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Abstract 
 
Carbon dioxide (CO2) is the most important greenhouse gas that produces global warming 
and climate change. Despite most countries agreed on ambitious targets of CO2 cuts, there 
is less consensus on the tools through which these targets will be achieved. The deployment 
of renewable energy into the power industry is one of the core elements for decarbonizing 
one of the industries with the largest contribution to CO2 emissions. But we still know little 
about how different regulatory policies for renewable energy impact CO2 emissions from 
power generation. This study sheds light on these gaps by using three complementary 
methodologies: Kaya’s decomposition technique for identifying the main drivers of CO2 
emissions from power generation, the panel data approach for testing the relationship 
between renewable energy share in the generation mix and CO2 emission, and matching 
procedure to estimate the possible causal effect on CO2 emission of auction policy 
promoting renewable energy in the power industry. Results show that GDP per capita is the 
main driver pulling up CO2 emission and renewable energy share in power generation is the 
main driver counteracting it. Furthermore, auction policy, as one way to promote renewable 
energy, seems to have a causal effect on CO2 emissions per capita from power generation in 
countries that implemented it compared to a control group of countries that did not 
implement this policy. 
 
 
Keywords: CO2 emission, renewable energy, power generation, auctions, panel data, 
matching 
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1. Introduction 
 
Global warming is one of human’s greatest challenges to overcome. Carbon dioxide (CO2) 
is the most important greenhouse gas that produces global warming. Electricity and heat 
generation was the largest contributor to greenhouse gas emissions in 2016 (Ge & Friedrich, 
2020), of which power generation stands for 77%. 
 
Paris Agreement on climate change, reached at the United Nations COP21 meeting in 2015 
and went into effect in 2016, brought new vigor to global efforts to address climate change 
by limiting global warming to well below 2, preferably to 1.5 degrees Celsius, compared to 
pre-industrial levels (United Nations, 2020). Despite most countries agreed on ambitious 
targets of greenhouse emission cuts, there is less consensus on the tools through which these 
targets will be achieved. 
 
The deployment of renewable energy into the power industry is one of the core elements for 
the transition from fossil fuels to clean electricity generation and, therefore, the power 
industry plays a key role in reducing CO2. Not surprisingly, many countries use clean 
renewable energy sources or have plans to adapt them in the future into their power 
generation portfolio. By the end of 2019, of the more than 200 Intended Nationally 
Determined Contributions (INDC) plans submitted by countries after Paris Agreement, 132 
mentioned renewables in the context of the power industry (IRENA, 2020).  
 
While several studies have investigated the drivers of CO2 emissions from power generation, 
most of them relied on decomposition techniques (Goh et al., 2018) and used data from a 
single country or region (Rodrigues et al., 2020). Moreover, we still know little about how 
different regulatory policies for renewable energy impact CO2 emissions from power 
generation. According to IRENA (2020), the auctions scheme has gained traction since 2005 
as the main instrument to promote renewable energy in the power industry. To the best of 
my knowledge, the contribution of this study is to develop a cross-country assessment from 
the sample of 129 countries between 1990 and 2018 to evaluate the drivers of CO2 emission 
from power generation through a panel data approach and to estimate the possible causal 
effect on CO2 emission of auction policy promoting renewable energy into generation mix. 
 
I use three complementary methodologies to evaluate the drivers of CO2 emissions from 
power generation and to investigate the possible causal effect on CO2 emission of auction 
policy. First, I use Kaya’s decomposition technique as a reference to have a first glance at the 
evolution of the main drivers of CO2 emissions from power generation. Second, I use a 
panel data approach for testing the relationship between renewable energy share in the 
generation mix and CO2 emissions per capita from power generation. Third, I use a matching 
procedure to investigate the possible causal effect on CO2 emission of auction policy 
promoting renewable energy in the power industry. 
 
The promotion of renewable energy is only an instrument that needs to be complemented 
with others to tackle the climate change challenge. So, in this study, I also outline a 
framework for energy and climate policies to address climate change in the power industry. 
 
2. Literature review  
 
Carbon dioxide (CO2) is the most important greenhouse gas that produces global warming 
and climate change. Electricity and heat generation was the largest contributor to greenhouse 
gas emissions in 2016 (Ge & Friedrich, 2020), of which power generation stands for 77%.  
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Many studies have analyzed the drivers of CO2 emission from power generation, mostly 
through decomposition techniques such as Kaya identity (as an extension of IPAT), 
structural decomposition analysis (SDA), Index Decomposition Analysis (IDA), etc. (Goh 
et al., 2018) and for specific regions o countries (Rodrigues et al., 2020). For instance, 
Rodrigues et al., (2020), using an index decomposition analysis (IDA), have found that the 
expansion of renewable electricity is one of the main drivers of the decrease in CO2 
emissions from electricity generation in Europe between 2007–2015. However, one 
drawback associated with the decomposition approach is the increasing complexity of result 
interpretation and analysis brought by interconnectivity and interdependency amongst 
effects. This affinity is expected to increase with the number of variables considered in the 
decomposition equation but could be surpassed by resorting to an econometric approach to 
determine what kind of causality is associated with these complementary effects (Lima et al., 
2016).  
 
The regulation policy for promoting renewable energy into power generation acts through 
the carbon intensity to impact the CO2 emission per capita. Figure 1 summarizes the 
possible mechanism through which policy promoting renewable energy may impact CO2 
emission from power generation. 
 

Figure 1: Possible mechanism through policy promoting renewable energy may 
impact on CO2 emission 

 
Elaborated by the author. 

 
The policy promoting renewable energy has become the main climate change mitigation 
strategy (Sterner & Coria, 2012). From an economic theory viewpoint, the policy promoting 
renewable energy is a government intervention that seeks to correct negative externalities 
(pollution) through regulation (Gruber, 2016). Figure 2 shows the main policies promoting 
renewable energy through market mechanisms (Bento et al., 2020) which could be based on 
(IRENA, 2020):  
1) Price-based policies such as carbon tax and Feed-in policy that guarantees specified 

payments per unit over a fixed period (e.g. feed-in tariff – FIT) or payment floating on 
top of the wholesale electricity price (e.g., a feed-in premium). 

2) Quantity-based policies like renewable portfolio standard (RPS) requiring the provision 
or use of a targeted renewable share from utility companies and cap and trade (CAT) 
which offers certainty over the environmental outcome (i.e., “cap” quantity) but leaves 
it to the market to set the price of carbon.  

3) Hybrid-based policies as auction or tender, which is a mix of price and quantity 
instruments (Elizondo et al., 2014), provide stable revenue guarantees for investors 
(similar to the FIT mechanism) while at the same time ensuring a renewable generation 
quota (similar to an RPO). 
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Figure 2: Traditional regulation instruments for promoting renewable energy into 
power generation  

 
Source: Bento et al. (2020). 

 
Price-based policy (FiT) and hybrid-based policy (auctions) are the most widely used 
instruments to promote renewable energy into the power industry. By the end of 2018, there 
were 113 jurisdictions (not necessarily countries since there are states or region level inside a 
country considered as jurisdictions) with FiT and 98 with auctions (IRENA, 2020). FiT has 
been used since the 1970s and, more recently, auctions started being implemented at the start 
of the 1990s. The United States, through the US PURPA policy, was the first country to 
implement an early version of the Feed-in policy in 1978. Likewise, the United Kingdom, 
through the Non-Fossil Fuel Obligation, was the first country to implement auctions scheme 
in 1990 but the results were not very positive, so it was replaced by the RPS in 2002, although 
it reintroduced auctions system in 2011 (Woodman et al., 2019).   
 
Figure 3 depicts that FiT scheme had been the most dynamic instrument for renewable 
energy development between 1990 and 2005, but interest has shifted away from FiT and 
towards competitive tendering schemes such as auctions, as a way to improve cost-
effectiveness and increase control over renewable capacity levels (IRENA, 2020). 
Furthermore, this increased trend of auctions has gained traction since the Paris Agreement 
was signed in 2015.  
 

Figure 3: Number of Countries that implemented FiT and auction in the power 
industry 

 
Source: Elaborated by the author using data from IRENA, IEA, AURES II. 

 
Nevertheless, policy regulation promoting renewable energy is only an instrument that needs 
to be complemented with others to tackle the climate change challenge. Since policy 

Regulation 
Instruments

Price-based

(FiT, Carbon Tax)

Hybrid-based 

(Auctions)

Quantity-based

(RPS, CaT)

0

10

20

30

40

50

60

70

80

90

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

N
u
m

b
er

 o
f 

R
E

 P
o

lic
ie

s

Power RE Auctions

FiT

Paris
Agreement

2015 



7 

 

regulation is a means and not an end per se, the objectives of these instruments are set by 
stakeholders (users, companies, and governments) to achieve the public interest goals of each 
country. These targets can range from reaching net-zero greenhouse gas emissions to limit 
global temperature rise to 1.5°C above pre-industrial levels (between 1850 and 1900), getting 
a resilient power industry, etc. In the case of climate change, most countries worldwide agree 
on the objectives of reducing greenhouse emissions globally, but not necessarily on the 
institutions and policies through which these objectives will be fulfilled.  
 
The elements of energy and climate policies to address climate change could be focused on:  
1) International cooperation since global warming is a global issue. According to Nordhaus 

(2021), international climate policy is still at a dead end because of the global free-rider 
and double externality problems (the social cost of fossil fuels and social benefits of clean 
energy technology not properly internalized). Moreover, international agreements (like 
Paris Agreement) are voluntary in participation and do not have costly penalties for non-
participation. We do not have a global compact structure with carrots and sticks to tackle 
climate change, so developed countries could provide support for clean energy 
innovation and financing to developing countries given the greater responsibility of the 
first ones in the accrued contribution to greenhouse gas emissions.  

2) Carbon intensity reduction through continuing switching from fossil fuels to renewable 
energy and to incentivize the innovation for low-carbon energy technology.  

3) Energy intensity reduction through scaling up energy efficiency by synchronizing 
digitalization and electric appliances to optimize demand (through IoT, AI) and the 
electrification of still challenging sectors such as transportation.  

4) Access and inclusion mechanisms by providing electricity access to all worldwide 
population and making affordable the electricity service to low-income citizens through 
targeted subsidies, loans, tax credits, etc. 

 
In figure 4, I summarize a framework for the formation of energy and climate policies to 
tackle climate change in the power industry. 
 

Figure 4: Framework for energy and climate policies to address climate change in 
the power industry 

 
Source: Elaborated by the author using information from IEA, Nordhaus (2021), Word in Our Data. 
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3. Data and methodology 
 

3.1. Variables and data 
 
In the empirical analysis, I used a sample of 129 countries for unbalanced panel data (though 
still strongly balanced) between 1990 and 2018. This dataset includes 79 and 69 countries 
that had implemented price-based policy (FiT) and hybrid-based policy (auctions) to 
promote renewable energy into the power industry up to 2018, respectively. By the end of 
2018, 61% and 53% out of the total sample have implemented FiT and auction policies, 
respectively.    
 
This study uses seven variables of which six could be categorized as controls of demand-
shifter contributors (GDP and electricity consumption per capita), supply-shifter 
contributors (renewable electricity output share in total power generation and energy 
intensity), and policies (auction and FiT). Figure 5 summarizes the variables and their 
respective sources used for the empirical analysis.  
 

Figure 5: Variables and data sources 

Type Variables Acronym Units Sources* 
Means 
(sd**) 

Outcome 

CO2 emission 
per capita from 

power 
generation 

emission 
Metric tons per 

capita 

IEA / 
Climate 
Watch 

2.50 
(3.56) 

Independent variables 

Controls 

GDP per capita gdp 

Purchasing 
power parity 

(PPP), constant 
2017 

international $) 

World Bank 
19,987 

(20,034) 

Renewable 
energy into 

generation mix 
reshare 

% of total 
power 

generation  

World Bank 
/ IEA  

34.01 
(33.44) 

Energy intensity eintensity 

Power 
generation 

/GDP 
(kWh per $) 

World Bank 
/ EIA 

0.20 
(0.19) 

Electric power 
consumption 
(Used only for 

matching) 

consum kWh per capita 
World Bank 

/ IEA 
3,943 

(5,325) 

Policy 
(Dummy 
variables) 

RE auctions  rea Dummy  
World Bank, 
IEA, Aures 

II 

0.11 
(0.31) 

Feed-in policy  refit Dummy 
World Bank, 
IEA, Aures 

II 

0.29  
(0.45) 

*Note: Energy Information Administration (EIA), International Energy Agency (IEA) 
**Standard deviations (sd) in parentheses. 
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Figure 6 depicts a correlation matrix of CO2 emission per capita from power generation 
and their potential predictors. As one can expect CO2 emission per capita is positively 
correlated with GDP per capita and negatively correlated with renewable energy share into 
the generation mix. Conversely, CO2 emission per capita is positively correlated with energy 
intensity. Additionally, CO2 emission per capita is negatively correlated with auctions and 
FiT policies. Finally, GDP and electricity consumption per capita are weakly correlated with 
auctions policy. 
 
Figure 6: Correlation matrix of the power generation CO2 emission per capita and 

potential predictors (sample of 129 countries) 

 
 

3.2. Methodology 
 
I use three complementary methodologies to evaluate the drivers of CO2 emissions from 
power generation and to investigate the possible causal effect on CO2 emission of auction 
policy. First, I use Kaya’s decomposition technique as a reference to have a first glance at the 
evolution of the main drivers of CO2 emissions from power generation. Second, I use a 
panel data approach for testing the relationship between renewable energy share in the 
generation mix and CO2 emissions per capita from power generation. Third, I use a matching 
procedure to investigate the possible causal effect on CO2 emission of auction policy 
promoting renewable energy in the power industry. 
 

3.2.1. Kaya identity  
 
In this study, I use Kaya identity as a reference to have a first glance at the evolution of the 
main drivers of CO2 emissions as cited by the Intergovernmental Panel on Climate Change 
- IPCC (Edenhofer et al., 2014). Kaya, developed by Japanese energy economist Yoichi Kaya 
in 1990, is one of the main ways to decompose the factors contributing to total emissions by 
the product of population, GDP per capita, energy intensity (energy/GDP), and the carbon 
intensity of the energy system (Edenhofer et al., 2014). Figure 7 shows Kaya’s 
decomposition of CO2 emission. 
 
  

CO2 

emission per 

capita

GDP 

per 

capita 

RE 

auction 

(rea)

RE 
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RE 
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CO2 emission per capita 1.000

GDP per capita 0.606 1.000

RE auction (rea) -0.070 0.016 1.000

RE FiT (refit) -0.004 0.223 0.210 1.000

RE generation share 0.474 0.265 -0.022 0.087 1.000

Energy intensity 0.121 0.017 -0.075 -0.047 0.199 1.000

Power consumption 0.518 0.715 -0.034 0.121 -0.053 0.387 1.000
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Figure 7: Kaya identity to break down the drivers of CO2 emissions  

 
Source: Ourworldindata (2016). 

 

3.2.2. Panel data 
 
As a second empirical strategy, I want to test the relationship between renewable energy 
share in the generation mix and CO2 emissions per capita from power generation. In doing 
so, I considered as the determinants of the evolution of CO2 emission from power 
generation such as the GDP per capita, energy intensity, and renewable energy share in the 
generation mix (as a proxy of carbon intensity in the power industry). Thus, I estimate the 
following reduced-form equation: 
 

        log⁡(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛)𝑖𝑡 =⁡𝛽0 +⁡𝛽2𝑋𝑖𝑡 + 𝛿𝑡 +⁡𝜀𝑖𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)⁡          

                                                                                        i = 1,2,…129  t = 0,1,2...28. 

Where: 
 

• 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑡: CO2 emission per capita from power generation for country i and period t. 

• 𝑋𝑖𝑡: a vector of control variables recognized in the literature as the main drivers of CO2 
emission from power generation. 

• 𝛿𝑡:⁡year dummies to control for yearly shocks, which are common to all countries. There 
are 29 dummy variables for each year from 1990 and 2018 

• 𝜀𝑖𝑡: error term. 
 
Since the dataset used presents a panel structure, I use different techniques typically applied 
to this framework: pooled, random effects, fixed effects, and dynamic model. All models 
have their upsides and downsides (Verbeek, 2017). The main advantage of the pooled model 
is considered the effect of time-invariant explanatory variables, but it does not control for 
unobserved individual heterogeneity, and it only identifies the aggregate effect over a period 
(which could not be useful to examine changes in policies). The fixed-effects model does 
not consider the effect of time-invariant explanatory variables, but accounts for omitted 
time-invariant factors and identifies changes from one period to another which could be 
appropriate for policy evaluation. The random-effects model can capture the within and 
between variations of the data and is always efficient but could be inconsistent if random 
effects are correlated with independent variables. The dynamic model may be used in this 
study because the dependent variable (CO2 emission per capita) may show temporal inertia.    
 

3.2.3. Matching  
 
As a third empirical strategy, I want to investigate what are the possible effects on CO2 
emission per capita of the main two policies promoting renewable energy in the generation 

CO2 emission 

CO2 emission Population GDP/Population
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(CO2/Energy)
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mix: the price-based policy (FiT) and hybrid-based policy (auctions). In doing so, I introduce 
renewable energy policies (RE policy) into equation (1) but without considering renewable 
energy share into the generation mix because this is the intermediary output through which 
carbon intensity impacts the CO2 emission from power generation. 
 

        log⁡(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛)𝑖𝑡 =⁡𝛽0 +⁡𝛽1𝑅𝐸𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑡 +⁡𝛽2𝑋𝑖𝑡 + 𝛿𝑡 +⁡𝜀𝑖𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)⁡          

                                                                                        i = 1,2,…129  t = 0,1,2...28. 

Where: 
 

• 𝑅𝐸⁡𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑡: dummy variable that takes a value of 1 when country i implemented Fit 
and/or auction instruments in the power industry in period t. 

 
As the first step, I just estimate equation (2) by OLS to test for the statistical significance of 
these policies (Fit and auctions). As will be shown in the results section (4), only auction 
policy seems to be statistically significant. Although OLS regression attempts to simulate 
random assignment by controlling for observable variables that matter, it still faces omitted 
variables bias, systematic differences between groups other than the difference we are 
focused on (Angrist; Joshua D. & Pischke; Jörn-Steffen, 2015). 
 
So, I use the matching procedure as a second step to create a valid counterfactual for applying 
auctions policy (treatment). Matching could eliminate the selection bias from a nonrandom 
sample by calculating sampling probabilities from a first stage logit conditioned on 
observable characteristics and then forming the treatment and control group based on these 
probabilities, so mimicking randomization (Jena et al., 2012). 
 
To do so, I first estimate the probability of being treated conditional on the pre-existing 
observable characteristics that differ between treated and control groups with a logit model, 
obtaining the propensity score for each observation. Then, I match the observations in the 
treated and control groups with the propensity score using the first nearest neighbor 
algorithm (which matches treated observations with the control that has the closest 
propensity score). Next, it drops all the observations without common support and re-
estimate equation (2). 
 
Although the matching procedure reduces large biases in the sample, hidden biases may 
remain because matching only controls for observed variables. Additionally, matching is 
sensitive to a large sample, particularly, from control group observations.  
 

3.3. Econometric issues 
 
Before estimating any model specification, I performed some tests for possible problems of 
unit roots in the dependent variable, non-normality of variables, heteroscedasticity, and 
temporal autocorrelation in the error term. 
 
The tests indicate that the dependent variable does not follow a unit roots, the variables do 
not seem to be normally distributed, the standard errors are not robust to heteroscedasticity, 
and have first-order autocorrelation (for further detail see Appendix 1). So, we correct 
heteroscedasticity and autocorrelation with the more robust clusters standard errors allowed 
by the data. 
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In the empirical analysis, there could be a possible endogeneity problem. Endogeneity may 
have different reasons such: unobserved individual heterogeneity stemming from countries 
(e.g. renewable energy potential natural resources), omitted variables (e.g. renewable 
technology cost reductions), simultaneous determination of dependent and independent 
variables, autocorrelation with lagged dependent variables, measurement errors in the 
explanatory variables, etc. We are dealing, partly, with this problem with the matching 
procedure.  
 
4. Results 
 
In this section, I present the results from Kaya’s decomposition technique for identifying the 
main drivers of CO2 emissions from power generation, the panel data approach for testing 
the relationship between renewable energy share in the generation mix and CO2 emission, 
and matching procedure to estimate the possible causal effect on CO2 emission of auction 
policy promoting renewable energy in the power industry. 
 
Figure 8 shows a decomposition of the factors contributing to CO2 emissions per capita 
from power generation that I elaborated on using data from official sources. As it is shown, 
GDP per capita is the main factor explaining the increase of CO2 emissions per capita while 
energy and carbon intensities act as factors pulling down the CO2 emission per capita. For 
example, switching from fossil fuels to renewable energy into the generation mix tends to 
lower the carbon intensity factor and, consequently, reduce CO2 emissions.  
 

Figure 8: Kaya decomposition for main drivers of CO2 emissions per capita and 
power generation structure worldwide 

 
Source: Elaborated by the author using data from Climate Watch, EIA, IEA, World Bank. 

 
In figure 9, I summarize the results of coefficients estimated by different panel data models 
in logs to find out the magnitudes and signs of the main drivers of CO2 emission per capita 
from power generation: pooled, random effects, fixed effects, and dynamic models (for 
further detail see Appendix 2). Regardless of the model used all the drivers are statistically 
significant and have the expected signs, except for energy intensity which turned out to be 
positive correlated with the CO2 emission, probably, because of the rebound effects which 
could lead to an increase in energy consumption and greenhouse gas emissions (Chitnis et 
al., 2014) and only around one-third of final energy use is covered by policies that mandate 
energy efficiency improvements worldwide up to 2018 (IEA, 2020).  
 
In our estimation, the carbon intensity indicator is captured by the renewable energy share 
in the generation mix. This driver was the main factor pulling down CO2 emissions in the 
power industry and has stable coefficients regardless of the model specification. The 
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elasticities estimates are between -0.022 and -0.025, meaning that an increase of 10% 
percentage points in renewable energy share into the generation mix could reduce between 
0.2% and 0.3% the CO2 emission per capita from power generation.  
 

Figure 9: Summary of the estimates by panel data model specifications: log CO2 
emission per capita from power generation (log emission) 

Variables Pooled 
Random 
effects 

Fixed 
effects 

Dynamic  
AR(1) 

Log GDP per capita (lgdp) 
0.7616*** 
(0.1062) 

0.6490*** 
(0.1716) 

0.6016*** 
(0.1830) 

0.4516*** 
(0.1028) 

RE generation share (reshare) 
-0.0250*** 
 (0.0008) 

-0.0225*** 
 (0.0021) 

-0.0219*** 
 (0.0021) 

-0.0231*** 
 (0.0022) 

Log energy intensity (leintensity) 
0.5769*** 
(0.0387) 

0.5769*** 
(0.1050) 

0.5823*** 
(0.1068) 

0.3116*** 
(0.0936) 

Lag (controls) Yes Yes Yes Yes 

Lag (log emission)    Yes 

R2 0.8688 0.8690 0.8680 - 

Number observations 3,303 3,303 3,303 3,142 
Standard errors in parentheses 
* p<0.1, ** p<0.05, *** p<0.01 

 
Since the structure of the still increasing share of removable energy into the generation mix 
is the main driver that counteracts the CO2 emission per capita from power generation, a 
natural step is to investigate the possible policies through which renewable energy has 
impacted the CO2 emissions from power generation. Particularly, we are interested in finding 
out the causal effect of price-based policy (FiT, a variable called refit) and hybrid-based policy 
(auctions, a variable called rea) being the most widely used instruments to promote renewable 
energy into power generation. 
 
In figure 11, I start by estimating a simple OLS to dive into the statistical significance of 
these policies. Our results show that the coefficient of price-based policy (refit) is not 
statistically significant despite having the right sign. Meanwhile, hybrid-based policy (rea) is 
statistically significant and seems to be negative correlated with CO2 emission per capita 
from power generation. Consequently, I focus only on auctions scheme (rea) as a 
possible policy through which renewable energy may affect CO2 emissions. Although 
OLS regression attempts to simulate random assignment by controlling for observable 
variables, it still faces omitted variables bias.  
 
Thus, I use the matching procedure to create a possible valid counterfactual from a 
nonrandom sample which could eliminate the selection bias by calculating sampling 
probabilities from a first stage logit conditioned on observable characteristics in the pre-
treatment period and then forming the treatment and control group based on these 
probabilities. To this end, I have chosen GDP per capita and electricity consumption per 
capita because these observed covariates are not affected by the treatment (countries that 
have implemented or not auctions for renewable energy deployment into the power 
industry).  
 
Accordingly, I can provide evidence that the treated and control groups had similar 
observable characteristics by performing an equality of means test for the explanatory 
variables (GDP and electricity consumption per capita) on the treated and control groups 
between 1990-1994 where auctions mechanism for renewable energy into power industry 
was not implemented at large scale. Although in this period, United Kingdom, through the 
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Non-Fossil Fuel Obligation, was the first and the only country that had implemented an early 
auction scheme in 1990 for renewable energy, the results were not very positive, so it was 
replaced by a quotas scheme (called RPS) in 2002 and later it reintroduced a modern auction 
system in 2011(Woodman et al., 2019). Despite this, I am considering 1990-1994 as a pre-
treatment period. The null hypothesis of the t-test is equality of means of observable 
characteristics between control and treated groups in the pre-treatment period. In figure 10, 
the tests show that we cannot reject the null hypothesis, so there are no statistically significant 
differences (Diff) in the pre-existing characteristics of the treated and control groups (for 
further detail see Appendix 3). That is, there is evidence of similar observable pre-existing 
characteristics between treated and control groups. 
 

Figure 10: T-test for observable characteristics in the pre-treatment period (1990-
1994) 

Variables 
Mean Ha: diff != 0 

Pr(|T| > |t|) 
Results  

(ho) Treated Control 

GDP per capita*  
($ per person) 

16,073 16,425 0.748 
Not reject 
(no Diff) 

Power consumption per 
capita  

(kWh per person) 
3,118 3,306 0.486 

Not reject 
(no Diff) 

*Note: GDP per capita is in Purchasing Power Parity o PPP) in constant 2017 international $ per person. 

 
After matching the observations in the treated and control groups with the propensity score 
using the first nearest neighbor algorithm (which drops all the observations without common 
support), I re-estimate equation (2). As it is shown in figure 11, the coefficient of the auctions 
mechanism (rea) is statistically significant, meaning that countries that implemented auctions 
policy may have reduced their power generation CO2 emission than those that did not 
implement it (for further detail see Appendix 4).  
 
Figure 11: Summary of the re-estimation of equation 1 by OLS, pooled and random 

effect models for the potential impact of auction on CO2 emission from power 
generation (log emission)  

Variables OLS 
Matching procedure 

Pooled 
Random 
effects 

RE auctions (rea) 
-0.02382* 
(0.0142) 

-0.0445* 
(0.0248) 

-0.0294*** 
(0.0113) 

Feed-in policy (refit) 
-0.0035 
(0.0081) 

  

Log GDP per capita (lgdp) 
0.5897*** 
(0.1303) 

0.9066*** 
(0.1845) 

0.8889*** 
(0.2100) 

Log energy intensity (leintensity) 
0.2154** 
(0.1105) 

0.2627 
(0.2143) 

0.3073** 
(0.1561) 

Lag (log controls) Yes Yes Yes 

Lag (log emission) Yes Yes Yes 

R2 0.9859 0.9884 0.9840 

Number observations 3,284 398 398 
Standard errors in parentheses 
* p<0.1, ** p<0.05, *** p<0.01 

 
  



15 

 

5. Conclusions  
 
This study sought to develop a cross-country assessment from a sample of 129 countries 
between 1990 and 2018 to evaluate the drivers of CO2 emission from power generation 
through a panel data approach and to estimate the possible causal effect on CO2 emission 
of auction policy promoting renewable energy into generation mix. To the best of my 
knowledge, this is the contribution of this study. 
 
I have statistically confirmed that GDP per capita is the main driver pulling up CO2 emission 
per capita from power generation and carbon intensity is the main driver counteracting it. 
Furthermore, energy intensity turned out to be positive correlated with the CO2 emission, 
probably, because of the rebound effects which could lead to an increase energy 
consumption and greenhouse gas emissions, and only around one-third of final energy use 
is covered by policies that mandate energy efficiency improvements worldwide up to 2018. 
 
Auction policy, as one way to promote renewable energy, seems to have a causal effect on 
CO2 emissions per capita from power generation in countries that implemented it compared 
to a control group of countries that did not implement this policy. 
 
We also can draw some policy conclusions from the literature review and the results of this 
study:  
1) Promoting renewable energy into the generation mix is one of the faster ways to 

decarbonize the electricity industry and is an easier way compared to other challenging 
sectors like transportation. 

2) Auctions, which is a mix of price and quantity instruments, seem to be a good instrument 
to promote the introduction or the increase of renewable energy into power generation, 
particularly, in the context of downward-trend costs of renewable energy technologies 
(like solar and wind) which will lower the pressure to guarantee payments to renewable 
energy generators with FiT schemes. Furthermore, auctions are nowadays being using in 
the provision of renewable energy in rural and isolated areas and could a proper 
instrument to help in the transition from consumers to prosumers in a sharing economy 
context. 

3) The promotion of renewable energy is only a policy that needs to be complemented with 
others to tackle climate change such as energy efficiency policies, electrification of the 
transportation sector, etc.  

4) Countries worldwide agree on the objectives of reducing greenhouse emissions globally, 
but not necessarily on the institutions through which these objectives will be fulfilled and 
how the costs will be distributed among the countries. Since CO2 emission is a global 
issue plagued with free-rider and double externality problem and we do not have a global 
compact structure with carrots and sticks to tackle climate change, we need international 
cooperation where developed countries could provide support for clean energy 
innovation and financing to developing countries given the greater responsibility of the 
first ones in the accrued contribution to greenhouse gas emissions. 

 
There are some caveats to be considered in this study:  
1) CO2 emission from power generation comes from electricity and heat CO2 emissions 

which refer mainly, but not exclusively to electricity and heat but also includes auto 
producers and other energy industries (WRI, 2015). Nevertheless, it is a good proxy for 
CO2 emission from power generation.  
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2) Many countries have implemented different policies to promote renewable energy into 
the generation mix, so there are multiple promoting instruments apart from auctions and 
FiT with possible endogeneity implications.  

3) Although the matching procedure reduces large biases in the sample, hidden biases may 
remain because matching only controls for observed variables. Additionally, matching is 
sensitive to a large sample, particularly, from control group observations. 

 
Finally, policies promoting renewable energy may have been effective in reducing CO2 in 
the power industry in some countries or regions, but at what cost in terms of efficiency and 
equity (with possible distributional effects)? This is a forthcoming research that I want to dig 
into in the future. 
  
6. Appendices  
 

6.1. Appendix 1: Tests for unit roots, multivariate normality, heteroscedasticity, and 
autocorrelation 

 
For the dependent variable (CO2 emission per capita from power generation), I performed 
a fisher-type unit-root test based on augmented Dickey-Fuller for unbalanced panel data. 
The test indicates that the dependent variable does not follow a unit-roots, so there is a non-
stationarity problem with this variable. 
 

 
 
I also perform the multivariate normality test (mvtest normality) to contrast the normality of 
the distribution of the analyzed variables. The null hypothesis of the test is that variables are 
normally distributed (Ho: The distribution of the variables is normal). This test shows that 
the null hypothesis of normality of all variables is rejected at the 1% level of significance 
(with p <0.01), which means that the variables do not seem to be normally distributed. But 
normality problem is compensated when we have large-sample inference which is the case 
from our worldwide sample of 129 countries. 
 

 
 

                                                                              

 Other statistics are suitable for finite or infinite number of panels.

 P statistic requires number of panels to be finite.

                                                                              

 Modified inv. chi-squared Pm        9.5967       0.0000
 Inverse logit t(634)      L*       -2.8956       0.0020

 Inverse normal            Z        -0.8713       0.1918

 Inverse chi-squared(258)  P       475.9949       0.0000

                                                                              
                                  Statistic      p-value

                                                                              

Drift term:   Not included                  ADF regressions: 0 lags

Time trend:   Not included

Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods =  28.98

Ho: All panels contain unit roots           Number of panels       =    129

                                       
Based on augmented Dickey-Fuller tests

Fisher-type unit-root test for emission

(3 missing values generated)
. xtunitroot fisher emission, dfuller lags(0)

    Doornik-Hansen                  chi2(14) =74337.724   Prob>chi2 =  0.0000

Test for multivariate normality

. mvtest normality emission gdp eintensity reshare consum rea refit
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Breusch-Pagan/Cook-Weisberg test for heteroscedasticity was performed. The null 
hypothesis (Ho) is that there is a constant variance (no heteroskedasticity). This test implies 
that we reject the null hypothesis of constant variance (homoskedasticity), so there is a 
problem of heteroskedasticity. Consequently, the standard errors are not robust to 
heteroscedasticity, and we will correct it by using the option "robust" in Stata when we 
estimate the regression. 
 

 
 
Wooldridge test for autocorrelation is performed. The null hypothesis (Ho) is that does not 
exist a first-order autocorrelation. This test indicates that we reject the null hypothesis of no 
first-order autocorrelation at 1% of the statistical significance level, so we have an 

         Prob > chi2  =   0.0000

         chi2(1)      =    37.21

         Variables: fitted values of lemission

         Ho: Constant variance

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 

. estat hettest 

                                                                              

       _cons     -6.18377   .1338949   -46.18   0.000    -6.446293   -5.921247

      year28     -.095838   .0890458    -1.08   0.282    -.2704268    .0787508

      year27    -.1443247   .0886354    -1.63   0.104    -.3181089    .0294595

      year26    -.1343807   .0878978    -1.53   0.126    -.3067186    .0379572

      year25    -.1225042   .0871937    -1.40   0.160    -.2934617    .0484534

      year24    -.0873459   .0873342    -1.00   0.317    -.2585787    .0838869

      year23    -.0944195   .0873666    -1.08   0.280    -.2657159    .0768769

      year22    -.0445563   .0878621    -0.51   0.612    -.2168242    .1277117

      year21    -.0935379   .0875406    -1.07   0.285    -.2651755    .0780997

      year20    -.1187737   .0870883    -1.36   0.173    -.2895245     .051977

      year19    -.1172867   .0866087    -1.35   0.176    -.2870971    .0525237

      year18    -.1127725    .086508    -1.30   0.192    -.2823855    .0568406

      year17    -.1038205   .0863708    -1.20   0.229    -.2731646    .0655236

      year16     -.109607   .0860141    -1.27   0.203    -.2782516    .0590377

      year15    -.1082044   .0861156    -1.26   0.209    -.2770481    .0606392

      year14    -.1201741   .0860585    -1.40   0.163    -.2889057    .0485575

      year13    -.1014944   .0862009    -1.18   0.239    -.2705054    .0675166

      year12    -.0857187   .0864867    -0.99   0.322      -.25529    .0838526

      year11    -.0792028   .0866112    -0.91   0.361    -.2490182    .0906127

      year10    -.0711575   .0864101    -0.82   0.410    -.2405786    .0982637

       year9    -.0350879   .0865599    -0.41   0.685    -.2048027    .1346268

       year8     .0198159   .0870781     0.23   0.820     -.150915    .1905467

       year7    -.0050705   .0868791    -0.06   0.953    -.1754111    .1652701

       year6     .0124636   .0868759     0.14   0.886    -.1578707    .1827979

       year5     -.002982   .0867281    -0.03   0.973    -.1730266    .1670626

       year4     .0416539   .0882906     0.47   0.637    -.1314541    .2147619

       year3     .0198959   .0880719     0.23   0.821    -.1527833    .1925751

       year2     .0620646   .0886076     0.70   0.484    -.1116649    .2357942

       year1            0  (omitted)

       year0    -.0184016   .0914028    -0.20   0.840    -.1976117    .1608085

 leintensity     .7430134   .0142891    52.00   0.000     .7149973    .7710294

     reshare    -.0279784   .0003639   -76.88   0.000    -.0286919   -.0272649

        lgdp     .8960776   .0112921    79.35   0.000     .8739376    .9182176

       refit     -.018706   .0270045    -0.69   0.489    -.0716528    .0342407

         rea    -.0526808   .0373457    -1.41   0.158    -.1259032    .0205415

                                                                              

   lemission        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    10483.6382     3,429  3.05734563   Root MSE        =    .62827

                                                   Adj R-squared   =    0.8709

    Residual    1340.46186     3,396  .394717864   R-squared       =    0.8721

       Model    9143.17629        33  277.065948   Prob > F        =    0.0000

                                                   F(33, 3396)     =    701.93

      Source         SS           df       MS      Number of obs   =     3,430
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autocorrelation problem. This problem can be corrected by allowing for an arbitrary 
variance-covariance structure and by computing the standard errors in clusters by country. 
 

 
 

6.2. Appendix 2: Panel data results 
 
global ylist lemission 
global xlist L(0/1).lgdp L(0/1).reshare L(0/1).leintensity year0 year1 year2 year3 year4 year5 year6 year7 year8 
year9 year10 year11 year12 year13 year14 year15 year16 year17 year18 year19 year20 year21 year22 year23 
year24 year25 year26 year27 year28 
 

 

           Prob > F =      0.0000

    F(  1,     125) =     61.358

H0: no first-order autocorrelation

Wooldridge test for autocorrelation in panel data

                                                                              

        rhos =  .8612471         1         1  .8140264  .9996219 ...         1

                                                                              

       _cons    -7.173565   .3932228   -18.24   0.000    -7.944268   -6.402863

      year28            0  (omitted)

      year27     .0003932    .015765     0.02   0.980    -.0305057    .0312921

      year26     .0191979   .0226531     0.85   0.397    -.0252014    .0635972

      year25     .0458045    .027797     1.65   0.099    -.0086766    .1002856

      year24     .0744177    .031765     2.34   0.019     .0121594    .1366761

      year23     .0583143   .0354179     1.65   0.100    -.0111034     .127732

      year22     .0675289   .0384069     1.76   0.079    -.0077473    .1428051

      year21      .034262   .0413871     0.83   0.408    -.0468552    .1153792

      year20     .0487919   .0438562     1.11   0.266    -.0371647    .1347486

      year19     .0378245   .0460916     0.82   0.412    -.0525135    .1281625

      year18     .0515064   .0476559     1.08   0.280    -.0418975    .1449103

      year17     .0690625   .0496623     1.39   0.164    -.0282738    .1663988

      year16     .0867149   .0513251     1.69   0.091    -.0138804    .1873102

      year15     .0766629   .0529452     1.45   0.148    -.0271077    .1804335

      year14     .0647454   .0544948     1.19   0.235    -.0420624    .1715533

      year13     .0793736   .0559493     1.42   0.156    -.0302851    .1890323

      year12     .0777379   .0569369     1.37   0.172    -.0338564    .1893322

      year11     .0944125   .0579684     1.63   0.103    -.0192035    .2080285

      year10     .1050972   .0588182     1.79   0.074    -.0101844    .2203787

       year9     .1430511   .0597727     2.39   0.017     .0258987    .2602035

       year8     .1979669   .0606664     3.26   0.001      .079063    .3168708

       year7     .1801695   .0615355     2.93   0.003     .0595621     .300777

       year6     .1924647   .0625273     3.08   0.002     .0699135    .3150159

       year5     .2094284   .0634134     3.30   0.001     .0851404    .3337164

       year4     .2242046   .0641109     3.50   0.000     .0985495    .3498597

       year3     .2363115   .0650041     3.64   0.000     .1089058    .3637172

       year2     .2457643   .0666884     3.69   0.000     .1150573    .3764712

       year1     .2296149   .0679151     3.38   0.001     .0965037    .3627262

       year0            0  (omitted)

              

         L1.     .2184335   .0373352     5.85   0.000      .145258    .2916091

         --.     .4195664   .0386888    10.84   0.000     .3437376    .4953951

 leintensity  

              

         L1.    -.0031315   .0007703    -4.07   0.000    -.0046413   -.0016216

         --.     -.024995   .0008126   -30.76   0.000    -.0265877   -.0234023

     reshare  

              

         L1.     .1998783   .0618736     3.23   0.001     .0786084    .3211482

         --.     .7615792   .0617618    12.33   0.000     .6405282    .8826301

        lgdp  

                                                                              

   lemission        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Het-corrected

                                                                              

Estimated coefficients     =        34          Prob > chi2       =     0.0000

Estimated autocorrelations =       127          Wald chi2(33)     =    5229.31

Estimated covariances      =       127          R-squared         =     0.8688

                                                              max =         28

                                                              avg =  26.007874

Autocorrelation:  panel-specific AR(1)                        min =          3

Panels:           heteroskedastic (unbalanced)  Obs per group:

Time variable:    year                          Number of groups  =        127

Group variable:   id_nro                        Number of obs     =      3,303

Prais-Winsten regression, heteroskedastic panels corrected standard errors

(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])

note: year1 omitted because of collinearity

note: year0 omitted because of collinearity

(note: computations for rho restarted at each gap)

Number of gaps in sample:  18

. xtpcse $ylist $xlist, correlation(psar1) hetonly
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         rho    .73948828   (fraction of variance due to u_i)

     sigma_e    .26354067

     sigma_u    .44401706

                                                                              

       _cons    -6.329114   .6505703    -9.73   0.000    -7.604208   -5.054019

      year28            0  (omitted)

      year27    -.0109849   .0200357    -0.55   0.584    -.0502542    .0282844

      year26     .0076778   .0253977     0.30   0.762    -.0421007    .0574563

      year25     .0227883   .0296524     0.77   0.442    -.0353293    .0809059

      year24     .0490645   .0367906     1.33   0.182    -.0230438    .1211727

      year23     .0321933   .0406868     0.79   0.429    -.0475514     .111938

      year22     .0547145   .0375673     1.46   0.145    -.0189161    .1283451

      year21     .0133416   .0374821     0.36   0.722    -.0601219    .0868051

      year20     .0179669   .0388692     0.46   0.644    -.0582153    .0941492

      year19      .012896   .0446723     0.29   0.773    -.0746601     .100452

      year18     .0373382   .0429313     0.87   0.384    -.0468057     .121482

      year17     .0557108   .0398247     1.40   0.162    -.0223442    .1337658

      year16     .0668886   .0411315     1.63   0.104    -.0137277    .1475048

      year15     .0506625   .0414416     1.22   0.222    -.0305615    .1318866

      year14     .0406199   .0430639     0.94   0.346    -.0437838    .1250235

      year13     .0544121   .0448913     1.21   0.225    -.0335733    .1423975

      year12     .0569584   .0444404     1.28   0.200    -.0301431      .14406

      year11     .0770407   .0435449     1.77   0.077    -.0083058    .1623871

      year10     .0841189   .0414688     2.03   0.043     .0028416    .1653962

       year9     .1166042   .0442702     2.63   0.008     .0298363    .2033721

       year8     .1732297   .0438441     3.95   0.000     .0872969    .2591626

       year7     .1486179   .0428246     3.47   0.001     .0646831    .2325526

       year6     .1577918   .0474015     3.33   0.001     .0648867     .250697

       year5     .1607634   .0490362     3.28   0.001     .0646541    .2568726

       year4     .1873927    .053468     3.50   0.000     .0825973     .292188

       year3     .1921898   .0518466     3.71   0.000     .0905723    .2938074

       year2     .1862397   .0548326     3.40   0.001     .0787697    .2937096

       year1     .1601129   .0582555     2.75   0.006     .0459342    .2742916

       year0            0  (omitted)

              

         L1.     .1188968   .0893168     1.33   0.183     -.056161    .2939545

         --.     .5769041   .1049585     5.50   0.000     .3711893     .782619

 leintensity  

              

         L1.    -.0010931    .001495    -0.73   0.465    -.0040231     .001837

         --.    -.0225271    .002075   -10.86   0.000     -.026594   -.0184601

     reshare  

              

         L1.     .2179795   .1770826     1.23   0.218     -.129096     .565055

         --.     .6490333   .1715932     3.78   0.000     .3127168    .9853498

        lgdp  

                                                                              

   lemission        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                             Robust

                                                                              

                               (Std. Err. adjusted for 127 clusters in id_nro)

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                                Wald chi2(33)     =    1515.94

     overall = 0.8690                                         max =         28

     between = 0.8700                                         avg =       26.0

     within  = 0.5936                                         min =          3

R-sq:                                           Obs per group:

Group variable: id_nro                          Number of groups  =        127

Random-effects GLS regression                   Number of obs     =      3,303

note: year28 omitted because of collinearity

note: year0 omitted because of collinearity

. xtreg $ylist $xlist, robust re cluster (id_nro)
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         rho    .87821796   (fraction of variance due to u_i)

     sigma_e    .26354067

     sigma_u    .70771301

                                                                              

       _cons     -5.92568   .9514103    -6.23   0.000    -7.808493   -4.042867

      year28            0  (omitted)

      year27    -.0095019   .0198281    -0.48   0.633    -.0487412    .0297373

      year26     .0080645   .0246588     0.33   0.744    -.0407346    .0568635

      year25     .0215051   .0290433     0.74   0.460    -.0359707     .078981

      year24     .0462215   .0359494     1.29   0.201    -.0249212    .1173643

      year23     .0296797   .0407095     0.73   0.467    -.0508831    .1102426

      year22     .0528602   .0380355     1.39   0.167    -.0224109    .1281313

      year21     .0102095   .0382176     0.27   0.790     -.065422    .0858411

      year20     .0141744   .0398316     0.36   0.723    -.0646512    .0930001

      year19     .0086606   .0456211     0.19   0.850    -.0816221    .0989434

      year18     .0358863    .044263     0.81   0.419    -.0517088    .1234814

      year17     .0536027   .0429358     1.25   0.214     -.031366    .1385713

      year16      .061657   .0446805     1.38   0.170    -.0267643    .1500784

      year15     .0430176   .0466921     0.92   0.359    -.0493847    .1354199

      year14     .0311222    .049968     0.62   0.535     -.067763    .1300073

      year13     .0428723   .0524124     0.82   0.415    -.0608503    .1465948

      year12     .0441479    .051875     0.85   0.396    -.0585112     .146807

      year11     .0630732   .0508336     1.24   0.217     -.037525    .1636714

      year10     .0684868   .0504613     1.36   0.177    -.0313747    .1683483

       year9     .0992997   .0553845     1.79   0.075    -.0103046     .208904

       year8     .1550025     .05467     2.84   0.005     .0468122    .2631928

       year7     .1279887   .0533011     2.40   0.018     .0225073    .2334701

       year6     .1345838   .0600772     2.24   0.027     .0156929    .2534748

       year5      .137557   .0617378     2.23   0.028     .0153798    .2597343

       year4     .1602533   .0643119     2.49   0.014      .032982    .2875246

       year3     .1672911    .063253     2.64   0.009     .0421153    .2924669

       year2     .1603356   .0675659     2.37   0.019     .0266246    .2940466

       year1     .1321961   .0700148     1.89   0.061    -.0063611    .2707534

       year0            0  (omitted)

              

         L1.     .1093134   .0904945     1.21   0.229    -.0697726    .2883993

         --.     .5822891   .1068385     5.45   0.000     .3708589    .7937193

 leintensity  

              

         L1.    -.0003315   .0015434    -0.21   0.830    -.0033859    .0027229

         --.     -.021872    .002139   -10.23   0.000    -.0261051   -.0176389

     reshare  

              

         L1.     .2228276   .1869306     1.19   0.235    -.1471025    .5927576

         --.     .6016168   .1830824     3.29   0.001     .2393022    .9639315

        lgdp  

                                                                              

   lemission        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                               (Std. Err. adjusted for 127 clusters in id_nro)

corr(u_i, Xb)  = 0.3201                         Prob > F          =     0.0000

                                                F(33,126)         =      33.17

     overall = 0.8680                                         max =         28

     between = 0.8681                                         avg =       26.0

     within  = 0.5940                                         min =          3

R-sq:                                           Obs per group:

Group variable: id_nro                          Number of groups  =        127

Fixed-effects (within) regression               Number of obs     =      3,303
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        Standard: _cons

Instruments for level equation

                  D.year25 D.year26 D.year27 D.year28

                  D.year19 D.year20 D.year21 D.year22 D.year23 D.year24

                  D.year13 D.year14 D.year15 D.year16 D.year17 D.year18

                  D.year7 D.year8 D.year9 D.year10 D.year11 D.year12

                  LD.leintensity D.year2 D.year3 D.year4 D.year5 D.year6

        Standard: D.lgdp LD.lgdp D.reshare LD.reshare D.leintensity

        GMM-type: L(2/.).lemission

Instruments for differenced equation

                                                                              

       _cons    -.3449794     .92171    -0.37   0.708    -2.151498    1.461539

      year28     .0291243   .0636402     0.46   0.647    -.0956083    .1538569

      year27     .0067029   .0588831     0.11   0.909    -.1087058    .1221116

      year26     .0092714   .0607272     0.15   0.879    -.1097518    .1282946

      year25     .0067596   .0590224     0.11   0.909    -.1089221    .1224414

      year24     .0473882   .0614628     0.77   0.441    -.0730768    .1678531

      year23     .0201071   .0577044     0.35   0.728    -.0929915    .1332057

      year22     .0484741   .0535992     0.90   0.366    -.0565784    .1535266

      year21     .0060112   .0514506     0.12   0.907    -.0948301    .1068525

      year20     .0160439   .0505352     0.32   0.751    -.0830032    .1150911

      year19     -.010134   .0507186    -0.20   0.842    -.1095406    .0892726

      year18    -.0016495   .0489573    -0.03   0.973     -.097604     .094305

      year17     .0039114   .0474658     0.08   0.934    -.0891198    .0969425

      year16     .0258595   .0458355     0.56   0.573    -.0639765    .1156954

      year15     .0122529   .0372265     0.33   0.742    -.0607097    .0852155

      year14    -.0201343   .0345313    -0.58   0.560    -.0878145    .0475459

      year13    -.0003008   .0330104    -0.01   0.993    -.0649999    .0643983

      year12    -.0192057   .0259502    -0.74   0.459    -.0700671    .0316557

      year11    -.0107751   .0325176    -0.33   0.740    -.0745084    .0529581

      year10    -.0310446   .0300883    -1.03   0.302    -.0900166    .0279275

       year9    -.0384469   .0281459    -1.37   0.172    -.0936119    .0167181

       year8     .0286125   .0283617     1.01   0.313    -.0269754    .0842004

       year7    -.0066731   .0247036    -0.27   0.787    -.0550912     .041745

       year6    -.0111933    .021826    -0.51   0.608    -.0539714    .0315848

       year5    -.0077273   .0233188    -0.33   0.740    -.0534314    .0379767

       year4    -.0183269   .0284953    -0.64   0.520    -.0741766    .0375229

       year3    -.0089042   .0204184    -0.44   0.663    -.0489235    .0311151

       year2     .0026571   .0211047     0.13   0.900    -.0387074    .0440216

              

         L1.     -.074468   .0878786    -0.85   0.397    -.2467069    .0977708

         --.     .3116829   .0936251     3.33   0.001      .128181    .4951847

 leintensity  

              

         L1.     .0159497   .0018375     8.68   0.000     .0123482    .0195513

         --.    -.0231269   .0022444   -10.30   0.000    -.0275259   -.0187279

     reshare  

              

         L1.    -.3459391   .0916517    -3.77   0.000    -.5255731   -.1663052

         --.     .4515662   .1027998     4.39   0.000     .2500823    .6530501

        lgdp  

              

         L1.     .6646601   .0492614    13.49   0.000     .5681096    .7612106

   lemission  

                                                                              

   lemission        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                             Robust

                                                                              

                                 (Std. Err. adjusted for clustering on id_nro)

One-step results

                                                Prob > chi2       =     0.0000

Number of instruments =    412                  Wald chi2(34)     =    2667.74

                                                              max =         27

                                                              avg =   24.93651

                                                              min =          2

                                                Obs per group:

Time variable: year

Group variable: id_nro                          Number of groups  =        126

Arellano-Bond dynamic panel-data estimation     Number of obs     =      3,142

note: year1 dropped because of collinearity

note: year0 dropped because of collinearity

note: year1 dropped from div() because of collinearity

note: year0 dropped from div() because of collinearity

. xtabond $ylist $xlist, robust
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6.3. Appendix 3: Matching results  
 

 
 

6.4. Appendix 4: Policy data results 
 
global ylist lemission 
global xlist rea refit L(0/1).lgdp L(0/1).leintensity L1.lemission year0 year1 year2 year3 
year4 year5 year6 year7 year8 year9 year10 year11 year12 year13 year14 year15 year16 
year17 year18 year19 year20 year21 year22 year23 year24 year25 year26 year27 year28 
 

* if B>25%, R outside [0.5; 2]

                                                                      

0.001      0.62    0.733      3.3       3.3       6.2    2.13*    100

                                                                      

Ps R2   LR chi2   p>chi2   MeanBias   MedBias      B       R     %Var 

                                                                      

* if variance ratio outside [0.81; 1.24]

                                                                              

consum                    3118.3   3305.6     -4.5    -0.70  0.486    2.03*

gdp                        16073    16425     -2.1    -0.32  0.748    1.30*

                                                                              

Variable                  Treated Control    %bias      t    p>|t|    V(C)

                                Mean                     t-test       V(T)/

                                                                              

. pstest $xlist, t($treatment)

     Total           5        584         589 

                                             

   Treated           5        329         334 

 Untreated           0        255         255 

                                             

assignment   Off suppo  On suppor       Total

 Treatment          support

 psmatch2:     psmatch2: Common

Note: S.E. does not take into account that the propensity score is estimated.

                                                                                        

                        ATT   2.39550151    2.6449544  -.249452897   .332242321    -0.75

        emission  Unmatched   2.47332334   1.67349019   .799833151   .240949915     3.32

                                                                                        

        Variable     Sample      Treated     Controls   Difference         S.E.   T-stat

                                                                                        

. psmatch2 $treatment $xlist, outcome($ylist) n(1) common logit qui

. global breps 10000

. global xlist gdp consum if year<=1994

. global ylist emission 

. global treatment reatreated
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       _cons    -.1219043   .0727692    -1.68   0.096    -.2659123    .0221038

      year28    -.0479332   .0292203    -1.64   0.103    -.1057593    .0098928

      year27    -.0574012    .030874    -1.86   0.065    -.1185001    .0036976

      year26     -.028527   .0243975    -1.17   0.245     -.076809     .019755

      year25    -.0466192    .031824    -1.46   0.145    -.1095979    .0163594

      year24    -.0119715   .0289294    -0.41   0.680    -.0692218    .0452789

      year23    -.0705975   .0245232    -2.88   0.005    -.1191281   -.0220669

      year22    -.0128479     .02534    -0.51   0.613    -.0629951    .0372992

      year21     -.011347    .023382    -0.49   0.628    -.0576193    .0349253

      year20    -.0489842   .0319825    -1.53   0.128    -.1122766    .0143082

      year19      -.06615   .0289952    -2.28   0.024    -.1235306   -.0087694

      year18    -.0616604   .0253096    -2.44   0.016    -.1117473   -.0115735

      year17    -.0396949   .0288296    -1.38   0.171    -.0967477     .017358

      year16     -.008336   .0266589    -0.31   0.755    -.0610932    .0444212

      year15    -.0201688   .0231203    -0.87   0.385    -.0659231    .0255856

      year14    -.0507443   .0286055    -1.77   0.078    -.1073538    .0058652

      year13    -.0256112   .0212772    -1.20   0.231    -.0677182    .0164958

      year12    -.0437707   .0300659    -1.46   0.148    -.1032702    .0157287

      year11    -.0194838   .0247049    -0.79   0.432     -.068374    .0294064

      year10    -.0620007   .0289494    -2.14   0.034    -.1192906   -.0047107

       year9    -.0857348   .0304513    -2.82   0.006     -.145997   -.0254725

       year8     .0086679   .0260762     0.33   0.740    -.0429362     .060272

       year7    -.0100762   .0258587    -0.39   0.697    -.0612498    .0410975

       year6    -.0405378   .0281458    -1.44   0.152    -.0962375     .015162

       year5    -.0115458   .0316808    -0.36   0.716    -.0742412    .0511497

       year4    -.0288674   .0319018    -0.90   0.367    -.0920002    .0342653

       year3    -.0723761   .0323727    -2.24   0.027    -.1364406   -.0083115

       year2      -.00298   .0314395    -0.09   0.925    -.0651979    .0592379

       year1            0  (omitted)

       year0            0  (omitted)

              

         L1.       .97604   .0064491   151.35   0.000     .9632775    .9888026

   lemission  

              

         L1.    -.2120665   .1075587    -1.97   0.051     -.424922    .0007889

         --.     .2154199   .1105697     1.95   0.054    -.0033943    .4342341

 leintensity  

              

         L1.    -.5719625   .1300278    -4.40   0.000    -.8292836   -.3146414

         --.     .5897176   .1303526     4.52   0.000     .3317536    .8476817

        lgdp  

              

       refit    -.0034501   .0081321    -0.42   0.672    -.0195433    .0126431

         rea    -.0238208   .0141471    -1.68   0.095    -.0518175    .0041758

                                                                              

   lemission        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                               (Std. Err. adjusted for 127 clusters in id_nro)

                                                Root MSE          =     .20476

                                                R-squared         =     0.9859

                                                Prob > F          =     0.0000

                                                F(34, 126)        =   16725.40

Linear regression                               Number of obs     =      3,284

note: year1 omitted because of collinearity

note: year0 omitted because of collinearity

. reg $ylist $xlist, robust cluster (id_nro)
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        rhos = -.1322415  -.939013  -.013209  .7557878 -.0118611 ...  .5127978

                                                                              

       _cons    -.6959384   .2059564    -3.38   0.001    -1.099606   -.2922712

              

         L1.     .9369967   .0156581    59.84   0.000     .9063073    .9676861

   lemission  

              

         L1.    -.2525523   .2159613    -1.17   0.242    -.6758287     .170724

         --.      .262709   .2143849     1.23   0.220    -.1574777    .6828956

 leintensity  

              

         L1.    -.8283742   .1826124    -4.54   0.000    -1.186288   -.4704604

         --.     .9066033   .1845038     4.91   0.000     .5449825    1.268224

        lgdp  

              

         rea    -.0444833   .0248166    -1.79   0.073    -.0931229    .0041563

                                                                              

   lemission        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                          Het-corrected

                                                                              

Estimated coefficients     =         7          Prob > chi2       =     0.0000

Estimated autocorrelations =       111          Wald chi2(6)      =   24840.70

Estimated covariances      =       111          R-squared         =     0.9884

                                                              max =          4

                                                              avg =  3.5855856

Autocorrelation:  panel-specific AR(1)                        min =          1

Panels:           heteroskedastic (unbalanced)  Obs per group:

Time variable:    year                          Number of groups  =        111

Group variable:   id_nro                        Number of obs     =        398

Prais-Winsten regression, heteroskedastic panels corrected standard errors

(note: estimates of rho outside [-1,1] bounded to be in the range [-1,1])

       assumed to be 0.)

(note: rho_i could not be computed for panel id_nro 105;

       assumed to be 0.)

(note: rho_i could not be computed for panel id_nro 52;

       assumed to be 0.)

(note: rho_i could not be computed for panel id_nro 40;

       assumed to be 0.)

(note: rho_i could not be computed for panel id_nro 39;

       assumed to be 0.)

(note: rho_i could not be computed for panel id_nro 32;

. xtpcse $ylist $xlist if _support==1, correlation(psar1) hetonly
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       _cons    -.4430213   .2347644    -1.89   0.059    -.9031511    .0171085

              

         L1.     .9562163   .0179465    53.28   0.000     .9210418    .9913908

   lemission  

              

         L1.    -.2984098   .1615402    -1.85   0.065    -.6150228    .0182033

         --.     .3073096   .1561381     1.97   0.049     .0012846    .6133346

 leintensity  

              

         L1.    -.8393678   .2042602    -4.11   0.000     -1.23971   -.4390252

         --.     .8889274   .2100415     4.23   0.000     .4772537    1.300601

        lgdp  

              

         rea    -.0294277   .0112492    -2.62   0.009    -.0514757   -.0073797

                                                                              

   lemission        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                             Robust

                                                                              

                               (Std. Err. adjusted for 111 clusters in id_nro)

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                                Wald chi2(6)      =   34755.40

     overall = 0.9840                                         max =          4

     between = 0.9943                                         avg =        3.6

     within  = 0.1777                                         min =          1

R-sq:                                           Obs per group:

Group variable: id_nro                          Number of groups  =        111

Random-effects GLS regression                   Number of obs     =        398

. xtreg $ylist $xlist if _support==1, robust re cluster (id_nro)



26 

 

Ge, M., & Friedrich, J. (2020). 4 Charts Explain Greenhouse Gas Emissions by Countries and 
Sectors. https://www.wri.org/insights/4-charts-explain-greenhouse-gas-emissions-
countries-and-sectors 

Goh, T., Ang, B. W., & Xu, X. Y. (2018). Quantifying drivers of CO2 emissions from 
electricity generation – Current practices and future extensions. Applied Energy, 231, 
1191–1204. https://doi.org/10.1016/j.apenergy.2018.09.174 

Gruber, J. (2016). Public Finance and Public Policy (Sixth Edition). Worth Publishers. 
IEA. (2020). Energy Efficiency Indicators. https://www.iea.org/reports/energy-efficiency-

indicators 
IRENA. (2020). Renewables 2020 global status report. https://www.ren21.net/wp-

content/uploads/2019/05/gsr_2020_full_report_en.pdf 
Jena, P. R., Chichaibelu, B. B., Stellmacher, T., & Grote, U. (2012). The impact of coffee 

certification on small-scale producers’ livelihoods: A case study from the Jimma Zone, 
Ethiopia. Agricultural Economics (United Kingdom), 43(4), 429–440. 
https://doi.org/10.1111/j.1574-0862.2012.00594.x 

Lima, F., Nunes, M. L., Cunha, J., & Lucena, A. F. P. (2016). A cross-country assessment 
of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach. 
Energy, 115, 1361–1374. https://doi.org/10.1016/j.energy.2016.05.037 

Nordhaus, B. (2021). Climate Compacts to Combat Free Riding in International Climate Agreements. 
https://bcf.princeton.edu/wp-content/uploads/2020/12/Combined-Slides-1.pdf 

Rodrigues, J. F. D., Wang, J., Behrens, P., & de Boer, P. (2020). Drivers of CO2 emissions 
from electricity generation in the European Union 2000–2015. Renewable and 
Sustainable Energy Reviews, 133, 110104. https://doi.org/10.1016/j.rser.2020.110104 

Sterner, T., & Coria, J. (2012). Policy Instruments for Environmental and Natural Resource 
Management. 

United Nations. (2020). The Paris Agreement | UNFCCC. https://unfccc.int/process-and-
meetings/the-paris-agreement/the-paris-agreement 

Verbeek, M. (2017). A Guide to Modern Econometrics (5th edition). Wiley. 
https://www.researchgate.net/publication/227488993_A_Guide_to_Modern_Econo
metrics 

Woodman, B., Fitch-Roy, O., Mária, B.-L., Dézsi, B., Szabó, L., von Bluecher, F., 
Klessmann, C., & Wigand, F. (2019). Auctions for the support of renewable energy in the UK 
(Issue 1). http://aures2project.eu/wp-
content/uploads/2019/10/AURES_II_UK_case_study.pdf 

WRI. (2015). CAIT country greenhouse gas emissions: sources & methods. 
http://cait.wri.org/historic 

  


