
Cosmological and astrophysical
observables from field theory in curved

backgrounds
by

José Tomás Gálvez Ghersi

M.Sc., Imperial College London, 2013
B.Sc., Universidad Nacional de Ingeniería, 2011

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Physics

Faculty of Science

c© José Tomás Gálvez Ghersi 2019
SIMON FRASER UNIVERSITY

Summer 2019

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Approval

Name: José Tomás Gálvez Ghersi

Degree: Doctor of Philosophy (Physics)

Title: Cosmological and astrophysical observables from
field theory in curved backgrounds

Examining Committee: Chair: John Bechhoefer
Professor

Andrei Frolov
Senior Supervisor
Associate Professor

Levon Pogosian
Supervisor
Professor

Malcolm Kennett
Supervisor
Associate Professor

David Sivak
Internal Examiner
Assistant Professor

Robert Brandenberger
External Examiner
Professor
Department of Physics
McGill University

Date Defended: May 3, 2019

ii



Abstract

The framework of effective field theory has provided valuable insights needed to understand
the evolution of physical systems at different energy scales. In particular, when comparing
the near-equilibrium phenomena at astrophysical scales with effects at cosmological dis-
tances. The objective of this thesis is to introduce useful tools for the evaluation of (a)
the observational consistency of an effective field theory of gravity, and (b) the potential
modifications of theories, equipped with diffeomorphism invariance. We calculate the evo-
lution of gravitational observables relevant in early universe field configurations, and also
in effective theories modified by contributions from higher curvature terms or semiclassical
effects testable at astrophysical scales. To do so, we develop efficient numerical routines
to resolve the dynamic two-point correlation functions of primordial fluctuations in infla-
tionary and bouncing cosmologies, the accretion of scalar fields and spacetime curvature in
modified gravity, and the evolution of scattering processes involving scalar and gravitational
radiation. Additionally, we investigate the viability of defining gauge-invariant quantities in
theories of gravity, where the canonical coordinates are deformed to incorporate extra de-
grees of freedom.

Keywords: Effective field theory (EFT); Single and multifield models of Inflation; IS-
Bounce; Constraint Algebra and deformations; Scalar accretion; Modified Gravity; Worm-
holes; Gravitational Waves; coalescence of exotic compact objects (ECOs).
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Chapter 1

Introduction

“Effective field theories can be loved or hated, but should always be used”
Clifford Burgess, at Testing Gravity 2017

The need of the notion of effective field theory (EFT) emerges from a simple fact: a scale-
invariant theory can not solely model our understanding of physical reality in the current
energy regime. It is, therefore, necessary to evaluate the ways in which all magnitudes in
a given action vary with respect to the energy scales of a dynamical system. The study of
EFTs in both astrophysical and cosmological scales is motivated by the behavior of matter
and gravity in both regimes: from the absence of a healthy ultraviolet completion leading
to a final quantum theory of gravity to the intriguing existence of Dark Energy and Dark
Matter at large scales. Although each of the chapters of this thesis corresponds is devoted
to a specific EFT, with different content of degrees of freedom and dynamical features; we
must investigate the viability of each of these realizations as a different limit of a grand
unification theory (GUT), finally canvassing all the fundamental interactions of nature in a
single scheme.

In order to understand the change of a set of physical parameters, let us start with an
entirely classical toy model: suppose that the one-dimensional action of a mechanical system
is given by

S =
∫
dt

[
q̇2

2 − V (q)
]
, (1.1)

where V (q) is a potential function of the generalized coordinate q, such that there exists
qeq in which the system has an equilibrium point given by V (1) ≡ ∂qV |q=qeq = 0 and
an effective spring constant k ≡ ∂2

qV |q=qeq > 0. Furthermore, investigating the dynamics
of small deviations q − qeq ≡ ∆q around equilibrium has a similar objective than the well-
known methods of mean field theory. For these fluctuations around the equilibrium position,
the system can be sufficiently described by

S1 = 1
2

∫
dt
[
(∆q̇)2 − k(∆q)2

]
. (1.2)

1



It is curious to notice that the form of the harmonic oscillator in this truncated action
reflects the state of our current attempts in perturbation theory. Now we introduce a small
interaction term VI, which modifies the latter action by

S1
int = 1

2

∫
dt

{[
(∆q̇)2 − k(∆q)2

]
− VI

}
, (1.3)

such that the effective spring constant k∗ ≈ k + V
(2)

I and the equilibrium position q∗eq ≈
qeq − V (1)

I /k have small corrections. The superscript (n) denotes the n-th derivative with
respect to the canonical coordinate q. What happens if after increasing the overall energy
scale in the system, the amplitude of oscillations also increases? In that case, the second
order expansion will not be sufficient to describe oscillations around an equilibrium point (in
general, the equilibrium position calculated from (1.3) will not coincide with qeq). Assuming
we can truncate the action to the next order, the action for the 1D system now will be given
by

Snew
I =

∫
dt

{ 1
2
[
(∆q̇)2 − k(∆q)2

]
− V (3)

6 (∆q)3 − VI

}
. (1.4)

The new truncated effective potential Vnew is given by

Vnew = k

2 (∆q)2 + V (3)

6 (∆q)3 + VI, (1.5)

There is not a unique solution yielding the equilibrium position in this case. Thus, after
choosing an adequate branch, the equilibrium position can be found after finding q∗∗eq such
that ∂qVnew = 0 and the new effective spring constant from k∗∗ ≡ ∂2

qVnew|q∗∗eq . We observe
that both quantities will be shifted again

q∗∗eq ≈ qeq − k
V (3) +

√(
k

V (3)

)2
− 2V (1)

I
k , (1.6)

k∗∗ ≈ k
√

1− 2V (1)
I
k

(
V (3))2 + V

(2)
I . (1.7)

The relative strength of the interaction compared to last two terms in the potential shown
in (1.4), plays a fundamental role to determine how significant the corrections are to both
quantities. With respect to the new variables and all the corrections reabsorbed, it is viable
to rewrite the action in (1.4) as

Snew
I = 1

2

∫
dt
[
(∆q̇new)2 − k∗∗(∆qnew)2

]
, (1.8)

where ∆qnew ≡ q − q∗∗new. The latter expression in (1.8) is a valid truncation of the effective
action, useful to represent the dynamics of small perturbations around the new equilibrium
point and a new effective spring constant. We learn a few lessons from this exercise:

2



Figure 1.1: Cosmic Microwave Background (CMB) obtained by the Planck Mission [6, 10, 9].
Initial conditions are given by the spectrum of scalar curvature and tensor fluctuations after
solving for the background and perturbations of (1.10). The spectrum is clear evidence of
the early homogeneity in the early universe since each red/blue spot represents a deviation
of one part in 105 from a blackbody background of 3K.

• It is possible to describe the dynamics of the system by the standard methods of
Classical Mechanics (i.e., finding equations of motion and their symmetries) after
considering that all the coupling parameters depend on both the strength of external
interactions and the relevant terms of the effective potential. In the case we study, the
expression in (1.8) is a valid truncation of the effective action for (1.4).

• From all the terms inside the square roots in (1.7), we notice that the extension of
this treatment (a simplified version of the bottom-up formalism) to consider potential
extra terms is only valid when the interaction terms are small: i.e., in the perturbative
regime, where the new spring constant and the equilibrium positions are required to
be real numbers.

• Different energy scales will truncate the expansion of the potential up to different
powers, the notion of an energy cutoff is crucial to evaluate the range of validity of
each distinct realization of an EFT.

In the first part of this thesis, we use a prototypical example of an effective action incorpo-
rating gravitational degrees of freedom, the Einstein-Hilbert action

∫
d4x
√
−g

[
M2

Pl
2 R+ Lm(φ)

]
(1.9)

where g ≡ det(gµν), R is the Ricci scalar curvature and Lm(φ) is the matter Lagrangian
density. In the same way as in (1.4), perturbations of the geometrical degree of freedom –
i.e., the spacetime geometry gµν – will only be large enough to alter this action at energy
scales above MPl ≡ 1/

√
8πG. In the subsequent sections of this thesis, we use c = ~ = 1 as

our unit convention.

3



In general, it is natural to think that equilibrium configurations are not restricted to be
spacetime-independent solutions as we discussed in the toy model shown in equations (1.3) -
(1.8). In part I of this thesis, we study the cosmological observables generated by two specific
realizations of a field theory in the context of the early universe such as the inflationary
paradigm, in Chapters 2 and 3 and the Ijjas-Steinhardt (IS) bouncing scenario in Chapter
4. We follow the usual perturbative approach in order to describe different regimes of the
matter sector. In the inflationary scenarios we describe in this thesis, the effective action
for a model with N scalar degrees of freedom is given by

S =
∫
d4x
√
−g

(
M2

Pl
2 R− 1

2∂µφA∂
µφA − V (φA)

)
, (1.10)

where A ∈ [1;N ]. Each one of the fields is decomposed by φA(x, t) = φA(t) + δφA(x, t),
similar to the generalized coordinate separation leading to (1.3) and (1.8). As we will briefly
see, this decomposition is motivated by the dynamical properties of the inflationary phase,
resulting in the small power of anisotropies, sourced by spacetime dependent quantum
fluctuations δφA(x, t), and Boltzmann transported to the Cosmic Microwave Background
(CMB), as depicted in Figure 1.11. Here the evolution of the background is used to find
a nearly scale-invariant power spectrum of scalar and tensor fluctuations, which serve as
initial conditions for the CMB spectrum. In Chapters 2 and 3, we solve both the background
and fluctuations for single-field models like Constant-Roll Inflation, and multifield models
such as double λφ4 and (m1φ

2 +m2σ
2). After noticing that the rapidly and slowly oscillat-

ing scales can be separated [116], our results are implemented to create efficient evolution
routines and provide constraints on the model parameters for many inflationary models
[113].

In Chapter 4, we explore another form of the effective Lagrangian

S = 1
2

∫
d4x
√
−g

[
M2

PlR+
(
2k (φ) (∂φ)2 + q (φ) (∂φ)4 + (∂φ)2�φ

)]
, (1.11)

where � ≡ gαβ∇α∇β is the four-dimensional d’Alembertian in a curved geometry. The
perturbations of the field act on the field derivatives instead of creating extra terms in
the potential. Both the background and fluctuations still follow second-order equations of
motion, even when the Lagrangian depends on second derivatives. Our results in this sec-
tion put serious constraints on the ultraviolet (UV) completion of the theory: the setup
of the model yields superluminal propagation of scalar curvature perturbations results in
negative cross sections for diverse processes at tree level, i.e., at the first-order in diagram-
matic expansion [7]. Moreover, we find that the stable expansion history suggested by Ijjas

1https://www.cosmos.esa.int/web/planck/picture-gallery
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and Steinhardt [139] is a separatrix in phase space [85]. In appendix D, we show that the
spectrum of scalar and tensor fluctuations is not scale-invariant, as required to provide a
consistent CMB spectrum. The latter calculations were performed using the same separa-
tion techniques explained in detail in sections 2 and 3, proving that the range of validity of
our method goes beyond the inflationary setup.

In the second part of this thesis, we study modifications of the effective action in the
gravitational degrees of freedom. In Chapter 5, we modify two forms of the gravitational
effective action: the Einstein-Hilbert action shown in (1.9), now choosing the 3D geometry
hab as the canonical coordinate and its Lie derivative £thab to span the whole configuration
space, and the tetrad-Palatini action

Stp = 1
2

∫
d4x εIJKLε

µνρσeIµe
J
νF

KL
ρσ . (1.12)

Here e is a tetrad with greek indices from Lorentz symmetry, and the capital indices la-
bel the generators of the so(1, 3) algebra. FKLρσ is the field-strength tensor (which is very
similar to the Yang-Mills field-strength tensor) of the potential ωJKν , so for this action the
corresponding pair of variables is (eIµ, ωJKν). In both cases, the action is modified by de-
forming the canonical gravitational variables via the introduction of field fluctuations in a
similar way to the toy model. Nonetheless, the “oscillations” around the time-dependent
equilibrium variables now are explicitly dependent on the canonical coordinates and their
derivatives. The resulting deformed action might thus represent a higher-derivative theory
of gravity. In addition to this, holonomy corrections provide a physical motivation to deform
the canonical variables of the tetrad-Palatini action in order to find the first semi-classical
corrections from Loop Quantum Gravity. The objective of this chapter is to show that the
deformed theories can retain diffeomorphism invariance by introducing new gravitational
degrees of freedom, and therefore, bypass Lovelock’s theorem [69], implying that the defini-
tion of gauge-invariant quantities is still attainable. Closure of the algebra of Hamiltonian
constraints provides the analog of the well-known Ward identities, now for the case of diffeo-
morphic transformations when corrections are introduced at perturbative order [118]. In the
language of symplectic manifolds, the punchline of Chapter 5 can be rephrased as follows:
given a D-dimensional symplectic manifold representing a dynamical system, it is possible
to construct at least one other (D+ 2N)-dimensional symplectic manifold, where 2N < D,
such that the original manifold is a projection of the one with higher dimensions. The role
of the higher derivative terms, corresponding to new degrees of freedom, is to provide the
projection map between the two manifolds.

One of the lessons learned after deforming the gravitational action is that the higher
derivative actions we obtained can be recast as systems with extra degrees of freedom.
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Consequently, in Chapter 6, we explore the dynamics of the extra fields emerging from
higher-curvature terms directly introduced in the gravitational action (i.e., not via field
deformations)

SR =
∫
d4x
√
−g

[
f(R)
16πG + Lm(ψ)

]
, (1.13)

here we introduce a modification of the theory by considering f(R) to be a function of the
Ricci scalar (different than R), whose role is similar to the free energy function in ther-
modynamics considering the curvature as an “order parameter”. In the metric formalism,
it can be shown that these theories have an extra scalar degree of freedom living in the
trace of the Einstein’s equations, just as written in the Jordan frame (where matter is min-
imally coupled to the geometry). We study the dynamics of scalar accretion in a spherically
symmetric black hole surrounded by a dust-like radial distribution of matter, finding that
the time-dependent solution of the scalar converges to a non-trivial static hair configura-
tion. The field is not screened in the region between the event horizon and the innermost
stable circular orbit (ISCO), where matter density drops due to relativistic effects [111].
We select two realizations of f(R) gravity: the Hu-Sawicki [136] and the Starobinsky [229]
models with a vanishing bare cosmological constant. For particular choices of the model
parameters, we show the formation of naked singularities outside the event horizon in both
of these models. Moreover, we still observe the formation of non-divergent curvature cusps
after adding corrections to these in the higher curvature regime [21]. In this chapter, we also
explore other scalar-tensor theories of gravity, such as the Ratra-Peebles chameleon [206]
and the Z2 symmetron [132]. In the latter scenario, the convergence to non-trivial scalar
hair solutions only occurs for particular choices of the symmetron parameters.

Semiclassical corrections from matter fields can also generate modifications to gravity,
it has been argued [181] that those effects might severely alter the structure of cosmological
and event horizons. The distortion appears when solving the semiclassical field equations

Gµν = 8πG〈T̂µν〉ψ. (1.14)

Where Gµν is the Einstein tensor Gµν ≡ Rµν − 1/2Rgµν and 〈T̂µν〉ψ is the expectation
value of the energy-momentum operator at the quantum state ψ. Recently, there is growing
interest in testing the limit in which the corrections to the gravitational field are strong by
searching for exotic compact objects (ECOs) at astrophysical scales, looking for configura-
tions such as wormholes, gravastars and firewalls. Due to the recent discovery of gravitational
waves (GWs) [2], it has been recently suggested that the detection of a peculiar feature in
the gravitational wave signal, showing a series of wavelets after the merger transient (col-
loquially known as echoes [64], and depicted in Figure 1.2) could be attainable within the
next few years. In Chapter 7, we study the scattering dynamics of Gaussian wavepackets
of scalar and GW radiation colliding against the most straightforward configuration of an
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Figure 1.2: Features of the gravitational wave profile from the scattering of gravitational
waves by ECOs. The transient is not significantly different from the original black hole
signal before tbh, at t > techo + tbh a train of wavelets with decaying amplitude appears as a
consequence of successive reflections between the walls of an effective potential cavity The
gray lines roughly represent the envelope of the outgoing pulse, A is the amplitude of the
transient. The exact transient is plotted in green.

ECO, which happens to be a Morris-Thorne wormhole. The outgoing signal for the scat-
tering problem shares many of the features with the full asymptotic signal obtained after
the coalescence of ECOs, including the generation of post-transient echoes. We evaluated
the evolution of many Gaussian wavelets with different widths and extracted the frequency
dependence of the reflectivity and transmissivity coefficients of a fixed effective potential
cavity [117]. After evaluating the dynamics of the scattering problem, we found:

• The formation of echoes with significant amplitude in the signal (shown as the red
dots in the figure) is not generic: it will be conditioned by the contribution of spe-
cific frequencies of the ingoing signal. Such a “sweet spot” in the frequency range
corresponds to a particular interval of variances from the ingoing Gaussian pulse.

• The geometrical optics approximation is only sufficient in order to provide the envelope
shape of the spectrum for the outgoing signal. Quasinormal mode (QNM) peaks cannot
be resolved with this approximation.

• Given an unpolarized ingoing wavepacket, the corresponding reflected signal has a
piecewise net polarization.

The range of frequency space where the amplitude of echoes is maximum is determined by
the frequency at which reflectivity and transmissivity curves overlap; this overlap frequency
corresponds to the characteristic length of the potential cavity. Successive internal collisions
with the potential walls provide energy to the QNMs (with frequencies squeezed around the
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“sweet spot”) while these modes propagate across the shell r = 3M and leak energy through
the echoes each time an internal reflection occurs. Even when the spectral content of the
two polarizations is the same, the effective potentials for even and odd modes are slightly
different. Thus, this difference will induce a small net polarization.

The plan of this thesis is as follows: in chapter 2, we present a novel technique to cal-
culate the evolution of scalar and tensor perturbations during the inflationary regime. In
particular, we study constant roll inflation in order to parametrize deviations from the slow-
roll behavior of inflation. It is interesting to consider that the deviation parameter of this
model also determines the scale of symmetry breaking for natural inflation, which is closely
related to constant-roll inflation. In chapter 3, we extend the technique developed in the
previous section to the case of inflationary models with more than one field. Multifield mod-
els of inflation are useful to investigate the delegation of the roles of (a) sourcing accelerated
expansion and (b) generating tensor/curvature fluctuations to different fields; in addition
to the characterization of the moduli space geometry in theories with higher-symmetry. In
chapter 4, we study the viability of an alternative to the inflationary scenario, called the
Ijjas-Steinhardt bouncing scenario driven by a cubic galileon, which models an imperfect
fluid. In chapter 5, we test the consistency of the constraint algebra under deformations
of canonical variables. Our objective is to show that the imposition of the constraint al-
gebra will constrain the space of possible semiclassical corrections of the field variables in
a background-independent way. In chapter 6, we investigate the behavior of extra scalar
degrees of freedom – dubbed as scalarons – in scalar-tensor theories. In presence of a non-
trivial matter profile, observing the formation of scalar “hair” by accreting spherical waves
around a black hole. In chapter 7, we study the generation of echoes by the scattering of
Gaussian waveforms by a wormhole. We solve the scalar and tensor scattering, showing (i)
the dispersive solutions inside and outside the effective potential cavity and (ii) the produc-
tion of wavelets isolated from the main radiation transient, known as echoes. Our aim is to
show that the amplitude of the outgoing echoes is not generically large. To conclude, we
present our results and final remarks in chapter 8.
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Part I

Early Universe Cosmology:
Inflationary and bouncing scenarios
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Chapter 2

Single-field Inflation: observational
constraints on Constant-Roll
Inflation

The EFT of inflation has been one of the most successful developments since its very first
appearance in [228, 220, 126, 167, 16], as its characteristic accelerated expansion solves most
of the caveats of standard big bang cosmology. In its most common form, inflation is driven
by a scalar degree of freedom rolling slowly down a not very steep potential. Primordial
inhomogeneities, from which the actual large-scale structure of the Universe emerges, are
generated by quantum fluctuations of the inflaton field.

Throughout the years, a multitude of inflationary models were proposed where the
dynamics of the background field is highly overdamped, and the production of scalar and
tensor fluctuations can be completely characterized by the so-called slow-roll parameters.
Slow roll by itself is not a necessary condition for an inflationary model to be viable, and
it is interesting to also explore models which break away from the slow-roll restrictions.
Motohashi et. al. recently introduced a constant-roll inflation [180, 178] which replaces
the usual slow-roll condition with an ansatz that the field rolls at a constant rate, be it
slow or not. The model is rather neat as it characterizes the deviation from a slow roll
by a single parameter and allows analytic integration of the expansion history and the full
scalar field potential reconstruction. The potential driving constant-roll inflation only differs
from the one in natural inflation [106] by the addition of a negative cosmological constant
(with specially chosen value). The constant-roll rate can be tuned by the period of the
potential, which corresponds to the global symmetry breaking scale in natural inflation. In
this chapter, we investigate constraints on constant-roll inflation from cosmic microwave
background anisotropy data [6, 9, 10, 8].

In previous efforts [178], the confrontation of this model with observational data used
the well-known consistency relations between slow-roll and fluctuation spectra parameters
[166, 122]. The progress was achieved under the assumption that it is sufficient to know the
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exact background solutions to describe the primary features of the perturbation spectra.
Even though this assumption is not inconsistent with the data, we find that there are small
but noticeable differences if one computes the fluctuation spectra exactly. In our approach
we do not impose any slow-roll assumptions and instead just directly evaluate the scalar and
tensor power spectra of primordial fluctuations in a sufficiently large sector of the parameter
space by numerical integration. This procedure allows us to evaluate deviations from the
standard slow-roll approximation of the spectral index ns (the slope of the scalar spectrum)
and the tensor-to-scalar ratio r (which is the ratio relating the amplitude of tensor and
scalar fluctuations). Achieving this with adequate parameter sampling and high precision
throughout the mode evolution can be computationally expensive. We use a single-field
version of our general method [116] which separates the fast and slow scales in the mode
evolution to exponentially increase efficiency of sub-horizon integration. Our computational
method allows us to scan a significant portion of the parameter space quickly and extremely
accurately on a personal computer with minimal specifications.

Constant-roll inflation has an uncertainty on the field value where inflation ends, as the
potential needs to be cut at some value φ0 to exit from inflation. This introduces a third
parameter to the model in addition to the mass scale and the roll rate, this parameter and the
mass scale turn out to be entirely degenerate as far as fluctuation spectra are concerned.
This allows us to set tight constraints on two combinations of the model parameters for
constant-roll inflation: one that determines the amplitude of scalar and tensor perturbations
(along with the characteristic energy scale where inflation occurs), and the second one
which sets the roll rate (and quantifies the deviations from the slow-roll approximation).
We also compare constant-roll inflation with other models via estimation of the allowed
region on the r versus ns diagram, where each point can be identified with (at least) one
choice of the model parameters after the spectrum is evaluated at the pivot scale, which is
(approximately) to the wavenumber assigned to the Hubble parameter.

The layout of this chapter is as follows: In section 2.1, we present the model and scan
a representative subset of the background phase space in order to determine the expansion
history due to each choice of initial conditions. Our exploration of the phase space also
includes the attractor formed by converging field trajectories. We describe the dynamics of
the scalar and tensor fluctuations in section 2.2, where we discuss the separation technique
of scalar and tensor modes into fast and slow components. Additionally, we show our mode
injection scheme to calculate the spectra numerically, and compute the representative spec-
tra given a set of arbitrary model parameters. We show that both the scalar and tensor
spectra are featureless, and, as a consistency check, we also explicitly show that none of the
modes evolve on super-horizon scales. In section 2.3, we use the joint likelihood data from
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Figure 2.1: Left panel: constant-roll inflation potential (2.4) for the model parameters
M2 = 2.0 × 10−9M2

Pl and different values of β. The region of interest is in the range
φ ∈ (0;φ0], shown for the specific value of β = 0.02. Right panel: Map of initial conditions
in the phase space forM2 = 2.0×10−9M2

Pl, N∗ = 55 and β = 0.02. The color map represents
the number of e-folds before reaching ±φ0. Phase space trajectories converge as a power-law
towards the attractor (instead of exponentially, as is usually the case in slow-roll inflation)
as in the case of power-law inflation, which is a particular scenario of the constant-roll
model.

Planck 2015 [6, 9, 10] and BICEP2/Keck Array [8] to constrain the constant-roll inflation
model parameters1. Finally, in section 2.4, we discuss the results and conclude.

2.1 Model and background dynamics

In this section, we recite the results in [178] using one of the forms of the potential re-
constructed in [180]. These are necessary to provide a full description of the background
evolution of this model. The dynamics of the inflaton field minimally coupled to gravity is
governed by the single-field version of the action shown in (1.10)

S =
∫
d4x
√
−g

[
M2

Pl
2 R− 1

2 g
µν∂µφ∂νφ− V (φ)

]
, (2.1)

which has a canonical kinetic term for the scalar field. We will use the signature (−,+,+,+)
throughout the first two chapters of this thesis, and will assume the spatially flat Friedmann-
Lemaître-Robertson-Walker metric for background of this first part. The constant-roll in-
flation potential we use throughout this chapter was derived in [171, 178] after reducing the

1We are profoundly aware of the Planck 2018 release [14, 12, 15], however the joint likelihood with
BICEP/Keck is not available yet at the time of this writing.
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Figure 2.2: Left panel: Example of the evolution of the curvature fluctuations for β = 0.02,
N∗ = 0 and M2 = 10−11M2

Pl. Right panel: Evolution of the corresponding sum of the
two tensor polarizations for the same model parameters. N is the number of e-folds from
the start of numerical evolution of the background. We show extremely long wavelength
modes emerging deep from the sub-horizon scales to demonstrate that there is absolutely no
evolution on super-horizon scales in all cases. For this purpose, we picked modes propagating
through N ∼ 100 e-folds. Such a quantity should not be confused with N∗, which represents
the number of e-folds before the potential becomes zero.

order of the standard background equation of motion

φ̈+ 3Hφ̇+ V ′(φ) = 0 (2.2)

by the constant-roll ansatz φ̈ = βHφ̇. H ≡ d ln a/dt is the Hubble scale. The role of β is to
parametrize the magnitude of the second time derivative and thus, the deviations from the
slow-roll approximation. Using the two Friedmann equations

3M2
PlH

2 = φ̇2

2 + V (φ),

−2M2
PlḢ = φ̇2, (2.3)

it is possible to find a particular solution for the background evolution and reconstruct the
constant-roll inflation potential V (φ), which turns out to be

V (φ) = 3M2
PlM

2
[
1− 3 + β

6

{
1− cos

(√
2βφ
MPl

)}]
. (2.4)

The shape of the potential is illustrated in the left panel of Figure 2.1 and evaluated at
different values of β. The mass M determines both the energy scale at which inflation
occurs and the amplitude of the primordial fluctuations. The potential (2.4) can become
negative, and must be cut off somewhere before that to exit the inflation gracefully.
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In the absence of an inherent point on the potential where inflation ends, it is important
to explicitly specify the field range where we will evaluate the curvature and tensor fluctua-
tions. The background field evolution proceeds from arbitrarily small values to some upper
bound φ0 where potential is modified and inflation ends. The model presents two practical
issues (a) the limit for slow-roll parameter ε → 1 cannot be used as a flag to parametrize
the end of inflation, and (b) the end of inflation is not well-determined. Therefore, we need
evaluate the end of inflationary phase to be N∗ e-folds before reaching the critical point
where V = 0 in the unmodified potential (2.4), and evaluate N∗ as an extra parameter.
This range depends on the model parameters and is illustrated in the left panel of Figure
2.1, where φ0 can be calculated as

φ0 =
√

2
β

arcsin
[
e−N∗β sin

{1
2 arccos

(
β − 3
β + 3

)}]
. (2.5)

We note that φ0 is independent of M . Thus, the model has three parameters, namely M , β
and N∗. It is clear that N∗ and M are degenerate since amplitude of scalar fluctuations can
be changed by either a shift in the energy scale of the potential, or by moving the endpoint
φ0 closer or further from φ = 0 where potential is flat, up to the value where V = 0.

Using the equations of motion for the field (2.2) and the Hubble scale (2.3), we scan the
phase space in order to find the number of e-folds for every choice of initial conditions inside
the interval φ/MPl ∈ [−3; 3] and φ̇/M2

Pl ∈ [−3; 3]. Our results are shown in the right panel
of Figure 2.1 for M2 = 2.0× 10−9M2

Pl, N∗ = 55 and β = 0.02, where φ0 = 3.38 corresponds
to our choice for β. A few phase space trajectories are also plotted in the same figure. A
choice of initial conditions close to the attractor (with φ̇ small in this case) generates more
expansion before reaching ±φ0 due to a slow convergence to the attractor of the trajectories
starting away from this attractor. We take φ̇ = 0 as a suitable initial condition for the
background field velocity that always reaches the attractor, and start numerical evolution
of the background sufficiently far in the past for the trajectory to settle to the attractor
before considering fluctuations.

2.2 Perturbations

In this section, we recount the standard treatment of scalar and tensor perturbations re-
quired to obtain the power spectra of primordial fluctuations, and describe an extremely
effective way to do so numerically. Let us first recall the expansion of the action (2.1) up to
second order in perturbations

S2 =
∫
a2dη d3x

{
M2

Pl
8
[
h′ijh

′ij − (∇khij)(∇khij)
]

+ φ′2

2H2

[
ζ ′2 − (∇iζ)(∇iζ)

]}
, (2.6)
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Figure 2.3: Left panel: Power spectrum of primordial curvature fluctuations using k∗ =
2× 10−3M−1

pc as a pivot scale at N∗ = 0. We considered the model parameters β(1) = 0.005,
M2

(1) = 4.77 × 10−11M2
Pl, β(2) = 0.01, M2

(2) = 1.63 × 10−10M2
Pl, β(3) = 0.02, M2

(3) =
2.35× 10−11M2

Pl, β(4) = 0.04 and M2
(4) = 3.82× 10−13M2

Pl. Right panel: Power spectrum of
tensor perturbations for the same model parameters. None of the spectra show any features,
such as changes in the slope or oscillations.

which is written in the gauge δφ = 0 and in conformal time η. Latin indices are raised and
lowered by the Kronecker delta. In terms of the polarization modes hij ≡

∑
p=+,× h

pσp
ij ,

and the scalar curvature fluctuations ζ2, the last expression is equivalent to

S2 =
∫
a2dη d3x

M2
Pl

8
∑

p=+,×

[(
hp′
)2
− (∇khp)(∇khp)

]
+ φ′2

2H2

[
ζ ′2 − (∇iζ)(∇iζ)

],
(2.7)

where we used the fact that tr
(
σ+)2 = tr (σ×)2 = 1 and tr

(
σ+σ×

)
= 0. Now, we introduce

the Mukhanov-Sasaki variables v ≡ φ′/H ζ and vp ≡ aMPl h
p/2 [184, 218, 183] to rewrite

the action as

S2 = 1
2
∑

p=+,×

∫
dη d3x

[ (
vp′
)2
− (∇kvp)(∇kvp)

+ a′′

a
(vp)2

]
+ 1

2

∫
dη d3x

[
v′2 − (∇iv)(∇iv) + z′′

z
v2
]
,

2hij is the spatial part of gµν and ζ is the three-dimensional Ricci scalar R(3), built from hij .

15



where z ≡ φ′/
√

2MPlH. Hence, the action for perturbations is now canonically normalized.
In Fourier space, the equations of motion for fluctuations are given by

v′′k +
(
k2 − z′′

z

)
vk = 0, (2.8)

(
vp
k

)′′ + (
k2 − a′′

a

)
vp
k = 0, (2.9)

where the Fourier transformed Mukhanov-Sasaki variables are vk ≡ φ′/H ζk and vp
k ≡

aMPl h
p
k/2. Both (2.8) and (2.9) have the form of an harmonic oscillator with time-dependent

frequency
ξ′′k + ω2

eff(η)ξk = 0. (2.10)

where ξ plays the same role as vk or vp
k . We will now apply a trick which is effective for

numerical evaluation of the perturbation spectra, which is the single-field version of the
general method developed in the following chapter [116]. The fluctuation variable ξk can be
redefined in terms of real amplitude Lk and phase Θk as ξk ≡ Lk exp (iΘk). Substituting
this ansatz into (2.10) splits the differential equation into real and imaginary parts

L′′k +
[
ω2

eff(η)− (Θ′k)2]Lk = 0, (2.11)

Θ′′k + 2L
′
k

Lk
Θ′k = 0, (2.12)

where the imaginary part (2.12) is separable and has a simple analytic solution Θ′k(η) =
Θ′k(η0)L2

k(η0)/L2
k(η). Once the phase is eliminated from (2.11), we obtain

L′′k +
[
ω2

eff(η)− ω2
eff(η0)L

4
k(η0)
L4
k(η)

]
Lk = 0, (2.13)

where the Bunch-Davies vacuum deep inside the horizon at η = η0 sets Θ′k(η0) = ωeff(η0),
Lk = 1/

√
2ωeff , and L′k(η0) = 0 as initial conditions for mode evolution. The key observation

is that the last term in (2.13) cancels the effective mode oscillation frequency, allowing
numerical evolution to keep track of changes in amplitude only, with precision increasing
deep inside the horizon where the vacuum state is more accurate. One no longer needs to
resolve exponentially large physical oscillation scale (k/a) inside horizon, and can use a time
step merely a fraction of the Hubble scale to resolve the evolution of the amplitudes without
compromising the precision of the evolution routine. Concretely, the time step needed to
resolve (2.13) is two orders of magnitude larger than the necessary to resolve (2.8) or (2.9).
The latter expression is also known as the Ermakov-Pinney equation (see [98, 195, 143] for
further details). The implementation of this technique in equations (2.8) and (2.9) allowed
us to calculate the evolution of the scalar curvature and the tensor fluctuations to high
precision, as shown in the two panels of Figure 2.2. We can evaluate the power spectra of
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scalar and tensor perturbations once we compute the evolution of the scalar and tensor
modes for relevant wavenumbers. As an illustration, we calculated the spectra for several
sets of the model parameters choosing k∗ = 2× 10−3M−1

pc in inverse megaparsecs (M−1
pc ) as

a pivot scale in Figure 2.3. The most striking fact to observe in both panels is the absence
of any features or running in the spectra including β = 0.02, as it was argued in [178].
This can be checked for any number of the modes used to produce each of the spectra.
Thus, the estimations made in that paper about the shape of the spectrum, in analogy with
the approximate treatment for natural inflation (see [107] for further details) are perfectly
valid. Nevertheless, we can increase accuracy of the parameter estimation (especially away
from the slow-roll regime) by calculating the power spectra directly for each of the model
realizations.

To further improve the efficiency of our calculations in Figure 2.3, we use the approx-
imate time-translational symmetry of the Bunch-Davies vacuum deep inside the horizon,
and only keep track of the physical wavelengths we are interested in. Scalar and tensor
modes are evolved from a constant physical length scale 103 times smaller than the horizon
and then collected at moment of time when φ = φ0 as shown in the mode injection scheme
depicted in Fig 2.4. The length scale 1/H where the modes freeze out is plotted in red.
Comoving modes evolve from λphys = 10−3/H across the physical length scale ` following
the lines of constant comoving wavenumber (which have a slope of 1) until they reach the
screen at φ = φ0, where the mode amplitudes and the power spectra are evaluated. We can
safely omit the evolution of the modes at physical scales shorter than injection point kphys

(below the orange triangle) as the vacuum is essentially stationary there.
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Figure 2.5: Scanning the parameters in the potential at N∗ = 0, 30, 60, 80. The blue regions
show the 68% C.L. (solid blue) and 95%C.L. (shaded blue) regions for the marginalized
posterior probability of the scalar spectral index ns, while the regions for the marginalized
posterior of the scalar primordial amplitude As are plotted in different colors. On the left
panel we can see the degeneracy of N∗ and M2 with respect to the amplitude. The right
panel shows that the degeneracy is resolved fairly well when we useM? defined in Eq. (2.15)
instead of M . The black dashed lines in both panels represent the estimate of the optimal
β computed in [178]

.

2.3 Planck constraints

In this section we use the cosmic microwave background (CMB) anisotropy measurements
from the Planck satellite [6, 9, 10] and their joint analysis with the BICEP2/Keck Array [8]
to derive the constraints on the model parameters β and M2 for a fixed value of N∗, due
to the degeneracy mentioned in Sect. 2.1. To deal with this degeneracy one can proceed in
two ways. Either we fix N∗ to some arbitrary value and we constrain M for that choice,
or we can combine the two variables M and N∗ into one that parametrizes the degeneracy.
We choose the latter and to find the combination of the two parameters we work in the
following way. In the exact slow roll approximation we have, for N∗ adequately large,

As ∝
H2

ε
' M2 sinh2(βN∗)

β
∼ M2

β
e2N∗β, (2.14)

where H2 is the Hubble parameter a the end of inflation evaluated analytically in [178] and
the slow-roll parameter ε is defined in (A.3). Thus we can constrain the combination

M? ≡M2 exp(2N∗β) (2.15)

for which As is constant for a fixed β. We evaluate the choice of this parameter graphically in
the right panel of Fig. 2.5. We can see that for different N∗ values, the constrained area lies
in the same range of M?. As mentioned earlier, observational constraints on the constant-
roll inflation parameters were already derived in [178] although by means of the slow roll
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Figure 2.6: Different projections of the joint probability distribution from Planck 2015
likelihood evaluated at N∗ = 0. Top panel: lateral projection of the joint distribution for
β. Right panel: lateral projection of the joint distribution for M?/MPl|N∗=0. Left corner on
the bottom: different regions of the joint posterior distribution are shown within the red
stripe (containing the posterior) in orange at the 68% C.L. (solid orange) and 95% C.L.
(shaded orange).The blue shaded regions correspond to the 1σ marginalized regions for the
two parameters β and M?.

approximation. Here we improve on those earlier results as we are able to very accurately
compute the power spectra of the scalar and tensor fluctuations using the evolution scheme
presented in Sect. 2.2. Also, as discussed in Appendix A, deviations from the slow roll
conditions might be noticeable even in the best fit range of β given the precision of the
present-day observational data.

In a Bayesian framework the posterior probability for the model parameters is usually
sampled through Markov Chain Monte Carlo (MCMC) engines such as CosmoMC [163]
or MontePython [27] coupled to a Boltzmann solver such as CAMB [164] or CLASS [39].
The constraints on the model parameters are then derived by marginalization of the poste-
rior probability. In this work however, we derived the constraints on constant-roll inflation
inflation by simply mapping the posterior probability on the parameters (ns, As, r) to
two of the constant-roll inflation parameters (β, M2) at a fixed N∗. To do so, we eval-
uated the scalar and tensor power spectra on the logarithmic grid log10 β ∈ [−3,−1.5],
log10(M/MPl)2 ∈ [−15,−7] for different values of N∗ = 0, 30, 60, 80, and computed the
parameters ns, As, r, nT for each sample. The absence of features – i.e., changes of slope or
curvature – in the power spectra, as shown in Figure 2.3, allowed us to quickly obtain the
scalar and tensor spectral indexes by a simple linear regression in more than 8000 different
model realizations. In Figure 2.5, we show the results obtained after marginalizing over As

19



and ns. The range for ns at 68% C.L. and 95% C.L. is (approximately) independent of any
choice of N∗. In addition to this, the joint-posterior distribution over the parameters β and
the new parameter, M?, was then computed according to

P
[
log10 β, log10

(
M?

MPl

)2
]

= P(ns, lnAs)J, (2.16)

where the Jacobian J was computed numerically from the results

ns = ns

[
log10 β, log10

(
M?

MPl

)2
]
, (2.17)

lnAs = lnAs

[
log10 β, log10

(
M?

MPl

)2
]
, (2.18)

and exp(±N∗) becomes a constant multiplicative factor after N∗ is fixed. The posterior joint
distribution P(ns, lnA) was generated from the MCMC chains provided by the Planck col-
laboration3,4. The results are shown in Figure 2.6 for N∗ = 0, but apply to other values as
well via the M? scaling described above. The orange shaded regions represent the joint pos-
terior probability P(log10 β, log10(M?/MPl)2|N∗=0), while the red and blue shaded regions
represent respectively the marginalized posteriors P(logAs) and P(ns) projected on the pa-
rameter space (log10 β, log10(M?/MPl)2|N∗=0). From the definition in (2.15), the constraints
on the constant-roll inflation parameters are obtained by marginalizing the posterior prob-
ability (2.16) and are log10 β = −1.77+0.17

−0.35 and log10(M?/MPl)2 = −9.98+0.7
−0.6 at 95% C.L.

In Figure 2.7, we illustrate the region of constant-roll model parameters we probed in
the r versus ns diagram overlaying the joint likelihood distribution provided by Planck
2015. The hatched region corresponds to the variation of N∗ spanning values from 0 to
80, while the M and β range is in Figure 2.5. If one is willing to increase N∗ further
(corresponding to hill-top inflation) very small values of r can be achieved. Interestingly,
the green region in Figure 2.7 does not overlap with any of the existing regions constrained
by other models shown in [8], which makes constant-roll inflation a testable alternative for
future observations.

2.4 Discussion

In this chapter, we provided constraints of the model parameters in constant-roll inflation,
as proposed in [178, 180]. These are not the only efforts regarding models with similar

3https://pla.esac.esa.int/pla/

4https://wiki.cosmos.esa.int/planckpla2015/index.php/Cosmological_Parameters
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Figure 2.7: Constraints from joint Planck 2015/BKP likelihood on ns and r. The green line
shows the values of (ns, r) from the parameter space probed in Figures 2.5 and 2.6. The
68% C.L. region is in pink, while the 95% C.L. region is in red. For higher values of N∗, the
model can cover most of the lower range of r.

features, for instance see [240, 119, 20, 58, 252, 188, 179, 145, 177] for further examples. Our
numerical procedure is optimized for an efficient evaluation of the scalar and tensor power
spectra of primordial fluctuations, and can scan more than 8000 different choices of model
parameters in a reasonable time on a personal computer with standard specifications. It does
not require assuming the slow-roll approximation, as it is based on the direct computation
of the cosmological parameters (ns, r, As, nT ) from the featureless power spectra shown in
Figure 2.3. The code passes numerous accuracy tests, and long-time integration of the mode
evolution confirms that there is no spurious evolution on super-horizon scales.

In order to provide tight constraints of the model parameters, we needed to address
the degeneracy between M and N∗. We found M? defined in (2.15) to be a good auxiliary
parameter that leaves the spectra almost invariant under different choices of N∗ for any fixed
value ofM?. After using the CMBmeasurements from the Planck Collaboration [6, 9, 10] and
their joint likelihood with the BICEP2/Keck Array [8], we estimated log10 β = −1.77+0.17

−0.35
and log10(M?/MPl)2 = −9.98+0.7

−0.6 at 95% C.L. for N∗ = 0, as shown in Figure 2.6. The
constraints for β are not significantly modified by any different choice of N∗, however, due
to the parameter degeneracy the same cannot be said about the constraints for M . The
parameter range on r versus ns diagram covered by constant-roll inflation in Figure 2.7
does not appear to overlap with any of the regions covered by the other inflationary models
considered in [9, 10], making this model observationally interesting for the next generations
of CMB experiments.
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Chapter 3

Two-point correlators revisited:
fast and slow scales in multifield
models of inflation

In this chapter, we generalized the Ermakov-Pinney equation found in the previous chapter
(2.13) to the case of models with more than one scalar degree of freedom. It is important
to notice that these techniques can be further expanded to solve a wide variety of multi-
field problems with linear equations of motion (perturbative or not) beyond the inflationary
regime. Direct computation of the power spectrum from equations of motion can be time
consuming, especially when resolving specific features of each model in a wide range of
energy scales. These problems will be aggravated for multifield models of inflation such as
the proposals in [125, 239]. These models are physically motivated by the separation of two
specific roles: (a) driving the accelerated expansion of the background by one of the field
components and (b) the quantum-mechanical generation of primordial fluctuations.

The primordial power spectrum is valuable in finding sensible ranges of validity for the
parameters of any proposed inflationary model. In the case of models with multiple fields,
it encodes vital information about the power transfer between different components. The
viability of a model is usually tested when the spectrum is loaded as an input in any of
the existing schemes based in Boltzmann transport equations (such as CAMB in [66] or
CLASS in [238]) and compared with data. Being aware of the existing difficulties to design
a spectral code, we suggest an approach intended to isolate all the high-frequency terms and
only use the slowly evolving quantities relevant for calculating the spectrum. These degrees
of freedom remain “frozen” outside the horizon, which implies the use of large time steps
in any numerical evolution scheme.

A crucial part of separating fast and slow degrees of freedom relies on focusing on
the spectrum, which contains information about all the field correlations. This spectrum
is generated by the symmetric product between two field multiplets, forming a correla-
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tion matrix. Field dynamics reveals the approximate time-translational invariance of each
multiplet component on subhorizon scales. This symmetry must be exploited to define a
well-posed Cauchy problem each time vacuum correlations are defined as initial conditions.
When the cases of anticorrelation are excluded, positive definite correlation matrices are
suitable for Cholesky decomposition into two unique triangular factors. Anticorrelations
break the uniqueness of this factorization. This decomposition has been the preferred tool
of statisticians to generate correlated samples from any set of unit-variance random vectors.
Amplitudes of the modes and power of the cross correlations are carried in these Cholesky
factors, which act on a rotating basis of solutions, just as in the Schrodinger picture in
Quantum Mechanics. The fast rotation of this basis is separated from the slow evolution
of amplitudes. We implement a dynamical Cholesky decomposition motivated by the sepa-
ration of wave solutions into phases and amplitudes. This separation has been explored in
single-field solutions, (see [49, 32] for more details) with exact results in the case of massless
perturbations.

The plan for this chapter is as follows: in section 3.1, we will review the notions of pertur-
bation theory for inflationary models, along with the equations of motion for the background
fields. In section 3.2, we describe the field decomposition technique used in order to sep-
arate the fast oscillating phases from the amplitudes. The latter are required to calculate
the spectrum. In section 3.3, we discuss the background dynamics and the use of initial
conditions based on asymptotic vacuum solutions. Additionally, we introduce a scheme for
injecting modes in the system. To conclude, we present our results and discussions.

3.1 Perturbation theory: a lightning review

For the purposes of this work, we only consider Lagrangian densities with canonical kinetic
terms. We will later extend our treatment in Appendix B for the case of a generic curved
field space developed in [219]. The action S needed to describe a generic model of inflation
with multiple coupled fields reads,

S =
∫
d4x
√
−g

(
M2

Pl
2 R− 1

2∂µφA∂
µφA − V (φA)

)
, (3.1)

where all the fields become coordinates of a generically non-flat field space. We pick spatially
flat coordinates just as described in [219]

ds2 = −(1 + 2A)dt2 − 2a2∂iBdx
idt+ a2δijdx

idxj , (3.2)

where A and B are spacetime-dependent perturbations of the FLRW metric. Now, as is
usual in this perturbative approach, we decompose each component of the N field multiplet
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φA into a spatially homogeneous background field and its fluctuations

φA(xµ) = φ0
A(t) + Φ̃A(xµ).

The field equations for the background field, given by (3.1) read

φ̈0
A + 3Hφ̇0

A + ∂V

∂φA
= 0. (3.3)

The expansion history is obtained from the first Friedmann equation

3M2
PlH

2 = 1
2 φ̇

0
Aφ̇

0
A + V (φ0

A). (3.4)

where we define φ̇ ≡ dφ/dt. These equations describe all the quantities needed from the
homogeneous limit, such as the scale factor and the masses, and hence these become a part
of the overall evolution scheme.

In order to find the spectrum, quantum fluctuations are normally expressed as Fourier
modes ΦA(k, t) evaluated on a hypersurface at constant time, where we are able to set the
scale as a constant a without loss of generality. These modes are contained in a second-order
expansion of (3.1)

SΦ(k) = 1
2

∫
a3 dt

[
Φ̇AΦ̇A − ΦA

(
k2

a2 δAB +M2
AB

)
ΦB

]
, (3.5)

where M2
AB ≡ ∂2V/∂φA∂φB −

(
a3φ̇Aφ̇B/H

).
/a3M2

Pl is the well-known “mass-squared ma-

trix” [97] modified by the coordinate choice made on (3.2). The term
(
a3φ̇Aφ̇B/H

).
/a3M2

PlΦB

corresponds to the metric curvature fluctuations solved in terms of the field perturbations
ΦB. All the equations of motion just follow from the variational principle. Initial conditions
will be consistent with the high-frequency behavior k2/a2 �M2

AB, where the solutions for
ΦA are treated as in Minkowski spacetime.

3.2 Two-point correlators revisited

It is important to compute the spectrum of linearized field perturbations at the end of
inflation since it is directly related to the spectrum of primordial curvature by a gauge
transformation (3.26). An interesting procedure for this calculation is described in [200],
where the authors consider the evolved components of a complex “mode matrix”, which
follows the same equations of motion obtained from (3.5). More recently, the Hamiltonian
evolution of the field correlators 〈ΦA,ΦB〉 was considered in [83] with the purpose of sepa-
rating fast and slow evolution scales. In this perspective, more than one time scale is still
necessary to resolve the mode correlations.
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Here we present a different approach: a dynamical decomposition method which sup-
presses the fastest oscillation scales in the equations of motion of the correlation modes
regardless of the mode frequency. This is the multifield extension of the separation tech-
nique previously seen in the Ermakov-Pinney equation (2.13) in Chapter 2. Hence, the
evolution of the correlation modes is more efficient, particularly for deep sub-horizon scales
where integration costs scale linearly with number of e-folds in our method, as opposed to
exponential scaling in other methods. To achieve that, we suggest the following extended
form of the field

ΦA = LAB χ̂B, (3.6)

as an effective way to separate a real matrix of amplitudes (LAB) from phases (χ̂B) on each
mode. We initially assume N ×N independent degrees of freedom contained by LAB. Field
fluctuations in de Sitter spacetime before crossing the horizon only add “damping” to the
standard massive wave solutions in empty space. For that reason, it is possible to consider
the vector χ̂B as a set of evolved phases. By inserting the ansatz (3.6) in (3.5), we get

SΦ = 1
2

∫
a3 dtδAB

[
LACLBD ˙̂χC ˙̂χD + 2L̇BDLAC χ̂D ˙̂χC + L̇ACL̇BD χ̂C χ̂D

]
−LAC

(
k2

a2 δAB +M2
AB

)
LBD χ̂C χ̂D, (3.7)

and the equations of motion for χ̂E are

¨̂χE +
(
3HδEB + 2

(
L−1)

ED L̇DB
)

˙̂χB +
[ (
L−1)

ED L̈DB + 3H
(
L−1)

ED L̇DB +

(
L−1)

ED

[
k2

a2 δDC +M2
DC

]
LCB

]
χ̂B = 0, (3.8)

which turn out to be minimally different from the case of Coriolis’ equation written in a ro-
tating non-inertial frame. The last term corresponds to the effective rotation frequency. The
conjugate momentum of χ̂B from this action yields P̂B = a3

(
LABLAD ˙̂χD + L̇ADLAB χ̂D

)
,

hence the canonical commutators
[
χ̂A, P̂B

]
= iδAB now imply

[
χ̂A, ˙̂χB

]
= i

a3 (LT )−1
BC(L−1)CA. (3.9)

Observationally, a successful model of inflation is required to produce more than 60 e-
folds of expansion; and therefore, a is enlarged by a factor of e60 by the end of inflation. The
dependence on a−3 is responsible for the suppressed commutators during inflation. This is
consistent with the decoherence conditions stated in [198]. Transitioning into classical states
has dynamical consequences: χ̂A can be treated as Gaussian random variables, as suggested
in [32]. In such a case, the central limit theorem is fully applicable and the definition of
complex phases is convenient but not mandatory since it is possible to evolve two copies of
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the same field under different initial conditions. As a result of this, complexification is no
longer a requirement. In addition to this, our prescription in (3.6) allows us to rewrite the
two-point correlators as

〈ΦA,ΦB〉 = LACL
T
DB〈χ̂C , χ̂D〉. (3.10)

A similar separation is performed in [224]. It is inspired by geometrical optics and con-
siders the evolution of the correlators by describing the elements – i.e. rotations, expansions
and shears– of the unitary evolution operator acting on each mode. However, our approach
is more concerned on the dynamical constraints required to hold a specific gauge choice
after the separation in (3.6).

We can make a gauge choice that requires independence between different phases (i.e. a
normalized covariance matrix) at all times. This is analog to using “cosine” or “sine” waves
as an orthonormal basis for a simple harmonic oscillator with the purpose of maximizing
amplitude and velocity as initial conditions for the oscillating system. This independence
condition is our gauge choice

〈χ̂C , χ̂D〉 = δCD, (3.11)

and it must be held at all times. The expression for the correlator in (3.10) reduces to

〈ΦA,ΦB〉 = LACL
T
CB. (3.12)

Because phases are fast oscillating degrees of freedom and can cancel out, these are not
required to calculate two-point correlators. All information of the correlations is carried by
LBC , the slowly varying “square root” of the correlation matrix. We look for an effective set
of equations of motion which mainly depend on amplitudes instead of phases. Therefore,
we must consider that the evolution of χ̂A follows the second-order differential equations in
(3.8). Hence, time translational invariance requires two derivatives of (3.11) as additional
constraints for the system at an arbitrary time slice

SymCD
AB 〈 ˙̂χC , χ̂D〉 = 0, (3.13)

SymCD
AB

[
〈 ¨̂χC , χ̂D〉+ 〈 ˙̂χC , ˙̂χD〉

]
= 0, (3.14)

where we define (Anti)SymCD
AB ≡ δCAδDB ∓ δCBδDA and its antisymmetric counterpart analog as

(anti-)symmetrizing multilinear operators. Equations (3.11) and (3.13) are just constrained
by initial conditions. With (3.8), we can rewrite (3.14) as

SymCD
AB

[ (
L−1)

CE L̈ED + 3H
(
L−1)

CE L̇ED +
(
L−1)

CE

[
k2

a2 δEF +M2
EF

]
LFD − 〈 ˙̂χC , ˙̂χD〉

+(L−1)CEL̇EF 〈 ˙̂χF , χ̂D〉
]

= 0. (3.15)
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Figure 3.1: Schematic representation of (3.15). Fixing the shape of Cholesky amplitudes by
adding the antisymmetric matrix ACD. This matrix is an antisymmetrized collection of all
components outside of the lower triangular form. After rearranging terms in the final sum,
the expression in (3.17) keeps its Cholesky shape at all times.

In all the terms, symmetrization in both free indices indicates the existence of N (N − 1)/2
repeated degrees of freedom in the system. When anticorrelations are discarded, we can use
the positive-definiteness of the correlation matrix to eliminate the redundancy in (3.15) by
picking LAB to be a unique Cholesky matrix. These do not have more than N (N + 1)/2
non-zero real elements in the lower triangular corner of the matrix. Our choice of Cholesky
matrices is convenient for a variety of reasons, especially since matrix inversions, linear
filters and other matrix operations are computationally inexpensive and easily scalable for
the case of models with a large number of fields.

Moreover, the whole expression inside the square brackets of equation (3.15) has a
gauge symmetry due to the overall symmetrization acting on it. Such a gauge freedom can
be exploited to fix the shape of the Cholesky representation at all times. Only the first two
terms in this expression preserve the shape of a Cholesky matrix. As the system evolves,
all the other terms will migrate degrees of freedom out of the lower triangular form of L.
Consequently, we need to add an antisymmetric matrix ACD, which will be canceled out
when symmetrized. In Figure 3.1, we represent the way in which the Cholesky representation
is preserved.

The gauge fixing condition emerges by suppressing the upper diagonal terms (D > C)

ACD = −
(
L−1

)
CE

M2
EFLFD − (L−1)CEL̇EF 〈 ˙̂χF , χ̂D〉+ 〈 ˙̂χC , ˙̂χD〉. (3.16)

Thus, Cholesky matrices evolve in agreement with

L̈AB + 3HL̇AB +
[
k2

a2 δAC +M2
AC

]
LCB + LACACB + L̇AC〈 ˙̂χC , χ̂B〉 − LAC〈 ˙̂χC , ˙̂χB〉 = 0.

(3.17)
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To find appropriate expressions for the expected phase correlators 〈 ˙̂χA ˙̂χB〉 and 〈 ˙̂χAχ̂B〉, we
will write the derivatives for each one of the unknown correlators

d
dt〈 ˙̂χA, ˙̂χB〉 = SymCD

AB 〈 ¨̂χC , ˙̂χD〉, (3.18)
d
dt〈 ˙̂χA, χ̂B〉 = 〈 ¨̂χA, χ̂B〉+ 〈 ˙̂χA, ˙̂χB〉.

The last expression is equivalent to

d
dt〈 ˙̂χA, χ̂B〉 = 1

2Sym
CD
AB

[
〈 ¨̂χC , χ̂D〉+ 〈 ˙̂χC , ˙̂χD〉

]
+ 1

2Antisym
CD
AB

[
〈 ¨̂χC , χ̂D〉+ 〈 ˙̂χC , ˙̂χD〉

]
= 1

2Antisym
CD
AB 〈 ¨̂χC , χ̂D〉 (3.19)

Equation (3.19) conserves the antisymmetric properties of 〈 ˙̂χA, χ̂B〉 found in (3.13), whose
behavior seems to match the rotation generators in a real vector space. Using (3.8) and
(3.17), we can write equations of motion for the missing two-point correlators

d
dt〈 ˙̂χA, ˙̂χB〉 = SymCD

AB

[
− 3H〈 ˙̂χC , ˙̂χD〉 − 2

(
L−1)

CE L̇EF 〈 ˙̂χF , ˙̂χD〉 − ACE〈 ˙̂χE , χ̂D〉

+
(
L−1)

CE L̇EF 〈 ˙̂χF , χ̂G〉〈χ̂G, ˙̂χD〉+ 〈 ˙̂χC , ˙̂χF 〉〈 ˙̂χF , χ̂D〉
]
, (3.20)

and also

d

dt
〈 ˙̂χA, χ̂B〉 = AAB − 3H〈 ˙̂χA, χ̂B〉 −

1
2Antisym

CD
AB

[ (
L−1

)
CE

L̇EF 〈 ˙̂χF , χ̂D〉
]
. (3.21)

At first glance, the symmetrizer doubles the first coefficients in (3.20). After comparing
(3.20) with (3.21) we notice that 〈 ˙̂χA, ˙̂χB〉 ∼ 〈 ˙̂χA, χ̂B〉2, which is consistent with our anal-
ogy with the rotation generators in a real vector space. However, a careful review of all the
terms in both expressions shows that this is not a strict equality. Henceforth, both correla-
tors are considered as separate elements in the evolving system. The expressions found in
(3.17), (3.20) and (3.21) constitute the system of differential equations required to evolve
the “square root” of the two-point correlators.

3.3 Initial conditions and spectral evolution scheme

It is reasonable to ask about the proper set of values required to initialize the equations
of motion as described in (3.3) and (3.17). To do so, we first consider the evolution of the
background fields.

It is important to mention that the application of alternative time scales does not affect
the overall performance of any evolution scheme. Throughout the rest of the chapter, we
choose

V (φ, σ) = λ

4φ
4 + g

2φ
2σ2, (3.22)
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Figure 3.2: Evolution of eight different background trajectories labeled from (a) to (h) and
represented in three transversal sections of the phase space: (φ̇, φ) in the first figure, (σ̇, σ) in
the second and (φ, σ) in the third. The projection (φ, σ) is embedded on the field potential.
Here we observe the overlap of trajectories with the same initial values of φ(t0) and σ(t0).
Equipotential curves of (3.22) are plotted in the three projections as a reference for the
energy scale at different field configurations.
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Figure 3.3: Projected surface of initial conditions. The contours plotted highlight the re-
gions (similar to equipotential curves) which would generate 20, 60, 100 and 140 e-folds of
inflation.

as an example of a multifield non-linear potential. Having a system of highly coupled second-
order differential equations, we must investigate the behaviour of first and second derivatives
for both fields since those provide initial conditions for the background. Thus, we can
observe in Figure 3.2 three phase space projections of the background field trajectories,
where λ = g/2 = 10−14 is the numerical value assigned to the coupling constant. From
Figure 3.2, we notice that φ̇(t0) ≈ σ̇(t0) ≈ 0.0 are suitable choices for the derivatives
of the slowly rolling background field. Other values will not modify the convergence time
substantially. The lapse of time the system takes to fall into the inflationary attractor
is very small. However, we always have the option of getting closer to the attractor in
order to reduce the convergence time of the complete system of equations, which includes
fluctuations. Hence, we are left with two numbers we have to fix in order to achieve enough
expansion in the model.

In Figure 3.3, we generated a “map” of initial values for φ and σ, including the number
of expanded e-folds. Once we choose a set of initial field coordinates, we can ensure the
conditions necessary to produce an inflating homogeneous background state considering
the potential in (3.22). In this case, following the data from the map in Figure 3.3, initial
conditions were chosen to produce sufficient expansion, we arbitrarily choose 88 (approx.)
e-folds of inflation, with φ0 = σ0 = 20MPl. The horizon and all the physical wavenumbers
(kphys) associated with each perturbation mode evolve according to the curves in Figure
3.4.
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To describe the evolution of the correlations between perturbations of the different
scalar degrees of freedom, we rely on our knowledge of the correlators 〈ΦA,ΦB〉, 〈Φ̇A,ΦB〉
and 〈Φ̇A, Φ̇B〉 to provide suitable (approximate) initial conditions at (t = t0).

Asymptotic consistency with the field amplitudes in Minkowski vacuum with a non-
diagonal mass matrix is sufficient to determine these correlation matrices. Diagonalization
of the mass matrix in the initial time surface provides estimated values of the correlations
in 〈ΦA,ΦB〉t0 :

DAB ≡ UACUTDBM2
CD,

〈ΦA,ΦB〉t0 = UTACUDB
(
a−3

2ω̂CD

)
, (3.23)

where ω̂CD ≡
√

(k2/a2)δCD +DCD, DAB is the diagonal version of M2
AB and UAB is the

orthonormal transformation matrix responsible for the diagonalization.
The classicality arguments stated in section 3.2 allow us to consider independent initial

conditions for each component of the multiplet and its derivatives:

〈ΦA,ΦB〉t0 = LACL
T
CB, (3.24)

〈Φ̇A,ΦB〉t0 = L̇ACL
T
CB + LACL

T
DB〈 ˙̂χC , χ̂D〉t0 = 0,

〈Φ̇A, Φ̇B〉t0 = L̇ACL̇
T
CB + LACL

T
DB〈 ˙̂χC , ˙̂χD〉t0 +

(
L̇ACL

T
DB − LACL̇TDB

)
〈 ˙̂χC , χ̂D〉t0 .

Initial conditions for L̇AB must be compatible with both the classicality 〈Φ̇A,ΦB〉t0 = 0 and
the antisymmetry of 〈 ˙̂χA, χ̂B〉t0 , which leads us to L̇AB = 〈 ˙̂χA, χ̂B〉t0 = 0. Therefore, it is
possible to use (3.24) to obtain the corresponding initial state of every phase correlations.
From (3.24), we observe that the dependence of 〈 ˙̂χA, ˙̂χB〉t0 on both 〈Φ̇A, Φ̇B〉t0 and L−2

AB(t0)
guarantees the supression of the fastest frequency scales at the time these reached their
maximum values.

The scheme of evolution is also responsible for the efficiency of any spectral code. It
represents the way in which modes are injected to the system and then evolved from sub-
horizon scales to a final instant of time outside the horizon. We are interested in reducing
the time in which mode evolution is irrelevant to the spectrum via time translational in-
variance. To achieve this, we inject modes every five or ten e-folds from a constant energy
scale kphys as in Figure 3.4, being aware of the initial conditions for the fluctuation modes
and the background discussed previously. Each mode can be traced back to a physical wave
mode leaving the horizon. This simple technique saves half of the evolution time necessary
to evolve all the modes from any constant-time hypersurface.
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Figure 3.4: Mode injection scheme. Cholesky modes injected every 10 e-folds from a surface
of constant physical wavelength and evolved until a fixed time “screen” at the end of infla-
tion. Initial conditions allow up to 88 e-folds of inflation. ` is the physical length scale in
the system.

3.4 Results

In order to evaluate the validity of the statements made so far, we produced two codes:
the first one generates the correlation matrix by taking correlations of a random sample. In
the second one, we solve the system given by (3.17), (3.20) and (3.21). In both scenarios,
we followed the same initial conditions stated in the previous section. Also, we used the
same solver in both cases, a symplectic eighth-order-accurate Gauss-Legendre integrator
(see [254] for more details).

In the first case, we used the Box-Muller algorithm to generate a set of four independent
unit-variance random vectors (χ̂A) satisfying (3.11): two amplitudes and two velocities. By
using (3.6), we reproduce a certain number of field realizations (between 100-500) consistent
with all the calculable two-point correlators, i.e. 〈ΦA,ΦB〉t0 , 〈Φ̇A,ΦB〉t0 and 〈Φ̇A, Φ̇B〉t0 , at
the surface of initial conditions. Each one of these realizations evolves in agreement with
the equations of motion obtained from (3.5). We are aware that this is not the most efficient
way to calculate correlations; nevertheless, it is worth to compare with the “static” version
of the idea we are developing in this project.

By implementing this idea, we confirm by direct calculation the gauge fixing conditions
provided on (3.11), (3.13) and (3.14), which are necessary to produce the Cholesky decom-
position, can be held at all times. The dynamics of the system and the separation in fast
and slow parameters relies entirely on these statements. In Figure 3.5, we verified the first
of these gauge choices. After solving for Φ1 and Φ2, the inversion of (3.6) is used to con-
firm (3.11) as a valid gauge condition. The Cholesky decomposition of any positive-definite
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Figure 3.5: Left panel: The gauge choice 〈χ̂A, χ̂B〉 = δAB holds at all times. Off-diagonal
terms are numerically zero. Right panel: We observe the antisymmetry of 〈 ˙̂χA, χ̂B〉 since
both of the diagonal terms, and the sum of the off-diagonal elements are numerically zero
(up to machine precision).
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Figure 3.6: Verifying the final gauge condition in (3.14) by checking that all the matrix
elements noted in the legend are numerically zero (up to machine precision).
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Figure 3.7: Suppressed oscillation scale in a mode injected at k1 = e10kphys. The effective
oscillation frequency (k2/a2) is reduced by three orders of magnitude. The effect due to
〈 ˙̂χ1, ˙̂χ1〉 is the same.

correlation matrix is independent of the instant of time in which we choose to perform it.
It is mainly supported by time-translational invariance of the approximated Minkowski (or
Bunch-Davies) vacuum state. In addition to this fact, we must also consider that this does
not depend on the choice of any particular initial length scale.

In the right panel of Figure 3.5 we check the numerical cancellation of the symmetric
part of 〈 ˙̂χA, χ̂B〉. Phase cross-correlators 〈 ˙̂χ1, χ̂2〉 and 〈 ˙̂χ2, χ̂1〉 do not cancel separately. On
the contrary, their strength is enhanced until the modes cross the horizon. It is possible to
show that a Taylor expansion of 〈χ̂A, χ̂B〉 in powers of time, will only depend on 〈 ˙̂χA, χ̂B〉
and 〈 ˙̂χA, ˙̂χB〉. The antisymmetric behaviour is consistent, again, with the notion of these
correlators as rotation generators: the rotation transfers power from one mode to another.

In Figure 3.6, we tested the last dynamical gauge constraint in (3.14). Here the combi-
nations plotted are numerically zero up to machine precision, after using double-precision
floats. The use of this condition yields the equations of motion of the “square root” factor
LAB.

Now we present the results of implementing the dynamical Cholesky scheme developed
to get the expressions in (3.17), (3.20) and (3.21).

One of the objectives of this chapter is to separate the fast and slow degrees of freedom
required to solve the spectrum of fluctuations. Such a separation is achieved by reducing the
effective oscillation frecuency ω2

eff ∼ k2/a2 +M2
AB by the introduction of 〈 ˙̂χA, ˙̂χB〉 acting as

counterterms in (3.17). In this particular case, even when the addition of the mass matrix
alters the coupling between different field components, none of these magnitudes is enough
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Figure 3.8: 〈Φ1,Φ1〉 correlator obtained after injecting modes from two different physical
length scales kphys = 103He and kphys = 105He. The spectrum remains unaltered.

to contribute significantly to ω2
eff . In Figure 3.7, we can see an effective suppression of

the higher frequency terms, which confirms that there has been a separation of oscillatory
scales in the resolution of the equations of motion for the Cholesky amplitude matrices
(3.17). The new oscillation scale is (at least) three orders of magnitude smaller than k2/a2.
In the hypothetical case of a very large mass, the actual structure of the counterterms,
provided by initial conditions (proportional to 〈 ˙̂ΦA,

˙̂ΦB〉2t0 ∼ ω2
eff) and equations of motion

in (3.20), will affect the effective oscillating frequencies in exactly the same way. Therefore,
due to this suppression, we can increase the time step required for resolving each Cholesky
mode, reducing the computational time remarkably when compared with other schemes.

In order to prevent convergence issues coming from any harmless inaccuracies in defining
initial conditions (from either Minkowski or Bunch-Davies vacua), we evolve the modes for
a couple of e-folds using smaller time steps. After a few iterations, the time step can be
significantly increased. Consequently, modes can be injected from smaller length scales to
increase the precision of the initial conditions for the correlators.

In Figure 3.8, we observe that there is no reason to expect any change in the shape of
the spectrum if we decide to inject the modes from a different physical wavelength surface,
even when this surface is deep inside subhorizon scales.

In Figure 3.9, we observe the evolution of two of the amplitude modes which constitute
the spectrum injected from kphys = 103 He, where He is the Hubble parameter at the end
of inflation. The injection scheme described in section 3.3 is applied in order to collect the
correlation amplitudes on a “screen” located at N ≈ 88.3. Notice the decay and the absence
of oscillations before the horizon crossing.
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Figure 3.9: Evolution of two real Cholesky modes inserted at N ≡ ln a = 10 and N = 50.
We detect the suppression of oscillations before crossing the horizon (at ` = 1/H).

In Appendix C we present our results for the two-point correlators as calculated by both
of the approaches we used to find the spectrum. Results from the “random sampling code”
are labeled as standard and the outcome from the direct evolution of the Cholesky factors
is labeled as gauged. Both sets of results agree with a margin of relative uncertainty smaller
than 0.1%. The speed enhancement in the gauged routine allows us to insert more modes
with negligible computational cost.

Using our method, it is also possible to calculate the comoving curvature perturbations,
which are given by

ζk = H

φ̇Aφ̇A

(
φ̇BΦB

)
, (3.25)

in the spatially flat gauge. Therefore, we find its corresponding power spectrum:

〈ζ2
k〉t>t0 = H2(

φ̇Aφ̇A
)2

[
φ̇Bφ̇C

]
〈ΦB,ΦC〉t>t0 , (3.26)

where 〈ΦB,ΦC〉t>t0 is now reconstructed at all instants of time by multiplying the Cholesky
factors LBD as these evolve. As an additional result, we tested the production of primordial
curvature fluctuations in the well-known double quadratic potential as proposed in [200,
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Figure 3.10: Evolution of 〈ζ2
k〉 as a function of the time variable N ≡ ln a. Notice the change

of the spectrum in super-horizon scales, it is now possible to inject the modes from smaller
length scales and observe the earlier stages of evolution.

137, 161, 28, 105]

V (φ, χ) =
m2
φ

2 φ2 +
m2
χ

2 χ2, (3.27)

at super-horizon scales. The shape of this potential is an elliptic paraboloid when we use
the same parameters as in [137]: mφ = 1.4 × 10−6MPl and mχ = 7mφ. Turning field
trajectories are generated by the broken azimuthal symmetry of the potential in (3.27). We
pick φ0 = χ0 = 12MPl and φ̇0 = χ̇0 = 0 as initial conditions for the background fields. In
Figure 3.10 we use our decomposition method for a mode with k ≈ 1.3×105H?, where H? is
the Hubble parameter at the initial point of the field trajectory. We reproduce the spectrum
of primordial curvature perturbations, which coincides exactly with the results obtained in
[137]. It is relevant to study turning trajectories in field space since these are the source of
curvature perturbations even in more complicated potentials.

3.5 Discussion

In this chapter, we present a new method to separate fast and slow scales in the context of
multifield models of inflation. We describe a scheme based on the Cholesky factorization of
any positive-definite correlation matrix.

As an outcome, we manage to find equations of motion for the “square root” of the
correlation matrix in terms of slowly varying quantities. After reviewing the dynamical
properties and contributions of the background fields, we specify a set of approximate
initial conditions for the evolving system, and check that our results are consistent with
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straightforward averaging over all the realizations of the evolved random fields. We use the
new code to calculate spectra of a few well-known models, and check that the shape of the
spectrum depends on the choice of background trajectories.

This perspective based on dynamical Cholesky decomposition is significantly different
from previous efforts in [224, 200]. More recently, the Hamiltonian evolution of the field
correlators 〈ΦA,ΦB〉 was considered in [83], which is a transport scheme quite similar to
ours in spirit. However, our method achieves significant computational gains by separating
fast time scale of the sub-horizon mode evolution. Additionally, in our evolution scheme
〈χ̂A, χ̂B〉 = δAB at every instant in time, which makes it convenient to generate properly-
correlated random realizations of the fields for Monte-Carlo simulations.

This approach can be easily extended to a diverse number of systems ruled by (al-
most) any perturbative manifestation arising from hyperbolic differential equations, which
present fairly similar structures. We will leave the non-Gaussian extension of this method
in application to bispectrum computations.
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Chapter 4

Unbraiding the bounce:
superluminality around the corner

In this chapter, we present a different type of EFT, where the dynamics of a theory are
now generated by including higher-order derivatives in the effective action which modify
the kinetic term. Nevertheless, the equations of motion for this theory remain being second-
order. The production of a healthy bouncing cosmology (which contract the Hubble scale up
to a minimum size, enabling thermal contact, and then re-expand) is a step forward towards
a viable alternative to inflation, producing a sensible expansion history free of singularities.
It is important to notice that a satisfactory non-singular bounce might not require from
a complete description of the theory in the ultraviolet limit, including Quantum Gravity,
while remaining coherent with the observed stages of homogeneity and isotropy seen in
Cosmic Microwave Background (CMB).

Since 2010 it is well known that minimally-coupled scalar-tensor theories with Ki-
netic Gravity Braiding [79] can dynamically violate the Null Energy Condition (NEC)1

and cross the phantom divide2 without developing ghost and gradient instabilities3, see
[79, 152, 72, 96]. For a recent review of NEC violation see e.g. [211]. These kinetically
braided theories are generalizations of two families of models: (a) the k-essence models
in [22, 25, 24, 114], which now includes a braiding term, and (b) the decoupling limit of
DGP (Dvali-Gabadadze-Porrati) in [168, 185] or cubic Galileon [186] which are extended
to also include higher nonlinear derivative interactions. The nonlinear interactions break
the Galilean symmetry in the field space even in the Minkowski spacetime, but do not

1For a system with energy-momentum tensor Tµν , the NEC holds provided Tµνnµnν ≥ 0 for all null /
light-like vectors nµ.

2This divide is physically impossible to cross [242, 135, 61, 251, 95, 77] for k-essence, and theories with
minimal coupling to gravity and without higher-derivatives introducing the braiding between the derivatives
of the metric and of the scalar field.

3Despite the positivity of the energy density for linear perturbations, it is important to note that any
theory violating the NEC necessarily has the energy density unbounded from below [221].
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change the speed of propagation for the gravitational waves. For timelike field derivatives,
kinetically braided theories represent imperfect fluids with the energy transport along the
spatial gradients of the chemical potential [203]. The form of the braiding term defines the
dependence of the transport coefficient on the chemical potential. In the cubic Galileon the
transport coefficient is given by the square of the chemical potential. In the general Kinetic
Gravity Braiding, the transport coefficient can be an arbitrary function of the chemical
potential including the most natural case of a constant.

After the rediscovery [78, 153] of the general Horndeski theories [134] in 2011, these
kinetically braided models are often referred to as “first two terms of Horndeski theories” or
simply generalized / “cubic” Galileons. Since 2011 it is known [204, 93] that these theories
can describe spatially flat Friedmann universes evolving from contraction to expansion while
being manifestly free of ghost and gradient instabilities around this cosmological bounce.
Hence, these theories can realize a smooth “healthy” bounce. The possibility of the bounce
in such systems was briefly mentioned in [72]. Furthermore, in [93] it was demonstrated that
we can easily construct spatially flat “healthy” bouncing universes with bouncing solutions
of a non-vanishing measure. This reference established that there is a continuum of such
minimally coupled healthy bouncing theories. The work provided sufficient conditions in
the form of inequalities on the Lagrangian free functions to ensure a “healthy” bounce.
Kinetically braided bouncing models also work in the (unavoidable) presence of normal
matter, such as radiation, etc [93]. In particular, they allow for a smooth transition to the
radiation-dominated epoch (“Hot G-Bounce”, see Fig 1, on page 10 in [93]). In the same
work, singularities in the gravitational metric and in the acoustic metric describing the cones
of propagation for the scalar perturbations were discussed. These singularities can be at the
beginning or at the end of the evolution, or both. Physically, these singularities correspond to
(naively infinitely) strongly coupled configurations, where either the quasi-classical general
relativity (GR) or quasi-classical description of the scalar field break down. Both theories are
not renormalizable, have dynamical cones of influence/geometry, and require a nontrivial
ultraviolet (UV) completion. Under certain assumptions, the presence of these singularities
was later proven for general kinetically braided theories in [165]. This proof was extended
to general Horndeski theories in [150] and to theories interacting with another scalar field in
[157, 150]4. In this respect, kinetically braided theories, as well as more general Horndeski
theories are not that different from regular GR, where the existence of singularities is a
well established fact [128]. The only advantage is that it is possible to relocate the initial
cosmological singularity in the classical dynamical equations from the expanding to the
contracting stage, even in a spatially flat universe. Hence the big bang could occur not at
the beginning of the cosmological expansion, but at the onset of contraction. This crucial

4It seems that we can have a healthy evolution, without any end or the beginning singularities, in theories
going beyond Horndeski construction [73, 59].

40



difference opens up new ways of thinking about initial conditions in the early universe.
This is relevant for the initial conditions of inflation, which could now be preceded by a
contraction, bounce or even the Minkowski space [72, 71, 130, 131, 196, 154, 187]. There is
plenty of theoretical and philosophical motivation to consider bounces and NEC violation
in the early universe; for recent reviews see e.g. [46, 35, 211]. If the NEC can be violated
by a physical system we can even consider such an exotic opportunity as a creation of a
universe in a laboratory [210].

An interesting feature of kinetically braided theories is that the scalar perturbations
around generic backgrounds propagate along an “acoustic” cone different from the light
cone [7, 185, 79, 100]. This “acoustic” cone can be wider than the light cone or protrude
outside of it just in some directions. In these cases the perturbations propagate faster than
light [7]. Contrary to k-essence where it is possible to establish subluminality constraints on
the form of the Lagrangian, in kinetically braided theories it seems that there are no such
conditions. For a recent discussion on the dilatationally invariant subclass of these theories
see [157]. There are examples [71, 94] of such theories where there is no superluminality
for all cosmological configurations; for the proof see [94]. However, this only happens in
an idealized universe without any external matter. An unusual property of the kinetically
braided theories is that the value of the sound speed depends not only on the local state
of the field, but also on the energy-momentum tensor of other matter fields present in the
same point of spacetime. Even in the case of totally subluminal cosmological phase space
[71, 94], an introduction of external matter sources instigates the superluminality at least
for some regions of phase space [94].

The superluminality (with hyperbolic equations of motion for perturbations) per se does
not necessarily cause any causal paradoxes [31, 115, 50, 23, 144, 51]. Nevertheless, it is always
possible to construct nontrivial non-cosmological configurations (in these configurations,
the Hubble parameter is not a real solution of Friedmann equations), where closed causal
curves (CCC) can be formed at the level of classical dynamics [7, 101, 100]. Operators
in quantum field theory (QFT) cannot be time-ordered along these curves, which behave
as time machines propagating fluctuations to the past. However, similarly to GR where
we have the chronology protection conjecture due to Hawking [127], QFT may protect the
system from forming CCC in all such theories with dynamical cones of influence, see e.g.
[31, 56, 50].

On the other hand, there are powerful arguments that EFTs with at least one config-
uration permitting superluminality do not allow for a standard Wilsonian UV-completion
in terms of local, Lorentz-invariant and weakly coupled fields or strings [7]. In order to
apply these arguments, the superluminal configurations should belong to an EFT with a
viable ultraviolet limit. The latter condition is rather nontrivial, as different semiclassical
states can be isolated by regions with ghosts (fields coupled to gravity with negative kinetic
energy), regions with strong coupling, or other features where the EFT breaks down. In
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these cases each separated region corresponds to a different EFT. The way out is provided
by a recent conjecture concerning a possible Wilsonian UV-completion in such nonstandard
theories. It was conjectured [91, 92] (see also [89]), that a theory can UV-complete itself
by forming classicalons - extended field configurations playing the role of elementary quan-
tum excitations, hence, the term classicalization. These classicalons appear as intermediate
long-lived states and slowly decay into a large number of soft IR elementary excitations.
Later, it was argued that this UV-completion by classicalization takes place, only provided
some configurations allow for the superluminal propagation [243, 88, 90]. The extended el-
ementary excitations may induce a non-locality of the UV completion of these theories [147].

Following this discussion, it is expected that general bouncing cosmologies can only
be realized in theories equipped with superluminality around some configurations. Conse-
quently, these theories cannot be UV-completed in the standard way. Only classicalization,
or maybe some other yet unknown construction, can UV-complete such bouncing models.

In 2016, Ijjas and Steinhardt (IS) proposed in [139] an interesting “inverse” method.
The method allows one to find particular realizations of the cosmological bouncing scenario
in a specific subclass of kinetically braided theories. In a bouncing scenario, the Hubble
scale contracts to a minimal size and then re-expands. Specifically, they found a model for a
given cosmological evolution H(t), where H(t) is the Hubble parameter. Kinetically braided
theories have two free functions, K (φ, ∂φ) and G (φ, ∂φ). Thus, there is enough freedom
to choose not only H(t), but also a time dependence for one of the two coefficients in the
quadratic action for curvature perturbations. The advantage of this method is that it allows
to construct a theory for a given evolution while keeping a direct control over perturba-
tions. This procedure enables one to find φ (t) and to specify different free functions in the
Lagrangian as functions of time. Hence, this method yields an implicit construction of the
Lagrangian of the model realizing the bounce. Using the inverse method, IS found a partic-
ular theory, which accommodates the bounce free of ghosts and gradient instabilities. For
convenience we denote this realization as IS-bounce. The IS-bounce was not only claimed
to be free from ghost and gradient instabilities, but also to be exempt from superluminal
propagation of perturbations. The reconstructed solution also included healthy stages before
and after NEC violation. In this way, the system could enter the NEC-violating bouncing
stage and leave it without encountering any problem for stability or UV-completion. These
findings are illustrated by explicit numerical calculations and plots corresponding to two
sets of five independent free parameters.

The layout of this chapter, where we analyze the system introduced by Ijjas and Stein-
hardt in [139], is as follows: First, in section 4.1 we derive and discuss the main equations for
the dynamics of cosmological solutions and perturbations in braided theories under consid-
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eration. In section 4.2, we briefly discuss the notion of acoustic geometry for cosmological
perturbations, convenient variables and their relations by different gauge and conformal
transformations. Then, in section 4.3, we uncover the specific structure of the Lagrangian
by deriving the functions k (φ) and q (φ) of the theory. We then use the derived action
to study the IS-bounce for the two sets of parameters suggested in [139]. Furthermore, in
section 4.4 we reveal the phase space structure in a patch surrounding the IS bouncing
trajectory, as plotted in Figure 4.4. Additionally, we look for cycles and other features of
this patch by spanning it with sufficient field trajectories. We also show the regions where
initial conditions provide a viable expansion history (if these exist). Only in this chapter,
we use the signature (+,−,−,−) and the unit convention fixing M2

Pl = 1.

4.1 Model and main equations

The IS-bounce uses a class of Kinetic Gravity Braiding theories with explicitly strongly
broken shift-symmetry φ→ φ+c, where the action for the field excludes the curvature term
seen in (1.11)

S = 1
2

∫
d4x
√
−g

(
k (φ) (∂φ)2 + 1

2q (φ) (∂φ)4 + (∂φ)2�φ
)
, (4.1)

where
(∂φ)2 ≡ gµν∂µφ∂νφ ≡ 2X , �φ ≡ gµν∇µ∇νφ , (4.2)

where ∇µ is the usual Levi-Civita connection 5. The scalar field is supposed to be minimally
coupled to gravity. Hence, the theory is defined by two free functions k (φ) and q (φ). In
notation of [79] where generic theories of the type

S =
∫
d4x
√
−g [K (X,φ) +G (X,φ)�φ] , (4.3)

were introduced, we have6

K (X,φ) = k (φ)X + q (φ)X2 , G (X,φ) = X . (4.4)

This identification allows us to directly use all necessary formulas derived in [79] (see also
[152]) for arbitrary K (X,φ) and G (X,φ) for the background dynamics and perturbations

5Further we use: the standard notation
√
−g ≡

√
−detgµν where gµν is the metric, the signature con-

vention (+,−,−,−) (contrary to [139]), and the units c = ~ = 1, MPl = (8πGN)−1/2 = 1.

6At the beginning the authors of [139] also used G (X,φ) = b (φ)X, however this additional free function
b (φ) can be eliminated by the simple field-redefinition: dφ̄ = b−1/3 (φ) dφ.

43



in the spatially flat Friedmann universe

ds2 = dt2 − a2 (t) dx2. (4.5)

Below, instead of rederiving formulas for the particular case (4.4), as it was done by IS, we
use general results from [79]. In particular, the pressure is

P
(
φ,X, φ̈

)
= K − 2XG,φ − 2XG,X φ̈ = kX + qX2 − 2Xφ̈, (4.6)

and the broken Noether charge density corresponding to the shift φ→ φ+ c yields

J = φ̇
(
K,X − 2G,φ + 3φ̇HG,X

)
= φ̇

(
k + 2qX + 3φ̇H

)
, (4.7)

where H = ȧ/a is the Hubble parameter. The variation of the action (4.3) with respect
to the field φ gives an equation of motion, which in terms of the charge density takes the
following elegant form

J̇ + 3HJ = P,φ. (4.8)

The kinetic braiding with gravity reveals itself once we have found how this equation depends
on Ḣ. Moreover, the general expression for the energy density

ε
(
φ, φ̇,H

)
= φ̇J − P + 2XG,X φ̈ = 2X

(
K,X −G,φ + 3φ̇HG,X

)
−K, (4.9)

reduces for the choice (4.4) to

ε = kX + 3qX2 + 6φ̇HX. (4.10)

Further the first Friedmann equation reads

3H2 = ε = kX + 3qX2 + 6φ̇HX, (4.11)

while for the second equation, we have

Ḣ = −1
2 (ε+ P) = XG,X φ̈−

1
2 φ̇J. (4.12)

Later, in section 4.3, our inversion procedure will require that both the energy density and
the first Friedmann equation contain a term linear in H. Therefore for kinetically braided
systems the branches resulting from the first Friedmann equation do not correspond to
expansion and contraction of the universe. Indeed, solving the quadratic equation we obtain

H± = XG,X φ̇±
√(

XG,X φ̇
)2

+ 1
3 (2X (K,X −G,φ)−K). (4.13)

44



This relation implies that not all configurations
(
φ, φ̇

)
with positive energy density are

allowed, but only those satisfying an additional condition

6X (XG,X)2 + 2X (K,X −G,φ)−K ≥ 0. (4.14)

Finally it is convenient to write an equation of motion for the scalar field (4.8) where Ḣ is
expressed through (4.12)

Dφ̈+ 3J
(
H − φ̇XG,X

)
+ ε,φ = 0, (4.15)

where our general expression

D = K,X + 2XK,XX − 2G,φ − 2XG,Xφ + 6φ̇H (G,X +XG,XX) + 6X2G2
,X , (4.16)

reduces for the choice (4.4) to

D = k + 6Xq + 6φ̇H + 6X2 . (4.17)

The quantity D corresponds to the determinant of the matrix in front of the second
derivatives

(
φ̈, ä

)
in the equations (4.12) and (4.8). The sound speed is given by the formula

(A.11) page 36 in [79]. Now we are prepared to write the formulas for the perturbations. We
use the “unitary” gauge, and embed the spacelike hypersurface δφ = 0 into the perturbed
Friedmann universe using the ADM (Arnowitt-Deser-Misner) decomposition

ds2 = N2dt2 − a2e2ζδik
(
N idt+ dxi

) (
Nkdt+ dxk

)
, (4.18)

which is useful to compare with the most general line element with scalar perturbations
written in conformal time τ

ds2 = a2
[
(1 + 2ϕ) dτ2 + 2B,idxidτ − [(1− 2ψ) δik − 2E,ik] dxidxk

]
. (4.19)

As it was pointed out in [152], the variable ζ is not a comoving curvature perturbation,
because there is an energy flow T ti = φ̇3GX∂iδN in the gauge (4.18). Expressing the lapse
fluctuation δN through the longitudinal part of the momentum constraint (see (A.5) on
page 36 in [79]) (

H − φ̇XG,X
)
δN = ζ̇, (4.20)
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one obtains the quadratic action for curvature perturbations ζ 7 (see (A.8) on page 36 in
[79])

Sc = 1
2

∫
dt d3x a3

(
A (t) ζ̇2 − B (t)

a2 (∂iζ)2
)
. (4.21)

The formula for the normalization of the kinetic term is given by (A.9) page 36 in [79]

A = 2XD(
H − φ̇XG,X

)2 . (4.22)

Hence, it is the coefficient D, given by (4.16), in front of the second derivative in the
reduced equation of motion (4.15). The positive value of this coefficient determines that the
perturbations are free of ghosts. It is interesting to note that curves on phase space with
D = 0 correspond to an infinitely-strong coupling of perturbations and to pressure-like
curvature singularity [79], where GR breaks down, see (4.6) and (4.15). Clearly the reduced
equation of motion is singular on these curves.

c2
s = B (t)

A (t) =
φ̇XG,X

(
H − φ̇XG,X

)
− ∂t

(
H − φ̇XG,X

)
XD

, (4.23)

where we assumed that the field φ is the only source of energy-momentum. We can write

1
2B (t) =

φ̇XG,X
(
H − φ̇XG,X

)
− ∂t

(
H − φ̇XG,X

)
(
H − φ̇XG,X

)2 (4.24)

after multiplying (4.22) by (4.23). It is natural to introduce a quantity

γ = H − φ̇XG,X (4.25)

in terms of which the expression for B reads

1
2B (t) = d

dt
γ−1 +Hγ−1 − 1 (4.26)

The expression for B (t) was written in this elegant form in [139] for a particular choice
(4.4) of functions K and G. Before that this variable (4.25) was used in [165] and [205]. The
vanishing γ corresponds to the change of the branch in the solution of the first Friedmann
equation with respect to the Hubble parameter (4.13). In that case we cannot express the
perturbation of the lapse δN from the momentum constraint (4.20). Thus, there is no other
option than using other dynamical variables to describe the dynamics around this point.

7Note that [139] does not use the canonical normalization with 1/2 in front of the action. Hence our
coefficients A (t) and B (t) are twice larger then those in [139].
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(a) Coefficients A (t) and B (t) on solution (4.41) (b) c2
s (t) on the solution (4.41)

Figure 4.1: The evolution of the coefficients in the quadratic action (4.21) for the scalar
perturbations is shown here for the IS solution for the choice of parameters (4.50). All
quantities are in the Planck units. The dashed black vertical lines correspond to t− ' −74
where the stage with NEC violation starts and to t+ ' 75 where the NEC gets restored. Our
right figure corresponds to Figure 1 from [139] just with a slightly extended time range.
Clearly, less than 10 tPl before the beginning of the Phantom stage the sound speed is
superluminal. On top of that, just 15 tPl after NEC is restored and the bouncing phase is
finished the system enters into an elliptic regime / regime with a gradient instability: where
B < 0 and respectively c2

s < 0. When the system approaches the regime, where c2
s = 0, the

quantum fluctuations diverge and the system becomes strongly coupled. In this case the
semiclassical equations completely lose predictability. On the other hand, just some 15 tPl
before the beginning of the Phantom stage the coefficient A (t) vanishes and the sound speed
blows up. In order to enter the unmodified Phantom bouncing stage and leave it without
either starting or ending in these strongly-coupled regimes, we need to modify dynamics on
time-scales of 10 tPl which is a clear challenge for the scenario.

There is an interesting discussion [34, 205, 138] of gauge issues, choice of dynamical variables
and slicing around γ = 0. This phenomenon is not special to kinetically braided theories. A
spatially-flat Friedmann universe driven by a scalar field with canonical kinetic term and a
negative potential can evolve from expansion to contraction, see e.g. [102]. At the turning
point γ = H = 0, and it is not possible exclude δN from the action for perturbations.

For the Lagrangian given by (4.4) one obtains

γ (t) = H − φ̇X , (4.27)

so that (4.24) (or (4.26)) yields

B =
2X

(
k + 2qX + 4Hφ̇+ 2φ̈− 2X2

)
(
H − φ̇X

)2 , (4.28)
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Figure 4.2: The evolution of the coefficients in the quadratic action (4.21) for the scalar
perturbations for the IS solution for the second choice of parameters (4.53). All quantities
are in the Planck units. The dashed black vertical lines correspond to t− ' −84.3 where the
Phantom stage with NEC violation starts and to t+ ' 84.8 where the NEC gets restored.

while (4.22) reads

A =
2X

(
k + 6qX + 6φ̇H + 6X2

)
(
H − φ̇X

)2 . (4.29)

It is also useful to rewrite the action (4.21) in terms of the the canonically-normalized
Mukhanov-Sasaki variable

v = zζ, (4.30)

where we denoted

z = a
√
A = a

√
2XD
γ2 .

Then the action reads

Sc = 1
2

∫
dτ d3x

(
v′2 − c2

s (∂iv)2 + z′′

z
v2
)
, (4.31)

where the prime denotes a derivative with respect to conformal time τ , defined through
dτ = dt/a .

It is worth noting that vanishing D generically corresponds to infinities of the square of
the sound speed, (4.23) and to an infinitely strong coupling between canonically normalized
perturbations v.
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4.2 Conformal transformations, gauges and acoustic geome-
try

As this chapter discusses superluminality, it is interesting to look at the effective (or acous-
tic) metric where the scalar perturbations propagate. It is possible to write the action (4.21)
in an elegant way

Sc = 1
2

∫
d4x
√
−GGµν∂µζ∂νζ , (4.32)

where the covariant acoustic metric G−1
µν for curvature perturbations is

dL2 = G−1
µν dx

µdxν = z2cs
(
c2
sdτ

2 − dx2
)
, (4.33)

the contravariant metric is inverse to it and is written with two raised indices consistent
with the usual tensor notation. This metric G−1

µν is singular for γ = 0, as z → ∞. It seems
that classically this singularity is not a problem [34, 205, 138]. Though it is interesting to
understand the quantum mechanical consequences of this singular behavior.

The transformation to the canonical Mukhanov-Sasaki variable can be considered as a
conformal transformation of the acoustic metric

G−1
µν → `−1

µν = z−2G−1
µν , ζ → v = zζ.

The gauge part of the metric follows the propagation of the fluctuations of the field δφ.
In the unitary gauge this is not obvious as δφ = 0. However, we can perform a gauge
transformation, see e.g. page 293 [182], so that δ̃φ = −φ′ξ0 and ψ̃ = ψ+ξ0a′/a = −ζ+ξ0a′/a.
For example for ξ0 = ζa/a′, the spatial metric becomes unperturbed, δgik = 0, and so in
this “spatially flat” gauge

δφ|flat = − φ̇
H
ζ.

Using analogy between γ in braided models and H in k-essence we can introduce the “γ-
gauge”

ξ0 = ζ

aγ
, (4.34)

which yields
ϕ̃ = ϕ− 1

a

(
aξ0
)′

= δN − 1
a

(
aξ0
)′

= ζ
γ̇

γ2 ,

where we used the constraint (4.20), and

δφ|γ = − φ̇
γ
ζ. (4.35)
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Using δφ|γ the action (4.21) reads

Sc = 1
2

∫
d4x
√
−GGµν∂µζ∂νζ = 1

2

∫
d4x
√
−CCµν∂µ δφ|γ∂ν δφ|γ + ... , (4.36)

where the ellipsis stands for a “mass-like” term without involving derivatives of δφ|γ . The
change of variable ζ ←→ δφ|γ can be understood as another conformal transformation

G−1
µν → C−1

µν = ω2G−1
µν , ζ → δφ|γ = −ω−1ζ,

where ω = γ/φ̇ so that

dC2 = C−1
µν dx

µdxν = Dcsa
2
(
c2
sdτ

2 − dx2
)
. (4.37)

The acoustic metric C−1
µν differs from the metric given by the formula (3.15) [79], by the

normalization D2c3
s. This conformal factor is not important for the propagation of the

high-frequency perturbations, and related stability studies, but is needed for a proper
normalization of the action. This transformation provides a short explanation for the so-
called “DPSV trick” discussed in [158]. It is instructive to compare this acoustic met-
ric with the one obtained for k-essence and cosmological perturbations in Appendix C of
[31]. There it was demonstrated that δφ|flat propagate in the acoustic metric (4.37) with
D = ε,X = K,X + 2XK,XX . There is a continuity in G,X between “γ-gauge” and “flat
gauge”.

The acoustic metric derived in [79] is sufficiently general and can be used to investigate
the speed of propagation of fluctuations, gradient (in)stabilities and possible appearance
of ghosts also around general inhomogeneous and anisotropic backgrounds. In particular,
evaluating the components of the acoustic metric enables us to exclude wormholes [212, 213]
and static semiclosed worlds [99]. The advantage of the acoustic metric is that it can be
used for stability checks for high frequency perturbations without deriving the action for
perturbations. The latter can be especially complicated in the presence of other forms of
matter, apart from this imperfect fluid.

Finally it is worth mentioning that we can express perturbations through gauge-invariant
variables which coincide with the conformal Newtonian gauge (notation as in [182])

−ζ = Ψ + H

φ̇
δφ,

and respectively

δφ|γ = H

γ
δφ+ φ̇

γ
Ψ.
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4.3 Inverse method: reconstructing the theory from its solu-
tions

The authors of IS-bounce postulated a fairly simple time-dependence of the Hubble param-
eter

H (t) = H0 t exp
(
−F (t− t∗)2

)
, (4.38)

where H0, F and t∗ are constants. They proposed an “inverse method” to find free functions
k (φ) and q (φ) in (4.1) which can realize this cosmological evolution. The NEC is violated
between t− and t+ where

t± = t∗ ±
√
t2∗ + 2F−1

2 . (4.39)

The bounce occurs at t = 0. For the bounce we have to start from the H− branch of
the solutions of the first Friedmann equation (4.13). The key observation of the “inverse
method” proposed in [139] is that one can can also independently postulate γ (t) in (4.26).
The IS-bounce postulates

γ = γ0 exp (3θt) +H (t) , (4.40)

where γ0 and θ are additional constants with respect to the already introduced H0, F and
t∗. From (4.27) we obtain

φIS (t) = φ0 +
∫ t

t0
dt′
[
2
(
H
(
t′
)
− γ

(
t′
))]1/3

,

where φIS (t0) = φ0. It is convenient to choose this initial value as φ0 = (−2γ0/θ)1/3 exp (3t0) ,
so that the particular solution postulated in IS-bounce is

φIS (t) = φ? exp (θt) , (4.41)

where the field value at the bounce φ? is given by

φ? =
(−2γ0

θ3

)1/3
.

Then the cosmological time t is expressed on the IS-bounce as

t = 1
θ
log (φIS/φ?) . (4.42)

The field values φ1 and φ2 corresponding to the beginning of the NEC violation and its
restoration are given by

φ1 = φIS (t−) , φ2 = φIS (t+) . (4.43)
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One has to rely on the viability of the reconstructed theory at least during the NEC vio-
lation, i.e. in this field range φ1 < φ < φ2. Using the substitutions (4.38) and (4.40) one
obtains the functions k (φ) and q (φ) as functions of time on the particular solution (4.41)

k (t) = −
2
(
2Ḣ + 3H2 + γ̇ + 3Hγ

)
(2 (H − γ))2/3 , (4.44)

and

q (t) =
4
(
2Ḣ + γ̇ + 9Hγ

)
3 (2 (H − γ))4/3 . (4.45)

It is convenient to introduce functions

W (φ) = exp
[
F

θ2

(
log

(
φ

φ?

)
− θt∗

)
2
]
, (4.46)

and

Ω (φ) = W (φ) θ3 (θφ)3 +H0

[
log

(
φ

φ?

)(
4F

[
log

(
φ

φ?

)
− θt∗

]
+ 2θ (θφ)3

)
− 2θ2

]
, (4.47)

in terms of which the defining functions are

k(φ) = −
12H2

0 log2 (φ/φ?)− 3W (φ)
[
Ω (φ)−H0θ (θφ)3 log (φ/φ?)

]
W 2 (φ) θ2 (θφ) 2 , (4.48)

and

q (φ) =
12H2

0 log2 (φ/φ?)− 2W (φ)
[
Ω (φ) +H0θ (θφ)3 log (φ/φ?)

]
W 2 (φ) θ2 (θφ) 4 . (4.49)

These expressions defining the theory, which should be related to the very origin of the
universe, neither look well-motivated nor natural from any point of view. Neither these
functions can be stable with respect to the quantum corrections. This is the price for the
chosen simple exact solution (4.38), (4.41). We are left with the following five free parameters
H0, θ, F , γ0, t∗ which specify the Lagrangian. The authors of [139] have chosen them below
their Figure 1 as

H0 = 3× 10−5 , θ = 0.0046 , F = 9× 10−5 , γ0 = −0.0044 , t∗ = 0.5, (4.50)

all in reduced Planck units. The role of this tiny shift t∗ remained an open question for us.
For this choice of parameters the field value at the bounce is φ? ' 44.88 and t− ' −74.286
while t+ ' 74.786. Now we can plot the coefficients A (t) and B (t) and the sound speed
c2
s on the trajectory (4.41), see Figure 4.1a and Figure 4.1b respectively. On these plots
we clearly see that less than 10 tPl before the beginning of the Phantom stage the sound
speed is superluminal. Moreover, just 15 tPl after NEC is restored and the bouncing phase is
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finished the system enters into elliptic regime / regime with the gradient instability. When
the system approaches the regime, where c2

s = 0 the quantum perturbations diverge and the
system becomes strongly coupled. In that case the semiclassical equations completely lose
predictability, since we cannot rely on the perturbative methods once the scalar perturbation
ζ is of O(1). On the other hand just some 15 tPl before the beginning of the Phantom stage
the coefficient A (t) vanishes and the sound speed becomes not only just superluminal,
but simply divergent. Both divergent and vanishing sound speeds correspond to infinitely
strongly coupled fluctuations. Indeed, in weakly coupled theories on short length scales `,
where (kcs)2 � |z′′/z|, it is possible to use the uncertainty relation [243, 95] to find

δv` · δv′` ' ~ `−3. (4.51)

Further estimating δv′` ' ω`δv` ' cs`−1δv` we obtain

δv` ' `−1
√
~/cs, δv′` ' `−2√~cs. (4.52)

Hence larger values of cs correspond to larger velocity fluctuation δv′` on all short scales.
Whereas vanishingly small cs corresponds to a huge δv`. The use of Feynman rules to cal-
culate two-point functions in these non-canonical theories shows that both the field and
the canonical momentum do enter the interaction vertices. Clearly very large (divergent)
quantum fluctuations is a pathology. The only way to avoid circumvent these perturbative
analysis is to assume that the theory is strongly coupled, so that the uncertainty relation is
not saturated and that the fluctuation of momentum δv′` is not related to the fluctuation of
the field δv` as it is in the quantum oscillator case. But then the theory is clearly strongly
coupled in the quantum mechanical sense. In order to enter the unmodified Phantom bounc-
ing stage and leave it without either starting or ending in these strongly-coupled regimes,
where the dynamics need to be altered on time-scales of 10 tPl, which is a clear challenge
for the scenario.

The second example of IS was the set of parameters chosen below their Figure 3 as

H0 = 3× 10−5 , θ = 4.6× 10−6 , F = 7× 10−5 , γ0 = −0.0044 , t∗ = 0.5. (4.53)

For the corresponding times we have t− ' −84.266 while t+ ' 84.766. Clearly the caption
of the Figure 3 of [139] claims “all fundamental physical quantities including H(t) and c2

s

remain finite and positive” for this choice of parameters. However, we found that the sound
speed is actually imaginary throughout the NEC-violating stage, see Figure 4.2 for the
coefficients A (t) and B (t). Clearly A (t) > 0 whereas B (t) < 0 during the whole Phantom
stage. Hence the sound speed c2

s = B/A < 0. It seems that there is somewhere a typo in
these values of parameters (4.53).
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Figure 4.3: Different side views of the phase space hypersurface given by the constraint
– the first Friedmann equation (4.11) for the system defined by (4.1) and (4.48), (4.49).
The parameters correspond to the choice of [139] below their Figure 1, see (4.50). The red
curve is the IS-bounce trajectory. The black curves correspond to H = 0 while the blue
curves represent γ = 0. The purple dashed lines represent φ̇ = 0. Each point on these lines
on the hypersurface of the constraint is a fixed point. Therefore the self-crossing of the
hypersurface does not cause any trouble.

4.4 Phase space

The reconstruction of the Lagrangian through the identification of the functions (4.44) and
(4.45) allows us to study the properties of other cosmological solutions in the system under
consideration. A proper global analysis can follow the lines of [102]. One chooses dynamical
variables

(
φ, φ̇,H

)
whose evolution is given by the second Friedmann equation (4.12) and

the equation of motion for the scalar field (4.15) written as a first-order system. These
dynamical variables are moving on a hypersurface given by the constraint - first Friedmann
equation (4.11), see Figure 4.3. In many cases this hypersurface cannot be uniquely projected
onto the

(
φ, φ̇

)
plane, see discussion in [102] for a canonical scalar field and [93, 94] for

kinetically braided theories. In [93, 94], it was found that sometimes it is possible to uniquely
project the constraint hypersurface onto the space

(
φ̇,H

)
. To make a projection onto

(
φ, φ̇

)
plane, we have to choose the branch in the solution of the first Friedmann equation and
substitute this branch H± into the reduced field equation (4.15). In that case, it is only
possible to evaluate the field dynamics in the region of the phase space where condition
(4.14) holds, i.e. where

φ̇4 + q (φ) φ̇2 + 2
3k (φ) ≥ 0. (4.54)
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In the Figure 4.4 we plot different regions in the remaining phase space. We found other
stable bouncing trajectories; see the right plot on the Figure 4.4. Note in this figure stable
regions where superluminality is present. In parts of these superluminal regions the NEC
holds, while in others it is violated. Moreover, there is a region of phase space where NEC
is broken but the sound speed is subluminal. This shows again that the superluminality is
not directly linked to stability [86]. The link is rather subtle. In particular we can find the
superluminality just around the corner of the IS-bounce, in the neighborhood slightly below
the trajectory. These superluminal stable regions are well within the field range correspond-
ing to the NEC violation phase. Clearly a source or simple interaction can continuously
deform these states into the IS-bounce trajectory. Hence, these states belong to the same
EFT.

The origin of the trajectory is the ghosty region followed by a tiny superluminal region
where NEC holds. Then it is followed by a vanishingly tiny white subluminal region where
NEC holds. The IS-bounce trajectory leaves the ghosty region by going through the singular-
ity of the equation of motion D = 0. This is also a pressure/curvature singularity. Thus this
IS-bounce trajectory is clearly demonstrating the singular behavior similar to that crossing
the Phantom divide in k-essence models linear in X [242]. It seems that around the point
on the boundary of the central ghosty region the trajectories for a limiting cycle similarly
to [95]; this is, however, an illusion, as they start and end on the singularity approaching
or leaving the boundary D = 0 vertically.

4.5 Discussion

In this chapter, we reconstructed the Lagrangian from the suggested expansion history
using the inverse method in section 4.3. We found that the IS-bounce solution starts with
a divergent sound speed around 15 Planck times before the NEC violation starts. The
propagation of curvature fluctuations is still superluminal less than 10 tPl before the onset
of the NEC violation. Moreover, the system enters into the strongly coupled regime with
vanishing sound speed and consequently loses predictive power in just 15 tPl after the exit
from the bouncing stage with the NEC violation. Scalar fluctuations become large and the
whole perturbative treatment is not applicable anymore. From the classical perspective,
the IS trajectory begins with a singularity of the acoustic metric and ends in another
singularity. This evolution of the universe is evidently less appealing than that during the
“Hot G-Bounce” scenario mentioned above. If the system were in a standard weakly coupled
vacuum, this would imply that short-wavelength curvature perturbations evolve from a state
with infinite quantum fluctuations of canonical momentum to a state with infinite quantum
fluctuations of the conjugated canonical field δP/δφ̇. Clearly this picture is unphysical, and
this implies that the system is strongly coupled in these singular states. It is a challenge to
modify the theory in such a way that preserves the required evolution, H (t), but changes
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the dynamics on these ultra-short time scales. To make a proper comparison, it is worth
noting that gravity quantum strong coupling scale (and ultimate EFT cutoff) depends on
the number of degrees of freedom N as MPl/

√
N [87], while already in the Standard Model

there are around 100 degrees of freedom. This implies that the pathologies of the IS-bounce
are not really separated in a distinguishable way from the desired semiclassical evolution.

Further, we plotted the phase space and the constraints for this model, see Figure 4.3
and Figure 4.4. The expansion history suggested by IS is not the only stable trajectory.
Then we identified stable regions, where superluminality is present. In parts of these re-
gions the NEC holds, while in others it is violated. Moreover, there is a region of phase
space, where the NEC is broken, but the sound speed is subluminal. This shows again that
the superluminality is not directly linked to stability of the Phantom stage, [86]. In par-
ticular, we found superluminality just around the corner – in the regions very close to the
IS-bounce. These regions are well within the field range corresponding to the NEC violation
phase. Clearly a source or simple interaction can continuously deform these states into the
IS-bounce trajectory. Hence, these states belong to the same EFT. Thus it is impossible to
avoid this type of superluminality by modifying functions k (φ) and q (φ) in the Lagrangian
outside of the needed field range. In order to attempt escaping superluminality we have
to modify either the desired evolution H (t) or the structure of the theory or both. Other
interesting findings include the following: (a) the IS-bounce is a separatrix and other trajec-
tories in its neighborhood do not seem to approach it, as can be noted in Figure 4.4. This
solution goes through the singularity of the equation of motion, similarly to the singular
trajectories found in [242]. (b) For the second choice of the parameters used in [139] to
obtain their Figure 3, the IS claims are irreproducible. It seems that below Figure 3 from
[139] there is a typo somewhere either in the set of parameters or in the form of the functions.

In Appendix D we used the same technology to calculate (i) the power spectrum of
primordial scalar fluctuations and (ii) the particle production rate for scalar perturbations.
We can observe that these spectra are not scale invariant at the end of the bouncing stage.
Moreover, it is surprising to see that the change of the speed of sound suppresses the power
of scalar fluctuations up to the point it is smaller than the power of tensors, which is far
from what is expected from observational evidence.

To conclude, we think it is interesting to understand the consequences of the possible
bounces in the early universe. Though, so far, this nonstandard option for the early uni-
verse seems to be inseparable from superluminality and a nonstandard UV-completion with
classicalization as the only current candidate for the latter.
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Figure 4.4: Here we plot the phase space for the system defined by (4.1) and (4.48), (4.49).
We pick the H− branch in (4.13). The parameters correspond to the choice of [139] below
their Figure 1, see (4.50). This plot is a projection of the hypersurface from the Figure 4.3.
The red line corresponds to the IS-Bounce. This bouncing trajectory is a separatrix which
goes from a saddle point, as shown in the plot on the right, where the field trajectories
are plotted in black. In the yellow regions, the condition (4.13) or (4.54) is not fulfilled, so
that there is no spatially-flat FRW geometry there. The phase space continues to the other
branch of the Friedmann equation (4.13) through the borders of these regions where γ = 0.
In the light brown/almond regions c2

s < 0, and the system has a gradient instability. The
borders of these regions correspond to c2

s = 0 which causes an infinitely strong coupling
of curvature perturbations. The burned orange/dark brown regions have ghosts, D < 0
there, see (4.16) and (4.17). The boundaries of these regions have D = 0 which implies an
infinite pressure (4.6) and correspondingly an infinite curvature. These boundaries are also
singularities of the background equations of motion (4.15). In the congo pink/coral regions
the sound speed is superluminal c2

s > 1, but the NEC holds. Light blue/lavender regions
correspond to the NEC violation without superluminality and free of ghosts and gradient
instabilities. Purple/blue bell regions have the NEC violation and superluminality, but are
free of ghosts and gradient instabilities. These superluminal regions are located only slightly
below the red IS-Bounce trajectory. Finally, four small white regions are rather boring as
they are free of ghosts, gradient instabilities, superluminality and violation of the NEC.
The IS-Bounce crosses two of these white regions. On the red bouncing trajectory (4.41)
the NEC is broken between φ1 and φ2, (4.43). One has to rely on the reconstruction of the
Lagrangian functions (4.48) and (4.49) at least between these two field values, between blue
dashed lines. The black dashed curves correspond to H = 0. There are many trajectories
above and below the red trajectory and on the right of the φ2 which bounce and evolve
through the black dashed curves. All trajectories start or end (or both) on a singularity or
infinitely-strong coupling curves.
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Part II

Modifying GR via variable
deformations, action corrections

and semiclassical effects
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Chapter 5

Hamiltonian consistency of the
gravitational constraint algebra
under deformations

Einstein’s theory of general relativity (GR) is considered by many to be the pinnacle of
classical field theories. It provides a powerful description of strong gravitational phenomena
at solar system scales and its validity has been tested in a variety of local experiments
discussed in [249, 2]. Nevertheless, there are reasonable arguments to propose modifications
to it, such as the failure to produce a sensible interacting picture of quantum gravity at
ultraviolet scales just from promoting the classical to a quantum theory, or the intriguing
nature of Dark Energy and Dark Matter, which emerge as a necessary component to explain
the dynamics of the universe at cosmological scales. Regardless of the approach followed
to modify Einstein’s theory, the outcome should be consistent with the actual observations
and must not be in conflict with the behavior of matter at scales where the standard model
has accurate results, as mentioned in [54]. Some recent work on quantum gravity inspired
theories and observational ties may be found in [45, 44].

On the other hand, the Hamiltonian form of all the degrees of freedom in general rela-
tivity – which in the case we study will also include matter minimally coupled to gravity –
reveals its nature as a first-class constrained system. Which means that, assuming the field
equations hold, each constraint commutes with all the other elements of the Hamiltonian
under a Poisson bracket. In four spacetime dimensions, there are four constraints: the total
scalar and three diffeomorphism constraints (and also the Gauss constraint in the case of
Ashtekar variables); forming a closed “algebra”1 with spacetime dependent structure con-
stants. This is a valuable feature of any gravitational system for many reasons explored in
[133, 208]; namely it fixes the surface where gauge orbits lie. This means that in order to

1As known in the literature, these constraint algebras are not true "algebras" in the strict mathematical
sense.
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evolve spacetime one only needs to fix the coordinates once at the surface of initial condi-
tions. It also reveals that time and gauge evolution of each component of the Hamiltonian
follows the rules of Lie transport. Moreover, once the gauge is fixed, the closure of the al-
gebra allows dynamical classical solutions that preserve diffeomorphism invariance without
imposing further conditions at each instant of time. Non-spatial diffeomorphisms generate
constraint functions which are proportional to the spatial metric. Thus canonical transfor-
mations generated by these constraints do not correspond to a group action on phase space
[162]. A manifestly Lorentz-covariant phase space formulation of GR has been established
in [174].

Now, consider a deformed theory of gravity. Such theories are a new take on gravity,
where one proposes that GR is only a low energy, albeit quite effective, theory that is be-
stowed on us by a more general theory. This more general theory of gravity, which could
be a theory of quantum gravity or generally, any theory that extends GR, will have its
own canonical variables which satisfy its own scalar, diffeomorphism and Gauss constraint
algebra. The reason for this is that it, like any good theory of gravity, should have diffeomor-
phism symmetry within its own more general geometric formulation. From the perspective
that GR is such a profoundly good theory and that any more general theory must serve
the purpose of providing corrections to the local structure of GR, one can write these more
general canonical variables as a function of the GR canonical variables. The map that con-
nects GR to the more general theory is what we call a deformation, and shares the same
motivations as the deviations shown in the toy model in Chapter 1. Specific areas where
variable deformation is commonly done are, for example, in effective minisuperspace loop
quantum gravity (where one applies holonomy corrections to the connection variable), as
in [236, 62, 41]. In this chapter we study the deformations of such a generalized theory of
gravity starting from its canonical variables, in the context of Hamiltonian systems where
time evolution can be separated from gauge orbits as proposed by Dirac in [84], in order
to preserve the closed form of the constraint algebra. These deformations are relevant, for
example, in the growing interest in numerical simulations of astrophysical objects in the
context of deformed theories of gravity, or in cases where corrections to the original theory
manifest themselves as deformations of the canonical variables. In a slightly different vein,
more recently a theory of gravity has been created by demanding that a general globally
Lorentz invariant theory be promoted to local invariance, yielding a gravitational field the-
ory as in [231, 232]. Deformed symmetries and general covariance in noncommutative and
multifractional spacetimes has been investigated in [60, 40].

Admittedly, we do not necessarily need to deform one theory in order to get another
theory, and one could simply consider some new theory from scratch. However, as mentioned
above, deformations of the type studied here are common, as often one wishes for the new
theory to be related in some way to the original, observed theory (GR). A good example of
this technique in practice is found in [174]. In this prescription, all more general theories are
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viewed from the perspective of GR, which is quite reasonable given its experimental success.
It must be emphasized that if these deformations are merely canonical transformations of
GR, then the deformed theory is physically equivalent to GR. What makes the discussion
of deformations interesting is that in general, these deformations are not canonical transfor-
mations of GR variables. In these cases, deformed theories will introduce corrections to GR
that demand extra degrees of freedom in the gravitational field, where it will be possible to
describe the system using Hamiltonian mechanics in terms of an expanded set of canonical
variables in the new corrected theory. Due to the presence of these extra degrees of freedom,
some models of modified gravity with a closed constraint algebra will also arise from generic
deformations of the canonical variables of the system, as suggested in [108, 69, 223]. In an
interesting case, it has been shown that there are some special velocity dependent trans-
formations that can lead to an equivalent theory [81, 80]. In all these cases, we will derive
these quantities by keeping the original fields as configuration variables, and calculating
their corresponding new conjugate momenta, which generally will not coincide with the
corrected momenta, and which are constrained by the way the corrected deformed variables
depend on the original ones. As mentioned, one of the motivations of these transformations
is the usual modification of field variables after quantum corrections since in general the
corrected fields, when replaced directly into the original action do not necessarily become
new canonical variables of the system. Other field redefinitions occurring in certain theories
of modified gravity have a similar effect. In a certain sense, we roughly explore the classical
analog to the “inverse” transformation that integrates out degrees of freedom in order to ob-
tain an EFT. Moreover, we provide conditions for those transformations in order to deform
general relativity into another gauge theory of gravity. In this chapter, we use geometrized
units (G = 1).

The plan of this chapter is as follows: In section 5.1, we introduce the type of transfor-
mations that deform the action of a theory and their Hamiltonian analogues. To illustrate
these transformations, we first provide simple examples of one-dimensional cases. In section
5.2, we briefly review the Hamiltonian formalism of general relativity as our undeformed
starting point, and the derivation of the constraint algebra from the gauge algebra. We will
also discuss the main properties we should preserve after deformations. In section 5.3, we
apply these transformations using the standard canonical variables of the ADM formalism
for the Einstein-Hilbert action. Two possible scenarios will be presented: (1) the transfor-
mation has to be canonical in agreement with Lovelock’s theorem or (2) we introduce more
degrees of freedom in the theory. In section 5.4, a transformation of the Ashtekar version
of GR is performed in order to obtain either one of the many different theories of general
relativity or a modified theory of gravity with extra degrees of freedom. Finally, we present
our discussions and conclusions.
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5.1 Transforming the action from its canonical variables

In this section, we present two different ways to deform an action via the change of its
canonical variables. To introduce these transformations several toy models are first examined
as a segue to the much more complicated arena of gravitational field theory which follows.
Let us consider the case of a 1-D time dependent system with an action

S1 =
∫
L(q, q̇)dt, (5.1)

where q and q̇ are the dynamical variables of the system. In both cases studied in the
subsections below, different transformations of the action are performed via deforming its
canonical variables. We find the corresponding Hamiltonian representation of the system
by a Legendre transformation

H(p, q) = pq̇ − L(p, q),

where p = ∂L/∂q̇ is the conjugate momentum of the canonical variable q. Other cases in
which higher-order derivative terms cancel out in a manner that generates second-order
equations of motion, such as seen in [78], will not be considered.

5.1.1 Transformations into theories with second-order equations of mo-
tion

The purpose of this section is to show transformations that lead us to describe the dynamics
of the system by second-order differential equations. The canonical variables q and q̇ are
transformed in the following way

q → Q(q, q̇) , q̇ → Q̃(q, q̇), (5.2)

where both Q and Q̃ do not introduce new derivatives of q in the Lagrangian. In this case,
the new action reads as

S2 =
∫
L′
(
Q(q, q̇), Q̃(q, q̇)

)
dt ,

where the prime denotes that after the substitution, since the configuration variable is
to remain as q, the resulting Lagrangian is different from the original one. If the system
mantains integrability after these transformations – which is always true in the case of a
canonical transformation, since in that case S1 = S2 – it is possible to find the Hamiltonian
version of both actions via invertible Legendre transformations. Each system can be mapped
into the other as we describe in Figure 5.1.

As a relevant example of this type of transformations, we will consider the case of a
simple harmonic oscillator:

SA = 1
2

∫ (
q̇2 − ω2q2

)
dt, (5.3)
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Figure 5.1: Canonical mapping between S1 and S2 in its Lagrangian and Hamiltonian ver-
sions.

where the Hamiltonian is simply given by HA(p, q) = 1/2
(
p2 + ω2q2). We can write the

same Hamiltonian via an arbitrary similarity transformation

HA = 1
2
[
P Q

] [ α β

β γω2

] [
P
Q

]

= 1
2
[
αP2 + γω2Q2 + 2βPQ

]
(5.4)

where α, β and γ are used as rotation parameters in phase space. In this example, it is easy to
see that the similarity transformation to the auxiliary variables P and Q is canonical. These
variables are related to the standard p and q by the characteristic orthonormal matrices of
the similarity transformation. The off-diagonal term can be used to define a theory with a
special class of solutions; to accomplish this one only needs to define a function f(t) such
that

1
f

df

dt
= 2β,

and with the help of a new variable ϕ = Q/
√
f , this off-diagonal term can be used as a

generating function of canonical transformations

∂G(P, ϕ)
∂t

= 1√
f

df

dt
Pϕ → G(P, ϕ) =

√
fPϕ.

Therefore the Hamiltonian transforms via HA(P, ϕ) = H′A(P, ϕ) + ∂G(P, ϕ)/∂t, the con-
jugate momentum of ϕ is πϕ = ∂G(P, ϕ)/∂ϕ =

√
fP, hence the Hamiltonian now “drains”
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energy from the kinetic term and adds it to the potential term via

H′A(πϕ, ϕ) = 1
2

[
α
π2
ϕ

f
+ fγω2ϕ2

]
, (5.5)

and its corresponding Lagrangian is

L′(ϕ̇, ϕ) = e2βt

2
[
αϕ̇2 − γω2ϕ2

]
. (5.6)

We note the draining after replacing the analytic solution of f(t) in (5.5). This remains a
one-dimensional problem while preserving the number of degrees of freedom, but it adds a
time-dependent scale factor similar to the case of an oscillator in an expanding geometry.
To close the maps, it is possible to transform the Lagrangian (5.3) directly into (5.6) by
deforming q̇ →

√
αeβtϕ̇ and q → √γeβtϕ. In a similar way, we find the corresponding

deformation of the Hamiltonian (5.4) into (5.5) from p→
√
αe−βtπϕ and q → √γeβtϕ. One

should note that it is only in rare circumstances that such a transformation is canonical
and/or preserves the number of degrees of freedom in the system. It is convenient to write
the deformations with respect to the original canonical variables in order to see the effect of
the extra terms introduced in the new theory. The transformations in the Lagrangian can
be written as deformations of the canonical variables

q̇ → ϕ̇+ ∆ϕ̇ , q → ϕ+ ∆ϕ, (5.7)

and in an analogous way for the Hamiltonian

q → ϕ+ ∆ϕ , p→ πϕ + ∆πϕ, (5.8)

where we do not consider any specific range of magnitudes for ∆ϕ̇, ∆ϕ and ∆πϕ when
compared with the canonical variables, although in many cases of interest these quantities
can be obtained by any perturbative expansion of the original choice for a deformation.
This decomposition of the deformed variables will be used in the remaining sections of this
thesis. Therefore, it is relevant to notice that the only difference between ϕ and q (including
the canonical momenta p and πϕ) is either a phase or a symmetry transformation that does
not represent a significant modification of the role of the field variables.

5.1.2 Transformations into higher-order theories

In this section, we consider another introductory example where we will promote a system
with second-order equations of motion into a higher-derivative theory by a different type of
variable transformation:

q → Q(q, q̇) , q̇ → d

dt
Q(q, q̇). (5.9)
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After replacing in (5.1), the new action now reads

S2 =
∫
dt L′

(
q, q̇,

∂Q

∂q̇
q̈

)
, (5.10)

which is a function of the second derivative of the field. Transformations of this type suggest
that it is possible to deform an arbitrary symplectic manifold into another one. From the
definition in (5.9), we can observe that it is enough to deform the field variable to promote
the action since the derivative of the transformed field raises the order of the system.
In analogy with the mapping proposed in the previous subsection 5.1.1, we illustrate the
mapping between S1 and S2 in Figure 5.2.

Figure 5.2: Mapping between S1 and S2, which is now a higher-derivative theory, in its Lagrangian
and Hamiltonian versions.

The growth in the order of the action demands the use of extra canonical variables
to build the Hamiltonian version of the theory. Throughout the rest of this chapter, the
Ostrogradskii formalism is applied to construct the Hamiltonian and all the associated
conjugate momenta of the new higher-order theory, as seen in [190]. The corresponding
Hamiltonian deformation from H to H̃ has many peculiar features as will be discussed in
the following example.

Again let us consider the case of a 1D harmonic oscillator as an example:

L(φ) = −1
2φ

T

(
d2

dt2
+ Ω2

)
φ, (5.11)

where the operator Ôχ ≡
(
d2/dt2 + Ω2)χ acts on a test function χ, which is represented

by a column vector in the time domain. This operator is separable, which means it can
be decomposed as Ô = ÂT Â where Âχ ≡ (i d/dt+ Ω)χ and its transpose χT ÂT ≡
χT (i d/dt+ Ω)T = χT (−i d/dt+ Ω). In the last equality we considered that the time
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derivative is accurately represented by a skew-symmetric matrix. Moreover, the factors
of Ô commute,

[
Â, ÂT

]
= 0. A possible way to deform the action is to use the “square

root” of Ô to change the field variable by φ→ Âψ and its transpose by φT → ψT ÂT . The
new Lagrangian now reads

L′(ψ) = −1
2ψ

T

[
d2

dt2
+ Ω2

]2

ψ, (5.12)

which is a particular case of the widely known Pais-Uhlenbeck oscillator [19, 68]. Strictly
speaking, by deforming the field variable we have also deformed Ô into Ô2, and by inspecting
the trace of the transformation law tr〈ÂT ÔÂ〉 = tr〈ÂT ÂÔ〉 = tr〈Ô2〉 we notice that a
deformation of this type is not unitary, which is of special relevance when we introduce new
degrees of freedom in the system. After integrating by parts in the action, the Lagrangian
in (5.12) can be rewritten as

L′(ψ, ψ̇, ψ̈) = −1
2
[
ψ̈2 − 2Ω2ψ̇2 + Ω4ψ2

]
. (5.13)

The Hamiltonian form of this theory follows from the definition of canonical momenta
associated to the relabeled variables ψ → ψ1 and ψ̇ → ψ2

πψ1 = ∂L′

∂ψ̇1
− d

dt

(
∂L′

∂ψ̈1

)
= 2Ω2ψ̇1 + Ω4 ...ψ1, (5.14a)

πψ2 = ∂L′

∂ψ̇2
= −ψ̈1, (5.14b)

hence the Hamiltonian is given by

H′(ψ1, ψ2, πψ1 , πψ2) = πψ1ψ2 −
1
2π

2
ψ2 − Ω2ψ2

2 + Ω4

2 ψ2
1. (5.15)

Stability issues and field solutions with negative kinetic energy, dubbed as ghosts, will arise
immediately: the linear dependence of this expression on πψ1 and its complex conjugate
(apart form the negative signs in some of the terms) bring infinitely negative values of
energy and unbounded trajectories in phase space. In [68], unstable solutions are controlled
by constraining the number of canonical variables via extra algebraic constraints which
reduce the order of the system. Such an effect can be achieved in both of the limits of the
oscillation frequency Ω2: Ω2 � 1 (i.e. suppressing the last term in (5.13)) and Ω2 � 1
(i.e. when the first term in (5.13) is very small compared with the other two). In both
scenarios, there is not much room for an effective reduction of the number of canonical
pairs, but this does not have to be the case for dynamical systems with more degrees of
freedom. This argument is in agreement with the discussions in [225] where the stable
solutions can always be obtained by varying the model parameters around the limit where

66



two possibilities manifest: (a) there is no contributions from the higher-derivative terms or
(b) the information carried by the extra derivatives is redundant.

Another property of the transformations used to generate a higher-order theory can be
noticed if we build L′(ψ) from the original Hamiltonian:

H(φ, πφ) = 1/2
(
π2
φ + Ω2φ2

)
of the harmonic oscillator by transforming

πφ → P (ψ, πψ, ...) ,

and
φ→ Q(ψ, πψ),

where the decomposition P (ψ, πψ, ...) = πψ + ∆πψ and Q(ψ, πψ, ...) = ψ + ∆ψ holds in the
same way as in (5.8). By following the lower right corner of Figures 5.2:

PQ̇(ψ, πψ)− 1
2
(
P 2 + Ω2Q2

)
= L′(ψ1, ψ2, πψ1 , πψ2)

→ P (ψ1, ψ2, πψ1 , πψ2) = Q̇±
√
Q̇2 − 2L′ − Ω2Q2,

which means that the transformation not only brings extra canonical variables but it is also
not unique. As noticed in [250] these degeneracies are typically used to by-pass Ostrogradskii
instabilities (i.e., terms in the Hamiltonian with linear dependence in the conjugate momen-
tum). Hence, deformations of this type cannot be confused with coordinate transformations.

5.2 Review of Hamiltonian general relativity and the gauge
algebra

General relativity is a gauge theory where coordinate freedom is what enables the user to
transform results from one coordinate chart to another. As in every gauge theory, it can
be equivalently written in the context of a constrained system at the Hamiltonian level in
order to define one gauge-fixing condition per (first-class) Hamiltonian constraint and find
the generators of gauge transformations. As a first step, we will follow the standard way
to find the Hamiltonian version of general relativity as discussed in [197], built from the
Einstein-Hilbert action

S =
∫
d4x
√
−g

[
R

8π + Lm(ψ, gµν)
]
, (5.16)
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where Lm(ψ, gµν) is the matter Lagrangian. We will write the spacetime metric using the
3+1 decomposition

gµν = −(N2 − habNaN b)δtµδtν + 2habN bδt(µδ
a
ν) + habδ

a
µδ
b
ν ,

gµν = − 1
N2 δ

µ
t δ

ν
t + 2Na

N2 δ
(µ
t δ

ν)
a +

(
hab −NaN b

)
δµa δ

ν
b ,

where N and Na are the lapse function and the shift vector respectively. The parenthesis
“(ab)” denote symmetrization in the pair of indices; likewise the square brackets “[ab]”
denote antisymmetrization. hab is the metric of the hypersurface fixed at a constant instant
of time. The Gauss-Codazzi equations allow us to write the gravitational part of the action
by using the decomposed metric [197]

R = R(3) +KabKab −K2 − 2∇α
(
nβ∇βnα − nα∇βnβ

)
, (5.17)

where R(3) is the Ricci scalar calculated from hab, nα are the components of the normal
of the hypersurface at a fixed instant of time and Kab is the extrinsic curvature of the
same surface, which is defined as the change of the normal projected by a basis of vectors
tangent to the surface. In (5.17) the last term between parentheses is a surface term that
generally requires cancellation via the addition of the Gibbons-Hawking term [253]. The
conjugate momentum to hab is determined by writing the extrinsic curvature as a function
of ḣab ≡ £thab

Kab = 1
2N

(
ḣab −∇bNa −∇aNb

)
, (5.18)

where the metric is Lie transported along a timelike trajectory whose tangent vector is
denoted by tα, which is not necessarily parallel to nα, the unit normal of the t = const.

surfaces. As in standard field theory, the momentum πab is determined by

πab = ∂

∂ḣab

(√−gR
8π

)
= 1

8π
∂Kcd

∂ḣab

∂

∂Kcd

(√
−gR

)
=
√
h

16π (Kab −Khab) . (5.19)

Once that the momentum is defined, we can use Legendre transformations to build the total
Hamiltonian of the system

HT =
∫
d3x

[
πabḣab + πψψ̇ −

(√−gR
8π + Lm(ψ, gµν)

)]
=
∫
d3x [NH0(x) +NaHa(x)]. (5.20)

(ψ representing possible minimally coupled matter contributions).
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The Hamiltonian has been written with respect to H0 and Ha, which are known as the
scalar and vector constraints respectively:

H0(x) = −
√
hR(3)

16π + 16π√
h

(
πabπab −

1
2π

2
)

+Hψ0 (x)

Ha(x) = −32π
√
h∇b

(
πab√
h

)
+Hψa (x). (5.21)

Here Hψ0 and Hψa are the scalar and vector constraints obtained from a matter field (for
example, a scalar field). This procedure summarizes the so-called ADM formalism for general
relativity [26]. In addition to this, the so-called smeared constraints are also important in
our discussion, these are defined by

H(N) ≡
∫
d3xN(x)H0(x), (5.22a)

H(Na) ≡
∫
d3xN(x)aHa(x). (5.22b)

We must remark that the shift and lapse play the role of Lagrange multipliers since neither
Ṅ nor Ṅa appear explicitly in the action or in the Hamiltonian. Moreover, it is important to
figure out if the absence of these terms is not just a gauge artifact. To do so, we must trans-
form both the lapse and the shift vector following the infinitesimal gauge transformation
rules of gµν along an arbitrary vector field ε:

δεg
µν = ∂gµν

∂xα
εα − gµρ ∂ε

ν

∂xρ
− gνρ ∂ε

µ

∂xρ
.

It is enough to use δεg00 and δεg0a to determine δεN and δεNa as in [199], which are given
by

δεN = ∂N

∂xµ
εµ +N

∂ε0

∂x0 −NN
a ∂ε

0

∂xa
, (5.23a)

δεN
a = ∂Na

∂xµ
εµ +Na ∂ε

0

∂x0 −
(
N2hab +NaN b

) ∂ε0

∂xb
+ ∂εa

∂x0 −N
b ∂ε

a

∂xb
, (5.23b)

where Nµ = Nδµ0 + Naδµa and the total Hamiltonian is H(Nµ). We now need to find
a solution for εµ such that ∂δεNν/∂Ṅµ = 0, which means that we do not generate any
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momenta while doing a gauge transformation, which leads us to 4 equations for εµ:

ε0 +N
∂ε0

∂N
=0,

∂ε0

∂Na
=0,

Na ∂ε
0

∂N
+ ∂εa

∂N
=0,

ε0δab + ∂εa

∂N b
=0.

It is now simple to observe that none of these equations depends explicitly on hab, which
will be important at the time we perform deformations of the canonical variables. The
general solution for this system is ε0 = ξ0/N and εa = ξa − ξ0Na/N , where ξµ is an
arbitrary spacetime-dependent vector field. We can equivalently use ξµ to represent the
same solutions

ξ0 = Nε0 ; ξa = εa +Naε0, (5.24)

this inversion now makes ξµ a function of Nµ and defines a new set of coordinates attached
to the constant-time hypersurface. Hence, it is safe to perform gauge transformations as
long as these do not generate momenta of Nµ. Once we identify these vector fields, gauge
transformations along any of these solutions are defined just like the equations of motion,
following a procedure described in detail in [208]: First, considering that the vector fields ξµ

and εµ can be freely exchanged to describe the same gauge flow, we define the Hamiltonian
in a way analogous to (5.22a) and (5.22b)

H(ξµ) = H̃(εµ) ≡
∫
d3yHµ(y)ξµ,

where the integration occurs with respect to the coordinates of the hypersurface. The shift
in any arbitrary function I(hab, πab, ψ, πψ) of the canonical coordinates can be computed by
using the brackets [26]

δεI = {I, H̃(εµ)}, (5.25)

where ξµ and εµ are just as defined by (5.24). The gauge algebra acting on the same test
function I reads

(δεδζ − δζδε) I = δ[ε,ζ]I. (5.26)

Let us evaluate the first two variations on the left

δεδζI =
(
δεN

µ δ

δNµ
+ δεq

δ

δq

)(
δζq

δI

δq

)
,
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where δζq(δI/δq) is the shorthand notation of

δζq
δI

δq
≡ δζhab

δI

δhab
+ δζπab

δI

δπab
+ δζψ

δI

δψ
+ δζπψ

δI

δπψ
. (5.27)

which means that the variation affects all the phase space variables of the system. Using
(5.26), the two variations can be written as

δεδζI = δεN
µ δ

δNµ
{I, H̃(ζ)}+ {{I, H̃(ε)}, H̃(ζ)}, (5.28)

where a substantial difference with respect to other gauge theories comes from the fact that
the first term in the right hand side does not cancel. This term is now expressed in detail:

δεN
µ δ

δNµ
{I, H̃(ζ)} = δεN

µ δ

δNµ

∫
d3yzα{I,Hα}

=
∫
d3yζ0δεN

µδαµ{I,Hα} = {I, H̃(δεNµζ0)}, (5.29)

where the vector flow zµ ≡ Nζ0δµ0 +
(
ζa +Naζ0) δµa follows from the definition in (5.24). In

the last line it is possible to observe that ∂zα/∂Nµ = δαµζ
0. Therefore the initial variation

is given by
δεδζI = {{I, H̃(ε)}, H̃(ζ)}+ {I, H̃(δεNµζ0)}.

With this expression it is possible to rewrite (5.26) as

{{I, H̃(ε)}, H̃(ζ)} − {{I, H̃(ζ)}, H̃(ε)}+ {I, H̃(δεNµζ0 − δζMµε0)} = {I, H̃[ε, ζ]}. (5.30)

After using the Jacobi identity in the first two terms on the left hand side of (5.30), the
gauge algebra now reads

{H̃(ε), H̃(ζ)} = H̃([ε, ζ]− δεNµζ0 + δζM
µε0).

The other basis of vectors can be used equivalently

{H(ξ),H(z)} = H([ξ, z]− δξNµz0 + δzM
µξ0). (5.31)

In the case of ξµ = Mδµ0 and zµ = Nδµ0 , the Lie bracket cancels and the first Poisson bracket
is given by

{H(M),H(N)} = H(N∇aM −M∇aN), (5.32)

and in a similar way, the remaining brackets can be determined by choosing ξµ = Maδµa ,
zµ = Naδµa and ξµ = Mδµ0 , zµ = Naδµa :

{H(Ma),H(Na)} = H(£NaMa), (5.33a)
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{H(M),H(Na)} = −H(£NaM). (5.33b)

The expressions (5.32–5.33b) constitute the constraint algebra of general relativity, which
explains the way spacetime contorts as described in [234]. Strictly speaking, this has spacetime-
dependent structure constants, so it is not an algebraic structure in the rigorous meaning
of the word. An important property of this algebra is its closure, which has been used as a
motivation to search for a valid ultraviolet limit of the theory. Nevertheless, our perspective
is more conservative and is closely related with the possibility of safely fixing its gauge
degrees of freedom. To do so, any choice of gauge should satisfy

δS

δNµ
= 0→ Hµ(y) ≈ 0,

which separately implies H(N) = H(Na) ≈ 0, where “≈” means that this statement holds
along with the equations of motion. These are also known as on-shell conditions which
represent the constrained hypersurfaces where we can find all the possible gauge selections.
In order to fix the gauge properly, we must ensure that these surfaces do not evolve in time:

Ḣ(M) = {H(N),H(M)}+ {H(Na),H(M)} ≈ 0, (5.34a)

Ḣ(M b) = {H(N),H(M b)}+ {H(Na),H(M b)} ≈ 0, (5.34b)

which are also known as secondary constraints. The closure of the algebra in (5.32–5.33b)
ensures that each of the Poisson brackets will always be proportional to other constraints
that vanish when evaluated on-shell. In Figure 5.3, we depict the evolution of the hypersur-
faces that contain all the possible gauge choices, and the change of any specific choice at a
fixed instant of time. Even though a fully detailed discussion on the proper way to do gauge
fixing is beyond the scope of this study, it is important to remark that the gauge degrees of
freedom cannot be fixed without this condition. As an additional comment, we must observe
that the procedure we followed to derive the algebra is already invariant under coordinate
transformations. Later, it will become apparent that one way to keep the same structure
under deformations is to introduce an orthogonal generator per new degree of freedom.

We need to consider that this procedure is valid at the infinitesimal level. Consequently,
as noticed in [208], one cannot apply the gauge transformations mentioned here to any
phase space configuration, since in general these will combine canonical variables (and their
derivatives) at different instants of time. Hence, the gauge transformations applied in here
can only map a set of solutions of the equations of motion into another version of the same
set of solutions. In the subsequent sections, we will translate this procedure to actions that
were modified from deforming their canonical variables. It is interesting to explore what
kind of transformations of the gauge trajectories in (5.24) will transform (5.26) covariantly.
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Figure 5.3: Gauge fixing by the intersection with the surface Σ as the scalar and vector
constraint evolve. The gauge choice changes as the surface (and the orbits) deforms.

The transformed version of (5.26) reads(
δε̃δζ̃ − δζ̃δε̃

)
I = δ[ε̃,ζ̃]I.

It will be enough to write the first two variations to understand the dependencies of a
generic transformation represented in a matrix form by ζ̃ =

(
Tζ→ζ̃

)
ζ

δε̃δζ̃I =
(

(Tε→ε̃) δεNµ δ

δNµ
+ (Tε→ε̃) δεq

δ

δq

)
×
((
Tζ→ζ̃

)
δζq

δI

δq

)
,

where the shorthand notation for all the canonical variables q still holds. The only way in
which this expression transforms covariantly is if the transformations Tζ̃→ζ do not depend on
any of the canonical variables (including matter) or on the lapse and shift. This complements
the independence on hab was already used to determine (5.24). Therefore, the smeared
constraint algebra in (5.32–5.33b) preserves its form under these conditions.
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5.3 Deforming canonical general relativity

In this section, we deform the gravitational canonical variables hab and πab following the
transformations described in 5.1.1 and 5.1.2 from the Einstein-Hilbert action in (5.16) writ-
ten using the Gauss-Codazzi equations. An equivalent way to express this action is built
from the Hamiltonian in ADM variables

S =
∫
dt

∫
d3x

[
πψψ̇ + πabḣab −H(N)−H(Na)

]
. (5.35)

In all the cases covered in this chapter, for simplicity, we will not perform any transformation
on the canonical variables of matter. Although this could be done, the particular matter field
utilized, and the form of its action, is usually motivated by physics other than gravitational
field theory. The purpose of the transformations which follow is to find other theories where
both diffeomorphism invariance and the gauge structure are preserved.

5.3.1 Lovelock’s theorem

In this section, we will show that these transformations lead us unavoidably to Lovelock’s
theorem, which shows that the only second-order curvature based metric gravitational the-
ory equipped with diffeomorphism invariance is general relativity. In order to do that, we
deform the canonical variables hab and πab in (5.16) by considering a transformation of
variables analogous to what was presented in 5.1.1, which in the Hamiltonian formalism
would be

hab → Hab(h̃ab, π̃ab) = h̃ab + ∆h̃ab, (5.36a)

πab → Pab(h̃ab, π̃ab) = π̃ab + ∆π̃ab, (5.36b)

which correspond to the transformations of the variables hab and ḣab in the Lagrangian.
Notice that in the right hand side of both expressions the terms were expanded in the same
way as in (5.8). In its simplest version, we can consider the deviations of these variables as
∆h̃ab = Hab(h̃ab, π̃ab)− h̃ab and ∆π̃ab = Pab(h̃ab, π̃ab)− π̃ab without any further assumptions
on the magnitudes of ∆h̃ab and ∆π̃ab. After these deformations the action in (5.35) is given
by

S′ =
∫
dt

∫
d3x

[
πψψ̇ + π̃ab ˙̃hab − H̃(N)− H̃(Na)

]
+ ∆L(h̃ab, π̃ab,∆h̃ab,∆π̃ab, ψ). (5.37)
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The term ∆L contains all of the terms proportional to some power of ∆h̃ab and/or ∆π̃ab.
We will count degrees of freedom in the same manner as in [129]:

2× {# of degrees of freedom} = {# of canonical variables}

− 2× {# of first-class constraints} − 2× {# of second-class constraints}. (5.38)

GR does not have second-class constraints. If the number of canonical variables has not
changed and/or if the new theory remains a metric theory, there is no reason to expect any
change in the number of degrees of freedom. Also, we expect that the existing constraints
commute on-shell with each other otherwise diffeomorphism invariance is broken. Since we
require the presence of that symmetry, none of the constraints should be demoted to second-
order. Now, the procedure suggested by Dirac in [84] allows us to decompose ∆L in (5.37)
as

∆L = NµVµ, (5.39)

meaning that it is possible find a vector – in the basis formed by the normal and the
triad vectors tangential to the hypersurface – in which the extra piece of the action can be
reprojected. It is possible therefore, to rewrite the action in (5.37) with respect to a new
Hamiltonian

S′ =
∫
dt

∫
d3x

[
πψψ̇ + π̃ab ˙̃hab − Ĥ(N)− Ĥ(Na)

]
, (5.40)

where the new scalar and vector constraints are given by

Ĥ(N) = H̃(N) +NV0 , Ĥ(Na) = H̃(Na) +NaVa.

If we demand that the new Hamiltonian constraints satisfy the gauge algebra in (5.32–5.33b)
and the condition in (5.39), we have 4 conditions for the four components of V µ. If there
is not a unique solution, the system has more degrees of freedom than the ones already
counted, which would be a contradiction. Therefore, we will assume that there is a unique
solution for V µ. On the other hand, the Lie derivative of a scalar function F along the time
direction t is given by

£tF = tα∇αF = (Nnα +Naeαa )∇αF ≡ Nκ∇κF, (5.41)

where we selected a basis in which, by definition, the normal defines an orthogonal coordi-
nate to the surface. This works in the same way as the basis that allows us to write the four
indices in Nµ. A term like this would correspond to the time derivative of the generator of
canonical transformations. Such a modification would only make the new action different
from general relativity by a total derivative and hence produce identical equations of motion.
A comparison of (5.39) with the last expression reveals that it is not possible to generate
V µ via the “gradient” in this basis, meaning that the vector V µ needs an extra “solenoidal”
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current to be reconstructed. The existence of an extra current would be a clear indication of
extra degrees of freedom, which contradicts the counting previously made. So the only pos-
sibility we have is that the new action is different from the one in (5.16) just by a derivative
along the time direction. This means that if one wants to preserve the symmetry and the
number of degrees of freedom after transforming the canonical variables, there is no other
option than a canonical transformation. This is fully consistent with Lovelock’s theorem,
just as stated in [69]. In [121], it was shown that it is possible to find an extended version
of the same statement that does not prescribe a specific form of the constraint algebra and
only requires quadratic dependence in the canonical momenta.

5.3.2 Deforming GR by introducing extra degrees of freedom

In this section, we perform a concrete implementation of the transformations presented in
5.1.2 for the Einstein-Hilbert action. This is arguably the most complex type of deformation
and therefore will take up the bulk of the analysis.

Introduction

In the following, the theory of deformation of variables is introduced for gravitation in the
usual degrees of freedom. Using Weinberg’s “Folk Theorem” [247, 248], we can construct the
most general EFT by constructing a Lagrangian that contains all possible diffeomorphism-
invariant terms, using only the degrees of freedom of the theory. Let LD be the most general
diffeomorphism-invariant theory made up of the curvature. This would produce the following
expansion,

LD = αR+
(
β1R

2 + β2RabR
ab + · · ·

)
+O

(
R3
)
, (5.42)

where the first term would correspond to GR. The objective is to explore another sector
of diffeomorphism-invariant theories by means of the method of variable deformation, in
which one makes a replacement of the coordinate hab by some function of the coordinates
Hab, such as below

hab → Hab (hcd, £thcd) , (5.43)

where Hab is a mapping that, as mentioned in the previous sections, generally is not a
canonical transformation of the original ADM variables. Since we are dealing with defor-
mations that are not canonical transformations, this will introduce new degrees of freedom
in the gravitational field, and as we shall see in this section, new types of constraints not
found in GR. Without loss of generality, Hab will acquire its space-time dependence through
the degrees of freedom (hab(x), £thab(x), etc.), but can also have its own spacetime depen-
dence apart from this, which we address via an example in the next subsections. Due to
the additional time derivatives found in terms like the intrinsic curvature Kab, this will
produce a theory dependent on higher-order derivatives than what is found in GR. This
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feature appears in R2 gravity as well [53]. In general, this deformation can depend on even
higher-order time derivatives of the 3-metric,

hab → Hab (hcd,£thcd,£t£thcd, · · · ) , (5.44)

which will provide a theory with derivatives that are higher-order in time. We chose not
to deform the volume element due to geometric reasons; the measure of all parts of the
action must remain the infinitesimal volume element for it to remain a proper action. These
theories provide an expanded sector of diffeomorphism-invariant theories, and are depicted
in Figure 5.4.
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Figure 5.4: Depiction of deformation of variables. The rows determine the number of terms
included from equation (5.42), while the columns determine how many variables included
in the deformation hab → Hab (hcd,£thcd,£t£thcd, · · · ). The focus of the rest of this section
will deal with the top left sector.

To gain intuition for the effects of the deformation, this work will consider only the
Einstein-Hilbert term of the expansion (5.42), with the deformation (5.43), as this is ar-
guably the most interesting case.

The new degrees of freedom

After deforming via a substitution like in equation (5.44), the theory will generally change.
We wish to maintain the 3-metric, hab, as the configuration variable which dictates the
geometric features of spacetime. It is for this reason that the volume element

√
−g will not

be deformed via (5.44) or by any other means. Any other variations due to the deformation
Hab will serve to change the equations of motion for hab, which as stated is to be maintained
as the configuration variable, through its alteration of the theory. (That is, we deform a
metric theory into another metric theory.) Another point is that since Hab depends on time
derivatives of hab, this theory will now depend on accelerations, jerks, etc, instead of the
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usual dependence on the field and its velocity field. This introduces a new degree of freedom
for every step we take vertically in Figure 5.4 and must be addressed.

Gauge Invariance and Ostrogradskiian Instabilities

The essence of GR is arguably its gauge invariance, which, like any other gauge theory,
generates the structure of the interactions in the theory. In gravity, the gauge transformation
that must be invariant is that of the diffeomorphism, which endows the theory with the
property that leaves the mechanics of gravity the same regardless of any specific location in
spacetime (known as background independence). To verify this gauge invariance, one should
obtain the constraints of this new theory, and what further constraints need to be satisfied.
It shall be shown below, for a deformed theory, that in general there will be additional
constraints generated on top of the usual scalar and vector constraints.

One further point that requires clarification is that Dirac’s “Constraint Algebra”[84] for
which the scalar and vector constraints are elements, will be satisfied regardless of what
their form is. This algebraic structure was shown by Rovelli to be directly derived from the
diffeomorphism gauge algebra [208]. What this means is that whether one is dealing with
the scalar and vector constraints for a deformed theory or a higher-order theory like the R2

variety, the “constraint algebra” should be automatically verified.
Obtaining these constraints, namely the scalar, vector and “additional” constraints,

requires that the theory is phrased in Hamiltonian form, which in our case depends not only
on the velocity and position field coordinates, but perhaps also that of the acceleration,
jerk, etc. Typically, such theories are energetically not bound from below and thus can
infinitely go into energetic debt by borrowing more and more energy to create unstable
results. Ostrogradskii provided a treatment of this situation for theories without gauge
ambiguities, but since gravity is a gauge theory, a modification of this treatment is required
and was provided in [52, 120] and applied to R2 gravity [53]. The summary of this approach
is that one can define a new canonical variable such that its time derivatives can “absorb”
any higher-derivative term – and potential instabilities. This procedure can be generalized
as in [120], and the unstable nature of Ostrogradskiian theories will also be addressed in
what follows. For the theory proposed, which is the Einstein-Hilbert action deformed via
(5.43), we can decompose the deformation in the following way,

Hab (hcd,£thcd) = hab + H̃ab (hcd) + Jab (hcd,£thcd) , (5.45)

where H̃ab (hcd) is the part of the general deformation that conformally transforms hab
in a spacetime-dependent way. This can be interpreted as the gravitational analogue to
the deformation that lead us to (5.12). Moreover, the deformations can also be used to
represent semiclassical contributions. Later in this chapter, we will extend these procedures
to the Ashtekar/Tetrad formalism in section 5.4. In the latter expression, the next term Jab
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depends strictly on higher-order derivatives and is the natural choice for a new canonical
variable, as its time derivative depends on higher-order time derivatives of hab

J̇ab = ∂Jab
∂hcd

ḣcd + ∂Jab

∂ḣcd
ḧcd,

which absorbs the higher-order time derivatives found in the new gravitation Lagrangian. It
should be recalled that only hab is used to contract vectors in our spacetime, while the other
terms serve to deform the theory. At this point, it is crucial to note that the relation between
Jab and the usual degrees of freedom, which is encoded in ∂Jab

∂hcd
and ∂Jab

∂ḣcd
is determined by

diffeomorphism invariance. Thus, the deformation Hab must satisfy a certain functional
form to be diffeomorphism-invariant. We show this fact in the next subsections.

The form of the deformed theory

After the deformation (5.43), the Lagrangian reads:

16π√
−g
L = R = R(3) +KacKac −K2 − 2∇α

(
nα;βn

β − nβ ;αn
α
)

+ 16πLMG
(
h, ḣ, ḧ

)
,

which is the standard GR Lagrangian plus LMG, which represents the modifications due to
the deformation,

16πLMG
(
h, ḣ, ḧ

)
= R

(3)
H̃

+R
(3)
J + VH

(
H̃, h

)
+ VJ (J, h) + KJ̇

N
+ J̇ ḣef

2N2

(
∂H̃

∂hef

)
+

1
N

(
Kab + ∂H̃ab

∂
hef
2N

ḣef

)
J̇ab + 1

4N2h
achbdJ̇abJ̇cd + ḣcd

(
K

N

∂H̃

∂hcd
+ 1
N

∂H̃ab

∂hcd
Kab

)
+

1
4N2

(
J̇2 + ∂H̃

∂hcd

∂H̃

∂hef
+ ∂H̃cd

∂hgh

∂H̃cd

∂hef

)
ḣef ḣcd,

where the first terms come from inserting the decomposition (5.45) in the definition for R,
yielding

R̃(3) = R(3) +R
(3)
H̃

+R
(3)
J + VH

(
H̃, h

)
+ VJ (J, h) ,

In order to map the Lagrangian theory to the Hamiltonian form, we found the new
corresponding conjugate momenta to hab and Jab such that the Legendre transformations
are defined,
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πab = ∂ (
√
−gLG)
∂ḣab

= πab0 +
√
h

16π
∂J̇cd

∂ḣab

(
Khcd +Kcd

)
+
√
hḣcd

32πN

(
hab

∂H̃

∂hcd
+ ∂H̃ab

∂hcd
+ ∂H̃

∂hcd

∂H̃

∂hab
+ ∂H̃ c̃d̃

∂hcd

∂H̃c̃d̃

∂hab

)

+
√
h

32πN
∂J̇cd

∂ḣab

(
hcd

∂H̃

∂hef
ḣef + ∂H̃cd

∂hef
ḣef

)
+
√
h

16π

(
K
∂H̃

∂hab
+Kcd∂H̃cd

∂hab

)

+
√
h

32πN J̇

(
hab +

(
∂H̃

∂hab

)
+ ∂J̇

∂ḣab

)
+
√
h

32πN

(
J̇ab

∂H̃cd

∂hab
J̇cd + ∂J̇cd

∂ḣab
J̇cd
)

(5.46)

πabJ = ∂ (
√
−gLG)
∂J̇ab

=
√
h

32πN

(
hab

∂H̃

∂hef
ḣef + ∂H̃ab

∂hef
ḣef

)
+
√
h

16π
(
Kab +Khab

)
+
√
h

32πN
(
J̇ab + habJ̇

)
, (5.47)

where πab0 ≡
√
h/16π

(
Kab − habK

)
. Let L0

G be the original Lagrangian for GR, then the
new Hamiltonian density is,

HMG = πabḣab + πabJ J̇ab −N
√
hLG = −N

√
hL0

G −
√
hN

16π
(
R

(3)
H̃

+ VH
(
H̃, h

)
+ VJ (J, h)

)
+
√
h

32πN

(
R

(3)
J + 1

2 J̇
abJ̇ab + 1

2 J̇
2
)

+
√
hḣab
16π

[
Khcd +Kcd + ḣef

2N

(
hcd

∂H̃

∂hef
+ ∂H̃cd

∂hef

)]
∂J̇cd

∂ḣab

+
√
h

32πN

(
∂H̃cd

∂hab
ḣabJ̇cd + ∂H̃

∂hab
ḣabJ̇ + J̇

∂J̇

∂ḣab
ḣab + ∂J̇cd

∂ḣab
ḣabJ̇

cd
)

+
√
h

32πN
(
J̇ab + habJ̇

)
ḣab+

+
√
h

32πN ḣabḣcd

(
hab

∂H̃

∂hcd
+ ∂H̃ab

∂hcd
+ 1

2
∂H̃

∂hcd

∂H̃

∂hab
+ 1

2
∂H̃ c̃d̃

∂hcd

∂H̃c̃d̃

∂hab

)
. (5.48)

In the usual Hamiltonian treatment, the given theory is written strictly in terms of the
canonical field variables φα and πα = ∂L

∂φ̇α
[84], which requires, at minimum, a surjective

mapping from the velocities to the canonical momentum. In the general case depicted in
equation (5.48), one would need both the squares of the two new momenta πabπab , πabJ πJ,ab
and the squares of the traces π2 and π2

J so that one can write this as

HMG = N√
h

(
πabJ πJ,ab + πabπab

)
+HMG,2

(
J, J̇ , h, ḣ, π, πJ

)
,

where whether the mapping between these two momenta and the two velocities ḣab and J̇ab
is injective or not will determine whether one can write HMG,2 strictly in terms of the new
conjugate variables. The computation for the general Hamiltonian density in terms of the
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momenta but not the velocities is long and only truly required if we want the equations of
motion for this theory, which we do not at this moment.

An example

Equation (5.48) has clear kinetic energy terms for different tensorial components of Jab,
which is seen in the

(
R

(3)
J + 1

2 J̇
abJ̇ab + 1

2 J̇
2
)
term. The form of the Hamiltonian is similar

to that of a scalar field, i.e., the J̇2 term, and a tensor field, through J̇abJ̇
ab. These can

be interpreted as different sectors of the gravitational field that come as a result of this
deformation. Moreover, these deformations have less degrees of freedom than the original
gravitational variables in order to circumvent the potential instabilities created by intro-
ducing higher derivatives, as discussed in [250].

Instead of acquiring the constraints in general, we follow the common practice of de-
composing Jab and J̇ab into scalar, vector and tensor components,

Jab = Jhab + JV
ab + JT

ab,

J̇ab = J̇hab + J̇V
ab + J̇T

ab,

and then consider the dynamics due to only a subset of these degrees of freedom. Example
routes are outlined in Table (5.1).

Degs. of Freedom for Jab J̇2 Value J̇abJ̇
ab Value

Only Scalar J̇2 6= 0 J̇abJ̇
ab = hJ̇2

Only Vector\Tensor J̇2 = 0 J̇abJ̇
ab =(

Jabtensor + Jabvector

)2

Scalar-Vector-Tensor
(Special)

J̇2 6= 0 J̇abJ̇
ab = 0

Scalar-Vector-Tensor
(General)

J̇2 6= 0 J̇abJ̇
ab 6= 0

Table 5.1: The various ways to decompose the tensorial structure of the new degree of freedom Jab.

The simplest case is that where the scalar degree of freedom vanishes, i.e., the trace
vanishes, J̇ = 0, but the tensorial structure is maintained. We assume that the natural
conformal scaling due to H̃ in equation (5.45) will be suppressed to zero. In this way, only
the new coordinate Jab deforms the theory.

In this example the conjugate momenta simplify to

πab = 1
16π
√
h
(
Kcd − hcdK

)
+
√
h

16π
∂J̇cd

∂ḣab

[16π√
h
πcdJ −

1
2N J̇cd

]
+
√
h

32πN

(
J̇ab + ∂J̇cd

∂ḣab
J̇cd
)
,

πabJ =
√
h

16π
(
Kab + habK

)
+
√
h

32πN J̇ab,
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From these definitions one can define the extrinsic curvature in term of the new momenta,

Kab =

Original Kab︷ ︸︸ ︷
16π√
h

[
πab − hab

2 Tr
{
πab
}]

+ 8π√
h

∂J̇cd

∂ḣab
πcdJ︸ ︷︷ ︸

Kab
1

+ 1
2N

[
J̇ab −

5
2
∂J̇cd

∂ḣab
J̇cd

]
︸ ︷︷ ︸

∆Kab

≡ Kab
1 + 1

N
∆Kab,

Now let π̃ = Tr
{
πab
}

and π̃J = hab
∂J̇cd
∂ḣab

πcdJ . With this, and a lengthy algebra exercise, the
Hamiltonian density can be written as in (5.49). We notice that(

16π/
√
h
)2 [

πabπab − π̃2/2
]
−R(3),

contains the original scalar constraint (5.21). The quantity −2
(
Kab

1 −K1h
ab
)
|b
is the origi-

nal vector constraint. We use the notation A|b to represent the intrinsic covariant derivative
of A. We can also note that the surface term now depends on the new degrees of freedom
through Kab.

HG =
√
h

16π

[(16π√
h

)2
[
πabπab −

π̃2

2

]
−R(3) +

(16π√
h

)2
[
πabJ πJ,ab −

π̃2
J

2

]
−R(3)

J + 1
2

(16π√
h

)2
π̃π̃J

− VJ (J, h)
]
N +

√
h

16π

[
2K1K

ab
1
∂J̇ab

∂ḣcd
hcd −

[
2∂J̇cd
∂ḣab

+ ∂J̇ab

∂ḣef
∂J̇cd

∂ḣef

]
Kcd

1 K
ab
1 −Kab

1 K1ab − 5K2
1

]
N

+
√
h

16π

[
−2
(
Kab

1 −K1h
ab
)
|b

]
Na +

√
h

16π
[
2
(
Kab −Khab

)
Na

]
|b︸ ︷︷ ︸

surface term

−
√
h

16π

[
2
(
∆Kab −∆Khab

)
|b

]
Na

N

+
√
h

16π

[
2
(
K1∆Kab + ∆KKab

1

) ∂J̇ab
∂ḣcd

hcd −
[
2∂J̇cd
∂ḣab

+ ∂J̇ab

∂ḣef
∂J̇cd

∂ḣef

] (
∆KcdKab

1 + ∆KabKcd
1

)]
· 1

+
√
h

16π

[(
+habJ̇cd

∂J̇cd

∂ḣef
hef − J̇cd ∂J̇cd

∂ḣab
− J̇cd ∂J̇ab

∂ḣcd
+ ∂J̇ab

∂ḣcd
ḣcd − J̇cd ∂J̇ab

∂ḣef

∂J̇cd

∂ḣef
− 2J̇ab

)
Kab

1

]
· 1

−
√
h

16π
[
2K1∆K + 2

[
Kab

1 ∆Kab + 5K1∆K
]]
· 1−

√
h

16π
[
2∆K2 +

[
∆Kab∆Kab + 5∆K2

]] 1
N

+
√
h

16π

[(
habJ̇

cd ∂J̇cd

∂ḣef
hef − J̇cd ∂J̇cd

∂ḣab
− J̇cd ∂J̇ab

∂ḣcd
+ ∂J̇ab

∂ḣcd
ḣcd − J̇cd ∂J̇ab

∂ḣef

∂J̇cd

∂ḣef
− 2J̇ab

)
∆Kab

]
1
N

−
√
h

16π

[
2∆K∆Kab ∂J̇ab

∂ḣcd
hcd +

[
2∂J̇cd
∂ḣab

+ ∂J̇ab

∂ḣef
∂J̇cd

∂ḣef

]
∆Kab∆Kcd + 2J̇abḣab + 2∂J̇cd

∂ḣab
J̇cdḣab

]
1
N

+
√
h

16π

[
2J̇abJ̇cd ∂J̇cd

∂ḣab
− J̇cdJ̇ ij ∂J̇ij

∂ḣab

∂J̇cd

∂ḣab

]
1
N
. (5.49)
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5.3.3 Further constraints in the deformations

To guarantee diffeomorphism invariance, the variation of the Hamiltonian density with
respect to the lapse and shift must vanish: such a variation provides the constraints. This
means that the new vector and scalar constraints are,

Ca = −32π√
h

(
πab + 1

2
∂J̇cd

∂ḣab
πcdJ −

π̃J
2 hab

)
|b
,

C0 =
(16π√

h

)2
[
πabπab −

π̃2

2

]
−R(3) +

(16π√
h

)2
[
πabJ πJ,ab −

π̃2
J

2

]
−R(3)

J

+ 1
2

(16π√
h

)2
π̃π̃J − VJ (J, h) + 2K1K

ab
1
∂J̇ab

∂ḣcd
hcd −Kab

1 K1ab − 5K2
1

−
[
2∂J̇cd
∂ḣab

+ ∂J̇ab

∂ḣef
∂J̇cd

∂ḣef

]
Kcd

1 K
ab
1 .

Furthermore, the new Hamiltonian density (5.49) contains terms proportional to 1
N ,N1

N

and 1. In order for Hamilton’s equations to not depend on a gauge choice, these terms must
individually vanish. The terms proportional to 1

N ,NaN , which will be called C−1 and Ca−1
respectively, must also vanish separately so as to not make the vector and scalar constraints
depend on the gauge, a crucial feature for any gauge theory. The term proportional to unity,
let us call it C1, represents a type of bare Hamiltonian that must also vanish independently.
If this term were to persist, then within Hamilton’s equations there would exist a gauge
choice of (N,Na) such that there is no time evolution, which would allow there to be an
aether-like reference frame. In both cases, if these terms do not vanish, diffeomorphism
invariance will be broken and hence2,

C1 = 2
(
K1∆Kab + ∆KKab

1

) ∂J̇ab
∂ḣcd

hcd −
[
2∂J̇cd
∂ḣab

+ ∂J̇ab

∂ḣef
∂J̇cd

∂ḣef

] (
∆KcdKab

1 + ∆KabKcd
1

)
+
(
habJ̇

cd ∂J̇cd

∂ḣef
hef − J̇cd ∂J̇cd

∂ḣab
− J̇cd ∂J̇ab

∂ḣcd
+ ∂J̇ab

∂ḣcd
ḣcd − J̇cd ∂J̇ab

∂ḣef

∂J̇cd

∂ḣef
− 2J̇ab

)
Kab

1

− 7K1∆K − 2Kab
1 ∆Kab,

Ca−1 = 2
(
∆Kab −∆Khab

)
|b
,

2See https://github.com/josegalvez/HD-GR for a generalized step-by-step explanation of all the calcu-
lations shown this subsection.
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C−1 = −7∆K2 −
[
2∆K∆Kab ∂J̇ab

∂ḣcd
hcd +

(
2∂J̇cd
∂ḣab

+ ∂J̇ab

∂ḣef
∂J̇cd

∂ḣef

)
∆Kab∆Kcd

]

−∆Kab∆Kab +
(

2J̇abḣab + 2∂J̇cd
∂ḣab

J̇cdḣab − 2J̇abJ̇cd ∂J̇cd
∂ḣab

− J̇cdJ̇ ij ∂J̇ij
∂ḣab

∂J̇cd

∂ḣab

)
+
(
habJ̇

cd ∂J̇cd

∂ḣef
hef − J̇cd ∂J̇cd

∂ḣab
− J̇cd ∂J̇ab

∂ḣcd
+ ∂J̇ab

∂ḣcd
ḣcd − J̇cd ∂J̇ab

∂ḣef

∂J̇cd

∂ḣef
− 2J̇ab

)
∆Kab.

5.4 Deforming general relativity in tetrad theory and Ashtekar
variables

There exist other representations of general relativity aside from that presented above.
Here we will briefly review tetrad formalisms. In covariant form arguably the most popular
version of a tetrad action is the tetrad-Palatini action [191] which may be written, without
the Holst term for simplicity, as:

S =
∫

e ∧ e ∧ ∗F(ω)

= 1
2

∫
d4x εIJKLε

µνρσeIµe
J
νF

KL
ρσ , (5.50)

with e the tetrad and ω a Lorentz (for our purposes) connection whose dual (on the capital
indices, coupling to the so(3, 1) algebra) field strength is denoted by ∗F. e and ω constitute
the independent fields, and the variation with respect to the connection yields the torsionless
condition for the connection whereas variation with respect to the tetrad yields the Einstein
equations. The configuration space is spanned by the pair of components (eIµ, ωJKν).

Let us now consider deformations of e and ω in the action (5.50) while noting that the
tetrad e should remain one of the variables in the new theory (analogous to keeping the
metric variable in the deformed metric theory). Using slightly modified notation we write

e→ E(ẽ, ω̃) , ω̃ →W(ẽ, ω̃) . (5.51)

Note that this is equivalent to the deformation

e→ ẽ + ∆ẽ , ω → ω̃ + ∆ω̃, (5.52)

with
∆ẽ ≡ E(ẽ, ω̃)− ẽ , ∆ω̃ ≡ W − ω̃ . (5.53)

As a clarification, what we mean by this is that the components of e and ω, that is eIµ
and ω̃IJµ, are the quantities deformed. Of course the group generator and differential form
structure remain unaltered.
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Using (5.52) in (5.50), and noting that F̃ = dω̃ + ω̃ ∧ ω̃, we define the quantity

∆∗F̃ ≡ ∗ [d(∆ω̃) + ω̃ ∧∆ω̃ + ∆ω̃ ∧ ω̃ + ∆ω̃ ∧∆ω̃] . (5.54)

Noting that the action implicitly involves a trace, the resulting action may be written as:

S′ = S +
∫ {

2 [ẽ ∧∆ẽ ∧ ∗F + ẽ ∧∆ẽ ∧∆∗F] + ẽ ∧ ẽ ∧∆∗F + ∆ẽ ∧∆ẽ ∧ ∗F

+ ∆ẽ ∧∆ẽ ∧∆∗F
}
. (5.55)

Deformations of the tetrad-Palatini action (5.50) are particularly straight-forward to repro-
ject via (5.39). In four spacetime dimensions the manifold of 4-forms is one-dimensional,
and hence we may write 3

εµνρσ ∝ N [µενρσ] . (5.56)

Therefore the modified action can be cast as the original action plus a term of the form

∆S ∝
∫
d4x ενρσNµ∆L′µνρσ, (5.57)

where ∆L′µνρσ is the deformation of the

εIJKLe
I
µe
J
νF

KL
ρσ

part in the Lagrangian. The antisymmetric structure of the Levi-Civita, written as in (5.56)
along with its contraction with the tetrads in the undeformed action (5.50) is actually
sufficient to filter out terms proportional to N and Na. However, for a generic deformation,
the new action may need to be reprojected in the manner illustrated in the previous sections.
Simple deformations (for example those that do not alter the linear dependence on Nµ in
the new variables) will not suffer from this.

Before proceeding we should note that ∆ω̃ may depend on the tetrad and, as mentioned,
we wish to retain the tetrad as a fundamental degree of freedom in the new theory. Therefore
we can state the following points about variable deformations in the Palatini Lagrangian:

• Since d(∆ω̃) = dW(ẽ, ω̃)−dω̃, in general we pick up a generalized “velocity” conjugate
to the tetrad as now derivatives of the tetrad are explicitly present in the action. This
is an example of acquiring new degrees of freedom via the deformation.

• One needs to identify the corresponding connection variable(s). These other variable(s)
may or may not comprise ω̃. The situation regarding the new variables tends to be

3The numerical structure of the three-index permutation symbols ενρσ is implied by equation (5.56). It
is a different quantity for each value of the index µ in (5.56). The antisymmetrization is to preserve the
algebraic structure of the four index Levi-Civita when dealing with components, as we are here.
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clearer in the Hamiltonian picture, which is the main focus of this chapter, and will
be discussed below when we go to the Hamiltonian formalism.

• The new connection may no longer be torsion free.

• Related to the previous point, the tetrad’s covariant derivative may no longer be
annihilated. This is not surprising since we now have a new connection, in a new
theory whose symmetry may differ from the original symmetry. The new constraints
will serve to enforce this new symmetry.

Next we wish to address the main point, which is the issue of Hamiltonian consistency of
a deformed theory. As in the introduction, we shall first consider the undeformed action in
its canonical guise, then identify the configuration-momentum variables, and then perform
the variable deformation. Since we will be deforming the previous action, but in a different
form and also a different set of variables, the deformed theory will not necessarily be the
same as if one deforms the Palatini action directly as above. (This is also true due to
discarding surface terms when transforming one undeformed action into another form of
the same action.) The tetrad-Palatini action (with the Holst term) in canonical form leads
almost directly to the Ashtekar-Barbero action. The transformations required from the
tetrad-Palatini action to the Ashtekar action may be found in [209]. The Ashtekar variables
traditionally comprise an su(2) valued densitized triad, E a

i = det|e|e ai , and a connection,
Aia, where the indices i, j, etc. couple to the SU(2) generators (to use notation most often
seen in loop quantum gravity). The relationships between these new variables and the ADM
variables are given by

hhab =E a
i E

b
j δ

ij , (5.58a)

Aia =Γia + γKi
a . (5.58b)

Here Γia is the spin connection, annihilating an orthonormal triad via covariant differenti-
ation, Ki

a is the densitized extrinsic curvature

Ki
a ≡

1√
E
KabE

b
j δ

ij , (5.59)

and h is dethab. The quantity γ is known as the Barbero-Immirzi parameter, which from the
point of view of the bulk classical equations of motion is arbitrary, but its exact value is of
importance in the quantum theory. It has been shown that the variables E a

i , Aia are related
to the ADM variables in the previous section via a canonical transformation [36, 235].

The Poisson algebra in these variables is given by the brackets{
E a
i (x), Ajb(y)

}
=κγδ(x, y)δ ji δ

a
b , (5.60a)
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{
E a
i (x), E b

j (y)
}

=
{
Aia(x), Ajb(y)

}
= 0 . (5.60b)

In these variables the action may be written as

S = 1
κ

∫
dt

∫
d3x

[
E a
i Ȧ

i
a −H(N)−H(Na)− G(λi)

]
, (5.61)

plus corresponding possible matter terms. In this case the scalar and vector constraints are
given by

H(N) =N
E a
i E

b
j√

E

(
F kabε

ij
k − 2(γ2 − 1)Ki

[aK
j
b]

)
, (5.62a)

H(N b) =N b
[
E a
i F

i
ab − (γ2 + 1)Ki

bGi
]
. (5.62b)

F iab is the field-strength tensor of the connection, F iab ≡ ∂aA
i
b − ∂bAia + εijkA

j
aA

k
b. Note

that since we are dealing with a (densitized) triad variable in lieu of a metric variable, a
new constraint is introduced which fixes the internal SU(2) rotation of the triad. This is
the so-called Gauss constraint,

Giλ
i =: G(λi) ≡

(
∂aE

a
i + ε k

ij A
j
aE

a
k

)
λi , (5.63)

with its own Lagrange multiplier, λi, which fixes the metricity condition on the densitized
triad.

Since the internal spatial geometry is encoded in the densitized triad we will, in analogy
to keeping the 3-metric as the configuration variable in the ADM variables, keep the den-
sitized triad as the canonical gravitational momentum variable after deformation. In brief,
as in the previous section the deformation may be written schematically as

E a
i → Ẽ a

i + ∆Ẽ a
i , (5.64a)

Aia → Ãia + ∆Ãia . (5.64b)

Before continuing, it should be noted that in principle the quantities in the Gauss
constraint are to be deformed so that the Gauss constraint becomes some complicated
function of both the densitized triad and the connection. However, caution should be applied
in this case since the Gauss constraint, in its original form, enforces the specific condition
of metricity fixing. It may be desirable, regardless of the specific deformation, to enforce
“by hand” that the Gauss constraint transform as G(λi, E a

j ) → G(λi, Ẽ a
j ) so that after

deformation triad metricity fixing is still enforced by this constraint. A comment on this
follows the example below.
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The general deformation of the variables (5.64a) and (5.64b) be applied to (5.61) and the
resulting action re-written in Hamiltonian canonical form by identifying the new configuration-
momentum pairs. In principle this may be done, but the resulting action will generally
be very complicated and not very perspicuous, not least because of the fact that Ki

a =
γ−1[Aia − Γia] and the spin connection is given by the complicated expression

Γia = 1
2ε

i k
j E b

k

[
−2∂[aE

j
b] + EjcE

`
a∂bE

c
`

]
+ 1

4ε
i k
j E b

k

[
2Eja∂b ln(E)− Ejb∂a ln(E)

]
, (5.65)

as well as the contracted triad E a
j = E a

k E
b
` δ

klEibδij . Therefore we illustrate the scheme on
an example relevant to some studies of loop quantum gravity. A specific example of such
deformations in these variables is provided by the often used holonomy correction inspired
by loop quantum gravity. In such scenarios the connection variable is deformed in order
to represent loop quantum corrections of the connection as a holonomy; namely, in the
language of (5.36a) and (5.36b):

Aia →H i
a

(
Ãia, Ẽ

b
j

)
=

sin
[
Ãia δ(Ẽ b

j )
]

δ(Ẽ b
j )

, (5.66a)

E a
i →P a

i

(
Ãia, Ẽ

b
j

)
= Ẽ a

i , (5.66b)

∆Ãia =
sin
[
Ãia δ(Ẽ b

j )
]

δ(Ẽ b
j )

− Ãia , ∆Ẽ a
i = 0 . (5.66c)

The quantity δ(Ẽ b
j ) is related to the proper-length along the path which the holonomy

is taken, and hence depends on Ẽ b
j but not the connection [65] (although sometimes δ is

taken to be constant for simplicity). Note that here the deformation is performed at the
level of the Hamiltonian variables, compatible with the analysis of this thesis. This is due
to the fact that the holonomy correction is inspired by the operator representation of the
algebra of the commutator of loop quantum gravity, and therefore these modifications are
often applied via direct substitution of (5.66a) and (5.66b) into the action (5.61). The issue
now remains as to what to do with the canonical term in (5.61), E a

i Ȧ
i
a. One method is to

simply insert the time derivative of (5.64b) in lieu of Ȧ a
i . If one proceeds in this manner

the resulting action is

S′ = 1
κ

∫
dt

∫
d3x

[
P a
i Ḣ

i
a − H̃(N)− H̃(N b)− G̃(λi)

]
= 1
κ

∫
dt

∫
d3x

{
Ẽ a
i

[
cos(Ãiaδ)

˙̃Aia +
(

cos(Ãiaδ)
∂δ

∂Ẽ b
j

δ−1 − sin(Ãiaδ)
∂δ

∂Ẽ b
j

δ−2
)

˙̃E b
j

]

−Ĥ(N)− Ĥ(N b)− Ĝ(λi)
}
. (5.67)
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(Due to the nonlinear nature of the deformation, the index structure is awkward in (5.67). In
each term repeated indices are summed, even if they appear more than twice.) The natural
interpretation of the above is that the resulting theory has more degrees of freedom than
general relativity; the Hamiltonian degrees of freedom being:

Ãia, Aπ̃
a
i ≡ Ẽ a

i cos(Ãiaδ) (no sum) &, (5.68a)

Ẽ a
i , Eπ̃

j
b ≡ Ẽ

a
i

(
cos(Ãiaδ)

∂δ

∂Ẽ b
j

δ−1 − sin(Ãiaδ)
∂δ

∂Ẽ b
j

δ−2
)
. (5.68b)

It is noted that in this particular scenario the system retains second-order equations of
motion, and therefore the Ostrogradskii stability issues presented in the previous section
are avoided. However, if one a priori assumes some relationship between Ãia and Ẽ a

i (such
as in, for example, electromagnetism where the electric field is related to the time derivative
of the potential), then one could induce a higher-order theory via the ˙̃E b

j term in (5.67).
We do not assume this since the canonical degrees of freedom are independent here. The
Poisson brackets are now defined with respect to the canonical variables from the new degree
of freedom. That is

{X, Y } = ∂X

∂Ãia

∂Y

∂(Aπ̃ a
i ) −

∂X

∂(Aπ̃ a
i )

∂Y

∂Ãia
+ ∂X

∂Ẽ a
i

∂Y

∂(Eπ̃ia)
− ∂X

∂(Eπ̃ia)
∂Y

∂Ẽ a
i

. (5.69)

The decomposition (5.39) is straightforward since the deformation of H̃(N) is still only
proportional to N and the deformation of H̃(Na) is still only proportional to Na. This
results in the following constraints in the new theory:

Ĥ(N) = N
Ẽ a
i Ẽ

b
j√

Ẽ

{(
F̃
o

k

ab
+ ∆F̃ kab

)
εijk − 2(γ2 − 1)

(
K̃
o

+ ∆K̃
)i

[a

(
K̃
o

+ ∆K̃
)j
b]

}
,

(5.70a)

Ĥ(N b) = N b

{
Ẽ a
i

[
F̃
o

i

ab
+ ∆F̃ iab

]
− (γ2 + 1)

[
K̃
o

i

b
G̃i + K̃

o

i

b
∆G̃i + ∆K̃i

bG̃o i
+ ∆K̃i

b∆G̃i
]}

,

(5.70b)

Ĝ(λi) = λi
[
G̃
o i

+ ∆G̃i
]
. (5.70c)
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Here, the “o” subscript refers to the original (before applying the deformation) quantities
and the remaining quantities are as follows:

∆F̃ iab = 2∂[a(∆Ãib]) + εijk

[
Ãja∆Ãkb + ∆ÃjaÃkb + ∆Ãja∆Ãkb

]
, (5.71)

∆K̃i
a = 1

γ
∆Ãia, (5.72)

∆G̃i = ε k
ij Ẽ

a
k∆Ãja . (5.73)

Note specifically that the deformed Gauss constraint, Ĝ(λi), can be satisfied either by mak-
ing terms in ∆Gi cancel terms inG

o i
, or else by enforcingG

o i
and ∆Gi equal to zero separately.

In the first case the Gauss constraint no longer enforces metricity fixing of the densitized
tetrad whereas in the second case it does (since the Gauss constraint in its original form
vanishes) and hence is generally preferable. In the second case there will be the enforcement
of the metricity fixing condition along with another constraint demanded by the vanishing
of (5.73).

The action (5.67) along with the set of constraints (5.70a), (5.70b) (supplemented with
(5.70c)) yields the deformed theory whose constraints will obey the constraint algebra (5.32–
5.33b). However, although this scenario was reasonably straightforward to implement, it
should be noted that the variables which undergo Hamiltonian evolution in this example
are not Aib and E b

j but the configuration and momentum variables in (5.68a) and (5.68b).
The deformed theory must be written in terms of these variables, which depends on the
invertibility of the transformation equations (5.68a) and (5.68b). Moreover, this invertibility
requirement must be attached to the idea of a transformation from a symplectic manifold to
another symplectic manifold. One must therefore know the explicit form of δ(E b

j ) in order
to do this. In other words, the equation (5.27), utilized in order to derive the algebra among
the constraints, picks up the extra degrees of freedom:

δζq
δI

δq
=δζÃia

δI

δÃia
+ δζ(Aπ̃

a
i ) δI

δ(Aπ̃ a
i ) + δζẼ

a
i

δI

δẼ a
i

+ δζ(Eπ̃
i
a)

δI

δ(Eπ̃ia)
, (5.74)

where here we have only considered the gravitational sector. It is important to note at this
stage that it is generally a non-trivial matter to rewrite the action, and resulting equations of
motion, solely in terms of the new variables. It is also possible, depending on the particular
transformation, that there is no unique way of writing the deformed action in terms of
the new variables. In the case of the holonomy corrections presented above, one way to
proceed is by simply leaving the action in the form (5.67), since Aia and E a

i are legitimate
degrees of freedom even in the deformed theory as can be seen from (5.68a-ii). That would
however lead to a theory which would only contain stationary gravity ( ˙̃E a

i = ∂H/∂Eπ̃ia = 0,
˙̃Aia = ∂H/∂Aπ̃ a

i = 0) as there is no dependence on either of the canonical momenta. In fact,
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all Poisson brackets between the constraints would also trivially vanish. (Convexity would
also be lost therefore introducing ambiguity in transforming to the Lagrangian formulation.)

There is also another form of the canonical form of the action, which essentially reverses
the roles of A and E as configuration and momentum [209]. In this guise the gravitational
action has the canonical form

S = 1
κ

∫
dt

∫
d3x

[
AiaĖ

a
i +H(N) +H(Na) + G(λi)

]
. (5.75)

In order to employ a straightforward holonomy correction to this form of the action one must
utilize the momentum representation of the quantum operators [209]. Here the holonomy
correction for the momentum representation takes the form

Aia →P ia
(
Ãia, Ẽ

b
j

)
= −

sin
[
Ãia δ(Ẽ b

j )
]

δ(Ẽ b
j )

, (5.76a)

E a
i →H a

i

(
Ãia, Ẽ

b
j

)
= Ẽ a

i , (5.76b)

which result in the corresponding modified action

S′ = 1
κ

∫
dt

∫
d3x

−sin
(
Ãiaδ(Ẽ b

j )
)

δ(Ẽ b
j )

˙̃E a
i + Ĥ(N) + Ĥ(Na) + Ĝ(λi)

 . (5.77)

Note that here, on the other hand, the corrected theory retains the same number of degrees
of freedom as the original, though they are not the same ones as in the original theory:

Ẽ a
i , Eπ̃

i
a ≡ −

sin
(
Ã a
i δ(Ẽ b

j )
)

δ(Ẽ b
j )

. (5.78)

In this case the resulting action can certainly be written in terms of the new canonical
variables only. We will not explicitly calculate the constraints in this case as they are more
straightforward here than in the previous scenario. It is again important to note that the
same base theory, written in different guises, gives rise to completely different theories
under variable deformations. It might seem that in this second case we have not gained a
new theory, since the new phase-space variables, Ẽ a

i and Eπ̃ia, evolve in exactly the same
way as the old ones, E a

i and Aia, under Hamiltonian evolution. However, information about
the geometry is encoded in the metric (or E a

i ) and the extrinsic curvature (related to Aia
via (5.58b)). Therefore, even though the new variables evolve in the same way as the old,
the geometry will not evolve in the same way as in the undeformed theory.

We end this example with a comment that the above deformation method is not the usual
way that holonomy corrections are implemented. This is because in the usual scheme one
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wishes to demand that the connection and densitized tetrad remain canonically conjugate
variables of the theory as in (5.60a,b). However, it has been shown that in certain cases that
may lead to inconsistencies in the Poisson algebra of the constraints when matter is present
[41]. The scheme presented in this thesis is specifically designed to ensure consistency of the
algebra even in the presence of matter.

5.5 Discussion

In this chapter, we proposed a systematic treatment of theories generated by the modifi-
cation of the canonical variables of general relativity both in metric variables and tetrad
variables. The objective of this approach is to explore under which conditions the constraint
algebra retains its first-class structure (which supports stable gauge fixing) and its diffeo-
morphic symmetries. The deformed fields and momenta were re-introduced in the original
theory in order to observe the effects of the transformed variables. We covered two possible
cases (I) deformations that do not introduce new higher-derivatives terms in the action
and (II) non-unitary modifications that will create new degrees of freedom. Furthermore,
we evaluated the transformed gravitational variables in two well-known incarnations of the
gravitational action: the Einstein-Hilbert action and in the tetrad formalism of the Palatini
action and in the Ashtekar variables. We must remark, however, that it is viable to deform
the canonical variables of other actions following the same procedure we described in this
chapter.

In the case of the variable deformations in the Einstein-Hilbert action, the preservation
of the original number of degrees of freedom in case (I) unavoidably leads us into Lovelock’s
theorem, which restricts these deformations to be canonical transformations. In case (II),
the deformations of the canonical variables induce higher-derivative terms that increase the
number of degrees of freedom. The latter case must be studied carefully since it is possible
to alter the theory in a way that does not produce a healthy Hamiltonian representation. We
presented an example where the modifications of the metric are traceless and symmetric,
which in some sense mimics potential graviton corrections. In this example, we found that
the new Hamiltonian in (5.49) demands further constraints on the deformations, which are
required in order to hold gauge independent scalar and vector constraints. The evaluation of
these constraints can only have two possible outcomes: the deformations can either remove
the extra degrees of freedom from the generators of the diffeomorphism group, or break
some of them by reinterpreting the extra fields as Goldstone modes. In the circumstance
of the first case, the dynamics of the additional field has been explored in a more realistic
environment [111] and it can be benign.

Similarly, we extended this scheme for the tetrad-Palatini and the Ashtekar-Barbero
actions. In this case, we suggested the so-called holonomy corrections as a specific form of
the deformation (although there is no reason to limit the deformations to just this type).
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The scenario presented is similar in the sense of the possible introduction of extra degrees
of freedom in the system. Nonetheless, if the extra terms appearing in the deformed action
(which might or might not include extra fields) are projected into the additional Gauss con-
straint, the system can be forced to a different metric realization. In the existing literature
[159], it is possible to find that Lovelock’s theorem is bypassed since there is not a unique
way to write the theory in these variables. Such a case was not covered in this thesis. We
derived the new constraints and the effects of the deformations in the tetrad variables in the
cases when extra degrees of freedom appear (or not) in the system. If the deformations do
not alter the shift and lapse gauge orbits, there is no reason to expect a different realization
of the constraint algebra, which now will also require closure with the Gauss constraint,
and the deformations can be constrained to produce stable gauge fixing.
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Chapter 6

Unscreening scalarons with a black
hole

Einstein’s theory of general relativity (GR) is one of the greatest achievements of modern
science, due to its ability to describe many of the gravitational phenomena with impressive
level of detail. Nevertheless, there are many motivations to look for alternative theories:
the observation of cosmic acceleration, the unknown nature of dark matter and dark energy
and the lack of an ultraviolet completion of general relativity related with the unavoidable
presence of spacetime singularities in this theory. Any successful modification of Einstein’s
theory should solve some of these conundrums, while remaining consistent with the local
tests of general relativity and do no harm to the standard behaviour of matter as discussed
in [249, 54].

For example, f(R) gravity was postulated in [230] as an attempt to produce a renormalis-
able theory of quantum gravity. It introduces a ghost-free functional of curvature, analogous
to the notion of free energy in thermodynamics. Since its first incarnation, however, differ-
ent forms of f(R) have been used to solve issues at cosmological scales (see [228, 136, 229]).
Notwithstanding, either considering a functional source of gravitational interaction different
from the Ricci scalar, or simply adding extra gauge degrees of freedom in the gravitational
sector has consequences at all energy scales. Gravity is not only defined by the metric, but
also by other fields as we learned in Chapter 5. If gravitational interaction is not only de-
fined by the spacetime geometry, the force exerted by any extra degree of freedom violates
the stringent solar scale constrsints, which are consistent with general relativity. Screening
mechanisms such as theories in [149, 194, 241] are designed to circumvent this issue by
diluting the sources of this force.

In the case of an astrophysical black hole, one naively expects that every extra force
will be screened by large environmental energy densities. In the particular case of a force
sourced by a scalar, screening is expected to be a consequence of the no-hair theorem, as
stated in [37], applicable in the case of a source with positive energy density. Nonetheless,
as noticed in [75], the presence of a non-trivial distribution of accreting matter and the way
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this is coupled to the scalar field allows scalar hair – i.e., an attribute different than mass,
angular momentum or charge, which modifies the black hole solution – outside the event
horizon.

In this chapter, we simulate the accretion of the additional scalar degree of freedom in the
f(R) models presented in [136, 229], the symmetron model in [132] and the Ratra-Peebles
chameleon in [206] in a dense environment. We assume that in such a region we can form a
stable Schwarzschild black hole via gravitational collapse. This spherically symmetric black
hole interacts with the screened extra real scalar field in a non-trivial matter distribution
and accretes around the event horizon. The accreting matter density profile proposed here
is a slight generalization to that suggested in [75]. Even when the accretion in astrophysical
black holes takes place in rotating spacetime solutions, it is interesting to explore the test
case of a spherically symmetric system. The objective of this study is to visualize the process
of accretion of the scalar field for various choices of model parameters, and discuss the time
scales involved in the convergence to a non-trivial static profile. We designed a compact and
efficient spectral code, flexible to modification and capable of producing time-dependent
solutions of a scalar field in a Schwarzschild-like background. It is available for further
application to other models at https://github.com/andrei-v-frolov/accretion.

The layout of this chapter is as follows. In section 6.1, we define the matter environ-
ment and the spacetime geometry in which the extra scalars propagate. In section 6.2, we
review the equations of motion and particular features of the scalar degrees of freedom
in the chosen f(R) models and study how these fields accrete. In section 6.3, we modify
these models by adding terms proportional to R2 and show the dynamical resolution of
the curvature singularities in the Hu-Sawicki and the Starobinsky model. We extend our
treatment for the symmetron model and the Ratra-Peebles chameleon in sections 6.4 and
6.5, respectively. Finally, we present summary of our results and conclusions in section 7.4.
Numerical implementation is discussed in detail in Appendix E.

6.1 Matter distribution for spherically symmetric black holes

These are legitimate reasons to believe that astrophysical black holes are different from
solutions of Einstein’s field equations since a typical theoretical solution is (i) a spherically
symmetric solution modelled in a vacuum environment and (ii) has (at least) one singu-
lar point. Although astrophysical black holes are rotating systems, spherically symmetric
solutions remain interesting when exploring some of the dynamical subtleties of the extra
scalars in modified gravity. From [222, 109], we learn that the fate of a collapsing spher-
ically symmetric system in standard scalar-tensor theories is to become a Schwarzschild
black hole.

It is then sensible to ask whether the Schwarzschild solution remains a valid description
of spacetime even in the presence of accreting matter. To answer this question, we briefly
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review the dynamics of a steady flow of matter to estimate the accretion rate of the black
hole. We calculate the luminosity (L) assuming the power lost by a generic inflow of particles
traveling from infinity to the innermost stable circular orbit (ISCO) at rISCO = 6GM

L =
(

1−
√

8
9

)
Ṁ ∼ 0.06 Ṁ. (6.1)

Using the table of luminosities of active galactic nuclei included in [148], we note that the
accretion rate of a supermassive black hole with MBH = 109M� is Ṁ . 1M�/yr. The
accretion rate in a rotating black hole of similar luminosity could be even smaller, since
L ∼ 0.42 Ṁ for near-extremal rotation1. This implies that it would take ∼ 107 years to
change the mass of the black hole by 1%. Therefore, the time scales we are interested in are
defined by the intervals in which the geometry of the accreting system is nearly static.

At this point of the discussion, it is necessary to provide an approximate expression of the
matter density distribution outside the black hole’s horizon. This is not by any means a full
discussion of the radial structure equations for accretion disks. However, we provide sufficient
arguments to justify our choice of a matter distribution. It must remain nearly static within
the time scale estimated previously. For that purpose, we consider that radial matter density
at a given radius r is proportional to some positive power of the time that particles spend
in orbits passing through that r. Stable orbits are possible only when r ≥ rISCO = 6GM .
Therefore, the dynamics of a test particle moving in Schwarzschild spacetime only provides
two scenarios in which matter can be found at r < rISCO: (I) these are on “no-return”
trajectories towards the horizon or (II) eccentric trajectories with a minimal radius smaller
than rISCO. The latter case is highly unlikely as viscous forces diffuse anisotropies all along
the accretion disk. In [104], one can find a simplified linear model explaining that the
cause of viscosity is the radial propagation of angular momentum from one orbit to another
in the disk of matter. In this case, a final state of radial homogeneity is reached very
rapidly. In a more realistic scenario, diffusion is driven by non-linear viscous forces studied in
magnetohydrodynamical (MHD) simulations of rotating (and slightly magnetized) systems,
as explained in [5]. In any case, the probability of finding matter on orbits within the
innermost stable circular orbit (ISCO) is greatly reduced, and in consequence, so is the
matter density in those regions. For black holes with low accretion rates, this density drop
could be sufficient to unscreen the extra scalar degrees of freedom, dubbed as scalarons,
within immediate vicinity of the black hole, as we will show in the following sections.

Using the arguments aforementioned, we define the density contrast parameter (σ) as the
ratio between the densities outside and inside rISCO. Such a ratio is in the range σ ∈ [0, 1)

1A black hole in the near-extremal regime has the minimal possible mass for a stable rotating system.
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and it is sufficient to complete our rough prescription for the pressureless matter distribution

ρ =

σρ0; rg < r < rISCO,

ρ0; r ≥ rISCO,
(6.2)

where rg = 2GM is gravitational radius where black hole horizon is located. This coincides
with the distribution suggested in [75] when σ = 0. For numerical reasons, the use of a
smooth matter profile approximated by a hyperbolic tangent is more convenient

ρ = (1− σ)ρ0
1 + tanh a0(r − rISCO)

2 + σρ0, (6.3)

where a0 � 1 and ρ0 > 0. The shape of this matter distribution is a crude approximation
of the results presented in [5] when σ < 10−4. As a consequence, we will setup all the wave
equations for the scalar field using the Schwarzschild geometry

ds2 = −
(

1− rg
r

)
dt2 + dr2

1− rg
r

+ r2dΩ2. (6.4)

where rg = 2M , and the matter density profile suggested in (6.3). However, it is convenient
to change from Schwarzschild to tortoise coordinates dr = (1− rg/r) dx

ds2 =
(

1− rg
r(x)

) [
−dt2 + dx2

]
+ r2(x)dΩ2. (6.5)

The coordinate change from r to x and its inversion is discussed in detail in Appendix E.6.
We neglect back-reaction of the scalaron dynamics on the background geometry for all the
scalar-tensor theories explored in this chapter, and treat the metric as static in the scalaron
equations of motion. Using (6.5), we can write the equation of motion of the scalar field
�φ = V ′eff(φ) which appears in (6.10) and (6.25) as a spatially damped wave equation in
1+1 dimensions[

− ∂2

∂t2
+ ∂2

∂x2 + 2
r(x)

(
1− rg

r(x)

)
∂

∂x

]
φ(t, x)−

(
1− rg

r(x)

)
V ′eff(φ) = 0. (6.6)

This choice of coordinates is sufficient for our purposes since the scalar solutions we seek do
not need to cover the black hole’s interior (r < rg). For simplicity of the implementation, we
use units of rg = 1 in the code, but other choices can also be considered without difficulty.

6.2 Scalar accretion in f(R) theories

In this section we describe the two examples of f(R) theories considered in this work:
the Starobinsky and Hu-Sawicki models, where the Ricci scalar R in the Einstein-Hilbert
action is replaced by a function of R. We will consider equations of motion derived in the
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metric formalism. Alternative formalisms like the Palatini or the metric-affine mentioned in
[226, 189, 227, 38] can change the number and/or the nature of the degrees of freedom that
emerge. In particular, in [226], we see that the Palatini formulation of f(R) is equivalent
to a ω0 = −3/2 Brans-Dicke theory [47], and no new dynamical degrees of freedom appear.
In all cases, one needs to ensure that the model remains ghost-free in the gravity sector
and that there are no tachyonic modes for it to be viable. A recent discussion on ghosts in
various formulations appeared in [155].

6.2.1 Chameleons in Starobinsky and Hu-Sawicki model

We first consider f(R) theories described, in the Jordan frame, by the action

S =
∫

f(R)
16πG

√
−g d4x+ Sm[gµν , ψ], (6.7)

where gµν is the Jordan frame metric and ψ are the matter fields. Varying the action with
respect to the metric gµν we obtain equations of motion which replace Einstein’s equation
in the f(R) models; they are

fRRµν −
1
2fgµν = 8πGTµν +∇µ∇νfR − gµν�fR, (6.8)

where fR ≡ ∂f/∂R. The two terms in the second line of the equation (6.8) contain fourth-
order derivatives of the metric, a signal that a new degree of freedom emerges in the theory.
This can be seen explicitly by taking the trace of the equation above

�fR = 1
3 (2f − fRR) + 8πG

3 T, (6.9)

which yields a second order equation of motion for the real field fR with a canonical kinetic
term under the influence of an effective potential V ′ ≡ (2f − fRR)/3 and an external force
term F ≡ −8πGT/3 with T ≡ Tµµ . By defining φ ≡ fR − 1 we can rewrite equation (6.9)
simply as

�φ = V ′(φ)−F , (6.10)

where prime denotes derivative with respect to φ. Alternatively, one can explicitly see the
emergence of the extra degree of freedom, usually dubbed “scalaron”, by mapping the action
(6.7) into the Einstein frame, as described in [169, 76]. Solving the equation (6.10) requires
the knowledge of the potential V (φ) which is defined in a parametric form via

dV

dR
= dV

dφ

dφ

dR
= 1

3 (2f − fRR) fRR, (6.11)
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or, integrating with a choice V |R=0 = 0 for a constant,

φ(R) = fR − 1, (6.12)

V (R) = 1
3

R∫
0

dR̃
(
2f(R̃)− f ′(R̃)R̃

)
f ′′(R̃). (6.13)

When plotting the scalar potentials in Figure 6.1, we observe that they are generally multi-
valued, with turning points at field values where f ′′(R) = 0. One must be aware of the
branch choice when determining the curvature value R and the effective force V ′(φ) for the
field φ in the wave equation (6.10). The branch we are interested in is the one connected
to the large curvature R → +∞ where Einstein gravity is recovered by screening. The
particular models we study are defined by specific forms of f(R)

fS = R+ λ

[ 1
(1 + (R/R0)2)n − 1

]
R0, (6.14)

fHS = R− α(R/R0)nR0
1 + β(R/R0)n , (6.15)

which correspond to the Starobinsky[229] and Hu-Sawicki [136] – models respectively. Hence,
the potentials are completely determined as functions of φ after replacing the solution of
(6.13) in fS or fHS for every physical choice of parameters. A particular feature of (6.15)
is that it has an apparent extra parameter compared to (6.14). However, it is entirely free,
and we can reduce the number of parameters by considering the transformation α → λaα,
β → λbβ and R0 → λcR0. fHS is invariant under this transformation if

a− (n− 1)c = 0, (6.16)

b− nc = 0,

for a given value of n. It is therefore possible to map any solution for one set of parameters
to an equivalent one for a different set following (6.16), hence we fixed the parameter β
to be 1 throughout the rest of the chapter and one can convert to other choices via these
transformations. Our choices of β and the crossover curvature scale R0 are useful to compare
these results with the solutions from the Starobinsky model. As summarized in [226], f(R)
models of gravity in metric formalism must have f ′(R) > 0 and f ′′(R) > 0 to avoid ghost-like
gravitons and tachyonic scalarons, respectively.

From equation (6.10), we can define an environmentally dependent effective potential
Veff(φ) that provides the same equations of motion in the regions of constant force F by

Veff(φ) = V (φ)−Fφ. (6.17)
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Figure 6.1: Left panel: bare and effective potential for λ = 2.0 and n = 1 in the Starobinsky
model. Matter defines an effective minimum and a mass for the field. Right panel: bare and
effective potential for α = 0.8 and n = 2 in the Hu-Sawicki model. Increasing densities of
surrounding matter also define a steady-state solution. Both effective potentials are concave
up around the equilibrium position, which means that the scalarons are not tachyonic.
Strictly speaking, the effective mass of the field defined as M2

φ ≡ ∂Veff/∂φ
2 is not defined

at the points labeled as Mφ =∞.

One peculiar feature of the effective potential is that the extra term coming from the
interaction with matter provides an external source term. As a result of this, the no-hair
theorem in its usual form is in general not applicable. In this chapter, the presence of matter
with Tµµ 6= 0 (which excludes electromagnetic radiation) is not neglected.

One must consider any particular choice of model parameters for fHS and fS that could
emerge from their corresponding renormalization group flows. Therefore, it is prudent to
study the flow lines in parameter space by exploring the stability of the scalar wave equation
for different choices of model parameters, even when we consider cases where the model
does not match with current observations. The field solutions are screened in the same
way as we described in section 6.5, henceforth fS and fHS scalarons can also be dubbed as
“chameleons”.

6.2.2 Accreting chameleons in Hu-Sawicki and Starobinsky models

Now we present our results after evaluating the scalar equations of motion in (6.10). In
order to proceed, we must first find the effective potentials corresponding to (6.14) with
arbitrary densities of matter. In the left panel of Figure 6.1 we observe that the features of
this potential correspond to what is usually called a chameleon field. Just as described in
[48], the steepness and depth of the potential grows with the surrounding matter density
in which the field propagates. The effective potential of the Hu-Sawicki model is plotted in
the right panel of Figure 6.1.
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Figure 6.2: Accretion of the field in the Starobinsky (left panel) and Hu-Sawicki (right
panel) models in tortoise coordinates. Field profiles are plotted on top of the intensity map:
each line represents the amplitude of the field at a particular time. The values of the field
are consistent with the condition f ′(R) > 0.
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In both cases, we observe that the formation of curvature singularities do not require
infinite energies to be achieved. In addition to that, we notice the existence of an equilibrium
configuration for the field, the corresponding minimum in the effective potential V ′eff(φ) = 0
is defined by

V ′(φ) = F . (6.18)

In the presence of accreting matter outside rISCO = 3 rg the field is screened, which implies
a very small value of it in this region. Inside rISCO, we can set the matter density in (6.3) to
zero for now. Naively, one should not expect significant differences in our results calculated
in the Jordan frame when compared with what is expected in the Einstein frame after
conformal transformations: inside rISCO, the matter density is zero regardless of any value
of the field; outside, the screening sets the conformal coupling to one. It is typically argued
that there are changes in the metric and equations of motion of a test particle when these
entities are rephrased in this frame: the derivatives of the conformal coupling might modify
these entities in a non-negligible way. This is true in general, however these changes do not
represent a significant contribution to the solutions we present since these modifications are
always proportional to the first and second radial derivatives of the field, which is a smooth
function outside the event horizon.

In order to find the screening value of ρ0 in (6.3), we evaluate the equilibrium condition
in (6.18) at the screened value of the field φ0 far away from rISCO (which is very close
to zero). Numerically, this is more convenient than (but still equivalent to) finding the
equilibrium value of φ for a given value of ρ0 from (6.18) since the dependence of V ′(φ) on
the field is implicit.

The evolution of the system requires initial conditions. In what follows, we set the units
of the field φ in terms of a reference value φ∗, which for f(R) models is dimensionless and is
chosen to be simply φ∗ = 1. We consider a completely screened initial configuration of the
field φ(r, t0) = −10−4φ∗ which is originally spatially homogeneous, and assume φ̇(r, t0) = 0
for the initial field velocity. Our choice of initial conditions is the same in our treatment of
both f(R) models we present here. In the left panel of Figure 6.2, we see the accretion of
the Starobinsky chameleon until it approaches to its static solution, choosing n = 1, λ = 2.0
and R0 = 10−2/r2

g as the model parameters to run the simulation. The chameleon accretes
around the horizon, then it converges smoothly to the static solution, which is visible in
both panels of Figure 6.2 in the black lines after t > 20. Gradients do not cancel outside
the horizon for r ≤ rISCO, which make the “hair” profile non-trivial. In addition to this,
the screening outside rISCO is not lost during accretion. Which shows that the equilibrium
condition in (6.18) holds.

Field evolution of the Hu-Sawicki chameleon is plotted in the right panel of Figure 6.2,
where we used the the same initial conditions. n = 1, α = 2.0 and R0 = 10−2/r2

g were the
model parameters chosen for the numerical evolution. Hu-Sawicki chameleon also accretes
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Figure 6.3: Left panel: Static profiles of the scalar field for the model parameters in (6.14).
For the Starobinsky model for λ = 1.0 and varying n. Right panel: Static profiles of the
scalar field in the Starobinsky model for n = 1 and varying λ. The figures plotted in the
same color on each panel are not equivalent.

around the event horizon resulting in a non-trivial hair solution. We study the negative field
branches of the potentials in Figure 6.1 that roughly scale as φ1/κ with κ > 2, therefore the
field becomes less massive in the regions where its amplitude deviates from the screened
value.

The convergence into a hair solution as well as its shape are sensitive to choice of model
parameters. Static solutions are found using the relaxation method described in Appendix
E.5, where we also discuss all the details related to the numerical evolution. In the left panel
of Figure 6.3, we evaluate the solutions of (6.6) in the static limit for different parameters of
the Starobinsky model. We find the solutions for different values of n, while keeping λ = 1.0
as a constant. Likewise, in the right panel of the same figure, we evaluate the change of
the static field profile when λ varies and n = 1 is kept as a constant. In the same way, we
represent static solutions for different values of the density contrast parameter σ, as defined
in (6.2).

Different values of λ and R0 define how effective is the modification of gravity with
respect to GR. In particular, λ controls the depth and vertical extension of the effective
potential, and in consequence, it affects the existence and stability of the field solutions,
while R0 sets the crossover curvature scale. In particular, we chose R0 = 10−2/r2

g to have
the same value throughout this chapter.

As expected, in Figure 6.4, we notice the reduction of the field amplitude in r ∈
(rg, rISCO] for larger values of σ. However, it is not required to impose σ = 0 to obtain
a hairy solution. Furthermore, we calculate the static solutions corresponding to different
choices parameters of the Hu-Sawicki model. The shape of the static solution for different
values of n can be found in Figure 6.5. Additionally, static solutions for different values of
α and σ are represented in Figure 6.6. In all of these cases, the rest of the parameters were
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Figure 6.4: Static profiles of the scalar field in the Starobinsky model for n = 1 and varying
density contrast σ.

kept as constants. The dynamical results in Figure 6.2 expose the accretion of the chameleon
solutions and prove the existence of non-trivial stable solutions (plotted in separate panels)
of the static version of (6.6) outside r = rg for the parameters we chose. The radial scalar
flux J ≡ 4πr2 T [φ]r0 = 4πr2 φ,xφ,t is represented in Figure 6.7, showing no propagation
outside rISCO.

We show an additional way to test that the static profiles in Figure 6.3, both are suitable
representations of field configurations around the minimum of the effective potentials in
Figure 6.1. In the large-curvature limit, one can notice that V ′(φ) ' R/3, and so the
equilibrium condition in (6.18) implies R ' −8πGT just as it is in GR. As a consistency
check, in Figure 6.8 we tested the validity of the general relativistic limit in the case of a
non-trivial value of the density contrast in the Hu-Sawicki model for a configuration that
remains fully screened. This result remains valid for different values of the density contrast
and further extends to the Starobinsky model.

So far, we discussed a few cases where we notice a smooth evolution into a non-trivial
static solution. Nonetheless, the existence of static hair solutions is not enough to ensure
smooth convergence to them. In Figure 6.1, we find the field values where infinite curvature
is reached are close to the minima of the potential for different choices of model parameters,
which is consistent with the results in [110, 21]. Small field excursions from the minimum
are sufficient to form curvature singularities outside the event horizon, and it can happen
dynamically.

Equilibrium solutions for the field are defined by locating the “valleys” of Veff(φ), which
in these cases are not far from reaching the infinite curvature limit. Further modifications
of the functional form of f(R), for example the addition of a term proportional to R2, can
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Figure 6.5: Left panel: Static profiles of the scalar field in the Hu-Sawicki model for α = 1.0
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create a potential wall which will shield the field from reaching singularity. We will explore
this alternative in the next section.

In the left panel of Figure 6.9, we show the dynamical formation of a curvature singularity
outside the black hole’s event horizon. We chose n = 3 and λ = 2.1 as parameters for the
Starobinsky model. Similarly, in the right panel of the same figure, we plot the formation of
a naked singularity after picking n = 3 and α = 4.31 as model parameters in the Hu-Sawicki
model. The profiles of field φ themselves do not diverge or show irregular behaviour while
the singularities are formed, but the curvature R goes singular when evaluating R(φ)|φ=0.
The singularity is rather weak, and most likely of integrable type, but it is nonetheless a
naked singularity formed in evolution of the regular data, which shows cosmic censorship
conjecture [192] is violated in these models.

6.3 Resolving curvature singularities in f(R) theories

In Figure 6.9, we observed the formation of integrable curvature peaks in the Starobinsky
and Hu-Sawicki models. In both cases, these were located in r ∈ (rg; rISCO] and appeared as
a consequence of small field excursions from the potential minima reaching the field value
corresponding to infinite curvature. In this section, we briefly discuss that the addition of
an extra “mass” term in the functional form of f(R), as suggested in [151, 21].

f̃S = R+ λ

[ 1
(1 + (R/R0)2)n − 1

]
R0 + µ

R0
R2, (6.19)

f̃HS = R− α(R/R0)nR0
1 + β(R/R0)n + µ

R0
R2, (6.20)
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Figure 6.10: Dynamical resolution of the curvature singularities plotted in Figure 6.9 after
the definitions in (6.19) and (6.20). Left panel: evolution of the curvature cusp for n = 3
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is enough to remediate the divergences appearing in both models for the same choices of
model parameters chosen in the previous section. Here the singular point is avoided by
adding an infinite barrier that regularizes the potential and its derivatives. In the same ref-
erences, it is possible to find constraints of the value of µ mostly related with the expected
decay time of the scalarons in cosmological scales. Here we chose µ = 10−6 to leave the
low-curvature features of the model unaffected, while putting a cap at moderate curvature
values to avoid numerical dynamical range issues which might cloud the discussion. Note
that the extra mass term does not appear in the definition of V ′(φ) described in (6.9), re-
gardless of any choice of µ. In Figure 6.10, we evaluated the dynamics of the scalar curvature
in tortoise coordinates considering n = 3 and λ = 2.1 as parameters for the Starobinsky
model and n = 3, α = 4.31 for the Hu-Sawicki model. These choices produced unstable
evolution truncated in the large-curvature regime when using fS and fHS. After adding
the corrections in (6.19) and (6.20), the curvature peaks are limited and absorbed with-
out reaching infinite values, with evolution towards an equilibrium configuration continuing
without further inconveniences. However, even when the evolution of the curvature peaks
is more benign these are still formed outside the event horizon. Thus, if there is no obser-
vational evidence of such cusps, their existence in the model will pose constraints not only
for specific choices of initial conditions or parameters, but for the entire subspace of the
model parameters connected to the troublesome region by the renormalization flow. For the
Hu-Sawicki model, the parameter scaling (6.16) that leaves action invariant will involve µ,
nonetheless, it is still possible to find a family of parameters with similar curvature features
starting from only one solution.

6.4 Scalar accretion for the symmetron model

6.4.1 Action and equations of motion

We now turn to the symmetron model described by a scalar-tensor action of the form

S =
∫ √
−g d4x

[
R

16πG −
1
2(∇φ)2 − V (φ)

]
+ Sm[A2(φ)gµν , ψ], (6.21)

where gµν is now in the Einstein frame metric and ψ are the matter fields minimally coupled
to the Jordan metric A2(φ)gµν . For simplicity, we will describe the dynamics of the scalar
φ in the Einstein frame as in [75]. The symmetron is then modelled with a potential

V (φ) = V0 −
µ

2φ
2 + λ

4φ
4, (6.22)

and a coupling function

A(φ) = 1 + ~
2
φ2

m2
S
, (6.23)
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where λ and µ are positive coupling constants and m2
S is a high mass scale that suppresses

any contributions higher or equal to O(φ4/m4
S). The equations of motion for the Einstein

frame metric are
Rµν −

1
2Rgµν = 8πG

(
T [φ]
µν + T [m]

µν

)
, (6.24)

while for the real scalar φ the equation of motion reads

�φ = V ′eff(φ). (6.25)

The effective potential Veff(φ) ≡ V (φ)− TA(φ) is defined as

Veff(φ) = Ṽ0 + 1
2

(
−~T
m2

S
− µ

)
φ2 + λ

4φ
4, (6.26)

and, as in the case of f(R) theories, it is dependent on the environment through the trace of
stress-energy tensor T ≡ Tµµ . The coefficient of φ2 in equation (6.26) changes sign depending
on the magnitude of T , and determines the shape of the symmetron effective potential. In
case of an environment made solely of dust2 (T = −ρ), we can define ρcrit = µm2

S/~ such
that for energy densities ρ < ρcrit the effective potential becomes shaped like a mexican
hat. For vanishing density, the two minima are at φ = ±φ∗ with φ∗ ≡

√
µ/λ. In regions

of high density, ρ > ρcrit, there is one single minimum at φ = 0. Hence A(φ) = 1 for high

2Pressureless matter without self-interactions, unable to propagate any excitations.
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Figure 6.12: Evolution of the symmetron field for two sets of model parameters in tortoise
coordinates. Left panel: Convergence towards a trivial field profile for λ = 10−2/~, µ =
8 × 10−4/r2

g and m2
S = 10−3~2/r2

g . Right panel: Non-trivial hair solution for λ = 102/~,
µ = 8× 10−1/r2

g and m2
S = ~2/r2

g .

densities, and the field decouples from matter since Sm does not depend on φ anymore.
This mechanism allows the symmetron model, with the proper parameters, to pass the solar
system tests of GR. In the case of this model, the difference between the field dynamics in
high-density regions described in the Jordan and in the Einstein frame is not substantial
because of the quadratic dependence of the conformal factor on φ/mS.

6.4.2 Accreting symmetrons

In this section we evaluate the dynamics of the accreting symmetrons. Previously, in sub-
section 6.4.1, we discussed a simplified model equipped with spontaneously broken Z2 sym-
metry and an environmentally dependent mass. The shape of the potential and the effects
of the coupling with matter are shown in Figure 6.11. Following the potential in (6.26),
we observe that in regions of high matter densities, the only stable field configuration is
φ = 0; however, as we discussed in the previous section, the field takes a non-zero vacuum
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expectation value in zones of lower matter density. In consequence, considering the mass
distribution in (6.3), the initial radial profile used is

φ(r, t = t0) =

φ∗, r < rISCO

0, r ≥ rISCO,
(6.27)

which can be smoothed by using an hyperbolic tangent in the same manner as in the
matter profile. An equivalent but more physically motivated way to choose the initial field
configuration is to place it in equilibrium V ′eff(φ) = 0 for a given matter distribution. Once
again we will assume φ̇(r, t = t0) = 0 for initial field velocity. With these initial conditions
and choosing σ = 0, we compute the evolution of the field profile for two different sets of
model parameters: (a) λ = 10−2/~, µ = 8 × 10−4/r2

g , m2
S = 10−3~2/r2

g and (b) λ = 102/~,
µ = 8×10−1/r2

g , m2
S = ~2/r2

g . Depending on parameters chosen, symmetrons do not always
form non-trivial static hair solutions. The flux of the symmetron field J ≡ 4πr2 φ,xφ,t is
shown in Figure 6.13. All the ingoing scalar fluxes calculated here settle to zero smoothly
after initial transient.

In the first choice of parameters there is not a clear difference between the bare and
effective potentials – i.e., even when φ∗ is different than zero, the curvature of the effective
potential is almost the same as in the bare potential –. Nonetheless, the bare and effective
potential are distinct in every aspect for the second choice of parameter models. In Figure
6.12, we calculated the evolution of the field towards equilibrium for both choices. The
difference in evolution lies in the contribution of the matter source to the effective potential:
in the left panel of Figure 6.13, we supressed the effects of the “external force” driven by
the static matter density. Therefore this limit case is consistent with the standard no-hair
theorem. However, that is not the case for the model depicted in the right panel, where
the mass of the black hole is the same as the coupling parameter mS. In accordance with
our description in the previous subsection, we will explore the cases in which we can find
non-trivial static solutions. From Figure 6.11, we can recognize at least one equilibrium
field configuration corresponding to the different vacua for a given shape of the deformed
“Mexican hat” potential. In Figures 6.14 and 6.15, we compute the static solutions for
different values of the model parameters.

6.5 Accretion of the Ratra-Peebles chameleons

6.5.1 Equations of motion and setup

We now study the prototypical example of the chameleon screening, defined in the Einstein
frame by the same scalar-tensor action as in (6.21), with the Ratra-Peebles potential

V (φ) = V0 + γn+4

φn
(6.28)
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Figure 6.13: Scalar field flux in the symmetron field evolution. Initial transient splits into
ingoing and outgoing waves, which are transported to horizon and spatial infinity (in the
purple curve) without attenuation. Overall flux settles to zero soon after initial transient.

1 2 3 4 5 6

r/2M

0.0

0.2

0.4

0.6

0.8

1.0

φ
(r

) s
ta

ti
c/
φ
∗

r
=

6M

µ = 0.3 m2
S

µ = 0.5 m2
S

µ = 0.8 m2
S

µ = m2
S

1 2 3 4 5 6

r/2M

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

φ
(r

) s
ta

ti
c r

=
6M

λ = 102/h̄

λ = 2× 102/h̄

λ = 5× 102/h̄

λ = 103/h̄
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Figure 6.15: Static solutions for different values of σ in the symmetron model, µ = 0.8m2
S

and λ = 102 were held as constants.

and an approximate coupling function

A(φ) ≈ 1 + εφ

mC
, (6.29)

where the model parameter γ represents the strength of the potential and the ratio ε/mC

determines the strength of the field coupling to matter. mC plays the role of a high mass
scale where the screening is effective. Potentials of this form are usually called “runaway
potentials” due to their dependence on negative powers of φ. Here we also choose to work
in the Einstein frame being consistent with the procedures followed in [75]. The equations
of motion for both the metric and the scalar field are the same as in (6.24) and (6.25), but
now the effective potential is given by

Veff(φ) = V0 + γn+4

φn
+ εφ

mC
(−T ). (6.30)

where −T = ρ for dust-like matter. This is another case of an effective potential dependent
on the environment. Due to the term proportional to T , it is possible to find an equilibrium
configuration for the field from V ′eff(φ) = 0

φ̄C =
(
nγn+4 mC

−εT

) 1
n+1

, (6.31)

in the case of pressureless matter (T = −ρ), we see that the field is suppressed in dense
regions (with energies larger than mC) and unscreened in regions with lower densities. The
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Figure 6.16: Left panel: Evolution of the Ratra-Peebles chameleon for n = 1. The field
smoothly evolves into a static hair solution after initial transient. Right panel: Scalar field
flux of the same evolution. The scalar flux represents how the field gets absorbed into the
black hole’s event horizon.

effective mass of the field is given by

V ′′eff(φ̄C) = (n+ 1)n−
1

n+1 γ−
n+4
n+1

(−εT
mC

)n+2
n+1

, (6.32)

which becomes larger in dense environments. Therefore, chameleon and symmetron fields
have different forms of screening: in the case of the symmetron, it is a consequence of the
reduction of the field correlation length due to a larger effective mass of the field. In a low-
density environment, the minimum can be found at φ = φ∗ with φ∗ ≡

(
nγn+4mC/(εσρ0)

) 1
n+1 ,

where σρ0 is the density at r < rISCO.

6.5.2 Accreting chameleons

Here we evaluate the accretion of the Ratra-Peebles chameleons in the background described
in section 6.1. In Figure 6.17 we observe the shape of the potential as a function of the field
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Figure 6.17: Effective potential for the Ratra-Peebles chameleon considering arbitrary spa-
tially constant matter densities and positive model parameters for n = 1.

φ, and the effects of the coupling with matter. The effective mass – i.e. the concavity of the
effective potential – increases with the environmental matter density of dust.

We derive initial conditions compatible with (6.18) by replacing the matter distribution
proposed in (6.3) with (6.31), avoiding the value of σ = 0 to not have any divergences in
the initial field profile at r < rISCO. The constitution of the Ratra-Peebles model offers
the possibility of finding the corresponding initial field configuration as a function of the
surrounding matter density, the reverse process can also be coded without inconveniences.
Assuming static initial conditions and σ = 0.01, ε = 102, γ = 0.3mC and a surrounding
dust density of −T = ρ0 = 3 × 10−2mC/r

3
g , we find the evolution of the field from initial

conditions towards a static solution in the left panel of Figure 6.16. From this figure, we
can notice that the evolution of the field is not significantly different from our results for
the Starobinsky and the Hu-Sawicki models in Figure 6.2, which is consistent with the
effects of the chameleon screening in these models. Additionally, the ingoing field flux is
depicted in the right panel of the same figure. Here the flux is regular and converges to the
limit where there is no other source apart from the static matter distribution. Ingoing flux
lines are represented around x (rISCO) ≈ 3.89. We also present static solutions for different
choices of the model parameters. In Figures 6.18 - 6.19, we show the changes in shape of
the hair profiles for different parameter choices. In this case, the tuning of the parameter
in the runaway potential is sensitive to changes in the orders of magnitude: it is simple to
accidentally suppress the whole contribution of this part of the potential, due to the (n+ 4)
power of γ.
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6.6 Discussion

In this chapter, we describe the dynamics of scalar accretion onto a Schwarzschild black
hole in the presence of a static matter distribution modelled by (6.3). In particular, we
studied the accretion of the extra scalar degrees of freedom appearing in two models of f(R)
gravity, the Starobinsky and Hu-Sawicki model, as well as in the symmetron model. Stable
convergence to static scalar hair profiles results from varying parameters for each specific
model. In the cases of the Starobinsky and Hu-Sawicki model, we can obtain dynamical
chameleon solutions with singular curvature outside horizon without requiring an infinite
energy budget. In the case of accreting symmetrons, it is not always possible to form a
non-trivial static solution since it depends on the strength of the coupling with matter.
More concretely, it depends on how large is the energy scale mS compared to the mass of
the black hole. Our results for the field fluxes are included for all the cases we studied, along
with the static solutions for different model parameters.

Even when the simulations of astrophysical rotating black holes suggest a large density
contrast, we noticed that the formation of non-trivial static solutions does not require an
absolute vacuum environment close to the black hole’s event horizon, where r ∈ (rg, rISCO].
We did not consider the effects of backreaction of the field in the spacetime solutions since
these are small even during the formation of integrable naked singularities.

We acknowledge the progress made in [75, 74], wherein approximate analytic expressions
for scalar hair solutions in the case of rotating black holes were found. Additionally, this
chapter discusses the possibility of a non-negligible ratio between the radiated power from
extra scalar sources and the quadrupole gravitational radiation in GR, which might be
testable by the future generation of gravitational-wave detectors. In our approach, apart
from calculating static solutions in different circumstances, we evaluated the scalar accretion
dynamically in such a way that it is possible to converge to a hairy or a “bald” solution,
depending on the model and its parameters. These results also motivate further explorations
on the effect of scalar forces confined by screening, surrounded by a non-trivial matter profile
for merging binary systems.

The existence of non-trivial field profiles has also been studied for scalars with non-
canonical kinetic terms, such as in the Galileons studied in [29, 30]. Those solutions are
described in vacuum environments and do not accrete into the black hole’s horizon. The
form of the equations of motion of Galileon is not semi-linear, and is harder to study
numerically, as Galileons propagate with speeds that vary at different locations. Numerical
implementation of a dynamical code designed to compute evolution of such scalar fields will
be covered in a future project. We are also considering to extend the techniques developed
here to full 3D scalar-field scattering by a black hole.
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Chapter 7

Echoes from the scattering of
wavepackets on wormholes

The era of gravitational wave (GW) astronomy [2, 1] has begun. GW spectroscopy, in
analogy to its atomic counterpart, allows us to investigate strong gravitational interactions
in their radiative regime. In this new range of frequencies, it is now possible to explore the
role of dynamical gravitational degrees of freedom in a wide range of astrophysical [111, 63]
and cosmological [160, 11] phenomena.

The prolonged absence of observational evidence confirming the dynamical properties
of spacetime has motivated a plethora of conjectures about the behaviour of gravity within
and beyond [69, 233, 141] classical General Relativity (GR). The potential existence of ex-
otic compact objects (ECOs) generated by quantum effects on gravity [176, 17, 173] (such
as wormholes, firewalls and gravastars) has captured the attention of many recent efforts
[156, 237, 103, 64, 4, 172, 245, 70, 246, 3]. The primary claim is that the detection of a train
of “echoes” isolated from the main transient of a GW event and with generically large ampli-
tudes would be clear evidence of ECOs. Following the effective field theory approach argued
since Chapter 1, it is possible to show that the reflectivity of any potential barrier depends
on the energy scale involved in the merger [55]. It is, therefore, necessary to understand
(i) the mechanisms behind the production of echoes and (ii) the intensity and spectrum of
the outgoing wavelets compared to the GW transient in the most straightforward possible
setup. In this chapter, we explore the generation of echoes by colliding wavepackets of scalar
and tensor radiation against a traversable spherically symmetric wormhole [244]. We find
that such a wormhole behaves just like a Fabry-Perot cavity and shares common properties
with the potential cavities made by other ECOs, like gravastars and firewalls. Additionally,
considering that the main features of the outgoing pulses are similar to the ringdown signals
expected from the coalescence of ECOs, our results show that the amplitude of the echoes
is not generically large.

Here we consider a simplified wormhole configuration made by the junction of two
Schwarzschild geometries of equal masses at r0 > 2M , widely known as the Morris-Thorne
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wormhole [64, 175]. In this case, the symmetry of the centrifugal barriers at r = 3M on
each side of the throat allows us to find the reflection and transmission coefficients of the
cavity. Hence, it is possible to reconstruct the spectral shape of the outgoing pulse using the
geometrical optics approximation. Nevertheless, this approximation predicts an exponential
decay of the subsequent higher-order reflections, which appears instead as a power-law
in the full solution of the scattering problem. Thus, the excitation of quasinormal modes
(QNMs) is the only cause for the presence of echoes in the time evolving profile. These
modes are sourced by a sequence of internal reflections inside the potential cavity and then
propagate throughout the surface of the maximal potential energy spheres (i.e., the “spikes”
of the potential barriers in radial coordinates, corresponding to two-dimensional spheres in
real space), while radiating energy to the exterior. QNMs of the Schwarzschild solution
have been studied in detail and reproduced in various analytic and numerical simulations
[67, 18]; thus it is easy to identify their characteristic frequencies in the spectrum of outgoing
pulses. We also present the full scattering solution both inside and outside the wormhole
cavity, along with the energy fluxes and the asymptotic solutions for the principal spherical
modes of a scalar (and tensor) wavepacket. In addition to this, we find the width and
frequency intervals contained in the incident wavepackets for which the outgoing wavelets
have maximal amplitudes. Our computer code is optimized to solve both scalar accretion and
scattering problems and is publicly available at https://github.com/andrei-v-frolov/

accretion/tree/wormhole.
The layout for this chapter is as follows: in section 7.1, we review the scattering problem

of scalar waves starting by a quick overview of the dispersion of a Gaussian pulse by a
Schwarzschild black hole. The main point of this section is to calculate the transmission
and reflection coefficients of each of the centrifugal barriers constituting the resonant cavity,
formed in the case of a wormhole. Our results show a frequency “sweet spot” such that the
incident pulse is not fully reflected nor fully transmitted by the cavity, favouring multiple
internal reflections that source the QNMs. Furthermore, we solve the problem of scattering
by a wormhole directly using the same ingoing Gaussian wavepacket, and then we compare
the Fourier transform of this solution with the pulse reconstructed following the geometrical
optics approximation. We find that the approximate reconstruction matches the full solu-
tion, up to the peaks due to the QNM frequencies. Likewise, we evaluate the amplitude of
each of the echoes as a function of the width of the initial Gaussian waveform, finding that
a single width of the incident pulse maximizes the amplitude of all the echoes. In Section
7.2, we extend the results in the previous section to a Gaussian pulse of tensor fluctuations
of the metric by following the even and odd decomposition of the tensor modes introduced
by Regge, Wheeler and Zerilli in [207, 255, 201, 202]. We can rewrite our results in the usual
asymptotic polarization modes h+ and h×, known as the perturbations of a flat metric. We
conclude with a discussion in Section 7.4.
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Figure 7.1: Effective potential for the spherical modes Ubh
20 (x, t) scattered by a Schwarzschild

black hole, growing with `. The wall acts as a barrier transparent to certain frequencies above
a transmissivity threshold and reflective for lower frequencies.

7.1 Scattering of scalar wavepackets

In this section, we solve the scattering of a Gaussian wavepacket by a spherically symmetric
wormhole. To do so, we will first review the dispersion by the centrifugal barrier of a
spherically symmetric black hole in order to find the properties of the potential cavity.

7.1.1 Scattering by a Schwarzschild black hole

Our primary objective is to study the dynamics of scalar and tensor wavepackets scattering
from a Misner-Thorne wormhole at all points. Thus, we first review the dispersion of scalar
waves by a Schwarzschild black hole, thoroughly studied in [214, 215, 216, 217], wherein the
collision against each of the two potential walls (constituting the effective potential cavity
formed by a wormhole) is studied in full detail. The dynamics of the scattering problem is
found by solving the equation of motion for a test scalar field

�Φ = 0, (7.1)

where � ≡ gαβ∇α∇β is the standard d’Alembertian in a curved background. Here gαβ is
the metric tensor in a spherically symmetric Schwarzschild-like static spacetime

gαβ = −f(r)δtαδtβ + 1
f(r)δ

r
αδ

r
β + r2

(
δθαδ

θ
β + sin2 θδφαδ

φ
β

)
. (7.2)

It is convenient to introduce the tortoise coordinate x:

x ≡
∫ r

r0

dr

f(r) , (7.3)
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In the case of the Schwarzschild metric f(r) = 1− rg/r the last expression yields

x = r − r0 + rg ln
(
r − rg
r0 − rg

)
, (7.4)

for rg < r < +∞ and r0 > rg, where rg = 2M is the usual Schwarzschild radius. By
direct evaluation, we see that r = r0 corresponds to x = 0, the horizon r = 2M maps into
x→ −∞ and r → +∞ is x→ +∞. In our numerical routine, we invert (7.4) to get r ≡ r(x)
(see the appendix A, subsection 6 in [111] for more details). In tortoise coordinates, we can
decompose the scalar field in spherical harmonics

Φ(x, t) = 1
r(x)

∑
`,m=0

Ubh
`m(x, t)Y`m(θ, φ), (7.5)

in that way we can rewrite (7.1) as[
−∂2

t + ∂2
x − V bh

scalar(x)
]
Ubh
`m(x, t) = 0, (7.6)

and the effective potential V bh
scalar(x) is given by

V bh
scalar(x) =

(
1− rg

r(x)

)[
`(`+ 1)
r(x)2 + rg

r(x)3

]
. (7.7)

After rearranging the variables, the equation of motion of the spherical modes is now written
in its traditional linear waveform. In Figure 7.1, we observe the growth of the potential
barrier with the angular momentum number `. The potential wall does not vanish for the
monopole (` = 0) due to the extra term proportional to r−3 appearing after the coordinate
change, which replaces the radial damping in the original Schwarzschild coordinates (t, r).
Such a term becomes subdominant for all ` ≥ 1. Intuitively, it is reasonable to expect that
the modes with frequency above a given threshold (related to the thickness of the wall) can
cross the barrier, while the lower frequency modes reflect.

Now we setup the scattering problem for one of the spherical modes (Ubh
20 , the quadrupole)

with the following initial conditions corresponding to an ingoing Gaussian wavepacket

Ubh
20 (x, 0) = exp

(
(x− x0)2

2σ2

)
, ∂tUbh

20

∣∣∣∣
t=0

= ∂xUbh
20 (x, 0), (7.8)

After fixing the values of the width to be σ = 0.9185rg, the initial position of the
Gaussian at x0 = 60.0rg, r0 = 20.0rg and the initial conditions in (7.8), we show the time-
dependent solution of (7.6) in Figure 7.2, where we distinguish the incident (lines with
negative slope to the right of the wall), transmitted (lines with negative slope to the left of
the wall) and reflected parts (lines with positive slope to the right of the wall) of the solution.
It is important to observe the absence of spurious late time reflections and interferences due
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Figure 7.2: Dispersion of the incident Gaussian wavepacket Ubh
20 by the potential barrier

(plotted in black) showing the incident, reflected and transmitted pulses, it is possible notice
the ringing of the reflected solution due to the quasinormal modes.

to the implementation of perfectly matching layers (PMLs) in the outermost regions of our
simulation box (see the details of our setup for PMLs in [111]). We observe the main features
of the reflected signal in Figure 7.3, where the asymptotic behavior of the signal shows a
sharp transient as a consequence of the collision against the potential wall, and the ringing
of quasinormal modes occur right after the reflection in agreement with [193].

It is now possible to evaluate the reflection and transmission coefficients of the potential
wall depicted in Figure 7.1. To do so, we compute the one-dimensional Fourier transform
of the incident Ũ inc

20 (ω) = F [Ubh
20 (0, x)], reflected Ũ ref

20 (ω) = F [Ubh
20 (t,+∞)] and transmitted
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Figure 7.3: Asymptotic solution (zoomed in, for clarity) for the quadrupole mode Ubh
20 (x, t)

by direct evaluation of the results in Figure 7.2. The reflected signal shows its maximum
peak and the posterior ringing due to QNMs.
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Figure 7.4: Reflection and transmission coefficients as functions of frequency (ω), the iden-
tity R2 + T 2 = 1 is satisfied with an error smaller than 1%.

Ũ trans
20 (ω) = F [Ubh

20 (t,−∞)] from the solved scattering modes in order to define

R(ω) ≡ ||Ũ
ref
20 (ω)||

||Ũ inc
20 (ω)||

, T (ω) ≡ ||Ũ
trans
20 (ω)||
||Ũ inc

20 (ω)||
(7.9)

as the transmission and reflection coefficients, respectively. In Figure 7.4, we plot the
squares of these coefficients as functions of frequency observing that the identity R2 +T 2 =
1 is only approximately met because of the small contributions coming from the QNMs
frequency peaks in both the transmitted and reflected solutions. The shape of both the
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Figure 7.5: Two-dimensional schematic depiction of a Misner-Thorne wormhole made by
the junction of two identical copies of the Scwharzschild geometry. This junction occurs
in the red circles at r0 > rg, creating a discontinuity in the geometry (and in the energy-
momentum tensor). Misner-Thorne geometry does not have horizons.
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Figure 7.6: Effective potential cavity for the wormhole in (7.11), we observe the growth of
the barriers with the angular momentum number `.

transmissivity and reflectivity curves is very similar to an hyperbolic tangent step function1,
intersecting at R2 = T 2 = 0.5, as expected. Furthermore, it is crucial to notice from the
last figure that it is only in a narrow band of frequencies where the amplitudes transmitted
and reflected by the potential barrier are comparable. in the case of a wormhole, such a fact
will be important in our analysis.

7.1.2 Scattering by a traversable wormhole

In this section, we study the dispersion of Gaussian wavepackets by a traversable wormhole,
formed by the junction at r0 > rg of two Schwarzschild geometries with equal mass, as
depicted in Figure 7.5. There is a discontinuity in the Einstein tensor Gαβ (and thus, in
the energy-momentum tensor) such that at r = r0 = 20.0rg, any contracting congruence of
geodesics in one side of the throat starts to expand in order to reach the other side, violating

1This is not surprising after we consider the DeWitt approximation for the transmissivity [82, 112], which
is precisely given by a step function.
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Figure 7.7: Schematic reconstruction of the outgoing solution by a sequence of reflections
and transmissions inside the potential cavity. Dashed red lines propagate in the other side
of the throat, hence the signals carried by them are inaccessible by any observer in the side
of the emitter.

the weak energy condition. Such a configuration does not show coordinate singularities nor
horizons, it is known in the literature as the Morris-Thorne traversable wormhole [175].
The dynamics of the scattering problem is still given by the solutions of (7.1) following the
same decomposition in spherical modes as in (7.5). Hence, the waveform of the equation of
motion for the spherical modes is given by[

−∂2
t + ∂2

x − V wh
scalar(x)

]
U`m(x, t) = 0, (7.10)

and the effective potential V wh
scalar(x) yields

V wh
scalar (x) =

(
1− rg

r (|x|)

)[
`(`+ 1)
r (|x|)2 + rg

r (|x|)3

]
. (7.11)

This is plotted in Figure 7.6 and coincides with the shape of the potential calculated
in [64]. Strictly speaking, we refer to r (|x|) as the same inverse of the function mentioned
in (7.4) now evaluated at |x| − r0. As we can see in Figure 7.6, the new effective potential
is merely a reflection of the potential barrier in Figure 7.1 about the ordinate axis; thus,
it is sensible to identify this system as a potential cavity built from two potential barriers
with the reflection and transmission coefficients depicted in Figure 7.4. Furthermore, let us
assume that an arbitrary incident pulse Φ0 propagates towards the cavity, it is, therefore,
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Figure 7.8: Left panel: Evolution of the clean quadrupole mode U20 for the effective potential
in Figure 7.6. We can notice the sequence of reflections and transmissions inside the cavity
is very similar to the scheme depicted in Figure 7.7. Right panel: Evolution of the radial flux
J20 ≡ ∆U20,x∆U20,t of the clean signal. The only incident source comes from the collision
of the pulse, which dissipates very slowly to the exterior every time the internal reflections
hit the walls of the potential cavity. QNM are sourced by this process.
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reasonable to approximate the spectrum of the asymptotic solution by a simple geometrical
series of reflections and transmissions inside the cavity acting on the incident pulse, as
shown in Figure 7.7. Following this scheme, the asymptotic solution can be approximated
by

Φwh(ω)|x→+∞ =
[
R+ T ◦

∞∑
i=0

R2i+1 ◦ T
]
◦ Φ0(ω). (7.12)

where the symbol “◦” represents the function composition between reflection/transmission
operators. It is not difficult to see that, in the hypothetical case of a perfectly reflective wall
replacing the left potential barrier in Figures 7.6 and 7.7, the reconstructed pulse is instead
given by

Φf(ω)|x→+∞ =
[
R+ T ◦

∞∑
i=0

Ri ◦ T
]
◦ Φ0(ω), (7.13)

corresponding to the case of a firewall2. Nevertheless, we will not cover the features of the
firewall solution in what remains of this chapter.

We now solve the scattering problem exactly for the first non-zero mode of gravitational
radiation, which is the quadrupole U20(t, x). Using the same initial conditions as in (7.8)
for σ = 0.9185rg as the standard deviation of the incident Gaussian pulse, we find the
time-dependent solution of the quadrupole mode U20 (left panel) and the radial flux J20 ≡
∆U20,x∆U20,t, of a signal clean of backscattering effects ∆U20|clean ≡ U20|original−Ubh

20 (right
panel) in Figure 7.8. It is interesting to notice in the evolution plot (on the left) that the
signal forms an interference pattern at very late times, showing that successive reflections
create an interference pattern which fills the cavity. In addition to this, even when the
amplitude of the modes decreases after each collision against any of the potential walls, the
spherical modes propagate for longer time3 throughout the spheres of maximal potential.

The scalar flux is shown in the right panel, we observe that the only source of scalar
radiation comes from the first collision of the Gaussian wavepacket against the barrier in
the right hand side (the ingoing flux is colored in black at the bottom of the contour plot).
A sequence of reflections occurs within the potential barriers, which decay in intensity with
time as the cavity leaks energy to the exterior.

Amplitudes of the outgoing signals depend on the variance of the incident Gaussian
wavepacket, this is visible in Figure 7.9 where we plot the asymptotic solutions for two
different ingoing wavepackets: one with σ = 0.6495rg in the left panel and a second one
with σ = 5.196rg in the right. After subtracting the outgoing solution for a black hole,
the presence of a train of wavelets, colloquially known as echoes, is very clear. For large

2A two-barrier system where the innermost wall is a perfectly reflective surface [17] located at the event
horizon. It is designed to destroy all correlations between quantum fields propagating towards it.

3The inverse of the imaginary component of the quasinormal mode frequencies in [18] gives an idea of
the decay timescale for each mode.
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Figure 7.9: Left panel: Asymptotic (at x ≈ 100rg) evolution of the quadrupole mode U20 for
σ = 0.6495rg. Echoes are plotted in the upper corner of the plot, showing them along with
their Hilbert envelope (the curves in green) and maximum amplitudes (in red). Right panel:
Asymptotic evolution of the quadrupole mode U20 for σ = 5.196rg. In contrast with the left
panel, echoes are four orders of magnitude smaller than the transient. The amplitude of the
transient (inside the red region) in the right figure has decreased with respect to the one in
the left panel.

values of σ, the signal is not decreasing monotonically after the transient, as we can observe
in the right panel of the same figure. Therefore, subtracting the outgoing pulse (i.e., the
case in which there is only one potential wall) obtained from the black hole is a convenient
way to clean the signal from back reflections due to the “tails” of the potential barrier.
The necessity of this procedure is more evident in the case depicted in the right panel of
Figure 7.9, where the amplitudes of the echoes are four orders of magnitude smaller than
the transient. In both panels, we plot the variable ∆U20|clean in the right upper corner of
the figures to represent the echoes and their net amplitude after removing backscattering
effects. Notice that, in the upper corner of both figures, the amplitude of the echoes does
not decrease exponentially with time due to the successive reflections inside the cavity.

As shown in subsection 7.1.1, the curves of reflectivity and transmissivity determines
which frequencies stay in the cavity: most of the power of an incident pulse with large σ
is in the low-frequency domain, and therefore it will be reflected. The cavity is transparent
to high-frequency signals, which are dominant in the pulses with small σ. In either of these
extremal scenarios, QNMs cannot be sourced by internal reflections and thus, the amplitude
of the echoes is not large in general. Furthermore, the steepness of the transition near the
overlap point R2(ω) = T 2(ω) = 0.5 regulates the abundance of frequencies in the spectrum
of outgoing signals.

As a next step, we proceed to reconstruct the asymptotic spectrum by following the ge-
ometrical optics relation in (7.12) considering the reflectivity and transmissivity operators
defined in (7.9). Henceforth, the outcome should be compared with the spectral content of
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proximation in (7.12) (in red) with the Fourier transform of the full asymptotic solution
Ũecho

20 (in blue). The color stripes indicate a few of the first QNM frequency peaks corre-
sponding to ω3 = 0.251M−1 in golden rod, ω4 = 0.207M−1 in peru, ω5 = 0.169M−1 in
plum, ω6 = 0.133M−1 in light blue and ω7 = 0.092M−1 in rosy brown, these are the real
parts of the QNM frequencies for n = 3, 4, 5, 6 & 7 calculated in [18].

the asymptotic wave solutions of (7.10). We calculate the Fourier transforms of both the
Gaussian incident pulse Φ0(ω) = F [exp

(
(x− x0)2/2σ2)] for σ = 0.6495rg and x0 = 60.0rg,

and the asymptotic solution Ũecho
20 ≡ F [U20(t,+∞)] including the echoes.

After applying the reconstruction expression in (7.12) up to i = 0 (in red), and com-
paring the outcome with Ũecho

20 , we show the reconstructed spectrum and Ũecho
20 (in blue)

in Figure 7.10. The low-frequency oscillation peaks in the blue spectrum correspond to the
finite size of the simulation box. Notice that the spectrum reconstructed employing the geo-
metrical optics approximation gives the overall shape of the spectrum with decent precision
but not the QNM frequency peaks; these appear in the same frequency interval where the re-
flectivity and transmissivity curves intersect in Figure 7.4. It is, therefore, reasonable to talk
about a “sweet spot” in the frequency domain where the cavity maximizes the amplitude
of the echoes. Intuitively, after observing the results in Figure 7.9, it is possible to identify
a similar “sweet spot” in the parameter space for the variances of the incident Gaussian
wavepackets, considering this is a one-parameter problem. However, it is also necessary to
not only compare the amplitude of each individual echo with σ, but also the ratio between
the amplitude of the echo with the amplitude of the transient for each value of the width,
which is relevant since we are finding the relative intensity of the echoes compared to the
strongest outgoing signal. To do so, we proceed as follows: we setup a logarithmic 1D grid
of “thicknesses” centered at σDW =

√
27rg/2` – the width for which the transmissivity is

maximum according to the DeWitt approximation [82] – and spaced by factors of
√

2σDW.
Then, we find the amplitudes of the first four echoes for every width of the incident pulse
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Figure 7.11: Left panel: Amplitudes of the first four echoes as a function of σ for ` = 2, we
observe the presence of a maximum amplitude of all the echoes at roughly σ ≈ rg, which
is not incompatible with the de DeWitt approximation. Right panel: Relative amplitude of
the first four echoes compared to the amplitude of the transient. The points represent the
simulated wormhole/black hole pairs used in our analysis.

without changing the cavity. In order to determine the amplitudes of the echoes, we need
to subtract the reflection coming from the scattering of a single barrier (i.e., the black hole
case) by using the variable ∆U20|clean. This procedure requires a non-trivial computational
effort since each scattering scenario needs to be solved twice (one for the wormhole and one
for the black hole) in order to clean up the signal and obtain a clear view of the echoes.
After refining the signal, we find the continuous envelope of the asymptotic solution by
calculating its Hilbert transform [142], represented as the green curves in the upper corners
of Figure 7.9, and therefore, the amplitudes of the echoes are the local maxima of these
envelopes (the red dots in the same figure).

Our results can be found in Figure 7.11, where we notice in the left panel the presence
of a well-defined maximal amplitude of the first four echoes. This is consistent with the idea
of a range of frequencies/variances that maximize the amplitudes of the echoes, as shown
in the analysis of the reflection and transmission coefficients: the cavity is transparent for
small widths of the ingoing Gaussian (large frequencies) and is reflective for wide incident
pulses. In the right panel, we observe the growth of the relative amplitude as the widths
become smaller. Such a fact only means that the reduction of the transient is faster than the
reduction of the echoes as the frequencies grow: as the cavity becomes more transparent the
ingoing pulses get transmitted more efficiently. Consequently, this analysis is useful to get a
basic understanding of the frequency/variance scales in which echoes could be observable.

7.2 Scattering of tensor wavepackets

Following the perspective of the even/odd parity decomposition for tensor perturbations of
a spherically symmetric spacetime [207, 255, 201], we implement all the techniques used in
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Figure 7.12: Left panel: Plot of the Regge-Wheeler potential as a function of the tortoise
coordinate x. Right panel: Difference between the Regge-Wheeler and Zerilli effective po-
tentials ∆V = Vodd − Veven. The difference of the two potentials is below the order of 1%
for (` ≥ 2).

section 7.1 and extend our analysis to study the scattering of a Gaussian test wavepacket
of tensor perturbations. From now on, we will follow the conventions in [170], including the
choice of the Regge-Wheeler gauge. The dynamics of the wave scattering problem is given
by two equations of motion of the form(

�̃− Veff
)

Ψ`m = 0, (7.14)

here �̃ ≡ gab∇a∇b is the 2D d’Alembertian operator in the usual (a, b)→ (t, r) Schwarzschild
coordinates. Veff corresponds to one of two possible potentials, the Regge-Wheeler (odd) po-
tential, Vodd

Vodd(r) = `(`+ 1)
r2 − 3rg

r3 , (7.15)

or the Zerilli (even) potential, Veven

Veven(r) = 1
Λ2

[
µ2
(
µ+ 2
r2 + 3rg

r3

)
+

9r2
g

r4

(
µ+ rg

r

)]
, (7.16)

where µ ≡ (`− 1)(`+ 2) and Λ ≡ µ+ 3rg/r. All the source terms proportional to the stress
energy tensor and its contractions appearing in the right hand side of (7.14) in [170] are
not considered for the scattering problem. The introduction of tortoise coordinates (t, x)
is also very convenient and works in exactly the same way as in (7.3) and (7.4), in these
coordinates the waveform of the two equations of motion – one for the odd parity modes
and another for the even – is given by[

−∂2
t + ∂2

x − Veff(x)
]

Ψ`m(x, t) = 0, (7.17)
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where Veven ≡ [1−rg/r(|x|)]Veven and Vodd ≡ [1−rg/r(|x|)]Vodd. Recalling the procedure
we previously followed in subsection 7.1.2; our setup already includes the effective potentials
for the Morris-Thorne wormholes, obtained by reflection of the potential barriers about the
ordinate axis. The effective potentials are plotted in the left panel of Figure 7.12, which is
very similar to the one in the scalar scattering. In the right panel, it is possible to notice
that the difference between the potentials is only substantial at (` ≤ 1). Both the even
and odd solutions of (7.14) and (7.17) are already spherical modes used to find the two
asymptotic polarizations of the tensor fluctuations propagating in a flat background, such
as the term in the diagonal, h+

h+ = 1
r(|x|)

∑
`,m

[
Ψeven
`m

(
∂2
θ + 1

2`(`+ 1)
)
−Ψodd

`m

im

sin θ

(
∂θ −

cos θ
sin θ

)]
Y`m(θ, φ), (7.18)

and the off-diagonal, h×

h× = 1
r(|x|)

∑
`,m

[
Ψodd
`m

(
∂2
θ + 1

2`(`+ 1)
)

+ Ψeven
`m

im

sin θ

(
∂θ −

cos θ
sin θ

)]
Y`m(θ, φ). (7.19)

From these expressions, it is simple to see that the the monopole (` = 0) and the dipole
(` = 1) terms are identically zero. Thus, the first nontrivial contributions come from the
quadrupole solutions Ψodd

20 (x, t) and Ψeven
20 (x, t), from which the differences in the odd and

even potentials are small, and become even smaller for every ` > 3, as we can see in right
panel of Figure 7.12. Additionally, it is reasonable to identify h+ with the even mode and h×
with the odd in the equatorial plane up to a constant. Hence, our analysis for the scattering
dynamics and the reflected/transmitted frequencies does not require from both the even
and odd solutions of (7.17) to extend the discussions from section 7.1. However, we will
explain one of the consequences of the difference between the Regge-Wheeler and Zerilli
potentials in section 7.3.

In analogy with the previous section, now we solve the equations of motion for the
scattering process. Our setup for the initial conditions of Ψodd

20 (x, 0) and Ψeven
20 (x, 0) and

their time derivatives is not different from (7.8)

Ψodd
20 (x, 0) = exp

(
(x− x0)2

2σ2

)
,

∂tΨodd
20 (x, t)

∣∣∣∣
t=0

= ∂xΨodd
20 (x, 0), (7.20)

and the same applies for Ψeven
20 and its initial time derivative. Using σ = 0.9185rg, the same

initial position of the Gaussian wavepackets – i.e., x0 = 60.0rg – and the same separation
between potential walls – i.e., r0 = 20.0rg – as before. We show the evolution of Ψodd

20 (x, t)
in Figure 7.14, where the dispersion of the ingoing pulse is not significantly different from
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Figure 7.13: Left panel: Asymptotic solution of Ψodd
20 considering an incident wavepacket

with σ = 0.9185rg. Asymptotic solution for σ = 5.196rg, the amplitude of the echoes is now
four orders of magnitude smaller than the transient.

our results in the left panel of Figure 7.8: this is not surprising due to the similarities
between the shapes of the effective potentials for scalar and tensor modes, which seem to
become even more similar for higher values of `. At late times, the cavity is filled showing
an interference pattern. Internal reflections make the QNMs propagate for longer in the
spheres of maximum effective potential.

In Figure 7.13, we observe the behavior of the asymptotic solutions for σ = 0.9185rg
(left panel) and σ = 5.196rg (right panel). The magnitude of the echoes is not large in
general, since it varies depending on the spectral content of the initial pulses, which are
not the same in the case of initial Gaussian wavelets with different variances. In analogy
with the scalar case, we notice in the upper corner of both figures that the amplitude of the
echoes does not decay exponentially in time.

Frequency dependent reflection and transmission coefficients can be calculated by study-
ing a scattering problem with a single potential wall, as we noticed in subsection 7.1.1, this
is simply achieved by doing an algebraic inversion of the tortoise coordinate definition in
(7.4): here the inverted function is evaluated in x− rg instead of |x| − rg. The definition of
the reflectivity and transmissivity coefficients remains the same as in (7.9)

R(ω) ≡ ||Ψ̃
odd
ref (ω)||

||Ψ̃odd
inc (ω)||

, T (ω) ≡ ||Ψ̃
odd
trans(ω)||

||Ψ̃odd
inc (ω)||

, (7.21)

where we compute the one dimensional Fourier transforms of the incident Ψ̃odd
inc (ω) =

F [Ψodd
bh (x, 0)], reflected Ψ̃odd

ref (ω) = F [Ψodd
bh (+∞, t)] and transmitted Ψ̃odd

trans(ω) = F [Ψodd
bh (−∞, t)],

where the label (bh) stands for the solutions of the scattering problem of (7.17) with a single
potential barrier. These single barrier solutions are not only necessary for the study of the
potential cavity, but also to clean up the low frequency (high σ) solutions, since in those
scenarios it is not simple to determine the amplitude of the echoes. All of the aforementioned
definitions are also applicable for Ψeven.
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Figure 7.14: Evolution of Ψodd for an ingoing Gaussian pulse with σ = 0.9185rg.

In the left panel of Figure 7.15, we show the reflection and transmission coefficients as
functions of the frequency, noticing that the two curves intersect at R2 = T 2 = 0.5, as
expected. The identity R2 + T 2 is approximately satisfied. As a next step of our analysis,
we reconstruct the Fourier transform of the asymptotic pulse shown in Figure 7.13. We
employed the definition of the geometrical optics approximation in (7.12), applied up to
i = 0, in the Fourier transform of the Gaussian incident wavepacket in order to obtain the
reconstructed profile in the right panel of Figure 7.15. The signal reconstructed using the
geometrical optics approximation provides a better representation of the total reflected pulse
as the ingoing wavelet gets wider, and therefore, it has more power in lower frequencies.

Motivated by the drastic change in the amplitudes of the echoes seen in both panels
of Figure 7.13, we now explore the dependence of the amplitude of each individual echo
with the width of the incident Gaussian pulse. To do so, we follow the same procedure
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Figure 7.15: Left panel: Reflection and transmission coefficients for σ = 0.9185rg and the
quadrupole `,m = (2, 0), the “sweet spot” in the frequency domain is located around the
intersection at R2 = T 2 = 0.5. Right panel: Geometrical optics reconstruction is plotted
in red, and it is compared with the Fourier transform of the asymptotic solution shown in
Figure 7.13. Ignoring the low frequency peaks (introduced by the finite size of the simulation
box), we notice that the reconstructed spectrum provides a good idea of the overall shape,
but it does not reproduce the power in the frequency of the QNMs. Our results are not
dramatically different for the solutions of Ψeven.

explained by the end of subsection 7.1.2: we construct a logarithmic grid in σ, centered
at σDW =

√
27rg/2` and spaced in intervals of

√
2σDW. In addition to this, we define the

variable ∆Ψodd
clean ≡ Ψodd

original−Ψodd
bh in order to clean the solutions from backscattering effects

coming from the potential tails, which complicate the task of determining the amplitudes of
the echoes with high σ/low frequency. Once the solutions are clean, the most effective way to
find the maxima of each echo is by calculating the corresponding local maxima of the Hilbert
envelope for the clean signal. In this case, the Hilbert envelopes are the green curves in the
upper corner of the two panels in Figure 7.13, and the maxima are indicated by the red dots
on top of each curve. This task is even more computationally expensive than in the scalar
case, not only because we are solving the scattering problem for two systems – one with a
single potential barrier and another with the potential cavity – but also we are now working
with the two polarizations (i.e., the even and odd solutions). Our results of the amplitude
analysis in Figure 7.16 show the existence of a value of σ maximizing the amplitude of the
echoes. This finding is compatible with the notion of a band of widths/frequencies in which
the echoes have sufficient amplitude to be measured.

It is reasonable to consider the length of the throat for a Morris-Thorne wormhole as
a parameter modulating the echoes solutions. Thus, we rerun our simulation to consider
the scattering of a Gaussian pulse with σ = 16 rg by a wormhole with a larger throat
(with a length of 100 rg, which is more than two times larger than the cavity used in the
previous configuration). In the main panel of Figure 7.17, we show that the transient has a
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Figure 7.16: Left panel: Amplitudes of the first four echoes of Ψodd
20 as a function of σ for

` = 2. Right panel: Relative amplitude of the first four echoes compared to the amplitude
of the transient. The points represent the simulated double/single wall pairs used in our
analysis, as in Figure 7.11. These results are not significantly different for Ψeven

20 . At low
variances, the transient decreases faster than the amplitudes of the echoes as σ becomes
smaller.
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Figure 7.17: Asymptotic solution of an ingoing Gaussian pulse with σ = 16 rg after its
dispersion by a Morris-Thorne wormhole with a longer throat (with a length of 100 rg).
The amplitude of the transient is three orders of magnitude larger than the first echo,
showing that the echoes do not have a generically large magnitude.

slightly larger magnitude: this is consistent with an increase of the wall reflectivity at lower
frequencies seen in the left panel of Figure 7.15. Each of these potential barriers has the
same shape of the potential barrier as in the scenario depicted in Figure 7.12, it is, therefore,
still possible to find a frequency “sweet spot” for each wall. In the upper corner of Figure
7.17, we find that the amplitude of the echoes is three orders of magnitude smaller than the
transient, after removing all backscattering effects from the signal. In the same figure, we
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shaded in red. Therefore, the cavity is analog to an optically active medium changing the
polarization of the ingoing Gaussian wavepacket.

notice that the time separation between echoes coincides with the time elapsed after two
internal reflections, being greater than the time breach between echoes seen in Figures 7.9
and 7.13.

7.3 Echoes and gravitational wave polarimetry

The small difference in the Zerilli (even) and Regge-Wheeler (odd) potentials is shown in the
right panel of Figure 7.12 has a particular effect in the outgoing waves. In order to illustrate
it, we will just work with the even and odd quadrupole signals in the equatorial plane. In the
case of a generic spherical mode with equal contributions from Ψodd

20 and Ψeven
20 , which are

the first nontrivial contributions to (7.18) and (7.19), we notice that the two polarizations
are reduced to

h+(x, t) = Cθ
r(|x|)Ψeven

20 (x, t) , h×(x, t) = Cθ
r(|x|)Ψodd

20 (x, t), (7.22)

where Cθ is a constant coming from the normalized spherical harmonics evaluated at θ =
π/2. Considering σ = 0.6495rg, the parameters of the cavity used in sections 7.1 and 7.2 and
the same initial Gaussian pulses for Ψeven

20 (x, t) and Ψodd
20 (x, t). As can be noticed in Figure

7.18, we show that the difference between the potentials induces a relative phase between
the odd and even solutions, generating an outgoing wave with a net polarization oscillating
from even (h+) to odd (h×) and only visible after the transient. It is interesting to notice
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that these small effects are present even when the target is spherically symmetric. Spin-
orbit coupling between the spin-2 gravitational perturbations and the angular momentum
in Kerr-like solutions might enhance the polarization effects.

7.4 Discussion

In this chapter, we studied the scattering of a test scalar and tensor wavepacket on a Morris-
Thorne wormhole, which is the purest realization of an effective potential cavity with two
walls. Using a Gaussian pulse as an incident initial condition, we showed the time-dependent
scattering solution of the quadrupole spherical modes of tensor and scalar radiation, both
were computed inside and outside the potential cavities in Figures 7.8 and 7.14, which
reflect and transmit throughout the cavity. Furthermore, after finding the transmission and
reflection coefficients of the cavities in Figure 7.4 and in the left panel of Figure 7.15, we used
the geometrical optics approximation to reconstruct the shape of the Fourier-transformed
asymptotic solutions in Figure 7.10 and in the right panel of Figure 7.15. We find that
the reconstructed shape of the spectrum is accurate, without showing, however, the QNM
peaks.

We show that in general, the echoes do not have a large amplitude as we can see directly
in the left panel of Figure 7.9 and in the right panel of Figure 7.13, where we also observe
that the amplitude of the echoes does not decay exponentially in time. In addition to this, we
found that there is a thin band of preferred frequencies (and the widths of the corresponding
ingoing Gaussian signals) where the amplitude of echoes is maximum. Such a frequency band
is centered around the “sweet spot” where the coefficients of transmissivity and reflectivity
overlap, and it is also where the QNMs peaks are squeezed in. We extended our analysis
to find the range in which the variance of the incident pulses maximize the amplitude of
the first four echoes, and how large is their amplitude compared to the transient. For small
widths this ratio could be as large as 15%, we should notice, however, that the amplitude
of the transient gets also suppressed in this range. In Figures 7.11 and 7.16, note that for
low thicknesses of the ingoing signal, as the peaks become sharper, the transient decreases
faster than the amplitude of the echoes. In the study of the gravitational wave scattering
by a Morris-Thorne wormhole, we find small differences between the Regge-Wheeler and
the Zerilli effective potentials, as depicted in the right panel of Figure 7.12. As it is visible
in Figure 7.18, such a difference modifies the polarization of every incident wave in a way
analogous to the dispersion across an optically active medium, opening the possibility of
studying gravitational wave polarimetry.
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Chapter 8

Concluding remarks

In this thesis, we developed several realizations of EFTs relevant at astrophysical and cos-
mological scales. In part I we focused on the dynamics of scalar and tensor perturbations
in the early universe. Concretely, we explored two variants of the inflationary action: an
example of a single-field model dubbed as Constant-Roll Inflation as suggested in [178] in
Chapter 2, in addition to double λφ4 and double quadratic inflation as examples of multi-
field inflation in Chapter 3.

In Chapter 2, we developed a method to evolve scalar and tensor perturbations of
Constant-Roll Inflation, based on the dynamical separation of fast and slow scales from
equations of motion. Introducing the separation of scales is useful since it is known that the
phases – which require from small time steps to be resolved – are not needed to find the
two-point correlation functions. The outcome of this separation results in the derivation of
the Ermakov-Pinney equation of motion (2.11) for the amplitudes of the scalar and ten-
sor fluctuations. Hence, we developed an efficient numerical routine able to evolve multiple
field realizations corresponding to different choices of model parameters and computes cor-
relation functions for every point in parameter space. Constraining Constant-Roll Inflation
requires from direct calculations of the scalar and tensor spectra since the purpose of this
model is to parametrize deviations from the slow-roll approximation, and the analytic ex-
pressions for the tensor-to-scalar ratio r and the spectral tilt ns [122] are only applicable
within the slow-roll regime. Using the likelihood results from the joint likelihood obtained
by the Planck Collaboration in [6, 10, 9], our results show that log10 β = −1.76+0.16

−0.29 at 95%
C.L., which validates the notion of small deviations from the slow-roll conditions. Further-
more, we show that the perturbative regime for curvature breaks at β ≈ 0.1.

In Chapter 3, we generalized the separation technique of fast and slow scales in scalar
and tensor perturbations implemented in Chapter 2 to also consider models with multiple
scalar fields. In this case, we factorize the two-point correlation matrix into two Cholesky –
i.e., lower-triangular – matrices. Furthermore, we can use the same Cholesky factors to write
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the fields as a product of the amplitude matrices, with a vector of unit-variance Gaussian
random variables representing the phases. Figure 3.7 shows the reduction of the effective
oscillation frequency after solving the equations for the lower-triangular amplitude matrices
(3.17), the phases (3.20) and the auxiliary phase correlators (3.21). Here we notice that it is
possible to increase the time step needed to resolve the amplitude matrices by a factor of 30.
We considered the time-translational invariance of Bunch-Davies vacuum, which provides
initial conditions to inject from a constant physical length deep inside subhorizon scales. It
is, therefore, feasible to use this symmetry to reduce the evaluation time of all the modes,
in particular those with high-k. Our results for the spectra of scalar perturbations are con-
sistent with the results in [42, 137]. The generality of this separation was further expanded
to consider the propagation of perturbations in a curved field geometry represented in Ap-
pendix B. In addition to this, this formalism can be used in a myriad of cases including
linear systems of ODE’s, such as the perturbative analysis of curvature and tensor modes
in other early-universe scenarios.

Our discussions also extend to alternatives to the inflationary paradigm in Chapter 4,
where we studied the Ijjas-Steinhardt (IS) bouncing cosmology sourced by a cubic Galileon
[139]. We derived and discussed the main equations for the dynamics of the cosmological
background and perturbations. In addition to this, we briefly discussed the notion of an
induced acoustic geometry for cosmological perturbations, introduced convenient variables
and calculated their relations by different gauge and conformal transformations. We re-
vealed the structure of the Lagrangian for this bouncing model, by deriving the functions
k (φ) and q (φ) of the theory in (4.46) – (4.49). Using these results, we studied the IS-bounce
for the first set of parameters, finding that the bouncing solution in this case starts with
a divergent sound speed around 15 tPl before the null-energy condition (NEC) violation
starts. The sound speed is still superluminal less than 10 tPl before the beginning of the
NEC violation phase, restricting the possibility of UV completion at tree level due to the
unphysical negative cross sections [7]. The system enters into the strongly coupled regime
when the sound speed vanishes, and the curvature fluctuations injected at that instant
cannot be treated perturbatively. Classically, the trajectory suggested by Ijjas and Stein-
hardt begins with a singularity of the acoustic metric and ends in another singularity. We
described the phase space structure in this model, where it is possible to notice that the
IS-bouncing trajectory is a separatrix. In addition to this, in Appendix D, we use the meth-
ods developed in Chapters 2 and 3 to calculate the power spectrum of primordial scalar
and tensor fluctuations and the particle production rate for scalars. We found that none
of these spectra is scale invariant at the end of the bouncing stage. Moreover, we see that
the change of the speed of sound suppresses the power of scalar fluctuations to the point it
becomes subdominant when compared to the power of tensors, which is not consistent with
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the observational evidence.

In part II, we discuss the effects of modifications in the gravitational field emerging
from deformations of the canonical variables present in the gravitational action, semiclassi-
cal field equations or higher-curvature corrections to the Einstein-Hilbert action. In Chapter
5, we studied the modifications of the action generated by deforming the canonical vari-
ables and the consistency of the gravitational constraint algebra. In Chapter 6, we evaluate
the scalar accretion of spherical waves in Schwarzschild black holes. Such scalars are the
extra degrees of freedom appearing in theories with an action modified by higher-curvature
corrections. In Chapter 7, we provide dynamical solutions of the scattering problem for
scalar and gravitational radiation colliding against a Misner-Thorne wormhole, which is
the most straightforward realization of a spherical system with a partially reflective cavity.
The asymptotic limit of these dynamical solutions show a train of wavelets (also known as
echoes) after the scattering transient.

Motivated by the deformations introduced by holonomy corrections [236, 41, 62] in
the gravitational canonical variables of Loop Quantum Gravity, in Chapter 5 we studied
the consistency of the constraint algebra after deforming both the Einstein-Hilbert and the
tetrad-Palatini actions through their canonical variables. Our objective was to explore if the
consistency of the algebra, yielding a healthy semiclassical limit, can constrain the struc-
ture of the deformations. In the case of the variable deformations in the Einstein-Hilbert
action, the preservation of the original number of degrees of freedom unavoidably leads
us into Lovelock’s theorem, which restricts these deformations to be canonical transforma-
tions. Otherwise, the deformations of the canonical variables will induce higher-derivative
terms that increase the number of degrees of freedom. We introduced an example where the
modifications of the metric are traceless and symmetric, mimicking potential graviton cor-
rections. In this example, the new Hamiltonian in (5.49) demands further constraints on the
deformations, which are necessary in order to hold both the scalar and vector constraints
independent from the gauge choice. The evaluation of these constraints can only have two
possible outcomes: the deformations can either remove the extra degrees of freedom from
the generators of the diffeomorphism group, or break some of them by reinterpreting the
extra fields as if these were “Goldstone modes”.

Similarly, we extended this scheme for the tetrad-Palatini and Ashtekar-Barbero actions.
In this case, we used the holonomy corrections as sources of the deformations. The scenario
presented is similar in the sense of the possible introduction of extra degrees of freedom in
the system. We derived the new constraints and the effects of the deformations in the tetrad
variables in the cases when extra degrees of freedom appear (or not) in the system. If the
deformations do not alter the gauge orbits set by the shift and lapse functions, there is no
reason to expect a different realization of the constraint algebra and the deformations can
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be constrained to produce stable gauge fixing. One can intuitively summarize our results
in this chapter in the language of symplectic manifolds: given a D-dimensional symplectic
manifold, it is possible to construct at least one other (D + 2N)-dimensional symplectic
manifold (2N < D) such that the original manifold is a projection of the constructed one.

After learning about the addition of extra degrees of freedom in modified theories of
gravity, in Chapter 6 we resolved the dynamical properties of these fields for the so-called
scalar-tensor theories. The gravitational sector of the action in those cases can include higher
powers of the Ricci curvature. Due to the small backreaction of the extra scalar field on the
metric, it is safe to assume that the geometry does not change throughout the evolution
of the additional scalar (dubbed as scalaron). In this chapter, we describe the dynamics of
scalar accretion onto a Schwarzschild black hole in the presence of a static matter distribu-
tion modelled by (6.3). In particular, we studied the accretion of the scalarons appearing
in two models of f(R) gravity, the Starobinsky and Hu-Sawicki model, as well as in the
symmetron and Ratra-Peebles models. Stable convergence to static scalar hair profiles re-
sults from varying parameters for each specific model. In the cases of the Starobinsky and
Hu-Sawicki model, we can obtain dynamical chameleon solutions with curvature singular-
ities outside horizon without requiring an infinite energy budget. In the case of accreting
symmetrons, it is not always possible to form a non-trivial static solution (known as scalar
“hair”) since it depends on the strength of the coupling with matter. Even when the sim-
ulations of astrophysical rotating black holes suggest a large density contrast, we noticed
that the formation of non-trivial static solutions does not require an absolute vacuum en-
vironment close to the black hole’s event horizon, where r ∈ (rg, rISCO].

We discuss the possibility of a non-negligible ratio between the radiated power from
extra scalar sources and the quadrupole gravitational radiation in GR, which might be
testable by the future generation of gravitational-wave detectors. In our approach, apart
from calculating static solutions in various circumstances, we evaluated the scalar accretion
dynamically in such a way that it is possible to converge to a hairy or a “bald” solution,
depending on the model and its parameters. These results also motivate further explorations
on the effect of fifth forces confined by screening, surrounded by a non-trivial matter profile
for merging binary systems.

In Chapter 7, we studied the scattering of Gaussian wavepackets of scalar and tensor
radiation onto a Morris-Thorne wormhole. Using a Gaussian wavelet with arbitrary vari-
ance as an incident initial condition, we showed the time-dependent scattering solution of
the quadrupole spherical modes of tensor and scalar radiation; both were computed inside
and outside the potential cavities as these reflect and transmit through each of the cavity
walls. Moreover, after finding the transmission and reflection coefficients, we used the geo-
metrical optics approximation to reconstruct the envelope shape of the Fourier-transformed
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asymptotic solutions. We observe that the reconstructed form of the spectrum is accurate,
without showing, however, the peaks from the quasinormal modes (QNMs). We show that
in general, the amplitude of the isolated train of echoes is not significant.

Moreover, we also observe that the magnitude of the echoes does not decay exponentially
with time: QNMs are sourced by every internal reflection while leaking energy to the exterior
through the emission of echoes. We found a thin band of preferred frequencies (and the
widths of the corresponding ingoing Gaussian signals) where the magnitude of echoes is
maximum. Such an interval is centered around a “sweet spot” in frequency space located
where the coefficients of transmissivity and reflectivity overlap, and it is also the center of
the interval where QNMs peaks are confined. We extended our analysis to find the range in
which the variance of the incident pulses maximizes the amplitude of the first four echoes,
and how large is their magnitude compared to the transient. For small variances, this ratio
could be as large as 15%. It is important to notice, however, that the transient also gets
suppressed in this range.

In the specific case of the scattering by a Morris-Thorne wormhole, we find a small
difference between the Regge-Wheeler and the Zerilli effective potentials. Such a difference
modifies the polarization of every incident wave in a way analog to the dispersion across an
optically active medium, opening the possibility of studying gravitational wave polarimetry.

We expect that the progress achieved in this thesis will be used in major cosmological
surveys of the CMB [13], where it is now possible to consider multifield inflationary models.
The use of more sophisticated simulation tools will also be beneficial to study semiclas-
sical effects in gravity beyond spherical symmetry. The possibility of exploring modified
theories of gravity and other semiclassical manifestations (such as wormholes, firewalls and
gravastars), where we can investigate the formation of stable exotic compact solutions. The
connections between gravity and thermodynamics can also be further explored by under-
standing the non-linear nature of equations of motion as a source of entropy [146].
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Appendix A

Deviations of ns and r from the
slow-roll expressions

In this appendix, we compare two of the consistency relations discussed in [166, 122]

r = 16ε, (A.1)
ns = 1− 6ε+ 2η, (A.2)

with the values of ns and r obtained from the scalar and tensor power spectra, as shown
in Figure A.1. These relations are the basis of the confrontation with Planck data made in
[178]. The slow-roll parameters ε and η appearing in (A.1) and (A.2) are calculated there
to be

ε = β(3 + β)2 sin2(
√

2βφ/MPl)[
−3 + β − (3 + β) cos(

√
2βφ/MPl)

]2 , (A.3)

η = 2β(3 + β) cos(
√

2βφ/MPl)
−3 + β − (3 + β) cos(

√
2βφ/MPl)

. (A.4)

Figure A.1 shows comparison of the slow roll approximations (A.1) and (A.2) to the values
inferred from the direct spectrum computation. Both slow-roll parameters are evaluated at
φ = φ0, which makes them independent of M . Our procedure allows us to evaluate both
power spectra well beyond the slow-roll approximation, we show β ∈ [0.001; 0.1] which
contains the reliability interval suggested in [178]. M2 = 5.64 × 10−12M2

Pl is fixed as a
constant, approximately matching its best-fit value after setting N∗ = 60. From Figure
A.1, it is interesting to notice that the deviations from the slow-roll definition in (A.1)
are always non-negligible, especially in the range of large values of β. The opposite occurs
with the deviations from (A.2) as we can observe in the left panel. In either of these cases,
it is beneficial to avoid the approximation derived from the slow-roll approximation in
order to calculate ns and r since (i) this imposes restrictions on the valid range of β and
(ii) as shown in Figure A.1, the calculation of both parameters from the power spectra
shows noticable deviations from the approximate expressions in (A.1) and (A.2) in both the
original reliability range β ∈ [0.005; 0.025] and within the 95% C.L. range, as depicted in
both panels of the last figure. One possible cause is the spurious running of ns seen in the
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Figure A.1: Left panel: Testing the consistency relation in (A.2) as a function of β after
fixing M2 = 5.64 × 10−12M2

Pl. Surprisingly, the tested consistency relation works well for
larger values of β. Right panel: Testing (A.1) for the same value of M2. Here the differences
are very large (up to ten orders of magnitude) for larger values of β. Both consistency
relations are compared with the direct calculation of ns and r at N∗ = 60, right after
evaluating the power spectra scalar and tensor perturbations. The shaded regions represent
the ranges of β within the 68% and 95% confidence levels.

slow-roll consistency relations, which makes (A.1) and (A.2) depend slightly on the exact
field value they are evaluated at. If one wants high precision, it is easier to just calculate
the spectra directly rather than dealing with intricacies of the slow-roll expansion [145] to
get to the required expansion order.
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Appendix B

Decomposition scheme in a curved
field space

As expressed in [219], we can consider a non-canonical version of (3.1)

S =
∫
d4x
√
−g

(
−1

2hAB∂µφ
A∂µφB − V (φ)

)
. (B.1)

From [123, 97], we learned about the best way to consider the perturbative expansion of
this action to get the equations of motion for the background

3M2
PlH

2 = 1
2 φ̇I φ̇

I + V (φ) (B.2)

Dtφ̇A + 3Hφ̇A = ∂V

∂φA
,

and a second order expansion of the action

SΦ(k) = 1
2

∫
a3 d4x

[
hABDtΦADtΦB − ΦA

(
k2

a2hAB +MAB

)
ΦB
]
, (B.3)

where DtXA = ẊA + ΓACDXC φ̇D and ΓABC = 1/2hAD (hBD,C + hCD,B − hBC,D). Both ex-
pressions are fully covariant (and metric compatible) under translations along geodesics on
the field space. The mass termMAB is actively affected by the field space curvature

MAB = D2
ABV −RDABC φ̇Dφ̇C −

1
a3M2

Pl
Dt

(
a3

H
φ̇Aφ̇B

)
.

As we did before, we separate the field the field perturbations using ΦA = LABχ̂B. Consid-
ering the case of a theory which produces equations of motion fully covariant under field
space gauge transformations. Hence, the form of the action only differs from (3.7) by the
use covariant derivatives instead of the total.
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It is possible to promote our results (3.17), (3.20) and (3.21) after using the gauge fixing
conditions for the correlators

〈χ̂C , χ̂D〉 = hCD, (B.4)
SymCD

AB 〈Dtχ̂C , χ̂D〉 = 0
SymCD

AB

[
〈D2

t χ̂C , χ̂D〉+ 〈Dtχ̂C ,Dtχ̂C〉
]

= 0

and reshaping the form of the Cholesky amplitude matrix, for (B < C)

ABC = −
(
L−1

)
BE

(
hEGMGD

)
LDC − (L−1)BEDtLEF 〈Dtχ̂F , χ̂C〉+ 〈Dtχ̂B,Dtχ̂C〉.

We get:

D2
tL

A
B + 3HDtLAB +

[
k2

a2 δ
A
E + hADMDE

]
LEB + LACACB +DtLAC〈Dtχ̂C χ̂B〉 − LAC〈Dtχ̂CDtχ̂B〉 = 0,

Dt〈Dtχ̂A,Dtχ̂B〉 = SymCD
AB

[
− 3H〈Dtχ̂C ,Dtχ̂D〉 − 2L−1

CEL̇
EF 〈Dtχ̂F ,Dtχ̂D〉 − hEFACE〈Dtχ̂F , χ̂D〉+

L−1
CEDtLEFhGJ〈Dtχ̂F , χ̂G〉〈χ̂J ,Dtχ̂D〉+ hFG〈Dtχ̂C ,Dtχ̂F 〉〈Dtχ̂G, χ̂D〉

]
,

Dt〈Dtχ̂A, χ̂B〉 = AAB − 3H〈Dtχ̂A, χ̂B〉 −
(
L−1)

AGDtL
GF 〈Dtχ̂F , χ̂B〉. (B.5)

Notice from (B.4) how the field metric is induced from the correlators of the fastest degrees
of freedom in the system. The emergence of such a geometric structure appears as a result
of averaging at each instant of time over the evolved Gaussian random variables.
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Appendix C

Plotting two-point correlation
functions

In this appendix, we show all the spectra calculated following the procedures aforemen-
tioned. In the first panel of Figure C.1, we provide the spectrum computed for the case of
the specific background trajectory defined in section 3.3 using the two methods suggested.

The spectrum represented in the second panel of Figure C.1 corresponds to the case of the
same initial conditions; now using a different ratio g/λ = 3 between the coupling parameters
in the potential (3.22). Here k/(aH)end represents the normalization of comoving momentum
with respect to the scale factor and the Hubble parameter measured at the end of inflation.
In both cases, it is not possible to indicate which one of the field components dominates
of the spectrum. This is due to our choice of the background field trajectories, in which
the contribution of both fields is nearly the same. The only difference is the independent
contribution of φ in (3.22).

In the third panel of the same figure, we show the spectrum for the case of transversal
motion along the inflaton trajectory (σ0 = 0) for g/λ = 2. We achieve this by setting a
dominant background contribution for φ in the same potential.

Additionally, the case of g/λ = 3 is represented in the last panel (bottom right of the figure).
All the spectra generated by these two rations reflect the strength of the fluctuations of φ
when compared to those from σ. Showing a suppression of the additional field and the cross
correlators. The last results are fully consistent with the input required to generate the
chaotic billiards pictures produced in [42].

It has been shown in [124] that the adiabatic and isocurvature components of the spec-
trum can be found via a change of basis. Gram-Schmidt procedure provides an orthonormal
basis of N vectors made of the background field components to project into the adia-
batic/isocurvature basis just as in (3.25).
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Figure C.1: Top left: Scale invariant two-point correlators for the potential in (3.22) for
g/λ = 2: The values of the two-point correlations obtained from evolving (3.17), (3.20) and
(3.21) match with our results from averaging over 100-500 evolved field realizations. Top
right: Two-point correlators for the case of g/λ = 3. Bottom left: Two-point correlators for
the case of g/λ = 2, in the case of a dominant contribution from φ. Bottom right: Two-point
correlators for the case of g/λ = 3, in the same case of dominance of φ.
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Appendix D

Power spectra in the
Ijjas-Steinhardt bounce

In this appendix, we describe the dynamics of the scalar and tensor fluctuations by consid-
ering the IS-bouncing trajectory proposed in [139], which was described in Chapter 4. All
the information needed from this trajectory is contained in the choice of H(t) in (4.38) and
γ(t) in (4.40). For instance, we will first describe the set of equations of motion and initial
conditions required for numerical evaluation.

D.1 Setting up the equations of motion and initial conditions

The field dynamics of these fluctuations is described by the Lagrangian in (4.1) and ex-
panded in second order of perturbations written in Fourier space,

L(2)
k = a3A(t)

2

(∣∣∣ζ̇k

∣∣∣2 − k2c2
s

a2 |ζk|2
)

+ a3

8
∑

p=+,×

[∣∣∣ḣpk∣∣∣2 − k2

a2
∣∣hpk∣∣2

]
. (D.1)

Where tensor modes are also included apart from the scalar curvature and the index p is
a placeholder for any of the polarization modes, conventionally dubbed by (+) and (×). In
this case, the speed of sound follows from its previous definitions and A(t) is the same as
in (4.29).

We derive the equations of motion after varying the action built from the previous expression
with respect to ζk and hpk,

ζ̈k + d ln(a3A(t))
dt

ζ̇k + k2c2
s

a2 ζk = 0,

ḧpk + 3Hḣpk + k2

a2h
p
k = 0.
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Figure D.1: Left panel: Evolution of three different scalar wavelengths λSphys and the sound
horizon sH. Right panel: Representing the particle horizon pH and λTphys. In both cases, the
initial length of the sound horizon is assumed to be `R ≈ |R(t0)|−1/2. Notice that none of
these lengths crosses from sub-horizon (shaded in red) to super-horizon scales (shaded in
blue).

With the help of the auxiliary variables ζk ≡ a−3/2A(t)−1/2Sk and hpk ≡
√

2a−3/2T pk it is
possible to write these equations in the form of two decoupled simple harmonic oscillators,

S̈k + ω2
SSk = 0, (D.2)

T̈ pk + ω2
T T

p
k = 0, (D.3)

where the functions z ≡ a3/2A1/2 and y ≡ a3/2 are useful in order to define the natural
frequencies for both oscillators ω2

S ≡ k2c2
s/a

2− z̈/z and ω2
T ≡ k2/a2− ÿ/y. For simplicity, we

will evolve these auxiliary variables instead of the original scalar and tensor modes; however
it is not a problem to determine the dynamics of ζk and hpk after inverting the definitions of
Sk and T pk . Initial conditions can be determined by instantaneous energy minimization after
diagonalizing the Hamiltonian of an harmonic oscillator with a time-dependent frequency in
a fixed instant of time, even when it is well-known that this selection criteria is not unique.
The promotion of these solutions to field operators is given by,

Ŝk = Skâk + S∗−kâ
†
−k ; T̂ pk = T pk b̂k + (T pk )∗b̂†−k,

and is consistent with the reality condition for all the fluctuation modes. (âk, â
†
k) and (b̂k, b̂

†
k)

are the creation and annihilation operators for scalar and tensor perturbations. Any generic
solution to (D.2) and (D.3) can be written as a function of two real modes Sk = S(1)

k +iS(2)
k .

From the standard commutation relations for the ladder operators [âk, â
†
k] = δ(k− k′) and

the equal-time commutator [Ŝk,
˙̂Sk′ ] = iδ(k−k′), we can show that the Wronskian of these

real modes satisfies,
S(1)

k Ṡ
(2)
k − S(2)

k Ṡ
(1)
k = 1

2 ,

at every instant of time, in agreement with the canonical commutations relations. The same
procedure follows to write conservation of the Wronskian for the tensor modes. Hence, it is
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possible to write the canonically normalized initial conditions for all the modes involved,

Ṡ(1)(t0) = 0 ; S(1)(t0) = 1√
2ωS(t0)

,

Ṡ(2)(t0) =

√
ωS(t0)

2 ; S(2)(t0) = 0, (D.4)

(Ṫ p)(1)(t0) = 0 ; (T p)(1)(t0) = 1√
2ωT (t0)

,

(Ṫ p)(2)(t0) =

√
ωT (t0)

2 ; (T p)(2)(t0) = 0, (D.5)

in an analogous way than the standard prescription for the Bunch-Davies vacuum. Notice
that even in the limit of high k, it is possible to observe that c2

s(t) and a(t) make the
scalar initial conditions not invariant under time translations. Our objective with this choice
of initial conditions is the instantaneous minimization of the energy per k-mode for only
positive values of ω2

T and ω2
S before the bounce. In this way, we will compare the state of

the system at any posterior instant of time with the zero-point energy state at t = t0 of
a time-dependent harmonic oscillator. This would be a suitable (but not unique) way to
define equations of motion while setting initial conditions that minimize the energy of the
system before the bounce. Notice that the evaluation of the expressions in (D.4) and (D.5)
at all the posterior instants of time should never be treated as solutions to the equations
of motion. Nevertheless, there is another way to rephrase the system that increases the
performance of a numerical computation. For instance, let us rewrite the eikonal separation
Sk = LS exp(iΘS), where LS and ΘS are real. Then we replace this expression in (D.2)
obtaining two equations after separating the real and imaginary parts,

L̈S + (ω2
S − Θ̇2

S)LS = 0 (Real part),

Θ̈S + 2 L̇SLS Θ̇S = 0 (Imaginary part), (D.6)

where (D.6) has a simple analytic solution given by Θ̇S(t) = L2
S(t0)Θ̇S(t0)/L2

S . Hence, the
only equation to solve for the scalar modes is,

L̈S +
[
ω2
S − L4

S(t0)Θ̇2
S(t0)
L4
S

]
LS = 0. (D.7)

The same idea can be straightforwardly applied for the tensor modes after replacing all
the tensor components of T pk by LpT exp(iΘT ). Assuming the same contribution from all
polarizations, this will lead us to an analogous result for the phase velocity Θ̇T (t) and the
equation of motion for the amplitudes differ from (D.7) only by considering ω2

T instead of
ω2
S ,

L̈pT +
[
ω2
T − (LpT )4(t0)Θ̇2

T (t0)
(LpT )4

]
LpT = 0. (D.8)

It is important to remember that the power spectrum only depends on the amplitudes of
the original modes, which can found at all times by,

|ζk| =
|Sk|

a3/2A1/2 = LS
a3/2A1/2 , |h

p
k| =

√
2|T pk |
a3/2 =

√
2LpT
a3/2 . (D.9)
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Figure D.2: Left panel: Evolution of scalar mode frequencies at different physical wavenum-
bers. Right panel: Corresponding frequencies of the tensor modes. We observe at which
instant of time the minimal energy initial conditions are well-defined.

Initial conditions in (D.4) and (D.5) are reproduced after evaluating ΘT (t0) = 0 and
ΘS(t0) = 0, similarily L̇pT (t0) = 0 and L̇S(t0) = 0. The amplitudes of the modes and
the phase derivatives are the only initial conditions with non-trivial values,

LS(t0) = 1√
2ωS(t0)

; Θ̇S(t0) = ωS(t0), (D.10)

LpT (t0) = 1√
2ωT (t0)

; Θ̇T (t0) = ωT (t0), (D.11)

where the effective frequency of the harmonic oscillators in (D.7) and (D.8) at t = t0
is exactly zero for the scalar and tensor modes regardless of the values of k. The latter
expressions are the concrete realization of (2.11) and (2.12) for our system. Hence, this
procedure describes the single-field realization of the separation technique of fast and slow
components shown in [116] and in Chapters 2 and 3 of this thesis. Our construction relies
heavily in the positivity of ω2

T and ω2
S at t = t0, for that reason the initial instant of time

where the mode evolution starts needs to be chosen properly in order to avoid diverging
initial conditions. Both functions are positive in the range of very high values of k, therefore
we evaluated both effective frequencies in Figure D.2 in the low k limit. Henceforth, we
choose t0 = −90 tPl to be the initial instant of time where the evolution of perturbations
begin. Moreover, it is also (approximately) the first moment where both A(t) and c2

s are
finite and positive, thus the system of scalar and tensor fluctuations evolves in a time domain
where it is free from ghost and gradient instabilities.

D.2 Evolution of the mode amplitudes and length scales

The definitions of the effective oscillation frequencies for the scalar curvature (ω2
S) and

primordial tensor (ω2
T ) modes shows that only the scalar fluctuations propagate with sound

speed cs. It is relevant, therefore, to compare the evolution of different physical length scales
as these propagate from sub-horizon scales. Let us define the two physical scales with respect
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Figure D.3: Left panel: Evolution of scalar mode amplitudes ζ2
k(t) at different physical

wavenumbers. Right panel: Corresponding amplitudes of the tensor modes |hpk(t)|2.

to a given comoving wavelength λcom by

λSphys = aλcom
cs

, (D.12)

λTphys = aλcom, (D.13)

which can be identified as the corresponding wavelength part from the definitions of ω2
S and

ω2
T . We now evaluate the time derivative of the logarithmic versions of these two quantities,

obtaining

d lnλSphys
dt

= H − 1
2

(
Ḃ

B
− Ȧ

A

)
, (D.14)

d lnλTphys
dt

= H. (D.15)

From these expressions, we notice that none of these derivatives depends on the specific
values of the evolving scalar or tensor wavelengths. From the form of γ and H suggested for
the IS-bounce in (4.38) and (4.40) along with the construction of A(t) and B(t) described
in equations (14) and (17) in [139], it is possible to compare the evolution of all the physical
length scales (`phys) including the sound and particle horizon:

sH =
∫
cs(t)dt
a(t) ; pH =

∫
dt

a(t) ,

through the bouncing phase. In the left panel of Figure D.1, as an example, we observe the
evolution of the sound horizon and three sub-horizon physical wavelengths (λSphys) corre-
sponding to different comoving modes that propagate through the so-called acoustic geom-
etry. Such scalar wavelengths never reach the sound horizon. In the same way, the evolution
of the particle horizon and the corresponding tensor wavelengths (λTphys) are depicted in the
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right panel of Figure D.1, where each of these was built from the same comoving modes
as in the previous case. In both scenarios, this indicates that we should not expect any
transitions such as the characteristic “mode freezing” occuring during inflation, since the
length stretching due to the speed of sound is not sufficient to reach super-horizon scales.
In this appendix, we write the physical wavenumbers in units of the Ricci curvature |R|1/2.
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Figure D.4: Power spectrum at t = −90 tPl, −40 tPl, 0 tPl and 75 tPl, respectively. The
shape of the spectra corresponds to a broken power-law, observing that there is an excess
of power in the tensor modes. In all the cases, the spectra are not scale invariant.

After considering these results, we evolve the mode amplitudes for scalar and tensor fluctu-
ations using the equations of motion in (D.7) and its tensor counterpart in (D.8) using the
initial conditions shown in (D.10) and (D.11). In Figure D.3, we represent the dynamics of
the amplitudes of some of the original scalar (in the left panel of Figure D.3) and tensor
modes (in the right panel of Figure D.3) after using the inversion relationships in (D.9).
This confirms our previous statement about the lack of a “mode freezing” phase in all the
sub-horizon modes. It is possible to observe oscillations of the modes for the sub-horizon
modes with the smallest values of kphys. In Figure D.5, it will be possible to identify these
oscillations in the scalar and tensor power spectrum and in the occupation numbers at given
frequencies. In the limit where k goes to zero, the dominant scales are the negative values
of z̈/z and ÿ/y which behave as time-dependent effective masses.

We evaluate the scale dependence and other specific features of the power spectrum of scalar
and tensor perturbations through the IS-bouncing trajectory from the choice of instanta-
neous minimal energy initial conditions set in (D.10) and (D.11) right before the bounce.
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Figure D.5: Left panel: Evolution of the occupation numbers nk(t) of the scalar mode plotted
in the same range as the power spectra. At large scales, the final occupation number can
be greater than the initial by a factor of 102. Right panel: The corresponding occupation
numbers for the tensor modes. We assumed an initial state before the bounce at t0 = −90tPl.
In both figures, we can observe that particles are still being created after the violation of
NEC at tf = 85 tPl.

In addition to this, we also calculate the evolution of the occupation number of scalar and
tensor fluctuations, observing that some of the features of the spectra are due to particle
production. The power spectra of primordial scalar and tensor fluctuations follow from the
typical definition given by,

Pζ(k) = k3

2π2 |ζk(t)|2 , Ph(k) = k3

2π2

∑
p=+,×

|hpk(t)|2, (D.16)

where the time evolution of the amplitudes |ζk(t)|2 and |hpk(t)|2 follows from the numerical
solutions for LS and LT described in (D.7) and (D.8) respectively. The calculations for
particle production become much simpler to evaluate after we rephrase the equations of
motion as in (D.2) and (D.3). We define the occupation number as,

〈nk(t)〉 = a4A(t)
2kcs

[
|ζ̇k|2 + k2c2

s

a2 |ζk|2
]
− 1

2 , (D.17)

where 1/2 corresponds to the minimum possible energy of the system for the production
of scalar fluctuations. The tensor counterpart is defined in an analog way. In contrast with
the definitions in [33], the last expression is not built from the time-dependent harmonic
oscillators in (D.2) and (D.3) in order to not make these quantities divergent in the limit
where ω2

S and ω2
T vanish. In Figure D.4, we evaluate the dependence of the amplitudes with

k in four different instants of time. We evaluated the scalar and tensor power spectra in
(D.16), showing that none of the spectra is scale invariant.

172



We must remark that the amplitude of the tensor modes dominates over the scalar ampli-
tudes through most of the bouncing phase, as we can see in the first three panels of figures
D.4. This is due to the evolution of the speed of sound, where the enhancement of the scalar
power at later times as shown in the last panel of the same figure coincides with the final
decreasing phase of the speed of sound at t ∼ 50tPl. Scalar and tensor amplitudes as de-
picted in these figures show a blue spectrum, consistent in the high k limit with the results
presented in [72]. The creation of particles in the scalar spectrum at later times is a visible
feature of the scalar curvature spectrum, and it persists with less intensity as wavelengths
become smaller. In addition to this, it is also possible to observe small low frequency oscil-
lations in the tensor spectrum, which are evidence of particle production for these modes.
We observe the evolution of the occupation number defined in (D.17) in Figure D.5.

Here, the production of tensor fluctuations in the right panel of Figure D.5 is 2-3 orders
of magnitude smaller than the oscillations seen in the left panel of the same figure for the
scalar case, in the same way the oscillations of the tensor amplitudes are smaller than the
corresponding oscillations for the scalar power in Figure D.4.
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Appendix E

Numerical setup for scalar
accretion and scattering

E.1 Scalar field equations of motion

Equations of motion describing evolution of a scalar field φ with a (non-linear) self-interaction
potential V (φ) and an external force term F propagating on a fixed background spacetime
are described by a (semi-linear) PDE

�φ = V ′(φ)−F , (E.1)

where � denotes a covariant d’Alembert operator. For a spherically symmetric black hole
described by the Schwarzschild metric

ds2 = −g(r) dt2 + dr2

g(r) + r2 dΩ2, (E.2)

where dΩ2 is the metric on a unit sphere, and the metric function g(r) is

g(r) = 1− 2M
r
, (E.3)

the left hand side of the equation of motion is simply

�φ = 1√
−g

∂µ
(√
−g gµν ∂νφ

)
= − 1

g(r) ∂
2
t φ+ 1

r2 ∂r
(
r2g(r) ∂rφ

)
. (E.4)

This can be reduced to a one-dimensional wave equation with constant propagation speed
by introducing the tortoise coordinate x by ∂x = g(r) ∂r. With this re-definition, the scalar
field equation of motion reads

− ∂2
t φ+ 1

r2 ∂x
(
r2 ∂xφ

)
= g

(
V ′(φ)−F

)
. (E.5)
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Explicit form of the tortoise coordinate x for the Schwarzschild spacetime can be obtained
by integrating

x =
∫

dr

g(r) = r + 2M ln
(

r

2M − 1
)
. (E.6)

Tortoise coordinate x is vastly preferable for numerical integration of the wave equation
over areal coordinate r since the characteristic speed is constant on the sampled time slice,
but the added difficulty with this choice is that accurate r(x) inversion is quite not-trivial
numerically, as detailed in Appendix E.6.

The standard numerical evolution scheme would involve first-order Hamiltonian dynamical
system

φ̇ = π, π̇ = 1
r2 ∂x

(
r2 ∂xφ

)
− g

(
V ′(φ)−F

)
. (E.7)

However, as we will see in the following Section, it is easier to handle absorbing boundary
conditions if we rewrite equations of motion in a flux-conservative form by introducing
auxiliary variables u ≡ ∂tφ and v ≡ r2∂xφ, so that equations of motion become

−∂tu+ 1
r2 ∂xv = g

(
V ′(φ)−F

)
,

−∂tv + r2 ∂xu = 0. (E.8)

The first equation is the identical rewrite of the wave equation (E.5), while the second is
the integrability condition requiring that the partial derivatives of φ commute.

E.2 Absorbing boundary conditions

The scalar field degree of freedom φ asymptotes to a free field evolution near horizon (where
g → 0), and a massive field evolution far away from the black hole (where V ′(φ) → F).
Physically, excitations in φ take infinite amount of time t to reach both boundaries, yet
truncating or compactifying the evolution domain for numerical purposes will inevitably
lead to spurious reflections unless special care is taken. The best technique to avoid spuri-
ous reflections is to introduce absorbing boundary conditions via Perfectly Matched Layers
(PMLs) as described in [140], which damp the solution at the boundaries while guarantee-
ing identically vanishing reflection coefficient at the absorption layer. This is achieved by
analytic continuation of the equations of motion into the complex domain

x→ x+ if(x), ∂x →
∂x

1 + if ′(x) ≡
∂x

1 + γ(x)
∂t

, (E.9)

which turns the oscillatory travelling waves eikx−iωt into exponentially decaying functions
of x instead. To make attenuation length independent of ω, frequency dependent contour
deformation f ′ = γ(x)/ω is chosen and i/ω is transformed back into explicit integration
operator in the time domain. Applying this idea to the scalar field equations of motion in
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flux-conservative form (E.8) for an arbitrary damping function γ(x), we obtain

−(∂t + γ)u+ 1
r2 ∂xv =

(
1 + γ(x)

∂t

)[
g
(
V ′(φ)−F

)]
,

−(∂t + γ)v + r2 ∂xu = 0. (E.10)

To turn the inverse time evolution operator ∂−1
t into a differential equation form, intro-

duction of a third auxiliary variable w is in order. With re-definition u → u + w, the
non-reflecting PML equations of motion then become

∂tφ = u− w, (E.11a)

∂tu = 1
r2 ∂xv − γu, (E.11b)

∂tv = r2 ∂x(u− w)− γv, (E.11c)

∂tw = g
(
V ′(φ)−F

)
. (E.11d)

The damping function γ(x) can be quite arbitrary, but it should have compact support
near the boundaries to not affect the evolution in the interior, and have sufficient support
and magnitude to absorb the impinging waves which hit the boundary during the expected
evolution.

E.3 Spectral basis

As the scalar field is usually quite stiff and does not form shocks in the course of evolu-
tion, the method of choice to evaluate derivative operators is spectral, as described in [43].
Compactifying the tortoise coordinate x on a scale `

y = x√
x2 + `2

≡ cos θ, x

`
= y

1− y2 = cot θ (E.12)

and introducing a Chebyshev basis on interval y ∈ [−1, 1]

Tn = cos(nθ), (E.13)
∂xTn = n

`
sin(nθ) sin2 θ,

∂2
xTn = n

`2

(
n cos(nθ) + 2 cot θ sin(nθ)

)
sin4 θ,

we arrive at the spectral representation of the solution

φ(x) =
∑
n

cnTn(y) (E.14)

truncated to a finite number of modes. While the Galerkin method to discretize equations
of motion can be employed, the simplest method to evaluate derivative operators is pseudo-
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spectral, where equations of motion are solved on a Gauss-Lobatto grid

θi =
(
n− i+ 1

2

)
π

n
, xi = ` cot θi. (E.15)

we do not have to explicitly find coefficients cn to evaluate the derivative operators of a
function φ(x) sampled on a collocation grid xi. Instead, derivative operators like Dij and
Lij can be found in advance by solving linear matrix equations∑

j

DijTn(xj) = ∂xTn(xi), (E.16a)

∑
j

LijTn(xj) =
(
∂x + 2g

r

)
∂xTn(xi), (E.16b)

and so on for every basis function Tn evaluated at all nodes xi.

E.4 Gauss-Legendre integrator

Packing the scalar field variables φ, u, v, w evaluated at the collocation grid points xi into
a state vector ~y ≡ {φ(xi), u(xi), v(xi), w(xi)}, the wave equation (E.11) reduces to an au-
tonomous dynamical system

d~y

dt
= ~f(~y), (E.17)

which can be integrated by an implicit Runge-Kutta method, as presented in [57]

~y → ~y + ∆t ·
∑
i

bi~g
(i), (E.18)

where the trial directions ~g(i) are defined by

~g(i) = ~f

~y + ∆t ·
∑
j

aij~g
(j)

 . (E.19)

Particularly accurate choice of coefficients for a time integrator corresponds to a Gauss-
Legendre quadrature, where the trial directions are evaluated at the zeroes of the (shifted)
Legendre polynomial

Pn
(
2c(i) − 1

)
= 0, (E.20)

with coefficients aij and bj set by∑
j

aij

[
c(j)
]k−1

= 1
k

[
c(i)
]k

(E.21)

∑
j

bj
[
c(j)
]k−1

= 1
k
. (E.22)

The resulting time integration method is A-stable and symplectic for Hamiltonian problems,
and is extremely easy to implement using a simple iterative scheme.
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E.5 Static solver

Static configurations of the field φ have ∂tφ = 0 and can be found by solving a (semi-linear)
elliptical problem

Lφ = g
(
V ′(φ)−F

)
. (E.23)

One can improve a trial solution φ̄ using Newton’s method by linearizing φ = φ̄ + δφ and
solving

L(φ̄+ δφ) = g
(
V ′(φ̄+ δφ)−F

)
, (E.24)

which translates the residual R = −Lφ̄ + g
(
V ′(φ̄) − F

)
into a correction δφ by solving a

set of linear equations (
L − gV ′′(φ̄)

)
δφ = −Lφ̄+ g

(
V ′(φ̄)−F

)
. (E.25)

With the basis as chosen in the last section, this scheme converges to machine precision in
about 16 iterations or so for most of the potentials.

E.6 Inverting tortoise coordinate

Accurately inverting Schwarzschild tortoise coordinate

x = r + 2M ln
(

r

2M − 1
)

(E.26)

to yield areal coordinate r as a function of x turns out to be a rather non-trivial task,
despite appearances. The problem is that asymptotic for large positive x, where r ' x −
2M ln (x/2M − 1), and for large negative x, where r ' 2M with exponentially suppressed
metric function ln g ' x/2M − 1, have vastly different derivatives with respect to x (which
hampers numerical schemes like Newton’s method), and no closed form algebraic inverse.

A trick that works for the entire usable range of x is to solve for an approximation variable
q ' x− 2M instead

q = 2M ln
(

exp
(

r

2M − 1
)
− 1

)
, (E.27)

which (unlike x) is easily invertible to yield r

r = 2M
(

1 + ln
(

1 + exp q

2M

))
, (E.28)

and can be readily found by Newton’s method iterating q → q + δq with

δq = −
(
r + 2M ln

(
r

2M − 1
)
− x

)
· dq
dx
, (E.29)
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as the derivative
dq

dx
=
(

1 + exp −q2M

)
g(r) (E.30)

is of order one on the entire domain of definition of x. One still has to be careful to avoid
numerical overflows in the exponents or catastrophic loss of precision when taking logarithms
of one plus a small number, which can be achieved by evaluating

ln (1 + eq) =

 q + ln (1 + e−q) , q ≥ 0

2 atanh eq

2 + eq
, q < 0 (E.31)

in different limits.
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