W., 

Peralvo, M., Saito, J., & Tovar, A. (2009). Ecosistemas de los Andes del Norte y Centro 

(CONDESAN, Ed.). Comunidad Andina de Naciones. 

 

 

Kattan, G., Hernández, O. L., Goldstein, I., Rojas, V., Murillo, O., Gómez, C., Restrepo, H., & 

Cuesta, F. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the 

northern Andes. Oryx, 38(2), 155–163. https://doi.org/10.1017/S0030605304000298 

 

 

Kellner, C. J., Brawn, J. D., & Karr, J. R. (1992). What is habitat suitability and how should it be 

measured? Wildlife 2001: Populations, 476–488. https://doi.org/10.1007/978-94-011-2868-

1_36 

 

 

Kharin, V. V., Zwiers, F. W., Zhang, X., & Wehner, M. (2013). Changes in temperature and 

precipitation extremes in the CMIP5 ensemble. Climatic Change, 119(2), 345–357. 

https://doi.org/10.1007/s10584-013-0705-8 

 

 

Kiser, A. H., Cummings, K. S., Tiemann, J. S., Smith, C. H., Johnson, N. A., Lopez, R. R., & 

Randklev, C. R. (2022). Using a multi-model ensemble approach to determine biodiversity 

hotspots with limited occurrence data in understudied areas: An example using freshwater 

mussels in México. Ecology and Evolution, 12(5). https://doi.org/10.1002/ece3.8909 

 

 

Kodra, E., & Ganguly, A. R. (2014). Asymmetry of projected increases in extreme temperature 

distributions. Scientific Reports, 4. https://doi.org/10.1038/srep05884 

 

 

Ksiksi, T. S., Remya, K., Mousa, M. T., Al-Badi, S. K., Al Kaabi, S. K., Alameemi, S. M., 

Fereaa, S. M., & Hassan, F. E. (2019). Climate change-induced species distribution 

modeling in hyper-arid ecosystems. F1000Research, 8, 1–9. 

https://doi.org/10.12688/F1000RESEARCH.19540.1 

 

 

Kussul, N., Kolotii, A., Shelestov, A., Yailymov, B., & Lavreniuk, M. (2017). Land degradation 

estimation from global and national satellite based datasets within un program. Proceedings 

of the 2017 IEEE 9th International Conference on Intelligent Data Acquisition and 

https://doi.org/10.1126/SCIENCE.AAM9317
https://doi.org/10.1017/S0030605304000298
https://doi.org/10.1007/978-94-011-2868-1_36
https://doi.org/10.1007/978-94-011-2868-1_36
https://doi.org/10.1007/s10584-013-0705-8
https://doi.org/10.1002/ece3.8909
https://doi.org/10.1038/srep05884
https://doi.org/10.12688/F1000RESEARCH.19540.1


137 

 

Advanced Computing Systems: Technology and Applications, IDAACS 2017, 1, 383–386. 

https://doi.org/10.1109/IDAACS.2017.8095109 

 

 

Lazaridis, M. (2011). First principles of meteorology. 67–118. https://doi.org/10.1007/978-94-

007-0162-5_2 

 

 

Lebreton, J. D. (2011). The impact of global change on terrestrial vertebrates. Comptes Rendus - 

Biologies, 334(5–6), 360–369. https://doi.org/10.1016/j.crvi.2011.01.005 

 

 

Lewis, S. C., & King, A. D. (2017). Evolution of mean, variance and extremes in 21st century 

temperatures. Weather and Climate Extremes, 15, 1–10. 

https://doi.org/10.1016/j.wace.2016.11.002 

 

 

Livingston, J. E., Lövbrand, E., & Alkan Olsson, J. (2018). From climates multiple to climate 

singular: Maintaining policy-relevance in the IPCC synthesis report. Environmental Science 

and Policy, 90(July), 83–90. https://doi.org/10.1016/j.envsci.2018.10.003 

 

 

Lyra, A., Chou, C., & Sampaio, G. (2016). Sensitivity of the Amazon biome to high resolution 

climate change projections. Acta Amazonica, 46(2), 175–188. https://doi.org/10.1590/1809-

4392201502225 

 

 

M. Horst, A., Presmanes Hill, A., & B. Gorman, K. (2022). Palmer archipelago penguins data in 

the palmerpenguins R Package - an alternative to Anderson’s Irises. The R Journal, 14(1), 

244–254. https://doi.org/10.32614/rj-2022-020 

 

 

Marsh, C. J., Gavish, Y., Kuemmerlen, M., Stoll, S., Haase, P., & Kunin, W. E. (2023). SDM 

profiling: A tool for assessing the information-content of sampled and unsampled locations 

for species distribution models. Ecological Modelling, 475. 

https://doi.org/10.1016/j.ecolmodel.2022.110170 

 

 

Meehl, G. A., Karl, T., Easterling, D. R., Changnon, S., Pielke, R., Changnon, D., Evans, J., 

Groisman, P. Y., Knutson, T. R., Kunkel, K. E., Mearns, L. O., Parmesan, C., Pulwarty, R., 

Root, T., Sylves, R. T., Whetton, P., & Zwiers, F. (2000). An introduction to trends in 

extreme weather and climate events: observations, socioeconomic impacts, terrestrial 

ecological impacts, and model projections. Bulletin of the American Meteorological Society, 

81(3), 413–416. https://doi.org/10.1175/1520-0477(2000)081<0413:aittie>2.3.co;2 

https://doi.org/10.1109/IDAACS.2017.8095109
https://doi.org/10.1007/978-94-007-0162-5_2
https://doi.org/10.1007/978-94-007-0162-5_2
https://doi.org/10.1016/j.crvi.2011.01.005
https://doi.org/10.1016/j.wace.2016.11.002
https://doi.org/10.1016/j.envsci.2018.10.003
https://doi.org/10.1590/1809-4392201502225
https://doi.org/10.1590/1809-4392201502225
https://doi.org/10.32614/rj-2022-020
https://doi.org/10.1016/j.ecolmodel.2022.110170
https://doi.org/10.1175/1520-0477(2000)081%3c0413:aittie%3e2.3.co;2


138 

 

Mooney, H., Larigauderie, A., Cesario, M., Elmquist, T., Hoegh-Guldberg, O., Lavorel, S., 

Mace, G. M., Palmer, M., Scholes, R., & Yahara, T. (2009). Biodiversity, climate change, 

and ecosystem services. Current Opinion in Environmental Sustainability, 1(1), 46–54. 

https://doi.org/10.1016/j.cosust.2009.07.006 

 

 

Moreno, J., Sevillano, G., Valverde, O., Loayza, V., Haro, R., & Zambrano, J. (2018). Soil from 

the Coastal Plane. https://doi.org/10.1007/978-3-319-25319-0_2 

 

 

Mori, G. M., Castillo, E. B., Guzmán, C. T., Cotrina Sánchez, D. A., Guzman Valqui, B. K., 

Oliva, M., Bandopadhyay, S., López, R. S., & Rojas Briceño, N. B. (2020). Predictive 

modelling of current and future potential distribution of the spectacled bear (Tremarctos 

ornatus) in Amazonas, northeast Peru. Animals, 10(10), 1–21. 

https://doi.org/10.3390/ani10101816 

 

 

Morrell, N., Appleton, R. D., & Arcese, P. (2021). Roads, forest cover, and topography as factors 

affecting the occurrence of large carnivores: The case of the Andean bear (Tremarctos 

ornatus). Global Ecology and Conservation, 26, e01473. 

https://doi.org/10.1016/J.GECCO.2021.E01473 

 

 

Morris, R. J. (2010). Anthropogenic impacts on tropical forest biodiversity: a network structure 

and ecosystem functioning perspective. Philosophical Transactions of the Royal Society B: 

Biological Sciences, 365(1558), 3709. https://doi.org/10.1098/RSTB.2010.0273 

 

 

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., 

Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., 

Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & 

Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and 

assessment. Nature, 463(7282), 747–756. https://doi.org/10.1038/nature08823 

 

 

Naimi, B., & Araújo, M. B. (2016). Sdm: A reproducible and extensible R platform for species 

distribution modelling. Ecography, 39(4), 368–375. https://doi.org/10.1111/ecog.01881 

 

 

Naimi, B., & Araujo, M. B. (2019). Package “sdm.” R CRAN Project, 1–10. 

https://doi.org/10.1111/ecog.01881 

 

 

https://doi.org/10.1016/j.cosust.2009.07.006
https://doi.org/10.1007/978-3-319-25319-0_2
https://doi.org/10.3390/ani10101816
https://doi.org/10.1016/J.GECCO.2021.E01473
https://doi.org/10.1098/RSTB.2010.0273
https://doi.org/10.1038/nature08823
https://doi.org/10.1111/ecog.01881
https://doi.org/10.1111/ecog.01881


139 

 

Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., & Ramirez-Villegas, J. (2020). High-

resolution and bias-corrected CMIP5 projections for climate change impact assessments. 

Scientific Data, 7(1). https://doi.org/10.1038/s41597-019-0343-8 

 

 

Newbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate 

community diversity under different scenarios. Proceedings of the Royal Society B: 

Biological Sciences, 285(1881). https://doi.org/10.1098/rspb.2018.0792 

 

 

Newell, F. L., Ausprey, I. J., & Robinson, S. K. (2022). Spatiotemporal climate variability in the 

Andes of northern Peru: Evaluation of gridded datasets to describe cloud forest 

microclimate and local rainfall. International Journal of Climatology, 42(11), 5892–5915. 

https://doi.org/10.1002/joc.7567 

 

 

Nũez, M. N., Solman, S. A., & Cabré, M. F. (2009). Regional climate change experiments over 

southern South America. II: Climate change scenarios in the late twenty-first century. 

Climate Dynamics, 32(7–8), 1081–1095. https://doi.org/10.1007/s00382-008-0449-8 

 

 

Olsen, J. R. (2015). Adapting infrastructure and civil engineering practice to a changing climate. 

In Adapting Infrastructure and Civil Engineering Practice to a Changing Climate. 

https://doi.org/10.1061/9780784479193 

 

 

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., 

Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., 

Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & 

Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. 

BioScience, 51(11), 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2 

 

 

Ospina, J., Domínguez, C., Vega, E., Darghan, A., & Rodríguez, L. (2017). Analysis of the water 

balance under regional scenarios of climate change for arid zones of Colombia. Atmósfera, 

30(1), 63–76. https://doi.org/https://doi.org/10.20937/atm.2017.30.01.06 

 

 

Papalexiou, S. M., & Montanari, A. (2019). Global and Regional Increase of Precipitation 

Extremes Under Global Warming. Water Resources Research, 55(6), 4901–4914. 

https://doi.org/10.1029/2018WR024067 

 

 

https://doi.org/10.1038/s41597-019-0343-8
https://doi.org/10.1098/rspb.2018.0792
https://doi.org/10.1002/joc.7567
https://doi.org/10.1007/s00382-008-0449-8
https://doi.org/10.1061/9780784479193
https://doi.org/10.1641/0006-3568(2001)051%5b0933:teotwa%5d2.0.co;2
https://doi.org/https:/doi.org/10.20937/atm.2017.30.01.06
https://doi.org/10.1029/2018WR024067


140 

 

Pedersen, J. S. T., van Vuuren, D. P., Aparício, B. A., Swart, R., Gupta, J., & Santos, F. D. 

(2020). Variability in historical emissions trends suggests a need for a wide range of global 

scenarios and regional analyses. Communications Earth & Environment, 1(1), 1–7. 

https://doi.org/10.1038/s43247-020-00045-y 

 

 

Pedersen, J. T. S., van Vuuren, D., Gupta, J., Santos, F. D., Edmonds, J., & Swart, R. (2022). 

IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022? 

Global Environmental Change, 75, 102538. 

https://doi.org/10.1016/J.GLOENVCHA.2022.102538 

 

 

Pender, J. E., Hipp, A. L., Hahn, M., Kartesz, J., Nishino, M., & Starr, J. R. (2019). How 

sensitive are climatic niche inferences to distribution data sampling? A comparison of Biota 

of North America Program (BONAP) and Global Biodiversity Information Facility (GBIF) 

datasets. Ecological Informatics, 54. https://doi.org/10.1016/j.ecoinf.2019.100991 

 

 

Pendergrass, A. G., & Hartmann, D. L. (2014). Changes in the distribution of rain frequency and 

intensity in response to global warming. Journal of Climate, 27(22), 8372–8383. 

https://doi.org/10.1175/JCLI-D-14-00183.1 

 

 

Phillips, S. J., & Elith, J. (2010). POC plots: calibrating species distribution models with 

presence-only data. In Source: Ecology (Vol. 91, Issue 8). 

 

 

Poggio, L., Simonetti, E., & Gimona, A. (2018). Enhancing the WorldClim data set for national 

and regional applications. Science of the Total Environment, 625, 1628–1643. 

https://doi.org/10.1016/j.scitotenv.2017.12.258 

 

 

Ponce-Reyes, R., Plumptre, A. J., Segan, D., Ayebare, S., Fuller, R. A., Possingham, H. P., & 

Watson, J. E. M. (2017). Forecasting ecosystem responses to climate change across Africa’s 

Albertine Rift. Biological Conservation, 209, 464–472. 

https://doi.org/10.1016/j.biocon.2017.03.015 

 

 

Prasad, S. (2022). Measures of Central Tendencies. Elementary Statistical Methods, 37–96. 

https://doi.org/10.1007/978-981-19-0596-4_2 

 

 

Raimondo, D., Young, B. E., Brooks, T. M., Cardoso, P., van der Colff, D., de Souza Dias, B. F., 

Vercillo, U., de Souza, E., Juslén, A., Hyvarinen, E., von Staden, L., Tolley, K., & 

https://doi.org/10.1038/s43247-020-00045-y
https://doi.org/10.1016/J.GLOENVCHA.2022.102538
https://doi.org/10.1016/j.ecoinf.2019.100991
https://doi.org/10.1175/JCLI-D-14-00183.1
https://doi.org/10.1016/j.scitotenv.2017.12.258
https://doi.org/10.1016/j.biocon.2017.03.015
https://doi.org/10.1007/978-981-19-0596-4_2


141 

 

McGowan, P. J. K. (2023). Using Red List Indices to monitor extinction risk at national 

scales. Conservation Science and Practice, 5(1), e12854. 

https://doi.org/10.1111/CSP2.12854 

 

 

Ramsey, F. ;, & Schafer, D. (2013). The Statistical Sleuth: A Course in Methods of Data 

Analysis. 

https://books.google.com/books/about/The_Statistical_Sleuth_A_Course_in_Metho.html?id

=jfoKAAAAQBAJ&printsec=frontcover&source=kp_read_button&hl=en 

 

 

Raven, P. H., Gereau, R. E., Phillipson, P. B., Chatelain, C., Jenkins, C. N., & Ulloa, C. U. 

(2020). The distribution of biodiversity richness in the tropics. https://www.science.org 

 

 

Reboita, M. S., Da Rocha, R. P., Dias, C. G., & Ynoue, R. Y. (2014). Climate projections for 

South America: RegCM3 driven by HadCM3 and ECHAM5. Advances in Meteorology, 

2014. https://doi.org/10.1155/2014/376738 

 

 

Reboita, M. S., Kuki, C. A. C., Marrafon, V. H., de Souza, C. A., Ferreira, G. W. S., Teodoro, T., 

& Lima, J. W. M. (2022). South America climate change revealed through climate indices 

projected by GCMs and Eta-RCM ensembles. Climate Dynamics, 58(1–2), 459–485. 

https://doi.org/10.1007/s00382-021-05918-2 

 

 

Riahi, K., Grübler, A., & Nakicenovic, N. (2007). Scenarios of long-term socio-economic and 

environmental development under climate stabilization. Technological Forecasting and 

Social Change, 74(7), 887–935. https://doi.org/10.1016/j.techfore.2006.05.026 

 

 

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., 

Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, 

M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared 

Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions 

implications: An overview. Global Environmental Change, 42, 153–168. 

https://doi.org/10.1016/j.gloenvcha.2016.05.009 

 

 

Rodríguez, D., Reyes, A., Reyes-Amaya, N., Gallegos-Sánchez, S., Gutierrez, J., Suárez, R., & 

Prieto, F. (2019). Northernmost distribution of the andean bear (Tremarctos ornatus) in 

South America, and fragmentation of its associated Andean Forest and paramo ecosystems. 

Therya, 10(2), 161–170. https://doi.org/10.12933/therya-19-756 

 

https://doi.org/10.1111/CSP2.12854
https://books.google.com/books/about/The_Statistical_Sleuth_A_Course_in_Metho.html?id=jfoKAAAAQBAJ&printsec=frontcover&source=kp_read_button&hl=en
https://books.google.com/books/about/The_Statistical_Sleuth_A_Course_in_Metho.html?id=jfoKAAAAQBAJ&printsec=frontcover&source=kp_read_button&hl=en
https://www.science.org/
https://doi.org/10.1155/2014/376738
https://doi.org/10.1007/s00382-021-05918-2
https://doi.org/10.1016/j.techfore.2006.05.026
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.12933/therya-19-756


142 

 

Rowden, A. A., Anderson, O. F., Georgian, S. E., Bowden, D. A., Clark, M. R., Pallentin, A., & 

Miller, A. (2017). High-resolution habitat suitability models for the conservation and 

management of vulnerable marine ecosystems on the Louisville Seamount Chain, South 

Pacific Ocean. Frontiers in Marine Science, 4(OCT). 

https://doi.org/10.3389/fmars.2017.00335 

 

 

Ruiz, D., Moreno, H. A., Gutiérrez, M. E., & Zapata, P. A. (2008). Changing climate and 

endangered high mountain ecosystems in Colombia. Science of the Total Environment, 

398(1–3), 122–132. https://doi.org/10.1016/j.scitotenv.2008.02.038 

 

 

Rundel, P. W., Dillon, M. O., Palma, B., Mooney, H. A., Gulmon, S. L., & Ehleringer, J. R. 

(1991). The phytogeography and ecology of the coastal Atacama and Peruvian Deserts. 

Aliso, 13(1), 1–49. https://doi.org/10.5642/aliso.19911301.02 

 

 

Salinger, M. J. (2005). Climate variability and change: past, present and future - an overview. 

increasing climate variability and change: reducing the vulnerability of agriculture and 

forestry, 9–29. https://doi.org/10.1007/1-4020-4166-7_3/COVER 

 

 

Samal, P., Srivastava, J., Saraf, P. N., Charles, B., & Singarasubramanian, S. R. (2022). 

Ensemble modeling approach to predict the past and future climate suitability for two 

mangrove species along the coastal wetlands of peninsular India. Ecological Informatics, 

72(May), 101819. https://doi.org/10.1016/j.ecoinf.2022.101819 

 

 

Sayre, R., Bow, J., Josse, C., Sotomayor, L., & Touval, J. (2008). Terrestrial ecosystems of 

South America. North America Land Cover Summit, 131–152. 

 

 

Scheldeman, X., & van Zonneveld, M. (2011). Manual de capacitación en análisis espacial de 

diversidad y distribución de plantas. 

https://cgspace.cgiar.org/handle/10568/104630?show=full 

 

 

Schellart, W. P. (2017). A geodynamic model of Andean Mountain building. Geophysical 

Research Abstracts, 19, 2017–7064. 

 

 

Schipper J. (2017a). Napo Moist Forests. https://www.oneearth.org/ecoregions/napo-moist-

forests/ 

 

https://doi.org/10.3389/fmars.2017.00335
https://doi.org/10.1016/j.scitotenv.2008.02.038
https://doi.org/10.5642/aliso.19911301.02
https://doi.org/10.1007/1-4020-4166-7_3/COVER
https://doi.org/10.1016/j.ecoinf.2022.101819
https://cgspace.cgiar.org/handle/10568/104630?show=full
https://www.oneearth.org/ecoregions/napo-moist-forests/
https://www.oneearth.org/ecoregions/napo-moist-forests/


143 

 

Schipper, J. (2017). Northern Andean Páramo. One Earth. 

https://www.oneearth.org/ecoregions/northern-andean-paramo/ 

 

 

Schipper J. (2017b). Sechura Desert. One Earth. https://www.oneearth.org/ecoregions/sechura-

desert/ 

 

 

Schober, P., & Schwarte, L. A. (2018). correlation coefficients: appropriate use and 

interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. 

https://doi.org/10.1213/ANE.0000000000002864 

 

 

Seid, M. A., & Bekele, T. (2023). Analyses of habitat suitability and invasion potential of 

Lantana camara under current climate in Amhara Region, Ethiopia: an implication for 

environmental management. Biological Invasions, 25(1), 153–163. 

https://doi.org/10.1007/s10530-022-02910-7 

 

 

Senay, S. D., Worner, S. P., & Ikeda, T. (2013). Novel three-step pseudo-absence selection 

technique for improved species distribution modelling. PLoS ONE, 8(8). 

https://doi.org/10.1371/journal.pone.0071218 

 

 

Shabani, F., Kumar, L., & Ahmadi, M. (2016). A comparison of absolute performance of 

different correlative and mechanistic species distribution models in an independent area. 

Ecology and Evolution, 6(16), 5973–5986. https://doi.org/10.1002/ece3.2332 

 

 

Siegel, S. (1957). Nonparametric statistics. American Statistician, 11(3), 13–19. 

https://doi.org/10.1080/00031305.1957.10501091 

 

 

Sierra, J. P., Arias, P. A., Durán-Quesada, A. M., Tapias, K. A., Vieira, S. C., & Martínez, J. A. 

(2021). The Choco low‐level jet: past, present and future. Climate Dynamics, 56(7–8), 

2667–2692. https://doi.org/10.1007/s00382-020-05611-w 

 

 

Sillero, N., dos Santos, R., Teodoro, A. C., & Carretero, M. A. (2021). Ecological niche models 

improve home range estimations. Journal of Zoology, 313(2), 145–157. 

https://doi.org/10.1111/jzo.12844 

 

 

https://www.oneearth.org/ecoregions/northern-andean-paramo/
https://www.oneearth.org/ecoregions/sechura-desert/
https://www.oneearth.org/ecoregions/sechura-desert/
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1007/s10530-022-02910-7
https://doi.org/10.1371/journal.pone.0071218
https://doi.org/10.1002/ece3.2332
https://doi.org/10.1080/00031305.1957.10501091
https://doi.org/10.1007/s00382-020-05611-w
https://doi.org/10.1111/jzo.12844


144 

 

Smith, A. B., & Santos, M. J. (2020). Testing the ability of species distribution models to infer 

variable importance. Ecography, 43(12), 1801–1813. https://doi.org/10.1111/ecog.05317 

 

 

Staal, A., Tuinenburg, O. A., Bosmans, J. H. C., Holmgren, M., Van Nes, E. H., Scheffer, M., 

Zemp, D. C., & Dekker, S. C. (2018). Forest-rainfall cascades buffer against drought across 

the Amazon. Nature Climate Change, 8(6), 539–543. https://doi.org/10.1038/s41558-018-

0177-y 

 

 

Stark, S. C., Breshears, D. D., Aragón, S., Villegas, J. C., Law, D. J., Smith, M. N., Minor, D. 

M., de Assis, R. L., de Almeida, D. R. A., de Oliveira, G., Saleska, S. R., Swann, A. L. S., 

Moura, J. M. S., Camargo, J. L., da Silva, R., Aragão, L. E. O. C., & Oliveira, R. C. (2020). 

Reframing tropical savannization: linking changes in canopy structure to energy balance 

alterations that impact climate. Ecosphere, 11(9). https://doi.org/10.1002/ecs2.3231 

 

 

Strandsbjerg Tristan Pedersen, J., Duarte Santos, F., van Vuuren, D., Gupta, J., Encarnação 

Coelho, R., Aparício, B. A., & Swart, R. (2021). An assessment of the performance of 

scenarios against historical global emissions for IPCC reports. Global Environmental 

Change, 66(October 2020). https://doi.org/10.1016/j.gloenvcha.2020.102199 

 

 

Stuart Chapin, F., Matson, P. A., & Vitousek, P. M. (2012). Principles of terrestrial ecosystem 

ecology. Principles of Terrestrial Ecosystem Ecology, 1–529. https://doi.org/10.1007/978-1-

4419-9504-9/COVER 

 

 

Suarez, L. (2008). Seasonal distribution and food habits of spectacled Bears Tremarctos ornatus 

in the highlands of Ecuador. Http://Dx.Doi.Org/10.1080/01650528809360755, 23(3), 133–

136. https://doi.org/10.1080/01650528809360755 

 

 

Sun, Y., Wendi, D., Kim, D. E., & Liong, S. Y. (2019). Deriving intensity–duration–frequency 

(IDF) curves using downscaled in situ rainfall assimilated with remote sensing data. 

Geoscience Letters, 6(1). https://doi.org/10.1186/s40562-019-0147-x 

 

 

Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and 

vulnerability to climate change: A review. In Global Change Biology (Vol. 20, Issue 11, pp. 

3313–3328). https://doi.org/10.1111/gcb.12581 

 

 

https://doi.org/10.1111/ecog.05317
https://doi.org/10.1038/s41558-018-0177-y
https://doi.org/10.1038/s41558-018-0177-y
https://doi.org/10.1002/ecs2.3231
https://doi.org/10.1016/j.gloenvcha.2020.102199
https://doi.org/10.1007/978-1-4419-9504-9/COVER
https://doi.org/10.1007/978-1-4419-9504-9/COVER
https://doi.org/10.1080/01650528809360755
https://doi.org/10.1186/s40562-019-0147-x
https://doi.org/10.1111/gcb.12581


145 

 

Thrun, M. C., Gehlert, T., & Ultsch, A. (2020). Analyzing the fine structure of distributions. 

PLoS ONE, 15(10 October), 1–20. https://doi.org/10.1371/journal.pone.0238835 

 

 

Thuiller, W. (2007). Climate change and the ecologist. Nature 2007 448:7153, 448(7153), 550–

552. https://doi.org/10.1038/448550a 

 

 

Torabian, S., Ranaei, M., Pourmanafi, S., & Chisholm, L. (2018). A statistical comparison 

between less and common applied models to estimate geographical distribution of 

endangered species (Felis margarita) in Central Iran. Contemporary Problems of Ecology, 

11(6), 687–696. https://doi.org/10.1134/S1995425518060148 

 

 

Torres, R. R., Benassi, R. B., Martins, F. B., & Lapola, D. M. (2022). Projected impacts of 1.5 

and 2°C global warming on temperature and precipitation patterns in South America. 

International Journal of Climatology, 42(3), 1597–1611. https://doi.org/10.1002/joc.7322 

 

 

Tovar, C., Arnillas, C. A., Cuesta, F., & Buytaert, W. (2013). Diverging responses of tropical 

andean biomes under future climate conditions. PLoS ONE, 8(5). 

https://doi.org/10.1371/journal.pone.0063634 

 

 

UN. (1992). United Nations Framework Convention on Climate Change. 1–21. 

https://doi.org/10.1017/cbo9781139171380.012 

 

 

Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 

571–573. https://doi.org/10.1126/science.aaa4984 

 

 

Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J. J., & Elith, J. (2022). Predictive performance 

of presence-only species distribution models: a benchmark study with reproducible code. 

Ecological Monographs, 92(1). https://doi.org/10.1002/ecm.1486 

 

 

Valencia, J. B., Mesa, J., León, J. G., Madriñán, S., & Cortés, A. J. (2020). Climate Vulnerability 

Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. 

Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.565708 

 

 

van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. 

C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., 

https://doi.org/10.1371/journal.pone.0238835
https://doi.org/10.1038/448550a
https://doi.org/10.1134/S1995425518060148
https://doi.org/10.1002/joc.7322
https://doi.org/10.1371/journal.pone.0063634
https://doi.org/10.1017/cbo9781139171380.012
https://doi.org/10.1126/science.aaa4984
https://doi.org/10.1002/ecm.1486
https://doi.org/10.3389/fevo.2020.565708


146 

 

Smith, S. J., & Rose, S. K. (2011). The representative concentration pathways: An 

overview. Climatic Change, 109(1), 5–31. https://doi.org/10.1007/S10584-011-0148-

Z/TABLES/4 

 

 

van Vuuren, D. P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori, S., KC, S., 

Kriegler, E., & O’Neill, B. (2017). The Shared Socio-economic Pathways: Trajectories for 

human development and global environmental change. Global Environmental Change, 42, 

148–152. https://doi.org/10.1016/j.gloenvcha.2016.10.009 

 

 

Vela-Vargas, I. M., Jorgenson, J. P., González-Maya, J. F., & Koprowski, J. L. (2021). 

Tremarctos ornatus (Carnivora: Ursidae). Mammalian Species, 53(1006), 78–94. 

https://doi.org/10.1093/MSPECIES/SEAB008 

 

 

Velez-Liendo, X., & García-Rangel, S. (2018). Tremarctos ornatus, Spectacled Bear. The IUCN 

Red List of Threatened Species 2017. https://doi.org/10.2305/IUCN.UK.2017-

3.RLTS.T22066A45034047.en 

 

 

Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. 

P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., & Watson, J. E. M. (2016). 

Sixteen years of change in the global terrestrial human footprint and implications for 

biodiversity conservation. Nature Communications, 7. 

https://doi.org/10.1038/ncomms12558 

 

 

Venter, O., Sanderson, W., Magrach, A., Allan, J., Beher, J., Jones, K., Possingham, H., 

Laurance, W., Wood, P., Fekete, B., Levy, M., & Watson, J. (2018). Last of the Wild 

Project, version 3 (LWP-3): 2009 human footprint, 2018 release. Palisades, New York: 

NASA Socioeconomic Data and Applications Center (SEDAC). 

https://sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-footprint 

 

 

Williams, B. A., Venter, O., Allan, J. R., Atkinson, S. C., Rehbein, J. A., Ward, M., Di Marco, 

M., Grantham, H. S., Ervin, J., Goetz, S. J., Hansen, A. J., Jantz, P., Pillay, R., Rodríguez-

Buriticá, S., Supples, C., Virnig, A. L. S., & Watson, J. E. M. (2020). Change in Terrestrial 

Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth, 3(3), 371–382. 

https://doi.org/10.1016/j.oneear.2020.08.009 

 

 

Williams, B. A., Venter, O., Rehbein, J. A., Di Marco, M., Grantham, H. S., Ervin, J., Goetz, S., 

Hansen, A. J., Jantz, P., Pillay, R., Rodríguez-Buriticá, S., Supples, C., & Virnig, A. L. S. 

https://doi.org/10.1007/S10584-011-0148-Z/TABLES/4
https://doi.org/10.1007/S10584-011-0148-Z/TABLES/4
https://doi.org/10.1016/j.gloenvcha.2016.10.009
https://doi.org/10.1093/MSPECIES/SEAB008
https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22066A45034047.en
https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22066A45034047.en
https://doi.org/10.1038/ncomms12558
https://sedac.ciesin.columbia.edu/data/set/wildareas-v3-2009-human-footprint
https://doi.org/10.1016/j.oneear.2020.08.009


147 

 

(2020). Change in terrestrial Human Footprint drives continued loss of intact ecosystems. 

SSRN Electronic Journal, 371–382. https://doi.org/10.2139/ssrn.3600547 

 

 

Willis, K. J., & Bhagwat, S. A. (2009). Biodiversity and climate change. In Science (Vol. 326, 

Issue 5954, pp. 806–807). https://doi.org/10.1126/science.1178838 

 

 

WMO. (2018). Guide to climatological practices (Issue WMO-No. 100). 

 

 

WMO. (2022). FAQs - Climate. https://public.wmo.int/en/about-us/frequently-asked-

questions/climate 

 

 

Wunderlich, R. F., Mukhtar, H., & Lin, Y. P. (2022). Comprehensively evaluating the 

performance of species distribution models across clades and resolutions: choosing the right 

tool for the job. Landscape Ecology, 37(8), 2045–2063. https://doi.org/10.1007/s10980-022-

01465-1 

 

 

Yepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research 

experiment focused on the Chocó low-level jet over the far eastern Pacific and western 

Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. 

https://doi.org/10.1175/BAMS-D-18-0045.1 

 

 

Yerena, E., & Torres, D. (1994). Spectacled bear conservation and dispersal corridors in 

Venezuela. In Bears: Their Biology and Management (Vol. 9). 

 

 

Zevallos, J., & Lavado-Casimiro, W. (2022). Climate change impact on Peruvian Biomes. 

Forests, 13(2). https://doi.org/10.3390/f13020238 

 

 

Zhang, K., Yao, L., Meng, J., & Tao, J. (2018). Maxent modeling for predicting the potential 

geographical distribution of two peony species under climate change. Science of the Total 

Environment, 634, 1326–1334. https://doi.org/10.1016/j.scitotenv.2018.04.112 

  

 

 

  

https://doi.org/10.2139/ssrn.3600547
https://doi.org/10.1126/science.1178838
https://public.wmo.int/en/about-us/frequently-asked-questions/climate
https://public.wmo.int/en/about-us/frequently-asked-questions/climate
https://doi.org/10.1007/s10980-022-01465-1
https://doi.org/10.1007/s10980-022-01465-1
https://doi.org/10.1175/BAMS-D-18-0045.1
https://doi.org/10.3390/f13020238


148 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

  



149 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

 
SUPPLEMENTAL TABLES AND FIGURES FOR CHAPTER 2 

 

 

 

 

 

 

 

 

 

 



150 

 

Table S2.1 Summary of climate change effects on temperature and precipitation for the three 

ecoregions: Sechura Desert, Páramo, and Napo. 

Ecoregion Base map Scenarios Method Results Reference 

Sechura 

Desert  

National 

Level 

Baseline (1981-

2010) 

Baseline (1970-

2000) 

A1B (2010–2039) 

A1B (2040–2069) 

Georeferenced 

localities from 

WorldClim 

database. 

 

Logistic 

regressions: an 

ensemble of 8 

global climate 

models – 1 km 

of resolution.  

Increase in vertical 

structure and 

Moisture. 

Based on WorldClim 

baseline (1970-2000) 

there are three 

ranges for 

precipitation: 0-5 

mm/y, 6-50 mm/y 

and 51-250 mm/y 

(1970-2000) from 

WorldClim. Also, 

there are four 

habitats based on 

annual precipitation 

(mesic >250 mm/y, 

semiarid <250 

mm/y, arid <50 

mm/y, and hyperarid 

≤5mm/y). 

(Guerrero 

et al., 

2013; 

Tovar et 

al., 2013; 

Zevallos 

& 

Lavado-

Casimiro, 

2022) 

Páramo Tropical 

Andean 

biomes 

from 

Nature 

Serve 

(Páramo) 

Baseline (1981-

2010) 

 

Baseline (1970-

2000) 

 

 

A1B (2010–2039) 

 

A1B (2040–2069) 

Georeferenced 

localities from 

WorldClim 

database 

 

Logistic 

regressions: an 

ensemble of 8 

global climate 

models – 1 km 

of resolution.  

For the A1B 2010-

2039 and A1B 2040-

2069 scenarios, the 

páramo shows a loss 

of surface area 

(potential and 

remnant) compared 

to the year 2000. In 

the potential areas, 

part of the páramo 

grasslands will be 

replaced by forest 

biomes but páramo 

grasslands seem to be 

more affected by land 

use change than by 

climate change. 

 

A median loss of 

31.4% is projected 

for the potential 

(Josse et 

al., 2009; 

Tovar et 

al., 2013). 
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distribution, but it is 

only 25% for the 

remaining areas 

(A1B, 2010–2039). 

 

Projections suggest 

the páramo shows an 

upslope 

displacement of its 

surface area for this 

scenario (A1B 2040-

2069) compared to its 

lower limit for the 

year 2000. 

Napo 

Moist 

Forest 

National 

Level 

Biome 

Current climate 

(1981 to 2010) 

was made using 

data from the 

National 

Meteorological 

Services of 

Colombia 

(IDEAM), Peru 

(SENAMHI), 

Brazil (INMET), 

and Ecuador 

(INAMHI), and 

data from global 

weather station 

networks, 

including the 

Global Historical 

Climatological 

Network 

(GHCN) and 

Global Surface 

Summary of the 

Day 

2030, 2050 and 

2080 RCPs (2.6, 

4.5 and 8.5).  

ANUSPLIN 

version 4.3. 

 

Sixteen GCMs 

were 

downscaled - 

CMIP5 - 5 km 

(Delta method) 

2030 Annual mean 

temperature (°C) / 

Annual precipitation 

(mm) 

RCP 2.6: 1.1 / 90 

RCP 4.5: 1.3 / 136 

RCP 8.5: 1.3 / 89 

 

2050 Annual mean 

temperature (°C) / 

Annual precipitation 

(mm) 

RCP 2.6: 1.2 / 136  

RCP 4.5: 1.7 / 136 

RCP 8.5: 2.2 / 146 

 

2080 Annual mean 

temperature (°C) / 

Annual precipitation 

(mm) 

RCP 2.6: 1.4 / 51  

RCP 4.5: 2.4 / 131 

RCP 8.5: 4.2 / 349 

 

 

 

 

 

 

(Beltrán-

Tolosa et 

al., 2020) 
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Table S2.2. CMIP5 Global Climate Models (Navarro-Racines et al., 2020). 

# GCMs Institute 

1 BCC-CSM1.1 
Beijing Climate Center, China Meteorological Administration 

2 BCC-CSM1.1(m) 

3 BNU-ESM Beijing Normal University 

4 CCCMA-CanESM2 Canadian Centre for Climate Modelling and Analysis 

5 CESM1-BGC National Science Foundation, Department of Energy, National Center for 

Atmospheric Research 6 CESM1-CAM5 

7  
CNRM-CM5  

Centre National de Recherches Meteorologiques and Centre Europeen de 

Recherche et Formation Avancees en Calcul Scientifique 

8 CSIRO-ACCESS1.0 Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 9 CSIRO-ACCESS1.3 

10  
CSIRO-Mk3.6.0 

Queensland Climate Change Centre of Excellence and Commonwealth 

Scientific and Industrial Research Organization 

11 EC-EARTH European Centre for Medium-Range Weather Forecasts (ECMWF) 

12  
FIO-ESM  

The First Institute of Oceanography, State Oceanic Administration, 

China 

13 GFDL-CM3 

NOAA Geophysical Fluid Dynamics Laboratory 14 GFDL-ESM2G 

15 GFDL-ESM2M 

16 GISS-E2H 

NASA Goddard Institute for Space Studies USA 
17 GISS-E2HCC 

18 GISS-E2R 

19 GISS-E2RCC 

20  INM-CM4  Institute of Numerical Mathematics of the Russian Academy of Sciences 

21 IPSL-CM5A-LR 

Institut Pierre Simon Laplace 22 IPSL-CM5A-MR 

23 IPSL-CM5B-LR 

24  
LASG-FGOALS-G2  

Institute of Atmospheric Physics (LASG) and Tsinghua University 

(CESS) 

25 MIROC-ESM 
University of Tokyo, National Institute for Environmental Studies and 

Japan Agency for Marine-Earth Science and Technology 
26 MIROC-ESM-CHEM 

27 MIROC-MIROC5 

28 MOHC-HadGEM2-CC 
UK Met Office Hadley Centre 

29 MOHC-HadGEM2-ES 

30 MPI-ESM-LR 
Max Planck Institute for Meteorology 

31 MPI-ESM-MR 

32 MRI-CGCM3 Meteorological Research Institute 

33 NCAR-CCSM4 US National Centre for Atmospheric Research 

34 NCC-NorESM1-M Norwegian Climate Centre 

35 

  

NIMR-HADGEM2-AO 

  

National Institute of Meteorological Research and Korea Meteorological 

Administration 
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Table S2.3. GCMs used at the country level. 

  Temperature bio1 (°C) - 2050 Precipitation bio12 (mm) - 2050 

GCMs / RCPs 2.6 4.5 8.5 2.6 4.5 8.5 

BASELINE 0 0 0 0 0 0 

BCC.CSM1.1 1.4258 1.8560 2.4258 103.6509 99.6192 291.1318 

BCC.CSM1.1.M 1.6104 2.0062 2.6855 -20.8775 -30.6166 6.0237 

BNU.ESM 1.3282 1.8296 2.4220 -226.7497 -279.9051 -280.5389 

CCCMA.CANESM2 2.9507 3.7510 4.7213 -233.6825 -415.2464 -487.7075 

CESM1.CAM5 1.7711 2.2656 3.1258 -72.4058 -92.4361 -168.1871 

CNRM.CM5 1.5215 1.7876 2.4079 52.9802 170.6311 225.6047 

CSIRO.MK3.6.0 1.9248 1.8336 3.1059 167.1291 44.2213 34.3175 

ENSEMBLE 1.6332 1.9876 2.7803 5.0200 30.6839 40.4837 

FIO.ESM 1.2453 0.9779 2.2963 58.2372 156.4203 208.8986 

GFDL.CM3 3.3411 4.0137 4.8586 -165.6337 -169.7036 -211.8142 

GFDL.ESM2G 1.3580 1.9040 2.4531 93.3676 93.0211 180.2029 

GFDL.ESM2M 1.2705 1.7212 2.3924 46.3742 215.3004 181.4796 

GISS.E2.H.CC 1.3364 1.9267 2.1810 -98.5705 -94.2925 -17.0422 

GISS.E2.R 1.1874 1.6430 2.1755 -20.4717 12.5823 -9.5876 

IPSL.CM5A.LR 2.3767 3.1656 4.1809 -123.8511 -93.3742 -106.9631 

IPSL.CM5A.MR 1.8228 1.9393 3.4681 -26.8155 17.5916 63.2437 

LASG.FGOALS.G2 0.9360 1.2895 1.7478 32.2912 84.1502 122.3386 

MIROC.ESM 1.7590 2.1495 2.8489 -89.3386 -77.5178 -11.9684 

MIROC.ESM.CHEM 1.8489 1.9758 2.6920 -55.7589 -27.7497 31.3860 

MIROC.MIROC5 1.4953 1.6963 2.3296 69.4084 119.6377 108.0711 

MOHC.HADGEM2.ES 1.8109 2.3877 3.2253 -22.6904 48.9433 60.8906 

MPI.ESM.LR 1.6360 1.2074 3.0542 141.2899 132.9315 137.2398 

MRI.CGCM3 0.9955 1.3615 1.9040 64.6772 202.9065 129.1199 

NCAR.CCSM4 1.4191 1.8719 2.6572 20.5165 33.2543 -19.0725 

NCC.NORESM1.M 1.2646 1.6569 2.1830 195.3439 381.9368 472.7220 

NIMR.HADGEM2.AO 1.3997 2.3946 2.7783 59.3584 110.9354 89.5112 
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Table S2.4. GCMs used at the Sechura ecoregion level. 

  Temperature bio1 (°C) - 2050 Precipitation bio12 (mm) - 2050 

GCMs / RCPs 2.6 4.5 8.5 2.6 4.5 8.5 

BASELINE 0 0 0 0 0 0 

BCC.CSM1.1 1.3915 1.7901 2.3960 74.6559 101.5207 193.2667 

BCC.CSM1.1.M 1.4679 1.7868 2.4852 82.1658 134.7964 144.4775 

BNU.ESM 1.3930 1.8668 2.5514 55.4955 109.0342 136.3712 

CCCMA.CANESM2 2.2434 2.6717 3.4863 196.1495 237.3171 286.2505 

CESM1.CAM5 1.6207 2.0955 2.3256 84.2829 129.2396 147.4865 

CNRM.CM5 1.1222 1.4380 2.7634 15.7676 12.1387 38.8468 

CSIRO.MK3.6.0 2.2216 1.5775 3.4088 -11.6090 -13.2144 1.8811 

ENSEMBLE 1.5586 1.8958 2.6727 49.1495 64.2615 81.8250 

FIO.ESM 1.1791 1.3274 2.1526 113.9946 117.4703 179.8216 

GFDL.CM3 2.4182 3.0180 3.6919 52.2468 113.6883 127.2198 

GFDL.ESM2G 1.5007 2.0000 2.6142 71.3459 68.1856 98.4018 

GFDL.ESM2M 1.3625 1.9162 2.4996 61.2198 36.9063 72.2270 

GISS.E2.H 1.2407 1.7825 2.3443 3.7189 16.1063 17.6432 

GISS.E2.R 1.2023 1.7299 2.2768 5.5369 11.4378 13.2342 

IPSL.CM5A.LR 1.9950 1.7623 3.4685 59.3622 65.3063 81.7189 

IPSL.CM5A.MR 1.8286 1.4032 3.3890 27.2811 48.7099 58.6649 

LASG.FGOALS.G2 1.0899 1.5173 2.1130 9.0829 15.2505 2.6234 

MIROC.ESM 1.7114 2.1052 2.7314 54.6000 64.4631 98.6793 

MIROC.ESM.CHEM 1.7441 2.1634 2.8995 68.0937 74.6739 80.8937 

MIROC.MIROC5 1.5586 1.9020 2.3840 36.6054 67.1676 63.7081 

MOHC.HADGEM2.ES 1.8067 2.1906 2.9827 25.7604 43.6703 48.9153 

MPI.ESM.LR 1.7272 2.2467 2.9959 -3.4523 47.3153 45.0505 

MPI.ESM.MR 1.7692 0.9144 3.1047 13.6685 0.8108 -3.5495 

MRI.CGCM3 1.0321 1.5220 2.2303 38.7748 77.9838 134.2450 

NCAR.CCSM4 1.3650 1.7431 2.4209 43.9964 54.5045 75.9550 

NCC.NORESM1.M 1.2831 1.6966 2.1953 82.1459 103.8468 86.0613 

NIMR.HADGEM2.AO 1.2494 2.2240 2.5420 16.9964 35.9658 75.9658 
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Table S2.5. GCMs used at the Páramo ecoregion level. 

  Temperature bio1 (°C) Precipitation bio12 (mm) 

GCMs / RCPs 2.6 4.5 8.5 2.6 4.5 8.5 

BASELINE 0 0 0 0 0 0 

BCC.CSM1.1 1.3735 1.7969 2.3857 137.6837 199.6429 327.4898 

BCC.CSM1.1.M 1.3449 1.6735 2.3571 115.1735 130.9490 168.3980 

BNU.ESM 1.3173 1.7633 2.3663 -98.8367 -87.0102 -50.2143 

CCCMA.CANESM2 2.4051 2.9041 3.7929 -29.9184 -7.5510 -134.8061 

CNRM.CM5 1.2418 1.5449 1.8000 19.0816 18.5714 49.3673 

CSIRO.MK3.6.0 1.8429 1.6531 2.8939 184.7347 129.8469 115.7653 

ENSEMBLE 1.5312 1.8412 2.6027 73.9203 93.2610 96.1990 

FIO.ESM 1.1582 1.0888 2.1857 196.2449 209.0714 231.4082 

GFDL.CM3 2.3735 3.0051 3.6969 -65.8673 -50.5510 -84.3163 

GFDL.ESM2G 1.3520 1.8469 2.4010 92.2959 73.7347 123.1429 

GFDL.ESM2M 1.2959 1.6673 2.2888 19.3776 148.0408 147.7041 

GISS.E2.H 1.1755 1.6694 2.1857 33.0102 58.4184 32.0816 

GISS.E2.R 1.1153 1.5398 2.0755 12.7857 119.7857 80.7755 

IPSL.CM5A.LR 1.9367 2.5571 3.4041 77.7041 141.1429 209.5306 

IPSL.CM5A.MR 1.7327 1.5020 3.2276 100.3469 175.7653 273.6429 

LASG.FGOALS.G2 0.9163 1.2837 1.7357 34.1429 52.1122 63.6837 

MIROC.ESM 1.9224 2.1673 2.8429 0.1122 -37.7449 45.2857 

MIROC.ESM.CHEM 1.9286 1.9306 2.6857 32.9286 7.3163 51.7653 

MIROC.MIROC5 1.3929 1.6561 2.1143 87.2959 114.3265 198.6429 

MOHC.HADGEM2.ES 1.7541 2.3224 3.0214 184.4796 253.9388 243.9592 

MPI.ESM.LR 1.6724 1.1673 2.9816 57.5816 97.6837 95.5306 

MRI.CGCM3 1.1694 1.6418 2.2480 69.0510 96.7653 97.5714 

NCAR.CCSM4 1.4398 1.8429 2.5724 60.2857 48.2755 -0.2755 

NCC.NORESM1.M 1.2745 1.6776 2.2122 190.4796 285.1020 281.2959 

NIMR.HADGEM2.AO 1.3041 2.2480 2.5786 241.0204 70.8571 165.2449 
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Table S2.6. GCMs used at the Napo ecoregion level. 
 Temperature bio1 (°C) - 2050 Precipitation bio12 (mm) - 2050 

GCMs / RCPs 2.6 4.5 8.5 2.6 4.5 8.5 

BASELINE 0 0 0 0 0 0 

BCC.CSM1.1 1.4258 1.8560 2.4258 103.6509 99.6192 291.1318 

BCC.CSM1.1.M 1.6104 2.0062 2.6855 -20.8775 -30.6166 6.0237 

BNU.ESM 1.3282 1.8296 2.4220 -226.7497 -279.9051 -280.5389 

CCCMA.CANESM2 2.9507 3.7510 4.7213 -233.6825 -415.2464 -487.7075 

CESM1.CAM5 1.7711 2.2656 3.1258 -72.4058 -92.4361 -168.1871 

CNRM.CM5 1.5215 1.7876 2.4079 52.9802 170.6311 225.6047 

CSIRO.MK3.6.0 1.9248 1.8336 3.1059 167.1291 44.2213 34.3175 

ENSEMBLE 1.6332 1.9876 2.7803 5.0200 30.6839 40.4837 

FIO.ESM 1.2453 0.9779 2.2963 58.2372 156.4203 208.8986 

GFDL.CM3 3.3411 4.0137 4.8586 -165.6337 -169.7036 -211.8142 

GFDL.ESM2G 1.3580 1.9040 2.4531 93.3676 93.0211 180.2029 

GFDL.ESM2M 1.2705 1.7212 2.3924 46.3742 215.3004 181.4796 

GISS.E2.H.CC 1.3364 1.9267 2.1810 -98.5705 -94.2925 -17.0422 

GISS.E2.R 1.1874 1.6430 2.1755 -20.4717 12.5823 -9.5876 

IPSL.CM5A.LR 2.3767 3.1656 4.1809 -123.8511 -93.3742 -106.9631 

IPSL.CM5A.MR 1.8228 1.9393 3.4681 -26.8155 17.5916 63.2437 

LASG.FGOALS.G2 0.9360 1.2895 1.7478 32.2912 84.1502 122.3386 

MIROC.ESM 1.7590 2.1495 2.8489 -89.3386 -77.5178 -11.9684 

MIROC.ESM.CHEM 1.8489 1.9758 2.6920 -55.7589 -27.7497 31.3860 

MIROC.MIROC5 1.4953 1.6963 2.3296 69.4084 119.6377 108.0711 

MOHC.HADGEM2.ES 1.8109 2.3877 3.2253 -22.6904 48.9433 60.8906 

MPI.ESM.LR 1.6360 1.2074 3.0542 141.2899 132.9315 137.2398 

MRI.CGCM3 0.9955 1.3615 1.9040 64.6772 202.9065 129.1199 

NCAR.CCSM4 1.4191 1.8719 2.6572 20.5165 33.2543 -19.0725 

NCC.NORESM1.M 1.2646 1.6569 2.1830 195.3439 381.9368 472.7220 

NIMR.HADGEM2.AO 1.3997 2.3946 2.7783 59.3584 110.9354 89.5112 

 

 

 

Table S2.7. Sechura Temperature: Anderson-Darling Normality Test (alpha = 0.05). 
 Level Statistic  p.value   Normality 

1 1970-2000 7543.17 3.70E-24  Reject 

2 26 6747.25 3.70E-24  Reject 

3 45 6920.95 3.70E-24  Reject 

4 85 6944.71 3.70E-24  Reject 
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Table S2.8. Sechura Precipitation: Anderson-Darling Normality Test (alpha = 0.05). 
 Level Statistic p.value Normality 

1 1970-2000 18829.6 3.7E-24 Reject 

2 26 21371.9 3.7E-24 Reject 

3 45 21365.9 3.7E-24 Reject 

4 85 21452.9 3.7E-24 Reject 

 

Table S2.9. Páramo Temperature: Anderson-Darling Normality Test (alpha = 0.05). 
 Level Statistic p.value Normality 

1 1970-2000 275.73 3.7E-24 Reject 

2 26 347.303 3.7E-24 Reject 

3 45 342.764 3.7E-24 Reject 

4 85 334.439 3.7E-24 Reject 

 

Table S2.10. Páramo Precipitation: Anderson-Darling Normality Test (alpha = 0.05). 
 Level Statistic p.value Normality 

1 1970-2000 1459.71 3.7E-24 Reject 

2 26 1812.624 3.7E-24 Reject 

3 45 1689.895 3.7E-24 Reject 

4 85 1530.427 3.7E-24 Reject 

 

Table S2.11. Napo Temperature: Anderson-Darling Normality Test (alpha = 0.05). 
 Level Statistic p.value Normality 

1 1970-2000 1485.53 3.7E-24 Reject 

2 26 4869.66 3.7E-24 Reject 

3 45 4111.94 3.7E-24 Reject 

4 85 4648.83 3.7E-24 Reject 

 

Table S2.12. Napo Precipitation: Anderson-Darling Normality Test (alpha = 0.05). 
 Level Statistic p.value Normality 

1 1970-2000 1564.38 3.7E-24 Reject 

2 26 1139.97 3.7E-24 Reject 

3 45 1117.29 3.7E-24 Reject 

4 85 1185.25 3.7E-24 Reject 
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Table S2.13. Kruskal-Wallis test (Multiple comparison) for temperature (C°) for the baseline 

(1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Sechura ecoregion. 

Kruskal-Wallis test  

data:  t and group 

Kruskal-Wallis chi-squared = 873483, df = 3, p-value < 2.2e-16 

> kruskalmc(t, group, probs = .05) 

Multiple comparison test after Kruskal-Wallis  

p.value: 0.05        

Comparisons obs.dif critical.dif difference 

1970-2000-26 218371 2013.257 TRUE 

1970-2000-45 436742 2013.257 TRUE 

1970-2000-85 655113 2013.257 TRUE 

26-45 218371 2013.257 TRUE 

26-85 436742 2013.257 TRUE 

45-85 218371 2013.257 TRUE 

 

Table S2.14. Kruskal-Wallis test (Multiple comparison) for annual precipitation (mm) for the 

baseline (1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Sechura ecoregion. 

Kruskal-Wallis test  

data:  p and group 

Kruskal-Wallis chi-squared = 873483, df = 3, p-value < 2.2e-16 

> kruskalmc(p, group, probs = .05) 

Multiple comparison test after Kruskal-Wallis  

p.value: 0.05  

Comparisons obs.dif  critical.dif difference 

1970-2000-26 218371 2013.257 TRUE 

1970-2000-45 436742 2013.257 TRUE 

1970-2000-85 655113 2013.257 TRUE 

26-45 218371 2013.257 TRUE 

26-85 436742 2013.257 TRUE 

45-85 218371 2013.257 TRUE 
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Table S2.15. Kruskal-Wallis test (Multiple comparison) for temperature (C°) for the baseline 

(1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Páramo ecoregion. 

Kruskal-Wallis test  

data:  t and group 

Kruskal-Wallis chi-squared = 215195, df = 3, p-value < 2.2e-16 

> kruskalmc(t, group, probs = .05) 

Multiple comparison test after Kruskal-Wallis  

p.value: 0.05  

Comparisons obs.dif critical.dif difference 

1970-2000-26 53799 999.286 TRUE 

1970-2000-45 107598 999.286 TRUE 

1970-2000-85 161397 999.286 TRUE 

26-45 53799 999.286 TRUE 

26-85 107598 999.286 TRUE 

45-85 53799 999.286 TRUE 

 

Table S2.16. Kruskal-Wallis test (Multiple comparison) for annual precipitation (mm) for the 

baseline (1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Páramo ecoregion. 

Kruskal-Wallis test  

data:  p and group 

Kruskal-Wallis chi-squared = 216175, df = 3, p-value < 2.2e-16 

> kruskalmc(p, group, probs = .05) 

Multiple comparison test after Kruskal-Wallis  

p.value: 0.05  

Comparisons obs.dif  critical.dif difference 

1970-2000-26 54044 1001.558 TRUE 

1970-2000-45 108088 1001.558 TRUE 

1970-2000-85 162132 1001.558 TRUE 

26-45 54044 1001.558 TRUE 

26-85 108088 1001.558 TRUE 

45-85 54044 1001.558 TRUE 
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Table S2.17. Kruskal-Wallis test (Multiple comparison) for temperature (C°) for the baseline 

(1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Napo ecoregion. 

Kruskal-Wallis test  

data:  t and group 

Kruskal-Wallis chi-squared = 1173667, df = 3, p-value < 2.2e-16 

> kruskalmc(t, group, probs = .05) 

Multiple comparison test after Kruskal-Wallis  

p.value: 0.05  

Comparisons obs.dif critical.dif difference 

1970-2000-26 293417 2333.7 TRUE 

1970-2000-45 586834 2333.7 TRUE 

1970-2000-85 880251 2333.7 TRUE 

26-45 293417 2333.7 TRUE 

26-85 586834 2333.7 TRUE 

45-85 293417 2333.7 TRUE 

 

Table S2.18. Kruskal-Wallis test (Multiple comparison) for annual precipitation (mm) for the 

baseline (1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Napo ecoregion. 

Kruskal-Wallis test  

data:  p and group 

Kruskal-Wallis chi-squared = 1173667, df = 3, p-value < 2.2e-16 

> kruskalmc(p, group, probs = .05) 

Multiple comparison test after Kruskal-Wallis  

p.value: 0.05  

Comparisons obs.dif  critical.dif difference 

1970-2000-26 293417 2333.7 TRUE 

1970-2000-45 586834 2333.7 TRUE 

1970-2000-85 880251 2333.7 TRUE 

26-45 293417 2333.7 TRUE 

26-85 586834 2333.7 TRUE 

45-85          293417 2333.7 TRUE 
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Figure S2.1. GCMs for the annual precipitation (mm) vs. temperature (°C) variables for the three 

countries for RCP 2.6. 

 
Figure S2.2. GCMs for the annual precipitation (mm) vs. temperature (°C) variables for the three 

countries for RCP 4.5. 
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Figure S2.3. GCMs for the annual precipitation (mm) vs. temperature (°C) variables for the three 

countries for RCP 8.5. 

 
 

Figure S2.4. Q-Q plots and histograms for temperature (ºC) in the baseline (1970-2000) and the 

three RCPs 2.6, 4.5 and 8.5 for 2050 in the Sechura ecoregion. 
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Figure S2.5. Q-Q plots and histograms for precipitation (mm) in the baseline (1970-2000) and the 

three RCPs 2.6, 4.5 and 8.5 for 2050 in the Sechura ecoregion. 

 

 

  
Figure S2.6. Boxplots for temperature (ºC) (left) and precipitation (mm) (right) for the baseline 

(1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Sechura ecoregion. 
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Figure S2.7. Q-Q plots and histograms for temperature (ºC) in the baseline (1970-2000) and the 

three RCPs 2.6, 4.5 and 8.5 for 2050 in the Páramo ecoregion. 

 

 

 

 

 

 
Figure S2.8. Q-Q plots and histograms for precipitation (mm) in the baseline (1970-2000) and the 

three RCPs 2.6, 4.5 and 8.5 for 2050 in the Páramo ecoregion. 
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Figure S2.9. Boxplots for temperature (ºC) (left) and precipitation (mm) (right) for the baseline 

(1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Páramo ecoregion. 

 

 

 

 

 
 

Figure S2.10. Q-Q plots and histograms for temperature (ºC) in the baseline (1970-2000) and the 

three RCPs 2.6, 4.5 and 8.5 for 2050 in the Napo ecoregion. 
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Figure S2.11. Q-Q plots and histograms for precipitation (mm) in the baseline (1970-2000) and 

the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Napo ecoregion. 

 

 
Figure S2.12. Boxplots for temperature (ºC) (left) and precipitation (mm) (right) for the baseline 

(1970-2000) and the three RCPs 2.6, 4.5 and 8.5 for 2050 in the Napo ecoregion. 
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Figure S2.13. Density plots for temperature (ºC) and annual precipitation (mm) for the 1970-

2000 baseline and the three 2050 RCPs 2.6, 4.5 and 8.5 for the Sechura Desert. 
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Figure S2.14. Density plots for temperature (ºC) and annual precipitation (mm) for the 1970-

2000 baseline and the three 2050 RCPs 2.6, 4.5 and 8.5 for the Páramo. 
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Figure S2.15. Density plots for temperature (ºC) and annual precipitation (mm) for the 1970-

2000 baseline and the three 2050 RCPs 2.6, 4.5 and 8.5 for the Napo. 
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Table S3.1 Model Mean performance for the spectacled bear (baseline) using the test dataset 

(generated by partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.86    |     0.66    |     0.66    |     0.92      

maxent     :     0.92    |     0.74    |     0.71    |     0.81      

brt        :     0.91    |     0.74    |     0.7     |     0.87      

rf         :     0.96    |     0.83    |     0.81    |     0.48      

fda        :     0.86    |     0.65    |     0.63    |     0.94   

 

11 variables from the 21 input variables have collinearity problem:  

bio5 bio11 bio1 bio10 bio6 bio2 bio8 bio9 bio16 bio17 bio12  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( bio19 ~ bio15 ):  0.008531107  

max correlation ( bio7 ~ bio4 ):  0.7534253  

 

---------- VIFs of the remained variables --------  

   Variables      VIF 

1      bio13 8.123606 

2      bio14 7.290143 

3      bio15 4.301814 

4      bio18 4.297511 

5      bio19 6.167758 

6       bio3 3.786327 

7       bio4 5.178352 

8       bio7 5.420382 

9       elev 1.859150 

10      HFPL 1.221135 
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Table S3.2. Model Mean performance for the spectacled bear (RCP 2.6) using the test dataset 

(generated by partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.87    |     0.68    |     0.69    |     0.88      

maxent     :     0.91    |     0.73    |     0.7     |     0.85      

brt        :     0.9     |     0.73    |     0.71    |     0.88      

rf         :     0.96    |     0.86    |     0.84    |     0.47      

fda        :     0.85    |     0.66    |     0.66    |     0.92      

 

11 variables from the 21 input variables have collinearity problem:  

bio5 bio11 bio1 bio10 bio7 bio9 bio8 bio16 bio17 bio12 elev  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( bio3 ~ bio2 ):  0.01021654  

max correlation ( bio18 ~ bio13 ):  0.8039624  

 

---------- VIFs of the remained variables --------  

   Variables      VIF 

1      bio13 7.455093 

2      bio14 6.138331 

3      bio15 5.950620 

4      bio18 4.030637 

5      bio19 5.338846 

6       bio2 6.027592 

7       bio3 4.121786 

8       bio4 6.834590 

9       bio6 1.666195 

10      HFPL 1.150856 
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Table S3.3. Model Mean performance for the spectacled bear (RCP 4.5) using the test dataset 

(generated by partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.87    |     0.69    |     0.69    |     0.89      

maxent     :     0.92    |     0.77    |     0.73    |     0.77      

brt        :     0.92    |     0.76    |     0.75    |     0.86      

rf         :     0.98    |     0.88    |     0.87    |     0.4       

fda        :     0.85    |     0.67    |     0.68    |     0.92   

 

11 variables from the 21 input variables have collinearity problem:  

  

bio5 bio11 bio1 bio10 bio7 bio9 bio8 bio16 bio17 elev bio12  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( bio15 ~ bio13 ):  0.001919466  

max correlation ( bio2 ~ bio19 ):  -0.7616819  

 

---------- VIFs of the remained variables --------  

   Variables      VIF 

1      bio13 6.587542 

2      bio14 5.946828 

3      bio15 5.384586 

4      bio18 3.457398 

5      bio19 5.378554 

6       bio2 5.805121 

7       bio3 5.164472 

8       bio4 7.941285 

9       bio6 1.620745 

10      HFPL 1.146155 
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Table S3.4. Model Mean performance for the spectacled bear (RCP 8.5) using the test dataset 

(generated by partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.85    |     0.66    |     0.66    |     0.93      

maxent     :     0.9     |     0.73    |     0.69    |     0.84      

brt        :     0.9     |     0.74    |     0.7     |     0.89      

rf         :     0.97    |     0.86    |     0.84    |     0.44      

fda        :     0.83    |     0.64    |     0.63    |     0.97      

 

11 variables from the 21 input variables have collinearity problem:  

  

bio5 bio11 bio1 bio10 bio7 bio9 bio8 bio16 elev bio12 bio17  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( bio4 ~ bio18 ):  0.02745786  

max correlation ( bio18 ~ bio13 ):  0.7792883  

 

---------- VIFs of the remained variables --------  

   Variables      VIF 

1      bio13 7.273928 

2      bio14 6.396272 

3      bio15 5.343866 

4      bio18 3.509488 

5      bio19 5.097230 

6       bio2 5.723828 

7       bio3 5.720737 

8       bio4 7.364159 

9       bio6 1.692291 

10      HFPL 1.150334 
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Table S3.5. Model Mean performance for the Páramo (baseline) using the test dataset (generated 

by partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.98    |     0.91    |     0.89    |     0.19      

maxent     :     0.97    |     0.91    |     0.89    |     0.82      

brt        :     0.97    |     0.91    |     0.9     |     0.35      

rf         :     0.99    |     0.96    |     0.94    |     0.11      

fda        :     0.97    |     0.9     |     0.88    |     0.48     

 

 

12 variables from the 21 input variables have collinearity problem:  

  

bio5 bio1 bio11 bio2 bio10 bio6 bio8 bio16 bio9 bio17 bio12 bio15  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( HFPL ~ bio19 ):  -0.0007031895  

max correlation ( bio7 ~ bio19 ):  -0.6531652  

 

---------- VIFs of the remained variables --------  

  Variables      VIF 

1     bio13 4.273681 

2     bio14 2.893106 

3     bio18 2.678720 

4     bio19 4.336138 

5      bio3 3.406332 

6      bio4 2.135936 

7      bio7 2.251089 

8      elev 1.337777 

9      HFPL 1.048017 
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Table S3.6. Model Mean performance for the Páramo (2.6) using the test dataset (generated by 

partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.97    |     0.91    |     0.89    |     0.2       

maxent     :     0.98    |     0.91    |     0.89    |     0.81      

brt        :     0.97    |     0.92    |     0.9     |     0.35      

rf         :     0.98    |     0.96    |     0.95    |     0.11      

fda        :     0.97    |     0.9     |     0.89    |     0.46      

 

11 variables from the 21 input variables have collinearity problem:  

  

bio5 bio11 bio1 bio7 bio10 bio6 bio16 bio8 bio17 bio12 bio9  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( HFPL ~ bio14 ):  -0.01175494  

max correlation ( bio15 ~ bio14 ):  -0.7506265  

 

---------- VIFs of the remained variables --------  

   Variables      VIF 

1      bio13 7.688562 

2      bio14 8.297999 

3      bio15 9.387632 

4      bio18 2.811522 

5      bio19 5.131476 

6       bio2 4.122824 

7       bio3 2.805719 

8       bio4 3.024212 

9       elev 1.131320 

10      HFPL 1.118382 
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Table S3.7. Model Mean performance for the Páramo (4.5) using the test dataset (generated by 

partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.98    |     0.91    |     0.89    |     0.19      

maxent     :     0.98    |     0.91    |     0.89    |     0.82      

brt        :     0.97    |     0.91    |     0.9     |     0.34      

rf         :     0.99    |     0.96    |     0.95    |     0.11      

fda        :     0.97    |     0.9     |     0.89    |     0.45      

 

11 variables from the 21 input variables have collinearity problem:  

  

bio5 bio11 bio1 bio7 bio10 bio6 bio16 bio8 bio17 bio12 bio9  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( HFPL ~ bio14 ):  0.005328383  

max correlation ( bio4 ~ bio3 ):  -0.7291163  

 

---------- VIFs of the remained variables --------  

   Variables      VIF 

1      bio13 8.052857 

2      bio14 7.797299 

3      bio15 7.990109 

4      bio18 2.803044 

5      bio19 5.497189 

6       bio2 3.752892 

7       bio3 2.743437 

8       bio4 2.918318 

9       elev 1.224608 

10      HFPL 1.121746 
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Table S3.8. Model Mean performance for the Páramo (8.5) using the test dataset (generated by 

partitioning) and collinearity analysis of variables (VIF). 
methods    :     AUC     |     COR     |     TSS     |     Deviance  

------------------------------------------------------------------------- 

glm        :     0.98    |     0.92    |     0.89    |     0.18      

maxent     :     0.98    |     0.92    |     0.9     |     0.81      

brt        :     0.98    |     0.92    |     0.9     |     0.34      

rf         :     0.99    |     0.96    |     0.95    |     0.1       

fda        :     0.97    |     0.91    |     0.89    |     0.41   

 

11 variables from the 21 input variables have collinearity problem:  

  

bio5 bio11 bio10 bio7 bio1 bio6 bio16 bio8 bio17 bio12 bio9  

 

After excluding the collinear variables, the linear correlation coefficients ranges between:  

min correlation ( HFPL ~ bio14 ):  -0.001639866  

max correlation ( bio4 ~ bio3 ):  -0.810439  

 

---------- VIFs of the remained variables --------  

   Variables      VIF 

1      bio13 8.287111 

2      bio14 8.271138 

3      bio15 8.929230 

4      bio18 2.938955 

5      bio19 6.120522 

6       bio2 3.574268 

7       bio3 3.835978 

8       bio4 3.561866 

9       elev 1.256125 

10      HFPL 1.121957 
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Figure S3.1. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the spectacled bear at the baseline (1970-2000). 

 

Figure S3.2. Relative importance of the variables, using Random Forest for the spectacled bear at 

the baseline (1970-2000). 
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Figure S3.3. Relative importance of the variables, using Decision Trees for the spectacled bear at 

the baseline (1970-2000). 

 

Figure S3.4. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the spectacled bear in the RCP 2.6. 
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Figure S3.5. Relative importance of the variables, using Random Forest for the spectacled bear in 

the RCP 2.6. 

 

Figure S3.6. Relative importance of the variables, using Decision Trees for the spectacled bear in 

the RCP 2.6. 
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Figure S3.7. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the spectacled bear in the RCP 4.5. 

 

 

 

Figure S3.8. Relative importance of the variables, using Random Forest for the spectacled bear in 

the RCP 4.5. 
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Figure S3.9. Relative importance of the variables, using Decision Trees for the spectacled bear in 

the RCP 4.5. 

 

 

Figure S3.10. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the spectacled bear in the RCP 8.5. 
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Figure S3.11. Relative importance of the variables, using Random Forest for the spectacled bear 

in the RCP 8.5. 

 

 

Figure S3.12. Relative importance of the variables, using Decision Trees for the spectacled bear 

in the RCP 8.5. 
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Figure S3.13. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the Páramo at the baseline (1970-2000). 

 

Figure S3.14. Relative importance of the variables, using Random Forest for the Páramo at the 

baseline (1970-2000). 
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Figure S3.15. Relative importance of the variables, using Decision Trees for the Páramo at the 

baseline (1970-2000). 

 

Figure S3.16. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the Páramo in the RCP 2.6. 
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Figure S3.17. Relative importance of the variables, using Random Forest for the Páramo in the 

RCP 2.6. 

 

 

Figure S3.18. Relative importance of the variables, using Decision Trees for the Páramo in the 

RCP 2.6. 
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Figure S3.19. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the Páramo in the RCP 4.5. 

 

 

Figure S3.20. Relative importance of the variables, using Random Forest for the Páramo in the 

RCP 4.5. 
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Figure S3.21. Relative importance of the variables, using Decision Trees for the Páramo in the 

RCP 4.5. 

 

Figure S3.22. Relative importance of the variables, using the getVarImp function of the SDM 

package for R for the Páramo in the RCP 8.5. 
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Figure S3.23. Relative importance of the variables, using Random Forest for the Páramo in the 

RCP 8.5. 

 

Figure S3.24. Relative importance of the variables, using Decision Trees for the Páramo in the 

RCP 8.5. 
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