


1.0 INTRODUCTION

The art of war has evolved over the years into strategic engagements where quantitative
use of calculations and mathematical models will be an advantageous assert. Global
conflicts in recent years involve clashes between guerrilla armies, counter-insurgences
and conventional forces. It is possible to use mathematical models to plausibly depict
combat scenarios to a greater extent. The role of the mathematical model is to help

military battle field commanders to perform the following tasks:

() Use mathematics to advantageously relate combat variables quantitatively.

(1) Enables the derivation of robust theoretical criteria for therapeutic outcome of
victory, stalemate and defeat.

(1) Facilitate the use of computers to give detailed predictions and dynamic view of
battle.

(IV) Provides alternative templates to counteract the moves of the opponents.

(V) Enables the battlefield commander to avoid disastrous gambles and catastrophic
mistakes.

There have been many attempts in combat modeling in the literature. [Hofbauer
and Sigmund 1991; Przemieniecki 2000; Narayan and Miller 2002]. Some of such
models involve the use of ODE, PDE, Stochastic Differential Equations, Discrete
Differential Equations and Markovian Processes. The most common models involve
descriptive, deterministic, time continuous and state continuous types of models

involving ODE. In the literature the most popular model used are the Lanchester models.



1.1 Models of Warfare

In this section, previous work on models depicting military combat will be issued. In

particular, their advantage and shortcoming will be explained elaborately.

1.1.1 The Lanchester Guerrilla Warfare Model

This model is also called the Lanchester’s linear law (Un-directed Fired Model).

The system of ODE describing this model is:

dx,

E =—a5, XX,

dx,

W =—a, XX,
X, (t=0)=x
X, (t = 0) =Xy

where  x, =guerrilla army #1
X, = guerrilla army #2
a,, = The specific inter-army killing rate, constant. The number of soldiers of
army # 1 killed by a single soldier of army # 2 per unit time during combat
engagement with army # 2
a,, = The specific inter-army Killing rate, constant. The number of soldiers of
army # 2 killed by a single soldier of army # 1 per unit time during combat

engagement with army # 1



This model is excellent, but it has some shortcomings
()  There are no terms for reinforcement of the armies. Thus the model depicts what
can be characterized as “fight to the death”.
(i)  There are no terms representing troop loss or death due to non-combat cases such as
desertion, suicide or death to natural causes.
(ii1) This model applies to battle field conditions such as two armies fight in a closed
battle field with no re-enforcements coming to either side. The battle will then proceed
until one army is annihilated or surrenders. It is possible for both armies to fight to the
death.

Other examples of the use of mathematical models in military combat found in
the literature include Mathematical modeling of the Battle of Agincourt, 1415
[Eggenberger 2007], Kolmogorov’s equations of combat. In this example the
mathematical model consist of a system of partial differential equations.

In this thesis mathematical models of military combat will be constructed which
are modifications and improvements on the Lanchester model. The improved models will

be in general applied to counter-insurgences as well.



1.2 Mathematical Interpretation of the Lanchester

Guerrilla Model (LGM)

In this section, some solutions of the LGM model will be presented.

1.2.1 The Linear Law of Undirected Fire

The Linear law of Undirected Fire describes firing that is simply directed into the general
area where the enemy’s units of combat are located under the next characteristics:
e Both forces are homogeneous and are continually engaged in combat
e Each force is within the maximum range of all the opposing forces.
e Each force is aware only of the general area of location of the enemy forces
The next system of differential equations represents this model:
X, ==a;,% X,
X, = —a, X X,
The battle outcomes for the model are:

0,[0,0]  (Both armies fight to mutual annihilation)
0,[0,n,] (Army# 1 is exterminated by army # 2)

0,[n;,0]  (Army # 2 is exterminated by army # 1)



1.2.2 Interpretations of the Law of Undirected Fire

Now consider the LGM using a revised different approach:

{Xl =—a;, XX,
Xz =—a, %X,

X

e —ap XX, :+a12
Xz — a8y XX, ay
Xz ay

8y % =a3,X,

Ay Xy + Xy =815 X; + Xy

Ay Xy — Xy =Xy = Xy = K

Consider the following scenarios.

Scenario#1

Suppose X,, =X, and a,, =a,,

In this case the battle may end in a stalemate as both armies fight to a standstill with both

sides losing troops at the same rate. Figure 1.1 shows the dependence between x, and X,

for this scenario.
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FIGURE 1.1 Graph of Scenario #1

Scenario # 2

a
Suppose X,, = X,, and a,, >a,,. Then x, =—2-x,,

12

But x, and x, are inversely related according to the model equations and definitions.

Thus if a, >a,,, then X, decreases as x, increases.

Xz

Xy

FIGURE 1.2 Graph of Scenario #2



Scenario # 3

Suppose X,, =X, and a;, <a,

a . . -
Then from x, = =2 x,, it can be concluded that x,will decrease due to a similar argument
a;,

involving an increase in x,, provided by a decrease ina,, .

%S

FIGURE 1.3 Graph of Scenario #3

Scenario # 4

Suppose K =X, — X, #0

Then x, and x,are linked by the equation:

« Ba, K
2 = 1
a‘lZ a12
So,
a X, — X
X, = 21 X, — 20 10
a‘lZ a12



2.0 Simple Generalizations of the Lanchester Warfare

In this chapter simple generalizations of Lanchester’s warfare models will be done. In
addition, mathematical models depicting warfare between more than two armies will be
constructed. These generalized models will be analyzed using dynamical systems theory
and the principals of linearized stability, Hartman- Grobman theorem and Jacobian

matrix analysis [Nani 2002].

2.0.1 M1 Model

Definition of Parameters and Constants

X, : The number (cardinality) at time t of soldiers of army #1

X, : The number (cardinality) at time t of soldiers of army #2

a,, = The specific inter-army killing rate constant. The number of soldiers of army # 1
killed per unit time by a single soldier of army # 2 during combat engagement with
army # 2.

a,, = The specific inter-army killing rate constant. The number of soldiers of army # 2
killed per unit time by a single soldier of army # 1 during combat engagement with
army # 1.

This model represents a closed battle field, i.e. a battlefield where no troop supplies are

available for the fighting armies. The model is given by the next system of equations:



X, =—8,%X,
Xz =—a, %X,
X (t = O) = X0

Xz( :O):X20

After finding the Equilibrium points of the systems, it can be conclude that the
equilibrium points of the system are always located in the axes and are of the type:

E, =[0,0] (Both armies fight to mutual annihilation)
E, =[k;,0] (Army# 2 is annihilated by army # 1)

E; =[0,k,] (Army # 1 is annihilated by army # 2)

2.0.2 M2 Model

Model two represents an open battlefield. In an open battlefield the fighting armies
receive reinforcements during the conflict. Thus considering the supply of troops, the

Lanchester model becomes:

Definition of Parameters and Constants

X, : The number (cardinality) at time t of soldiers of army # 1

X, : The number (cardinality) at time t of soldiers of army # 2

a,, - The specific inter-army killing rate constant. The number of soldiers of army # 1

killed per unit time by a single soldier of army # 2 during combat engagement with

army # 2.



a,, = The specific inter-army killing rate constant. The number of soldiers of army # 2
killed per unit time by a single soldier of army # 1 during combat engagement with
army # 1.

S,: Rate of reinforcement of army # 1 at a time t. The rate of change of the number of
Soldiers of army # 1 sent per unit of time to the battle field as reinforcement.
S,: Rate of reinforcement of army # 2 at a time t. The rate of change of the number

soldiers of army # 2 sent per unit of time to the battle field as reinforcement.

Xl = Sl — A, X Xy,
Xz = Sz — a8, XX,

X (t = 0) = Xq0

X, (t=0)=X,,

where the next supplies conditions are not feasible:

S;=0and S, #0

S;#0and S, =0

The only feasible solution for the rest point can be found when,

S;#0 and S, #0. In this case the rest point will be an interior point E =[X,, X, ].
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2.0.3 M3 Model

Model three is the more realistic representation of a battlefield. It takes into consideration
key factors as desertion, death by epidemics and non-combat issues such as accidents and
friendly fire. These factors play a decisive role in the outcome of combat and make the
model more accurate and real. Thus, by considering the factors mentioned previously the
Lanchester model now becomes:

X, =S, —a,XX, —aX —K,X,

X, =S, — 8, XX, — 8,X, — Ky X

X (t=0)=x,

Xz(t = O) = Xy

where a; : defection death rate constant by epidemic, friendly fire and by noncombat
issues of army # i, i= {1,2,3}.

The constant ki, denotes the rate of decrease of army #1 due to events such as suicide
bombing or land mines created by army # 2. Similarly the constant ky; denotes the rate of
decrease of army # 2 due to suicide bombings or land mines created by army # 1.

To find the equilibrium point or rest points of the system we solve the system for x, =0
and x, =0.

The system has at most three rest long term battle outcomes. To find them we proceed as
follows:

Let x, =0 in the first equation and second equations of the system. Then,

S, —k,x,=0 and S, —a,x, =0

11



Thus,

Sl k12

s, a
Let x, =0 in the first equation and second equations of the system. Then,

S,—ax;=0and S, -k, x, =0

S S
Hence x, =—+=—%
a‘l k21
Thus,
Si_a
SZ kZl
Therefore,
S1 k12 al

SZ a2 k21
But,

S;—S, —k,Xx, +a,x, =0

(a, —=k;,)x, =S, =S,

S, -S
Hence E, ={0, L 2}
k12 — &,

where k,, >a, and S, >S, or k;, <a, and S, <S,

Due to The reversing order of equations x, can be obtained directly.
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X, = SZ_Sl
k21_a1
Hence E, :{SZ -y 0}
]

Where k,, >a, and S, >S, or k, <a, and S, <S,
The third equilibrium pointE, =[X,, X, ] exists if the following two surfaces:

I Sy =a,XX, +a,X +Kk,X,

[0 S,=a,XX, +a,X, +Kk, X
intersect at the point [X,, X, ]

Hence E, = [Xl, XZ] depicts the interior equilibrium, with the following specifications

showed in the table below,

Xy Xz
0 S,-S,
k12 a‘2
S,-S, 0
k21 al
%, %,

TABLE 1.1 Long term battle outcomes
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2.1 Generalized Combat Mathematical Models

In this section the Lanchester model will be generalized to include more than two
combating armies. The model also will apply to guerilla armies or insurgencies who are
fighting an occupation by an elite army. In this case the battlefield is asymmetrical due to
the non-conventional fighting techniques by one or more of the combating armies.
Mathematical models of combat can be used to understand what factors can
influence the outcome of the battle: some questions which might be asked include which
side is the victor, how many survivors remain, how long does the battle take?

The two mathematical models used in the work make use of Lanchester [ ] but
substantially improve the model by far when taking into consideration key factors that
determine the outcome of combat. The models are the surge supply model and the
logistic supply model. Both models take into consideration reinforcement of the army and
gives a very representative picture of real combat situations. The models are governed by
three simultaneous ordinary differential equations (ODE.) The equations include terms
that represent reinforcement, troop loss due to inter army combat, troop loss due to non-
combat cases, and troop loss due to recruitment from one army to another. By

considering all those terms, the obtained model will become more realistic and precise.
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Definition of Parameters
The following is the notation that will be used to define the parameters of the ODE,
S,: Rate of reinforcement of army # 1 at a time t. The rate of change of the number of
soldiers of army # 1 sent per unit of time to the battle field as reinforcement.
S, : Rate of reinforcement of army # 2 at a time t. The rate of change of the number
soldiers of army # 2 sent per unit of time to the battle field as reinforcement.
X, : Number (cardinality) of soldiers of invading army # 1 at time t.
X, : Number of resistance (insurgent) indigenous fighters at time t.
X, : Number of fighters of the invading guerilla army opposed to both invading

army one and indigenous army two at time t.

Due to tribal affiliation some recruitment from army two to army three occurs.

Specifications of Constants
a,, b, : Surge term constants which determine the peak and spread values of surge

respectively.

Ki; : Specific casualty death rate due to inter army combat, where I ,j € {1,2,3}

. Specific death rate due to non-combat actions, where i € {1,2,3}

r| . Recruitment rate of fighters from army i to army j

The next diagram gives an illustration of the battle field scenario and the interaction of

the fighting groups.
15



FIGURE 2.1 Schemata of the Conflict

The general form of the mathematical model describing the conflict is given by the next

system of ODE:

. 2
X = Sl - klZXlXZ - k13X1X3 - k1X1 - kllxl + 151X,

! 2
X, = Sz - I(21)(2)(1 — X, — k23X2X3 - kzxz - k22X2 — X,

. 2
X3 =X, — k31X3X1 - k32X3X2 - k3X3 - k33X3
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2.2 Generalized Combat Model with Surge Source

In this section a generalized combat model with logistic source is discussed. In particular,
the army #1 has a logistic reinforcement. The model equations are displayed as follows:
Here, the surge function is given by:
f(x)=S, =a,xe™
S,: Rate of reinforcement of army # 1 at a time t. The rate of change of the number of
soldiers of army # 1 sent per unit of time to the battle field as reinforcement.
S,: Rate of reinforcement of army # 2 at a time t. The rate of change of the number
soldiers of army # 2 sent per unit of time to the battle field as reinforcement.
X, : Number (cardinality) of soldiers of invading army # 1 at time t.
X, : Number of resistance (insurgent) indigenous fighters at time t.
X, © Number of fighters of the invading guerilla army opposed to both invading

army one and indigenous army two at time t.

Due to tribal affiliation some recruitment from army two to army three occurs.

Specifications of Constants

a,, b, : Surge term constants which determine the peak and spread values of surge

respectively.

Ki; : Specific casualty death rate due to inter army combat, where i, j € {1,2,3}

17



k. . Specific death rate due to non-combat actions, where i € {1,2,3}

[y . Recruitment rate of fighters from army i to army j

y _blx 2
X =a,X€ b k12X1X2 - k13X1X3 - klxl - k11X1 + 151X,

. 2
X, = Sz - k21X2X1 - rzsxz - kzsxzxs - kzxz - kzzxz — I X,

. 2
Xy =T3X, — k3lX3X1 - kszxsxz - k3X3 - k33X3

X (t = O) = X10
X, (t = 0) = Xy
X3 (t = O) = X3o

where a;, b, are the surge term constants which determine the peak and spread values

of the surge respectively.

18



2.3 Generalized Combat Model with Logistic Source

In this section a generalized combat model with logistic source will be discussed. In this

case the logistic function is represented by the expression:
f(x)= S, = (al - blxl)xl

S,: Rate of reinforcement of army # 1 at a time t. The rate of change of the number of
soldiers of army # 1 sent per unit of time to the battle field as reinforcement.

S,: Rate of reinforcement of army # 2 at a time t. The rate of change of the number
soldiers of army # 2 sent per unit of time to the battle field as reinforcement.

X, : Number (cardinality) of soldiers of invading army # 1 at time t.

X, : Number of resistance (insurgent) indigenous fighters at time t.

X, © Number of fighters of the invading guerilla army opposed to both invading

army one and indigenous army two at time t.

Due to tribal affiliation some recruitment from army two to army three occurs.

Specifications of Constants

a,, b, : Surge term constants which determine the peak and spread values of surge

respectively.

Ki; : Specific casualty death rate due to inter army combat, where i, j € {1,2,3}
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k. . Specific death rate due to non-combat actions, where i € {1, 2, 3}

[y . Recruitment rate of fighters from army i to army j

Model Equations

The model equations are presented as follows. In particular, these equations have been

constructed and analyzed under slightly different conditions before. [Nani 2002].

. 2
X, = (al - b1X1)X1 - k12X1X2 - k13X1X3 - klxl - k11)(1 + 151X,

. 2
X, = Sz - k21)(2)(1 —I3X; — kzaxzxa - kzxz - kzzxz — X%

. 2
X3 =X, — k31X3X1 - kszxsxz - k3X3 - k33X3

X (t = O) = Xq0
X, (t = 0) =Xy

X;(t=0) =X,

20



3.0 The Analysis of Rest Points

In this chapter the generalized models will be analyzed. In particular the rest points or the
equilibrium points or fixed points will be computed. Initially the definition and

discussion of the terms rest point, hyperbolicity, linearization will be done.
Let x=F(x) wherexeR" = [xl,...,xn]T be a system of ordinary differential equations.
We call x a rest point of the system if x=F(x,) =0

To compute the rest point of the system, we set x = F(x) = 0and solve for all possible

values which make this possible.
An equilibrium point of a dynamical system generated by a system of ODE is a solution

that does not change with time.

3.0.1 Definition Hyperbolicity of Rest Points

Consider x=F(x) wherexeR" =[x,,....x, '

F, eC'(R",R) V i={...,n}, whereC'standsforcontinuos and at least once differentable
Therestpoint x, € R" is hyperbolic if :

(i) F(x,)=0 foreachi=4{1,..,n} and x, eR"

(ii) TheJacobianMatrix [DF(x,)] has no eigen values on theimaginary axis. Thatis all the

eigen values of the Jacobian Matrix have nonzeroreal parts.
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3.0.2 The Jacobian Matrix (of linearization)

Consider the nonlinear system

X = Fy (X, Xg000%,)

Xp = Fy (X X000%,)

X, =F, (X, X,,....X;,)
Let X, = [Xy, Xp0 X0 --Xno] D€ @ hyperbolic rest point of the system. Then by the Taylor

expansions for functions of several variables,

le1 (X101"'1Xn0) le2 (Xlo""’xno)
(X, = X) +

FL(X, X, ) = Fi(XgyeiXio) + m T

(X = Xg) +

len (Xlo 1 ’Xno)

(X, = X,0) + NLT

11
Fy(XyseX,) = Fy (Xgg0ee X 0) + Fa (Xlg_;m’X”O) (X, — X)) + Fax (XI;_;'“’X”O) (X, = Xy0) +
s Fox. (Xigs-:%0) (X, — %)+ NLT
1
Fo(XpheeoX, ) = B (XggreeenX o) + P (Xml;m’X”O) (X, — X)) + P, (Xl(;_;”"X”O) (X, — Xp0) +
4ot Fou, (g2 %) (X, = X,o) + NLT

1

whereNLT standsfor Non - Linear Terms
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Let

Then,

o
S

and

&=l

&
&

51 = F1><l (XlO""’XnO)gl + le2 (Xlol---’xno)gz oot F1xn (XlO""’XnO)gn +NLT

52 = sz1 (X107""Xn0)é:1 + sz2 (Xlo"'”xno)é:Z e

¢,

Thus thesystemcan be writenas,

=
&

Denote

le1 (Xlo pees

_an1 (Xy0,---

Fiy, (Xygs---
sz1 (X10 e

| P (g

F2x1 (Xlo pees

Xno )
Xno )

Xio )

7Xn0)
7Xn0)

'XnO)

So thesystem becomes

le2 (XlO""

F2x2 (Xlo pees

Fox, (Xygs---

Fi, (Xygs---
sz2 (X10""

Fox, (Xygs---

&=[DF(Xyg, X0, X0)IE, £ €R”

Xio )
Xno )

Xio )

'XnO)
7Xn0)

'XnO)
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= an1 (X101""Xn0)§1 + anz (XlO""’Xno)é:Z e

+ szn (X seeiXn0)E, + NLT

+ ann (X seeeiX,0)E, + NLT

Fu. (Xy0,---

szn (Xlo pees
szn (Xlo pees

ann (XlO e

Fi, (Xy0,---
Fax, (Xygs---
Fax, (Xygs---
Fox, (Xy0,---

Xoo) |

Xno )
Xno )

Xuo)

'XnO )_
7Xn0)
7Xn0)

'XnO )_

St
S

by [DF (X405

i)



Thus,
X=F(X) < &=[DF(Xy,Xy,....X,0) & in the neighborhood of the hygrbolic rest point Xq,
where [DF (X,,,...,X,,)] is knownas the Jacobian Matrix of Linearization.

The Jacobianmatrix is also denoted by J v, andisequalto:

[X10:%20:---»

ok R oF,
o X, X,
oF, ok, oF,
oo =[DFOugreXo0)] = | 0%, ox, o,
oF, OF, oF,
—aXl OX, 5Xn_

The Jacobian Matrix represents the best linear approximation to the differentiable

functions F,,F,,..., F, near the rest point x, of the system, and it is also known as the

Jacobian Matrix of linearization.
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3.0.3 Hartman and Grobman Theorem

Consider the nonlinear system:

X=F(x)
{ 1)
X(to) =C

Let f eC'(R",R") be a diffeomorphism. Assume x, € R" is a hyperbolic rest point of
F, such that:

x=F(9) ()

Let ¢ be the local flow generated by the non-linear system (1)

Let A=DF(x,)e M. (R)

Then, there exists neighborhoods U and V, and a homeomorphismh, h:U —V , such that
B(t, h(x)) =h(x, +e" (X —X,))

whenever

X, X, +€%(x—X,) €U and h(x), h(x, +e”(x—x,)) eV

In particular in a small neighborhood of x,, the flow generated by the NLS of ODE is
qualitatively similar or isochronally flow equivalent to the flow generated by the

linearized system, where xeR",ceR",and F e C' (R",R) Vi={1,2,.., n}, and the LS:

{5 = [DF(XO)]g
g(to) =C

with &=(x—x,) € R",and[DF (x,)]e M. (R)

Suppose X, is a hyperbolic rest point.
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Then the flow generated by the NLS (1) is C° conjugate to the flow generated by the LS

(2) in the neighborhood of the hyperbolic rest point x, € R" [Amann, 1990].

3.0.4 Linearized Stability for Hyperbolic Equilibria
Let F eC*(R",R") be a diffeomorphism such that x=F(x) (1)

generatesa continuosdynamicalsystem @ in Qc R".
Supposethat x, € Q is a hyperbolicrestpoint of ©.
Let&:=x—x, eR"

A:= DF(XO)e Mnxn(R)

Then,
f.: F(S+X,)=F(X,) + DF(x,) + R (&)

where lim [M}—)O as &—0

<l
and F(x,)=0
Thus £=A¢& (2) in the neighborhood of x, .

In particular (2) is a linearization of (1)
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3.0.5 Principles of Linearized Stability

If x, e R" is a hyperbolic rest point of x=F(x)...(1), then X, is either unstable or

asymptotically stable.
In the following sub sections, the basic principles of linearized stability will be discussed

in terms of propositions, theorems and conjectures [Amman 1990].

Proposition 3.0.5.1 Asymptotic Stability
If x, isarestpointof x=F(x) (1)and all the eigenvalues of A:=DF(x,) have
negative real part, then x, is locally asymptotically stable and,

He‘AXH <e x|, a>0

where | | is the Hilbert norm on R". In particular, the origin of the linearized system is

a sink.

Proposition 3.0.5.2 Instability

If x, is a hyperbolic rest point of Xx=F(x)...(1) and all the eigenvalues of A:=DF(x,)
have positive real parts, then X, is unstable and He‘AxHSe*"“”x” , Where
a>0,Vt>0,xeR". In particular, the origin of the linearized system is a source.

Also If X, is a hyperbolic rest point of x=F(x)...(1) and at least one of the eigenvalues
has positive real part and at least one has negative real part, then x, is unstable.

Hence a hyperbolic rest point is unstable if at least one eigenvalue of the Jacobian Matrix
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has positive real part.

3.0.6 Classification of Hyperbolic Rest Points.

From the previous propositions it can be concluded that the stability of equilibrium of a
hyperbolic rest point is determined by the sign of the real parts of the eigenvalues of the
Jacobian matrix. Depending on the signs of the real part of eigenvalues, a hyperbolic rest

point can be classified into sinks, sources and hyperbolic saddles [Alligood et al. 1996].
Let x, € R" be the rest point of the ODE:
x=F(x), R" >R",
Thus, F(x,)=0
Let the eigen-spectrum corresponding to the linearization of the ODE around X, be
defined as:
o(X,) = {4, | det[Al —=[DF (x,)]=0 i={L2,.. k}]}
Then
(i) The rest point X is called a hyperbolic sink or an attractor if Re 4, <0 Vi

In particular a sink is locally asymptotically stable.

(if) The rest point xqis called a hyperbolic source or arepellor if Re 4, >0 Vi

In particular a sink is unstable.

(iif) The rest point Xo is called a hyperbolic saddle if o(X,)=0, ® o,
where o, is the unstable manifold consisting of eigenvalues with positive real

parts, and o, is the stable  manifold
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Theorem 3.0.6a

If a hyperbolic rest point is a sink, then it is stable.
Proof:

Let x=F(x) bean ODE and suppose that x, is a rest point of the system, such that x,

is a sink. Then by definition of sink all eigenvalues of the Jacobian Matrix have negative

real parts. Hence by definitions in 3.0.6, X, is locally asymptotically stable.

Theorem 3.0.6b

If a hyperbolic rest point is a source, then it is unstable.
Proof:

Again, let x=F(x) be an ODE and suppose that X, is a rest point of the system, such
that x, is a source. Then by definition of source all eigenvalues of the Jacobian Matrix

have positive real parts. Hence by definitions in 3.0.6, x, is unstable.

Theorem 3.0.6¢

If a hyperbolic rest point is a saddle, then it is unstable.
Proof:

Once more time, let x=F(x) be an ODE and suppose that X, is a rest point of the
system, such that x, is a saddle. Then by definition of saddle at least one eigenvalue of
the Jacobian Matrix has positive real part and at least one eigenvalue of the Jacobian

Matrix has negative real part. Hence definitions in 3.0.6, X, is unstable.
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4.0 ANALYSIS OF MODELS

In this section we proceed to study in detail the surge supply model and the logistic
source model. Both models are analyzed in detail in R*. Later on in the next chapter the

models will be analyzed in R®.

4.1 The Surge Model

The equations of the surge model have been independently constructed and analyzed
under a different setting using simulation techniques by Professor Nani, [Nani 2002].
The surge model represents the mathematical model of military combat. in which the
following features are incorporated:
[i] The surge supply rate is defined by the surge function:
S =f(x)=axe™

[ii] There are three combating armies: army #1, army #2 and army #3
[iii] The army #1 is an expeditionary force invading a domain D where two

two insurgent armies (army #2 and army #3) reside
[iv] In particular army #1 fights army #2 and army #3 in a three —way- fight
[Vl Army #2 consists of the indigenous people, but the insurgent army #3 is recruited

from army #2.

[vi] Army #1 also recruits from army #2
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An illustration of the combat scenario between the three armies is shown in figure 1.1

The surge model equations are:
. 7b1X 2
X =a;X¢€ b k12 X X, — k13X1X3 - k1X1 - k11)(1 + 11X,
. 2
X, = Sz - I(21)(2)(1 —IX; — kzaxzxa - kzxz - kzzxz — 11X, Slla

. 2
X3 =TgX; — k31X3X1 - k32X3X2 - k3X3 - k33X3

Xl(t = 0) = Xio
X, (t=0) = x, S11b
Xs(t = 0) = Xgo

4.1.2 Nonnegativity, Dissipativity

In this subsection the non negativity and dissipativity of the system is analyzed. The

analysis is done for the planes X1-Xz , X2-X3, X1-X3 .

4.1.2.1 Analysis of the model in the x; — X, Plane

In the plane x3-x, the S 1.1a reduces to the following:
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X, = a, X8 M — K, X X, — KX — Ky X, + X,

X, = S, =Ky Xo X, — FyaXy — Ky Xy —KppX,” — Ty X,

Consider the logistic supply S, = (a, —b,x,)x, = a,x, —b,x,” and let A, = Max(a,e™")
and M, = Maxx, (t), for t, <t<T, then:

Xl < Alxl - k1X1 + I’le\/l 2= (Ai - kl)xl + r21M 2
Allow u=(A —k)u, +r,M,

= U+ —A)u, =r,M,

r,M (k-
u:—k21 2 ce i)

1

r,M r,M .
So x, <22 pcem 5 272 a5t 500, provided thatk, > A
1 1
r,M
:OSXlgMa{xm,g}
kl_Ai

Similarly x, <(a, — 1, —k, —ry,)X, + (b, - kzz)X22
Allow U = (a, — r,, —k, — I, )u + (b, —k,,)u?

= U+ (I +k, +1,, —a,)u=(-b, —k,,)u?

U= 1
b2 + k22 + Ce(rzfrkz“’zraz)t
a, — r23 - kz — Iy
1 a,—r,—k, —r
So x, < -8 2 Azt

b, +K,,
a, — Iy — kz -y

b, +k,,

+ Ce("23*'k2+"21—f’12)t

(providedthatr,, +k, + 1, <a,)
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a, — Iy —k,—r
:Oéxstax{xzo, LB 2 21}

b, +k,,
Thus,

—ry—k,—r
Bxlvxz :|:0 S Xl S Maxiixlo, erIM;l:|, 0 S X2 S Max{xzo, a2 b23 k 2 21} }
1 2 + 22

Is an invariant box.

This implies that any solution which originates in the positive octant
R,"={x, |x >0 i=12} will remain non-negative and is ultimately bounded. In

particular the system is dissipative such that:

lim supx; (t)<M , where M = max{xm, X0 {%} |:az _;23 _|i(2 —Iy H
1 2 T Ky

4.1.2.2 Analysis of the model in the x; — X3 Plane

Consider the positive octant R," = {x, | x, >0 i =13}

Theorem 4.1.2a

The set:

-k . . : . .
B, = {0 <%, <Max Xy, %} 0< X, <Maxx,,,0] | is positively invariant with
11

respect to the solution curves of S1.1a and S1.1.b.
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Proof:

. _blx 2
X =axe " k13X1X3 - k13)(1)(3 - klxl - k11)(1
. 2
X3 = _k31X3X1 - k3X3 - k33X3

Then x, < a,x.e ™ —kx, —k;,,

Let A =a,Max(e™)

= X = (A1 - kl)X1 - k11)(12
Allow U = (A, —k,)x, —k;,x,°

=U—(A —k)x, = _k11X12

U= 1
ok
11 + Cef(Al—k1)t
—k,
1 -k :
So x, < - Ak ast — oo, provided thatk, < A
o + ce’(Aifkl)t kll
— kl
-k
=0<x, <Ma xlo,L}
11
.. . 2
Similarly %, < —Kk;X; —Kq3X;
Allow U = —k,u —Kggu?
= U+KUu = —kgu?
U 1
K | et
3
1
SO X, <—F—————>0ast>o
—-28 4 ce!
k3

= 0< X, < Max{x,,,0]
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This implies that any solution which originates in the positive octant
R," ={x | X >0 i=13} will remain non-negative and is ultimately bounded. In

particular the system is dissipative such that;

lim supx, (t) <M ,WhereM:max{xlo, Xs0 {Al_kl} }

4.1.2.3 Analysis of the model in the x, — x3 Plane

Consider the positive octant R," ={x, |x, >0 i=2,3}

Theorem 4.1.2b

The set

By, x, =[0=X, < Ma){xzo’ B s Ky - rﬂ} 0< X, < Ma{xgo,—rﬂA2 } is
b, +ky, Ksp A, + K,

positively invariant with respect to the solution curves of S1.1a and S1.1.b.

Proof:
. 2 2
X, =a,X, _bzxz — X, — k23X2X3 - kzxz - kzzxz — X,
. 2
Xy =TpsX; — k32X3X2 - k3X3 - k33X3

. 2
=X, < (az — Iy - kz - r21)X2 - (bz + kzz)xz
Allow U =(a, —r,, =k, =1, )u— (b, + Ky, )u?

= U—(a, Iy —k, —ry)u=—(b, + kzz)u2

1
u=

b, +K,,
a, — Iy — kz —Iy

+ce —(ay—Tpg—ky =)t
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1 a, —r.,—k, —r
N 2 23 2
b, +k,,

So X, < 2L ast — o0

b, +K,,
a, — Iy — kz — Iy

+ce —(a;—Tp3—ky =)t

(provided that a, —r,, —k, —r, >0)

a, — Iy — kz — Iy
b, +k,,

=0<x, < Max{xzo,

Let A, =Max(x,) fort such thatt, <t<T
= Xy ST A, — Ky X3X, — KX,
Allow u=r,;A, —(ks, A, +k;)u

= U+ (K, A, +K)u=r,,A,

__ I A, + ookt
Ksp A, + K,

I A, —(Kap Ay +ka )t F A,
T Ko, 1k,
3272 3 3272 3

r,, A
=0<x, < Ma{xSO,L}
ki, A, +Kk
3272 3
Thus,

BXQ,X3 = OS XZ < Maxi:XZO! a2 — r23 — k2 — er j|, OS X3 < Maxi:xgol r23—A2 i| .
b, +ky, Ksp A, + K,

This implies that any solution which originates in the positive octant

R," ={x |x >0 i=2,3} will remain non-negative and is ultimately bounded.
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In particular the system is dissipative such that,

i a, — Iy, —k,—r r
lim supx, (t) <M , where M =max{x20, Xs0 2 Bz A il }
b, +K,, Ksp A, + Ky

4.1.3 Analysis of the Rest Points

In this subsection the rest points of the model will be calculated, analyzed and militarily

interpreted. The analysis is done for the planes X1-Xz , Xo-X3, and X;-Xs .

4.1.3.1 Rest Point Analysis in the x; — X, Plane
The rest points are computed by setting X, (t) =0 for i =1,2. Thus the surge model
equations reduce to:

. —byx 2 —
X =a;X,€ " k12 X X, — lel - klle + 1%, = 0

. 2
X, = (az _bzxz)xz - K21)(2)(1 — X, — kzxz - Kzzxz — 1%, =0

Clearly E, =[0,0] is a restpoint of thesystem.
Thesecondrestpoint E, is obtained as follow :
Letx, =0:

= a,xe ™ —kx, =0

(ae ™ —k)x, =0
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Thus in the X, - X, plane the rest points are :

E, =[0,0] and E, :[bi |n[%}o}
1

1

4.1.3.2 The Jacobian Matrix of Linearization in the x;— X, Plane

. —blx 2 —
X =a;xe " k12)(1)(2 - klxl - kllxl +I X = Fl

. 2
X, = (8.2 - bzxz)xz - k21X2X1 — X, — kzxz - k22X2 X, = Fz

ok oK
] _| ox 0X,
sl T\ oF, O,
oX,  OX,
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-, X- —D; X-
] = I:ale PNy xe ™ — KXy — kg — 2k p% — kX + 1y
X1 X2 ] T
—kaX, Ay — 2b,%; — Koy X — g — Ky —2KypX, — Ty

a —k 1 }
0 A — Iy —Ky =Ty

Then J[o,o] z{

Hence the eigenvalues are:

A =a -k and A, =a, —r,; —K, =1y

Similarly,
b,k In (ﬁj Kip In (ﬁj + Iy
] _ a, b, \a
1 (a
[ﬁ'n[kﬂ’o} 0 Lo In(ﬁj +a, — Iy —K, =TIy
1 a‘l

Thus the eigenvalues are:

k k k
A, = b1k1|n(a—1] and A4, :f In(—lj ta, —ly—k, =Ty

1 1 a'l

Theorem 4.1.3a

In the X;-x, plane the system S.1.1a - S.1.1b is such that the rest point E, =[0,0] isa
hyperbolic sink and hence an attractor if:

a, -k, <0and a, —r, -k, —r, <0.

Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.
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Theorem 4.1.3b

In the X;-x2 pane the system S.1.1a-S.1.1b is such that the rest point E, = [0,0] is a source
and hence a reppeler if:

a, —k,>0and a, —r,; —k, —r,, >0.

Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.

Theorem 4.1.3c
In the X;-x2 pane the system S.1.1a-S.1.1b is such that the rest point E, = [0,0] isa
hyperbolic saddle if:
a,—k;,>0and a, —r,; —k, -1, <0
or
a, -k, <0anda, —r,; -k, —r,, >0.
Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.

Comments:
By Proposition 3.0.5.1, in the X; — X, plane the rest point E, =[0,0] is locally

asymptotically stable if:

a, -k, <0, anda, —r, —k, —r, <0.
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Hence, we can conclude that army #1 should not operate the war under the next
configuration:
a, <k, and a, —r,; —k, <r,,.

Under this configuration mutual annihilation will occur.

Theorem 4.1.3d

In the X1-x2 pane the system S.1.1a-S.1.1b is such that the rest point E, = {bi In(i}o}

1 1

is a hyperbolic sink and hence an attractor if:

k,—a, <0 and ﬁIn[%}+a2—rzs—kz—r21<0.

1

Theorem 4.1.3e

In the X1-x2 pane the system S.1.1a-S.1.1b is such that the rest point E, = {bi In(i}o}

1 1

is a source and hence a repeller if:

k, —a, >0 and ﬁIn[%)+a2 — Ty, —k, =1, >0.

1 1

Theorem 4.1.3f
In the X1-x2 pane the system S.1.1aS.1.1b is such that the rest point E, = {bi In(%}o} is
1 1

a hyperbolic saddle if:

41



k
k, —a, >0 and iln(%}+a2 — Ty —k, =1, <0

1 1

or

k
k, —a, <0 and iln(%}+a2 — Ty —k, —1,, >0.

1 1

Comment:

By Proposition 3.0.5.1, in the X; — X, plane the rest point E, :{bi In[%}o} is locally

1 1

asymptotically stable if:

k k
k, —a, <0 and iln[—lj+a2 — T, —k, =1, <0.
1 al

From the stability conditions of the rest point E, = [bi In(ﬁ],o} , We can conclude that

1 1

the army should operate the war under the next configuration:

k k
k, —a, <0 and iln[—lJ+a2 — Ty —k, —1,, <0.
1 a'l

This configuration will lead to the victory of army #1 over army #2

Military Conclusions

The military meaning of k, —a, <0 is that the defeat of army #2 by army #1 is

conditioned to a higher supply rate of army one than its non-combat death rate. In the

practice this implies an increasing of the troop supply rate, which will overextend the
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army capacity. To avoid this army # 1 should focus more in the quality of its soldiers
rather than its quantity. The greatest Chinese Sun Tzu strategist agrees with this point

[Sun Tzu (1910) 2003].

4.1.3.3 Analysis of the model in the x; — x3 Plane

_ _blx 2
X =a.X¢e " k13X1X3 - k1X1 - k11X1

Xy = =Ko XX, — KyXy — KgaXs + Kag X,
Clearly E, =[0,0] is a restpoint of thesystem
E,:
X; =0 in (2)
= axe ™ —kx, =0
(ae ™ —k)x, =0
Thus ae™ —k, =0

Ky

e—blxu - _1
al
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4.1.3.4 The Jacobian Matrix of Linearization in the x; - X3 Plane

s —byx 2
X =aXe t— K13X1X3 - k1X1 - K11X1 - Fl

. 2 2
X3 = _K31X3X1 - k3X3 - k33X3 + k33X3 = Fs

oF  OR
] _| 0% OXq
ex] ™| oF, oF,
OX;  OX,
_ {aleblxl —a,X,e ™™ — KX, — K, — 2K, X — K5,
- k31X3 - k31)(1 - k3 - 2k33X3
a, —k 0
Then J [0,0] = ! !
’ 0 -k,

Hence A, =a, -k, and A, =-k,

klm[ﬁ] : zﬁm(k_lj &m(ﬁJ
_ & b, (& b, &

Similarly,

k
Hence A, =k,In ky +2ﬁln ky and 1, =—1In Ky —k,
a, 1 Q bl a,

Theorem 4.1.3g

In the x;-x3 pane the system S.1.1a-S.1.1b is such that the rest point E, =[0,0] is a sink

and hence an attractor if:
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a, —k, <0.
Proof:
The proof follows directly from the theorem of linearized stability and the stability

propositions.

Theorem 4.1.3h

In the X;-x3 plane the system S.1.1a-S.1.1b is such that the rest point E, =[0,0] is a
hyperbolic saddle if:

a, —k, >0.

Proof:

The proof follows directly from the theorem of linearized stability and the stability
propositions.

Comment:

By Proposition 3.0.5.1 in the X; — X3 plane the rest point E, =[0,0] is locally
asymptotically stable if:

a, —k, <0.

Hence, we can conclude that army #1 should not operate the war under the next
configuration:

a, <k;.

Under this configuration mutual annihilation will occur.
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Theorem 4.1.3i

In the X;-x3 pane the system S.1.1a-S.1.1b is such that the rest point E, = {é In(%}o}
1

is a sink hence an attractor if:

k,—a, <0 and &In(ﬁj—k3<0.
1 a'l

Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.

Theorem 4.1.3j

In the X;-x3 pane the system S.1.1a-S.1.1b is such that the rest point E, = {é In(%}o}
1

is a source hence a repeller if:

k,—a, >0 and &In[ﬁJ—k3>0
1 al

Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.

Theorem 4.1.3k

In the x1-X3 pane the system S.1.1a-S.1.1b is such that the rest point E, = {é In(%}o}
1
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is a hyperbolic saddle if:

k,—a, >0 and &IntﬁJ—k3<O
1 al

or

k
k, —a, <0 and iln(ﬁj—k3>0.
1 a'l

Proof:
The proof follows directly from the theorem of linearized stability and the stability

propositions.

Comment:

1 1

By proposition 3.0.5.1, in the x; —x3 plane the rest point E, = {bi In[%} O} is locally

asymptotically stable if:

a, —k, <0 and &In(i
b

1

Jkl—k3<0

1

Hence from the stability conditions of the rest point, E, = {bi In[i], O} we can

1 1
conclude that the army should operate the war under the next configuration:

a, —k, <0 and &In(i
b

1

Jkl—k3<0

1

This configuration will lead to the victory of army #1 over army #3.

47



Military Conclusions:

The military interpretation of a, <k, is that for army one to defeat army #3, the supply
rate of army #1 needs to be higher than its non-combat death rate. This implies increasing

the number of troops faster than normally.
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4.2 Logistic Model

In this section we proceed to study in detail the logistic source model. The logistic model
represents the mathematical model of military combat in which the following features
are incorporated:
[i] The logistic supply rate is defined by the logistic function:
S = f(x)=ax—bx?
[ii] There are three combating armies: army #1, army #2 and army #3
[iii] The army #1 is an expeditionary force invading a domain D where two
two insurgent armies (army #2 and army #3) reside
[iv] In particular army #1 fights army #2 and army #3 in a three —way- fight
[v] Army #2 consists of the indigenous people, but the insurgent army #3 is recruited
from army #2

[vi] Army #1 also recruits from army #2

. 2
X, = (al - blxl)xl - klZXlXZ - k13xlx3 - lel - k11)(1 + 11X,

. 2
X, =S, =Ky XoX; — e Xy —KogXo Xy — Ko X, =Ky X,™ — 1y X, S 2.1a

. 2
Xy =T5X, — k31X3X1 - kszxsxz - ksxs - ksaxs

Xl(t = 0) = Xio
X, (t =0) =X, S21b
Xs(t = 0) = Xgo
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4.2.1 Nonnegativity, Dissipativity

In this subsection the non negativity and dissipativity of the system is analyzed. The

analysis is done for the planes X;1-Xz , X2-X3, X1-X3 .

4.2.1.2 Analysis of the model in the x; — X, Plane
In the plane x;-x,, the S 2.1a reduces to the following:

X, = (8, — %, )%, — KX X, — KX, — Ky X, + 1y X,

X, = (8, —b,X, )X, — Koy X, X, — F,aXy — KyX, — Koy X,o = 1y X,
Now Let M, =Maxx,(t),for t, <t<T, then:

X, <(a, —k,M, =k )x, +r,M,

Allow u=(a, —k,M, —k,)x, +r,M,

= U+ (k,M, +k, —a)x, =ryM,

U= erM 2 + Ce—(k12M2+k1—a1)t
k,M, +k, —a,
r,,M _ _ r,,M
Thus x, < a2 + e (aMerhma)t a2 as t—oo
k,M, +k, —a, k,M, +k, —a,
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. r,M
So limsup |x,[ < M 221+ k21 —a for t>T,

This implies that x, is ultimately bounded.

r,M
and O£x1£Max{xm,k v 21+k2 — }
12 2 1 1

Similarly, consider te differential inequality

. 2
X, < (az - r23 - kz - er)XZ + (_bz - kzz)xz

Inparticularif r, +k, +r,, <a,, 3 T,such thatfort>T,
X, satisfies theinequality :

2_r23_k2_r21

b, +K,,

lim sup|x, | < a

Theaboveinequality implies that thesystemis dissipative and that x,
is ultimately bounded

Thus,

a,—r,—k,—r
OSXZSMax{XZO, SR B 21}

b, +k,,

In particular

r,,M a, —
By :{os&sMa{xm,k MZl k2 } OSXZSMa{XZO, 2
ne 1V, +K —a

Is an invariant box.

This implies that any solution which originates in the positive octant

R," ={x|x >0 i=12} will remain non-negative and is ultimately bounded.

In particular the system is dissipative such that:
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lim supx; (t) <M , where

M = max| X X rlez a, — Iy _kz -y
o o k12M2+k1_a1, bz"'kzz

4.2.1.1 Analysis of the model in the x; — x3 Plane

In the plane x31-x3 the S 2.1a reduces to the following:

X, = (8, =X, )%, — KX, Xy — KX, — kg %,

Xy = =Ko XX, — KyXy — KgyX,”

Let A, =a,Max(e™)

= X <(a, k)X + (-b, — k)%,

Allow u = (a, — k,)u, + (-b, —k,,)u,’
= U+ (k, —a,)u, = (-b, —k;;)u,’

1
u

" b, +ky,

a'l_kl

+ce —(a,—ky)t

1 a, —k
So x, < bk -4
1 Ky + ce-(akt b, +ky,

al_kl

-k
= 0<x, < Ma{xm,ﬁ—kl}
1 11

as t—oo (providedthat a, >k;)
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Similarly %, < —k,X; —kq; X,

Allow U = —k,u —k,,u’
= U+Kyu=—kzU®
1

u=

k
_ﬁ + c;ekSt

1
SO0 X, <—————— > 0ast—>x

— % el
3

= 0< X, < Max|X,,0]

Thus,

—k
By, x, ={0 <x, < Ma{xw,sl—kl] 0< X, < Max[x,,0]
1 11

Is an invariant box.

This implies that any solution which originates in the positive octant

R,"={x |x >0 i=12} will remain non-negative and is ultimately bounded.
In particular the system is dissipative such that;

al_kl

., 0
b, +ky,

lim supx; (t) <M , where M :max[xm, X301
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4.2.1.1 Analysis of the Model in the x, — X3 Plane

In the plane x»-x3 the S 2.1a reduces to the following:
2 2

X, =a,X, —0,%,° = Xy — Ko Xo Xy — Ko X, — Ky X, — 1y X,

. 2
Xz =T3X; — k32X3X2 - k3X3 - k33X3
For this case the calculations go exactly as in the surge model.

1 a, — I, —k,—r
b, +k,,

2L ast — oo

+ Ce*(az —Tp3—kKy =Tt

a, — Iy _kz -y

(provided that a, —r,, —k, —r,, >0)

a, —ry—k,—r
:>OSX2SMa><i:X20, 2 B 2 21}
b, +k,,

rs A _ I A
and x, <—2-2_ jce bt B2 a5t 50
Ksp A, +Kjg Ksp A, +Kjg
rys A

=0<x, < Ma{xso,L}

Ky A, +K

32772 3

Thus,

a, —r,—k —r r,.A
sz,X3:|:0SX2SMaXi:X20’ 2 23 2 21j|,OSX3SMaXi:X30,ﬁ
3272 3

b, +k,,

Is an invariant box.

This implies that any solution which originates in the positive octant

+

In particular the system is dissipative such that:
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i a, — Iy, —k, —r. I A
lim supx, (t) <M ,WhereMzmax{xzo, Xy, ——2 2 A = - }
b, +k,, Ksp A, + Ky

4.2.2 Analysis of the Rest Points

In this subsection the rest points of the model will be calculated, analyzed and militarily

interpreted. The analysis is done for the planes x;-Xz, X1-X3, and Xz-Xa.

4.2.2.1 Rest Point Analysis in the x; — X, Plane

The rest points are computed by setting X; (t) =0 fori=1,2. Thus the model
equations reduce to:
)'(1 = (a1 - b1X1)X1 - k12X1X2 - k1X1 - knxl2 +IynX, (1)
Xz = (az - bzxz)xz - k21X2X1 — X, — kzxz - Kzzxz2 — X (2)
Evidently E, =[0,0] is a rest point of the system
Xy (al - kl - lel - kllxl) =0

a, — k1 - lel - kllxl =0

- (bl + kll)xl = kl -8

a, — kl
b, + kg,

X, = ) (al >k1)

al_kl
=E, = 0, wherea, >k, .
| 2ol wheres, >k

55



4.2.2.2 The Jacobian Matrix of Linearization in the x; — X, Plane

. 2
X = (ai - blxl)xl - klZXlXZ - klxl - kllxl +I X, = Fl

. 2
X, = (az - b2X2)X2 - k21X2X1 — X, — kzxz - kzzxz X, = Fz

oF  OR
] | ox,  0OX,
el N O, oF,
0%,  OX,
_ {a1 - 2b1X1 - k12X2 - kl - 2k11X1 - k12X1 + 1y }
- k21X2 a, — 2b2X2 - k21X1 — Iy = kz - 2k22X2 -y
Then 3, =|™" s £
o] 0 az - rzs - kz - r21

Hence 4, =a, -k, and A4,=a,-r, -k, -1,

Similarly,
a, —k a, —k a, —k
a1_2b1#_k1_2k11# - 12ﬁ+l’21
J — 1 + 11 1 + 11 1 + 11
[uo} a, —k,
by +ky; 0 a, —ky, bk — Iy —K, =1y
1 11

a —k a, -k
Hence 4, =a, —{kl +2(b, + kn)ﬁ} and 4, =a, —{rzs + K, + Ty + Ky —b11+ kj'

By Theorem 4.1.3a in the X—X, plane the system S.2.1a - S.2.1b is such that the rest point
E, =[0,0] is asink hence an attractor if:

a,—k;<0and a, —-r, -k, —r,, <0

By Theorem 4.1.3b In the x;-x, plane the system S.2.1a - S.2.1b is such that the rest point
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E, =[0,0] is a source and hence a repeller if:

a, —k,>0and a, —r,; —k, —r,, >0.

By theorem 4.1.3c in the X;-X; plane the system S.2.1a - S.2.1b is such that the rest point
E, =[0,0] is a hyperbolic saddle if:
a,—k;,>0and a, —r,; —k, —r, <0

or

a, -k, <0anda, —r,; -k, —r,, >0.

Comment:

From the stability conditions of the rest point E; =[0,0], we can conclude that the army
should not operate the war under the next configuration:
a, <k, and a, —r, —k, <ry,

Under this configuration mutual annihilation will occur.

Theorem 4.2.2a

: —k L .
In the X; — X, plane the rest point E, = { ol ,0} is a sink hence an attractor if:
1 + 11

a, —k a, —k
a, <k, +2(b, +k,)——= and a, <r, +k, +r, +k, —*.
1+ 11 b1+k11
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Theorem 4.2.2b

: —k . :
In the X; — X, plane the rest point E, = {LO} is a source hence a repeller if:
1 + 11

al_kl al_kl

a, >k, +2(b, +k;,) and a, >ry, +k, +r, +Kky

1 11 1 + kll

Theorem 4.2.2c

1 11

In the X; — X, plane the rest point E, = { 3 -k ,0} is a hyperbolic saddle if:

a, —k a, —k
a, >k, +2(, +k,)——=> and a, <ry +k, +r, +k, —>
1+ 11 1+k11

or

—k K
al<|<1+2(bl+|<11):1+—kl and a2>r23+k2+r21+k21—§1+k1.
1 11 1 11

Comments:
The contrary, the army should operate the war under the configuration:

a1_k1
b, +k,,

a, _kl

a, >k, a, <k, +2(b, +ky) and a, <ry +Kk, +ry, +k,

1+ 11

This configuration will lead to the victory of army one over army two.
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4.2.2.3 Rest Point Analysis in the x; — X3 Plane

% = (8, — DX )X, — KigXXs — kX —Kk;x* =0 (1)
Xy = —Kg XaX, — KyXy —KggX,” =0 (2)
Clearly E, =[0,0] is a restpoint of thesystem.
E,:
X, =0in (2)
= (a, —b,x)x, — k., —k,;x°=0

(a, —bx, =k, —k;;x,)x, =0

a, -k, -(b, +k;;)x, =0

_ a'l_kl
'ob + kg,

=E, = —al_kl
2 b +ky,

4.2.2.4 The Jacobian Matrix of Linearization in the x; — X3 Plane

. 2
X = (al _blxl)xl - K13X1X3 - lel - k11)(1 = Fl

, 2
Xg ==Ky Xs X —KyXy —KgsXs" = Fy

oF, oF,
| e
x] ™1 oF,  oF,
oo
_ a, — 2b1X1 - k13X3 - kl - 2|(11)(1 - k13X1 }
- k31X3 - k31X1 - k3 - 2k33X3
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a 0
Then ‘][0,0] :|:01 —k3:|

Hence 4, =a, and 4, =K,

Similarly,
g~ Ky gy BTk Ak
1 1 1 11 13
J[ }z b1+kll b1+k11 bl_l:kll
&k g 8, — K,
by+ky, 0 -k -k
31b1+k11 3
a, —k a, —k
=A,=a, -k, —2(b, +k L 1 and A, =—k,, —2 -k
3 1 1 (l 11) b1+k11 4 31 bl+kll 3

By theorem 4.1.3g in the X;-x3 pane the system S.2.1a-S.2.1b is such that the rest point
E, =[0,0] is a sink and hence an attractor if:
a, —k, <0

Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.

By theorem 4.1.3h in the x;-x3 plane the system S.21.1a-S.2.1b is such that the rest point
E, =[0,0] is a hyperbolic saddle if:
a, —k, >0

Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.
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Comment:

By Proposition 3.0.5.1, in the X; — X3 plane the rest point E, =[0,0] is locally
asymptotically stable if:

a, —k; <0.

Hence, we can conclude that army #1 should not operate the war under the next
configuration:

a, <k,.

Under this configuration mutual annihilation will occur.

Theorem 4.2.2d

In the X1-x3 pane the system S.2.1a-S.2.1b is such that the rest point E, = { 8K ,0} isa

sink hence an attractor if:

a, —k, - 2(b, +kn)s‘l;:l<o and —k,, 21K _

1 11 1 11

k, <O.

Proof:
The proof follows directly from the theorem of linearized stability and the stability

propositions.
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Theorem 4.2.2e

In the X;-x3 plane the system S.2.1a-S.2.1b is such that the rest point E, = {Lklo} is

1 + kll
a source hence a repeller if:

a‘l_kl a1_k1

a — k1 - 2(b1 + k11)

>0 and —kg,
1+ 11 1+ 11

-k; >0.

Proof:
The proof follows directly from the theorem of linearized stability and the stability

propositions.

Theorem 4.2.2f

In the X1-x3 plane the system S.2.1a-S.2.1b is such that the rest point E, = { 8K ,0} IS

a hyperbolic saddle if:

“k “k
a, —k, —2(b, + k)2 50 and —k, 2%k, <0
b1+ 11 1+ 11
or
—k _k
a, — Kk, —2(b, +ky) 22— <0 and —k,, 2% _k, 0.
b1+ 11 l+ 11

. : . -k :
By proposition 3.4.1.1, in the X; — X5 plane the rest point E, = [b : O} is locally

1+ 11

asymptotically stable if:
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%K and Ky, S

a, <k, +2(b, +k
1 1 (l 11) b1+k11 b1+k11

<k;.

11

By definition, in the X; — X3 plane the rest point E, = { o _Ii(l ,0} is a hyperbolic saddle
+

if:
a, -k k,—a
a, >k, +2(b, +k,,) ——= and k,, —2<k
1 1 (l ll)b1+k11 31 b1+k11 3
or
al<k1—2(b1+kll)al+—_k1 and k31%>k3.
1 11 1 11

Comment:

From the stability conditions of the rest point E, = { 8 =K ,0}, we can conclude that the

l+k11

army should operate the war under the next configuration:

3~k and k k-3

a, >k, a, <k, +2(b, +k
1 1 1 1 (1 ll) b1+kll 31 bl+kll

<k,.

This configuration will lead to the victory of army one over army two

The army should not operate the war under any the configurations:

a — k1 and ki, kl !

a, >k, +2(b, +k
1 1 (1 11) bl+kll b1+kll

or

%K and Ky k-3,

a, <k, +2(b +k
1< 1+ (l+ ll)b1+k11 b1+k11

>K,.
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or

% =K and Ky, k-3,

a, >k +2(b, +k —_
1 1 (1 11) b1+k11 b1+k11

>K,.

4.2.2.5 Rest Point Analysis in the x, — X3 Plane

2 2
X, =a,X, —b2X2 —IpX, — k23X2X3 - kzxz - kzzxz —IyX, =0 (1)

Xy =X, — Koy XX, —KyXy —KgyX,” =0 (2)
E, =[0,0]

E,:

X, =0 in (1):

= -k, X, —kqyX,” =0

X3 (ks - k33X3) =0

Ky | . .
=E, = {0—3} is a restpoint of thesystem.
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4.2.2.5 The Jacobian Matrix of Linearization in the x, — X3 Plane

. 2 2
X, =3,X; — bzxz — X, — kzaxzxa - kzxz - kzzxz X = Fz

2
X3 =Ty3X; — kazxsxz - k3X3 - k33X3 = Fs

] | 0%, OXg
S
| OX,  OXq
— X, — 2b2X2 — Py k23X3 - kz - 2kzxz2 -y - k23X2
L s — k32 X3 kszxz - ks - 2k33X3
Then,

Hence 4, =a, —r, -k, —r,, and 4, =K,

Similarly,
k,.k
a, — Iy — f:s_kz_rzl 0
6] ™ Kook
{0 k33} r23 - ;2 3 _3k3
33
k23k3

Hence A, =a, — Iy, —

-k, —r,, and A, =-3k,

33

By proposition 3.0.5.1 the rest point E; =[0,0] is locally asymptotically stable if:
a, <ly+k,+r,
By definition, the rest point E; =[0,0] is a hyperbolic saddle if:

a, >y +K, +ry
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Comment:
Army two should not operate the war under the configuration:
a, <ly+K,+1,

This configuration will lead to mutual annihilation of army two and three.

By proposition 3.0.5.1 the rest point E, = {O, :—3} is locally asymptotically stable if:

33

k,.k
a, <l +—22 14K, +1y,
33

By definition 3.4.2.3 the rest point E, = {0, k_s} is a hyperbolic saddle if:

33

k23k3

a, >y, + +Kk, +r1,

33

Comment:

- . : k
By the stability conditions of the rest point E, = [0, k—a} we can conclude that army
33

three should operate the war under the next configuration:

k..k
233
A, <l +—==4K,+1,

33

Under this configuration army three will defeat army two.
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f4.3 Analysis of the Rest Points for the General System

This section presents an analysis of the general model with participation of thee armies in
the conflict. This scenario is more realistic and illustrative than the other models. It gives
a realistic and detailed perspective of multi armies-conflict. The model can be expanded

to a broader number of armies if needed.

4.3.1 Analysis of the Surge Model

Consider the use of the surge source. Then the system is the form:

; _blx 2

X =a;X.€ b klZ X X, — k13X1X3 - k1X1 - k11)(1 + 15X,

. 2

X, = (az - bzxz)xz - k21X2X1 - rzsxz - k23X2X3 - kzxz - kzzxz — I X, 4.3.1a

. 2
Xy =T3X, — k31X3X1 - kazxsxz - k3X3 - kssxa

X (t = O) = X10
X, (t =0) = X, 4.3.1b
X3 (t = O) = X3o

Theorem 4.3.1a

The rest points of the system 4.3.1a — 4.3.1b are given by:

E,=[0,0,0] and E, :{bim(%}o, o}.

1 1
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Proof:
E, =[0,0, 0] is clearly a rest point of the system

X, =0 andx, =0 in the first and second equation of 4.3.1a

= —kyX; —kgX,” =0
X3 (_ks - kssxs) =0
- k33X3 = k3

k
Xy =——>

k33

3

Ky | . . :
=E, = {O, 0,— k_} is a non-attainable rest point
33

X, =0 and x, =0 in the second and third equation:
= —a,xe ™ —k,x, =0
x,(a,e™ —k,)=0

b _
a,e " =k,

=E, ={i In(%)o, 0} , Where a, >Kk;.

1 1
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Theorem 4.3.1b
Suppose there is no recruitment of combatants from army # 2 to army #1, thatis r,, =0,

then the rest point E, =[0, X,, %,] is possible iff %,, %, solve the system:

(2kgs X5 + Ky X, + k3)2 = (kg X, + k3)2 + 4K g5l X, (i)
(bz + kzz))A(z + kzs)A(a =a, — kz — I3 (ii)
Proof:

Let r,, =0as stated in the theorem. Then,

(az _bzxz)xz —IX; — k23X2X3 - kzxz _k22X22 =0
2

s X, — k32X3X2 - k3X3 - k33X3 =0

Thus,

k33X32 + (kszxz + k3)X3 — X, =0

Hence

- (ksz X, + ks)_ \/(kszxz + k3 )2 + 4k33r23X2
2K 4,

X3 = (X31, st) =

From the second equation of 4.3.1a:

X, [(kzz + bz)Xz + k23X3 - (az - kz - rzs)]: 0
(kzz + bz)xz + kzsxs =a, - kz — Iy

a, _(kz + I+ kzsxs)
K,, +b,

X, =
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Comment

If this rest point exists then the army # 1 is defeated by the combine mutual fighting with

army # 2 and army # 3. In particular the combined forces of army # 2 and army # 3 will

totally obliterate army # 1.

To avoid this situation army # 1 will have to engage in the mutual conflict such that the

following conditions are NOT satisfied:
(2Kas Xy + KX, +K,)? = (KpeX, +K,)? + 4Ky1,%,

kzziz + k2323 =4, _kz — 3.

4.3.1.1 The Jacobian Matrix of Linearization

aleiblxl - a'1b1x1eiblxl = kipXp = Kigkg =Ky = 2kyy% =KXy + 1y
J[xl,xz,xg] = —kyXy 8y = 20,%) —KyyX; — Ty = KygXg =Ky = 2KppX, — T
= kaiX My — KX
a, —k; Iy 0
= J[o,o,o] = 0 a, — Iy kz Iy 0
0 My -k,
Hence,

ﬂ“lzai_klv ﬂ“z:az_rzs_kz_rzlv /1320-
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Similarly,

-k In(iJ - 2ﬁln(ﬁj —&In(ﬁJ + 1y —ﬁln(ﬁj
k) b Kk b Lk bk
k a
J = 0 a, ——2In| 2 |—ryy—k, —r 0
l:biln[%],o, 0} 2 by (klj 23Ky~
1 1
0 Mg —ﬁln(ﬁ]—k3
L bk

Theorem 4.3.1c

The rest point E; =[0,0, 0] of the system is a sink hence it is an attractor if:

a,—k, <0 and a, —ry—k,—r, <0

Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.
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Military Tactic Interpretation 4.3.1a

e “The armies will fight to Mutual Assured Destruction” or mutual annihilation if :
a, <k, and a, <r,; +k, +1,.

e To avoid the above scenario, the expeditionary army #1 has to change at least one
of the above criteria. In particular, the army #1 must effect a surge such that

a, >k .

e Thus the surge sustenance rate constant a, must be greater than the rate constant
k, for non-combat loss of troops.

e Another possibility is to minimize troop loss due to non-combat.
e The constant k, can be minimized by giving incentive to the army #1, to avoid

desertion or protect them from non-combat accidental deaths, or counsel them
from suicide. Also It is possible to reduce the number of tours to prevent fatigue-

related accidental death or desertion.

Theorem 4.3.1d

The rest point E;, =[0,0, 0] of the system is a source hence it is a repeller if:
a, -k, >0 and a, —ry, -k, —r,, >0.

Proof
The proof follows directly from the theorem of linearized stability and the stability

propositions.
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Theorem 4.3.1e
The rest point E; =[0,0, 0] of the system is a hyperbolic saddle if:
a,—k, >0 and a, —ry; -k, —r,, <0
or
a, -k, <0 and a, —ry, —k, —r,, >0.
Proof

The proof follows directly from the theorem of linearized stability and the stability

propositions.

Comments:
From the stability conditions of the rest pointE, =[0, 0, 0], it can be concluded that the
army should not operate the war under the following configuration of parameters:

ra, —k, <0 and a, —r,; -k, —r, <0.

Theorem 4.3.1f

The rest point E, = {bi In(%

1

}, 0, 0} of the system is a sink hence it is an attractor if:

1
k,<a,, a, +kb—211 n[z—i]—(rzg +k, +1,)<0, kb—Tln[z—ij—kg <0.

Proof:

The proof follows directly from the theorem of linearized stability and the stability
propositions.
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Military Tactic Interpretation 4.3.1f
e If the above criterion holds then army #1 is victorious whereas the other armies

are decimated.

: L k k
e Thus the mathematical criteria k, <a,, a, +—= In[—lJ —(rg +k, +1,)<0,
1 1

k — : :
and ﬁ In(ﬁj —k; <0 must be maintained through the entire duration of the
1 al

conflict.
e Any violation of the above criteria will change the victorious outcome.
e The basic strategy requirement is to ensure that the search has a higher rate of

supply. Also that rate constant a, is greater than k, .

Theorem 4.3.1g

The rest point E, = {bi In(ﬁ] ,0, 0} of the system is a source hence it is a repeller if:
&

k1+2& In L >0, a2+ﬁln L —(rys +k,)>0, &In L -k, >0.
bl al bl a1 bl al

That is if;

k k k k
k,>a,, a, Jrﬁln(a—ljﬂr23 +k,), ﬁln[—lj> K.

! 1 il 1
Proof:

The proof follows directly from the theorem of linearized stability and the stability
propositions.
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Comments
e Ifarmy # 1 wants to be victorious then it must mobilize its logistics such that the
above criteria do not hold.

e In particular army # 2 and army # 3 will avoid annihilation if the above criteria

hold.

Theorem 4.3.1h

The rest point E, = [é In(ﬁj ,0, 0} of the system is hyperbolic saddle if at least one of

8

the eigenvalues; 4, = —k; In(ij—Zﬁln(ﬁj y As =8, —ﬁln[ﬁJ— Fs =Ky =1y,
K, ky bk

As = K In[%}—k3 IS positive and at least one is negative.
1
Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.

Comments

If the rest point is a hyperbolic saddle under the above criteria, then the battle outcomes

are neither favorable to either of the armies.
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4.3.2 The Logistic Model

Consider the use of the logistic source in army #1. Then the system is the form:

. 2

X = (al - ﬂlxl)xl - k12X1X2 - k13X1X3 - |(1)(1 - I(11)(1 + 1y X,

. 2

X, = (052 _:Bzxz)xz - k21X2X1 — X, — k23X2X3 - kzxz - kzzxz — X 4.3.2a

. 2
Xy =TX; — k31X3X1 - k32X3X2 - k3X3 - k33X3

X (t = O) = Xi0
X, (t=0) =Xy 4.3.2b
X3 (t = O) =Xgo

Theorem 4.3.2a

The rest points of the system 4.3.1a— 4.3.1b are given by:

E, =[0,0,0]

E, = [i In[ﬁj ,0, O} .
b a,

Proof:

E, =[0,0, 0] is clearly a rest point of the system

X, =0 andx, =0 in the first and second equation of 4.3.1a

= —kyX; —kgX,” =0
X3 (_ks _kssxs) =0
'k33X3 :ka

Xy = ———

? kse.

K, | . . :
=E, = {0, 0,- k_ﬂ IS a non-attainable rest point

33
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X, =0 andx, =0 in the second and third equation:

(a— ﬁx1)x1 - klxl - k11X12 =0
Xl(a - X - |(1 - k11X1) =0
(=B —ky)X =k —a
X, = o, =k,
By +ky

S E | %7K g0l
: ﬁl+kll, ’

Theorem 4.3.2.b
Suppose there is no recruitment of combatants from army # 2 to army #1, thatis r,, =0,

then the rest point E, =[0, X,, %,] is possible iff %,, %, solve the system:

(2kgs X5 + Ky X, + k3)2 = (kg X, + k3)2 + 4Kyl X, (i)
(kzz + bz)iz + kzs)?s =a, — kz — Ty (ii)
Proof:

The proof follows directly from theorem 4.3.1b

4.3.2.1 The Jacobian Matrix of Linearization

gy = 2% —KipXp —Kyg¥s —ky — 2Kyi X —kypXg +1y —kig¥
Iro k] = —kyX, Qg = 2B29%p —KanXy — Vo3 ~KpsXg —Kg = 2KapXp Ty -k,
—kg1%g I3 —KgpXg —Kg1 X —KgpXp —Kg — 2kg3Xg
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Hence, the eigen-spectrum for E, =[0,0, 0] is:

O-(El[o’olo]) z{a_kly /12 :a2 - r23 - k2 - r21’ 2,3 :_k3}

Similarly,
K, — 2(ct — k,) G, 2 , 2=k
ﬂk+ kll ﬂ + kll
a p—
K - 0 &, =Ky kl Mg =Ky =Ty 0
[lerkll 0 O} B +ky )
a p—
I 0 M3 k31 ﬁ n k111 - ka_
. k,
Thus the eigen-spectrum of E, = {—I ( ] 0, O}
1 o,
K, a—k
o(E, (—In 00)={4, = a—-k,-2(a—-k)), 4= a, Ky, ————1, -k, =1,
A oy Ky
a -k,
As =Ky 1 k -k, }
Theorem 4.3.2¢c

The rest point E; =[0,0, 0] of the system is a sink hence it is an attractor if:
a,—k, <0 and a, — 1, —k, -1, <O0.
Proof:

The proof follows directly from the theorem of linearized stability and the stability

propositions.
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Military Tactic Interpretation 4.3.2c

“The armies will fight to Mutual Assured Destruction” or mutual annihilation if :

K a
1 1
C,<— and a, <r,;+k,+r, ,where C, =—

1 1
In particular C; is the logistic maximum for army # 1.

This outcome is analogous to the one observed if the surge rate function is the
input function for army # 1, but the rate constants have different interpretations.

It should be noted that the armies may not have to fight to the bitter end of zero-
end result, because one of the armies may capitulate before that occur.

To avoid the above scenario, the expeditionary army #1 has to change at least one
of the above criteria. In particular, the army #1 must effect a surge such that:

a, >k,

Thus the logistic rate constant o, must be greater than the rate constant k, for non-
combat loss of troops.

Another possibility is to minimize troop loss due to non-combat.

The constant k, can be minimized by giving incentive to the army #1, to avoid
desertion or protect them from non-combat accidental deaths, or counsel them
from suicide. Also it is possible to reduce the number of tours to prevent fatigue-

related accidental death or desertion.
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Theorem 4.3.2d

The rest point E; =[0,0, 0] of the system is a source hence it is a repeller if:
o, —k, >0 and a, —ry, -k, =1, >0.

Proof

The proof follows directly from the theorem of linearized stability and the stability

propositions.

Comments

The commanders of the three armies obviously will choose battle field conditions such
that the above criteria will hold. In particular if each commander would like to destroy
the other two armies in order to survive, then this will lead to the rest point being
hyperbolic sink with the criteria as stated in theorem 4.3.2a.

On the other hand, if all the three armies fight with caution then this rest point will
remain a source.

It should be noted that the initial troop build-up at the start of the combat determines the

relative rate at which each army approaches extermination.

Theorem 4.3.2e
The rest point E; =[0,0, 0] of the system is a hyperbolic saddle if:
o, —k; >0 and a, —r,, -k, -1, <0

or

a,—k, <0 and a, —ry, —k, —r1,, >0.
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Proof
The proof follows directly from the theorem of linearized stability and the stability

propositions.

Theorem 4.3.2f

: -k L - .
The rest point E, = {L ,0, 0} of the system is a sink hence it is an attractor if:
1 + 11
o, —k Ki -y
o, -k, —2(; —k,)<0, a, -k, m — T, —k, =1, <0,and Kk, Ak, -k, <0.

Proof:
The proof follows directly from the theorem of linearized stability and the stability

propositions.

Comments

: -k - .
The rest point E, :{L,O, O} is different from the rest point E, =[0,0, 0]

l+ 11

and if o, >k, .

A necessary but not sufficient condition for the existence of this rest point is that

a, >k,
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Military Tactic Interpretation 4.3.2f
e If the above criterion holds then army #1 is victorious whereas the other armies
are decimated.

Thus The mathematical criteria:

a, —k k, -«
a, <k, , a, —k21ﬁ<r23 +k, +1, ,and ks, /311 +ki <k,
must be maintained through the entire duration of the conflict.

e Any violation of the above criteria will change the victorious outcome. The battle

of Aspern gives a good illustration of this failure [Eggenberger 2007].

Theorem 4.3.29

: -k : . .
The rest point E, = {L ,0, O} of the system is a source hence it is a repeller if:
11

That is if:

a—k k, -«
a-k, >2(ax-k,), a, —kZlTki>r23 +k, +r,, ,and k31ﬂlTkl>k3.
Proof:
The proof follows directly from the theorem of linearized stability and the stability

propositions.

Military Tactic Interpretation 4.3.2g
If the army # 1 wants to win the conflict, then it has to avoid fighting the battles under the
above criteria, which evidently will let victory literally escape from its hands.
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Theorem 4.3.2h

The rest point E[X,, X,, X,] exists if the system shows persistence such that,

lim inf x, (t)>6,>0 =123

Proof:

The proof follows directly from the definition of persistence and the use of the Butler-Mc
GeHee Lemma [Nani 1998].

Comments:

In this situation the long term outcome of the conflict leads to co-existence.

In particular none of the armies can defeat the other conclusively.
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5.0 SUMMARY, DISCUSSION, CONCLUSIONS

FUTURE WORK

In this thesis elaborate mathematical models were constructed to depict various scenarios
of military combat. The advantage of mathematical models is that, it enables the battle
field commanders to have insight of their tactical maneuvers.

Mathematical model serves as another weapon in the arsenal of the armies.

In fighting insurgencies there are a lot of frustrations which results from not using the
right strategy from the onset of the counterinsurgencies. One of the critical variables
involved is:

[i] Initial troop buildup the initial troop buildup

[ii]The rotation of troops and the supply rate of reinforcements

[1ii]The supply rate of troops.

[iv]The timing of the surge in troop numbers

[V]The knowledge of the possible mathematical outcomes of the conflict
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5.1 Summary , Discussions, Conclusions of the

Generalized Lanchester Models

The Lanchester’s linear law (Un-directed Fired Model) has the form:
Xl = Sl — X X, —a X — klZXZ
Xz = Sz — Ay, XX, —ayX, — k21X1

Xl(t = 0) =X

X, (t = 0)= X,

where  x, =querrilla army #1

X, = guerrilla army #2

a,, = The specific inter-army killing rate constant. The number of army # 1
killed per unit time during guerrilla combat engagement with army # 2.

a,, = The specific inter-army killing rate constant. The number of army # 2

killed per unit time during guerrilla combat engagement with army # 1.

The outcomes of this model are:

C. {o, S5 }
k12 —4a,

where k,, >a, and S, >S,

S,-S
k21_al

where k,, >a, and S, > S,

85



The third equilibrium pointE, =[X,, X, ] exists if the following two surfaces:
[0 S, =a,XX, +a,X +Kk;,X,

[,: S, =a,XX, +8,X, + Ky X,

intersect at the point [X,, X, ]

E, = [Xl, XZ] depicts the interior equilibrium point, with the specifications given in

Table 1.1.
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5.2 Summary, Discussions, Conclusions of the

Generalized Surge Model

The generalized surge model has the form:

y _blx 2

X =a;X¢€ b k12 X X, — k13X1X3 - k1X1 - k11X1 + 150X,

. 2

X, = (az - bzxz)xz - k21X2X1 - rzsxz - kzsxzxs - kzxz - kzzxz — I X, 4.3.1a

. 2
Xy =T3X,; — k31X3X1 - kazxsxz - k3X3 - k33X3

X (t = O) = X10
X, (t =0) = X,q 4.3.1b
X3 (t=0) =Xy

In particular the rest points are:

E, =[0,0,0]

87



Military Tactic Interpretation on E, =[0,0, 0]
“The armies will fight to Mutual Assured Destruction” or mutual annihilation if :
a, <k, and a, <r,+k, +r,,.
e To avoid the above scenario, the expeditionary army #1 has to change at least one
of the above criteria. In particular, the army #1 must effect a surge such that
a, >k, .
e Also the surge sustenance rate constant a, must be greater than the rate constant
k, for non-combat loss of troops.
e Another possibility is to minimize troop loss due to non-combat.
e The constant k, can be minimized by giving incentive to the army #1, to avoid

desertion or protect them from non-combat accidental deaths, or counsel them
from suicide. Also It is possible to reduce the number of tours to prevent fatigue-
related accidental death or desertion. Another similar approach to reduce

casualties is through defensive tactics [Clausewitz (1942) 2003].
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Military Tactic Interpretation on E, {bi Ini%] ,0, 0}

1 1

This rest points occurs when k, <a, and is locally asymptotically stable when:
k, +2& In k <0, a, +ﬁln K —(ryu +k,)<0, &In ks -k, <0
bl al bl al bl al

e If the above criterion holds then army #1 is victorious whereas the other armies

are decimated.

. . K k
e Thus the mathematical criteria k; <a,, a, +—1In (—1j —(r, +k,)<0,and
1 a‘l

K In(ﬁJ —k; <0 must be maintained through the entire duration of the

1 al
conflict.
e Any violation of the above criteria will change the victorious outcome.
e The basic strategy requirement is to ensure that the search has a higher rate of

supply. Also that rate constant a, is greater than k; .
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5.3 Summary, Discussions, Conclusions of the

Generalized Logistic Model

The generalized logistic model has the form:

. 2
X, = (al _ﬂlxl)xl - k12X1X2 - k13X1X3 - k1X1 - k11X1 + 151X,

. 2

X, = (052 _ﬂzxz)xz - I(21)(2)(1 —I3Xy — kzaxzxa - kzxz - kzzxz — 11X, 4.3.2a

. 2
Xy =T3X, — k31X3X1 - k32X3X2 - k3X3 - k33X3

X (t=0) =X,
X, (t = 0) = X, 4.3.2b
X3 (t=0) = Xq

In particular the rest points are:

E, =[0,0,0]
E, :|:i |n[ﬁj,0, 0}
b a,

Military Tactic Interpretation on E, =[0,0, 0]

“The armies will fight to Mutual Assured Destruction” or mutual annihilation if :

K a

1 1
C,<— and a, <r,+k,+r, ,where C, =—.

1 1

In particular C; is the logistic maximum for army # 1.
This outcome is analogous to the one observed if the surge rate function is the input

function for army # 1; but the rate constants have different interpretations.
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It should be noted that the armies may not have to fight to the bitter end of zero-
end result, because one of the armies may capitulate before that occur

To avoid the above scenario, the expeditionary army #1 has to change at least one
of the above criteria. In particular, the army #1 must effect a surge such that

a, >K,.

Thus the logistic rate constant o, must be greater than the rate constant k, for non-
combat loss of troops.

Another possibility is to minimize troop loss due to non-combat.

The constant k, can be minimized by giving incentive to the army #1, to avoid
desertion or protect them from non-combat accidental deaths, or counsel them
from suicide. Also it is possible to reduce the number of tours to prevent fatigue-

related accidental death or desertion.
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Military Tactic Interpretation on E, { % =K, ,0, o}
ﬂl + kll

The rest point E, = o~k ,0,0 | is different from the rest point E, =[0,0, 0] If:
p 3 1

1 + 11
a, >K,.
Also a, >k, is a necessary but not sufficient condition for the existence of this rest point

e If the above criterion holds then army #1 is victorious whereas the other armies

are decimated.

Thus the mathematical criteria;

a; —k; k, —
a, <k, ,a, -k, ———<ry+k, +r, ,and ky,

<k,
l+kl ﬁl+kl

must be maintained through the entire duration of the conflict.

e Any violation of the above criteria will change the victorious outcome.
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5.4 Future Research

Due to the fact that surge never occurs at the beginning of the war, the mathematical

model to be used is the time delay model.
% =S, —kppX X, — k13X1X3 —kix - k11X12 +1,%,, Where S, =ax (t— Tl)e_blxl(t_rl)
where 7, denoted the time at which the surge starts.

Thus

X1 =a;X (t - z'1)(':'4)1)(10711) - k12 X Xy — k13X1X3 o klxl o k11X12 T Iy X,

Xz = Sz - K21X2X1 — X, — K23X2X3 - kzxz - Kzzxz2 — Xy

Xs =Ty3X; — K31X3X1 - kszxsxz - kaxs - k33X32 + k33X32 — X

and

S, =a,x,e ™ u(t—r,) with u=0whenevert <z, andu=1whenevert >,

Thus

0, t<z,
S, =
a,xe™, t>r,

Hence for t < z,, we have:

The timeat which the warbegins is denoted by t,,, so the next notation is applied :
Xy (to) = X9
X3 (to) = Xy
X3 (to) = X3

X, (te[-7,1))=4¢
X, (te[-7,1,)) =4,
X;(te[-7,t,)) =4,

¢i eC ([_T’O)]

93



6.0 BIBLIOGRAPHY

Alligod, Kathleen Tim D. Sauer, James A. Yorke. Chaos: An Introduction to

Dynamical Systems. New York: Springer, 1996. 58.

Amann, Herbert. Ordinary Differential Equations. New York: Walter de Gruyter, 1990.

263-265.

Bath, U. Narayan, and Gregory K. Miller. Elements of Applied Stochastic Processes.

New Jersey: John Wiley & Sons, 2002. 304.

Clausewitz, Carl VVon. Principles of War. Trans. Hans W. Gatzke. Ed. Hans W. Gatzke.

New York: Dover Publications, 2003. 53-58.

Eggenberger, David. An Encyclopedia of Battles: Accounts of Over 1,560 Battles from

1479 B.C. to the Present. New York: Dover Publications, 2007. 32.

Hofbauer, Josef, and Carl Sigmund. The Theory of Evolutions and Dynamical Systems.

London: Cambridge University Press, 1991. 53.

Nani, F. A Mathematical Treatise on Warfare. (preprint). Edmonton: University of

Alberta, 2002.

Przemieniecki, J.S., and Robert M. Rogers. Mathematical Methods in Defense Analyses.

Reston: AIAA Education Series, 2000. 83.

Tzu, Sun. The Art of War. Trans. Lionel Giles. New York: Dover Publications, 2002. 55.

94



