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Executive Summary: Autonomous vehicles, shared vehicles, and autonomous shuttles will be disruptive 

technologies that within 30 to 40 years would change the way people choose their travel mode. In this 

paper, A multinomial logit model was generated as a baseline to evaluate the impact of such 

technologies on different travel modes' characteristics such as travel time, travel cost, waiting time and 

availability. Autonomous vehicles used as private vehicles have the highest impact on the mode choice 

behaviour 

 

1 Introduction 

Understanding how people choose the mode of transportation has been a task for transport researchers since the 

invention of the public transport and each time new technologies were emerging over the years, from faster and more 

efficient cars to magnetic trains, and electric vehicles. Nowadays, in a high-tech era, different disruptive technologies 

could have and effect on the transportation industry.  

Technologies such as the internet of things and 5G would indirectly affect the travel mode choice by allowing the 

full development of connected autonomous vehicles (Datta et al., 2016; Shah et al., 2018) or by allowing real-time 

information by analysing big data with machine learning algorithms (Alsharif et al., 2020).  On the other hand, 

providing real-time information to passengers affects the travel mode choice, since people may use this information 

to plan their trips minimising in this way their waiting time (Dziekan & Kottenhoff, 2007; Ingvardson et al., 2018). 

Besides, in this digitalisation era, Transport Network Companies or best known as (TNCs) are continuously winning 

more market share in the taxi service, by offering a more convenient, door-to-door and dynamically-priced service 

(Schwieterman, 2019). However, the on-demand taxi service provided by TNCs is replacing the traditional taxi 

providers; nevertheless, taxi-sharing or ride-hailing services such as Uber Pool is becoming popular among young, 

well-educated and higher-income people. Taxi-sharing provides a much cheaper option than traditional taxi services, 

but with a higher travel time and a longer travelled distance (Danaf et al., 2014; Mohammadzadeh, 2020; Shen et al., 

2020) 

The most disruptive technology in the transport industry will be autonomous vehicles (AVs), which are called to 

change the way we choose our mode of transportation (Fagnant & Kockelman, 2015; Morrow et al., 2014; Truong 

et al., 2017).  According to the Society of Automotive Engineers (SAE, 2018) there are six levels of automation from 

0, representing zero autonomy, which is the current state of most of the vehicles, to five, representing full automation, 

where the vehicle performs all driving-related activities. For this paper, full automation level is assumed when 

evaluating its impact on travel mode choice. 

 

This new technology can be used for different modes of transportation, including AVs for private usage, shared 

autonomous vehicles replacing a taxi-sharing or as autonomous shuttles used as micro-transit services (Childress et 
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al., 2015; Krueger et al., 2016; Litman, 2020). AVs will potentially increase travel demand by reducing traffic 

congestion, accident risks, emissions and reducing parking costs(Heinrichs & Cyganski, 2015). 

In this paper, changes in the mode choice behaviour are evaluated for the three uses of AVs, as a private automated 

vehicle, as a share automated vehicle, and as an autonomous shuttle. This is made by first establishing a baseline 

travel mode discrete choice model  to later change the variables that AVs would impact and evaluate the changes in 

travel mode share. 

 

2 Methodology 

2.1 Base Model 

The impact of the new technologies was evaluated using a discrete choice model as a baseline. Several authors have 

proposed a number of behavioural models, including the Probit, Multinomial Logit (MNL), Nested Logit, Mixed 

Logit, among others (M. Ben-Akiva & Bierlaire, 1999; M. E. Ben-Akiva & Lerman, 1985; Train, 2009). For this 

paper, the Multinomial Logit approach has been chosen since it is one of the most trackable and widespread models 

among researchers. 

2.1.1 Theoretical background 

Multinomial logit models are based on the random utility maximisation theory, which assumes that the decision-

maker behave as a "Homo Economicus" who will choose the alternative that provides him with the maximum benefit 

(Koppelman & Bhat, 2006). The utility function is defined by (1): 

 

 𝑈𝑖𝑛 = 𝑉𝑖𝑛 + 𝜀𝑖𝑛 (1) 

where, 𝑈𝑖𝑛  is the true perceived utility of the alternative 𝑖 to the individual  𝑛  

            𝑉𝑖𝑛  is the deterministic utility estimated of the alternative 𝑖 to the individual 𝑛 

            𝜀𝑖𝑛  is the random error term due to unobserved utility 

And, 

 

 𝑉𝑖𝑛 = 𝐴𝑆𝐶 +  𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 (2) 

Where, 𝐴𝑆𝐶  is the Alternative Specific Constant 

 𝛽𝑘  is the parameter estimated to the explanatory variable 𝑋𝑘 

The random error terms are assumed independently and identically distributed (i.i.d) following a Gumbel distribution. 

Therefore the probability that a decision-maker 𝑛 chooses the alternative 𝑖 is defined by: 

 𝑃𝑖𝑛 =
𝑒𝑉𝑖𝑛

∑ 𝑒𝑉𝑛𝑗
𝑗

 (3) 

Maximum Likelihood Estimation (MLE) is used to estimate the parameters of the model 𝐵𝑘, where the likelihood of 

an individual 𝑛 choosing the alternative 𝑖 that he actually chooses is defined by: 

 𝐿 = ∏(𝑃𝑖𝑛)𝑦𝑖𝑛

𝑖

 (4) 

Where, 𝑦𝑖𝑛 represents if individual 𝑛 chose alternative 𝑖, if yes 𝑦𝑖𝑛 = 1 and zero otherwise. Therefore, the likelihood 

of every single individual choosing the alternative that has been observed is: 
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 𝐿(𝛽) = ∏ ∏(𝑃𝑖𝑛)𝑦𝑖𝑛

𝑖

𝑁

𝑛=1

 (5) 

Where, N represents the size of the sample, and 𝛽 is the vector containing the parameters. To improve estimation and 

numerical performance the Log-Likelihood function is used. 

 𝐿𝐿(𝛽) = ∑ ∑ 𝑦𝑛𝑖 ln(𝑃𝑛𝑖)

𝑖

𝑁

𝑛=1

 (6) 

Since the complexity of the model is relatively high, a python package called PandasBiogeme (Bierlaire, 2020) is 

used to estimate the parameters based on the theory described above. 

2.1.2 Data Sources 

Different sources of data were used to increase the model accuracy by adding explanatory variables. These sources 

provided different types of explanatory variables such as mode of transportation attributes, including travel time, 

travel cost, among others. Also, decision-makers' socio-economic characteristics such as economic status, gender, 

working status, car ownership, among others. Besides variables representing the trip characteristics such as, whether 

the trip was made on peak time or a weekday. Finally, this paper includes the weather condition on the day of the trip 

as explanatory variables. 

2.1.2.1 Victorian Integrated Survey of Travel and Activity (VISTA) 

VISTA is an ongoing study of household travel activity among Greater Melbourne and Geelong (Victorian Integrated 

Survey of Travel and Activity, 2016). The VISTA data from the year 2012 to 2016 was used to build the base model. 

This survey provides most of the socio-economic explanatory variables and includes the characteristics of the trips. 

VISTA includes more than 120,000 trips from 2012-2016; however, during the data cleaning process, some of them 

were excluded from this study. Trips are referenced to the smallest geographical areas available known as SA1 

(Statistical Area Level 1), to keep the privacy of the respondents; nevertheless, a significant part of the trips was 

performed within one single SA1 which made impossible to estimate the modes' explanatory variables such as travel 

time, distance or cost using Google Maps, TripGo or PTV Journey Planner.  

In addition, it was found that these traffic/transport applications lose reliability when the SA1 zones are large (>100 

square km), because it leads to a significant difference between estimated travel time, distance, cost from the apps 

and the actual variables experienced by the respondent. Consequently, those differences could lead to building a non-

representative model. 

2.1.2.2 TripGo API 

TripGo Application Programming Interface or TripGo API is a digital tool that allows retrieving data from different 

transportation modes(SkedGo, 2020). Free developer accounts were used. The information was retrieved by using a 

short program coded in Python. Five modes of transportations were requested to API, walking, cycling, public 

Transport, car, taxi. Note that the only inter-modal mode of transportation considered in this study is walk-transit, 

and no other inter-modal options such as car-transit or bike-transit were considered. 

TripGO API does not allow to retrieve data from the past; therefore it is assumed that no significant changes have 

been made in the Melbourne transport network from 2016 to 2020 that could have considerably impacted on distance 

or travel time. 

The retrieved information for each mode was stored in JSON format for further review. The raw JSON data was 

parsed using another short program coded in Python for each mode to get the relevant information. For walk and bike 

modes, the python code chooses the default best trip given by TripGo and get the relevant attributes of that trip. 

However, it was found that the best trips given by TripGo for car, taxi and transit modes presented inconsistency 

such as departure times before the start time or not selecting the shortest trips. Therefore the following procedure is 

used to select the best trip for these modes: 

• Choose all the trips where their departure time is equal or greater than the start time from VISTA table 't' 

(STARTIME) 
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• From that group of trips, the one with the earliest arrival time is selected. 

• From the trip chosen, the program gets its relevant attributes. 

2.1.2.3 Public Transport Victoria (PTV) 

TripGO estimation of frequency and cost of the public transport option has been found to be neither consistent nor 

reliable. Hence, different Python codes were developed in order to estimate the headway and cost of the public 

transport mode.  

For the cost estimation, updated 2020 full fares, concession fares and conditions were used from the Victorian Fares 

and Ticketing Conditions and the Victorian Regional Bus Fares Supplement and the PTV API (Public Transport 

Victoria, 2020a, 2020b). The following procedure was used. 

• Obtain the ticket zone (1-13) for start and end stops of all the legs in the trip, either from GTFS, GIS or PTV 

API. 

• If not ticket zone available, verify regional fare. 

• If not regional, calculate fare taking into account the lowest and highest ticket zone visited during the trip 

and whether the trip was mad during peak times. 

• If regional, calculate fare taking into account the Charging Units, each regional leg is calculated separately. 

• Apply concession conditions according to the Victorian Fare and Ticketing Conditions-2020. 

On the other hand, PTV timetable and geographic information (GTFS) was used to estimate the headway according 

to the following procedure: 

• First leg's start-stop and end-stop identification from TripGo data 

• Services available according to GTFS between those stops for the day and direction of the trip. It can include 

multiple modes and different lines. 

• Select the service with the closest departure time to the start time from TripGo data 

• Select the closest service before and after to the selected service above. Those three services may be in 

different lines or even different modes. 

• Calculate the average headway between those three services. 

2.1.2.4 RACV car running costs 

TripGo car cost data was found to be no consistent and reliable; therefore, the cost for car mode was calculated using 

average running costs (RACV, 2019) according to the following procedure. 

• Calculate the average running cost (cents/km) according to the type of vehicles owned by the household 

according to with VISTA data. 

• Using travel distance from TripGo calculate the total cost of the trip. 

2.1.2.5 Bureau of Meteorology (BOM) 

The willingness to choose active modes, walking and cycling, as the preferred transportation mode is usually affected 

by weather conditions such as extreme temperatures, rainfall or wind (Saneinejad et al., 2012; Ton et al., 2019), 

besides some studies show that bad weather conditions also have a negative impact on the ridership of some public 

transport modes such as a bus or light rail(Petrović et al., 2020; Tao et al., 2018).  

Therefore, to consider the impact of weather conditions on travel mode choice, temperature and rainfall data were 

acquired from the Bureau of Meteorology (BOM) which offers a free database for daily minimum and maximum 

temperature as well as daily millimetres of precipitation (Bureau of Meterology, 2020). This data was obtained was 

from 257 stations within Victoria and for the years 2012 to 2016.  

 

2.1.3 Choice Set 

To accurately evaluate the impact of AVs, SAVs, TNCs and autonomous shuttle bus, the model includes a choice set 

of 5 alternatives: 

• Walk 

• Bike 
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• Public transport (includes bus, tram and train) 

• Car (includes driving a car or as a passenger) 

• Taxi 

Trips, where the travel mode chosen by the respondent was motorbike, other or non-stated, were excluded from the 

analysis. 

 

2.1.4 Model Specification 

After an iteration process and trying different model specification, the variables and parameters used in the final 

model are described in the following tables. 

2.1.4.1 Specific travel mode attributes 

Mode inherent characteristics, such as travel time, cost, co2 emission, among others are included in this category; 

Table 1 summarises those characteristics considered in the final model. 

Most of these attributes were directly acquired from TripGo API; however, transit waiting time, transit cost, and 

parking cost were separately estimated to improve model accuracy. 

Usually, travel mode choice models consider waiting time as 𝑊 = 0.5ℎ where ℎ is the service headway; assuming 

that passengers arrive at random times between one service and the next one. However, several studies have found 

evidence of non-random behaviour of passengers. From simple linear relationships such as 𝑊 = 1.79 + 0.14ℎ or 

𝑊 = 2.34 + 0.26ℎ (O'Flaherty & Mancan, 1970; Seddon & Day, 1974) setting a threshold where passengers start 

to not arriving at random times(Bowman & Turnquist, 1981; Fan & Machemehl, 2009). To more complex models 

proposing different distributions such as Extreme value, Exponential Lognormal, among others (Gong et al., 2016; 

Reza Amin-Naseri & Baradaran, 2015; Webb et al., 2020). 

For this paper, a beta-mixture waiting time is used as proposed by Ingvardson et al. (2018). This approach suggests 

that passengers waiting time follow a mixture of uniform (random arrivals) and beta distribution where the expected 

waiting time E[W] is defined by: 

 𝐸[𝑊] = 𝐻 × (𝜍
𝛼

𝛼 + 𝛽
+ (1 − 𝜍)) (7) 

Where, H  Service headway 

 𝜍  Share of passengers following a beta distribution 

 1 − 𝜍  Share of passengers following a uniform distribution 

 𝛼, 𝛽  Shape parameters of the beta distribution 

The values of 𝜍, 𝛼 𝑎𝑛𝑑 𝛽 were corrected from the original paper by Ingvardson et al., (2020); however since those 

values, in the paper, are not continuous but discrete to specific headways of 5, 10, 20, 30 and 60 min; therefore a 

simple regression was executed, as shown in Figure 1, to generalise the distribution to any other headway value. 

Using the headways estimated from PTV timetables, an expected waiting time is calculated. It is important to point 

out that since waiting time can be divided into open waiting time and hidden waiting time. The open waiting time 

corresponds to the time the passenger is waiting for a vehicle at the stop; therefore, the calculated waiting time 

following the beta-mixture distribution corresponds to this category. 

Hidden waiting time corresponds to the duration of time between the time the person wants to travel and the time the 

person start its trip. Therefore  hidden waiting time is calculated as follows: 

 

 𝐻𝑊𝑇 = 𝑀𝑎𝑥((𝑆𝑇 − 𝐷𝑇) − 𝐴𝑇 − 𝑂𝑊𝑇, 0) (8) 

Where, ST  Is the time the person started the trip according to VISTA (hh:min:sec) 
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 DT  Is the time the first leg service departures from the stop according to TripGo 

   (hh:min:sec) 

 AT  Walking time from start point to first leg stop according to TripGo (mins) 

 OWT  Open waiting time (min) 

  

 

 

Figure 1 Regression for beta and uniform share and shape parameters of the beta-mixture distribution. 

 

Table 1 Specific travel mode attributes 

Variable Name Parameter Unit Description Source 

walk_cal B_SM_CAL (cal) Trip's calories consumption when walking TripGo API 

walk_tt B_WALK_TT (min) Travel time when walking TripGo API 

bike_cal B_SM_CAL (cal) Trip's calories consumption when using a bike TripGo API 

bike_tt B_BIKE_TT (min) Travel time by walking when using a bike TripGo API 

bike_friendly B_BIKE_FRIENDLY (%) 
Percentage of bicycle-friendly road (with bicycle 

lane) 
TripGo API 

transit_onboardtime B_PT_OBT (min) In vehicle time for public transport TripGo API 

transit_openwaittime B_PT_OPEN_WT (min) 
Average time in minutes between passenger arrival to 

first leg stop and service departure. 
PTV* 

transit_hidwaittime B_PT_HIDDEN_WT (min) 

Time in minutes between the time that a passenger 

wants to travel and the time a passenger can start the 

trip due to the frequency of the service. 

PTV* 
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transit_walktime B_PT_WALK_TIME (min) 
Access or Egress time to the public transport service 

assuming walking only. 
TripGo API 

transit_transfers B_PT_TRANSFERS (unit) Number of transfers TripGo API 

transit_trasnferwait B_PT_TRASNF_WAIT (min) Waiting time between transfers TripGo API 

transit_cost B_COST (AUD) Cost in AUD for using the public transport system PTV* 

transit_co2 B_CO2 CO2 Co2 emissions when travelling in public transport TripGo API 

taxi_tt B_TAXI_TT (min) 
Travel time when travelling in a taxi (Includes 

waiting time)** 
TripGo API 

taxi_tcost B_COST (AUD) Cost in AUD when travelling in a taxi TripGo API 

taxi_co2 B_CO2 (kg) Co2 emissions when travelling ina a taxi TripGo API 

car_tt B_CAR_TT (min) Travel time when travelling in a car TripGo API 

car_tcost B_COST (AUD) 
Cost in AUD when travelling in a car (includes 

Parking Cost)*** 
TripGo API 

car_taxi_co2 B_CO2 (kg) Co2 emissions when travelling in a car TripGo API 

* Estimation using data from PTV. The detail of the calculation procedure is described above  

** Waiting time estimation from TripGo around (8 min) when no initial walking is needed.  

** Parking Cost is an estimation detailed above.  

 

2.1.4.2 Socio-Economic attributes 

Many socio-economic attributes are available in VISTA database such as household income, age-group, working and 

studying status. However, any model estimated with Biogeme in which those attributes were included, resulted in 

positive values for travel cost, which is not a valid representation of the reality. Since travel cost is one of the most 

critical attributes that the new technologies would affect (increasing or decreasing), therefore, just some of those 

attributes were included. Table 2 summarises all the attributes considered to the iterative process of running models, 

the ones with an assigned parameter are the ones used for the final model. 

 

Table 2 Socio-economic Attributes 

Variable Name Parameters Description Source 

eq_inc_rank  
Rank calculated dividing every equivalent 

economic income by its average  
VISTA* 

Gender 

B_PT_GENDER 

B_CAR_GENDER 

B_TAXI_GENDER 

1 for male, 0 otherwise VISTA 

bef_boomers  1 if the person was born before 1943, 0 otherwise VISTA 

boomers  
1 if the person was born on or after 1943 and 

before 1961, 0 otherwise 
VISTA 

genX  
1 if person was born on or after 1961 and before 

1982, 0 otherwise 
VISTA 

genY  
1 if the person was born on or after 1982 and 

before 2001 
VISTA 

stu_status  1, if the person is studying, 0 otherwise VISTA 

work_status  
1, if the person is working wither casual, parttime 

or fulltime, 0 otherwise 
VISTA 

veh_per_person B_VEH_PER_PERSON 
The average number of vehicles in the 

household, not considering motorbikes or scooter 
VISTA 

adult_bikes B_ADULT_BIKES Number of adult bikes in the household VISTA 

car_license B_CAR_LICENCE 1 if the person has a driving license, 0 otherwise VISTA 

* Estimation using data from PTV. The detail of the calculation procedure is described above  
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2.1.4.3 Trip Characteristics 

Some trip characteristics are available in VISTA database such as, whether the person travels in a workday or during 

pick ours, and the purpose of the trip. However, those were not included in the final model since their parameters 

were not relevant for this study. Table 3 summarises the trip characteristics used during the running of models, but 

none of them was included in the final model. 

 

Table 3 Trip Characteristics 

Variable Name Parameters Description Source 

travel_period  1 if travelling during peak periods, 0 otherwise VISTA 

trip_purp_work  
1 if the purpose of the trip was work-related, 0 

otherwise 
VISTA 

trip_purp_edu  
1 if the purpose of the trip was education-related, 

0 otherwise 
VISTA 

trip_purp_pick  
1 if the purpose of the trip was to pick up or drop 

off something or someone, 0 otherwise 
VISTA 

week_day  
1 if the trip happened from Monday to Friday, 0 

otherwise 
VISTA 

  

 

2.1.4.4 Weather Conditions 

Several studies have shown the impact of weather conditions on the travel mode choice, mainly on active modes such 

as walking, or cycling (Saneinejad et al., 2012; Ton et al., 2019). Besides, extreme temperatures or rainfall has been 

shown to affect the choice of public transport as the preferred travel mode (Petrović et al., 2020; Tao et al., 2018). 

Since BOM provides just data for daily min and max temperature for free, a temperature for a departure time of each 

trip  was estimated with the method proposed by Parton & Logan in 1981 by using the 5 closest stations to the 

departure latitude and longitude, considering the elevation obtain from Google Elevation (You et al., 2008). The 

algorithms are coded in python. 

The maximum and minimum temperature for each trip at the departure point is estimated using the inverse distance 

weighting method described by You et al.  

 𝑥 = ∑[𝑦𝑖𝑤𝑖]/ ∑ 𝑤𝑖

5

𝑖

5

𝑖=1

 (9) 

Where, x is the predicted temperature at the departure point 

 𝑦𝑖 is the min or max temperature in the ith closest station to the departure point from BOM 

 𝑤𝑖 is the inverse of the distance from the ith closes station to the departure point from BOM 

The temperature on the departure point for a given time during the day and night is estimated by 1 and 2 respectively. 

 𝑇𝑖 = (𝑇𝑥 − 𝑇𝑁) sin (
𝜋𝑚

𝑌 + 2𝑎
) + 𝑇𝑁 (10) 

 𝑇𝑖 = 𝑇𝑁 + (𝑇𝑠 − 𝑇𝑁)exp (−𝑏𝑛/𝑍) (11) 

Where, 𝑇𝑖 is the temperature on the departure point at the ith hour 

𝑇𝑥 is the maximum temperature on the departure point calculated with (9) 

 𝑇𝑁 is the minimum temperature on the departure point calculated with (9) 

 𝑇𝑠  is the temperature at sunset, calculated with (10)  

 𝑚  is the number of hours after the minimum temperature occurs until the sunset (assumed that min 

temperature occurs at sunrise) 
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 𝑛   is the number of hours after sunset until the time of the minimum temperature 

 a    is the lag coefficient for the maximum temperature (assumed to be 1.5) 

 b    is the nighttime temperature coefficient (assumed to be 4) 

 Y   is day length in hours 

 

Variable Name Parameters Description Source 

temp_coeff B_SM_DAY_TEMP  BOM* 

rainfall B_SM_RAINFALL mm of precipitation during the day of the trip BOM* 

bad_weahter B_PT_BAD_WEATHER  Sum of temp_coeff and rainfall BOM* 

    

    

* Temperature and rainfall for the location and time of the start of the trip were estimated using BOM data, following the procedure 

described above. 
 

 

2.2 Impact of New technologies 

Four sets of scenarios have been designed to explore how new technologies could affect the travel mode shares. First, 

an isolated case for each use of AVs: Private, shared, and transit. And a fourth scenario with a combined effect. Each 

scenario assumes the rotal replacement of traditional vehicles with the new technology 

For the first scenario, an average operating cost of 1$/km, which is higher than the average 0.77 $/km from the model, 

is assumed (Litman, 2020). A factor of reduction 0.65 is assumed for in-vehicle travel time due to the total automation 

of the fleet and a reduced parking cost to 50% (Childress et al., 2015). 

For the second scenario, Litman suggests that shared autonomous vehicles will probably have an average operating 

cost of 0.7$ per vehicle per km and a 0.4$ per passenger per km when using as a taxi. Besides, since travel time in 

shared taxis is higher than regular taxis, due to picking up and dropping off people on the way to the traveller's 

destination, travel time is increased in 16.7 % (Young et al., 2020). 

For the third scenario, Litman suggests that shared autonomous vehicles can be used as micro-transit services; 

therefore, the same operating cost is assumed per vehicle per km. In addition, since micro-transit services operate at 

high frequencies, the hidden waiting time would tend to disappear, and the open waiting time would tend to decrease. 

A 50% reduction in open waiting time is considered and a 100% of reduction in hidden waiting time is considered. 

For the fourth scenario, we assumed that all the private vehicles are autonomous vehicles, all the taxi services run 

under a ride-share option and all the public transport has switch to micro-transit services 

 

 

 

 

 

Table 4 Scenario descriptions 

Cost Autonomous Vehicle Shared Autonomous Vehicle 

(Taxi) 

Shared Autonomous Ride 

(Transit) 

Scenario 1 - Operating average cost 

of 1 $/km 

- Time travel factor of 

0.65 

No changes No changes 
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Scenario 2 No changes - Increase travel time by 

16.7% 

- Cost of $0.4 per km per 

passenger  

No changes 

Scenario 3 No changes No changes - Cost of $0.4 per km per 

passenger 

- 0 hidden time 

- 50% open waiting time 

reduction 

Scenario 4 - Operating average cost 

of 1 $/km 

- Time travel factor of 

0.65 

- Increase travel time by 

16.7% 

- Cost of $0.4 per km per 

passenger 

 

 

3 Results and Discussion 

3.1 Best Base Model 

Using Biogeme to estimate the parameters, many models were run with different specifications in an iterative process, 

the model with the most significant parameters and higher log-likelihood was chosen. The final model has 85,962 

trips, with a goodness of fit value (rho-squared) of 0.661 and a final log-likelihood of -45,552.29. The estimation 

report can be found in  Table 5. The utility functions used to estimate this model, and the values of its estimated 

parameters are presented below. 

From the parameters estimated, it can be concluded that the value of time for each mode is not the same being the 

highest th open waiting time which its value is ten times higher than the on-vehicle transit travel time. Weather 

conditions do have a negative impact on the utility function for active modes but apparently the bad_weather variable, 

which is a combination of temperature and rainfall, for public transport has a positive impact on its utility function. 

This could be interpreted as that on days with extreme weather conditions, people without a vehicle swift from active 

modes to public transport for being more convenient.  

 

U_WAK = ASC_WALK +\ 

    B_WALK_TT*walk_tt +\ 

    B_SM_CAL*walk_cal+\ 

    B_SM_DAY_TEMP*temp_coeff +\ 

    B_SM_RAINFALL*RAINFALL 

 

U_TAXI = ASC_TAXI +\ 

    B_TAXI_TT*taxi_tt +\ 

    B_CO2*taxi_co2 +\ 

    B_COST*taxi_tcost +\ 

    B_TAXI_GENDER*gender 

 

U_CAR = ASC_CAR +\ 

    B_CAR_TT*car_tt +\ 

    B_CO2*car_co2 +\ 

    B_COST*car_tcost +\ 

    B_CAR_GENDER*gender +\ 

U_BIKE = ASC_BIKE +\ 

    B_BIKE_TT*bike_tt +\ 

    B_SM_CAL*bike_cal +\ 

    B_BIKE_FRIENDLY*bike_friendly +\ 

    B_SM_DAY_TEMP*temp_coeff +\ 

    B_SM_RAINFALL*RAINFALL +\ 

    B_ADULT_BIKES*adult_bikes 

 

U_PT = ASC_PT +\ 

    B_PT_OBT*transit_onboardtime+\ 

    B_PT_OPEN_WT*transit_openwaittime+\ 

    B_PT_HIDDEN_WT*transit_hidwaittime +\ 

    B_PT_WALK_TIME*transit_walktime +\ 

    B_PT_TRANSFERS*transit_transfers +\ 

    B_PT_TRANSF_WAIT*transit_transferwait +\ 

    B_CO2*transit_co2 +\ 

    B_COST*transit_cost +\ 
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    B_VEH_PER_PERSON*veh_per_person +\ 

    B_CAR_LICENCE*car_licence 

 

 

    B_PT_GENDER*gender+\ 

    B_PT_BAD_WEATHER*bad_weather 

 

 

 

Table 5 Estimation report for best model 

Number of estimated parameters: 27 

Sample size: 85,962 

Excluded observations: - 

Init log likelihood: 
-     

134,393 

Final log likelihood: 
-       

45,552 

Likelihood ratio test for the init. model: 177,682 

Rho-square for the init. model: 0.661 

Rho-square-bar for the init. model: 0.661 

Akaike Information Criterion: 91,158.58 

Bayesian Information Criterion: 91,411.35 

Final gradient norm: 0.03 

Database readings: 3,818 

Iterations: 3,409 

Nbr of threads: 8.00 

 

 

 

Table 6 Parameters values,  standard deviation, t-test and p-test 

Name Value Std err t-test p-value 
Rob. 

Std err 

Rob. 

t-test 

Rob. 

p-value 

ASC_BIKE -5.27 0.093 -56.6 0 0.124 -42.4 0 

ASC_CAR -0.861 0.0357 -24.1 0 0.0445 -19.4 0 

ASC_PT -1.55 0.0665 -23.4 0 0.077 -20.2 0 

ASC_TAXI -5.78 0.127 -45.6 0 0.123 -47 0 

B_ADULT_BIKES 0.427 0.0121 35.4 0 0.0113 37.8 0 

B_BIKE_FRIENDLY 0.662 0.128 5.17 2.32E-07 0.159 4.16 3.18E-05 

B_BIKE_TT -0.0351 0.0221 -1.59 0.112 0.036 -0.974 0.33 

B_CAR_GENDER -0.225 0.022 -10.2 0 0.0219 -10.3 0 

B_CAR_LICENCE 0.295 0.0255 11.6 0 0.0261 11.3 0 

B_CAR_TT -0.0771 0.00137 -56.5 0 0.00149 -51.7 0 

B_CO2 0.0769 0.0179 4.29 1.81E-05 0.0195 3.94 8.02E-05 

B_COST -0.0123 0.000834 -14.7 0 0.000825 -14.9 0 

B_PT_BAD_WEATHER 0.00861 0.00314 2.75 0.00601 0.00313 2.75 0.00587 

B_PT_GENDER -0.215 0.0367 -5.85 4.84E-09 0.0362 -5.93 3.10E-09 

B_PT_HIDDEN_WT -0.00139 0.000818 -1.7 0.0898 0.00126 -1.1 0.272 

B_PT_OBT -0.0238 0.00151 -15.8 0 0.0016 -14.9 0 
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B_PT_OPEN_WT -0.24 0.0081 -29.6 0 0.00872 -27.5 0 

B_PT_TRANSFERS -0.413 0.0413 -10 0 0.101 -4.08 4.47E-05 

B_PT_TRANSF_WAIT -0.0131 0.0047 -2.79 0.00532 0.0156 -0.842 0.4 

B_PT_WALK_TIME -0.0322 0.00163 -19.8 0 0.00177 -18.2 0 

B_SM_CAL -0.00558 0.00407 -1.37 0.17 0.00654 -0.853 0.394 

B_SM_DAY_TEMP -0.0202 0.00395 -5.1 3.31E-07 0.00394 -5.12 3.13E-07 

B_SM_RAINFALL -0.0177 0.00301 -5.88 4.11E-09 0.00297 -5.97 2.37E-09 

B_TAXI_GENDER -0.324 0.123 -2.63 0.00855 0.122 -2.66 0.00789 

B_TAXI_TT -0.0633 0.00421 -15.1 0 0.00387 -16.4 0 

B_VEH_PER_PERSON 0.259 0.0314 8.24 2.22E-16 0.0316 8.19 2.22E-16 

B_WALK_TT -0.0617 0.01 -6.15 7.63E-10 0.0162 -3.82 0.000134 

 

3.1.1 Predicted travel mode share with the best model 

Considering the parameters, estimated with Biogeme, the predicted travel mode choice for each trip is calculated 

using (3). Each trip in the sample represents a certain number of trips in the population; this is reflected in the VISTA 

table 't'. Table 1Table 7 summarises the mode amount of trips for each chosen mode and for each predicted mode. 

 

Table 7 Comparison between Chosen and Predicted travel mode share 
 

Chosen_Trips Chosen_Share Predicted Predicted_Share 

Bike 181,294 2.0 % 7,118 0.1% 

Car 6,841,363 74.5 % 8,034,365 87.5 % 

Public Transport 680,812 7.4 % 257,886 2.8 % 

Taxi 35,341 0.4 % 0 0 % 

Walk 1,446,495 15.7 % 885,936 9.6 % 

 9,185,305 100%  8,678,072 

 

Table 8 Pie chart showing share distribution among the different modes 

 

 

3.2 Impact of AVs (replacing car option) 

Despite the average cost of operating a private car increased from 0.76 to 1.2, reducing travel time to 65 per cent of 

its original value and reducing parking cost by 50 % have a significant impact on the utility of choosing the car as a 
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travel mode when AVs replace every car. Travel share of the car mode increased from 87.5 % as predicted in the 

base model to 91.8%. The increment in the utility of car reduces by more than half the share of the bike and public 

transport; from 0.1 to 0.04% and form 2.8 to 1.1% respectively. This means that around 60% of the trips, initially 

assigned to bike and public transport switch to the car mode.  However, the walking mode share was reduced by 25% 

from 9.6 to 7.1%. This small reduction may have a cause in the people living in households with 0 vehicles or without 

a car license. This scenario could change as the due to as AVs are introduced; teenagers below the license age could 

be able to ride an AV without supervision.  

 

Table 9 Trips and travel mode share scenario 1 

  

Chosen Trips 
Chosen 
Share 

Base Model 
Trips 

Base 
Model 
Share 

After Avs 
Trips  

After Avs 
Share 

Bike 
                 
181,294  

2.0% 
                  
7,118  

0.1% 
                 
3,414  

0.04% 

Car 
             
6,841,363  

74.5% 
          
8,034,365  

87.5% 
         
8,434,322  

91.8% 

Public 
Transport 

                 
680,812  

7.4% 
              
257,886  

2.8% 
               
96,842  

1.1% 

Taxi 
                   
35,341  

0.4% 
                         
-    

0.0% 
  

0.0% 

Walk 
             
1,446,495  

15.7% 
              
885,936  

9.6% 
             
650,726  

7.1% 

 
9,185,305 100% 9,185,305 100% 9,185,304 100% 

 

 

 

Figure 2 Pie chart showing share distribution among the different modes for scenario 1 

3.3 Impact of Shared Autonomous Vehicles (replacing taxi option) 

Since the trips in the sample, where the chosen travel mode was a taxi, represents less than 0.5 per cent, the utility 

function for a taxi from the baseline logit model may not be representative. This is reflected on this results, where 

the impact of reducing the travel cost from 4.33 $/km, on average, to 0.4 $/km per passenger per km according to the 

literature, is not enough to produce any measurable change on the travel mode share. 

3.4 Impact of Shared Autonomous Rides (replacing transit)  

Assuming 0.4$ per person per km for public transport has a mixed impact on the utility. Approximately  72% of the 

analysed trips have travel distances less than 8.75 km with an average fare of 3.5 $. This trips would benefit from 

micro-transit price since the average cost for trips less than 8.75 km would be 1.75$. However, trips greater than 8.75 
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km and less than 20km costs on average 3.8$ due to the concessions, and fixed fares and this trips would not benefit 

from the micro-transit potential fare. 

A reduction of 50% in the open waiting time and 100% in the hidden waiting time for public transport has a significant 

impact on the perceived utility.  

In this scenario, the public transport share shows an increase of 65% going from 2.8% to 4.6% of the total trips. 

 

Table 10 Trips and travel mode share scenario 3 

  

Chosen Trips Chosen Share Base Model Trips 
Base Model 

Share 
After SAvs Trips 

After SARs 

Share 

Bike 181,294 2.0% 7,118 0.1% 6,599 0.07% 

Car 6,841,363 74.5% 8,034,365 87.5% 7,873,058 85.7% 

Public Transport 680,812 7.4% 257,886 2.8% 419,712 4.6% 

Taxi 35,341 0.4% - 0.0%  0.0% 

Walk 1,446,495 15.7% 885,936 9.6% 885,936 9.6% 

 
9,185,305 100% 9,185,305 100% 9,185,305 100% 

 

 

Figure 3 Pie chart showing share distribution among the different modes for scenario 3 

 

3.5 Combined Impact 

The combined impact of the autonomous vehicle is presented in Table 11 and Figure 4. Definitely impact of the 

reduction of 65% in travel time when using AVs as private vehicles prevail. However public transport share is slightly 

better than the first scenario 1.2% vs 1.1% of the total trips. 

 

Table 11 Trips and travel mode share scenario 4 

  

Chosen Trips 
Chosen 
Share 

Base Model 
Trips 

Base Model 
Share 

Scenario 4 
Trips  

Scenario 4 
Share  

Bike       181,294  2.0%              7,118  0.1%            3,414  0.04% 

Car    6,841,363  74.5%      8,034,365  87.5%   8,424,457  91.7% 
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Public 
Transport 

      680,812  

7.4% 

        257,886  

2.8% 

      106,707  

1.2% 

Taxi          35,341  0.4%                     -    0.0%                   -    0.0% 

Walk    1,446,495  15.7%         885,936  9.6%       650,726  7.1% 

 
9,185,305 100% 9,185,305 100% 9,185,304 100% 

 

 

Figure 4 Pie chart showing share distribution among the different modes for scenario 4 

 

 

4 Conclusions 

This study shows the significant impact of AVs used as private vehicles in the future travel mode share, 60% of the 

trips, initially assigned to bike and public transport modes, would shift to private autonomous vehicles. 

Taxi as a mode share could not be adequately evaluated due to the low amount of taxi trips present in the sample; 

therefore, further research is needed to predict the impact of SAVs accurately. An independent survey with a bigger 

sample of taxi trips or the use TNC’s data to understand the mode share of taxi rides. 

The potential impact of shared autonomous rides used as micro-transit modes shows that by reducing 50% of the 

open waiting time an 100% of the hidden waiting time by offering a high-frequency autonomous micro-transit 

frequency would double the public transport share in the third scenario. 

However, a most likely scenario, where all the modes are combined, and autonomous vehicles are used not only as 

private vehicles but also as taxis and as micro-transit services, shows that the impact on waiting the waiting time of 

micro-transit services is not relevant to compare to the reduced travel time of private autonomous vehicles. 

It is necessary to develop a strategy and policies to make public transport, in a future ruled by autonomous vehicles, 

more attractive by optimising travel times or reducing access and egress time by improving the accessibility of the 

micro-transit service. 
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