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Abstract

The APSCO-SSS project is initiated by the Asia-Pacific Space Cooperation Organization
(APSCO). This project consists of 1 micro-satellite (SSS-1) and 2 cube-satellites (SSS-2A and SSS-
2B) implemented for different objectives such as: demonstration of coilable mast deployment, ADS-
B technology and remote sensing. In this project, the micro-satellite SSS-1 is formed by a main-
satellite and a sub-satellite joined by a coilable mast obtaining as a result a rigid-flexible multi body
system. Flexible vibration of the coilable mast will bring great difficulty and challenge to the

control of the micro-satellite.

The first step of this thesis research is to obtain the mathematical model of the rigid-flexible
coupling micro-satellite, for this the Lagrange method is used. In terms of dynamics, the coilable
mast is normally viewed as a flexible appendage and simplified as an Euler-Bernoulli beam, but the
SSS-1 is equipped with a large mass element (sub-satellite) at the tip of the flexible structure, as a
consequence and in contrast to previous work, the new mathematical model must include this rigid
sub-satellite when deriving the equations of motion.

The satellite is modeled as a body that can rotate in the three axis, the flexible appendage can
be affected by lateral deflection while axial and torsional deformation are not considered in this
study. Kinetic energy is firstly derived as a natural step in the Lagrange procedure, this consist of
the kinetic energy obtained from the three satellite elements (rigid main satellite, flexible coilable
mast and rigid sub-satellite). Some matrix notations are used in order to simplified the large total
kinetic energy expression and using the assumed modes method the mass matrix of the entire
system can be obtained. The stiffness and damping matrices of the model are obtained by defining
the potential energy of the system and then applying the assumed modes method for discretization.

In this project large and fast rotations are not considered, therefore lateral deformation of the
flexible appendage is not too large. This assumption permits to linearize the obtained dynamic plant

to further synthesize a linear controller for direct attitude control and vibration suppression.



Two controllers are proposed to work with the dynamic plant in close loop configuration, the
first is the H infinity controller which main purpose is to minimize the impact of the exogenous
inputs (w) into the regulated outputs (z). For this the norm of the transfer function known as LFT
from w to z must be minimized. The second controller is obtained by using the p synthesis, in
contrast to the first proposed controller this procedure is capable of considering the parametric
uncertainty of the system while deriving a robust controller.

Regarding the control strategy, the dynamic plant is interconnected with different weighting
functions that can prioritize some task over others. In this project the control system priority is to
set the entire structure in the desire orientation, after this the system focuses on suppress the
vibration of the flexible appendage. As sensor data the system will the three Euler angles and the
lateral acceleration of the displacement of the flexible appendage. Results obtained from the two
synthesized controllers are compared when working with the nominal and uncertain dynamic

plant.

Keywords: Dynamics, Lagrange, Mechanical Vibrations, Robust Control



Contents

1 INErOAUCTION...ccieeiteenneeseiesaensteeinecsansssaesssncsssesssnssssesssassssesssnsssassssassssesssssssassssassssssasssssaness 1
0 B 2 - el ¢4 (0] 11 Vo FOS SRR UPSR 1

LR O o) <1 < SRRRUPRSR 3

1.3 Literature REVIEW.....cooiiiiiiiiiieiieiie ettt ettt et st e s 4

1.4 RePOIt’S CONLENL....cccuiiiiiiiiiiiieiiie ettt ettt e et e ettt e e e e s sabateeeeseneeeees 7

2  Theoretical BaCKZroUNd.......cccocvierverirsrencsssercssnncsssncssssncssssscssssssssssssssssssssssssssssssssssssssssssns 8
2.1 Formulating the Equations of MOtION..........ccceviieiiiiiiieiieieeieeie e 8
2.1.1 Extended Hamilton’s Method............ccoeviiiiiiiiieiiieeieece e 8

2.1.2  Lagrange Method...........cooouiiiiiiiiiiiii ettt e 9

2.2 Finite-Dimensional Analysis of Continuous SyStem..........ccccecuerveneriieenieenieenneenne 10
2.2.1  Assumed Modes Method...........ccueeiiiiiiiiiiiiiieieeee e 10

2.3 Controller SYNTRESIS.....ccveiriieiieiiieiiecie ettt et e st e eteeeaeesaaessaeeseeesasaeeesnneeeens 11
2.3.1  Sensitivity FUNCHON......ccviiiiiiiiiieciieeeeeee e ee e 12

2.3.2  Heo OPHIMIZATION. c.titiiiiieeeeeeeeeiiiiieeeeeeeeeeeetatieieeeeeeaeeeeeasennnnaeesarsnnnaaaes 14

2.3.3 Parametric uncertainty and p SYNthesis.........cccecveviiienieniiieiniiie e 20

3 Dynamics MOAEliNgG......uueiieiirsuriicssssnnicssssnrncsssssnnecsssssnsssssssssssssssssssssssssssssssssssssssssssssssssssse 23
3.1 Deriving the equations Of MOLION.........ccciiriiirieiiieiieeieeree et 23
3.1.1  Lagrange EqQUation..........ccceeiuieiiiiiiieiiieiiecie ettt ettt e 24

3.1.2  Spatial DiSCretiZatioN........c.eevvierieeriieeiieiieeieerteeeteesteesreesseesteesseeseneessnseeenes 28

3.2 Uncertain Plant..........coooiiiiiiiiiiiieie ettt e ea e s 35

4 Control strategy and controller Synthesis.........cccocveeeecrccnricssssnnricssssnniccsssnnnncssssssssssssssnns 44
5 Close loop system testing and ReSUltS......c..cccevveieivrinisnricssnncsssnncssnicsssnnssessssssssssssssssanees 49
Conclusions and fUtUre WOTK......ccoeieieverciseicssnisssanisssanessssnsssssssssssssssssssssssssssssssssssssssssssassss 59
REfEIENCES...cueiiuiiiiieniiitininntintintestenteseecseessssessisssesssessssssssessssesssassssesssssssassssssaesssssaees 60
ACKNOWIEAZIMENLS...ccocurieirnricsranisssanesssaressssnssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssssss 65



01NN~ W

BB U LW LW W LW LWL W WD DNNDDNDNDNDDN = = = = e = = e = O
— O VOO IO WUNMNPA WO, OOV WL OOV WM B~ WN=—=O

List of Figures

BUAA-sat Coilable mast [1]....ccoooeiiiumieeiiiieieeeeeeee et 2
BUAA-sat Coilable mast [2].....ccocouuiiiiiiiieeiiieee et eerre e e e e e 3
System’s BIock DIagram.........ccocueeeiieiiiiiiiiiiiiieiieeteeee et 12
Sensitivity Function in the frequency domain ............ccceevvveeviiieeniieeniieeniieeieeeenn 13
Standard H o, CONIGUIALION ......cccuiiiiiiieiiieeiiie ettt sree e e e sreesaeeeneaee s 14
Standard P-A CONfIZUIAtION .......cceeviiiiiiiiieiieeie ettt 20
Rigid-flexible satellite repreSentation ............ccoecveeeruieenieeriiieeniieeeieeeiee e 22
Roots of transcendental €qUAtION .........cccuevvviiiiiiriiniiiiiiieeeceeeeeee e 28
Block diagram of Rigid-Flexible satellite SyStem...........ccoccveeviueernieeniiieinieenieeenee 36
Bode plot fTOM 79 £0 01 .eecueieiieiieieeeetee ettt ens 38
Bode plot fTOM 75 £0 09 weevvieiiieiieiiecieeieeee ettt ens 38
Bode plot fTOM 7o 0 03 .ecueirueiiiiiiiiiieiieteeetcee et 39
Bode plot from 7o t0 VI ceeuiiiiiiiiieeee e 39
Bode plot from 7, to VL ........................................................................................... 40
Bode plot fTom 75 10 TV ceeiiiiiieceece ettt 40
BOdE PLOt FIOM 75 10 TV oottt 41
ImpulSe INPUL EOTQUE .....eeeuiiieiieiiieeeee et 41
Impulse response of plant G for states 05, W, and WL ........................................... 42
Impulse response of plant G for states 03, V7 and Vi c...c..eveeeeeeeeeeeeeeeeeeeeeeeeeeeeenn. 42
Integrated block diagram of Rigid-Flexible satellite system .........cccccoceeevueevivennnnne 43
Bode plot comparison between W,,; and Wpaa oo, 44
Open 100P INTETCONNECTION .....eeeeruerieeeriiiieeeriieeeeeiteeeesteeeesbeeeseareeessnreeeessaeeesnnsees 45
LFT representation of the open loop plant and the controller.............c...ccccceveennene. 46
Integrated block diagram of the open 100p SYStem .........ccocceeeviiiiiiiiniieinieenieeeee, 46
Close 100D INtETCONNECTION. ... ..eeeruieeriiierieeeiteeeiteeeieeestee et e e ebeeeireesebeesaeeesabeeeans 47
Error Euler angle using H ., CONLIOL.......cccviiiiiiiiiiieniieeiiee ettt 48
V7, vibration suppression using H o, CONtrol........cocceevieriiiiiiiniiniinieceeneeeeeeee 49
W, vibration suppression using Ho, CONtrol ..........coovevieriiieniiniiniieienienieeeene 49
H o CONIOL €FFOTT ..ot e et e e e e e e eanns 50
Error Euler angles using H ., control considering parametric uncertainty .............. 51

W, vibration suppression using H,, control considering parametric uncertainty .. 52
V7, vibration suppression using H, control considering parametric uncertainty.... 52

Error Euler angle using gt synthesis CONrol...........coocueiiiiiiniiiiiiiiniieniecnicenieee 53
V1, vibration suppression using ¢ synthesis CONtrol.........cocceevvevveriieeneenieniieenneene 53
W, vibration suppression using f; Synthesis CONtrol ..........ccocceeevvieeriiieeniieenneeenneen. 54
4 synthesis coNtrol effOrt ..........oooveiviiiiiiiii e 54
Error Euler angles using . synthesis control considering uncertainty..................... 55
W, vibration suppression using /. synthesis control considering uncertainty......... 56
V1, vibration suppression using 4 synthesis control considering uncertainty .......... 56
W, vibration suppression using /. synthesis control considering uncertainty......... 57
V7, vibration suppression using y synthesis control considering uncertainty .......... 57

il



BUAA Academic Dissertation for Master’s Degree

1 Introduction

1.1 Background

Modern days technology allowed many devices to become smaller thorough time, but size
was not the only optimized factor, price and efficiency were largely improved too. In the field
of astronautics, satellites were known as large and complex devices that were able to perform
certain tasks depending on the assigned mission(communications, mapping, global positioning,
etc) most of these satellites were huge, heavy and considerably expensive, as a consequence only
the most developed and richest countries were capable of designing and manufacture them. As
time passed satellites became smaller, cost/efficiency ratio was improved up to the point that
terms micro, pico and nano are now used for very small and affordable satellites.

The Attitude Determination and Control system, also known as ADCS, is an essential part
in most of satellites where orientation has to be controlled since functionality and fulfillment
of mission depends on it, this is the case for very specific applications like remote sensing
or spying. Satellite’s sensors are in charge of obtaining information about: Angular Velocity
(Gyroscopes), Sun Position (Sun-sensor), Magnetic Field (Magnetometer), Infrared Radiation
(Earth Horizon sensor) or in some cases galactic reference position (Star-sensor).

Sensor’s data is gathered to estimate the satellite’s orientation for its correction if needed.
Once the satellite’s orientation is determined the on-board actuators generate the control torques
to rotate the satellite to a desired position . The SSS-1P has three magnetorquers and one
reaction wheel that are used for active control of the satellite’s attitude. Magnetoquers are
coil based actuators that interact with earth’s magnetic field to generate a magnetic moment.
These are one of the simplest control actuators used on satellites, nevertheless under the relative
absence of earth magnetic field the generation of torque is no longer feasible. Reaction wheels
on the other hand are not only more precise actuators but also these devices work independently
of any magnetic field.

In contrast to other satellites the SSS-1P satellite consist of a rigid main body that deploys
a coilable mast that contains at the top a sub-satellite. Due to this the satellite dynamics are
not the same as in the case of rigid satellites. The coilable mast must be consider as a flexible

structure, due to this the satellite is exposed to bending deformations that generate unexpected
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and non parametric disturbances that the attitude control system must suppress.

Deployable structures on space are very common since this characteristic on spacecrafts
carry some advantages, one of this is the low launching volume [3]. When launching it is well
known that the payload’s weight is a very important limiting factor, since not all rockets can
carry all kind of payloads, but also payload’s volume is just as important since a rocket cannot
grow in size to carry all kind of spacecrafts or satellites, instead all payloads must fit inside

without consideration.

Figure 1: BUAA-sat Coilable mast [1]

Here is where structures with deployable appendages become useful. During launch and be-
fore detumbling the satellite can remain rigid as a compact body, once the spacecraft is delivered
to its required orbit all deployable components extend until final configuration is obtained. In
the case of the SSS-1 its deployable appendage is a flexible coilable mast, similar to the one in
figure 1. As can be seen, deployable structures do not only guarantee a practical way of deliver
large satellites, but also reduces the weight since many of this structures are lightweight [4] [5].

Even though this kind of advantages are highly desirable this type of structures are also non-
rigid. As a consequence flexibility comes with the vibration problem and it cannot be neglected.

As can be seen in next figure, flexibility can have an impact on satellite dynamics.
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Sub-zatellite Coilable Mast Main-zatellite

(Rigid) {Flexible) (Rigid)

Figure 2: BUAA-sat Coilable mast [2]

As can be seen, for a satellite such as the SSS-1 it is necessary to consider the flexible
structure in the dynamics modeling. Also is important to note that the vibration of the flexible
appendage affects the entire structure including the main rigid satellite. The two main objectives

of this research project are described in the next sub-section.

1.2 Objectives

e Mathematical model development of the rigid-flexible satellite:
An analytical approach based on the Lagrange method is followed in order to obtain the
equations of motion. This procedure must include the presence of a body (sub-satellite) at
the tip of the flexible appendage. The system dynamics will be time and space dependent
due to the presence of a continuous body, so the assumed modes method will be used
as discretization technique. Finally parametric uncertainty is inserted in the obtained

dynamic plant.

e Development of a control technique and synthesis of a robust controller:
The obtained dynamic plant is linearized and interconnected with weighting function
blocks that will specified control priorities of the close loop system. Two different con-
trollers (H, and p) will be synthesized and compared while working with the nominal

and uncertain plant.
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1.3 Literature Review

The Attitude Control in contrast to other satellite subsystems has a greater complexity and

importance on every mission. The ADCS is in charge of controlling the satellite’s orientation
during its mission [6, 7], it could be used to steer the satellite on a desired direction or counter
the external disturbance forces on it. The AFIT 6u cube-sat explains at [8] the development
of the ADCS subsystem based on four reaction wheels that provides redundancy in the case of
failure of one actuator or power loss.
The Delfi-n3Xt is the second generation 3U cubesat developed by TuDelft that works with an
active attitude control [9]. The Delfi-n3Xt uses a magnetometer and home made photo-diode
sun sensors, for 3-axis attitude control three reaction wells and three magnetorquers [10] are
used as actuators, the ADCS will work on five different modes: detumbling, coarse sun point-
ing, fine sun pointing, ground station tracking and experimental thruster pointing.

The ADCS test can be performed by generating a close approximation of space environment
by using an air bearing system and a geomagnetic field simulator. MIT Space Systems Labora-
tory designed and implemented a 4-coild per axis Helmholtz cage with a spherical air bearing
for testing attitude determination and control of cube-satellites [11]. Mentioned Helmholtz
cage was used as a test bed for the Microsized Microwave Atmospheric Satellite (MicroMAS)
ADCS [12], in contrast to previously mentioned satellites the MicroMAS uses an Earth Horizon
static Sensor (EHS) that was designed specifically for nano-satellites [13, 14]. All previously
mentioned literature assumes the satellite as a rigid body, therefore its dynamic model and con-
trol are designed from this structural premise. In the case of a satellite such as the SSS-1P a
coilable mast is extended, this appendage is flexible therefore it generates bending moments
due to external disturbance sources or control torques from main rigid satellite which contains
the ADCS actuators.

It must remain, the dynamics of a flexible structure are not as simple as the dynamics of a
rigid body, as a consequence new approaches for deriving the equations of motion must be taken
into consideration. Like most of current research on the topic, a flexible structure or appendage

such as solar panels or a extendable booms are considered as flexible beams.
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In [15] the dynamics and control of a rotating Euler-Bernoulli beam are derived by consider-
ing not only the transverse deformation, but also the axial deformation which is a consequence
of the beam’s centrifugal force, nevertheless, after deriving the equations of motion by using
the extended Hamilton’s principle the axial deformation was neglected to preserve simpleness.
This system simplification is observed in most of research on this topic [16—19] since impact of
axial deformation is not considerable nor as important as transverse deformation as long as the
angular speeds are below to the first natural frequency [20].

In other cases the flexible appendage has a payload located at the tip, this will also affect
the satellite dynamics. In [21] the impact of a mass at the end of a rotating beam is analyzed
in detail and the impact of the centrifugal force on the potential energy is derived so it can
be considered to create a more accurate dynamic model of the system by using Lagrange or
Hamiltonian approach. Like in previous cases, the axial deformation (generated by the cen-
trifugal force) is neglected and only the kinetic energy generated by the payload at appendage
tip is considered [22-27].

According to [28] the presence of structures such as solar panels, booms, antennae and their
constant increase in size plays an important role in pointing accuracy requirements, modeling
and understanding of flexibility is crucial for attitude control problem. In the case of flexible
satellites the assumption of a rotating beam with a mass or payload at the tip is widely used due
to the fact that most of appendages can be view as rotating beams. In [29,30] the dynamics of
a satellite with one deployable solar panel are modeled while the kinetic and potential energy
are obtained from the central hub and a flexible beam attached together, then non linearities
are neglected and a vibration suppression control technique is designed. The case of a satellite
with two deployable solar panels is analyzed in [31] where structural damping is taken as a non
conservative force and the impact of the kinetic and potential energy is duplicated in contrast to
previous cases with only one flexible element.

In [32] the author proposes a composite controller with a hierarchical architecture by comb-
ing a disturbance-observer-based control (DOBC) and proportional derivative PD control. The
problem, which includes only one rigid body and one flexible appendage, is simplified to only
one axis of rotation. In this case the DOBC controller is considered to be a robust control

scheme where the modeling error can be estimated and compensated [33].
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In [30] it is stated that linearization of the satellite’s model carry a lost of important infor-
mation related to the true dynamics of the satellite. Therefore, parametric and non parametric
uncertainties from the system must be included, an H., control technique is used combined
with the uncertainty model so a more robust and reliable controller can be obtained

According to [34] the problem of attitude determination and control for flexible spacecraft
is linked not only to the parametric uncertainties but also to time-varying parameters and im-
precise collocation of attitude determination sensors. Since many factors are not included after
the linearization of the satellite’s dynamics a robust controller is required. This paper proposes
an integrated H,, including an output feedback and a feed-forward component.

One of the most common flexible satellite problems is related to the Honey Comb type solar
panels used by many types of satellites, this type of structure are largely preferred due to its
light mass that reduces considerably the spacecraft’s weight. At [35] a proportional-derivative
controller integrated with the input shaping technique is proposed as a control method for atti-
tude maneuver and vibration suppression. The equations of motion and the boundary conditions
are derived by using the Hamiltonian Principle.

A rigid body attached to flexible appendages is also analyzed at [36] by using an adaptive
control system for orbiting satellite with described characteristics. The control method used
is the £; developed by Havokimyan and Cao in [37]. The control system includes a state
predictor for unknown parameters generation and it is only studied for the pitch angle and its
correspondent derivative. Like all previously mentioned control methods the £; is also suitable
for parametric uncertainties generated not only by vibration of flexible structures but also for
unexpected disturbances.

In [38] two control laws are implemented to guarantee convergence of the closed loop sys-
tem without using any angular velocity measurement. This quaternion based method describes
a partial state feedback where the modal variables describing flexible elements are not measur-
able. Implemented controller has two features, one is in the form of an observer-based feedback

and another where the angular velocity feedback is not used [39] [40].
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1.4 Report’s Content

This final thesis report is divided in six chapters, each develop important aspects of the the-
sis research project. The first introductory chapter contains relevant background related to the
topics of small satellites, attitude determination and control (ADCS) and its applications. A
brief explanation about flexible structures and satellites is also included in this section.

This first chapter also contains a literature survey where previous research and work on atti-
tude determination and control of small satellites is addressed. Different types of small satellites
are defined while its characteristics related to the ADCs system and testing are explained, most
of this small satellites are modeled as rigid bodies in contrast to the objective of this thesis re-
search project. The second part of the literature review contains relevant research in the field
of flexible structures and dynamics modeling, most of these are assumed as Euler-Bernoulli
beams.Last part of the literature review explains the previous research on control techniques of
flexible structures. Since most of this dynamics are complex it is important to obtain a controller
capable of dealing not only with external disturbances but with also parametric uncertainties.

The second chapter addresses relevant theory background. The first part explains the most
commonly used techniques for deriving the equations of motion. Then the chapter follows to
define the discretization technique that will be used in the research project. This chapter also
gives a brief explanation of the sensitivity function and its importance. Following, the most
relevant theory behind the H, and . synthesis control is also included in section two.

Chapter three addresses the problem of the flexible satellite itself by deriving the equations
of motion using the Lagrange method and the assumed modes method for system discretization.
The model is finally linearized for further controller synthesis.

Chapter four describes the controller strategy. In this case weighting functions are defined in
order to prioritize some controller tasks over the others, sensor data is obtained and controllers
H, and p synthesis are obtained.

On Chapter five the close loop system is tested using the two mentioned controllers. Test
was performed in two scenarios, the first only considers the nominal dynamic plant, and the sec-
ond includes parametric uncertainty. Results are analyzed and effectiveness of both controllers

are compared
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Finally, chapter six addresses the conclusions driven from the research, some future exten-

sions of this work are also included.

2 Theoretical Background

This section contains the most relevant theory background related to the project’s develop-
ment. First, the fundamental methods to formulate the equations of motion (EOM) for structures
conformed of rigid and deformable bodies are reviewed. Second, the discretization method,
which allows to analyze the dynamics of a continuous body in a discrete manner and finally
the H., control synthesis technique, which minimizes the impact of external disturbances and

noise on the system is analyzed.

2.1 Formulating the Equations of Motion

Since the proposed system is composed not only of unique particles but of continuous struc-
tures the system dynamics are represented by partial differential equations, since each point of
a deformable structure will be in a particular position at a particular time, which means that
the system is not longer only time dependent but also space dependent. There are two known
way to obtain this differential equations of motion, the Lagrangian approach and the extended
Hamilton’s principle. Even though the Lagrangian method is the one that will be used on this

report the extended Hamilton’s principle will be explained just for completeness.

2.1.1 Extended Hamilton’s Method

This is the most common variational principle of mechanics and according to [41] it can be
view as an integrated form of the d’ Alembert’s principle. Like the Lagrange method, it uses the
variation of kinetic and potential energy and the work done by Non-conservative forces such as
the viscous damping and the Rayleigh dissipation function to derive the equations of motion.

The generalized Hamilton’s principle is given by the variational statement:

to t2
/ 5(T — V)dt+/ SWedt = 0 1)

t1 t1
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Where T represents the kinetic energy, V' the potential energy, o is known as the varia-
tional operator and 6W,,. is the virtual work done by non conservative forces. Kinetic energy
is expressed in terms of the generalize coordinates and their time derivatives, potential energy
only depends on the generalize coordinates and the virtual work done by the non-conservative

forces is expressed as a linear function of the virtual displacement:

T =T(q1,92, 98 41, G2, -+, G )
V =V(q,q,..,qn,t) (2)
OWne = Q101 + Q20¢2 + ... + @NOgN
The generalized forces and the coordinates are represented by (); and ¢; respectively, N rep-
resents the number of independent variables. Even though the concept is considered as straight-
forward its calculation and the algebra required include integration by parts, which makes the
EOM formulation process tedious and it becomes even more complicated while dealing with

multi body or hybrid systems. Lagrange approach becomes an alternative.

2.1.2 Lagrange Method

By replacing (2) into (1), taking variations and integrating by parts [41] leads to:

402 0%
dt" 0g; Jq;

=Q; =12 ..N 3)

Which is known as the Lagrange equation, where the Lagrangian . is defined as:

ZL=T-V 4)

System’s damping can be included on the Lagrange formulation by using the Rayleigh dis-
sipation function, which allows to represent the entire set of viscous damping forces as a single

scalar:

n n

i=1 =1
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By separating the non-conservative forces on equation (3) on viscous dissipative forces and
other external forces such us external control torques, the Lagrange equation can be finally

expressed as:

d 0% 0.  OR .
a(ﬁqz‘)_ q; + A4 =Q; 1=12..N ©)

2.2 Finite-Dimensional Analysis of Continuous System

In contrast to particle-composed or rigid-body systems which variables are only time depen-
dent, a flexible structure system such as the case of a satellite with a flexible appendage must be
represented by variables that are time and space dependent. This introduces in the system partial
differential equations which not are not only harder to deal with analytically, but also compu-
tationally [42] [43]. The two most common methods for spatial discretization are the assumed

modes method (the one that will be used in this project) and the finite element method [44].

2.2.1 Assumed Modes Method

As previously mentioned, the derived equations of motion for a continuous system are time
and space dependent. The assumed modes method represents the structural deflection y(x,t)
by finite series of space dependent functions multiplied by time dependent functions, in other
words: the assumed modes method divides the time/space defined deflection into two separated

functions, each of them dependent only in time or space:

y(x,t) = Z i(2)qi(t) (7)

Where ¢;(z) represents the i;, mode shape, and N denotes the number of degrees of freedom
for the discrete approximation. This new deflection representation will be used in conjunction
with the Lagrangian method in terms of the generalize coordinates. By using equation (7) the

kinetic and potential energy can be represented as:

T(t) =330, [M]yaid; = $q7 Mg

V(t) =3 3m, [Klyaia; = 2¢"Kq

®)

10
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Where M;; and K;; denote the (i,j)th element of the mass matrix M and the stiffness matrix
K respectively. The damping matrix C' and it elements can be derived from equation (5).
Finally the equations of motion are calculated by using the Lagrange equation (6) considering
the Lagrangian as . = T' — V. With the Lagrangian defined, the equations of motion can be

easily derived by replacing the values of (8) into (5):

Z[M]rj%’(t) + Z[C]rj%(t) + Z[K]rj%'(t) =@ r=1,..,N )

N N N
J=1 J=1 J=1

Expressed in compact matrix form:

Mij(t) + C4(t) + Kq(t) = Q(t) (10)

Note that the equation of motion at (10) looks very familiar, this is because it is similar to
the common dynamic representation of the simple mass-spring-damper system, but the most
important thing is that the coordinate ¢ and its first and second time derivatives (g, ¢) are only
time dependent. In order to retrieve the original coordinate y(x,t) equation (7) can be used.

The assumed modes method is quite attractive due to its simpleness and is very useful as
long as it is possible to approximate the mode shapes ¢;(z). This is the reason why it is the
chosen method for the modeling of the rigid-flexible satellite. For more complicated structures
with irregular geometric shapes the finite element method (FEM) becomes a more feasible path

to follow, since it will be not possible to derive or obtain easily the shape modes.

2.3 Controller Synthesis

The famous British statistician George E.P.Box stated once that "All models are wrong, but
some are useful". This simple but very important quote has a deep meaning which becomes
more obvious while a model is tested on a real world scenario. It is crucial to know that even
if a model has been rigorously derived with all possible consideration to approximate better the
real physical system it will never be perfect, as a consequence all modeled systems are in a

certain way wrong.

11
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However according to [45] during the early 80’s the H,, norm as a metric of robustness
was proposed and since then the robust control synthesis and the minimization problem became
one of the main topics of research in control systems which are not perfectly modeled, also

known as systems with uncertainty.

2.3.1 Sensitivity Function

The objective of the H,, synthesis is to optimize/minimize the impact of external sources
such as noise and disturbance by obtaining an optimal controller K. In figure (3) a feedback

control system for the nominal plant P can be observed:

/E
r+ e u
() K + P

N y

(+)
N

n

Figure 3: System’s Block Diagram

Where r represents a reference signal, u the controller output, d the external disturbances,
y 1s the system’s output, n the noise and e is the error between the reference signal and the

system’s output. System equation is derived:

y=Pid+ PK(r—y—n)

(11
(I — PK)y = PKr + P;d — PKn
By solving equation (11) for y, next equation is obtained
y=(—-PK)'PKr+ (I — PK) 'Pyd— (I — PK) 'PKn (12)

The term (I — PK)~! is defined as the sensitivity function .S, a representation of its magni-

tude in the frequency domain can be observed in figure 4.

S=({+PK)"' (13)

12
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W

Figure 4: Sensitivity Function in the frequency domain

It can be inferred from equation (13) that as long as the value of (I — PK)~! is small the
impact of external elements like noise and disturbances including reference signals (exogenous
inputs) will remain small, therefore for having a robust controller that can maintain stability it

is important to keep the value of .S as small as possible.

2.3.2 H., optimization

It can be seen in figure 4 that the maximum point || P||, of the sensitivity function is located
at the cross frequency w,. This point represents the /., norm of the plant and like as previously
mentioned it must remain small for the system to be robust.

The minimization problem can have different objectives according to the system necessities,

a cost function can be derived for each of the following cases [46]:

e For good tracking and disturbance attenuation: ||(1 + PK)™!||«
e For good noise rejection: || — (I + Pk) ' PK]||

e For less control energy: ||K(I + PK)™ Y|

13
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It could be possible for a system to require not only one cost function, such as the case of

mixed sensitivity or also known as S over K S problem:

(I+PK)™!
K(I+PK)™!

min

i (14)

A standard configuration of the system in figure 3 can be obtained by the Linear Fractional

Transformation (LFT) technique:

w b4
P

u y
— K

Figure 5: Standard H ., configuration

Where w, z, u and y are the exogenous inputs, regulated outputs, controller output and sys-
tem P output respectively, this plant P is also known as the generalized plant or interconnected

system:

P(s) = Pu(s)  Pia(s) (15)

P21<S) PQQ(S)
This equation is known as the 4-matrix representation and it represents the mapping from
the system inputs to its outputs. The minimization problem in this case focuses on reducing the

impact of the exogenous inputs w into the regulated outputs z:

z = [Pu + Plz(f — P22K>_1KP21]U)
z=:S(P,K)w

(16)

14
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Where the LFT S(P, K) is the lower fractional transformation of P and K. Therefore the

H, control problem becomes:

min [|S(P, K)|| a7

The generalized plant P can also be defined by its 9-matrix representation:

A| By Bs
P = Cl D11 D12 (18)
02 D21 D22

Which is the state-space description of the generalize plant P:

(t) = Az(t) + Byw(t) + Bau(t)
2(t) = Chz(t) + Dyyw(t) + Digu(t) (19)
y(t) = Cox(t) + Dayw(t) + Dagu(t)

Linear Matrix Inequalities (LMIs): As its name states, the linear matrix inequalities
are matrix inequalities that are linear in the matrix variables [47], it standard form appears as

follows:

F(X) = £L'1F1 + JZQFQ + ...+ ZEmFm S F()
(20)

Fz) =" xiFi — [y <0
Where © = (x1, 23, ..., T,,) are unknown scalars called decision variables and F; € R"*"
are known symmetric matrices for i = 0,...,m. The set of solutions z € R"|F(x) < 0 is
assumed as convex, which means that it is possible o formulate a convex optimization problem
that minimizes a linear objective function h(z) of a vector of decision variables = with an LMI

restrictions as in the form:

min h(z) : {F(x) <0 (21)

T

The LMI F, maps a vector space to a cone of semi-defined symmetric matrices.

15
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The Schur Complement Lemma: The Schur complement works as a tool to convert
non-linear inequalities (that are non convex) to linear matrix inequalities (LMI). Consider a

symmetric matrix P:

o A B
P=P = (22)
BT C

The Schur complement Z(_) relative to the inner matrices A and C has the form:

ZA =C—-BTA'B

_ (23)
AC =A—BC'BT
It can be stated, according to the Schur complement lemma, that:
P<0 <= A<0,A4<0 < C<0,Ac<0 o)

P>0 <= A>0A,>0 < C>0,Ac>0

The properties of the Schur complement lemma are used to analyze the positivity of P and

to obtain matrix inequalities that define convex regions.

The KYP Lemma: The Kalmam-Popov-Yakubocivh lemma, also known as the Bounded
Real Lemma is a widely used theorem in control theory. It can be used to determine the H
norm of a system and for many LMI results [47] [48].

For a system:

t(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t)

(25)

Where the state matrices A,B,C and D are known and the system can be expressed in matrix

form as:

G(s) = (26)
cC|D

16
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It can be stated that the following are equivalent:

DGa. <
2) There exists a X > 0 such that:
(27)
ATX+XA XB ) cT
+1 " |le Dp]<o
BTX — DT

Obtaining a close loop representation for the LFT: Recall the H, standard configura-

tion in figure 5, now the plant P and controller / are defined as:

Al B By
P = 01 D11 D12 (28)
CQ D21 D22
Ax | B
K= |—"1=F (29)
Ck | Dk

And S(P, K) is the LFT that maps the exogenous inputs w to the regulated outputs z.
Considering a general case where the controller K is not static and has internal dynamics, the

state space representation of the plant and the controller can be written as:

(t) = Az(t) + Byw(t) + Bau(t)
2(t) = Chz(t) + Dyyw(t) + Digu(t) (30)
y(t) = Cox(t) + Dayw(t) + Dagu(t)

$K(t) = AkﬂﬁK(t) + BKy(t)
u(t) = Cxa(t) + Dry(t)

€1y

17
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The objective is to find a close loop state space representation of S(P, K'). The intercon-

nected system:

t A 0 t B 0 t B
i) | w(0) | [ |, 12
z(t) u(t)
A =|c o Flow o) ||+ D)
v (t) y(t)
From controller and plant output next two equations are obtained:
u(t) = Dgy(t) + Cxrg(t
(t) = Dy(t) + Crak(t) 33)
Its matrix representation:
I -D u(t 0 C x(t 0
M) Al w(t) (34)
_D22 I y(t) OQ 0 I‘K(t) D21

The close loop representation can be obtained by replacing equation (34) into equation (32):

x(t
= Acr, + Bepw(t)

(35)
(1)
2(t) = Cer + Deopw(t)
l‘K(t)
Where:
1
A 0 By 0 I —Dg 0 Ck
Acr = +
0 AK 0 By —Doo I 02 0
Bi 4+ By DgQDoy
Ber =
Br Q21
-1 (36)
I —Dg 0 Ck
OCL = |:C1 O} + |:D12 0}
—Doo I Cg 0

Dcr = D11+ D12DgQDoy

Q= (I — DypDg)™!

18
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The interconnection between the plant and controller trough the LFT S(P, K) is well posed

if only if the expression at equation (36) is invertible:

1 -D
" (37)

—Dyy 1

The inverse of equation (37) is:
~1
1 —-D I+ DgQD D
k| _|1+DcQDn D@ 8
—Day I QD2 Q

Therefore as long as () = (I — Dg Dss) equation at (37) is invertible and the interconnection
S(P, K) is well-posed, as a consequence a valid close loop expression for the close loop LFT
S(P, K') was found. Note that if Dx = 0 or Dys = 0 the system interconnection is intrinsically
well-posed. It was stated at equations (17) and (18) that H, controller synthesis was based on

finding a controller K that could minimize the H ., norm of S(P,K):

mI}HHP11+P12([—KP22)71KP21HHOO 39)

Since in previous section a valid state space close loop representation was found at equation

(35) it is now possible to say that expression at equation (39) is equivalent to:

A B
min H cr| et (40)
Ax | Bi Ceor | Dep | H
Cx | Di

Where Ay, Bi,Ck and Dy, refer to the H,, controller computed to minimize the H,

norm of the close loop system.
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2.3.3 Parametric uncertainty and ;. synthesis

Parametric uncertainty refers to the inaccurate description of component characteristics. In
contrast to a nominal model, which refers to the dynamic modeling without uncertainty on
the parameters, an uncertain system present a variation in its characteristics and response to
external inputs. The parametric uncertainty modeling problem is concerned with constructing

the state-space model [49].

>

Y

P

U — — Y

Figure 6: Standard P-A configuration

Where A represent the perturbation block, it contains all the uncertainties of each parameter

[0 02 ... 0,]in diagonal form
50 0]
0 dg ... 0
A= (41)
0
0 0 On |

In some cases a controller obtained through ., synthesis will not be capable of dealing
with large parametric uncertainties, creating a not optimal solution or a unstable close loop
plant. Another control technique that considers the parametric uncertainty block A is the p
synthesis with DK iteration. u is as non-negative function that gives a generalization of the

value & that is useful for analyzing robust stability and performance conditions, it is defined as:

1
P =
#P) min{ky,|det(I — k,,PA) = 0forstructuredA,o(A) <1

(42)
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The 1 DK iteration follows the next algorithm:

1. K-step: synthesize an H,, controller for the scaled problem ming|| DN (K)D ™|, with
a fixed D(s), usually D=L

2. D-step: Find D(jw) to minimize at each frequency (DN D~ (jw)) with fixed N.

3. Fit the magnitude for each D(kw) to a stable and minimum-phase D(s), go to step 1 and
repeat until the prespecified convergence tolerance is achieved or the maximun iteration

number is reached.

In most of cases the i synthesis with DK iteration works well, but very important drawback
is that the order of the obtained controller can be large. This could be an issue at the moment of
implementing the close loop plant on a digital system. As a consequence, order reduction may

be needed.
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3 Dynamics modeling

3.1 Deriving the equations of motion

In this section the mathematical model of the rigid-flexible satellite will be addressed. The
system is composed of a rigid structure (main-satellite), a flexible appendage (coilable mast)
and a rigid sub-satellite at the tip. The dynamics of the system will be obtained by using
the Lagrange method, therefore kinetic and potential energy of each part will be derived. As
discretization technique the assumed modes method will be used in combination with the system

energies (7', V') to derive the equations of motion. .

Figure 7: Rigid-flexible satellite representation

From figure 7 it can be observed that the inertial coordinate frame is denoted by the axis X',
Y’ and Z'. Angular displacement of the thee axis are generated by torques 7, 7, and 7,. The
rigid main satellite has a inertia of .J,,,, and the distance between its center and the origin of the
coilable mast is . The flexible appendage, assumed as an Euler Bernoulli beam, has a uniform

bending stiffness /7, a uniform linear mass density p, and a length L.
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The rigid sub-satellite at the tip has a mass m and its moment of inertia is .J5. The distance
between the center of the main satellite and an arbitrary point at the beam is 7 and the elastic
deformations at this specific point is w(z, t) in the j direction and v(z, t) in the i direction. The
elastic deformation at the sub-satellite position depends on w(L,t) and v(L,t), torsional and

axial deformation are not considered.

The vector 7’ is defined as:

R+«
7= |w(z,t) (43)
v(x,t)
While its time derivative 7 :
éQU — égw
7= | —6v+05(R+ X) + (44)

(911U—(92(R+X)+U

With the 7 obtained the satellite kinematics can be derived. Lagrangian approach will be

followed in order to obtain the satellite dynamics.

3.1.1 Lagrange Equation

The total kinetic energy 7' is defined as:

T=T,+Ty,+ 1T, (45)
Where T}, T, and T} are the kinetic energy of the main satellite, the flexible beam and the

sub-satellite respectively.

T, = 167J,0

TSZ%m 7‘:‘[] FL—F%[@—FTZ]Jt[@—FTZ}
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Where:

@: [91 02 93}T

ri=[0 v} W]

Jhl 0 0 J51 0 0
Jh = 0 Jhg 0 Js = 0 JSQ 0
0 0 I3 0 0 Js3

The expanded kinetic energy of the rigid main satellite:

Ty = %Jh1912 + %Jh2922 + %Jh3932 “47)

The first time derivative of the position vector 7 is 7, its value was defined in equation (44).

By replacing the value of 7 into T}, at equation (46) the kinetic energy of the beam becomes:

T, =1p [ [0 — bsw]’de + Lo [ [Ba(R+ ) + 1 — 610]da
(48)
1o [ [hw+ 0 — 6(R + 2))da

Expanding beam’s kinetic energy expression:

L . . .
Tb = %p L { [9221}2 — 29293’[)?1] + (932’LU2}
= [932(R + 2) + 20510 (R + x) — 2036,0(R + z) + w? — 20,100 + 9121)2] (49)
+[03w? + 201w — 26,0,w(R + 7) + 9% — 2005(R + x) + 6,"(R + )?] bda

Now the kinetic energy related to the rigid sub-satellite at the tip of the flexible appendage

is derived. The first time derivative of the position vector at the tip of the satellite is:

92”L — éng
L= | —fyvp + 05(R+ L) + g (50)
91wL — 92<R -+ L) -+ ’f)L
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By replacing this value in equation (46), the kinetic energy of the sub satellite is obtained:

Ts = %m [QQUL — éng]Q + %m [03(R + L) + u')L - éle]Q
5D
1 A . A 2 1 -2 N ./ \D ‘ .1 \9
+2m[91wL —+ vy, 02(R + L)] -+ 5 [Jslel + J52(92 + ’UL) + J53(¢93 -+ wL) ]
Expanding sub-satellite kinetic energy expression::
T, = 1m{0s (R + L)* + 205t (R + L) + 03 + 65 w?
16, (R + L)% — 20,0, (R+ L) + 03 + 9'22@ + 912v% — 20,17, + 912w%
(52)

+2(9.1’[J)LQUL — 29293vaL — 2919221][,(]% + L) — 29391@L(R + L)}
L {T000" + Tl + 2J00050; + T + Jabs + 2T, + T2}

The total kinetic energy expression (') is obtained by replacing results from equations (47),
(49) and (52) into (45):

. L L
T = %632 [Jhg +p jo‘ (R+ z)*dz +p jo‘ w?dx + m(R+ L) + mwi + Jsg]
.9 L L
+36, [Jhg + pfo (R + z)*dzx + pfo v?’dz + m(R + L)* + mvi + Jsz]
: L L
—I—%912 [Jhl +p £ vidr + pl widr + m(wr)? + mo? + Jsl]
. L
+305 [2;) j; (R + x)wdx + 2m(R + L)wy, + 2J83w’L]
. L
+26, [ - 2p£ (R + z)vdr — 2m(R + L)vg, + 2J521’/L] (53)
. L L
+%91 [ —2p L vwdx — 2mupwyg, + 2p jo‘ wodr + Qmez')L]
L L
+3 [pl w?dr + muwi + Jsgwg] + 1 [pfo v?dx + moi + szf]
. L . L
—% [29203 (p L vwdx + vawL> + 26,6, <p£ w(R + x)dxr + mwp (R + L))
. L
+2036, <p j[: v(R+ x)dz + mur (R + L))]
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The main issue with this expression is its size. As a consequence, obtaining the mass matrix
M from it can become a tedious task, due to this the whole kinetic equation will be simplified by
using composed matrix elements. Flexible appendage deformations such as w(x,t) and v(x, t)

are embedded in the R, matrix.

0 v —w
Ry = |—v 0 (R+ ) (54)
w —(R+x) 0

Note that these deformation (w(z,t) and v(x,t)) will no longer be fully expressed with
its space and time dependence but just by w and v. The sub satellite moment of inertia is
represented in two new different matrices (J; and J;*). In contrast to the original J; these new

matrices only differ in the position of the inertia elements inside them:

Jsl O O J51 0 0
Ji=10 0 Js3 JT=10 Js 0 (55)
0 Jo O 0 0 Jgo

By using these new obtained matrix expressions, the angular position vector © and a de-
formation vector u = [0 w wv| a more compact expression of the total kinetic energy 7T is

obtained:

T=1p L ! OTR?Odx — tmOTR:, 0 + L[2p j{; ' W Ry©] + 3 [i] Ry O]
(56)

1 20d026] + 3 [ ide + Imid + 10,6 + 10,6 + i i,
The previous step before obtaining the mass matrix M is to separate the kinetic energy in
two expressions one in term of angular position vector © and the other in terms of the deforma-

tion vector u:
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L . . . . L . .
Te =—2%p fo (OR?O)dx — tmOR}, 0 + L [p j(; (0" Ry©)dzx] + § [mi] Re O]
+1[id, J:0] + 167,06 + 167,60
(57)

L L . .
To=tp [ e+ tmid + 3 [ i RG] + 4 i Rus)
4[] + 3 0:6)

These two last equation represent the kinetic energy of the rigid-flexible satellite in a more
compact way if compared to the original expression at (53). As can be inferred, the flexible
appendage is a continuous body, therefor discretization of the flexible system is required. Like

mentioned before the assumed modes method will be used.

3.1.2 Spatial Discretization

As spatial discretization technique the Assumed Modes method, or most commonly known
as modal analysis, is used [41]. The assumed mode method allows to represent the time and
space dependent function such as w(z,t) as a multiplication of the assumed mode shape ¢;(x)

and the generalize coordinates ¢;(¢) which are only-space and only-time dependent respectively:

w(z,t) = Z () (t) (58)

Where N defines the number of degrees of freedom. The mode shapes can be found by:

oi(z) = Ci(cosh(pix) — cos(fix) — K, (sinh(Bix) — sin(fix)))
(59)

_ cosh(B;L)+cos(B;L)
KT " sinh(B;L))+sin(B; L)

The values of (3; can be obtained from the transcendental equation, also known as the char-

acteristic equation:

1 + cosh(B;L)cos(B; L) + pﬂL (sinh(ﬁiL)cos(ﬂiL) - cosh(ﬂﬂ)sin(ﬁﬂ)) =0 (60)
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Assuming that the mass of the sub-satellite is m = 1 K g, line density of the coilable mast

p = 1.5 Kg/m, its length L = 2 m and the number of degrees of freedom N = 2. The roots

of the transcendental equation can be observed in figure 8.

log(1+[f(5 L)I)

AL

Figure 8: Roots of transcendental equation
Only the first two roots are necessary, since a two degrees of freedom mode is used:

By = 1.514
By = 4.175

The mode shapes then can be obtained by replacing the values of ; and (3, into equation
(60). If assuming ¢ = [¢1(z) ¢o()] " and q = [m n2] anew vector expression for the elastic

deformation and velocity at equation (58) is obtained:

w(% t) = Qf(ly

’LU(Z’, t) = ¢5Qy
(61)

U(ZL‘, t) = ¢ZQz

1')(33, t) = ¢ZQZ
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In order to keep the matrix form that allowed to simplify the original 7" expression the shape

modes are now represented as:

0 0 0
=10 ¢ 0 (62)
0 0 ¢

By applying the assumed modes method for discretization of the kinetic energy, a new

simplified 1" expression is obtained:

T = OTM10 + ¢T M50

(63)
G" M1 © + ¢" Myyq
Where:
1 Lo 12 1 1
M11 = —§p£ Rbdx_§RbL+§Jh+§Js
L ’
My = 1p L PRydx 4+ smP LRy + 3P J;
(64)
My = My,
L !/ ’
Moy = %p fo OPdr + %m(I)Lq)L + %@LJ;**@L
Kinetic energy can be now re-expressed in a matrix form:
_ My M| |©
T [@T i 11 12 65)
Mo M| | ¢
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The mass matrix, which is originally denoted as the letter M, is composed of four elements,

each of those are derived and calculated in detail:

Jhx 0 0 Jhgc 0 0
Miu=3[0 Jy O0|+3|0 Ju 0
0 0 th 0 0 th
— 101 141 — @23 205 a(R+x)p] @(R+ z)¢3
L
1
+3p jo‘ @ (R+ z)¢f —(R+2)? — 203 ¢2qd Q293 d1ai dx
(66)
i g@2(R+ x)¢3 G205 P11 —(R+z)* - Q1¢1T¢1Q1_
—q1 ¢ b0l — @bt dorad ai(R+ Lot ¢2(R+ L)¢d,
+5m a(R+ L)¢{,, —(R+L)? — 2% dorqd @03 ¢1oat
i @2(R+ L)¢3, @03 d10a] —(R+L)*— 91¢TL¢1LQ1_
0 0 0 0 0 0
L
My =35 |0 0 Js3d1p | T %pfo —q201 P2 0 ¢1(R+ )| dz
0 Jaady 0 Qo201 —P2(R+x) 0
(67)
0 0 0
+3m Q01 d2r 0 é»in(R+ L)
i —¢an(R+ L) 0
0 0 0 0 0 0
L
My=310 Jsod 0 |+ épj[; 0 ¢fgr 0 |da
0 0 Jodk 0 0 ¢3¢
(68)
0 0 0

+3m |0 o1 d11 0
0 0 3oL
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The mass matrix M contains time dependent elements, in order to synthesize an H, or p

controller it is necessary of linearize the plant. Each of the mass matrix elements are linearized

around the equilibrium point ¢; = ¢ = [0]:

Ji 0 0
Mu=10 J, 0 (69)
0 0 Js

Where:

Sy = Jut + Ja
Jo = Jna + Jeo + p [ (R+x)?dz +m(R + L)?
Js = Jus + Ju + p [ (R +x)2dz + tm(R + L)?
0 0 0

My =10 0 M, £ (70)
0 M,y O

Where:
Mgy = p [y 61(R + x)dz + méip(R+ L) + Jad

Myrgs = p fy 02(R + x)dx + mdar(R+ L) + Jady,

0 0 0
M22 = |0 Mffl 0 (71)
0 0 My

Where:
L ’ ’
My = [ o] prdx + dl b1 + o101,

Mypr = fOL O dadx + Pl por, + doh doy
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By replacing equations 69, 70 and 71 in equation 65 the linearize M/ matrix is obtained:

S0 0 0 0
0 Jo 0 0 M, 51
M=119 o J3 | Mgy O

0 0 Ml | Myp 0

rfl 0 0 Mff2 m

Total kinetic energy can be expressed as:

The potential energy of the system is calculated in order to obtain the stiffness matrix:

1 L 1 L
V = =FEI, w ?dx + -EI, v 2dx
2 0 2 0

a1

02
03

q1

4]

(712)

(73)

(74)

By applying the assumed modes method for discretization, the potential energy becomes:

Equ1 / ¢”T¢1dx q1+ EIUqQ / ¢”T¢2dw

Stiffness matrix K is can be defined as:
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000 0 0
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Where:
Kip = EL, [y ¢,7¢da
(77
Kipo = EL, [\ ¢  dyda
Potential energy can be now expressed as:
v = alKlg (78)

Damping coefficient is defined as K., with it the Rayleigh dissipation function can be ob-

tained:

% = Dl 9

The damping matrix of the system is defined as:

D= KewElwa / &7 érdz )1 + KevEquQ / 6y ydr )z (80)

In order to derive the system dynamics the first step is to obtain the Lagrangian, defined at

equation (4).

£ = §Q[M]q' — -q[K]q (81)

d (0% 0¥ OX __
w(57) ~ 5t =Q

(82)
#([M]g) + [Klg + [Clg = Q
Finally the linearize rigid-flexible satellite equation of motion is:
[M]G+ [K]g+[Clg=Q (83)

Where the generalize coordinates are definedas Q@ = [r, 7, 7. 0 0 0 0]”. The mass,
stiffness and damping matrix are numerically calculated by using the system parameters in next

section.
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3.2 Uncertain Plant

In previous section the equations of the rigid-flexible micro-satellite were obtained, also
a linear expression was obtained at equation (83) an it would be used to obtain a state space

representation of the system. Nominal values of the system parameter are defined in table 1:

Table 1: Rigid-Flexible satellite parameters

Parameters Values
Length of the beam L=2m
Main satellite radius R=05m

Inertia of main satellite Jm = diag([0.7,2.5,1.5]) K g.m?

Inertia of sub-satellite Js = diag([0.4,0.2,0.2]) K g.m?

Mass of sub satellite m=1Kg

Flexural rigidity of the beam El,=15FEI, =172 Nm?

Line density of beam p=15Kg/m

Damping coefficient Ke = 0.086

Based on [27] in this project five parameters will be assumed as uncertain:

Mass of the sub-satellite (1m), 15% of uncertainty

Line density of the beam (mp), 15% of uncertainty

Inertia of main-satellite (J), 20% of uncertainty

Inertia of sub-satellite (J,), 20% of uncertainty

e Flexural rigidity of the beam (£ 1), 80% of uncertainty

The nominal mass, stiffness and damping matrices are:
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(05500 0 0 0 0 0 0
0 83500 0 0 0 1.8622  0.1894
0 0 7.8500 —1.7518 —0.6059 0 0

M=| o 0 17518 05304 —0.1156 0 0
0 0 —0.6059 —0.1156 0.9337 0 0
0 1822 0 0 0 0.5304 —0.1156
0 01814 0 0 0 —0.1156 0.9337 |
000 o0 0 0 0 |
000 0 0 0 0
000 0 0 0 0
K=1{0 0 0 01639 —00001 0 0
0 0 0 —0.0001 9.4872 0 0
000 0 0 0.1880  —0.0001
000 0 0 —0.0001 10.8787
000 0 0 0 0|
000 0 0 0 0
000 0 0 0 0
D=10 0 0 00141 0 0 0
000 0 085 0 0
000 0 0 00162 0
000 0 0 0 0.9356]

The obtained equation of motion of the rigid-flexible satellite at (83) can be represented as

a block diagram as shown in figure 9:
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1 Pa ]
P k4

73

K

G

Figure 9: Block diagram of Rigid-Flexible satellite system

The two new blocks P, and P, are used to obtain the acceleration and displacement at the

tip of the flexible appendage (x = L):

Pl=P2= (84)

The obtained nominal state space representation of the interconnected plant G' becomes:

0 0 0 004 043 0 0 0 0 0 0.48 5.01
0 —005 —090 0 0 0 0 0 —059 —10.41 0 0
0 —020 -337 0 0 0 0 0 —-239 —39.14 0 0
0 —006 -1.87 0 0 0 0 0 —068 —2177 0 0

0 0 0 —018 —178 0 0 0 0 0 213 —20.92

0 0 0 —003 —131 0 0 0 0 0 —0.361 —15.26
A=10 o 0 0 0 00 0 0 0 0 0
0 0 0 0 0 00 0 0 0 0 0
10 0 0 0 00 0 0 0 0 0
0o 1 0 0 0 00 0 0 0 0 0
0 0 1 0 0 00 0 0 0 0 0
0 0 0 1 0 00 0 0 0 0 0

[0 o0 0 0 1 000 0 0 0 o |
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18181 0 0
0 070 0
0 0 101
0 0 357
0 0 110
0 —257 0
B 0 —046 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0|
[0 0 o 0 0 O 100 0 0 0 0o |
00 o0 0 0 0O 00 1 0 0 0 0
00 o0 0 0 0O 0 0 0 076 —0404 O 0
C=1]0 0 -013 -18 0 0 0 0 0 -155 -21.02 0 0
00 o0 0 0 0O 010 0 0 0 0
00 o0 0 0 0O 000 0 0 0.76  —0.41
L0 0 o0 0 —013 —084 0 0 0 0 0 —147 —9.77 |

The bode plots of the rigid flexible satellite system with the driving torque vector 7 =
[T, T, T.]asinputand [0 6,65V VL Wi, WL] as outputs are shown in figures 10-16. The
frequency response of the nominal system is highlighted in red color, while frequency response

of the system with uncertainty correspond to the blue dashed lines.
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Bode plot
From: tau(1) To: theta1
— T
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Figure 10: Bode plot from 7; to 6,
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Figure 11: Bode plot from 73 to 6,
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Bode plot
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Figure 12: Bode plot from 75 to 03

Bode plot
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Figure 13: Bode plot from 75 to V7,
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Bode plot
From: tau(2) To: ddVL
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MAG (deg)

N

N

&
T

180 =
107!

Frequency (rad/s)

Figure 14: Bode plot from 75 to VL
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Figure 15: Bode plot from 73 to W7,
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Bode plot
From: tau(3) To: ddWL
T T

Magnitude (dB)

MAG (deg)

Frequency (rad/s)

Figure 16: Bode plot from 73 to Wy

A torque signal was designed to act as a disturbance for plant G, in this case only 7, and 7,

are excited as can be seen on figures 18 and 19.

Impulse torque
15 T T T

0

-15
0

15 T T

05 -

& 0

-15
0

5 T T T T

T ]
05/\ i
S 0

05— -

| | L L 1
05 1 15 2 25 3
Time (s)

15
0

Figure 17: Impulse input torque
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The impulse response of the system can be observed in figure 18:

Linear Simulation Results

°
T

6.
To: theta2

L & o
-
|

0 5 10 15 20 25 30
Time (seconds)

Linear Simulation Results

0 5 10 1 20 25 20
Time (seconds)
Linear Simulation Results
10 f q
o D
E o a—,u
=2
=0 -
!
20 L
0 5 10 15 20 25 20

Time (seconds)

Figure 18: Impulse response of plant G for states 65, W, and 1453
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Figure 19: Impulse response of plant G for states 65, 1, and VL

The states 65 and 63 in figure 18 and 19 respectively show an approximate linear increase
through time due to the torque input disturbance, however is also important to note that this
angle are wobbling. This is due to impact of the other states 7, 72,, 1. and 7, indicating a
dynamic relation between the flexible link and the rigid main satellite. A vibration suppression
control is necessary not only to suppress the lateral displacements of the beam (w and v) but

also to minimize its impact on the entire structure.
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4 Control strategy and controller synthesis

The control strategy requires as sensor data the angular displacement in the three axis
(01, 62, 03) and the acceleration of the flexible appendage lateral deformation (V ,W). Previ-
ous system interconnection in figure 9 is expressed as an integrated single block with torque

vector as input and seven output signals, this new plant will be denoted by the letter G:

th
| 6>
T1 WL
_T2 | 03
_ T3 VL
WL
VL

Figure 20: Integrated block diagram of Rigid-Flexible satellite system

For the design of an H, controller the obtained GG plant is interconnected with some new

blocks:

e Actuators transfer function W,;, W9 and W3 which are modeled as a first order lag with

time constant 0.004 and gain 1.

e Plant performance weights W1, Wia1, Wiao, W31 and W3o. Their value will depend on
what the controller must consider a priority. In this project the assigned weights for the
desired orientation performance are greater than the rest, as a consequence desired ori-
entation must be achieved first and then flexible appendage vibration can be suppressed,

frequency response comparison between W),; and W52 can be observed in figure 21.
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e Control performance weights W,,;, W5 and W,3. These scalar values denote how expen-
sive or cheap the close loop system perceives control signal generation. If there are no
restriction on how much torque can be generated, the value of these weights can be set

very low.

e Noise shape filters W,,1,W,,01,W,00,W,.31 and W, 30.Are determined according to the spec-

tral contents of the sensor noises

e Reference dynamic models M;, My, M3, M, and M;. These are not weighting functions
but desired dynamic responses of the close loop plant when exited with a reference sig-
nal. The difference between the output of this blocks and the real states is what must be

minimized by the robust controller.

Bode Diagram

60 T T — T

Magnitude (dB)
N
8
T
|

Phase (deg)
o
T
|
|
|
|
|
|

10* 107 102 107 10° 10' 10 10°
Frequency (rad/s)

Figure 21: Bode plot comparison between W), and W22
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Interconnected open loop plant can be observed in figure 22:

# -
5 Wpy epy
r1'1 riz dg 8. -
%\ | 2 D) Wpa }—-"i"z'
Way ) L WL 5 [Wpa w2
M1 -
Wasy 2 {E—» epa1
'
WL
VL
r1
21
Ta2
1 T31
Ug T32
ym ;
yna o1
@ Wiz 21
Ynaz M
() Wiigg N2
Wug || Wug || Wy Ynzi @ W"‘nm a1

€us €Uy €y

Figure 22: Open loop interconnection

Where inputs r, d, N and u refer to the reference signal, disturbance signal, noise and

control input. The values of the system weights are defined as follow:

My =My =M3=My=Ms=1
Wy = Wye = Wiz = 0.001

Wal = Wa2 = WaS =

1
0.004s+1
_ _ _ $24255450
Wit = Wyt = Wis1 = 55555005

_ _ 5242554100
Whaa = Wysa = 52422541000

_ _ — 105 _0.55+1
Wit = Wan = Waz = 10 0.0055+1

— — 1(0)—6_0.5s+1
Whaz = Whsa = 10 0.0055+1
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As mentioned in section 3.3 the main objective of a robust controller is to minimize the
impact of the exogenous inputs [r d n| into the regulated outputs [epl, ep21, ep22, ep31 and

ep32], close loop interconnection with the controller K is show in figure 23:

— or [F

K .

Figure 23: LFT representation of the open loop plant and the controller

Where OL is the integrated block of the open loop interconnection from figure 22:

r — €
_d_

n — T
—_—

Uu
- " — Yn

Figure 24: Integrated block diagram of the open loop system

The controller K is obtained by using the hinf robust control synthesis command from
the MATLAB robust control toolbox [50]. The obtained controller is interconnected with the

nominal plant as shown on figure 25.
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dy do dy "
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WL
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21

T2

uy 31

Uy raz

Uz K O—Wn, ] e

&) (W) na2

Figure 25: Close loop interconnection
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5 Close loop system testing and Results

The desired reference angular orientation is [20° — 15° 10] for 6, 05 and 05 respectively.
Objective orientation of the rigid main satellite must be achieved after 15 seconds. The error
Euler angle plot in figure 26 shows that the close loop system is capable of reaching the objective
orientation after approximately 18 seconds with an approximate error of 0.19°, 0.25° and 0.35°

after 30 seconds.

0,

—0

Error Euler angles (°)

03f

02

04
0

0.1
02

03—
3 35 40 45 50 5 60 65 70

| I 1 | I 1 | I 1
0 20 40 60 80 100 120 140 160 180
Time (s)

Figure 26: Error Euler angle using H, control

Like it was stated before, the controller is focusing primarily on reaching the objective
orientation as fastest as possible. Once the first task is completed the close loop plant starts
dealing with the vibration suppression issue on V7, and Wy, these results can be observed in

figures 27 and 28.

Time (s)

Figure 27: V7, vibration suppression using /., control
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WL (m)

5
160 165 170 175 180 185 190 195 20!

I
o 2 a0 60 80 100 120 140 160 180

Figure 28: 1V}, vibration suppression using /1, control

As can be seen from these results, vibration is almost completely suppressed after approxi-
mately 160 seconds for both cases (V7 and W), since maximum vibration after this time instant

is of five millimeters. Control input effort from the /1, controller can be observed in next figure:

100 120 140 160 180

u2 (Nm)

0 20 40 60 80 100 120 140 160 180

100 120 140 160 180
Time (s)

Figure 29: H, control effort

It can be inferred that the designed H ., controller y capable of controlling the nominal plant
of the system with almost no issues, since objective orientation and vibration suppression are
achieved. Nevertheless, parametric uncertainty is always an important factor while testing the

efficacy of a control system. The same H, controller will now tested while considering the

parametric uncertainty of the system.
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Linear Simulation Results
T T

1 1 1 1 I 1 |
20 40 60 80 100 120 140 160 180 200

Linear Simulation Results
2
T T T
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To: et2d
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Figure 30: Error Euler angles using H ., control considering parametric uncertainty

From figure 30 it can be observed that parametric uncertainty mostly affect the Euler angles
that are related to the respective lateral vibration of the flexible appendage (6 — W and 03 —
V7). Though it could be perceived that all Euler angles will converge to the objective orientation,
the time required for this is too large. Also, vibration at the tip is not in a better situation since,
as can be seen on figures 31 and 32, lateral deformation after 160 seconds is not even lees than

0.08 and 0.22 meters for W, and V, respectively.
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Linear Simulation Results
05 T T T
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Figure 31: W, vibration suppression using H, control considering parametric uncertainty
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Figure 32: V, vibration suppression using H, control considering parametric uncertainty

The obtained H, controller is not robust enough to deal with large parametric uncertainties,
as a consequence a more robust controller is required. To address this issue the p control
synthesis will be used to obtain a more robust controller that can keep good performance while
dealing with parametric uncertainties. The musyn command from MATLAB robust control
toolbox is used to synthesize a more robust controller that will be tested in the same way as in
the previous case. The Euler angle errors of the nominal plant controlled by the . controller can

be observe in figure 33.
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20 0,1

Error Euler angles (°)

0 20 40 60 80 100 120 140 160 180

Figure 33: Error Euler angle using p synthesis control

The desired orientation is reached approximately after 18 seconds with an approximate error
of 0.01°, 0.06° and 0.09° for Euler angles 61, 65 and 05 respectively after 30 seconds. Vibration
on the nominal plant is suppressed in a more efficient way if compared to the H., controller,

this can be seen on figures 34 and 35.

VL (m)

03— H

I I I I | I I L I
0 20 40 60 80 100 120 140 160 180
Time (s)

-04

Figure 34: V, vibration suppression using x synthesis control
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Control input effort from the y controller can be observed in next figure:

110

180

Figure 35: W}, vibration suppression using p synthesis control
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Figure 36: 1 synthesis control effort

200

The close-loop plant using the j+ controller will be tested considering the parametric uncer-

tainty. The error Euler angles can be observed in figure 37, when these results are compared to

the ones at 30 it can be concluded that the ;2 controller can achieve much better results under

the influence of parametric uncertainty.
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Linear Simulation Results
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Figure 37: Error Euler angles using p synthesis control considering uncertainty
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Vibration suppression results at figures 38 and 39 show that the ;. controller can guarantee
stability, aspect that was not achieved by the previous H, controller. A closer look to these
results can be observed at figures 40 and 41, where it is possible to notice that after 60 seconds

vibration is less than two and ten millimeters for W, and V], respectively.

Linear Simulation Results

uncertainty plant

— — -nominal plant

04

0 20 40 60 80 100 120 140 160 180 200
Time (seconds)

Figure 38: I/, vibration suppression using p synthesis control considering uncertainty

Linear Simulation Results
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0 20 40 60 80 100 120 140 160 180 200
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Figure 39: V, vibration suppression using x synthesis control considering uncertainty
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Figure 40: W, vibration suppression using x synthesis control considering uncertainty
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Figure 41: V7, vibration suppression using ;. synthesis control considering uncertainty
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Conclusions and future work

The dynamic modeling of a rigid flexible satellite was obtained, the Lagrangian method was
used to obtain the equations of motion of the system, then these were discretized by using the
assumed modes method. The discretized equation of motion was linearized and a plant G with
parametric uncertainty was created.

An open loop plant of the modeled system was interconnected with the weighting functions
in order to compute a robust controller. The obtained controller was designed to firstly focus on
reaching the desired orientation, vibration suppression was second in priority, this was defined
by the weighting functions in section 4.

The first proposed controller used the H, synthesis to compute a K that could control and
stabilize the system. The obtained controller was capable of reaching the desired orientation in
a short period of time and suppress flexible appendage vibration after a period of 160 seconds.
Nevertheless when tested under the presence of parametric uncertainty the controller was not
capable of stabilizing the plant fast enough by itself.

In order to guarantee fast converge of the system under the presence of parametric uncer-
tainty a p synthesis controller was derived. In contrast to previous H, technique, the  synthe-
sis considers the parametric uncertainty while computing a valid controller that can deal with
this issue. The obtained K was not only capable of reaching the desired orientation, but also it
was capable of suppressing the flexible appendage vibration after a short period of time while
dealing with an uncertain plant.

Plant linearization around an equilibrium point is useful at the moment of deriving a linear
controller such as H, or . Unfortunately a non-linearized plan will be always closer to a real
system than a linearized one, due to this a non-linear controller and a adaptive controller are
proposed as a future task, results must be compared with the ones obtained in this report.

Validation of the obtained dynamics will be addressed. The same structure of this project

must be modeled on a FEM specialize software such as ANSYS or SimScape.

57



BUAA Academic Dissertation for Master’s Degree

References

[1] Z. Xu, Y. Guannan, H. Hai, and W. Xinsheng. Deployment analysis and test of a
coilable mast for buaa student micro-satellite[A]. 2010 3rd International Symposium on

Systems and Control in Aeronautics and Astronautics [C]. IEEE, 2010, pp. 1329-1332.

[2] L. Fan, H. Huang, L. Sun, and K. Zhou. Robust attitude control for a rigid-flexible-rigid
microsatellite with multiple uncertainties and input saturations [J]. Aerospace Science

and Technology, vol. 95, p. 105443, 2019.

[3] V. Modi. Attitude dynamics of satellites with flexible appendages-a brief review [J]. Jour-
nal of Spacecraft and Rockets, vol. 11, no. 11, pp. 743-751, 1974.

[4] M. Schenk, A. D. Viquerat, K. A. Seffen, and S. D. Guest. Review of inflatable booms
for deployable space structures: packing and rigidization [J]. Journal of Spacecraft and

Rockets, vol. 51, no. 3, pp. 762-778, 2014.

[5] A. Cornogolub, New technique for deploying long coilable booms, without blossoming

effect, using a polymer joint [J]. IFAC-PapersOnLine, vol. 52, no. 12, pp. 555-559,2019.
[6] Z. You. Space Microsystems and Micro-Nano Satellites. Butterworth-Heinemann. 2017.

[7] F. L. Markley and J. L. Crassidis. Fundamentals of spacecraft attitude determination and

control. Springer. 2014, vol. 33.

[8] M. L. Tibbs, Design and test of an attitude determination and control system for a 6u

cubesat using afit’s cubesat testbed. 2015

[9] M. Vos, Delfi-n3xt’s attitude determiniation and control subsystem: Implementation and
verification of the hardware and software. Master’s thesis, Delft University of

Technology, 2013.

[10] D. Torczynski, R. Amini, and P. Massioni, Magnetorquer based attitude control for a

nanosatellite testplatform [A]. AIAA Infotech@ Aerospace 2010 [C], 2010, p. 3511.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Prinkey. Cubesat attitude control testbed design: Merritt 4-coil per axis helmholtz
cage and spherical air bearing [A].AIAA Guidance, Navigation, and Control (GNC)
Con- ference [C]. 2013, p. 4942.

M. K. Quadrino. Testing the attitude determination and control of a cubesat with hardware-

in-the-loop. Master’s thesis, Massachusetts Institute of Technology, 2014.

W. Blackwell, G. Allen, C. Galbraith, R. Leslie, I. Osaretin, M. Scarito, M. Shields, E.
Thompson, D. Toher, D. Townzen et al. Micromas: A first step towards a nanosatellite

constellation for global storm observation. 2013.

T. Nguyen, K. Cahoy, and A. Marinan. Attitude determination for small satellites with
infrared earth horizon sensors [J]. Journal of Spacecraft and Rockets, vol. 55, no. 6, pp.

1466-1475, 2018.

J. Yang, L. Jiang, and D. C. Chen. Dynamic modeling and control of a rotating euler-

bernoulli beam [J]. Journal of sound and vibration, vol. 274, no. 3-5, pp. 863-875, 2004.

S. S. Ge, S. Zhang, and W. He. Modeling and control of an euler-bernoulli beam under
unknown spatiotemporally varying disturbance [A]. Proceedings of the 2011 American

Control Conference [C]. IEEE, 2011, pp. 2988-2993.

W. Manning, A. R. Plummer, and M. Levesley. Vibration control of a flexible beam
with integrated actuators and sensors [J]. Smart Materials and Structures, vol. 9, no. 6, p.

932, 2000.

W. Zhu and C. Mote Jr. Dynamic modeling and optimal control of rotating euler-bernoulli

beams. 1997.

D. Sun and J. K. Mills. Control of a rotating cantilever beam using a torque actuator and
a distributed piezoelectric polymer actuator [J]. Applied Acoustics, vol. 63, no. 8, pp.
885-899, 2002.

S. Choura, S. Jayasuriya, and M. A. Medick. On the modeling, and open-loop control of

a rotating thin flexible beam. 1991.



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. Hoa. Vibration of a rotating beam with tip mass [J]. Journal of sound and vibration,

vol. 67, no. 3, pp. 369-381, 1979.

H. Yang, J. Hong, and Z. Yu. Dynamics modelling of a flexible hub-beam system with a
tip mass [J]. Journal of Sound and Vibration, vol. 266, no. 4, pp. 759-774, 2003.

S.Y. Lee, S. M. Lin, and C. T. Wu. Free vibration of a rotating non-uniform beam with
arbitrary pretwist, an elastically restrained root and a tip mass [J]. Journal of Sound and

Vibration, vol. 273, no. 3, pp. 477-492, 2004.

S. Bai, P. Ben-Tzvi, Q. Zhou, and X. Huang. Dynamic modeling of a rotating beam having
a tip mass [A]. in 2008 International Workshop on Robotic and Sensors Environments

[C]. IEEE, 2008, pp. 52-57.

D. Zhang, J. Liu, J. Huang, and W. Zhu. Periodic responses of a rotating hub-beam system
with a tip mass under gravity loads by the incremental harmonic balance method [J]. Shock

and Vibration, vol. 2018, 2018.

H. H. Yoo, S. Seo. and K. Huh. The effect of a concentrated mass on the modal char-
acteristics of a rotating cantilever beam [J]. Proceedings of the Institution of Mechanical

Engineers, Part C: Journal of Mechanical Engineering Science, vol. 216, no. 2, pp. 151-

163, 2002.

J. L. Redondo Gutierrez. Attitude control of flexible spacecraft: Design, implementation
and evaluation of control strategies targeting flexible structures in the space domain,

based in an analytical modeling of these structures. 2019.

K. Lips and V. Modi. General dynamics of a large class of flexible satellite systems [J].
Acta Astronautica, vol. 7, no. 12, pp. 1349-1360, 1980.

A. De Souza and L. De Souza. H infinity controller design to a rigid-flexible satellite
with two vibration modes [J]. Journal of Physics: Conference Series, vol. 641, no. 1. IOP

Publishing, 2015, p. 012030.



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. Souza and L. Souza. Design of a controller for a rigid-flexible satellite using the h-
infinity method considering the parametric uncertainty [J]. Mechanical Systems and Signal

Processing, vol. 116, pp. 641-650, 2019.

W. He and S. S. Ge. Dynamic modeling and vibration control of a flexible satellite [J].
IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1422-1431,
2015.

H. Liu, L. Guo, and Y. Zhang. An anti-disturbance PD control scheme for attitude control
and stabilization of flexible spacecrafts [J]. Nonlinear Dynamics, vol. 67, no. 3, pp.

2081- 2088, 2012.

L. Guo and W.-H. Chen. Disturbance attenuation and rejection for systems with nonlinear-
ity via dobc approach [J]. International Journal of Robust and Nonlinear Control: IFAC-
Affiliated Journal, vol. 15, no. 3, pp. 109-125, 2005.

S. Wu, W. Chu, X. Ma, G. Radice, and Z. Wu, Multi-objective integrated robust H
control for attitude tracking of a flexible spacecraft [J]. Acta Astronautica, vol. 151, pp.
80-87, 2018.

L. Liu and D. Cao. Dynamic modeling for a flexible spacecraft with solar arrays
composed of honeycomb panels and its proportional-derivative control with input shaper

[J]. Journal of Dynamic Systems, Measurement, and Control, vol. 138, no. 8, 2016.

K. W. Lee and S. N. Singh. L1 adaptive control of flexible spacecraft despite
disturbances [J]. Acta Astronautica, vol. 80, pp. 24-35, 2012.

N. Hovakimyan and C. Cao. L1 Adaptive Control Theory: Guaranteed Robustness with
Fast Adaptation. SIAM, 2010.

Z. Qinghua, M. Guangfu, W. Xiaoting, and W. Aiguo. Attitude control without angular
velocity measurement for flexible satellites [J]. Chinese Journal of Aeronautics, vol. 31,

no. 6, pp. 1345-1351, 2018.

V. L. Pisacane. The space environment and its effects on space systems. American Institute

of aeronautics and Astronautics. 2008.



[40] D. A. Vallado. Fundamentals of astrodynamics and applications. Springer Science and

Business Media, 2001, vol. 12.

[41] J. L. Junkins and Y. Kim. Introduction to dynamics and control of flexible structures.

American Institute of Aeronautics and Astronautics, 1993.
[42] L. Mazzini, Flexible Spacecraft Dynamics, Control and Guidance. Springer, 2015.
[43] A.Preumont, Vibration control of active structures. Springer, 1997, vol. 2.

[44] R. J. Theodore and A. Ghosal. Comparison of the assumed modes and finite element
mod- els for flexible multilink manipulators [J]. The International journal of robotics

research, vol. 14, no. 2, pp. 91-111, 1995.

[45] M. G. Safonov. Origins of robust control: Early history and future speculations [J]. Annual
Reviews in Control, vol. 36, no. 2, pp. 173-181, 2012.

[46] D.-W. Gu, P. Petkov, and M. M. Konstantinov. Robust control design with
MATLAB® . Springer Science and Business Media, 2005.

[47] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system
and control theory. SIAM, 1994.

[48] G.-R. Duan and H.-H. Yu. LMIs in control systems: analysis, design and applications.
CRC press, 2013.

[49] C. M. Belcastro. Parametric uncertainty modeling: an overview [A]. Proceedings of the
1998 American Control Conference [C]. ACC (IEEE Cat. No. 98CH36207), vol. 2.
IEEE, 1998, pp. 992-996.

[50] G. Balas, R. Chiang, A. Packard, and M. Safonov, Robust control toolbox user’s guide,"
The Math Works, Inc., Tech. Rep, 2007.



BUAA Academic Dissertation for Master’s Degree

Acknowledgments

My gratitude go first to my beloved mother and father, their unconditional love is by far
the most important factor on my everyday progression to reach my dreams and objectives. The
charisma and brotherhood of my dear sister and brother were there also to comfort me, mostly
on those times of uncertainty and fatigue. Also I want to thank my grand mother and my aunt
who everyday showed how worried and proud they were about me.

I want to express my gratitude to professor Eber Huanca, from Universidad Catolica San
Pablo, who taught me how to work on a team and showed me how to maintain hope even during
the most complicated moments.

Thanks to CONIDA and APSCO for giving me the opportunity to study my master degree
and for investing in my professional development . Thanks BUAA for pushing me to learn more
by myself, and finally I want to express my gratitude to the international school which taught to

depend less on others.

63



	摘 要

