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摘 要

APSCO-SSS 项目由亚太空间合作组织(APSCO)发起。该项目由 1 颗微小卫星(SSS-1)和 2 颗

立方体卫星(SSS-2A 和 SSS-2B)组成，用于盘绕式伸展臂展开技术、ADS-B 技术和遥感技术的空

间验证。在本项目中，微小卫星 SSS-1 是由主星和子星通过一个盘绕式伸展臂连接组成的刚柔多

体耦合系统。盘绕式伸展臂的柔性振动给微小卫星的控制带来了很大的困难和挑战。

首先利用 Lagrange 方法建立刚柔耦合微小卫星的数学模型。在动力学方面，通常将盘绕

式伸展臂看作是一种柔性附件，并将其简化为欧拉-伯努利梁来做处理。但是在 SSS-1 卫星盘绕

式伸展臂的末端配备了一个大质量部件(子星)， 因此和之前的处理方法不同，在推导动力学方程

时必须考虑刚性子星的存在。

然后将卫星看作三轴旋转物体，其上的柔性附件会受到横向变形的影响，本文不考虑轴向变形

和扭转变形。将整个系统的动能作为拉格朗日过程的自然步骤导出，这包括从三个卫星元件（刚性

主卫星、柔性盘绕式伸展臂和刚性子卫星）获得的动能。为了简化系统的总动能表达式，采用了一

些矩阵符号，用假定模态法可以得到整个系统的质量矩阵。通过定义系统的势能，采用假定模态法

进行离散，得到了模型的刚度矩阵和阻尼矩阵。

本文不考虑卫星姿态以较大速率、较大角度的旋转，因此柔性附件的横向变形较小。在这个

基础上，可以将得到的动态对象线性化，从而进一步合成一个线性控制器，用于直接的姿态控制

和振动抑制。在动态被控对象的闭环控制中，设计出两个控制器：第一个是 H∞控制器，其主要

作用是使外源输入(w)转化到调节输出(z)时的影响最小。为此，从 w 到 z 的传递函数 LFT 的范数

也必须最小；第二个是 µ 自适应前馈控制器，与第一个控制器相比，该方法能够在推导出鲁棒控

制器的同时考虑系统的参数不确定性。

最后，在控制策略方面，动态被控对象与不同的加权函数相互关联，可以将某些任务优先于

其他任务。本文所设计控制系统的首要任务是将整个卫星结构控制在期望的方向上，然后系统的

重点是抑制柔性附件的振动。至于所需传感器数据，系统将使用三个方向的欧拉角和盘绕式伸

展臂一端的附属物（子星）的横向加速度。分别在卫星标称和不确定条件下，比较从两个合成控

制器获得的结果。

关键词: 动力学，拉格朗日，机械振动，鲁棒控制



Abstract

The  APSCO-SSS project  is  initiated  by  the  Asia-Pacific  Space  Cooperation  Organization

(APSCO). This project consists of 1 micro-satellite (SSS-1) and 2 cube-satellites (SSS-2A and SSS-

2B) implemented for different objectives such as: demonstration of coilable mast deployment, ADS-

B technology and remote sensing. In this project, the micro-satellite SSS-1 is formed by a main-

satellite and a sub-satellite joined by a coilable mast obtaining as a result a rigid-flexible multi body

system.  Flexible  vibration  of  the  coilable mast will  bring great  difficulty and challenge to the

control of the micro-satellite.

The first step of this thesis research is to obtain the mathematical model of the rigid-flexible

coupling micro-satellite, for this the Lagrange method is used. In terms of dynamics, the coilable

mast is normally viewed as a flexible appendage and simplified as an Euler-Bernoulli beam, but the

SSS-1 is equipped with a large mass element (sub-satellite) at the tip of the flexible structure, as a

consequence and in contrast to previous work, the new mathematical model must include this rigid

sub-satellite when deriving the equations of motion.

The satellite is modeled as a body that can rotate in the three axis, the flexible appendage can

be affected by lateral deflection while axial and torsional deformation are not considered in this

study. Kinetic energy is firstly derived as a natural step in the Lagrange procedure, this consist of

the kinetic energy obtained from the three satellite elements (rigid main satellite, flexible coilable

mast and rigid sub-satellite). Some matrix notations are used in order to simplified the large total

kinetic  energy expression  and using  the  assumed modes  method the  mass  matrix  of  the  entire

system can be obtained. The stiffness and damping matrices of the model are obtained by defining

the potential energy of the system and then applying the assumed modes method for discretization.

In this project large and fast rotations are not considered, therefore lateral deformation of the

flexible appendage is not too large. This assumption permits to linearize the obtained dynamic plant

to further synthesize a linear controller for direct attitude control and vibration suppression. 



Two controllers are proposed to work with the dynamic plant in close loop configuration, the

first is the H infinity controller which main purpose is to minimize the impact of the exogenous

inputs (w) into the regulated outputs (z). For this the norm of the transfer function known as LFT

from w to z must be minimized. The second controller is obtained by using the µ  synthesis, in

contrast  to the first  proposed controller  this  procedure is capable of considering the parametric

uncertainty of the system while deriving a robust controller.

Regarding the control strategy, the dynamic plant is interconnected with different weighting

functions that can prioritize some task over others. In this project the control system priority is to

set the entire structure in  the  desire  orientation,  after  this  the  system focuses  on  suppress  the

vibration of the flexible appendage. As sensor data the system will the three Euler angles and the

lateral acceleration of the displacement of the flexible appendage. Results obtained from the two

synthesized controllers are compared when working with the  nominal  and uncertain  dynamic

plant.

Keywords: Dynamics, Lagrange, Mechanical Vibrations, Robust Control
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1 Introduction

1.1 Background

Modern days technology allowed many devices to become smaller thorough time, but size

was not the only optimized factor, price and efficiency were largely improved too. In the field

of astronautics, satellites were known as large and complex devices that were able to perform

certain tasks depending on the assigned mission(communications, mapping, global positioning,

etc) most of these satellites were huge, heavy and considerably expensive, as a consequence only

the most developed and richest countries were capable of designing and manufacture them. As

time passed satellites became smaller, cost/efficiency ratio was improved up to the point that

terms micro, pico and nano are now used for very small and affordable satellites.

The Attitude Determination and Control system, also known as ADCS, is an essential part

in most of satellites where orientation has to be controlled since functionality and fulfillment

of mission depends on it, this is the case for very specific applications like remote sensing

or spying. Satellite’s sensors are in charge of obtaining information about: Angular Velocity

(Gyroscopes), Sun Position (Sun-sensor), Magnetic Field (Magnetometer), Infrared Radiation

(Earth Horizon sensor) or in some cases galactic reference position (Star-sensor).

Sensor’s data is gathered to estimate the satellite’s orientation for its correction if needed.

Once the satellite’s orientation is determined the on-board actuators generate the control torques

to rotate the satellite to a desired position . The SSS-1P has three magnetorquers and one

reaction wheel that are used for active control of the satellite’s attitude. Magnetoquers are

coil based actuators that interact with earth’s magnetic field to generate a magnetic moment.

These are one of the simplest control actuators used on satellites, nevertheless under the relative

absence of earth magnetic field the generation of torque is no longer feasible. Reaction wheels

on the other hand are not only more precise actuators but also these devices work independently

of any magnetic field.

In contrast to other satellites the SSS-1P satellite consist of a rigid main body that deploys

a coilable mast that contains at the top a sub-satellite. Due to this the satellite dynamics are

not the same as in the case of rigid satellites. The coilable mast must be consider as a flexible

structure, due to this the satellite is exposed to bending deformations that generate unexpected

1



Chapter 1 Introduction

and non parametric disturbances that the attitude control system must suppress.

Deployable structures on space are very common since this characteristic on spacecrafts

carry some advantages, one of this is the low launching volume [3]. When launching it is well

known that the payload’s weight is a very important limiting factor, since not all rockets can

carry all kind of payloads, but also payload’s volume is just as important since a rocket cannot

grow in size to carry all kind of spacecrafts or satellites, instead all payloads must fit inside

without consideration.

Figure 1: BUAA-sat Coilable mast [1]

Here is where structures with deployable appendages become useful. During launch and be-

fore detumbling the satellite can remain rigid as a compact body, once the spacecraft is delivered

to its required orbit all deployable components extend until final configuration is obtained. In

the case of the SSS-1 its deployable appendage is a flexible coilable mast, similar to the one in

figure 1. As can be seen, deployable structures do not only guarantee a practical way of deliver

large satellites, but also reduces the weight since many of this structures are lightweight [4] [5].

Even though this kind of advantages are highly desirable this type of structures are also non-

rigid. As a consequence flexibility comes with the vibration problem and it cannot be neglected.

As can be seen in next figure, flexibility can have an impact on satellite dynamics.

2
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Figure 2: BUAA-sat Coilable mast [2]

As can be seen, for a satellite such as the SSS-1 it is necessary to consider the flexible

structure in the dynamics modeling. Also is important to note that the vibration of the flexible

appendage affects the entire structure including the main rigid satellite. The two main objectives

of this research project are described in the next sub-section.

1.2 Objectives

• Mathematical model development of the rigid-flexible satellite:

An analytical approach based on the Lagrange method is followed in order to obtain the

equations of motion. This procedure must include the presence of a body (sub-satellite) at

the tip of the flexible appendage. The system dynamics will be time and space dependent

due to the presence of a continuous body, so the assumed modes method will be used

as discretization technique. Finally parametric uncertainty is inserted in the obtained

dynamic plant.

• Development of a control technique and synthesis of a robust controller:

The obtained dynamic plant is linearized and interconnected with weighting function

blocks that will specified control priorities of the close loop system. Two different con-

trollers (H∞ and µ) will be synthesized and compared while working with the nominal

and uncertain plant.

3



Chapter 1 Introduction

1.3 Literature Review

The Attitude Control in contrast to other satellite subsystems has a greater complexity and

importance on every mission. The ADCS is in charge of controlling the satellite’s orientation

during its mission [6, 7], it could be used to steer the satellite on a desired direction or counter

the external disturbance forces on it. The AFIT 6u cube-sat explains at [8] the development

of the ADCS subsystem based on four reaction wheels that provides redundancy in the case of

failure of one actuator or power loss.

The Delfi-n3Xt is the second generation 3U cubesat developed by TuDelft that works with an

active attitude control [9]. The Delfi-n3Xt uses a magnetometer and home made photo-diode

sun sensors, for 3-axis attitude control three reaction wells and three magnetorquers [10] are

used as actuators, the ADCS will work on five different modes: detumbling, coarse sun point-

ing, fine sun pointing, ground station tracking and experimental thruster pointing.

The ADCS test can be performed by generating a close approximation of space environment

by using an air bearing system and a geomagnetic field simulator. MIT Space Systems Labora-

tory designed and implemented a 4-coild per axis Helmholtz cage with a spherical air bearing

for testing attitude determination and control of cube-satellites [11]. Mentioned Helmholtz

cage was used as a test bed for the Microsized Microwave Atmospheric Satellite (MicroMAS)

ADCS [12], in contrast to previously mentioned satellites the MicroMAS uses an Earth Horizon

static Sensor (EHS) that was designed specifically for nano-satellites [13, 14]. All previously

mentioned literature assumes the satellite as a rigid body, therefore its dynamic model and con-

trol are designed from this structural premise. In the case of a satellite such as the SSS-1P a

coilable mast is extended, this appendage is flexible therefore it generates bending moments

due to external disturbance sources or control torques from main rigid satellite which contains

the ADCS actuators.

It must remain, the dynamics of a flexible structure are not as simple as the dynamics of a

rigid body, as a consequence new approaches for deriving the equations of motion must be taken

into consideration. Like most of current research on the topic, a flexible structure or appendage

such as solar panels or a extendable booms are considered as flexible beams.

4
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In [15] the dynamics and control of a rotating Euler-Bernoulli beam are derived by consider-

ing not only the transverse deformation, but also the axial deformation which is a consequence

of the beam’s centrifugal force, nevertheless, after deriving the equations of motion by using

the extended Hamilton’s principle the axial deformation was neglected to preserve simpleness.

This system simplification is observed in most of research on this topic [16–19] since impact of

axial deformation is not considerable nor as important as transverse deformation as long as the

angular speeds are below to the first natural frequency [20].

In other cases the flexible appendage has a payload located at the tip, this will also affect

the satellite dynamics. In [21] the impact of a mass at the end of a rotating beam is analyzed

in detail and the impact of the centrifugal force on the potential energy is derived so it can

be considered to create a more accurate dynamic model of the system by using Lagrange or

Hamiltonian approach. Like in previous cases, the axial deformation (generated by the cen-

trifugal force) is neglected and only the kinetic energy generated by the payload at appendage

tip is considered [22–27].

According to [28] the presence of structures such as solar panels, booms, antennae and their

constant increase in size plays an important role in pointing accuracy requirements, modeling

and understanding of flexibility is crucial for attitude control problem. In the case of flexible

satellites the assumption of a rotating beam with a mass or payload at the tip is widely used due

to the fact that most of appendages can be view as rotating beams. In [29, 30] the dynamics of

a satellite with one deployable solar panel are modeled while the kinetic and potential energy

are obtained from the central hub and a flexible beam attached together, then non linearities

are neglected and a vibration suppression control technique is designed. The case of a satellite

with two deployable solar panels is analyzed in [31] where structural damping is taken as a non

conservative force and the impact of the kinetic and potential energy is duplicated in contrast to

previous cases with only one flexible element.

In [32] the author proposes a composite controller with a hierarchical architecture by comb-

ing a disturbance-observer-based control (DOBC) and proportional derivative PD control. The

problem, which includes only one rigid body and one flexible appendage, is simplified to only

one axis of rotation. In this case the DOBC controller is considered to be a robust control

scheme where the modeling error can be estimated and compensated [33].

5
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In [30] it is stated that linearization of the satellite’s model carry a lost of important infor-

mation related to the true dynamics of the satellite. Therefore, parametric and non parametric

uncertainties from the system must be included, an H∞ control technique is used combined

with the uncertainty model so a more robust and reliable controller can be obtained

According to [34] the problem of attitude determination and control for flexible spacecraft

is linked not only to the parametric uncertainties but also to time-varying parameters and im-

precise collocation of attitude determination sensors. Since many factors are not included after

the linearization of the satellite’s dynamics a robust controller is required. This paper proposes

an integrated H∞, including an output feedback and a feed-forward component.

One of the most common flexible satellite problems is related to the Honey Comb type solar

panels used by many types of satellites, this type of structure are largely preferred due to its

light mass that reduces considerably the spacecraft’s weight. At [35] a proportional-derivative

controller integrated with the input shaping technique is proposed as a control method for atti-

tude maneuver and vibration suppression. The equations of motion and the boundary conditions

are derived by using the Hamiltonian Principle.

A rigid body attached to flexible appendages is also analyzed at [36] by using an adaptive

control system for orbiting satellite with described characteristics. The control method used

is the L1 developed by Havokimyan and Cao in [37]. The control system includes a state

predictor for unknown parameters generation and it is only studied for the pitch angle and its

correspondent derivative. Like all previously mentioned control methods the L1 is also suitable

for parametric uncertainties generated not only by vibration of flexible structures but also for

unexpected disturbances.

In [38] two control laws are implemented to guarantee convergence of the closed loop sys-

tem without using any angular velocity measurement. This quaternion based method describes

a partial state feedback where the modal variables describing flexible elements are not measur-

able. Implemented controller has two features, one is in the form of an observer-based feedback

and another where the angular velocity feedback is not used [39] [40].

6
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1.4 Report’s Content

This final thesis report is divided in six chapters, each develop important aspects of the the-

sis research project. The first introductory chapter contains relevant background related to the

topics of small satellites, attitude determination and control (ADCS) and its applications. A

brief explanation about flexible structures and satellites is also included in this section.

This first chapter also contains a literature survey where previous research and work on atti-

tude determination and control of small satellites is addressed. Different types of small satellites

are defined while its characteristics related to the ADCs system and testing are explained, most

of this small satellites are modeled as rigid bodies in contrast to the objective of this thesis re-

search project. The second part of the literature review contains relevant research in the field

of flexible structures and dynamics modeling, most of these are assumed as Euler-Bernoulli

beams.Last part of the literature review explains the previous research on control techniques of

flexible structures. Since most of this dynamics are complex it is important to obtain a controller

capable of dealing not only with external disturbances but with also parametric uncertainties.

The second chapter addresses relevant theory background. The first part explains the most

commonly used techniques for deriving the equations of motion. Then the chapter follows to

define the discretization technique that will be used in the research project. This chapter also

gives a brief explanation of the sensitivity function and its importance. Following, the most

relevant theory behind the H∞ and µ synthesis control is also included in section two.

Chapter three addresses the problem of the flexible satellite itself by deriving the equations

of motion using the Lagrange method and the assumed modes method for system discretization.

The model is finally linearized for further controller synthesis.

Chapter four describes the controller strategy. In this case weighting functions are defined in

order to prioritize some controller tasks over the others, sensor data is obtained and controllers

H∞ and µ synthesis are obtained.

On Chapter five the close loop system is tested using the two mentioned controllers. Test

was performed in two scenarios, the first only considers the nominal dynamic plant, and the sec-

ond includes parametric uncertainty. Results are analyzed and effectiveness of both controllers

are compared

7
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Finally, chapter six addresses the conclusions driven from the research, some future exten-

sions of this work are also included.

2 Theoretical Background

This section contains the most relevant theory background related to the project’s develop-

ment. First, the fundamental methods to formulate the equations of motion (EOM) for structures

conformed of rigid and deformable bodies are reviewed. Second, the discretization method,

which allows to analyze the dynamics of a continuous body in a discrete manner and finally

the H∞ control synthesis technique, which minimizes the impact of external disturbances and

noise on the system is analyzed.

2.1 Formulating the Equations of Motion

Since the proposed system is composed not only of unique particles but of continuous struc-

tures the system dynamics are represented by partial differential equations, since each point of

a deformable structure will be in a particular position at a particular time, which means that

the system is not longer only time dependent but also space dependent. There are two known

way to obtain this differential equations of motion, the Lagrangian approach and the extended

Hamilton’s principle. Even though the Lagrangian method is the one that will be used on this

report the extended Hamilton’s principle will be explained just for completeness.

2.1.1 Extended Hamilton’s Method

This is the most common variational principle of mechanics and according to [41] it can be

view as an integrated form of the d’Alembert’s principle. Like the Lagrange method, it uses the

variation of kinetic and potential energy and the work done by Non-conservative forces such as

the viscous damping and the Rayleigh dissipation function to derive the equations of motion.

The generalized Hamilton’s principle is given by the variational statement:

∫ t2

t1

δ(T − V )dt+

∫ t2

t1

δWncdt = 0 (1)

8
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Where T represents the kinetic energy, V the potential energy, δ is known as the varia-

tional operator and δWnc is the virtual work done by non conservative forces. Kinetic energy

is expressed in terms of the generalize coordinates and their time derivatives, potential energy

only depends on the generalize coordinates and the virtual work done by the non-conservative

forces is expressed as a linear function of the virtual displacement:

T = T (q1, q2, ..., qN , q̇1, q̇2, ..., q̇N , t)

V = V (q1, q2, ..., qN , t)

δWnc = Q1δq1 +Q2δq2 + ...+QNδqN

(2)

The generalized forces and the coordinates are represented byQi and qi respectively, N rep-

resents the number of independent variables. Even though the concept is considered as straight-

forward its calculation and the algebra required include integration by parts, which makes the

EOM formulation process tedious and it becomes even more complicated while dealing with

multi body or hybrid systems. Lagrange approach becomes an alternative.

2.1.2 Lagrange Method

By replacing (2) into (1), taking variations and integrating by parts [41] leads to:

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= Qi, i = 1, 2, ...N (3)

Which is known as the Lagrange equation, where the Lagrangian L is defined as:

L = T − V (4)

System’s damping can be included on the Lagrange formulation by using the Rayleigh dis-

sipation function, which allows to represent the entire set of viscous damping forces as a single

scalar:

R =
1

2

n∑
i=1

n∑
i=1

cij q̇iq̇j (5)

9
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By separating the non-conservative forces on equation (3) on viscous dissipative forces and

other external forces such us external control torques, the Lagrange equation can be finally

expressed as:

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
+
∂R

∂q̇i
= Qi, i = 1, 2, ...N (6)

2.2 Finite-Dimensional Analysis of Continuous System

In contrast to particle-composed or rigid-body systems which variables are only time depen-

dent, a flexible structure system such as the case of a satellite with a flexible appendage must be

represented by variables that are time and space dependent. This introduces in the system partial

differential equations which not are not only harder to deal with analytically, but also compu-

tationally [42] [43]. The two most common methods for spatial discretization are the assumed

modes method (the one that will be used in this project) and the finite element method [44].

2.2.1 Assumed Modes Method

As previously mentioned, the derived equations of motion for a continuous system are time

and space dependent. The assumed modes method represents the structural deflection y(x, t)

by finite series of space dependent functions multiplied by time dependent functions, in other

words: the assumed modes method divides the time/space defined deflection into two separated

functions, each of them dependent only in time or space:

y(x, t) =
N∑
i=1

φi(x)qi(t) (7)

Where φi(x) represents the ith mode shape, and N denotes the number of degrees of freedom

for the discrete approximation. This new deflection representation will be used in conjunction

with the Lagrangian method in terms of the generalize coordinates. By using equation (7) the

kinetic and potential energy can be represented as:

T (t) = 1
2

∑N
i=1[M ]ij q̇iq̇j = 1

2
q̇TMq̇

V (t) = 1
2

∑N
i=1[K]ijqiqj = 1

2
qTKq

(8)
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Where Mij and Kij denote the (i,j)th element of the mass matrix M and the stiffness matrix

K respectively. The damping matrix C and it elements can be derived from equation (5).

Finally the equations of motion are calculated by using the Lagrange equation (6) considering

the Lagrangian as L = T − V . With the Lagrangian defined, the equations of motion can be

easily derived by replacing the values of (8) into (5):

N∑
j=1

[M ]rj q̈j(t) +
N∑
j=1

[C]rj q̇j(t) +
N∑
j=1

[K]rjqj(t) = Qr r = 1, ..., N (9)

Expressed in compact matrix form:

Mq̈(t) + Cq̇(t) +Kq(t) = Q(t) (10)

Note that the equation of motion at (10) looks very familiar, this is because it is similar to

the common dynamic representation of the simple mass-spring-damper system, but the most

important thing is that the coordinate q and its first and second time derivatives (q̈, q̇) are only

time dependent. In order to retrieve the original coordinate y(x, t) equation (7) can be used.

The assumed modes method is quite attractive due to its simpleness and is very useful as

long as it is possible to approximate the mode shapes φi(x). This is the reason why it is the

chosen method for the modeling of the rigid-flexible satellite. For more complicated structures

with irregular geometric shapes the finite element method (FEM) becomes a more feasible path

to follow, since it will be not possible to derive or obtain easily the shape modes.

2.3 Controller Synthesis

The famous British statistician George E.P.Box stated once that "All models are wrong, but

some are useful". This simple but very important quote has a deep meaning which becomes

more obvious while a model is tested on a real world scenario. It is crucial to know that even

if a model has been rigorously derived with all possible consideration to approximate better the

real physical system it will never be perfect, as a consequence all modeled systems are in a

certain way wrong.

11
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However according to [45] during the early 80’s the H∞ norm as a metric of robustness

was proposed and since then the robust control synthesis and the minimization problem became

one of the main topics of research in control systems which are not perfectly modeled, also

known as systems with uncertainty.

2.3.1 Sensitivity Function

The objective of the H∞ synthesis is to optimize/minimize the impact of external sources

such as noise and disturbance by obtaining an optimal controller K. In figure (3) a feedback

control system for the nominal plant P can be observed:

Figure 3: System’s Block Diagram

Where r represents a reference signal, u the controller output, d the external disturbances,

y is the system’s output, n the noise and e is the error between the reference signal and the

system’s output. System equation is derived:

y = Pdd+ PK(r − y − n)

(I − PK)y = PKr + Pdd− PKn
(11)

By solving equation (11) for y, next equation is obtained

y = (I − PK)−1PKr + (I − PK)−1Pdd− (I − PK)−1PKn (12)

The term (I −PK)−1 is defined as the sensitivity function S, a representation of its magni-

tude in the frequency domain can be observed in figure 4.

S = (I + PK)−1 (13)

12
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Figure 4: Sensitivity Function in the frequency domain

It can be inferred from equation (13) that as long as the value of (I − PK)−1 is small the

impact of external elements like noise and disturbances including reference signals (exogenous

inputs) will remain small, therefore for having a robust controller that can maintain stability it

is important to keep the value of S as small as possible.

2.3.2 H∞ optimization

It can be seen in figure 4 that the maximum point ||P ||∞ of the sensitivity function is located

at the cross frequency ωc. This point represents the H∞ norm of the plant and like as previously

mentioned it must remain small for the system to be robust.

The minimization problem can have different objectives according to the system necessities,

a cost function can be derived for each of the following cases [46]:

• For good tracking and disturbance attenuation: ||(I + PK)−1||∞

• For good noise rejection: || − (I + Pk)−1PK||∞

• For less control energy: ||K(I + PK)−1||∞

13



Chapter 2 Theoretical Background

It could be possible for a system to require not only one cost function, such as the case of

mixed sensitivity or also known as S over KS problem:

min
K

∣∣∣∣∣∣∣∣ (I + PK)−1

K(I + PK)−1

∣∣∣∣∣∣∣∣ (14)

A standard configuration of the system in figure 3 can be obtained by the Linear Fractional

Transformation (LFT) technique:

Figure 5: Standard H∞ configuration

Where w, z, u and y are the exogenous inputs, regulated outputs, controller output and sys-

tem P output respectively, this plant P is also known as the generalized plant or interconnected

system:

P (s) =

P11(s) P12(s)

P21(s) P22(s)

 (15)

This equation is known as the 4-matrix representation and it represents the mapping from

the system inputs to its outputs. The minimization problem in this case focuses on reducing the

impact of the exogenous inputs w into the regulated outputs z:

z = [P11 + P12(I − P22K)−1KP21]w

z =: S(P,K)w
(16)
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Where the LFT S(P,K) is the lower fractional transformation of P and K. Therefore the

H∞ control problem becomes:

min
K
||S(P,K)|| (17)

The generalized plant P can also be defined by its 9-matrix representation:

P =


A B1 B2

C1 D11 D12

C2 D21 D22

 (18)

Which is the state-space description of the generalize plant P:

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t)

y(t) = C2x(t) +D21w(t) +D22u(t)

(19)

Linear Matrix Inequalities (LMIs): As its name states, the linear matrix inequalities

are matrix inequalities that are linear in the matrix variables [47], it standard form appears as

follows:

F (X) = x1F1 + x2F2 + ...+ xmFm ≤ F0

F (x) =
∑m

i=1 xiFi − F0 ≤ 0

(20)

Where x = (x1, x2, ..., xm) are unknown scalars called decision variables and Fi ∈ Rn×n

are known symmetric matrices for i = 0, ...,m. The set of solutions x ∈ Rn|F (x) ≤ 0 is

assumed as convex, which means that it is possible o formulate a convex optimization problem

that minimizes a linear objective function h(x) of a vector of decision variables x with an LMI

restrictions as in the form:

min
x
h(x) :

{
F (x) ≤ 0 (21)

The LMI Fx maps a vector space to a cone of semi-defined symmetric matrices.
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The Schur Complement Lemma: The Schur complement works as a tool to convert

non-linear inequalities (that are non convex) to linear matrix inequalities (LMI). Consider a

symmetric matrix P:

P = P T =

 A B

BT C

 (22)

The Schur complement ∆(.) relative to the inner matrices A and C has the form:

∆A = C −BTA−1B

∆C = A−BC−1BT
(23)

It can be stated, according to the Schur complement lemma, that:

P < 0 ⇐⇒ A < 0,∆A < 0 ⇐⇒ C < 0,∆C < 0

P > 0 ⇐⇒ A > 0,∆A > 0 ⇐⇒ C > 0,∆C > 0
(24)

The properties of the Schur complement lemma are used to analyze the positivity of P and

to obtain matrix inequalities that define convex regions.

The KYP Lemma: The Kalmam-Popov-Yakubocivh lemma, also known as the Bounded

Real Lemma is a widely used theorem in control theory. It can be used to determine the H∞

norm of a system and for many LMI results [47] [48].

For a system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(25)

Where the state matrices A,B,C and D are known and the system can be expressed in matrix

form as:

Ĝ(s) =

 A B

C D

 (26)
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It can be stated that the following are equivalent:

1) ||G||H∞ ≤ γ

2) There exists a X > 0 such that:ATX +XA XB

BTX −γ

+ 1
γ

CT

DT

[C D
]
< 0

(27)

Obtaining a close loop representation for the LFT: Recall the H∞ standard configura-

tion in figure 5, now the plant P and controller K are defined as:

P =


A B1 B2

C1 D11 D12

C2 D21 D22

 (28)

K =

 AK BK

CK DK

 (29)

And S(P,K) is the LFT that maps the exogenous inputs w to the regulated outputs z.

Considering a general case where the controller K is not static and has internal dynamics, the

state space representation of the plant and the controller can be written as:

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t)

y(t) = C2x(t) +D21w(t) +D22u(t)

(30)

ẋK(t) = AkxK(t) +BKy(t)

u(t) = CKxK(t) +DKy(t)
(31)
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The objective is to find a close loop state space representation of S(P,K). The intercon-

nected system:

 ẋ(t)

ẋK(t)

 =

A 0

0 AK

 x(t)

xK(t)

+

B2 0

0 BK

u(t)

y(t)

+

B1

0

w(t)

z(t) =
[
C1 0

] x(t)

xK(t)

+
[
D12 0

]u(t)

y(t)

+D11w(t)

(32)

From controller and plant output next two equations are obtained:

u(t) = DKy(t) + CKxK(t)

y(t) = D22u(t) + C2x(t) +D21w(t)
(33)

Its matrix representation:

 I −DK

−D22 I

u(t)

y(t)

 =

 0 CK

C2 0

 x(t)

xK(t)

+

 0

D21

w(t) (34)

The close loop representation can be obtained by replacing equation (34) into equation (32):

 ẋ(t)

ẋK(t)

 = ACL

 x(t)

xK(t)

+BCLw(t)

z(t) = CCL

 x(t)

xK(t)

+DCLw(t)

(35)

Where:

ACL =

A 0

0 AK

+

B2 0

0 BK

 I −DK

−D22 I

−1  0 CK

C2 0


BCL =

B1 +B2DKQD21

BKQ21



CCL =
[
C1 0

]
+
[
D12 0

] I −DK

−D22 I

−1  0 CK

C2 0


DCL = D11 +D12DKQD21

Q = (I −D22DK)−1

(36)
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The interconnection between the plant and controller trough the LFT S(P,K) is well posed

if only if the expression at equation (36) is invertible:

 I −DK

−D22 I

 (37)

The inverse of equation (37) is:

 I −DK

−D22 I

−1

=

I +DKQD22 DKQ

QD22 Q

 (38)

Therefore as long asQ = (I−DKD22) equation at (37) is invertible and the interconnection

S(P,K) is well-posed, as a consequence a valid close loop expression for the close loop LFT

S(P,K) was found. Note that if DK = 0 or D22 = 0 the system interconnection is intrinsically

well-posed. It was stated at equations (17) and (18) that H∞ controller synthesis was based on

finding a controller K that could minimize the H∞ norm of S(P,K):

min
K
||P11 + P12(I −KP22)−1KP21||H∞ (39)

Since in previous section a valid state space close loop representation was found at equation

(35) it is now possible to say that expression at equation (39) is equivalent to:

min AK BK

CK DK



∣∣∣∣∣∣∣∣
 ACL BCL

CCL DCL

 ∣∣∣∣∣∣∣∣
H∞

(40)

Where AK , BK , CK and DK , refer to the H∞ controller computed to minimize the H∞

norm of the close loop system.
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2.3.3 Parametric uncertainty and µ synthesis

Parametric uncertainty refers to the inaccurate description of component characteristics. In

contrast to a nominal model, which refers to the dynamic modeling without uncertainty on

the parameters, an uncertain system present a variation in its characteristics and response to

external inputs. The parametric uncertainty modeling problem is concerned with constructing

the state-space model [49].

Figure 6: Standard P-∆ configuration

Where ∆ represent the perturbation block, it contains all the uncertainties of each parameter

[δ1 δ2 ... δn] in diagonal form

∆ =


δ1 0 ... 0

0 δ2 ... 0

... ... ... 0

0 ... 0 δn

 (41)

In some cases a controller obtained through H∞ synthesis will not be capable of dealing

with large parametric uncertainties, creating a not optimal solution or a unstable close loop

plant. Another control technique that considers the parametric uncertainty block ∆ is the µ

synthesis with DK iteration. µ is as non-negative function that gives a generalization of the

value σ̄ that is useful for analyzing robust stability and performance conditions, it is defined as:

µ(P ) =
1

min{km|det(I − kmP∆) = 0forstructured∆, σ(∆) ≤ 1
(42)
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The µ DK iteration follows the next algorithm:

1. K-step: synthesize an H∞ controller for the scaled problem mink||DN(K)D−1||∞ with

a fixed D(s), usually D=I.

2. D-step: Find D(jω) to minimize at each frequency σ̄(DND−1(jω)) with fixed N.

3. Fit the magnitude for each D(kω) to a stable and minimum-phase D(s), go to step 1 and

repeat until the prespecified convergence tolerance is achieved or the maximun iteration

number is reached.

In most of cases the µ synthesis with DK iteration works well, but very important drawback

is that the order of the obtained controller can be large. This could be an issue at the moment of

implementing the close loop plant on a digital system. As a consequence, order reduction may

be needed.
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3 Dynamics modeling

3.1 Deriving the equations of motion

In this section the mathematical model of the rigid-flexible satellite will be addressed. The

system is composed of a rigid structure (main-satellite), a flexible appendage (coilable mast)

and a rigid sub-satellite at the tip. The dynamics of the system will be obtained by using

the Lagrange method, therefore kinetic and potential energy of each part will be derived. As

discretization technique the assumed modes method will be used in combination with the system

energies (T, V ) to derive the equations of motion. .

Figure 7: Rigid-flexible satellite representation

From figure 7 it can be observed that the inertial coordinate frame is denoted by the axis X ′,

Y ′ and Z ′. Angular displacement of the thee axis are generated by torques τx, τy and τz. The

rigid main satellite has a inertia of Jm, and the distance between its center and the origin of the

coilable mast is R. The flexible appendage, assumed as an Euler Bernoulli beam, has a uniform

bending stiffness EI , a uniform linear mass density ρ, and a length L.
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The rigid sub-satellite at the tip has a mass m and its moment of inertia is Js. The distance

between the center of the main satellite and an arbitrary point at the beam is ~r and the elastic

deformations at this specific point is w(x, t) in the ĵ direction and v(x, t) in the î direction. The

elastic deformation at the sub-satellite position depends on w(L, t) and v(L, t), torsional and

axial deformation are not considered.

The vector ~r is defined as:

~r =


R + x

w(x, t)

v(x, t)

 (43)

While its time derivative ~̇r :

~̇r =


θ̇2v − θ̇3w

−θ̇1v + θ̇3(R +X) + ẇ

θ̇1w − θ̇2(R +X) + v̇

 (44)

With the ~̇r obtained the satellite kinematics can be derived. Lagrangian approach will be

followed in order to obtain the satellite dynamics.

3.1.1 Lagrange Equation

The total kinetic energy T is defined as:

T = Th + Tb + Ts (45)

Where Th, Tb and Ts are the kinetic energy of the main satellite, the flexible beam and the

sub-satellite respectively.

Th = 1
2
Θ̇TJhΘ̇

Tb = 1
2
ρ
∫ L

0
~̇r ~̇r dx

Ts = 1
2
m ~̇rL ~̇rL + 1

2

[
Θ + ri

]
Jt
[
Θ + ri

]
(46)
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Where:

Θ =
[
θ1 θ2 θ3

]T
ri =

[
0 v̇′L ẇ′L

]

Jh =


Jh1 0 0

0 Jh2 0

0 0 Jh3

 Js =


Js1 0 0

0 Js2 0

0 0 Js3


The expanded kinetic energy of the rigid main satellite:

Th = 1
2
Jh1θ̇1

2
+ 1

2
Jh2θ̇2

2
+ 1

2
Jh3θ̇3

2 (47)

The first time derivative of the position vector ~r is ~̇r, its value was defined in equation (44).

By replacing the value of ~̇r into Tb at equation (46) the kinetic energy of the beam becomes:

Tb = 1
2
ρ
∫

L

0

[
θ̇2v − θ̇3w

]2
dx+ 1

2
ρ
∫

L

0

[
θ̇3(R + x) + ẇ − θ̇1v

]2
dx

+1
2
ρ
∫

L

0

[
θ̇1w + v̇ − θ̇2(R + x)

]2
dx

(48)

Expanding beam’s kinetic energy expression:

Tb = 1
2
ρ

∫
L

0

{[
θ̇2

2
v2 − 2θ̇2θ̇3vw + θ̇3

2
w2
]

+
[
θ̇3

2
(R + x)2 + 2θ̇3ẇ(R + x)− 2θ̇3θ̇1v(R + x) + ẇ2 − 2θ̇1ẇv + θ̇1

2
v2
]

+
[
θ2

1w
2 + 2θ̇1wv̇ − 2θ̇1θ̇2w(R + x) + v̇2 − 2v̇θ̇2(R + x) + θ̇2

2
(R + x)2

]}
dx

(49)

Now the kinetic energy related to the rigid sub-satellite at the tip of the flexible appendage

is derived. The first time derivative of the position vector at the tip of the satellite is:

~̇rL =


θ̇2vL − θ̇3wL

−θ̇1vL + θ̇3(R + L) + ẇL

θ̇1wL − θ̇2(R + L) + v̇L

 (50)
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By replacing this value in equation (46), the kinetic energy of the sub satellite is obtained:

Ts = 1
2
m
[
θ̇2vL − θ̇3wL

]2
+ 1

2
m
[
θ̇3(R + L) + ẇL − θ̇1vL

]2
+1

2
m
[
θ̇1wL + v̇L − θ̇2(R + L)

]2
+ 1

2

[
Js1θ̇1

2
+ Js2(θ̇2 + v̇

′
L)2 + Js3(θ̇3 + ẇ

′
L)2
] (51)

Expanding sub-satellite kinetic energy expression::

Ts = 1
2
m
{
θ̇3

2
(R + L)2 + 2θ̇3ẇL(R + L) + ẇ2

L + θ̇3
2
w2
L

+θ̇2
2
(R + L)2 − 2θ̇2v̇L(R + L) + v̇2

L + θ̇2
2
v2
L + θ̇1

2
v2
L − 2θ̇1ẇL + θ̇1

2
w2
L

+2θ̇1v̇)LwL − 2θ̇2θ̇3vLwL − 2θ̇1θ̇2wL(R + L)− 2θ̇3θ̇1vL(R + L)
}

+1
2

{
Js1θ̇1

2
+ Js2θ̇2

2
+ 2Js2θ̇2v̇

′
L + Js2v̇

′
L + Js3θ̇3

2
+ 2Js3θ̇3ẇ

′
L + Js3ẇ

′2
L

}
(52)

The total kinetic energy expression (T ) is obtained by replacing results from equations (47),

(49) and (52) into (45):

T = 1
2
θ̇3

2
[
Jh3 + ρ

∫
L

0
(R + x)2dx+ ρ

∫
L

0
w2dx+m(R + L)2 +mw2

L + Js3

]
+1

2
θ̇2

2
[
Jh2 + ρ

∫
L

0
(R + x)2dx+ ρ

∫
L

0
v2dx+m(R + L)2 +mv2

L + Js2

]
+1

2
θ̇1

2
[
Jh1 + ρ

∫
L

0
v2dx+ ρ

∫
L

0
w2dx+m(wL)2 +mv2

L + Js1

]
+1

2
θ̇3

[
2ρ

∫
L

0
(R + x)ẇdx+ 2m(R + L)ẇL + 2Js3ẇ

′
L

]
+1

2
θ̇2

[
− 2ρ

∫
L

0
(R + x)v̇dx− 2m(R + L)v̇L + 2Js2v̇

′
L

]
+1

2
θ̇1

[
− 2ρ

∫
L

0
vẇdx− 2mvLẇL + 2ρ

∫
L

0
wv̇dx+ 2mwLv̇L

]
+1

2

[
ρ

∫
L

0
ẇ2dx+mẇ2

L + Js3ẇ
′2
L

]
+ 1

2

[
ρ

∫
L

0
v̇2dx+mv̇2

L + Js2v̇
′2
L

]
−1

2

[
2θ̇2θ̇3

(
ρ

∫
L

0
vwdx+mvLwL

)
+ 2θ̇1θ̇2

(
ρ

∫
L

0
w(R + x)dx+mwL(R + L)

)
+2θ̇3θ̇1

(
ρ

∫
L

0
v(R + x)dx+mvL(R + L)

)]

(53)
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The main issue with this expression is its size. As a consequence, obtaining the mass matrix

M from it can become a tedious task, due to this the whole kinetic equation will be simplified by

using composed matrix elements. Flexible appendage deformations such as w(x, t) and v(x, t)

are embedded in the Rb matrix.

Rb =


0 v −w

−v 0 (R + x)

w −(R + x) 0

 (54)

Note that these deformation (w(x, t) and v(x, t)) will no longer be fully expressed with

its space and time dependence but just by w and v. The sub satellite moment of inertia is

represented in two new different matrices (J∗s and J∗∗s ). In contrast to the original Js these new

matrices only differ in the position of the inertia elements inside them:

J∗s =


Js1 0 0

0 0 Js3

0 Js2 0

 J∗∗s =


Js1 0 0

0 Js3 0

0 0 Js2

 (55)

By using these new obtained matrix expressions, the angular position vector Θ and a de-

formation vector u = [0 w v] a more compact expression of the total kinetic energy T is

obtained:

T = 1
2
ρ

∫
L

0
Θ̇TR2

bΘ̇dx− 1
2
mΘ̇TR2

bLΘ̇ + 1
2

[
2ρ

∫
L

0
u̇TRbΘ̇

]
+ 1

2

[
u̇TLRbLΘ̇

]
+1

2

[
2u̇TLJ

∗
s Θ̇
]

+ 1
2
ρ

∫
L

0
u̇2dx+ 1

2
mu̇2

L + 1
2
Θ̇JhΘ̇ + 1

2
Θ̇JsΘ̇ + 1

2
u̇

′
LJ
∗∗
s u̇

′
L

(56)

The previous step before obtaining the mass matrix M is to separate the kinetic energy in

two expressions one in term of angular position vector Θ and the other in terms of the deforma-

tion vector u:
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TΘ̇ = −1
2
ρ

∫
L

0
(Θ̇R2

bΘ̇)dx− 1
2
mΘ̇R2

bLΘ̇ + 1
2

[
ρ

∫
L

0
(u̇TRbΘ̇)dx

]
+ 1

2

[
mu̇TLRbLΘ̇

]
+1

2

[
u̇

′
LJ
∗
s Θ̇
]

+ 1
2
Θ̇JhΘ̇ + 1

2
Θ̇JsΘ̇

Tu = 1
2
ρ

∫
L

0
u̇2dx+ 1

2
mu̇2

L + 1
2

[
ρ

∫
L

0
u̇TRbΘ̇dx

]
+ 1

2

[
mu̇TLRbLΘ̇

]
+1

2

[
u̇

′T
L J
∗∗
s u̇

′
L

]
+ 1

2

[
u̇

′T
L J
∗
s Θ̇
]

(57)

These two last equation represent the kinetic energy of the rigid-flexible satellite in a more

compact way if compared to the original expression at (53). As can be inferred, the flexible

appendage is a continuous body, therefor discretization of the flexible system is required. Like

mentioned before the assumed modes method will be used.

3.1.2 Spatial Discretization

As spatial discretization technique the Assumed Modes method, or most commonly known

as modal analysis, is used [41]. The assumed mode method allows to represent the time and

space dependent function such as w(x, t) as a multiplication of the assumed mode shape φi(x)

and the generalize coordinates qi(t) which are only-space and only-time dependent respectively:

w(x, t) =
N∑
i=1

φi(x)ηi(t) (58)

Where N defines the number of degrees of freedom. The mode shapes can be found by:

φi(x) = C1(cosh(βix)− cos(βix)−Kr(sinh(βix)− sin(βix)))

Kr = cosh(βiL)+cos(βiL)
sinh(βiL))+sin(βiL)

(59)

The values of βi can be obtained from the transcendental equation, also known as the char-

acteristic equation:

1 + cosh(βiL)cos(βiL) +
m

ρL

(
sinh(βiL)cos(βiL)− cosh(βiL)sin(βiL)

)
= 0 (60)
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Assuming that the mass of the sub-satellite is m = 1 Kg, line density of the coilable mast

ρ = 1.5 Kg/m, its length L = 2 m and the number of degrees of freedom N = 2. The roots

of the transcendental equation can be observed in figure 8.

Figure 8: Roots of transcendental equation

Only the first two roots are necessary, since a two degrees of freedom mode is used:

β1 = 1.514

β2 = 4.175

The mode shapes then can be obtained by replacing the values of β1 and β2 into equation

(60). If assuming φ =
[
φ1(x) φ2(x)

]T and q =
[
η1 η2

]
a new vector expression for the elastic

deformation and velocity at equation (58) is obtained:

w(x, t) = φTy qy

ẇ(x, t) = φTy q̇y

v(x, t) = φTz qz

v̇(x, t) = φTz q̇z

(61)
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In order to keep the matrix form that allowed to simplify the original T expression the shape

modes are now represented as:

Φ =


0 0 0

0 φ1 0

0 0 φ2

 (62)

By applying the assumed modes method for discretization of the kinetic energy, a new

simplified T expression is obtained:

T = Θ̇TM11Θ̇ + q̇TM12Θ̇

q̇TM21Θ̇ + q̇TM22q̇

(63)

Where:

M11 = −1
2
ρ

∫
L

0
R2
bdx− 1

2
R2
bL + 1

2
Jh + 1

2
Js

M12 = 1
2
ρ

∫
L

0
ΦRbdx+ 1

2
mΦLRbL + 1

2
Φ

′
LJ
∗
s

M21 = M
′
12

M22 = 1
2
ρ

∫
L

0
ΦΦdx+ 1

2
mΦLΦL + 1

2
Φ

′
LJ
∗∗
s Φ

′
L

(64)

Kinetic energy can be now re-expressed in a matrix form:

T =
[
Θ̇T q̇T

]M11 M12

M21 M22

Θ̇

q̇

 (65)
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The mass matrix, which is originally denoted as the letter M , is composed of four elements,

each of those are derived and calculated in detail:

M11 = 1
2


Jhx 0 0

0 Jhy 0

0 0 Jhz

+ 1
2


Jhx 0 0

0 Jhy 0

0 0 Jhz



+ 1
2ρ

∫
L

0



−q1φT1 φ1qT1 − q2φT2 φ2qT2 q1(R+ x)φT1 q2(R+ x)φT2

q1(R+ x)φT1 −(R+ x)2 − q2φT2 φ2qT2 q2φ
T
2 φ1q

T
1

q2(R+ x)φT2 q2φ
T
2 φ1q

T
1 −(R+ x)2 − q1φT1 φ1q1


dx

+ 1
2m



−q1φT1Lφ1LqT1 − q2φT2Lφ2LqT2 q1(R+ L)φT1L q2(R+ L)φT2L

q1(R+ L)φT1L −(R+ L)2 − q2φT2Lφ2LqT2 q2φ
T
2Lφ1Lq

T
1

q2(R+ L)φT2L q2φ
T
2Lφ1Lq

T
1 −(R+ L)2 − q1φT1Lφ1Lq1



(66)

M12 = 1
2


0 0 0

0 0 Js3φ
′

1L

0 Js2φ
′

2L 0

+ 1
2ρ

∫
L

0


0 0 0

−q2φ1φ2 0 φ1(R+ x)

q1φ2φ1 −φ2(R+ x) 0

 dx

+ 1
2m


0 0 0

q2φ
T
1Lφ2L 0 φ1L(R+ L)

q1φ
T
2Lφ1L −φ2L(R+ L) 0


(67)

M22 = 1
2


0 0 0

0 Js3φ
′2
1L 0

0 0 Js2φ
′2
2L

+ 1
2ρ

∫
L

0


0 0 0

0 φT1 φ1 0

0 0 φT2 φ2

 dx

+ 1
2m


0 0 0

0 φT1Lφ1L 0

0 0 φT2Lφ2L


(68)
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The mass matrix M contains time dependent elements, in order to synthesize an H∞ or µ

controller it is necessary of linearize the plant. Each of the mass matrix elements are linearized

around the equilibrium point q1 = q2 = [0]:

M11 =


J1 0 0

0 J2 0

0 0 J3

 (69)

Where:

J1 = Jh1 + Js1

J2 = Jh2 + Js2 + ρ
∫ L

0
(R + x)2dx+m(R + L)2

J3 = Jh3 + Js3 + ρ
∫ L

0
(R + x)2dx+ 1

2
m(R + L)2

M12 =


0 0 0

0 0 Mrf1

0 Mrf2 0

 (70)

Where:
Mmrf1 = ρ

∫ L
0
φ1(R + x)dx+mφ1L(R + L) + Js3φ

′
1L

Mmrf2 = ρ
∫ L

0
φ2(R + x)dx+mφ2L(R + L) + Js2φ

′
2L

M22 =


0 0 0

0 Mff1 0

0 0 Mff2

 (71)

Where:
Mff1 =

∫ L
0
φT1 φ1dx+ φT1Lφ1L + φ

′T
1Lφ

′
1L

Mff2 =
∫ L

0
φT2 φ2dx+ φT2Lφ2L + φ

′T
2Lφ

′
2L
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By replacing equations 69, 70 and 71 in equation 65 the linearize M matrix is obtained:

M =



J1 0 0 0 0

0 J2 0 0 Mrf1

0 0 J3 Mrf2 0

0 0 MT
rf2 Mff1 0

0 MT
rf1 0 0 Mff2


q =



θ̇1

θ̇2

θ̇3

q̇1

q̇2


(72)

Total kinetic energy can be expressed as:

T = 1
2
q̇[M ]q̇ (73)

The potential energy of the system is calculated in order to obtain the stiffness matrix:

V =
1

2
EIw

∫ L

0

w
′′2dx+

1

2
EIv

∫ L

0

v
′′2dx (74)

By applying the assumed modes method for discretization, the potential energy becomes:

V =
1

2
EIwq

T
1

(∫ L

0

φ
′′T
1 φ

′′

1dx
)
q1 +

1

2
EIvq

T
2

(∫ L

0

φ
′′T
2 φ

′′

2dx
)
q2 (75)

Stiffness matrix K is can be defined as:

K =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 Kff1 0

0 0 0 0 Kff2


(76)
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Where:
Kff1 = EIw

∫ L
0
φ

′′T
1 φ

′′
1dx

Kff2 = EIv
∫ L

0
φ

′′T
2 φ

′′
2dx

(77)

Potential energy can be now expressed as:

V = 1
2
q[K]q (78)

Damping coefficient is defined as Ke, with it the Rayleigh dissipation function can be ob-

tained:

R = 1
2
q̇[D]q̇ (79)

The damping matrix of the system is defined as:

D =
1

2
KewEIwq

T
1

(∫ L

0

φ
′′T
1 φ

′′

1dx
)
q1 +

1

2
KevEIvq

T
2

(∫ L

0

φ
′′T
2 φ

′′

2dx
)
q2 (80)

In order to derive the system dynamics the first step is to obtain the Lagrangian, defined at

equation (4).

L =
1

2
q̇[M ]q̇ − 1

2
q[K]q (81)

The second step is to obtain the Lagrange equation defined at (6):

d
dt

(∂L
∂q̇

)− ∂L
∂q

+ ∂R
∂q̇

= Q

d
dt

([M ]q̇) + [K]q + [C]q̇ = Q
(82)

Finally the linearize rigid-flexible satellite equation of motion is:

[M ]q̈ + [K]q + [C]q̇ = Q (83)

Where the generalize coordinates are defined as Q = [τx τy τz 0 0 0 0]T . The mass,

stiffness and damping matrix are numerically calculated by using the system parameters in next

section.

33



Chapter 3 Dynamics modeling

3.2 Uncertain Plant

In previous section the equations of the rigid-flexible micro-satellite were obtained, also

a linear expression was obtained at equation (83) an it would be used to obtain a state space

representation of the system. Nominal values of the system parameter are defined in table 1:

Table 1: Rigid-Flexible satellite parameters

Parameters Values

Length of the beam L = 2 m

Main satellite radius R = 0.5 m

Inertia of main satellite Jm = diag([0.7,2.5,1.5]) Kg.m2

Inertia of sub-satellite Js = diag([0.4,0.2,0.2]) Kg.m2

Mass of sub satellite m = 1 Kg

Flexural rigidity of the beam EIw = 1.5 EIv = 1.72 Nm2

Line density of beam ρ = 1.5 Kg/m

Damping coefficient Ke = 0.086

Based on [27] in this project five parameters will be assumed as uncertain:

• Mass of the sub-satellite (m), 15% of uncertainty

• Line density of the beam (mρ), 15% of uncertainty

• Inertia of main-satellite (Js), 20% of uncertainty

• Inertia of sub-satellite (Js), 20% of uncertainty

• Flexural rigidity of the beam (EI), 80% of uncertainty

The nominal mass, stiffness and damping matrices are:
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M =



0.5500 0 0 0 0 0 0

0 8.3500 0 0 0 1.8622 0.1894

0 0 7.8500 −1.7518 −0.6059 0 0

0 0 −1.7518 0.5304 −0.1156 0 0

0 0 −0.6059 −0.1156 0.9337 0 0

0 1.8622 0 0 0 0.5304 −0.1156

0 0.1894 0 0 0 −0.1156 0.9337



K =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0.1639 −0.0001 0 0

0 0 0 −0.0001 9.4872 0 0

0 0 0 0 0 0.1880 −0.0001

0 0 0 0 0 −0.0001 10.8787



D =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0.0141 0 0 0

0 0 0 0 0.8159 0 0

0 0 0 0 0 0.0162 0

0 0 0 0 0 0 0.9356


The obtained equation of motion of the rigid-flexible satellite at (83) can be represented as

a block diagram as shown in figure 9:
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Figure 9: Block diagram of Rigid-Flexible satellite system

The two new blocks P1 and P2 are used to obtain the acceleration and displacement at the

tip of the flexible appendage (x = L):

P1 = P2 =

φ1y(L) φ2y(L)

φ1z(L) φ2z(L)

 (84)

The obtained nominal state space representation of the interconnected plant G becomes:

A =



0 0 0 0.04 0.43 0 0 0 0 0 0.48 5.01

0 −0.05 −0.90 0 0 0 0 0 −0.59 −10.41 0 0

0 −0.20 −3.37 0 0 0 0 0 −2.39 −39.14 0 0

0 −0.06 −1.87 0 0 0 0 0 −0.68 −21.77 0 0

0 0 0 −0.18 −1.78 0 0 0 0 0 −2.13 −20.92

0 0 0 −0.03 −1.31 0 0 0 0 0 −0.361 −15.26

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0


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B =



1.8181 0 0

0 0.70 0

0 0 1.01

0 0 3.57

0 0 1.10

0 −2.57 0

0 −0.46 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



C =



0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0.76 −0.404 0 0

0 0 −0.13 −1.81 0 0 0 0 0 −1.55 −21.02 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0.76 −0.41

0 0 0 0 −0.13 −0.84 0 0 0 0 0 −1.47 −9.77



D =

 0 0 0 0 0 0 0

0 0 0 0 0 0 −1.77

0 0 0 2.28 0 0 0

T

The bode plots of the rigid flexible satellite system with the driving torque vector τ =

[τx τy τz] as input and [θ1 θ2 θ3 VL V̈L WL ẄL] as outputs are shown in figures 10-16. The

frequency response of the nominal system is highlighted in red color, while frequency response

of the system with uncertainty correspond to the blue dashed lines.
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Figure 10: Bode plot from τ1 to θ1

Figure 11: Bode plot from τ3 to θ2
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Figure 12: Bode plot from τ2 to θ3

Figure 13: Bode plot from τ2 to VL
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Figure 14: Bode plot from τ2 to V̈L

Figure 15: Bode plot from τ3 to WL
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Figure 16: Bode plot from τ3 to ẄL

A torque signal was designed to act as a disturbance for plant G, in this case only τy and τz

are excited as can be seen on figures 18 and 19.

Figure 17: Impulse input torque
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The impulse response of the system can be observed in figure 18:

Figure 18: Impulse response of plant G for states θ2, WL and ẄL

Figure 19: Impulse response of plant G for states θ3, VL and V̈L

The states θ2 and θ3 in figure 18 and 19 respectively show an approximate linear increase

through time due to the torque input disturbance, however is also important to note that this

angle are wobbling. This is due to impact of the other states η1y, η2y, η1z and η2z indicating a

dynamic relation between the flexible link and the rigid main satellite. A vibration suppression

control is necessary not only to suppress the lateral displacements of the beam (w and v) but

also to minimize its impact on the entire structure.
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4 Control strategy and controller synthesis

The control strategy requires as sensor data the angular displacement in the three axis

(θ1, θ2, θ3) and the acceleration of the flexible appendage lateral deformation (V̈ ,Ẅ ). Previ-

ous system interconnection in figure 9 is expressed as an integrated single block with torque

vector as input and seven output signals, this new plant will be denoted by the letter G:

Figure 20: Integrated block diagram of Rigid-Flexible satellite system

For the design of an H∞ controller the obtained G plant is interconnected with some new

blocks:

• Actuators transfer function Wa1, Wa2 and Wa3 which are modeled as a first order lag with

time constant 0.004 and gain 1.

• Plant performance weights Wp1, Wp21, Wp22, Wp31 and Wp32. Their value will depend on

what the controller must consider a priority. In this project the assigned weights for the

desired orientation performance are greater than the rest, as a consequence desired ori-

entation must be achieved first and then flexible appendage vibration can be suppressed,

frequency response comparison between Wp1 and Wp22 can be observed in figure 21.
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• Control performance weights Wu1, Wu2 and Wu3. These scalar values denote how expen-

sive or cheap the close loop system perceives control signal generation. If there are no

restriction on how much torque can be generated, the value of these weights can be set

very low.

• Noise shape filtersWn1,Wn21,Wn22,Wn31 andWn32.Are determined according to the spec-

tral contents of the sensor noises

• Reference dynamic models M1, M2, M3, M4 and M5. These are not weighting functions

but desired dynamic responses of the close loop plant when exited with a reference sig-

nal. The difference between the output of this blocks and the real states is what must be

minimized by the robust controller.

Figure 21: Bode plot comparison between Wp1 and Wp22
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Interconnected open loop plant can be observed in figure 22:

Figure 22: Open loop interconnection

Where inputs r, d, N and u refer to the reference signal, disturbance signal, noise and

control input. The values of the system weights are defined as follow:

M1 = M2 = M3 = M4 = M5 = 1

Wu1 = Wu2 = Wu3 = 0.001

Wa1 = Wa2 = Wa3 = 1
0.004s+1

Wp1 = Wp21 = Wp31 = s2+25s+50
s2+22s+0.05

Wp22 = Wp32 = s2+25s+100
s2+22s+1000

Wn1 = Wn21 = Wn31 = 10−5 0.5s+1
0.005s+1

Wn22 = Wn32 = 10−6 0.5s+1
0.005s+1
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As mentioned in section 3.3 the main objective of a robust controller is to minimize the

impact of the exogenous inputs [r d n] into the regulated outputs [ep1, ep21, ep22, ep31 and

ep32], close loop interconnection with the controller K is show in figure 23:

Figure 23: LFT representation of the open loop plant and the controller

Where OL is the integrated block of the open loop interconnection from figure 22:

Figure 24: Integrated block diagram of the open loop system

The controller K is obtained by using the hinf robust control synthesis command from

the MATLAB robust control toolbox [50]. The obtained controller is interconnected with the

nominal plant as shown on figure 25.
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Figure 25: Close loop interconnection
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5 Close loop system testing and Results

The desired reference angular orientation is [20o − 15o 100] for θ1, θ2 and θ3 respectively.

Objective orientation of the rigid main satellite must be achieved after 15 seconds. The error

Euler angle plot in figure 26 shows that the close loop system is capable of reaching the objective

orientation after approximately 18 seconds with an approximate error of 0.19o, 0.25o and 0.35o

after 30 seconds.

Figure 26: Error Euler angle using H∞ control

Like it was stated before, the controller is focusing primarily on reaching the objective

orientation as fastest as possible. Once the first task is completed the close loop plant starts

dealing with the vibration suppression issue on VL and WL, these results can be observed in

figures 27 and 28.

Figure 27: VL vibration suppression using H∞ control
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Figure 28: WL vibration suppression using H∞ control

As can be seen from these results, vibration is almost completely suppressed after approxi-

mately 160 seconds for both cases (VL andWL), since maximum vibration after this time instant

is of five millimeters. Control input effort from theH∞ controller can be observed in next figure:

Figure 29: H∞ control effort

It can be inferred that the designed H∞ controller y capable of controlling the nominal plant

of the system with almost no issues, since objective orientation and vibration suppression are

achieved. Nevertheless, parametric uncertainty is always an important factor while testing the

efficacy of a control system. The same H∞ controller will now tested while considering the

parametric uncertainty of the system.
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Figure 30: Error Euler angles using H∞ control considering parametric uncertainty

From figure 30 it can be observed that parametric uncertainty mostly affect the Euler angles

that are related to the respective lateral vibration of the flexible appendage (θ2→WL and θ3→

VL). Though it could be perceived that all Euler angles will converge to the objective orientation,

the time required for this is too large. Also, vibration at the tip is not in a better situation since,

as can be seen on figures 31 and 32, lateral deformation after 160 seconds is not even lees than

0.08 and 0.22 meters for WL and VL respectively.
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Figure 31: WL vibration suppression using H∞ control considering parametric uncertainty

Figure 32: VL vibration suppression using H∞ control considering parametric uncertainty

The obtainedH∞ controller is not robust enough to deal with large parametric uncertainties,

as a consequence a more robust controller is required. To address this issue the µ control

synthesis will be used to obtain a more robust controller that can keep good performance while

dealing with parametric uncertainties. The musyn command from MATLAB robust control

toolbox is used to synthesize a more robust controller that will be tested in the same way as in

the previous case. The Euler angle errors of the nominal plant controlled by the µ controller can

be observe in figure 33.
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Figure 33: Error Euler angle using µ synthesis control

The desired orientation is reached approximately after 18 seconds with an approximate error

of 0.01o, 0.06o and 0.09o for Euler angles θ1, θ2 and θ3 respectively after 30 seconds. Vibration

on the nominal plant is suppressed in a more efficient way if compared to the H∞ controller,

this can be seen on figures 34 and 35.

Figure 34: VL vibration suppression using µ synthesis control
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Figure 35: WL vibration suppression using µ synthesis control

Control input effort from the µ controller can be observed in next figure:

Figure 36: µ synthesis control effort

The close-loop plant using the µ controller will be tested considering the parametric uncer-

tainty. The error Euler angles can be observed in figure 37, when these results are compared to

the ones at 30 it can be concluded that the µ controller can achieve much better results under

the influence of parametric uncertainty.
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Figure 37: Error Euler angles using µ synthesis control considering uncertainty
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Vibration suppression results at figures 38 and 39 show that the µ controller can guarantee

stability, aspect that was not achieved by the previous H∞ controller. A closer look to these

results can be observed at figures 40 and 41, where it is possible to notice that after 60 seconds

vibration is less than two and ten millimeters for WL and VL respectively.

Figure 38: WL vibration suppression using µ synthesis control considering uncertainty

Figure 39: VL vibration suppression using µ synthesis control considering uncertainty
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Figure 40: WL vibration suppression using µ synthesis control considering uncertainty

Figure 41: VL vibration suppression using µ synthesis control considering uncertainty
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Conclusions and future work

The dynamic modeling of a rigid flexible satellite was obtained, the Lagrangian method was

used to obtain the equations of motion of the system, then these were discretized by using the

assumed modes method. The discretized equation of motion was linearized and a plant G with

parametric uncertainty was created.

An open loop plant of the modeled system was interconnected with the weighting functions

in order to compute a robust controller. The obtained controller was designed to firstly focus on

reaching the desired orientation, vibration suppression was second in priority, this was defined

by the weighting functions in section 4.

The first proposed controller used the H∞ synthesis to compute a K that could control and

stabilize the system. The obtained controller was capable of reaching the desired orientation in

a short period of time and suppress flexible appendage vibration after a period of 160 seconds.

Nevertheless when tested under the presence of parametric uncertainty the controller was not

capable of stabilizing the plant fast enough by itself.

In order to guarantee fast converge of the system under the presence of parametric uncer-

tainty a µ synthesis controller was derived. In contrast to previous H∞ technique, the µ synthe-

sis considers the parametric uncertainty while computing a valid controller that can deal with

this issue. The obtained K was not only capable of reaching the desired orientation, but also it

was capable of suppressing the flexible appendage vibration after a short period of time while

dealing with an uncertain plant.

Plant linearization around an equilibrium point is useful at the moment of deriving a linear

controller such as H∞ or µ. Unfortunately a non-linearized plan will be always closer to a real

system than a linearized one, due to this a non-linear controller and a adaptive controller are

proposed as a future task, results must be compared with the ones obtained in this report.

Validation of the obtained dynamics will be addressed. The same structure of this project

must be modeled on a FEM specialize software such as ANSYS or SimScape.
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