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1.0   INTRODUCTION 

The art of war has evolved over the years into strategic engagements where quantitative 

use of calculations and mathematical models will be an advantageous assert. Global 

conflicts in recent years involve clashes between guerrilla armies, counter-insurgences 

and conventional forces. It is possible to use mathematical models to plausibly depict 

combat scenarios to a greater extent. The role of the mathematical model is to help 

military battle field commanders to perform the following tasks: 

 

(I)    Use mathematics to advantageously relate combat variables quantitatively. 

(II)   Enables the derivation of robust theoretical criteria for therapeutic outcome of  

        victory, stalemate and defeat. 

(III)  Facilitate the use of computers to give detailed predictions and dynamic view of    

         battle.  

(IV)  Provides alternative templates to counteract the moves of the opponents. 

(V)   Enables the battlefield commander to avoid disastrous gambles and catastrophic  

         mistakes. 

     There have been many attempts in combat modeling in the literature. [Hofbauer 

and Sigmund 1991; Przemieniecki 2000; Narayan and Miller 2002]. Some of such 

models involve the use of ODE, PDE, Stochastic Differential Equations, Discrete 

Differential Equations and Markovian Processes. The most common models involve 

descriptive, deterministic, time continuous and state continuous types of models 

involving ODE. In the literature the most popular model used are the Lanchester models. 
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1.1   Models of Warfare 

In this section, previous work on models depicting military combat will be issued. In 

particular, their advantage and shortcoming will be explained elaborately. 

 

 

1.1.1   The Lanchester Guerrilla Warfare Model 

This model is also called the Lanchester’s linear law (Un-directed Fired Model).  

The system of ODE describing this model is: 
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where    1 #army  guerrilla1 x  

   #2army  guerrilla2 x  

12a  The specific inter-army killing rate, constant. The number of soldiers of 

army # 1 killed by a single soldier of army # 2 per unit time during combat 

engagement with army # 2 

21a  The specific inter-army killing rate, constant. The number of soldiers of 

army # 2 killed by a single soldier of army # 1 per unit time during combat 

engagement with army # 1 
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This model is excellent, but it has some shortcomings 

(i)     There are no terms for reinforcement of the armies. Thus the model depicts what 

can be characterized as ―fight to the death‖. 

(ii) There are no terms representing troop loss or death due to non-combat cases such as 

desertion, suicide or death to natural causes. 

(iii)   This model applies to battle field conditions such as two armies fight in a closed 

battle field with no re-enforcements coming to either side. The battle will then proceed 

until one army is annihilated or surrenders. It is possible for both armies to fight to the 

death.   

 Other examples of the use of mathematical models in military combat found in 

the literature include Mathematical modeling of the Battle of Agincourt, 1415 

[Eggenberger 2007], Kolmogorov’s equations of combat. In this example the 

mathematical model consist of a system of partial differential equations. 

 In this thesis mathematical models of military combat will be constructed which 

are modifications and improvements on the Lanchester model. The improved models will 

be in general applied to counter-insurgences as well.              
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1.2 Mathematical Interpretation of the Lanchester  

Guerrilla Model (LGM) 

In this section, some solutions of the LGM model will be presented. 

 

 

1.2.1   The Linear Law of Undirected Fire 

The Linear law of Undirected Fire describes firing that is simply directed into the general 

area where the enemy’s units of combat are located under the next characteristics: 

 Both forces are homogeneous and are continually engaged in combat 

 Each force is within the maximum range of all the opposing forces. 

 Each force is aware only of the general area of location of the enemy forces 

The next system of differential equations represents this model: 
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The battle outcomes for the model are: 

 0,01O        (Both armies fight to mutual annihilation) 

 22 ,0 nO    (Army # 1 is exterminated by army # 2) 

 0,11 nO      (Army # 2 is exterminated by army # 1) 

 

 

 



 

5 

1.2.2   Interpretations of the Law of Undirected Fire    

Now consider the LGM using a revised different approach: 
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Consider the following scenarios. 

Scenario # 1 

Suppose 12211020   and  aaxx   

In this case the battle may end in a stalemate as both armies fight to a standstill with both 

sides losing troops at the same rate.  Figure 1.1 shows the dependence between 1x and 2x  

for this scenario. 
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X1

X2

 

FIGURE 1.1   Graph of Scenario #1 

 

Scenario # 2 

 Suppose 21121020   and  aaxx  . Then 1

12

21

2 x
a

a
x  , 

But 21   and xx  are inversely related according to the model equations and definitions. 

Thus if 2112 aa  , then 1x decreases as 2x increases. 
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                                        FIGURE 1.2   Graph of Scenario #2 
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Scenario # 3 

Suppose 21121020   and  aaxx   

Then from 1

12

21
2 x

a

a
x  , it can be concluded that 2x will decrease due to a similar argument 

involving an increase in 1x , provided by a decrease in 12a . 
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FIGURE 1.3   Graph of Scenario #3 

 

Scenario # 4 

Suppose 01020  xxk  

Then 21  and xx are linked by the equation: 
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2.0   Simple Generalizations of the Lanchester Warfare 

In this chapter simple generalizations of Lanchester’s warfare models will be done. In 

addition, mathematical models depicting warfare between more than two armies will be 

constructed. These generalized models will be analyzed using dynamical systems theory 

and the principals of linearized stability, Hartman- Grobman theorem and Jacobian 

matrix analysis [Nani 2002].                          

 

 

2.0.1   M1 Model  

Definition of Parameters and Constants  

1x  :  The number (cardinality) at time t of soldiers of army #1 

:2x  The number (cardinality) at time t of soldiers of army #2 

12a  The specific inter-army killing rate constant. The number of soldiers of army # 1  

killed per unit time by a single soldier of  army # 2 during combat engagement with 

army # 2. 

21a  The specific inter-army killing rate constant. The number of soldiers of army # 2  

killed per unit time by a single soldier of army # 1 during combat engagement with 

army # 1. 

This model represents a closed battle field, i.e. a battlefield where no troop supplies are 

available for the fighting armies. The model is given by the next system of equations: 
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After finding the Equilibrium points of the systems, it can be conclude that the 

equilibrium points of the system are always located in the axes and are of the type: 

]0,0[1 E       (Both armies fight to mutual annihilation) 

]0,[ 12 kE      (Army # 2 is annihilated by army # 1) 

],0[ 23 kE      (Army # 1 is annihilated by army # 2) 

 

 

2.0.2   M2 Model  

Model two represents an open battlefield. In an open battlefield the fighting armies 

receive reinforcements during the conflict. Thus considering the supply of troops, the 

Lanchester model becomes:  

Definition of Parameters and Constants  

1x  :  The number (cardinality) at time t of soldiers of army # 1 

:2x  The number (cardinality) at time t of soldiers of army # 2 

:12a  The specific inter-army killing rate constant. The number of soldiers of army # 1  

killed per unit time by a single soldier of  army # 2 during combat engagement with                                                                              

army # 2. 
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21a  The specific inter-army killing rate constant. The number of soldiers of army # 2  

killed per unit time by a single soldier of army # 1 during combat engagement with 

army # 1. 

1S :   Rate of reinforcement of army # 1 at a time t. The rate of change of the number of  

          Soldiers of army # 1 sent per unit of time to the battle field as reinforcement. 

2S :   Rate of reinforcement of army # 2 at a time t. The rate of change of the number  

          soldiers of army # 2 sent per unit of time to the battle field as reinforcement. 
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where the next supplies conditions are not feasible: 

0  and  0 21  SS  

0  and  0 21  SS  

The only feasible solution for the rest point can be found when, 

0  and  0 21  SS . In this case the rest point will be an interior point ]ˆ,ˆ[ 21 xxE  . 
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2.0.3   M3 Model  

Model three is the more realistic representation of a battlefield. It takes into consideration 

key factors as desertion, death by epidemics and non-combat issues such as accidents and 

friendly fire. These factors play a decisive role in the outcome of combat and make the 

model more accurate and real. Thus, by considering the factors mentioned previously the 

Lanchester model now becomes: 
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where ia : defection death rate constant by epidemic, friendly fire and by noncombat 

issues of army # i, i= {1,2,3}. 

The constant k12 denotes the rate of decrease of army #1 due to events such as suicide 

bombing or land mines created by army # 2. Similarly the constant k21 denotes the rate of 

decrease of army # 2 due to suicide bombings or land mines created by army # 1. 

To find the equilibrium point or rest points of the system we solve the system for 01 x  

and 02 x . 

The system has at most three rest long term battle outcomes. To find them we proceed as 

follows: 

Let 01 x  in the first equation and second equations of the system. Then, 

0   and   0 2222121  xaSxkS
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Due to The reversing order of equations 1x can be obtained directly.  
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Thus, 
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The third equilibrium point  213 , XXE    exists if the following two surfaces: 
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Hence  213 X ,XE   depicts the interior equilibrium, with the following specifications 

showed in the table below, 
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                            TABLE 1.1   Long term battle outcomes 
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2.1 Generalized Combat Mathematical Models 

In this section the Lanchester model will be generalized to include more than two 

combating armies. The model also will apply to guerilla armies or insurgencies who are 

fighting an occupation by an elite army. In this case the battlefield is asymmetrical due to 

the non-conventional fighting techniques by one or more of the combating armies. 

Mathematical models of combat can be used to understand what factors can         

influence the outcome of the battle: some questions which might be asked include which 

side is the victor, how many survivors remain, how long does the battle take? 

    The two mathematical models used in the work make use of Lanchester [ ] but 

substantially improve the model by far when taking into consideration key factors that 

determine the outcome of combat. The models are the surge supply model and the 

logistic supply model. Both models take into consideration reinforcement of the army and  

gives a very representative picture of  real combat situations. The models are governed by 

three simultaneous ordinary differential equations (ODE.)  The equations include terms 

that represent reinforcement, troop loss due to inter army combat, troop loss due to non-

combat cases,  and troop loss due to recruitment from one army to another. By 

considering all those terms, the obtained model will become more realistic and precise.     
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Definition of Parameters 

The following is the notation that will be used to define the parameters of the ODE, 

1S :  Rate of reinforcement of army # 1 at a time t. The rate of change of the number of  

          soldiers of army # 1 sent per unit of time to the battle field as reinforcement. 

2S :  Rate of reinforcement of army # 2 at a time t. The rate of change of the number  

          soldiers of army # 2 sent per unit of time to the battle field as reinforcement. 

1x  :   Number (cardinality) of soldiers of invading army # 1 at time t. 

:2x   Number of resistance (insurgent) indigenous fighters at time t. 

3x  :  Number of fighters of the invading guerilla army opposed to both invading  

         army one and indigenous army two at time t. 

        Due to tribal affiliation some recruitment from army two to army three occurs. 

 

 

Specifications of Constants 

1a , 1b  :  Surge term constants which determine the peak and spread values of surge  

     respectively. 

jiK ,      :  Specific casualty death rate due to inter army combat, where I ,j   {1,2,3} 

ik         :  Specific death rate due to non-combat actions, where i   {1,2,3} 

jir ,        :  Recruitment rate of fighters from army i to army j 

The next diagram gives an illustration of the battle field scenario and the interaction of 

the fighting groups. 
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                                        FIGURE 2.1   Schemata of the Conflict 

 

The general form of the mathematical model describing the conflict is given by the next 

system of ODE: 
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2.2 Generalized Combat  Model  with Surge  Source 

In this section a generalized combat model with logistic source is discussed. In particular, 

the army #1 has a logistic reinforcement. The model equations are displayed as follows:  

Here, the surge function is given by: 

xb
exaSxf 1

111)(


  

1S :  Rate of reinforcement of army # 1 at a time t. The rate of change of the number of  

          soldiers of army # 1 sent per unit of time to the battle field as reinforcement. 

2S :  Rate of reinforcement of army # 2 at a time t. The rate of change of the number  

          soldiers of army # 2 sent per unit of time to the battle field as reinforcement. 

1x  :   Number (cardinality) of soldiers of invading army # 1 at time t. 

:2x   Number of resistance (insurgent) indigenous fighters at time t. 

3x  :  Number of fighters of the invading guerilla army opposed to both invading  

         army one and indigenous army two at time t. 

        Due to tribal affiliation some recruitment from army two to army three occurs. 

 

 

Specifications of Constants 

1a , 1b  :  Surge term constants which determine the peak and spread values of surge  

     respectively. 

jiK ,      :  Specific casualty death rate due to inter army combat, where i, j   {1,2,3} 
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ik         :  Specific death rate due to non-combat actions, where i   {1,2,3} 

jir ,        :  Recruitment rate of fighters from army i to army j 
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where 1a , 1b  are   the surge term constants which determine the peak and spread values 

of the surge respectively. 
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2.3  Generalized Combat Model with Logistic Source   

In this section a generalized combat model with logistic source will be discussed. In this 

case the logistic function is represented by the expression: 

11111 )()( xxbaSxf     

1S :  Rate of reinforcement of army # 1 at a time t. The rate of change of the number of  

          soldiers of army # 1 sent per unit of time to the battle field as reinforcement. 

2S :  Rate of reinforcement of army # 2 at a time t. The rate of change of the number  

          soldiers of army # 2 sent per unit of time to the battle field as reinforcement. 

1x  :   Number (cardinality) of soldiers of invading army # 1 at time t. 

:2x   Number of resistance (insurgent) indigenous fighters at time t. 

3x  :  Number of fighters of the invading guerilla army opposed to both invading  

         army one and indigenous army two at time t. 

        Due to tribal affiliation some recruitment from army two to army three occurs. 

 

 

 

Specifications of Constants 

1a , 1b  :  Surge term constants which determine the peak and spread values of surge  

     respectively. 

jiK ,      :  Specific casualty death rate due to inter army combat, where i, j   {1,2,3} 
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ik         :  Specific death rate due to non-combat actions, where i   {1, 2, 3} 

jir ,        :  Recruitment rate of fighters from army i to army j 

 

Model Equations  

The model equations are presented as follows. In particular, these equations have been 

constructed and analyzed under slightly different conditions before. [Nani 2002]. 
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3.0   The Analysis of Rest Points  

In this chapter the generalized models will be analyzed. In particular the rest points or the 

equilibrium points or fixed points will be computed. Initially the definition and 

discussion of the terms rest point, hyperbolicity, linearization will be done. 

Let   Tn

n xxRxxFx ,...,    where)( 1  be a system of ordinary differential equations. 

We call x a rest point of the system if 0)( 0  xFx  

To compute the rest point of the system, we set 0)(  xFx and solve for all possible 

values which make this possible. 

An equilibrium point of a dynamical system generated by a system of ODE is a solution 

that does not change with time. 

 

 

3.0.1   Definition   Hyperbolicity of Rest Points 

 

 parts. real nonzero haveMatrix Jacobian   theof eseigen valu

 theall isThat  axis.imaginary  on the eseigen valu no has  )]([Matrix Jacobian  The  ) ii (

  and  },..,1{each for   0)(   ) i (

:if  hyperbolic is point rest  The

  onceleast at  and  continuosfor  stands     where},,...,1{    ),(

,...,    where)(Consider  

0

00

0

1

xDF

RxnixF

Rx

abledifferentiCniRRCF

xxRxxFx

n

n

n

i

T

n

n









 

 



 

22 

3.0.2   The Jacobian Matrix (of linearization) 

Consider the nonlinear system 
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3.0.3 Hartman and Grobman Theorem 

Consider the nonlinear system: 












ctx

xFx

)(

)(

0


     (1) 

Let ),(1 nn RRCf   be a diffeomorphism. Assume 
nRx 0  is a hyperbolic rest point of 

F, such that: 

)(xFx      (1) 

Let   be the local flow generated by the non-linear system (1) 

Let )()( 0 RMxDFA nn  

Then, there exists neighborhoods U and V, and a homeomorphism VUhh : , , such that  

))(())(,( 00 xxexhxht iA   

whenever 

Uxxexx iA  )(, 00   and  Vxxexhxh iA  ))(( ),( 00  

In particular in a small neighborhood of 0x , the flow generated by the NLS of ODE is 

qualitatively similar or isochronally flow equivalent to the flow generated by the 

linearized system, where  n1,2,...,i ),( and ,, '  RRCFRcRx nnn
, and the LS: 

 












ct

xDF

)(

)(

0

0




   (2) 

with   )()( and ,)( 00 RMxDFRxx nn

n

  

Suppose 0x  is a hyperbolic rest point. 
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Then the flow generated by the NLS (1) is 0C conjugate to the flow generated by the LS 

(2) in the neighborhood of the hyperbolic rest point 
nRx 0  [Amann, 1990]. 

 

 

 

3.0.4    Linearized Stability for Hyperbolic Equilibria 
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Thus (2)     A  in the neighborhood of 0x . 

 

In particular (2) is a linearization of (1) 
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3.0.5    Principles of Linearized Stability 

If 
nRx 0  is a hyperbolic rest point of )(xFx  …(1),  then 0x  is either unstable or 

asymptotically stable.  

In the following sub sections, the basic principles of linearized stability will be discussed 

in terms of propositions, theorems and conjectures [Amman 1990]. 

 

Proposition 3.0.5.1    Asymptotic Stability                                                   

If 0x  is a rest point of )(xFx    (1) and all the eigenvalues of )(: 0xDFA   have  

negative real part, then 0x  is locally asymptotically stable and,        

0 ,    xexe ttA  

  where   is the Hilbert norm on .nR  In particular, the origin of the linearized system is 

a sink. 

 

Proposition 3.0.5.2   Instability  

If 0x  is a hyperbolic rest point of )(xFx  …(1)   and all the eigenvalues of )(: 0xDFA   

have positive  real parts, then 0x  is unstable and xexe ttA   , where 

. ,0 ,0 nRxt   In particular, the origin of the linearized system is a source. 

Also If 0x  is a hyperbolic rest point of )(xFx  …(1)   and at least one of the eigenvalues 

has  positive real part and at least one has negative real part,  then 0x  is unstable.      

Hence a hyperbolic rest point is unstable if at least one eigenvalue of the Jacobian Matrix 
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has positive real part. 

 

3.0.6   Classification of Hyperbolic Rest Points.     

From the previous propositions it can be concluded that the stability of equilibrium of a 

hyperbolic rest point is determined by the sign of the real parts of the eigenvalues of the 

Jacobian matrix. Depending on the signs of the real part of eigenvalues, a hyperbolic rest 

point can be classified into sinks, sources and hyperbolic saddles [Alligood et al. 1996]. 

Let 
nRx 0 be the rest point of the ODE: 

nn RRxFx    ),( , 

Thus, 0)( 0 xF  

Let the eigen-spectrum corresponding to the linearization of the ODE around 0x be 

defined as: 

   },...,2,1{0)(det|)( 00 kixDFIx i    

Then 

(i)   The rest point x0 is called a hyperbolic sink or an attractor if ii  0Re   

       In particular a sink is locally asymptotically stable. 

(ii)  The rest point x0 is called a hyperbolic source or a repellor  if ii  0Re   

       In particular a sink is unstable. 

(iii)  The rest point x0 is called a hyperbolic saddle if  sux  )( 0  

where u  is the unstable manifold consisting of eigenvalues  with positive real     

parts ,    and u         is the stable manifold 
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Theorem   3.0.6a 

If a hyperbolic rest point is a sink, then it is stable. 

Proof: 

Let   )(xFx   be an ODE and suppose that 0x  is a rest point of the system, such that 0x  

is a sink. Then by definition of sink all eigenvalues of the Jacobian Matrix have negative 

real parts. Hence by definitions in 3.0.6, 0x  is locally asymptotically stable.   

 

Theorem   3.0.6b 

If a hyperbolic rest point is a source, then it is unstable. 

Proof: 

Again, let   )(xFx   be an ODE and suppose that 0x  is a rest point of the system, such 

that 0x  is a source. Then by definition of source all eigenvalues of the Jacobian Matrix 

have positive real parts. Hence by definitions in 3.0.6, 0x  is unstable. 

 

Theorem   3.0.6c 

If a hyperbolic rest point is a saddle, then it is unstable. 

Proof: 

Once more time, let   )(xFx   be an ODE and suppose that 0x  is a rest point of the 

system, such that 0x  is a saddle. Then by definition of saddle at least one eigenvalue of 

the Jacobian Matrix has positive real part and at least one eigenvalue of the Jacobian 

Matrix has negative real part. Hence definitions in 3.0.6, 0x  is unstable. 
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4.0   ANALYSIS OF MODELS 

In this section we proceed to study in detail the surge supply model and the logistic 

source model. Both models are analyzed in detail in 2R . Later on in the next chapter the 

models will be analyzed in 3R . 

 

 

 

4.1   The Surge Model  

The equations of the surge model have been independently constructed and analyzed 

under a different setting using simulation techniques by Professor Nani, [Nani 2002]. 

The surge model represents the mathematical model of military combat. in which the 

following features  are incorporated: 

[i]     The surge supply rate is defined by the surge function: 

         
bxaxexfS  )(  

[ii]   There are three combating armies: army #1, army #2 and army #3 

[iii]  The army #1 is an expeditionary force invading a domain D where two  

       two insurgent armies  (army #2 and army #3) reside 

[iv]  In particular army #1 fights army #2 and army #3 in a three –way- fight 

[v]    Army #2 consists of the indigenous people, but the insurgent army #3 is recruited  

        from army #2. 

[vi]   Army #1 also recruits from army #2 
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An illustration of the combat scenario between the three armies is shown in figure 1.1 

 

 

The surge model equations are: 
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4.1.2   Nonnegativity, Dissipativity 

In this subsection the non negativity and dissipativity of the system is analyzed. The 

analysis is done for the planes x1-x2 , x2-x3, x1-x3 . 

 

 

4.1.2.1   Analysis of the model in the x1 – x2  Plane   
  

In the plane x1-x2, the S 1.1a reduces to the following: 
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This implies that any solution which originates in the positive octant  
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4.1.2.2   Analysis of the model in the x1 – x3  Plane 
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This implies that any solution which originates in the positive octant 
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This implies that any solution which originates in the positive octant 

  3,2  0|  ixxR ii

n
will remain non-negative and is ultimately bounded. 
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In particular the system is dissipative such that, 

Mtxi )( sup lim , where 













3232

223

222

212232

3020 , ,,max
kAk

Ar

kb

rkra
xxM . 

 

 

4.1.3   Analysis of the Rest Points 

In this subsection the rest points of the model will be calculated, analyzed and militarily 

interpreted. The analysis is done for the planes x1-x2 , x2-x3,  and x1-x3 . 

 

4.1.3.1   Rest Point Analysis in the x1 – x2  Plane 

The rest points are computed by setting 2,1for   0)(  itxi
 . Thus the surge model   

equations reduce to: 
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4.1.3.2 The Jacobian Matrix of Linearization in the x1 – x2 Plane 
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Hence the eigenvalues are: 

2122322111   and  rkraka     

Similarly, 
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Thus the eigenvalues are: 

212232

1

1

1
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3

1

1

112 ln   and   ln rkra
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b
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a

k
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Theorem 4.1.3a 

In the x1-x2 plane the system S.1.1a - S.1.1b is such that the rest point  0,01 E  is a 

hyperbolic sink and hence an attractor if: 

0a  and  0 21223211  rkrka . 

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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Theorem 4.1.3b 

In the x1-x2 pane the system S.1.1a-S.1.1b is such that the rest point  0,01 E  is a source 

and hence a reppeler if: 

0a  and  0 21223211  rkrka . 

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Theorem  4.1.3c 

In the x1-x2 pane the system S.1.1a-S.1.1b is such that the rest point  0,01 E  is a 

hyperbolic saddle if: 

0a  and  0 21223211  rkrka  

               or 

0a and  0 21223211  rkrka . 

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Comments: 

By Proposition 3.0.5.1, in the x1 – x2   plane the rest point  0,02 E  is locally 

asymptotically stable if: 

0a and  ,0 21223211  rkrka . 
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Hence, we can conclude that army #1 should not operate the war under the next 

configuration: 

21223211   and  rkraka  . 

Under this configuration mutual annihilation will occur. 

 

Theorem  4.1.3d 

In the x1-x2 pane the system S.1.1a-S.1.1b is such that the rest point 
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
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is a hyperbolic sink and hence an attractor if: 

  and  011  ak 0ln 212232
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Theorem  4.1.3e 

In the x1-x2 pane the system S.1.1a-S.1.1b is such that the rest point 
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
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is a source and hence a repeller if: 

  and  011  ak 0ln 212232
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Theorem  4.1.3f 

In the x1-x2 pane the system S.1.1aS.1.1b is such that the rest point 



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a hyperbolic saddle if: 
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  and  011  ak 0ln 212232
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        or 
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Comment: 

By Proposition 3.0.5.1, in the x1 – x2   plane the rest point 
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
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asymptotically stable if: 
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From the stability conditions of the rest point 
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E , we can conclude that 

the army should operate the war under the next configuration: 

  and  011  ak 0ln 212232
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21 





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
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k
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k
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This configuration will lead to the victory of army #1 over army #2 

 

Military Conclusions 

The military meaning of    011  ak is that the defeat of army #2 by army #1 is 

conditioned to a higher supply rate of army one than its non-combat death rate. In the 

practice this implies an increasing of the troop supply rate, which will overextend the 
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army capacity. To avoid this army # 1 should focus more in the quality of its soldiers 

rather than its quantity. The greatest Chinese Sun Tzu strategist agrees with this point 

[Sun Tzu (1910) 2003]. 

 

4.1.3.3   Analysis of the model in the x1 – x3  Plane 
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4.1.3.4   The Jacobian Matrix of Linearization in the x1 - x3 Plane 
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Theorem  4.1.3g 

In the x1-x3 pane the system S.1.1a-S.1.1b is such that the rest point  0,01 E  is a sink 

and hence an attractor if: 
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  .011  ka  

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Theorem  4.1.3h 

In the x1-x3 plane the system S.1.1a-S.1.1b is such that the rest point  0,01 E  is a 

hyperbolic saddle if: 

  .011  ka  

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

Comment: 

By Proposition 3.0.5.1 in the x1 – x3   plane the rest point  0,02 E  is locally 

asymptotically stable if: 

011  ka . 

Hence, we can conclude that army #1 should not operate the war under the next 

configuration: 

  .11 ka   

Under this configuration mutual annihilation will occur. 
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Theorem  4.1.3i 
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Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Theorem  4.1.3j 
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Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Theorem  4.1.3k 

In the x1-x3 pane the system S.1.1a-S.1.1b is such that the rest point 
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is a hyperbolic saddle  if: 
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Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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This configuration will lead to the victory of army #1 over army #3. 
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Military Conclusions: 

The military interpretation  of  11 ka   is that for army one to defeat army #3, the supply 

rate of army #1 needs to be higher than its non-combat death rate. This implies increasing 

the number of troops faster than normally. 
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4.2   Logistic Model 

In this section we proceed to study in detail the logistic source model. The logistic model 

represents the mathematical model of military combat in which the following features  

are incorporated: 

[i]   The logistic supply rate is defined by the logistic function: 

        2)( bxaxxfS   

[ii]   There are three combating armies: army #1, army #2 and army #3 

[iii]  The army #1 is an expeditionary force invading a domain D where two  

        two insurgent armies (army #2 and army #3) reside 

[iv]  In particular army #1 fights army #2 and army #3 in a three –way- fight 

[v]    Army #2 consists of the indigenous people, but the insurgent army #3 is recruited  

        from army #2 

[vi]  Army #1 also recruits from army #2 
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4.2.1   Nonnegativity, Dissipativity 

In this subsection the non negativity and dissipativity of the system is analyzed. The 

analysis is done for the planes x1-x2 , x2-x3, x1-x3 . 
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This implies that any solution which originates in the positive octant 

  2,1   0|  ixxR ii

n
will remain non-negative and is ultimately bounded.  

In particular the system is dissipative such that: 
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4.2.1.1   Analysis of the model in the x1 – x3  Plane 

In the plane x1-x3, the S 2.1a reduces to the following: 
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This implies that any solution which originates in the positive octant 
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4.2.1.1 Analysis of the Model in the x2 – x3  Plane  

In the plane x2-x3, the S 2.1a reduces to the following: 
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This implies that any solution which originates in the positive octant 

  2,1   0|  ixxR ii

n
will remain non-negative and is ultimately bounded. 

In particular the system is dissipative such that: 
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4.2.2   Analysis of the Rest Points 

In this subsection the rest points of the model will be calculated, analyzed and militarily 

interpreted. The analysis is done for the planes x1-x2, x1-x3, and  x2-x3. 

 

4.2.2.1   Rest Point Analysis in the x1 – x2  Plane 
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4.2.2.2   The Jacobian Matrix of Linearization in the x1 – x2 Plane 
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By Theorem 4.1.3a in the x–x2   plane the system S.2.1a - S.2.1b is such that the rest point 

   0,01 E is a sink hence an attractor  if: 

0  and  0 21223211  rkraka  

 

By Theorem 4.1.3b In the x1-x2 plane the system S.2.1a - S.2.1b is such that the rest point 
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 0,01 E  is a source and hence a repeller if: 

0a  and  0 21223211  rkrka . 

 

By theorem 4.1.3c in the x1-x2 plane the system S.2.1a - S.2.1b is such that the rest point 
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               or 
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Comment: 

From the stability conditions of the rest point ]0,0[1 E , we can conclude that the army 

should not operate the war under the next configuration: 
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Theorem 4.2.2b 
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4.2.2.3   Rest Point Analysis in the x1 – x3 Plane 
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4.2.2.4   The Jacobian Matrix of Linearization in the x1 – x3 Plane 

 























































3333131331

1131111313111

3

3

1

3

3

1

1

1

,

3

2

3333313313

1

2

11111311311111

2

22
          

      )(

31

xkkxkxk

xkxkkxkxba

x

F

x

F

x

F

x

F

J

Fxkxkxxkx

FxkxkxxKxxbax

xx





 

 



 

60 

 

3

111

11

314

111

11

111113

3

111

11

31

111

11

13

111

11

111

111

11

11

0,

3211

3

1

0,0

  and   )(2

0

22

Similarly,

 and   Hence

0

0
Then     

111

11

k
kb

ka
k

kb

ka
kbka

k
kb

ka
k

kb

ka
k

kb

ka
kk

kb

ka
ba

J

ka

k

a
J

kb

ka




















































































 

By theorem 4.1.3g in the x1-x3 pane the system S.2.1a-S.2.1b is such that the rest point 

 0,01 E  is a sink and hence an attractor if: 

  011  ka  

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

By theorem 4.1.3h in the x1-x3 plane the system S.21.1a-S.2.1b is such that the rest point 

 0,01 E  is a hyperbolic saddle if: 

  011  ka  

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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Comment: 

By Proposition 3.0.5.1, in the x1 – x3   plane the rest point  0,02 E  is locally 

asymptotically stable if: 

.011  ka  

Hence, we can conclude that army #1 should not operate the war under the next 

configuration: 

  .11 ka   

Under this configuration mutual annihilation will occur. 

 

 

Theorem 4.2.2d 

In the x1-x3 pane the system S.2.1a-S.2.1b is such that the rest point 











 0,

111

11
2

kb

ka
E  is a 

sink hence an attractor if: 

.0  and  0 )(2 3

111

11

31

111

11

11111 








 k

kb

ka
k

kb

ka
kbka  

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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Theorem 4.2.2e 

In the x1-x3 plane the system S.2.1a-S.2.1b is such that the rest point 











 0,

111

11
2

kb

ka
E  is 

a source hence a repeller if: 

0  and  0 )(2 3

111

11

31

111

11

11111 








 k

kb

ka
k

kb

ka
kbka . 

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Theorem 4.2.2f 

In the x1-x3 plane the system S.2.1a-S.2.1b is such that the rest point 











 0,

111

11
2

kb

ka
E  is 

a hyperbolic saddle if: 

0  and  0 )(2 3

111

11

31

111

11

11111 








 k

kb

ka
k

kb

ka
kbka  

         or 

0  and  0 )(2 3

111

11

31

111

11

11111 








 k

kb

ka
k

kb

ka
kbka . 

 

By proposition 3.4.1.1, in the x1 – x3   plane the rest point 











 0 ,

111

11

2
kb

ka
E  is locally 

asymptotically stable if: 
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3

111

11

31

111

11

11111   and   )(2 k
kb

ak
k

kb

ka
kbka 








 . 

By definition, in the x1 – x3   plane the rest point 











 0,

111

11
2

kb

ka
E  is a hyperbolic saddle 

if: 

.   and   )(2

or                                                 

  and   )(2

3

111

11

31

111

11

11111

3

111

11

31

111

11

11111

k
kb

ak
k

kb

ka
kbka

k
kb

ak
k

kb

ka
kbka





















 

 

Comment: 

From the stability conditions of the rest point 











 0,

111

11
2

kb

ka
E , we can conclude that the 

army should operate the war under the next configuration: 

3

111

11

31

111

11

1111111    and   )(2  , k
kb

ak
k

kb

ka
kbkaka 








 . 

This configuration will lead to the victory of army one over army two 

The army should not operate the war under any the configurations: 

3

111

11

31

111

11

11111   and   )(2 k
kb

ak
k

kb

ka
kbka 








  

                                                 or 

3

111

11

31

111

11

11111   and   )(2 k
kb

ak
k

kb

ka
kbka 








 . 
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                                                 or 

3

111

11

31

111

11

11111   and   )(2 k
kb

ak
k

kb

ka
kbka 








 . 

 

4.2.2.5   Rest Point Analysis in the x2 – x3 Plane 

system.  theofpoint rest  a is  ,0

                        

0)(     

0-

:(1)in   0
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  ]0,0[

(2)                                         0

(1)       0
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k
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4.2.2.5   The Jacobian Matrix of Linearization in the x2 – x3 Plane 

 













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
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 

34212

33

323

2323

3

33
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23

212

33

323

232

,0

322122321

323

212232

0,0

3   and    Hence

3

0

Similarly,

  and    Hence

0

Then,

33

3

krk
k
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ra

k
k
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r
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k
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J

krkra

kr

rkra
J

k

k
























































 

By proposition 3.0.5.1 the rest point   ]0,0[1 E is locally asymptotically stable if: 

212232 rkra   

By definition, the rest point   ]0,0[1 E is a hyperbolic saddle if: 

212232 rkra   
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Comment: 

Army two should not operate the war under the configuration: 

212232 rkra   

This configuration will lead to mutual annihilation of army two and three. 

By proposition 3.0.5.1 the rest point 









33

3
2 ,0

k

k
E  is locally asymptotically stable if: 

212

33

323

232 rk
k

kk
ra   

By definition 3.4.2.3 the rest point 









33

3

2 ,0
k

k
E  is a hyperbolic saddle if: 

212

33

323

232 rk
k

kk
ra   

 

Comment: 

By the stability conditions of the rest point 









33

3

2 ,0
k

k
E , we can conclude that army 

three should operate the war under the next configuration: 

212

33

323
232 rk

k

kk
ra   

Under this configuration army three will defeat army two. 
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f4.3   Analysis of the Rest Points for the General System 

 
This section presents an analysis of the general model with participation of thee armies in 

the conflict. This scenario is more realistic and illustrative than the other models. It gives 

a realistic and detailed perspective of multi armies-conflict. The model can be expanded 

to a broader number of armies if needed.  

 
 

4.3.1   Analysis of the Surge Model 

Consider the use of the surge source. Then the system is the form: 

4.3.1b        

4.3.1a        





































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101

2

33333233213312233

221

2

222223223223122122222

221

2

1111131132112111

)0(

)0(
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)(

11

xtx

xtx

xtx

xkxkxxkxxkxrx

xrxkxkxxkxrxxkxxbax

xrxkxkxxkxxkexax
xb







                                     

 

Theorem 4.3.1a 

The rest points of the system 4.3.1a — 4.3.1b are given by: 

]0 0, , 0[1 E  and 


















 0  0, , ln

1

1

1

1

2
k

a

b
E . 
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Proof: 

]0 0, , 0[1 E  is clearly a rest point of the system 

 

0 xand  0 21 x  in the first and second equation of 4.3.1a 

 

                      

-               

0)(  

0

33

3

3
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33333

2

33333
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k
x

kxk

xkkx

xkxk


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









33

3

2
k

k
 0, ,0E  is a non-attainable rest point 

 

0 xand  0 32 x  in the second  and third equation: 
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
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b
E , where 11 ka  . 
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Theorem 4.3.1b 

Suppose there is no recruitment of combatants  from army # 2 to army #1, that is 021 r , 

then the rest point  324
ˆ  ,  ,0 xxE


   is possible iff 32

ˆ  , xx


 solve the system: 

22333

2

3232

2

3232333 4)()2( xrkkxkkxkxk


                  (i) 

23223232222 )( rkaxkxkb 


      (ii) 

 

Proof: 

Let 021 r as stated in the theorem. Then, 

   
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2
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2

333

2

333332332223

2

2222232232232222
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0)(
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0)(
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From the second equation of 4.3.1a: 

 

 

222

3232322

2

23223232222

232232322222

)(

0)()(

bk

xkrka
x

rkaxkxbk

rkaxkxbkx










 

 

 

 



 

70 

Comment 

If this rest point exists then the army # 1 is defeated by the combine mutual fighting with 

army # 2 and army # 3. In particular the combined forces of army # 2 and army # 3 will 

totally obliterate army # 1. 

To avoid this situation army # 1 will have to engage in the mutual conflict such that the 

following conditions are NOT satisfied: 

22333

2

2223

2

2223333 4)()2( xrkkxkkxkxk


  

2322323222 rkaxkxk 


. 

 

4.3.1.1 The Jacobian Matrix of Linearization  
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Hence, 

 

1 11 ka  ,  2122322 rkra  ,  03  . 
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Similarly, 
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Thus, 
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Theorem 4.3.1c 

The rest point ]0 0, , 0[1 E  of the system is a sink hence it is an attractor if: 

011  ka   and 0212232  rkra  

 

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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Military Tactic Interpretation  4.3.1a 

 ―The armies will fight to Mutual Assured Destruction‖ or mutual annihilation if : 

11 ka   and 212232 rkra  . 

 To avoid the above scenario, the expeditionary army #1 has to change at least one 

of the above criteria. In particular, the army #1 must effect a surge such that  

11 ka  . 

 Thus the surge sustenance rate constant  1a  must be greater than the rate constant 

1k for non-combat loss of troops. 

 Another possibility is to minimize troop loss due to non-combat. 

 The constant 1k  can be minimized by giving incentive to the army #1, to avoid 

desertion or protect them from non-combat accidental deaths, or counsel them 

from suicide. Also It is possible to reduce the number of tours to prevent fatigue- 

related accidental death or desertion. 

 

Theorem 4.3.1d 

The rest point ]0 0, , 0[1 E  of the system is a source hence it is a repeller if: 

011  ka   and 0212232  rkra . 

Proof 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 



 

73 

Theorem 4.3.1e 

The rest point ]0 0, , 0[1 E  of the system is a hyperbolic saddle if: 

011  ka   and 0212232  rkra  

              or 

011  ka   and 0212232  rkra . 

Proof 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Comments: 

From the stability conditions of the rest point ]0 0, , 0[1 E , it can be concluded that the 

army should not operate the war under the following configuration of parameters: 

: 011  ka   and 0212232  rkra . 

 

Theorem 4.3.1f 
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Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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Military Tactic Interpretation 4.3.1f 

 If the above criterion holds then army #1 is victorious whereas the other armies 

are decimated. 

 Thus the mathematical criteria 11 ak  ,  0)(ln 21223

1

1

1

21

2 

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
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a , 

and  0ln 3

1

1

1

31 







k

a

k

b

k
 must be maintained through the entire duration of the 

conflict. 

 Any violation of the above criteria will change the victorious outcome. 

 The basic strategy requirement is to ensure that the search has a higher rate of 

supply. Also that rate constant 1a  is greater than 1k . 

 

Theorem 4.3.1g 
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















 0  0, , ln

1

1

1

1

2
a

k

b
E  of the system is a source hence it is a repeller if: 
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That is if: 
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
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Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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Comments 

 If army # 1 wants to be victorious then it must mobilize its logistics such that the 

above criteria do not hold. 

 In particular army # 2 and army # 3 will avoid annihilation if the above criteria 

hold. 

 

Theorem 4.3.1h 

The rest point 



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
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   is positive and at least one is negative. 

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Comments 

 

If the rest point is a hyperbolic saddle under the above criteria, then the battle outcomes 

are neither favorable to either of the armies. 
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4.3.2   The Logistic Model 

Consider the use of the logistic source in army #1. Then the system is the form: 

4.3.2b        
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Theorem 4.3.2a 

The rest points of the system 4.3.1a — 4.3.1b are given by: 
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Proof: 

]0 0, , 0[1 E  is clearly a rest point of the system 

 

0 xand  0 21 x  in the first and second equation of 4.3.1a 
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0 xand  0 32 x  in the second  and third equation: 
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Theorem 4.3.2.b 

Suppose there is no recruitment of combatants  from army # 2 to army #1, that is 021 r , 

then the rest point  324
ˆ  ,  ,0 xxE


   is possible iff 32

ˆ  , xx


 solve the system: 
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Proof: 

 

The proof follows directly from theorem 4.3.1b 

 

4.3.2.1   The Jacobian Matrix of Linearization  
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Hence, the eigen-spectrum for ]0 0, , 0[1 E  is: 
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Thus the eigen-spectrum of 
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Theorem 4.3.2c 

The rest point ]0 0, , 0[1 E  of the system is a sink hence it is an attractor if: 

011  k   and .0212232  rkr  

Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 
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Military Tactic Interpretation  4.3.2c 

 ―The armies will fight to Mutual Assured Destruction‖ or mutual annihilation if : 

1

1

1


k
C   and 212232 rkr   , where 

1

1

1



C  

In particular C1 is the logistic maximum for army # 1. 

This outcome is analogous to the one observed  if the surge rate function is the 

input function for army # 1, but the rate constants have different interpretations. 

 It should be noted that the armies may not have to fight to the bitter end of zero-

end result, because one of the armies may capitulate before that occur. 

 To avoid the above scenario, the expeditionary army #1 has to change at least one 

of the above criteria. In particular, the army #1 must effect a surge such that:  

11 k . 

 Thus the logistic rate constant 1 must be greater than the rate constant 1k for non-

combat loss of troops. 

 Another possibility is to minimize troop loss due to non-combat. 

The constant 1k  can be minimized by giving incentive to the army #1, to avoid 

desertion or protect them from non-combat accidental deaths, or counsel them 

from suicide. Also it is possible to reduce the number of tours to prevent fatigue- 

related accidental death or desertion. 
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Theorem 4.3.2d 

The rest point ]0 0, , 0[1 E  of the system is a source hence it is a repeller if: 

011  k   and .0212232  rkr  

Proof 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Comments 

The commanders of the three armies obviously will choose battle field conditions such 

that the above criteria will hold. In particular if each commander would like to destroy 

the other two armies in order to survive, then this will lead to the rest point being 

hyperbolic sink with the criteria as stated in theorem 4.3.2a. 

 On the other hand, if all the three armies fight with caution then this rest point will 

remain a source. 

It should be noted that the initial troop build-up at the start of the combat determines the 

relative rate at which each army approaches extermination.  

 

Theorem 4.3.2e 

The rest point ]0 0, , 0[1 E  of the system is a hyperbolic saddle if: 

011  k   and 0212232  rkr  

              or 

011  k   and .0212232  rkr  
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Proof 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Theorem 4.3.2f 
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Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Comments 
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
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 is different from the rest point  ]0 0, , 0[1 E   

and if 11 k . 

 

A necessary but not sufficient condition for the existence of this rest point is that  

11 k . 
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Military Tactic Interpretation 4.3.2f 

 If the above criterion holds then army #1 is victorious whereas the other armies 

are decimated. 

Thus The mathematical criteria: 

11 k  , 21223
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212 rkr
k

k
ka 
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
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


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31 k
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k
k 








 

 must be maintained through the entire duration of the conflict. 

 Any violation of the above criteria will change the victorious outcome. The battle 

of Aspern gives a good illustration of this failure [Eggenberger 2007]. 

 

Theorem 4.3.2g 
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Proof: 

The proof follows directly from the theorem of linearized stability and the stability 

propositions. 

 

Military Tactic Interpretation  4.3.2g 

If the army # 1 wants to win the conflict, then it has to avoid fighting the battles under the 

above criteria, which evidently will let victory literally escape from its hands. 
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Theorem 4.3.2h 

The rest point ]ˆ,ˆ,ˆ[ 321 xxxE exists if the system shows persistence such that, 

3 ,2 ,10)(inflim  itx iii
  

Proof: 

The proof follows directly from the definition of persistence and the use of the Butler-Mc 

GeHee Lemma [Nani 1998]. 

Comments: 

In this situation the long term outcome of the conflict leads to co-existence. 

In particular none of the armies can defeat the other conclusively. 
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5.0   SUMMARY, DISCUSSION, CONCLUSIONS 

                            FUTURE WORK 

In this thesis elaborate mathematical models were constructed to depict various scenarios 

of military combat. The advantage of mathematical models is that, it enables the battle 

field commanders to have insight of their tactical maneuvers. 

Mathematical model serves as another weapon in the arsenal of the armies. 

In fighting insurgencies there are a lot of frustrations which results from not using the 

right strategy from the onset of the counterinsurgencies. One of the critical variables 

involved is: 

[i] Initial troop buildup the initial troop buildup  

[ii]The rotation of troops and the supply rate of reinforcements   

[iii]The supply rate of troops. 

[iv]The timing of the surge in troop numbers 

[v]The knowledge of the possible mathematical outcomes of the conflict   
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5.1  Summary , Discussions, Conclusions of the  

Generalized Lanchester Models 

The Lanchester’s linear law (Un-directed Fired Model) has the form: 
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where    1 #army  guerrilla1 x  

   #2army  guerrilla2 x  

  12a  The specific inter-army killing rate constant. The number of army # 1  

                       killed per unit time during guerrilla combat engagement with army # 2. 

             21a  The specific inter-army killing rate constant. The number of army # 2  

                       killed per unit time during guerrilla combat engagement with army # 1. 

The outcomes of this model are: 

 













212

21

1    ,0
ak

SS
E  

where 21212   and  SSak     













 0  ,

121

12

2
ak

SS
E  

where 12121   and  SSak     
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The third equilibrium point  213 , XXE    exists if the following two surfaces: 

12122212122

21211211211

    :

    :

xkxaxxaS

xkxaxxaS




 

 intersect at the point  21 , XX   

 213 X ,XE   depicts the interior equilibrium point, with the specifications given in 

Table 1.1. 
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5.2   Summary, Discussions, Conclusions of the 

Generalized Surge Model 

The generalized surge model has the form: 

4.3.1b        

4.3.1a        
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In particular the rest points are: 

]0 0, , 0[1 E  




















 0  0, , ln

1

1

1

1

2
a

k

b
E  
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Military Tactic Interpretation on ]0 0, , 0[1 E     

―The armies will fight to Mutual Assured Destruction‖ or mutual annihilation if : 

11 ka   and .212232 rkra   

 To avoid the above scenario, the expeditionary army #1 has to change at least one 

of the above criteria. In particular, the army #1 must effect a surge such that  

11 ka  . 

 Also  the surge sustenance rate constant  1a  must be greater than the rate constant 

1k for non-combat loss of troops. 

 Another possibility is to minimize troop loss due to non-combat. 

 The constant 1k  can be minimized by giving incentive to the army #1, to avoid 

desertion or protect them from non-combat accidental deaths, or counsel them 

from suicide. Also It is possible to reduce the number of tours to prevent fatigue- 

related accidental death or desertion. Another similar approach to reduce 

casualties is through defensive tactics [Clausewitz (1942) 2003]. 
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Military Tactic Interpretation on 
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 If the above criterion holds then army #1 is victorious whereas the other armies 

are decimated. 

 Thus the mathematical criteria 11 ak  ,  0)(ln 223
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 must be maintained through the entire duration of the 

conflict. 

 Any violation of the above criteria will change the victorious outcome. 

 The basic strategy requirement is to ensure that the search has a higher rate of 

supply. Also that rate constant 1a  is greater than 1k . 

 

 

 

 

 



 

90 

5.3   Summary, Discussions, Conclusions of the 

Generalized Logistic Model 

The generalized logistic model has the form: 
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In particular the rest points are: 
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Military Tactic Interpretation on ]0 0, , 0[1 E    

―The armies will fight to Mutual Assured Destruction‖ or mutual annihilation if : 

1
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1


k
C   and 212232 rkr   , where .

1

1

1



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In particular C1 is the logistic maximum for army # 1. 

This outcome is analogous to the one observed  if the surge rate function is the input 

function for army # 1; but the rate constants have different interpretations. 
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 It should be noted that the armies may not have to fight to the bitter end of zero-

end result, because one of the armies may capitulate before that occur 

 To avoid the above scenario, the expeditionary army #1 has to change at least one 

of the above criteria. In particular, the army #1 must effect a surge such that  

11 k . 

 Thus the logistic rate constant 1 must be greater than the rate constant 1k for non-

combat loss of troops. 

 Another possibility is to minimize troop loss due to non-combat. 

The constant 1k  can be minimized by giving incentive to the army #1, to avoid 

desertion or protect them from non-combat accidental deaths, or counsel them 

from suicide. Also it is possible to reduce the number of tours to prevent fatigue- 

related accidental death or desertion. 
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Military Tactic Interpretation on 
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 is different from the rest point  ]0 0, , 0[1 E  If: 

11 k . 

Also 11 k  is a necessary but not sufficient condition for the existence of this rest point  

 If the above criterion holds then army #1 is victorious whereas the other armies 

are decimated. 

Thus the mathematical criteria: 
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 must be maintained through the entire duration of the conflict. 

 Any violation of the above criteria will change the victorious outcome. 
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5.4  Future Research 

Due to the fact that surge never occurs at the beginning of the war, the mathematical 

model to be used is the time delay model. 
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where 1  denoted the time at which the surge starts. 
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Hence for 1 t , we have: 
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