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Layo�s and recalls are an empirically important source of worker ows in

the U.S. manufacturing sector. Besides, the Mortensen and Pissarides model

is claimed to match the statistics of Job Creation, Job Destruction and Un-

employment provided that the unemployment hazard is low. I extend this

model in order to account for the simultaneous existence of permanent and

temporary layo�s and to �nd out if the implied lower probability of leaving

permament unemployment dominates the high recall rate of temporary lay-

o�s. In order to do this I modify their matching model so as to assume that

employment matches are subject to two types of idiosyncratic shocks: one

which is persistent and the other which is purely temporary. I endogenize

both the decision of permanent and temporary layo�s. Loosely speaking, bad

realizations of the temporary shock will lead to temporary layo�s whereas

bad realizations of the persistent shock will lead to permanent layo�s. The

model does a fairly good job explaining various empirical regularities of the

empirical data on manufacturing. The reason it produces a positive corre-

lation between Job Creation and Job destruction might be related to the

inability of the model to reproduce the richness in the dynamics of the tem-

porary unemployment hazard rate pointed out in other in other data.The

bounching of recalls around unemployment bene�ts elapse around the end

of the second quarter might generate a slow adjustment of job creation at

the onset of a recession. Hence a negative correlation between creation and

destruction would be generated.
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1 Introduction

Job and worker ows are very large in the U.S. economy. Davis et al.(1996)

gives empirical evidence of the close relationship between unemployment

ows and the unemployment rate. Because of this relationship, the ow

approach to labor markets has become increasingly popular as a way to

analyze the aggregate labor market. One of the most widely used models

that has been developed is the Mortensen and Pissarides matching model of

job creation and destruction(1994). One feature of the Mortensen and Pis-

sarides model is that all separations are assumed to be permanent. However,

Lilien(1980) and Feldstein(1975) conclude that over 70% percent of work-

ers laid o� in U.S. manufacturing were recalled by their former employers.

Katz(1986) �nds this process to be common outside manufacturing, as well.

Anderson and Meyer(1994) also calculate that 28% of all turnover is tempo-

rary(de�ned as temporary layo�s plus recalls). Additionally, the Mass Layo�

Statistics program reports that 68% of employers reporting a layo� in the sec-

ond quarter of 1998 had anticipated some type of recall. In this same report,

among all establishments expecting a recall, most employers expected to re-

call over one-half of the separated employees within six months(U.S. bureau

of labor Statistics, October 1998). Finally, Feldstein points out that uc-

tuations of temporary layo�s are tied to �rms' output demand uctuations.

Given the importance of temporary layo�s in the real world, it is clearly

important that our models be consistent with their signi�cance if they are to

help us understand how the labor market responds to various types of shocks

or changes in policies.

Additionally the standard matching model is claimed to match the statis-

tics of Job Creation, Job Destruction and Unemployment provided that the

probability of leaving unemployment is lower than the one found in the

data(Rogerson and Cole 1996). Intuitively the latter would produce per-

sistence and a negative correlation between Job Creation and Destruction.

This would happen because the consequent slow adjustment of the labor mar-

ket would make persistent the opposite response that this series have when

the economy is hit by aggregate shocks. It is then an empirical question if the

e�ect of a high recall rate is dominated by a lower permanent unemployment

hazard implied by introducing temporary layo�s.

Hence we extend the model of Mortensen and Pissaridesfor two reasons.
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First in order to account for the simultaneous existence of permanent and

temporary layo�s. Second to check if for reasonable parameter values the

lower permanent hazard rate implied by introducing temporary layo�s dom-

inates the e�ect of of higher recall rate on the series of Job Creation, Job

Destruction and Unemployment.

In order to do this I modify their model so as to assume that employment

matches are subject to two types of idiosyncratic shocks: one which is per-

sistent and the other which is purely temporary. I assume that a matched

worker and entrepreneur may choose to remain matched even if they do not

produce, though doing so entails incurring a cost to maintain the match.

I will identify this with a temporary layo�. I then go on to characterize

the equilibrium for this extended matching model, and in particular the cir-

cumstances in which permanent and temporary layo�s will result. Loosely

speaking, bad realizations of the temporary shock will lead to temporary lay-

o�s, whereas bad realizations of the persistent shock will lead to permanent

layo�s. I also show how the equilibrium of the model can be determined as

the intersection of two equations in two unknowns. This greatly facilitates

understanding the model's implications for various changes in the economy.

Finally using the series for Job Creation Destruction and unemployment

implied by our model, the latter steady state is calibrated to the U.S. man-

ufacturing Data and then a stochastic version is simulated. Given that most

of the data argues that temporary layo�s are more important at a monthly

level we calibrate and simulate both a quarterly and a monthly model. In

the monthly model we aggregate to build up quarterly series of Job Creation

and Destruction to match quarterly data presumably on temporary layo�s

constructed by Davis and Haltiwanger(1992).

The model does a fairly good job explaining various empirical regular-

ities however it produces a positive correlation between Job Creation and

Job destruction. The reason behind this poor performance might be related

to the inability of our setup to match the richness in the dynamics of the

temporary unemployment hazard rate found in other empirical sources like

Anderson and Meyer. In a context of �nite duration of unemployment bene-

�ts temporary layo�s occur either the �rst 2 weeks or as late as in the second

quarter around the last unemployment bene�ts paydate. Hence this pattern

of recovery of employment after a recession might produce the desired nega-

tive correlation between creation and destruction provided that the e�ect of
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the recallers with low temporary hazard rate dominates.

In the following section we describe the model. Section 3 focuses on the

data, the calibration of the steady and the simulation of the stochastic version

of the model. In section 4 we have the conlusions. Finally, section 5 includes

an appendix with the derivation of our key results.
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2 The Model

2.1 The Environment

There is a continuum of identical workers with total mass equal to one with

the following preferences:

1X
t=1

�t(ct � bnt); (1)

where 0 < � < 1 is a discount factor,ct is consumption and nt is time spent

working. One can work either one or zero units. The disutility of working is

measured by b and consumption can be only nonnegative. We assume that

search is costless and that the workers receive payments when matched with

an entrepreneur in a productive unit or match. While in a match we allow for

the worker to be on temporary layo�. We further assume that there is not on

the job search or search while on temporary layo�. This latter assumption is

consistent with the fact that most of workers on temporary layo� are recalled

by their former employees. Anderson and Meyer (1994) �nd that 71:7% of

layo�s that expected recall were reemployed in the previous job.

There is a continuum of identical entrepreneurs with the following pref-

erences:

1X
t=1

�tct (2)

In this economy there is a matching technology that makes entrepreneurs

and workers meet and a production technology that may be used for produc-

ing output only after the two agents have been matched. We'll begin with

the latter.

Production units can be set up costlessly only by entrepreneurs. A

entrepreneur-worker match produces p+ � + �. The common aggregate pro-

ductivity is p. We have � and � as idiosyncratic shocks whose realizations

are independent also across matches. Each new match starts by assumption

with an idiosyncratic pair (�u; �u), which then evolves stochastically as fol-

lows: In each period there is a probability  that a given match receives a

new value for its idiosyncratic � component from the cdf F (�) with support
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on (�1; �u]. Otherwise it stays with the same value as the last period's.

There is persistence in the � shocks. With respect to the � component, the

match receives a draw every period from a distribution with cdf G(�) epsilon

and support on (�1; �u]. Hence the � shock is i.i.d.

The assumption about timing is as follows: At the end of each period a

match is in one of two states, dormant(laying o� its worker temporarily), or

active and producing. At the beginning of a period each match which was

productive or dormant in the previous period receives its current values for

the idiosyncratic shocks. Given a realization of shocks there is a joint decision

between the entrepreneur and the worker to decide between destroying the

match, laying o� temporarily or producing output. That the decision is taken

jointly follows from our assumption that wages are determined by generalized

Nash bargaining.

With respect to how entrepreneurs and workers meet, they become matched

through a matching function that depends on the number of permanent un-

employed searching workers up and number of vacancies (v) posted. En-

trepreneurs are the only ones who can create job vacancies. It costs z to post

a vacancy.

If in a given period there are v vacancies posted and up unmatched workers

searching, the number of matches formed between entrepreneurs and workers

is given by the matching function m(v; up). Any matches that result from

search say in period t become productive as of period t+1 . The probability

then that a given worker is matched with a vacant job is given by:

qu =
m(v; up)

up
(3)

and the probability that a given vacancy is matched with a searching

worker is given by:

qv =
m(v; up)

v
(4)

We assume that the matching function m is non-negative, increasing in

both arguments, concave and displays constant returns to scale. The latter

implies that qu and qv are functions only of the ratio v
up
.

Finally, following the standard literature, we use a generalized Nash bar-

gaining solution for wage determination in which the worker's threat point is
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equal to the value of being unemployed and the entrepreneur's threat point

is the value of an unmatched vacancy.

2.2 Equilibrium Analysis

In this subsection we de�ne and characterize the equilibrium for the model.

We start by examining the individual decisions taken by matched entrepreneurs

and workers.

Let Jm(�; �) be the value of the match for the entrepreneur given current

values of both of the idiosyncratic shocks. It is equal to the maximum of three

components: Let Ja(�; �) be the value of the match for the entrepreneur if

it is active and producing. Jd(�; �) stands for the value of the match for

the entrepreneur if it is dormant or the worker is on temporary layo�. The

third component is the value of destroying the match, which is equal to

zero in equilibrium. The derivation of the results are simpler if we assume

this condition (see below unmatched entrepreneur's decision problem and

de�nition of equilibrium). The corresponding equations are:

Jm(�; �) = max(Ja(�; �); Jd(�; �); 0) (5)

Ja(�; �) = p+ � + �� w(�; �) + �E(Jm(:; :) � � �

+�(1� )E(Jm(�; :)=�) (6)

Jd(�; �) = �w(�; �) � � �

+�E(Jm(:; :)) + �(1� )E(Jm(�; :)=�) (7)

where E((�; :)=�) is the expectation of (�; :) given � and E(Jm(:; :)) is the

expectation over the two arguments. Note that we have that the entrepreneur

gives a payment to the worker on temporary layo� as is standard in the wage

bargaining literature.

In the case of the worker, V mw(�; �) is the value of the match for the

worker given current values of both of the idiyosincratic shocks. It is equal

to the maximum of three components: Let V e(�; �) be the value of the match

for the worker if employed and producing. The variable V tl(�; �) stands for

the value of the match for the worker if it is dormant or the worker is on

temporary layo�. The third component is the value of destroying the match

for the worker or the value of unemployment denoted as V u. Formally we

have:
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V mw(�; �) = max(V e(�; �); V tl(�; �); V u) (8)

V e(�; �) = w(�; �)� b+ �E(V mw(:; :)) + �(1� )E(V mw(�; :)=�) (9)

V tl(�; �) = w(�; �) + �E(V mw(:; :)) + �(1� )E(V mw(�; :)=�) (10)

V u = �quV mw(�u; �u) + �(1� qu)V u (11)

qu =
m(v; up)

up
(12)

Let's de�ne the total match surplus Sm(�; �) as:

Sm(�; �) = V mw(�; �) + Jm(�; �)� V u (13)

The wage is set to split the surplus in �xed proportions at all times, so:

V mw(�; �)� V u = X [V mw(�; �) + Jm(�; �)� V u] (14)

where X is a constant between 0 and 1.

Since �rms have the option of destroying matches at no cost, the latter

exists as long as its value is above zero. Note that we are making use of the

equilibrium condition which requires that the value of a destroyed match is

zero to the entrepreneur. Hence matches are destroyed when the productivity

pair shock (�; �) arises that makes Jm(�; �) = (1 �X)Sm(�; �) negative. Also

it is not always optimal to layo� temporarily when the match is hit by a

bad idiosyncratic shock because the opportunity cost of employment might

be high enough to make the value of the surplus of a dormant match less or

equal to zero. Hence the opportunity cost of employment plays the role of a

�xed cost that has to be paid in terms of total surplus in order to mantain

the match active or dormant.

Let suppose that (�; �) are such that Sm(�; �) = Sa(�; �), then

Sm(�; �) = V e(�; �) + Ja(�; �)� V u + �quV u � �quV u (15)

After manipulating we get
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Sm(�; �) = Sa(�; �) = p+ � + �� b+ �E(Sm(:; :)) � � �

+�(1� )E(Sm(�; :)=�)� �quXS(�u; �u) (16)

See appendix for derivation.

If (�; �) take values so that Sm(�; �) = Sd(�; �), then

Sm(�; �) = V tl(�; �) + Jd(�; �)� V u(�; �) + �quV u � �quV u (17)

After simplifying we get

Sd(�; �) = �E(Sm(:; :)) � � �

+�(1� )E(Sm(�; :)=�)� �quXS(�u; �u) (18)

So we get that:

Sm(�; �) = max(Sa(�; �); Sd(�; �)); 0) (19)

We can show using the standard dynamic programming arguments that

there exists a unique value function Sm(�; �) that is nondecreasing in both

of its arguments. The latter equations map the space of continuous nonde-

creasing bounded functions into itself given qu . Given that this space with

the supnorm is a complete normed vector space and that satis�es Blackwell's

suÆcient conditions for a contraction mapping, our claim holds. This is go-

ing to imply a unique characterization for the optimal decision rules for the

entrepreneur in the plane (�; �):

We assume that Sd(�; �)) is positive for some value of its arguments. In-

tuitively note that if qu is low enough this would be true.

To make the exposition transparent let us �rst analize for which values

of the two idiosyncratic shocks the decision of laying o� permanently would

be prefered over the temporary one. First note that there exists �� such that

Sd(�
�; �) = 0 for all �. This happens because as we will see soon E(Sm(�; :)=�)

is strictly increasing in �. So for � greater than �� the option of temporary

layo� is positive. Hence entrepreneurs prefer temporary layo�s to permanent

ones. In the plane (�; �) this implies that to the left of a vertical line crossing
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the � axis at the value ��, the option of permanent layo� is higher than the

option of temporary layo� and conversely to the left of this line.

Now we show when it is preferable to mantain the match active instead

of dormant or equivalently , laying o� the worker temporarily. Given � there

exists �tl(�) such that Sa(�; �
tl(�)) = Sd(�; �

tl(�)). Note that conditional on �,

Sa(�; �) is strictly inceasing in � and Sd(�; �) is constant .This implies after

subtracting Sd(�; �) from Sa(�; �) for a given value of �:

�tl(�) = �p� �+ b (20)

In the plane (�; �) the latter implies a diagonal. Above it Sa(�; �) is bigger

than Sd(�; �). The converse happens below it. The slope of this line is -1.

Finally we explain for which values of (�; �) it is preferable to mantain the

match active instead of laying o� permanently and viceversa. Given � there

exists �pl(�) such that Sa(�; �
pl(�)) = 0. In particular at �� Sa(�

�; �pl(��)) = 0.

Also Sd(�
�; �) = 0 for all � or as we discussed before at �� the entrepreneur

is indi�ereent between laying o� permanently or temporarily when � is low

enough. Hence at this reservation value of � the threshold for laying o�

permanently �pl(��) is the same as the one for laying o� temporarily �tl(��)

when the match is hit by a temporary idiosyncratic shock.

It is intuitively clear that because E(Sm(�; :)=�) is strictly increasing in

� , �pl(�) is strictly decreasing in the same variable. We can characterize

even more precisely �pl(�). Formally we have after solving for �pl(�) from

Sa(�; �
pl(�)) = 0:

�pl(�) = �p� � + b� �E(Sm(:; :))

��(1� )E(Sm(�; :)=�) + �
vqv

up
XS(�u; �u) (21)

Note that in the latter equation we have used the fact that qu = vqv

up
. When

di�erentiating with respect to � all what matters is ��(1 � )E(Sm(�; :)=�)

and ��.

if � � �� we have: Sm(�; �) = Sa(�; �) if � � �tl(�); Sm(�; �) = Sd(�; �) if

� � �tl(�)

After integrating by parts over the implied ranges we get that for given

epsilon:
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E(Sm(�; :)=�) = �tl(�)� �pl(�) +
Z �u

�tl(�)
Sa2(�; y)(1�G(y))dy (22)

where Sa2(�; y) is the partial derivative with respect to the second argu-

ment equal to 1 (See Apendix for details of the derivation). After di�erenti-

ating the implicit function �pl(�) with respect to �. we get:

�pl� (�) = �1�
�(1� )(1�G(�tl(�)))

1� �(1� )

or using �tl(�) = �p� � + b we have:

�pl� (�) = �1�
�(1� )(1�G(�p� �+ b))

1� �(1� )
(23)

Hence the slope is strictly less than minus one.

if � � �� and � � �pl(�) then Sm(�; �) = Sa(�; �).If � � �pl(�), Sm(�; �) = 0.

In this case it can be shown in an analogous way as the derivation of equation

22 that:

E(Sm(�; :)=�) =
Z �u

�pl(�)
Sa2(�; y)(1�G(y))dy (24)

Using again the fact that Sa2(�; y) = 1 we get after di�erentiating 21:

�pl� (�) =
�1

1� �(1� )(1�G(�pl(�)))
(25)

Note that this slope is also strictly less that -1. Also at �� there is going

to be a kink. Figure 1 summarizes the previous discussion by partioning the

state space into various regions. Area 3 is the area where it is optimal to be

active. In area 2, laying o� temporarily is the best option and in area 1 it is

better to destroy the match and to layo� permanently.

Now we can describe the unmatched entrepreneur's decision problem. As

we said before entrepreneurs are the only ones who can create job vacancies.

Let the value for an entrepreneur of posting a vacancy be the following:

V (qv; �u; �u) = �z + �qvJm(�u; �u) (26)
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Note that for the latter expression we have used the assumption that new

matches begin with the highest productivity.

Entrepreneurs will post vacancies as long as the value of the vacancy

is positive. As we will see later, in equilibrium, entrepreneurs who post

vacancies must earn zero expected return net of their costs z.
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Next we solve implicitly for ��. As in the standard model this is going to

be the key variable for showing the existence of an equilibrium. Implicitly

we are claiming that if we know �� and qu = vqv

up
, we can derive the whole

regions that characterize optimal layo� behavior. Also it can be shown that

there is positive relationship between �� and �pl(�) for all �(see appendix(g)).

However, the interpretation of �� is somewhat di�erent. It will be the

reservation value of the persistent � idiosyncratic shock that makes �rms

switch their layo� type. So �rms with � � �� will layo� temporarily if hit

by a low temporary � shock. The other ones with persistent bad draws of �

will instead layo� permanently if hit by a bad i.i.d. � shock. De�ne �pl as

the value of � such that �pl(�pl) = �u(see graph). If � � �pl �rms will layo�

permanently whatever value of �.

For deriving �� as an implicit function of all the exogenous variables we

�rst show that given ��, �pl(�; ��) can be found. Recall that �tl(�) only depends

on p and b.

For � � ��, using equation (21) and (22),we have:

�pl(�) = �p� �+ b� �E(Sm(:; :))

��(1� )(�tl(�)� �pl(�) +
Z �u

�tl(�)
Sa2(�; y)(1�G(y))dy)

+�
vqv

up
XS(�u; �u) (27)

Note that for �tl(�) we could have used its equivalent �p � � + b. Us-

ing equation 27 let us subtract �pl(��) from �pl(�) so that we cancel out

��E(Sm(:; :)) and � vqv

up
X. Hence after using using Sa2 = 1 we get:

�pl(�; ��)� �pl(��; ��) = �� + �� � �(1� )(�tl(�)� �pl(�; ��) +
Z �u

�tl(�)
(1�G(y))dy)

+�(1� )(�tl(��)� �pl(��; ��) +
Z �u

�tl(��)
(1�G(y))dy)

But �pl(��; ��) = �tl(��) = �p� �� + b. Also given that the integrands are

the same the di�erence of the integral from �tl(�) to �u and the integral from

�tl(��) to �u is equal to the integral from �tl(�) to �p � �� + b = �tl(��). So

after cancelling terms and solving for �pl(�; ��) we get:
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�pl(�; ��) = �p� �+ b�
�(1� )

1� �(1� )

Z
�p���+b

�tl(�)
(1�G(y))dy (28)

For � � �� from 21 and 24 we get:

�pl(�) = �p� � + b� �E(Sm(:; :))

��(1� )
Z �u

�pl(�)
Sa2(�; y)(1�G(y))dy + �

vqv

up
XS(�u; �u) (29)

Using the latter equation let us subtract �pl(��) from �pl(�) so that we

cancel out ��E(Sm(:; :)) and � vqv

up
X. Hence after using using Sa2 = 1 we

get:

�pl(�; ��)� �pl(��; ��) = �� + �� � �(1� )
Z �u

�pl(�)
(1�G(y))dy

+�(1� )
Z �u

�pl(��)
(1�G(y))dy

But �pl(��; ��) = �tl(��) = �p� �� + b. Also given that the integrands are

the same the di�erence of the integral from �pl(�) to �u and the integral from

�pl(��) to �u is equal to the integral from �p� �� + b = �pl(��; ��) to �pl(�; ��).

So after cancelling terms and solving for �pl(�; ��) we get:

�pl(�; ��) = �p� � + b+ �(1� )
Z �pl(�;��)

�p���+b
(1�G(y))dy (30)

Note that now �pl(�; ��) depends also on ��. This latter variable enters

in the upper and lower bound of the de�nite integral in the right side of

equation 28.

In conclusion, if we know �� and qu = vqv

up
, we can derive the whole regions

that characterize optimal layo� behavior in a unique way. Note that �pl(�; ��)

has now two arguments. This is not the case for �tl(�).

Now we solve for �� as an implicit function of all the exogenous vari-

ables. Note that at ��, �tl(��) = �pl(��) and Sm(�
�; �(��)) = Sa(�

�; �(��)) =

Sd(�
�; �(��)) = 0, hence:
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0 = �E(Sm(:; :)) + �(1� )
Z �u

�p���+b
Sa2(x; y)(1�G(y))dy

��
vqv

up
XS(�u; �u) (31)

So we need to solve E(Sm(:; :)) and S(�u; �u) in terms of ��. For the case

of E(Sm(:; :)) we have:

E(Sm(:; :)) =
Z �pl(��;�u)

�1

Z �u

�1

0dydF (x)

+
Z ��

�pl(��;�u)

Z �u

�pl(x;��)
Sa2(x; y)(1�G(y))dydF (x)

+
Z �u

��
�tl(x)� �pl(x; ��) +

Z �u

�tl(x)
Sa2(x; y)(1�G(y))dydF (x) (32)

Note that we have used the de�nition of Sm(�; �) and equations (29) and

(30). This expression could we simpli�ed if we use the fact Sa2(�; y) = 1.

The only term that we don't know is �pl(�u) that is the value given � = �u,

such that Sm(�
pl; �u) = Sa(�

pl; �u) = 0. To get this value �rst note that the

latter implies using equation 24:

0 = Sm(�
pl; �u) = Sa(�

pl; �u) =

p+ �pl + �u � b + �E(Sm(:; :))

+�(1� )
Z �u

�pl(�pl;��)=�u
(1�G(y)dy � �quXS(�u; �u) (33)

Also at �� and at �pl(��; ��) = �tl(��) we have:

0 = Sm(�
�; �tl(��)) = Sa(�

�; �tl(��)) = Sd(�
�; �tl(��)) =

p+ �� + �pl(��)� b + �E(Sm(:; :))

+�(1� )
Z �u

�pl(��;��)
(1�G(y))dy � �quXS(�u; �u) (34)

Substracting the latter equation from the former and rearranging we get:

�pl as a function of ��
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�pl(��; �u) = �p� �u + b + �(1� )
Z �u

�p���+b
(1�G(y))dy (35)

Finally, using the zero pro�t condition for the value of posting a vacancy,

we get that Jm(�; �) =
c

�qv
. Additionally, Jm(�; �) = (1 � X)S(�; �). Hence

we get that �� vqv

up
S(�u; �u)X = � Xc

1�X

v

up
. So we get an inplicit function of

�� for given v
up
. We will call this as in standard in the literature, the Job

Destruction condition.It can be shown that this equation is strictly increasing

in v

up
(See Appendix for the sign of the partial derivative of �� with respect

to v

up
).

The Job Creation curve is going to give us the second equation to solve

for v
up

and ��. Note that

Sm(�
u; �u)� Sm(�

�; �tl(��)) = �u + �u +
�(1� )

1� �(1� )

Z
�p���+b

�p��u+b
(1�G(y))dy(36)

Hence, after using the zero pro�t condition and Jm(�; �) = (1�X)S(�; �)

we get to:

qv(
v

up
) =

z

�(1�X)(Sm(�u; �u)� Sm(��; �(��)))
(37)

It is clear that in this latter equation "the Job Creation condition" v

up
is

strictly decreasing in ��(see appendix). A solution for these two variables is

given in �gure 2 by the intersection of destruction and creation equation in

the plane (��; v
up
).

The latter analysis greatly facilitates understanding the model's implica-

tions for various changes in the economy. The e�ect of a higher value of the

aggregate productivity component in the economy, p, can be decomposed in

its e�ects on �� and v
up

through its e�ects on the Job Destruction and Job

creation curve.

As we explain in the appendix(d) a higher p shifts the job destruction

curve to the left or decreases ��. This happens because now the surplus of

any match is higher for given v
up
. This implies a lower reservation value of

the persistent � idiosyncratic shock that makes �rms switch their layo� type

in good times.
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This implies a lower reservation value of the persistent � idiosyncratic

shock that makes �rms switch their layo� type in good times. However the

Job Creation curve shifts to the right because now new maches are more

productive, hence the only way to prevent more vacancy posting so that to

hold v
up

constant in equation 36 is to make more probable the decision to

layo� permanently that temporarily through a higher ��. So the �nal e�ect

on the latter variable is undetermined. Following an analogous argument v
up

goes up. When we calibrate in the empirical section the model to the US

data �� is countercyclical but almost constant to changes in p. The last thing

to analize would be the �nal e�ect on �pl that together with �� characterize

completely the optimal decision rules given the current values of the two

idiosyncratic shocks. A way to facilitate this analysis is using the claim

that given the structural paramenters and v

up
we can determine uniquely

�pl through ��. So if in the US economy changes in p almost don't a�ect

�� then the e�ect on �pl depends only on the partial derivative of �pl with

respect to p as de�ned in equations 27 and 28 for all � . In the appendix(g)

we show that �plp is negative. Hence for the US economy our model implies

countercycliclality in job reallocation and also in temporary layo�s. Both

implications are consistent with the data(Feldstein 1975)

A higher value of  shifts the creation curve to the left. In the Appendix(e)

we show that the e�ect on the destruction curve is undetermined. Hence ��
and v

up 
are undetermined. However The Job Destruction curve shifts to the

left for the US economy(see appendix). So �� is negative for the US economy.
v
up 

is also negative for the calibrated model.

Finally an increase in z shifts the destruction curve to the right and the

creation curve to the left. v

up c
is negative however ��z is undetermined. For

the calibrated model this derivative is negative(see appendix(f))

To de�ne an equilibrium we need to describe the laws of motion for perma-

nent and temporary unemployment. We need �rst to de�ne two measures,

one for active matches and another one for dormant matches. Let �1t be

the beginning of period t distribution of pairs (�; �) across prexisting active

matches after new realizations but before exit decisions. �2t is de�ned analo-

gously for the case of prexisting dormant matches. Let NMtbe the mass of

new matches formed last period. Recall that any matches that result from

the search in period t-1 become productive as of period t . Hence, if there are

u
p
t�1 permanent unemployed workers in period t and vt�1 vacancies posted,
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then the law of motion for upt is given by:

u
p
t = �

p1
t (�

1
t ) + �

p2
t (�

2
t ) + u

p
t�1 � u

p
t�1

m(upt�1; vt�1)

u
p
t�1

(38)

where the last term in the right hand side corresponds to NMt. �
p1
t is

the amount of job destruction in period t that goes to permanent unemplo-

ment(or prexisting active matches that given their new shocks are destroyed

at the beginning of period t) as a function of �1t .The term �
p2
t stands for the

additional ow to permanent unemployment coming from dormant matches

that given their new shocks are destroyed. Note that job destruction is not

a constant fraction of matches that are active in a given period as in the

standard matching model. According to our assumptions, a fraction  of

active matches receives new draws from each of the two shocks distributions

and have a speci�c probability of destroying the match. However, a fraction

(1 � ) stays with the same � shock and depending on this speci�c value

they are going to have di�erent probabilities of getting destroyed. The latter

implies that the amount of destruction depends both on � and the mass of

preexisting active matches that had that same � in the previous period. In

our model the Job Destruction rate is not a constant fraction of preexisting

active matches.

For the case of temporary unemployed workers utt we have:

utt = �tt(�
1
t ) + utt�1 � rt(�

2
t )� �

p2
t (�

2
t ) (39)

where �tt is the amount of job destruction in period t that goes to tempo-

rary unemployment (or active matches that given their new shocks are chosen

to be dormant) as a function of �1t . The amount of recalls is denoted by r as

a fuction of the measure of matches that were on temporary layo�. Finally

�
p2
t is the amount of dormant matches that after new shocks are chosen to

be destroyed, as a function of �2t .

Unemployment in a given period, ut, is going to be the sum of upt and utt.

Formally: Let � be equal to the sum of �1 and �2.

u
p
t = 1�NMt �

Z �u

�1

Z
1

��(�)
d�t(x; y) (40)
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utt = �tt(�
1
t ) +

Z �u

��

Z ��(�)

�1

d�2t (x; y) (41)

�
p1
t =

Z ��

�1

Z ��(�)

�1

d�1t (x; y) (42)

�
p2
t =

Z �
�

�1

Z ��(�)

�1

d�2t (x; y) (43)

�tt =
Z �u

�
�

Z ��(�)

�1

d�1t (x; y) (44)

rt =
Z �u

�1

Z
1

�
�
(�)
d�2t (x; y) (45)

Finallly, the amount of Job Destruction (JD) is going to be given by the

mass of matches that become destroyed plus the mass of matches in which

the entrepreneur decides to layo� the worker temporarily. The latter source

only makes sense if the match in the previos period was active.

The amount of Job Creation (JC) is going to be given by new matches

and recalls (dormant matches in the previous period that decide to produce

in the following period).

Formally we have:

JDt = �t = �
p1
t + �tt (46)

JCt = yt�1u
p
t�1 + rt (47)

2.2.1 De�nition of Equilibrium

We are ready to de�ne an equilibrium in this economy; An equilibrium is

a list fNMtg, f�
1
tg, f�

2
tg,fu

p
tg,fu

t
tg, fvtg,functions Jm(�; �),Ja(�; �),Jd(�; �),

V mw(�; �),V e(�; �),V tl(�; �)),V u, V (qv; �u; �u), �
pl(�) ,�tl(�)and a number �� s.t:

a)Jm(�; �) = max(Ja; Jd; 0)

b)V mw(�; �) = max(V e(�; �); V tl(�; �); V u)

c)��,�pl(�),�tl(�) are optimal decisions rule for exiting, laying o� temporar-

ily or permanently.

d)V (qv; �u; �u) = �z + �qvJm(�u; �u)

e)V (qvt ; �u; �u) = 0 for all t.

f)V mw(�; �)� V u(�; �) = X(V mw(�; �) + Jm(�; �)� V u(�; �))

g)�1t+1 �
2
t+1, u

p
t+1 and u

t
t+1 are consistent with �

1
t �

2
t , u

p
t and u

t
t respectively

and the stochastic structure.
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A Stationary Equilibrium is an equilibrium such that NMt+1 is equal to

NMt, �
1
t+1 equal �

1
t and �2t+1 equal �

2
t for all t.

2.3 Model with agregate shocks

In what follows we study an equilibrium in which wages depend only upon

the aggregate technologically shock and not on the level of permanent un-

employment. For an easy proof in a simple model see Rogerson, Cole(1996).

We assume that pt is an aggregate technology shock that follows a sym-

metric two state markov chain in which l(= l11 = l22) with the probability

of remaining in the same state for two consecutive periods. We assume that

p1 > p2, being p1 the good state.

The respective Bellman equation for the total match surplus is now de-

�ned of terms of value functions that depend not only on the two idiosyn-

cratic shocks but on the aggregate productivity compontent p. For details of

derivation see appendix:

Sm(pj; �; �) = max(Sa(pj; �; �); Sd(pj; �; �); 0) (48)

for j = 1,2 where

Sa((pj�; �) = pj + � + �� b +
2X

i=1

lji(�E(Sm(pi; �; �))

+�(1� )E(Sm(pi; �; �)=�)� �qujXS(pi; �
u; �u)) (49)

Sd(pj; �; �) =
2X

i=1

lji(�E(Sm(pi; �; �))

+�(1� )E(Sm(pi; �; �)=�)� �qujXS(pi; �
u; �u)) (50)

for j = 1,2.

Numerical results indicate that the comparative statics of changes in the

aggregate productivity compontent are robust when these are anticipated.

The de�nition of equilibrium for the stochastic version follows directly in

the same way as before with additional value functions contingent upon a

vector (pj; �; �).
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2.3.1 De�nition of Equilibrium with Aggregate Shocks

An Recursive Competitive Equilibrium is a list functions up(pj; �
1; �2),

ut(pj; �
1; �2), v(pj; �

1; �2), NM(pj ; �
1; �2), qu(pj; �

1; �2), qv(pj; �
1; �2),

w(pj; �; �; �
1; �2), Jm(pj; �; �; �

1; �2), Ja(pj; �; �; �
1; �2), Jd(pj; �; �; �

1; �2),

V mw(pj; �; �; �
1; �2), V e(pj; �; �; �

1; �2), V tl(pj; �; �; �
1; �2)), V u(pj; �; �

1; �2),

V (pj; q
v; �u; �u; �

1; �2), �pl(pj; �; ; �; �
1; �2), �tl(pj; �; �; �

1; �2), a number

��(pj; �
1; �2) and T (pj; �

1; �2) for j=1,2 such that:

a)(Optimization) Taking the functions qu(pj; �
1; �2), qv(pj; �

1; �2),

w(pj; �; �; �
1; �2) as given Jm(pj; �; �; �

1; �2), V mw(pj; �; �; �; �
1; �2) satisfy

the appropiate Bellman equations.

b)(Optimal decision rules) ��(pj),�
pl(pj; �),�

tl(pj; �) are optimal decisions

rule for exiting, laying o� temporarily or permanently.

c)(Free Entry) 0 = �z+�qv(pj; �
1; �2)

P2
i=1 ljiJm(pi; �

u; �u; �1
0

; �2
0

) for all

(pj; �
1; �2), where (pj; �

10; �2
0

) is next period's value for the aggregate state

variables.

f)(Bargaining) V mw(pj; �; �; ; �
1; �2)� V u(pj; �; �; �

1; �2) =

X (Vmw(pj; �; �; ; �
1; �2) + Jm(pj; �; �; ; �

1; �2)� V u(pj; �
1; �2))

for j=1,2

g)(Rational Expectations) For each (pj; �
1; �2) and when appicable for

each (�; �), decisions generate a distribution over next period's state which is

equal to the distribution given by T (pj; �
1; �2)

In this section we have formulated a matching model in which temporary

and permanent layo�s exist simultaneously. The key issue in obtaining this

result is to assume that individual employment matches are subject to two

shocks, one of which is persistent and one of which is not. Low values of

the persistent shocks will lead to permanent separations whereas low values

of the temporary shock will lead to temporary layo�s. In the subsequent

sections I will use this model to carry out a quantitative analysis of labor

market dynamics.
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3 Empirical Analysis

3.1 The Data

We use the same data as Cole and Rogerson(1996) based on Davis Halti-

wanger and Shuh(1996) work. We use as an employment measure the citybase

series for workers on payroll for the manufacturing sector(1972:2-1988:4). Job

creation and job destruction series are based on quarterly employment infor-

mation using the following de�nitions. 1)Job creation in period t (JCt): Sum

of all employment gains at establishments experiencing positive net employ-

ment gains between t-1 and t.2)Job destruction in period t (JDt):Sum of

all employment losses at establishments experiencing negative net employ-

ment gains between t-1 and t. These series are linked through the following

de�nition:

et � et�1 = JCt � JDt (51)

where et is the employment at the time t. In our �rst table we present a

summary statistics that were constucted after adjusting the data seasonally

and �ltering.

In the second table we present a larger set of facts that would have to be

matched when introducing temporary layo�s. First note that series of job

destruction and creation for longer horizons than one quarter are presented.

These are rede�ned series of job creation and destruction that result from

requiring that deletions or additions to payroll persist for some speci�ed

horizon.

For matching the importance of temporary layo�s we would have to match

a 25% decrease in the mean of Job Destruction that results when we go from

the series of horizon zero to horizon one. Our model could not account for

the respective 25% decrease in the mean of Job Creation.

We will use two versions of our model. In one version periods are quarters.

We will call this the non aggregated model. It is straightforward to check

that the de�nition of the variables we study in the data have their consistent

counterpart in the �rst version of the model. In the second version periods

will be months and we will aggregate to build up quarterly series of Job

Creation and Destruction. The procedure is explained in the appendix. As
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we pointed out in the introduction the latter version is the most relevant one

given that temporary layo�s are more important at a monthly level.

3.2 Calibration of the steady state

For the calibration of the steady state to the U.S. facts we assume that

the idiosyncratic shock �'s distribution F is taken to be uniform over the

interval [-e,e], being e a positive number. Analogously G is uniform over[-i,i].

The matching function chosen is Au�v1��, so the unemployment elasticity is

equal to �. Using the zero pro�t the job matching rate per searching worker

in equilibrium is given by:

qu = A(
A�Jm(pi; �

u; �u)

z
)
1��
� (52)

For the quarterly model the parameters were chosen as follows. The

value of � is set to be 0.5 , midway between the estimate of Blanchard and

Diamond(1989) using U.S data and that of Pissarides(1986) from U.K. data.

The quarterly discount factor is set to be 0.99. For lack of information the

bargaining power parameter X was set to 0.5. The other parameters were

set so as to match the following facts in the U.S. data:

1) The support of � i=.16 matches aproximately a decrease of 25% in the

mean of job destruction when we don't consider deletions to payroll that are

reversed after one quarter(actual value matched in the quarterly model is

23%).

2)  =.3 would match a job destruction rate of .55 (actual.0511)

3) The support of � e=.02 matches a 8:5% level of manufacturing unem-

ployment.

4) The cost of posting a vacancy, z=.544 would be consistent with the

fraction .4615 of the value of the most productive job that is spent on adver-

tizing costs(Millard and Mortensen 1996).

5)The scale paramenter of the matching function A would be chosen so

as to match an average duration of an unemployment spell of 1.667 quarters

or equivalently an average unemployment hazard of .6 as in the data. This

average duration was obtained in our model through a weighted average of

the permanent unemployment hazard rate and the temporary hazard rate.

The weights are given by the steady state values of permanent and temporary
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unemployment respectively(For the calculation of the temporary hazard rate

see below).The value obtained is 1.27. Note that in the monthly model we

choose A to match the average duration of a vacancy. We don't do the

same in the quartely model because this duration is empirically less than one

quarter.

6)The value of leisure was set equal to .86 in so as to match the variability

of unemployment in the stochastic simulation of the model to the US data.

Finally p, the common worker productivity, was the numeraire set equal

to 1.

The implied quarterly temporary unemployment hazard was .9506 or

1.052 quarters duration of a temporary unemployment that is somewhat

consistent with the data of Anderson and Meyer. Actually their data might

not be comparable with the quarterly model because the rates they calculate

are weekly hazard rates. They would take into account in calculating these

rates unemployment spell of less than one quarter that would not be taken

into account into our quarterly model. A better framework for comparison,

although still not quite accurate, would be our monthly model.

The rate in our quarterly model was calculated as the percentage of tem-

porary layo�s in one quarter that is recalled the next one. The correspond-

ing population permanent unemployment hazard is .5411. In our calibrated

model of 8:5% of unemployment 15:06% was temporary and the rest was

permanent.

For the agggregated model the parameters were chosen as follows: As

before the value of � is set to be 0.5 , the monthly discount factor is set to be

0.9975. Again the bargaining power parameter X was set to 0.5. The other

parameters were set so as to match the following facts in the U.S. data:

1) The support of � .188 matches aproximately a decrease of 25% in the

mean of job destruction when we don't consider deletions to payroll that are

reversed after one quarter. See appendix for the aggregation of the series of

job creation and destruction from the monthly model.

2)  =.0293 would match aproximately a quarterly job destruction rate

of .55.

3) The support of � e=.046 matches aproximately a 8:5% level of manu-

facturing unemployment.

4) The cost of posting a vacancy, z=.57 would be consistent with the frac-

tion .4615 of the value of the most productive job that is spent on advertizing
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costs(Millard and Mortensen 1996).

5)The scale paramenter of the matching function A would be chosen so as

to match an average duration of a vacancy of 45 days that implies a monthly

qv=.666. We obtained A=.345.

6)The value of leisure was set equal to .85 so as to match the variability

of unemployment in the stochastic simulation of the model to the US data

Again p, the common worker productivity, was the numeraire set equal

to 1.

The implied monthly temporary unemployment hazard was .9382 aprox-

imately a month and three days or .365 quarters . The temporary unem-

ployment hazard rate was calculated as the percentage of temporary layo�s

in one month that is recalled the next one. According to this results the

monthly model does not a good job in matching its empirical counterpart

at least in Anderson and Meyer(1994) calculations when they refer to the

average duration of unemployment spells that end in recall. Note as we said

before that this comparison is not that accurate because the hazard rates

the authors calculate are weekly. The data they use is taken from workers

claiming unemployment insurance. So the beginning and end of a spell is

associated with the date at which bene�ts were received, claimed or actually

begun according to the worker response(3 measures of spell)and the last date

this payments were received .In the paper one can �nd 8 weeks to be the av-

erage duration for spells ending in recall. However we add two weeks because

the measure of spell used for this calculation was the one that considers the

beginning of a spell the time at which bene�ts were claimed; but in average

it takes two weeks to present the claim.

When we go from a quarterly model to a monthly model we are really

changing the persistence of the "temporary" shock from three months to one

month. As a result it is much harder to get temporary layo�s to last very

long. More generally what we could consider is a model with two shocks that

have di�ering persistence. We have chosen the special case where one of the

shocks has no persistence in order to keep the computations more tractable.

But in general one could consider the more general case in which case one

could get higher temporary layo� durations in the monthly model.

Among other results we got that the corresponding permanent monthly

unemployment hazard, qu,is .1743 or a permanent unemployment spell of 1.83

quarters consitent with the Anderson and Meyer measures of new job �nding
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rate. Note that in this case our model and the mentioned authors' measures

are comparable. The implied average duration of an unemployment spell was

3.14 months or aproximately 1 quarter. Finally of 8:5% of unemployment

16:34% was temporary and the rest was permanent.

3.3 Simulations

For the simulations we assume that pt is an aggregate technology shock that

follows a symmetric two state markov chain in which l(= l11 = l22) is the

probability of remaining in the same state for two consecutive periods. We

assume that p1 > p2, being p1 the good state. See Appendix for formal

derivation of the respective functional equations.

The probability of remaining in the same state for two consecutive periods

l11 would be set equal to .973 and .985 for the non aggregated and aggre-

gated model respectively.The size of the shock, pd, was set equal to .012 in

both models, where p1=p+pd,p2=pd-pd. This numbers were obtained after

simulating and taking logs of quarterly productivity values using a monthly

two state symmetric markov chain with productivity values equals to p1 and

p2. Given p arbitrarily, in our case equal to one, l11 and pd were chosen

so as to match the autocorrelation and standard deviation of logged USA

quarterly labour poductivity from 1947 to 1991(Mortensen and Pissarides

1994). Quarterly productivity in the aggregated model was set equal to the

average productivity of the respective 3 month productivity draws.

To obtain statistics we simulate the aggregated model for 1500 months

that are equivalent to 500 quarters. For the non aggregated model we sim-

ulate the model for only 500 periods where one period equals one quar-

ter.Then we compute the quarterly series of creation and destruction as de-

�ned in equations 42 and 43 and as explained in the appendix for the ag-

gregated model. We discard the �rst 100 observations and then logged and

�ltered(Hoedrick and Presscott) the series consisting of 400 observations.

For comparison we also present the results for the standard quarterly

matching model reported by Rogerson and Cole(1996). We also present

results when we used our quarterly model setting parameters so as not to

have temporary layo�s. For the latter benchmark model we set the support

of the iid idiosyncratic shock such as to match no temporary layo�s(i=.1315)

in steady state. A=1.36 matched the unemployment, the support of �, e=.03,
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matched the job destruction rate, z matched the fraction .4615 of the value of

the most productive job that is spent on advertizing costs. The other values

of the parameters were the ones we obtained when we calibrated the quarterly

model. Note that for the benchmark model the change in the variables is

"small". By small we mean that, say, the ratio of the support of the iid shock

to the persistent shock is still around 4. We can see the implied statistics in

the sixth column of table 1.

Adding temporary layo�s doesn't change the results much in compari-

son to the benchmark model. It increases somewhat the positive correlation

between creation and destruction and increases the variability of job de-

struction. Also the autocorrelation in the three series is diminished but not

signi�cantly.

However if we take Rogerson and Cole results as a benchmark it is clear

that adding temporary layo�s produces a positive correlation between cre-

ation and destruction.

We did another excercise to reproduce Rogerson and Cole results and we

found that in order to do this we have to reduce the support of �. For this

purpose we followed a somewhat similar procedure as when setting parameter

values for our benchmark model. The di�ererence is that we set additionaly

 so that to make � close to zero.

The reason why reducing the support of iota takes us to the Rogerson

and Cole results or the standard Mortensen and Pissarides results is in line

with all of this authors intuition about the reasons for a negative correlation

between creation and destruction.

This is related to the assymetry in the response of Job destruction to

an aggregate shock. In Rogerson and Cole terms this refers to �0. When

the support of iota is zero and we calibrate the model to the US facts as

Mortensen and Pissarides did, the e�ect ot the arrival rate of the persistent

shock creates the asymetry in the response of job destruction to an aggregate

shock. Job destruction is more volatil than creation when the economy is hit

by a bad aggregate shock. Hence this creates a negative correlation between

creation and destruction. However as as Rogerson and Cole point out this

comes at expenses of the autocorrelation of the three series(see fourth column

of table 1).

In other words if temporary layo�s are empirically important and for their

existence we need the iid shocks to be large enough, then in this context the
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standard Mortensen and Pissarides Model does a poor job in terms of trying

to replicate the statistics.

One of the results we get is that the correlation between job creation and

destruction is positive. This implies that for the US Data the lower per-

manent unemployment hazard rate implied by introducing temporary layo�s

in the Mortensen and Pissarides matching model is dominated by the high

recall rate of temporary layo�s. Hence a positive correlation is generated.

The puzzle that remains is why don't we get the desired negative cor-

relation if temporary layo�s are empirically important. We will claim that

the inability of our model to replicate the richness in the dynamics of the

temporary unemployment hazard rate pointed out in the previous section is

behind the poor performance of our model in replicating the statistics of job

creation and destruction.

Before laying out our explanation we present the implications that aggre-

gate shocks have to the following measures over the cycle in our calibrated

quarterly model: The fraction of layo�s that are temporary, the temporary

and permanent unemployment hazard rate, the unemployment hazard rate

and the probability of a permanent layo� for a temporary layo�. For exposi-

tion purposes we assume that the draw of aggregate shocks is characterized

by a long period of consecutive bad realizations so that the economy, abusing

the use of language, tends to to a "steady state". Note that in an stochastic

environment it is not correct to make use of the notion of steady state. See

�gure 4

De�netely what is causing the average hazard rate to go up slightly is

the increase of the importance of temporary layo�s over total unemployment

even when the permanent unemployment hazard rate goes down. Also note

that we don't get that richness in the temporary unemployment hazard rate

when the economy uctuates when hit by aggregate shocks.

In �gure 5 we present the dynamics of the same rates when we use the

monthly model. This latter model as we said before is more adequate if we

want to compare our results with those of Anderson and Meyer. We �nd a

similar pattern as in the quarterly model.

I o�er the following explanation. First the monthly temporary hazard

rate should be lower around 1/3. This could be obtained if as we said before

we introduce �nite duration unemployment bene�ts. This would help in

producing less of a positive correlation. However the crucial point is to see
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that the weekly hazard rates reported by Anderson and Meyer are kind of u

shaped. The �rst weeks they are high with a lower peak in the third month

and a peak around the weeks of bene�ts exhaustion of the same magnitude

as the one of the �rst weeks(�gure IV in their paper). Hence most of recalls

would not occur after one quarter as in our quarterly model but either as

early in the �rst month or as late as after two quarters. A model that would

imply this would still generate an average temporary unemployment duration

of 1 quarter to be consistent with the facts. However it is possible that the

e�ect on job creation of longer spells of temporary unemployment that end

up in recall might dominate the initial high recall rate.
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If so we would obtain the desired negative correlation between job cre-

ation and destruction. We want to emphasize that to be recalled the last

week of unemployment bene�ts it is necessary for this workers on tempo-

rary layo� to have very low hazard rates the �rst weeks. It is intuitively

clear that extending our model for the presence of �nite duration unemploy-

ment bene�ts would generate the adequate framework to answer the latter

question. Matches with persistent good draws of the persistent idiosyncratic

shock would be recalled faster in comparison to the ones with lower persis-

tent idiosyncratic shocks. The U shaped hazard rate of temporary layo�s

as a function of the number of weeks before bene�ts exhaustion would be a

natural implication.

Finally two last things deserve comment with respect to the duration of

bene�ts. The data for Missoury and Pennsylvania have bene�ts duration

of 23 and 35 wekks respectively. In quarters this implies between two and

three quarters. By law if there is recession emergency funds from the fed-

eral government could be provided to �nance more weeks of unemployment

insurance. If there are less recalls that ocurr the �rst weeks than the ones

that occur at a high rate near bene�ts exhaustion then it is possible that

temporary layo�s have a quarterly recall rate closer to 1/3. Recall this is the

hazard rate necessary for the matching model to match the facts.
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Stat Modquart Modmonth MortP issColeRog Data ModBench

STDe :013 :011 :017 :030 :011

STDJC :15 :131 :121 :117 :098

STDJD :18 :144 :147 :197 :126

CORRJDJC :58 :603 �0:43 �:65 :461

CORRetet�1 :776 :73 :47 :90 :807

CORRJCtJCt�1 :728 :67 :17 :51 :820

CORRJDtJDt�1 :635 :59 �:07 :65 :582

Table 1: Statistics

4 Conclusions

In this paper we have formulated a matching model in which temporary

and permanent layo�s exist simultaneously. The key issue in obtaining this

result is to assume that individual employment matches are subject to two

shocks, one of which is persistent and one of which is not. Low values of the

persistent shocks will lead to permanent separations whereas low values of

the temporary shock will lead to temporary layo�s.

The calibrated model though very simple does a good job replicating basic

empirical regularities of Davis and Haltiwanger Data(1996). However we get

that the correlation between job creation and destruction is positive. This

implies that for the US Data the lower permanent unemployment hazard rate

implied by introducing temporary layo�s in the Mortensen and Pissarides

matching model is dominated by the high recall rate of temporary layo�s.

Hence a positive correlation is generated.

However extending the model for allowing for limited duration of unem-

ployment bene�ts would generate a more richer dynamics of the temporary

layo� recall rate that is consistent with the more detailed data of Anderson

and Meyer. In particular it would match the fact that recalls occur either the

�rst month or after the seventh month or around the exhaustion of unem-

ployment bene�ts. This lower temporary unemployment hazard rate might

dominate the high recall rate the �rst weeks after the start of the temporary

unemployment spell. Hence matching the facts.
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5 Appendix

a)Claim 1:

Sm(�; �) = max(Sa(�; �); Sd(�; �); 0)

If (�; �) are such that Sm(�; �) = Sa(�; �), then

Sm(�; �) = V e(�; �) + Ja(�; �)� V u + �quV u � �quV u = � � �

w(�; �)� b + �E(V mw(:; :)) + �(1� )E(V mw(�; :)=�) � � �

+p+ � + �� w(�; �) + �E(Jm(:; :)) + �(1� )E(Jm(�; :)=�) � � �

�(�quV mw(�u; �u) + �(1� qu)V u) � � �

+�quV u � �quV u (53)

Using Jm(�; �) = (1 � X)Sm(�; �) we get after simplifying to the desired

conclusion. The derivation is analogous for the case where (�; �) are such that

Sm(�; �) = Sd(�; �).

b)Claim 2:

Derivation of equation 22: if � � �� we have: Sm(�; �) = Sa(�; �) if � �

�tl(�); Sm(�; �) = Sd(�; �) if � � �tl(�). We can write:

E(Sm(�; :)=�) =
Z �u

�tl(�)
Sa(�; y)dG(y) +

Z �tl(�)

�1

Sd(�; y)dG(y) (54)

After integrating by parts over the implied ranges we get that for a given

value of �:

E(Sm(�; :)=�) = Sa(�; y)G(y)j
�u

�tl(�) �

Z �u

�tl(�)
Sa2(�; y)G(y)dy

+Sd(�; y)G(y)j
�tl(�)
�1

�

Z �tl(�)

�1

Sd2(�; y)G(y)dy (55)
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Given that Sa(�; �
tl(�)) = Sd(�; �

tl(�)) this expressions cancel out. Addi-

tionally, Sd(�;�1)G(�1) = 0 and Sd2(�; y) = 0 imply:

E(Sm(�; :)=�) = Sa(�; �
u)G(�u)�

Z �u

�tl(�)
Sa2(�; y)G(y)dy (56)

but Sa(�; �
pl(�)) = 0, by de�nition of �pl(�). Note also that G(�u) = 1, so

after integrating the �rst term in the right side of the previous equation we

get:

E(Sm(�; :)=�) =
Z �u

�pl(�)
Sa2(�; y)dy �

Z �u

�tl(�)
Sa2(�; y)G(y)dy =

Z �tl(�)

�pl(�)
Sa2(�; y)dy +

Z �u

�tl(�)
Sa2(�; y)(1�G(y))dy =

�tl(�)� �pl(�) +
Z �u

�tl(�)
Sa2(�; y)(1�G(y))dy (57)

Note that in the last equality we have used the fact that Sa2(�; y) = 1

when solving for the de�nite integral in the �rst term of the third equality.

c)Claim 3:

Let the Job destruction equation 29 be:

0 = �E(Sm(:; :)) + �(1� )E(Sm(�
�; :)=��)�

Xz

1�X

v

up
(58)

where

E(Sm(:; :)) =
Z �pl(��;�u)

�1

Z �u

�1

0dydF (x)

+
Z ��

�pl(��;�u)

Z �u

�pl(x;��)
Sa2(x; y)(1�G(y))dydF (x)

+
Z �u

��
�tl(x)� �pl(x; ��) +

Z �u

�tl(x)
Sa2(x; y)(1�G(y))dydF (x) (59)

and

E(Sm(�
�; :)=��) =

Z �u

�pl(��)
Sa2(�

�; y)(1�G(y))dy (60)
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Let

R(��; :::) = �E(Sm(:; :)) + �(1� )E(Sm(�
�; :)=��) (61)

then ��v
up
, the partial derivative of �� with respect to v

up
, is positive and is

given by: ��v
up

=
Xc
1�X

R��
.

We just need to show that R�� is positive. Note that: E(Sm(�
�; :)=��)�� =

1�G(�p���+b) and again Sa2(�
�; y) = 1. We will calculate next E(Sm(:; :))��.

After integrating by parts and simplifying we get:

E(Sm(:; :)) = �

Z ��

�pl(��;�u)

(1�G(�pl(x; ��))

1� �(1� )(1�G(�pl(x; ��)))
F (x)dx

�
1

1� �(1� )

Z �u

��
(1�G(�tl(x)))F (x)dx

+
�(1� )

1� �(1� )

Z
�p���+b

�p��u+b
(1�G(y))dy +

Z �u

�p��u+b
(1�G(y))dy (62)

After derivating with respect to �� the terms to the right of the previous

equation become after manipulating equal to:

term1�� =
Z ��

�pl(��;�u)

G�(�
pl(x; ��))�(1� )(1�G(�p� �� + b))

(1� �(1� )(1�G(�pl(x; ��)))3
F (x)dx

�
F (�pl(��; �u))(1�G(�pl(�pl(��; �u); ��)))

1� �(1� )(1�G(�pl(�pl(��; �u); ��)))
�
pl
��(= 0) +

F (��)(1�G(�p� �� + b))

1� �(1� )(1�G(�pl(��; ��)))
> 0

term2�� =
F (��)(1�G(�p� �� + b))

1� �(1� )
> 0

term3�� = �
�(1� )(1�G(�p� �� + b))

1� �(1� )
< 0

However, �(1 � )E(Sm(�
�; :)=��)�� is positive and greater than � the

third term. Hence the job destruction curve displays a positive relationship

between �� and v
up
.

d)Comparative statics of the aggregate component p.
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-Di�erentiantion of the Job Destruction Condition(equation 30) with re-

spect to p yields (holding v

u
constant):

0 = R���
�

p +Rp

��p = �
Rp

R��
< 0 (63)

This partial derivative is negative because:

Rp =
Z ��

�pl
�(1�G(�pl))�plp dF (x) + (

Z �u

�pl(�pl)
(1�G(y))dy)f(�pl)�plp

+
Z �u

��
(G(�p� �� + b)�G(�p� x + b))

�(1� )

1� �(1� )
+G(�p� x+ b)dF (x)

+(1�G(�p� �� + b)) > 0(64)

We show in g that �plp is negative. Also the second term in the right side is

zero. Hence an increase in p shifts the job destruction curve to the left.

-Di�erentiantion of the Job Creation Condition(equation 36) with respect

to p yields (holding v
u
constant):

0 =
z�(1�G(�p� �� + b))

(1� �(1� ))(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
��p

�z
1 + �(1�)

1��(1�)
(G(�p� �� + b)�G(�p� x + b))

(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
(65)

Hence ��p > 0 or an increase in p shifts the Job Creation curve to the right.

The general equilibrium e�ect on v

u
is positive however it is undetermined for

��. Analitically we have respectively after di�erentianting the Job Destruc-

tion (equation 30) and Job Creation(equation 36) condition with respect to

p:

0 = R���
�

p +Rp �
v

up

Xz

1�X
(66)
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qvv
u

v

up
=

z�(1�G(�p� �� + b))

(1� �(1� ))(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
��p

�z
1 + �(1�)

1��(1�)
(G(�p� �� + b)�G(�p� x + b))

(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
(67)

After solving for v
u
we get an expression in terms of ��p:

��p(R��q
v
v
u

1�X

Xz
�

z�(1�G(�p� �� + b))

(1� �(1� ))(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
) =

�Rp

1�X

Xz
qvv
u
� z

1 + �(1�)

1��(1�)
(G(�p� �� + b)�G(�p� x + b))

(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
(68)

So ��p is undetermined. Our numerical results for the US. indicate that

this is negative but close to zero for a size of the productiviy shock cali-

brated to mimic the time series of the log of quarterly labour productivity

for the US economy. Or in other words enough to make temporary layo�s

countercyclical

e)Comparative statics of .

-Di�erentiantion of the Job Destruction Condition(equation 30) with re-

spect to  yields (holding v
u
constant):

0 = R���
�

 +R

�� = �
R

R��
(69)

The sign of the last expresion depends on R, that it is equal to:

R = �

Z ��

�pl
�(1� (G(�pl))�pl dF (x)

�(
Z �u

�pl(�pl)
(1�G(y))dy)f(�pl)�pl

�

Z ��

�pl

Z �u

�pl(�pl)
(1�G(y))dydF (x)
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+�
Z �u

��

�
R
�p���+b
�p�x+b (1�G(y))dy

(1� �(1� ))2
dF (x)

�

Z �u

��
�tl(x)� �pl(x) +

Z �u

�tl(x)
(1�G(y))dydF (x)

��

Z �u

�p���+b
(1�G(y))dy (70)

After integrating by parts and simplifying we get:

R =
Z ��

�pl

�2(1� (G(�pl)))

1� �(1� )(G(�pl))

Z �pl

�p���+b
(1�G(y))dydF (x)

+
Z �u

��

�(1� )

(1� �(1� ))2

Z
�p���+b

�p�x+b
(1�G(y))dydF (x)

��

Z ��

�pl

1�G(�pl)

1� �(1� )G(�pl)
F (x)dx (71)

Note that the �rst and the third term go to zero when �� goes down or

gets closer to � such that �u = �p � � + b. Hence for �� close enough to the

latter value R is positive therefore �
�

 holding
v
u
constant is negative. In the

numerical analysis we claim that for the model calibrated to the US economy

this is the case. Hence an increase in  would shift the job destruction curve

to the left.

-Di�erentiantion of the Job Creation Condition(equation 33) with respect

to  yields (holding v

u
constant):

0 =
z�(1�G(�p� �� + b))

(1� �(1� ))(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
��

+
�
R
�p���+b
�p��u+b (1�G(y))dy

(1� �(1� ))2(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
(72)

We get that �� holding v

u
constant is negative so the Job Creation curve

shifts to the left. Taking into account the general equilibrium e�ects, for

the US data, we have that �� is negative(the same happens when holding
v

u
constant). When we solved for the analytical derivative it was suÆcient
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for R to be positive to get this result. Even if R was positive if the job

creation curve shifts enough to the left we would get the mentioned result. In

numerical exercises we found structural parameters such that �� was positive

hence this implies a negative value for R for this parameter values.

With respect to v
u

its value is undetermined. Analitically we have after

di�erentianting the Job Destruction (equation 30) and Job Creation(equation

36) condition with respect to , solving for �� and rearranging:

v

u
� (negativeterm) =

R��
R
�p���+b
�p��u+b (1�G(y))dy

(1� �(1� ))(1�G(�p� �� + b))
�R (73)

If �� goes down or gets closer to � such that �u = �p� �+ b. then the last

term becomes positive as we explained before. However the �rst expresion

doesn't go to zero because R�� and (1�G(�p� ��+ b)) go to zero. Note thatR
�p���+b
�p��u+b (1 � G(y))dy is bounded. However for the US data v

u
is negative.

So the shift in the job creation curve dominates the e�ect of the shift of the

job destruction curve.

f)Comparative statics of z.

-Di�erentiantion of the Job Destruction Condition(equation 30) with re-

spect to z yields (holding v

u
constant):

0 = R���
�

z �
v

u

X

1�X
(74)

Hence ��z is positive,ie the Job Destruction curve shifts to the right.

-Di�erentiantion of the Job Creation Condition(equation 33) with respect

to z yields (holding v

u
constant):

0 =
z�(1�G(�p� �� + b))

(1� �(1� ))(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
��z

+
1

�(1�X)(Sm(�u; �u)� Sm(��; �(��)))
(75)

So ��z is negative or the Job Creation curve shifs to the right. Hence

after taking into account general equilibrium e�ects v

uz
is negative and ��z is
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undetermined. Analitically we have after di�erentianting the Job Destruction

(equation 30) and Job Creation(equation 36) condition with respect to z,

solving for v
uz

and rearranging:

��z(R��q
v
v
u
�

Xz

1�X

z�(1�G(�p� �� + b))

(1� �(1� ))(1�X)2(Sm(�u; �u)� Sm(��; �(��)))2
) =

Xz

1�X

1

�(1�X)(Sm(�u; �u)� Sm(��; �(��)))
+

X

1�X

v

u
qvv
u
(76)

The �rst expression in the right hand side is positive and the second ex-

pression is negative because qvv
u
is negative. In the left hand side ��zmultiplies

a negative expression. Hence ��z is undetermined. For the US economy our

numerical results show that this derivative is negative.

g)Partial derivative of �pl with respect to p holding �� constant:

If � � �� we have after di�erentialing eequation 28:

�plp = �1�
�(1� )(G(�p� �� + b)�G(�p� �+ b))

1� �(1� )
(77)

If � � �� we have after di�erentialing eequation 27:

�plp =
�1 + �(1� )(1�G(�p� ��))

1� �(1� )(1�G(�pl))
(78)

Hence �plp is negative.

h)Partial derivative of �pl with respect to  holding �� constant:

If � � �� we have after di�erentialing eequation 28:

�pl =
�
R
�p���+b
�p��+b (1�G(y))dy

(1� �(1� ))2
(79)

So �plp is negative if � � �� If � � �� we have after di�erentiating eequation

27:
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�pl = �
�
R �pl
�p���+b(1�G(y))dy

1� �(1� )(1�G(�pl))
(80)

We have that �plp is negative if � � ��.

i)Rede�nition of series of Job Creation and Destruction for the quarterly

non aggregated model:

For the calibration of the steady state we need to match a decrease in

the mean of job destruction when we don't account for destruction that is

reversed after one period. For this objective we will rede�ne JD and JC.

We also rede�ne Job Creation because it might be that a decrease in the

mean of job creation when we don't account for creation that is reversed

after one period is due to temporary layo�s. Actually there was no reason-

able parametrarization that could match the latter rede�ned series of Job

Creation.

Following Rogerson and Cole (1996) we consider Job Destruction and

Job Creation series that result from requiring that destruction persist for

some speci�ed horizon. In that way we are consistent with the data collected

by Davis and Haltiwanger (1992). Along this line let's explain now how to

calculate series using, say horizons zero, one, two, four and eight quarters.

Zero corresponds to the measures we have been working so far.

Horizon 1

JD1
t = JD0

t �Del1t (81)

where Del1t are deletions from payroll or job destruction that don't persist

after one period.

Let Del1t = a+ a
0

where

a = �tt

Z �u

�1

Z
1

��(�)
g(�)f(�)d�d� (82)

a
0

=
Z
1

��
(1� )

"Z
1

��(�)
g(�)d�

# Z ��(�)

�1

�1td�d� (83)
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Note that a refers to the fraction  of jobs that were active during period

t� 1, at the end of period decide to stay on temporary layo� during period t

and are recalled at t+ 1 after receiving new realization of both shocks. The

other fraction (1 � ) are recalled at t + 1 after receiving a new realization

only of the � shock. The latter refers to the a
0

component.

JC1
t+1 = JC0

t+1 � Ad1t+1 (84)

Ad1t+1 = Adrt+1 + AdNewt+1 (85)

Where Adrt+1 and AdNewt+1 are additions to payroll or job creation that

don't persist after one period. Adrt+1 corresponds to recall at t + 1 and

AdNewt+1 corresponds to new matches at t + 1 (quupt ).

AdNewt+1 = quu
p
t

"
1�

Z �u

�1

Z
1

��(�)
g(�)f(�)d�d�

#

+(1� )quupt

"
1�

Z
1

��(��)
g(�)d�

#
(86)

Where the terms in brackets with integrals are probabilities of the match

not continuing active (either match is destroyed or mantained dormant).

Adrt+1 = rt+1

"
1�

Z �u

�1

Z
1

��(�)
g(�)f(�)d�d�

#

+
Z
1

�1

(1� )

"
1�

Z
1

��(�)
g(�)d�

# Z
1

��(�)
�2td�d� (87)

j)Construction of series of Job creation and Destruction from the monthly

model:

For computing the aggregated series of job destruction in quarter T we

trace matches that were active at the end of month t and survive at the end of

month t+3. Note that month t+3 corresponds to quarter T. t+6 corresponds

to quarter T+1 and so on. Matches that were on temporary layo� within

quarter T but were recalled on month t+3 are included as survivors. Job
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destruction in quarter T is going to be matches active at the end of month

t or equivalently at the end of quarter T-1 minus matches that survived at

the end of month t+3 or equivanlently at the end of quarter T .

The aggregate quarterly series of job creation at quater T is going to be

employment at T or equivalently at month t+3 minus matches that were

active at the end of montht t that survived at the end of month t+3 or

equivalently at the end of quarter T.

A similar reasoning is used to compute aggregated quarterly series for

JD1
t and JC1

t as de�ned in g)

k)A stochastic model of Job Creation and Destruction:

In what follows we study an equilibrium in which wages depend only upon

the aggregate technologically shock and not on the level of permanent un-

employment. For an easy proof in a simple model see Rogerson, Cole(1996).

We assume that pt is an aggregate technology shock that follows a sym-

metric two state markov chain in which l(= l11 = l22) with the probability

of remaining in the same state for two consecutive periods. We assume that

p1 > p2, being p1 the good state.

Jm = max(Ja; Jd; 0) is rede�ned as follows:

Jm(pj; �; �) = max(Ja(pj; �; �); Jd(pj; �; �); 0) (88)

where

Ja(pj; �; �) = pj + � + �� w(pj; �; �)

+
2X

i=1

lji(�E(Jm(pi; :; :) + (1� )�E(Jm(pi; :; :)=�)) (89)

Jd(pj; �; �) = �w(pj; �; �)

+
2X

i=1

lji(�E(Jm(pi; :; :) + (1� )�E(Jm(pi; :; :)=�)) (90)

for j = 1; 2.

The value of the match for the worker would be for j = 1; 2:
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V mw(pj; �; �) = max(V e(pj; �; �); V
tl(pj; �; �); V

u(pj)) (91)

where

V e(pj; �; �) = w(pj; �; �)� b+
2X

i=1

lji(�E(V
mw(pi; �; �))

+(1� )�E(V mw(pi; �; �)=�)) (92)

V tl(pj; �; �) = w(pj; �; �) +
2X

i=1

lji(�E(V
mw(pi; �; �))

+(1� )�E(V mw(pi; �; �)=�)) (93)

V u(pj) =
2X

i=1

lji(�yjV
mw(pi; �

u; �u) + (1� quj )�V
u(pi)) (94)

where

quj =
m(v(pj); u

p(pj))

up(pj)
(95)

Note that quj can be calculated using the following rede�ned equilibrium

condition:

0 = Vj(q
v
j ; �

u; �u) = �z + �qvj

2X
i=1

ljiJm(pi; �
u; �u) (96)

for each aggregate state j = 1; 2.

To see this let us assume that the matching fuction is of the form Au�v1��,

where � is a number between zero and one.Note that u stands for permanent

unemployment only in this derivation. We can write:

quj = A(
vj

uj
)1�� (97)

After rearranging, we get:
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vj

uj
= (

quj

A
)

1

1�� (98)

Expressing qvj in terms of the matching function in equation (53) yields:

0 = �z + �A(
uj

vj
)�

2X
i=1

ljiJm(pi; �
u; �u) (99)

After solving for
vj

uj
, we get:

vj

uj
= (

A�
P2

i=1 ljiJm(pi; �
u; �u)

z
)
1

� (100)

Equalizing equations (55) and (57) and after rearranging yields:

quj = A(
A�

P2
i=1 ljiJm(pi; �

u; �u)

z
)
1��
� (101)

Finally, generalized Nash bargaining implies that in equilibrium the fol-

lowing must hold:

V mw(pj; �; �)� V u(pj; �; �) = X [V mw(pj; �; �) + Jm(pj; �; �)� V u(pj; �; �)](102)

for j = 1,2.

The respective Bellman equation fo the tota match surplus is:

Sm(pj; �; �) = max(Sa(pj; �; �); Sd(pj; �; �); 0) (103)

for j = 1,2 where

Sa((pj�; �) = pj + � + �� b +
2X

i=1

lji(�E(Sm(pi; �; �))

+�(1� )E(Sm(pi; �; �)=�)� �qujXS(pi; �
u; �u)) (104)

Sd(pj; �; �) =
2X

i=1

lji(�E(Sm(pi; �; �))

+�(1� )E(Sm(pi; �; �)=�)� �qujXS(pi; �
u; �u)) (105)
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for j = 1,2.

The de�nition of equilibrium for the stochastic version follows directly in

the same way as before with additional value functions and contingent upon

a vector (pj; �; �).
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