INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality iliustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note wiil indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs inciuded in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UM directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

o

ROBOTIC TELESCOPE STAR ACQUISITION SYSTEM

by
Robert William Jara Vélez

A thesis Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCES
in
PHYSICS
UNIVERSITY OF PUERTO RICO

MAYAGUEZ CAMPUS
December, 2000

/V&/q 2280

Luis M Quifiones, Ph.D. Date
Member, Graduate Committee
W\I—V' R D } f l OLZ ALOoo
Mofises OrengesPh.D. Date
Member, Graduate Committee
__{/MZ‘ 13 Dec. o0
Leszek Nowakoski, Ph.D. ' Date
Member, Graduate Committee
W v /Y Der. 2000
Jefffe quman Ph.D. Date
President, Graduate Committee
Ve Ie-rL.Jc. 12, /t3/ 00
Mario Lerkic, Ph.D. Date
Representative of Graduate Studies
Flin F o 11/12/09

Felix Fernandez, Ph.D. Date
Chairperson of the Department
g’»‘ W%f‘“f(19/ ove [s>

e Se Date

el,
Director 6f ? duate Studies

UMI Number: 1403048

®

UMI

UMI Microform 1403048

Copyright 2001 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

ABSTRACT

An algorithm that reads data from the USNO-SA2.0 Star Catalog (USC) for any particular star
field of the sky was developed. These data was used like input data, as much as the output data
from the telescope CCD camera, in a pattern-recognition algorithm (PRA). The output data
from PRA is the deviation error between current astronomical coordinates, to where the
telescope is currently pointing, and the input astronomical coordinates (in theory both are the
same). The CCD data was simulated by the computer from the USC by introducing noise and
offsets. The algorithms are in the C++ language.

ii

RESUMEN

Se desarroll6 un algoritmo que lee la informacién almacenada en USNO-SA2.0 Star Catolog
(USC), para cierta porcién particular del cielo. Esta informacién, conjuntamente con la
informacién de la cimara CCD del telescopio, es usada en el algoritmo de reconocimiento de
patrén (PRA) con la finalidad de calcular el error de desviacién que hay entre las coordenadas
astronGmicas hacia donde el telescopio apunta y las coordenadas hacia donde éste realmente
deberia apuntar (en teoria ambas son iguales). La informacién de la cimera CCD fue simulada
por computador a partir de la informacién real proveniente del USC, introduciéndole ruidos y

desviaciones. Los algoritmos estdn programados en lenguaje C++.

iii

To
my FAMILY and FRIENDS
who are always close to me
even though the wild distance and the wild sea

separate us

To
my ANCESTORS
whose cultural legacy is even
infinite question

to genius and erudites

To
my PERU
who although is falling

it is always towering to shoulder of my ancient race

To
BORINQUEN
land of the coqui
white pillow of my dreams

To
the HUNDREDS OF STRANGER SMILES
that I kidnapped
and took to me...

because they are my only inspiration in my loneliness

iv

Thank you to
everybody

who gave me just a little bit of their time

An specially
Thanks to
DR. Jeffry Friedman

TABLE OF CONTENTS

LIST OF TABLES eeeeesesViii
LIST OF FIGURES ceecesendX
LIST OF APPENDICES......ccucecissesisosssarsascasenssssnsassassssssssssssssssssssensersessomsssssssssssosmsen se o e e X
CHAPTER I. INTRODUCTION....ccoemcarrncrararsssssesasnssessssssosssosmenessessnssssnssmsasessssensemsen s en s 1
CHAPTER II. LITERATURE REVIEW ceeesd
21 Star Acquisition from Star Catalog...........cececcesssessecssensessensssssosssnsssnn son oo 3

22 Star Acquisition from the CCD camera cresennS

23 Pointing the telescope cersnneS
CHAPTER II. THE REAL PROBLEM, Y
3.1 Formulation IO |

3.2 Solution 9
CHAPTER IV. THE MATHEMATICAL PROBLEM 13
4.1 Formulation 13

4.2 Numerical Solution cens 15
CHAPTER V. THE GENERAL SYSTEM 18
51 Structured Data 18

5.2 Design of Windows cees 21

53 The Source Program Code.. .eee24
CHAPTER VI. THE PATTERN RECOGNITION ALGORITHM .11
6.1 Data from USC .11

6.2 Data from FITS ceeeesn28

6.3 The Pattern Recognition Algorithm.. cerenenns29

6.3.1 The Fist Solution ceeeenn29

6.3.2 The PoSSible SOIUtIONS...cccuieeererereresensasseersncasecsasssssnsasassssssensassess s as ne 30

6.3.3 The Solutions and the BeSt One.......ccceeereemsscersiscscsarosesesssesesen s smonne 33

CHAPTER VIL RESULTS.c..cuueueeccacsesassssacssosssnsesnessssssssssnssssssssssssesssessnsssessasasssosssens s s s sne
CHAPTER VIII. DISCUSSION...
CHAPTER IX. CONCLUSIONS AND PERSPECTIVES ceeeeendl

BIBLIOGRAPHY censore

LIST OF TABLES

Table 1. Corrections on RA and DEC to several cases

..

LIST OF FIGURES

Figure 1. CCD’s screen............... ctecseerssssnesssennesssssssecsssnanns n e s nerrnens oe 8
Figure 2. USC’S SCTEM «....cueuuemememrrmeeeeeeeeeeeee e SRRIORIL * |
Figure 3. USC'S SCIEEM-L..uuuueuceceeeeeecrerseeee e et eeee e e e oo 10
Figure 4. CCD’s screen-1...... cereeeteee ettt e e ti e s e re e s taesee et e reee s s s s abbrsboneesenereessaes 11
Figure 5. CCD and USC screens SUPErimpPOSEd..........oouemeeuemeeeeememeseemen s oo 11
Figure 6. R and T SUPEIMPOSEd........ocoemrrreeeeeereeeeieeeeeeceeeeeeeeeeeees e e e 14
Figure 7. The best and worst solution of the problem.........oooeeenneooeoeoooooooo 15
Figure 8. System structured diagram.............oooiiiiiimee e 18
Figure 9. System flow ChAar.ccviuimeioeieeeeeee e 19
Figure 10. Input data WilAOW.........cc.ecueuemrmmremeeeeseeeeseeeeemecoeeeeeeeeeesesces oo 21
FIgure 11. Menu WildOW............urmcecueeeteeeee et ceeeeseeeees s e s e s e 21
Figure 12. Window of the List of stars from USC in normal units...................ooooooooooooooon 22
Figure 13. Window of the list of star from USC in piXel unitS..............ooovoveooooooooooooo 22
Figure 14. Window of the list of stars from CCD in pixel URitS................ooooooooooooooe 23
Figure 15. Window of the corrections on RA and DEC........ooovnveeooooooeooooooooooo 23

Figure 16. Graphical representation of zonexxx.cat files and possible situations of screen's

catalog25
Figure 17. Relation between first solution and exact SOIUHON. «............vovooeoeooooooooo 30

Figure 18. Real comparison made for pattern-recognition().........ccocceveeeeeersereceren v en e onnn 31

Figure 19. Vicinity of possible SOItONS.......oovu..e.veueereeeeeeeeeseeeereeeeeoeeoeooeoeeeoeeoo 32

ix

LIST OF APPENDICES

APPENDIX A..c.onneniiennieteeiiieeienettonnmonieroncesasesssneenssssnnsesnnssssnsnnnsssenmmmnnnonoos 41
The Right Ascension and Declination.eeueereereereecennenneenneennnnmnnnmoms 41
The USNO-SA2.0 Star Catalog (USC)...cuuerueeeereeenreesnernneenenesennnsnnnsmmnn oo 42
The Flexible Image Transport System (FITS)......ee.eeeeeneemneeennsennnnnemnnoeeomnns 44

APPENDIX Bu..c.ouineiemniimianiiennrecctonntennierenesseenenrsescssssnnnesssnnssesnnnsnsemnmmnnnnoss 45
The C+ PrOGUaN......ceuueeeuencioreianiereneerensensencensossncensessnnsssnssnssnnnnnnnmo 45

CHAPTERI. INTRODUCTION

The first telescope was pointed to the sky by hand. This was very difficult. Let’s imagine
moving a telescope by hand at all times in order to keep a star within of field of view (FOV). At
the same time astronomers had to locate with their own eyes the desired star on the sky, to then

be able to point the telescope at it. There was no other way. This meant it was necessary to

know the sky very well.

Many years later the first motor was coupled to a telescope. The motor automatically moved
the telescope and tracked the stars, right after it was pointed. This mechanism avoided the

moving star problem only in part, because the motors had low accuracy.

The next advance happened when the computer was introduced to solve the telescope
positioning problem. The initial positioning of the telescope was completely automated. It was
Jjust necessary to input the astronomical coordinates of the position wanted in the computer, so

the computer and the motors would do the rest.

Nevertheless, astronomers were not satisfied. Tracking became as exact as the data from the star

catalog could be, but the struggle between the astronomer and accuracy had not ended.

At the same time, the video camera had been introduced to the systems. A portion of the sky
embraced by the telescope viewer was displayed on a screen. In this way the astronomer could

comfortably see the sky. All the information about the stars on the screen was saved digitally.

This information would later be compared with the data from the star catalog so the position of
the telescope could be verified.

Many astronomical observatories in the world that have automated their telescopes have made a
program similar to the one that has been developed for this project. But, at the same time, these
programs are quite different because each observatory adjusts its programs to its own needs, and
uses also the programming language more convenient for them. The problem consist in each

programmer designing their source-programs in a different way, such that each source-program

1

2
looks original compared to another even when the entries and output data are quite similar. On
the other hand, to get the source program from someone else would be very difficult and
expensive, given that is hard to understand the logic of other programmers, even when the

program become very short and the documentation rather extensive.

This research deals with the development of software to calculate the deviation error between
real astronomical coordinates (where the telescope is pointing) and theoretical astronomical

coordinates (where the telescope should be pointing).

Before doing this it is necessary to read data from USNO-SA2.0 Star Catalog (USC) for some
portion of the sky. This portion is centered on some desired astronomical coordinates. The data
obtained from USC is used to get the simulated data of the CCD. After this, one is ready to try
to find the deviation error because these data are the input data to the Pattern Recognition
Algorithm (PRA). The data from USC is also important because one can find the all
information about any stellar objects.(right ascension, declination, red magnitude, blue

magnitude, etc.

To use the calculated corrections in a real application it is necessary to create another program
that would send a command to move the telescope, and check the astronomical coordinates. All

this is only possible if the telescope has a computer system, a CCD camera system, and motors

included.

In theory, the PRA can be use for any telescope system. It is important to keep in mind that each
telescope system has its own specifications, like the focal length of the telescope, the aperture

and the dimensions of pixels per degree of the CCD camera. Keep in mind the PRA was made

for reading data from the USC.

The PRA does not work for sky sections which are too close to the celestial poles (1 degree).
On the other hand, the sky section should not be greater than one degree of width and height to
get good accuracy. The problem is that if the portion of the sky is bigger than this then the
portion of the sky departs from the plane, and therefore the subroutine to get the coordinates in

pixels is not appropriate.

CHAPTER 1. LITERATURE REVIEW

There has been a lot of work on specialized software to reduce the pointing error deviation of
telescopes, as well as to retrieve stellar data from Star Catalogs. Discussing all of them would
be very time consuming and generally impossible, because almost all major (and many minor)
observatories around the world have some software to do this, each crafted to their specific

environment and needs. There are several companies developing special software for their needs

but most are done in house.
2.1 Star Acquisition from Star Catalog.

The Navy Observatory Flagstaff station (NOFS) was established in 1955, in Arizona.
Among other things the NOFS is dedicated to conduct a research program to improve the
observational methods and the accuracy of astronomical data required by the Navy and other

components of the Department of Defense.

The NOFS has developed the software to get data from the USNO-A2.0 for any portion of the

sky. This program is working on line on the Internet; so one can get the stellar data whenever

one wants and from any geographical location where one is.

This program is flexible in the following aspects
- To access the Star Catalogs: USNO-SA2.0, ACT, and USNO-A2.0 + ACT, together.

- To get the pixel information about the position of the stellar objects on the plates.

- To choose the magnitude wanted: red or blue.
- To input the size of the portion of the sky in arcseconds, arcminutes or degrees.

- To choose the sort of listing (increasing): it could be by RA, DEC, Magnitude (order), Color

(red or blue) or Distance to center (of the field of view).

- There are other options (e.g: get data in JPEG format, get data in FITS format, etc).

The program gets data of a rectangular field no greater than 2 degrees (7200 arcsec) in RA and
DEC.

4

The Lowell Observatory (LO) was the first astronomical observatory in Arizona. It
was founded in 1894 by Dr. Percival Lowell a mathematician and amateur astronomer from
Massachusetts. The place was chosen because of its high elevation and its dark skies. Although
Lowell Observatory was founded primarily to explore the possibility that intelligent life might
exist on Mars (and was the site of the discovery of Pluto), the Observatory's research quickly
expanded into other areas. One can say: the mission of Lowell Observatory is to pursue the
study of astronomy, especially the study of our Solar System and its evolution; to conduct pure
research in astronomical phenomena; and to maintain quality public education and outreach

programs to bring the results of astronomical research to the general public.

The Lowell Observatory's software gets data from one of three Star Catalogs for any portion of
the sky. This program is also working on line on the Internet, like the one NOFES. It is flexible in

the following aspects:

-To access three Star Catalogs: USNO-SA2.0, USNO-A2.0 and PMM

-To choose the limits to the red magnitude and the blue magnitude at the same time.

-To choose the limits of color index (blue magnitude - red magnitude)

-To choose the shape of the sky portion: rectangular or circular

-To choose the maximum surface density (number of objects per square degree)

-To sort the list by: RA, DEC, Magnitude (Blue or Red), Angle, Radius, and Color Index

The greatest difference between LO program and NOFS program is that we can input the focal
distance of the telescope and the pixel size of the CCD in the first one. So, the data request from
USC corresponds automatically to FITS data. In PRA this is also taken into account.

The programs developed by the NOFS and Lowell Observatory to get the list of stars are
discussed here because these allows to achieve our main objective: to calculate the error

deviation of the coordinates of the telescope from the input coordinates.

2.2 Star Acquisition from the CCD camera.

There is a lot of software developed in order to manipulate data from FITS (Flexible
Image Transport System). These were and are written to provide a powerful yet simple
interface for accessing the FITS files that insulates the programmer from having to deal directly
with the complicated internal details of the FITS file.

The High Energy Astrophysics Science Archive Research Center (HEASARC)
It has developed software for analyzing FITS files, but is specialized within the domain

of high energy astrophysics.

The software called Fitsio can perform various operations on FITS files, such as open and close
files; read, write, modify or delete the values of header keywords; and read or write any element
of the associated data array or table. It can check if the FITS files given have a valid FITS

format. It was originally written in Fortran-77 in 1991, but in 1996 was developed in ANSI-C as

well.

The software called Fv is a general-purpose FITS file editor (formerly just a file viewer) able to
manipulate virtually all aspects of a FITS file and perform basic data analysis of its content.

These software packages do not create files in formats required by this project. In order to get
the main objective of this research it is necessary to get specific data from the FITS: (RA, DEC,
MAG) where both RA and DEC are in pixel units. So, it is necessary to develop some program
to do that. This program will have to be integrated into the PRA, in order to replace the
subroutine getccddata() which simulates the CCD data.

23 Pointing the telescope

At first it is necessary to know the RMS (root-mean-square) pointing accuracy of the telescope.
The RMS pointing is a statistical measurement of how accurately a telescope points to any
location in the sky from any other location. It can be determined through a mapping process,

where the telescope is pointed to a number of known positions (stars) and the difference

between where the telescope lands and the actual position of the star is recorded. This

information is useful because allows us to put a precision limit when the error calculation is

carried out.
-Tpoint is a software package developed by Bisque Software Company. It’s a professional

product and has been used in many telescopes around the world.

-Teledyne Brown Engineering, developed the StarView software package to improve the
telescope pointing. It enables faster target acquisition and with greater precision for Space

Shuttle astronomy missions.

It works by comparing positions of observed stars with those of "ideal" guide stars. It has a star
catalog database used as reference. The telescope pointing is adjusted manually until the
observed and cataloged guide stars coincide. The telescope therefore just needs to have a fine
control adjustment. That allows super-fine pointing accuracy: it was proven in operation on

NASA's Astro-2 Space Shuttle Mission.

It would be interesting if that adjustment could be made automatically. The PRA calculates the
error deviation, and therefore the corrections. These corrections will be done automatically in

the near future by including a command code generating subroutine.

The software packages described above can point with 1-2 arcsec RMS for large professional

telescopes and, 30 arcsec for amateurs.

To talk about the source code and analyze it and compare them with PRA is not possible
because they are not available. The software works like black box. One can only know what

they do in general.

CHAPTER II1. THE REAL PROBLEM

3.1 Formulation
When the telescope is pointing to some point in the sky (racentercatl, deccentercatl)

(see figure 1) the CCD camera catches all stellar objects (SO) that are in its FOV. The
information about each SO is saved in the FITS. For this, the CCD camera is considered like a
two-dimensional array, whose horizontal axis represents the RA and vertical axis represents the
DEC. So each pixel on the CCD camera can be represented by its position (raccd, decced) and

its magnitude (magccd), which is calculated from its intensity.

Given that telescope motor is not accurate, the point where the telescope is pointing
(racentercatl, decentercatl) at differs a little bit from the desired point (racentercat,

deccentercat).

racentercatl = racentercat + desvra

deccentercatl = deccentercat + desvdec

Therefore, the problem is:

find the deviations (desvra, desvdec)

dec

ﬁ

(racentercatl, deccentercatl)
decccedf]

e

heightced O

decccdi

| ra

raccdi

raccdf
widthced

heightced : height of ccd camera field
widthced : width of ccd camera field
raccdi : inicial right ascension of ccd camera
raccdf : final right ascension of ccd camera
decccdi : initial declination of ccd camera
decccdf : final declination of ccd camera

(racentercatl, deccentercatl): astronomical coordinates
where the CCD's screen is centered

Figure 1. CCD’s screen

Observations:

1. Take into account that each (raccd, decccd) has been affected by deviations in RA
and DEC.

raccd = raccd + desvra
decccd

decccd + desvdec

2. Take into account that each (raccd, deccd) include a little perturbation in RA,

DEC and MAG because of limitations and physical defects of CCD camera itself.
That is:

raccd = raccd + perturbra

decccd = decced + perturbdec
magccd = magcecd + perturbmag

3. Take into account that the position of the SO obtained from the CCD camera is
the actual position (apparent position) while in the USC is the J2000 position.

3.2 Solution

At first, to get the solution to this problem it is necessary to have some reference pattern
(theoretical values); otherwise, it would not be possible to get the solution. These references are
called “star catalogs”; which are always useful in solving astrometric problems like this. Here
the USC is used.

dec

% (racentercat, deccentercat)

decfcat /v

heightcat O

deccati ~—Pra
racati racatf
widthcat

heightcat : height of catalog portion

widthcat : width of catalog portion

racati : initial right ascension of catalog portion

racatf : final right ascension of catalog portion
deccati : initial declination of catalog portion
deccatf : final declination of catalog portion
(racentercat, deccentercat): astronomical coordinates

where the USC's screen is centered

Figure 2. USC’s screen

10

1. Toread SO’s information from USC, taking into account observation (3) , It means
upgrade data from USC for:

racati < racat < racatf

deccati < decat <deccatf

From Figure 2:
racati = racentercat - widthcat/2
racatf = racentercat + widthcat/2
deccati = deccentercat - heightcat/2

deccatf = deccentercat + heightcat/2

2. Taking into account the CCD camera scale (pixel/degree) and considering as origin
(0, 0) of both CCD’s screen and USC’s screen at the left lower corner, transform its own SO’s

information to pixel units with respect to this origin (see figure 3 and 4).

dec
? (widthcat/2 , heightcat/2)
heightcat /v
@)
0 P
0

widthcat

heightcat : height of catalog portion
widthcat : width of catalog portion

Figure 3. USC’s screen-1

dec
T (widthccd/2 , heightecd/2)
heightced
0 » 1
0 widthced

heightccd : height of ccd camera
widthced : width of ccd camera

Figure 4. CCD’s screen-1

3. So when both screens are in the same units (pixel) find where is the CCD’s
screen inside of USC'’s screen (see figure 5).

@-{—correction
(@]
.. centepedt centerced
raoriginced T
origincced
1
decoriginced

Figure 5. CCD and USC screens superimposed

11

12

Therefore:
originced = (raoriginced, decoriginccd)

4. Finally calculate the correction (see figure 5).

correction = centercat - (centerccd + originced)

and since
correction = (racorrec, deccorrec)
origenced = (raoriginccd, decoriginced)
centercat = (widthcat/2, heightcat/2)
centerced = (widthccd/2, widthced/2)
then
racorrec = (widthcat — widthced)/2 - raoriginced

deccorrec = (widthcat — widthced)/2 - decoriginced

5. To convert the correction to degrees, just use the appropriate scale (pixel/degree) from

CCD camera.

CHAPTERIV. MATHEMATICAL PROBLEM

4.1 Formulation

Letthe set R ={ r coordinate pairs (x, y) /
0<x<Ix
O0<y<ly
XY, Ix,lyeN)

LetthesetS ={(x,y)eR/
xisx<xf , xi<xf, 0< xiandxf<Ix

yisy<yf , yi<yf, O0<yiandyf<ly}

Letthe set T = {¢ coordinate pairs (u, v)/
u = x-xi

v=y-yi V(xyeS}

therefore

<v<lv where lu= xf-xi

lv=yf-yi

So, the problem is (see figure 6):
GivenR, r, Ix, ly
and T, ¢, lu, lv; calculate x;and y;

where (x;, y;) is the origin of T relative to R

13

y
T i
ly
yf —4— lv
T
R
yvi » u
lu
T ! ’ X
xi xf Ix

Figure 6. R and T superimposed

Assumptions:

1. Itis unknown that (x;, y;)€R correspond to (uy, vi)eT

2. The (u;, v))ET has been effected or distorted by little perturbations p, and p,. That
is:

Uj = Uj +Pu

Vi = Vj+Dv

i4

15

4.2 Numerical Solution.

If assumptions 1 and 2 are not made the analytic solution would be obvious. To getit

would be enough to know just one coordinate (x, y)eR and its corresponding (u, v)eT

The numerical solution is the alternative due to assumptions 1 and 2.

Iv

ly

lv

lu

Ix

Figure 7. The best and worst solution of the problem

Looking at Figure 7, how many possible solutions (N) are there? That is, how many places of R
could T possibly be in?

Since T is required to be within R (see formulation section) then:
xi 1[0, Ix-lu]
yi : [0, ly-1v]

16

Therefore
N=(>Ux-lu+l)(ly-Ilv+1)
There is no a priori judgment to take some particular (x;, y;) as solution over others one. Each

possible solution has the same probability to be the solution. So, one is free to choose the order
to try each possible solution.

Here is the chosen order:

x;=0

yi=0,1,2, ..., ly-lv
Xi=1

yi=0,1,2, ..., ly-lv
X,'=2

)’i=0, 11 2, v lY‘lV
X; =lx-lu

)'i = Ov 11 2’ ree g IY'IV

From Figure-7, considering the time of calculation, we can see that the best and worst solutions
are respectively

(xi7 Yi) =(07 O)

i yi) = (Ix-lu ly-1v)

The next steps are:

1. To make

T={(wvVv) ppu<u=<lu-p,
pv< v =<Iv-p, }

This redefinition of T avoids the coordinates pair which get out of T because of
assumption 2.

2. To guess which (x;, y;) is the solution

17

To built

S;={all (x,y)eR/
xi<x<xf ,xf=xi+lu
yisy<yf ,yf=yi+lv}

To built

T'={ @, v)/ u'=x-xi, vl=y-yi, Y(x, y)eS8;}

number of elements of T¢ is ¢

Because of step 1 #/ must be greater or equal than ¢ in order for (x;, y;) to still be a
possible solution.

To compare

each (u, v)eTtoeach (u!, v)) eT*
taking into consideration assumption 2

And if

for each (u, v) €T there exist some (u', v)eT'/ [u-u'| < p,
[v-v' | <p

then (x;, yi) is the first solution. (there could be several solutions which meet the same
requirements)

If the first (x;, yi) is found then try from steps 1 to 5 for all possible solutions which are
in the vicinity of (x;, yi). The vicinity is defined by “p," and "p,". Let "n" is the number
of solutions found in the vicinity.

To choose the best one from the "n" solutions; that is, the solution with a lesser standard
deviation.

If N possible solutions were tried and "n" is zero , it could be because:

- The perturbations p,and p, considered in step 5 are not appropriate: they are smaller
than the real perturbation on the CCD camera.

- Part or whole T is out of R

- T really is not related to R

CHAPTERYV. THE GENERAL SYSTEM

5.1 Structured System

Files from Fllésc ‘;‘r)om
UsC
_—

MAINPROGRAM

plot list plot list plot list plot
stars from stars from stars from correction on
usc USC pixels CCD pixels RA and DEC

Figure 8. System structured diagram

18

QMAINPROGRAM)

)

Inputdata()

I

Option()

l

Getcatdata()

l

Getccddata()

19

Listcat()

Listcatpixels()

Listccdpixels()

pattern-
recognition ()

bbb b

Figure 9. System flow char

20

5.2

Design of Windows

Our program communicates with the user by displaying the following windows:

pixel per degree
width of CCD camera (arcsec) :
height of CCD camera (arcsec) :

right ascension (hr min sec) : — — —
declination (deg min sec) : - — -
minima red mag S
maxima red mag HIES
minima blue mag HEM
maxima blue mag T -
width of catalog (arcsec) HE
height of catalog (arcsec) HEE

Figure 10. Input data window

[1]: List of the stars from catalog
[2]: List from catalog in pixels
[3]: List from ccd in pixels

[4]): Calculate deviation

[5]: Begin again

[6]: Quit

enter your option: --

Figure 11. Menu window

21

field of view :

(hr min sec)

total objects found : —~--

mag
(deg min sec) red blue

GMT:

o

(arcsec)

total objects listed: ---

ang
(deg)

Figure 12. Window of the list of stars from USC in normal units

| ia

total objects found : —--

List from star catalog (pixels)
dec mag

——— ——

total objects listed: ---

Figure 13. Window of the list of star from USC in pixel units

22

List from ccd camera (pixels)
ra dec mag
total objects found : -— total objects listed: -—

Figure 14.

Window of the list of stars from CCD in pixel units

duration (sec) : -

rigth ascension :
declination

rad perturbation : --
mag perturbation : -

ccd origin
generated calculated

possible solutions : [---, -}

solutions found : -

screen cat (pixels)

width : -
hight :-—

screen ccd (pixels)
width
hight :

corrections

(pixels) (arcsec)

Figure 15. Window of the corrections on RA and DEC

23

24

5.3. The Source Program Code

The source program code has been made using C++ programming language.
At this stage it is necessary to take into account some considerations:

1. The USC was created for the Power PC. So, at first, it was necessary to create a

subroutine bigtolittle() to read USC data using PC correctly.

2. The data from FITS was simulated from USC. For this purpose the subroutine getccddata(
) was created. It simulates the FITS data from USC data, just simulating the little noise

(see note of section 6.2) due to the CCD camera.

The principal subroutine, pattern-recognition(), is in accord to "numerical solution”: USC

data would be R , and FITS data would be T. Therefore the numerical solution (xi, yi) would be

the real solution (raorigenccd, decorigenccd). (See figures 5 and 6).

The C++ code source program is in appendix B.

CHAPTER VL THE PATTERN-RECOGNITION ALGORITHM

6.1 Data from USC

SPD
%
180.0 A
(24): Zonel725.cat
1725
(23) : zonel650.cat
165.0

/'

Screen’s catalog

(02): zoneQ075.cat

(01): zone0OQO.cat
0.0

B —» RA
0.0 360

Figure 16. Graphical representation of zonexxx.cat files
and possible situations of screen's catalog

The reading of USC data is accelerated using the auxiliary files zonexxxx.acc;
without this the reading would take more time.

25

26
For each (racentercat, deccentercat) given there are several possibilities (look at

figure 16):

Heightcat does not cross any SPD (South Polar Distance) multiple of 7.5 degrees.

In this case open the file zonexxxx.cat which the (racentercat, deccentercat) belong.

Heightcat crosses the SPD multiple of 7.5 degrees.
In this case open two files zonexxxx.cat:
- zonexxxx.cat which the (racentercat, deccentercat) belong

- Zonexxx.cat which precede or antecede it, depend what case is.

Widthcat does not cross the limits of RA ("0" or "360" degrees).

In this case read the zonexxxx.acc corresponding to each zonexxxx.cat opened.

Widthcat crosses the limits of RA (0" or "360" degrees)
In this case it is necessary to open two zonexxxx.acc files for each corresponding

zonexxxx.cat opened.

These possibilities were solved introducing three switches:

ffcat: (1,2, 3,24} ; itgives the file number where the (racentercat,

deccentecat) is located

sscat: {-1,0, +1} ;
- if (-1) then read file number "ffcat" and "ffcat-1"
- if (0) then just read file number "ffcat"
- if (+1) then read file number "ffcat" and "ffcat+1"

rrcat: { 1,0 };
- (1) if the witdhcat crosses the limits of ra

- (0) if the witdcat does not cross the limits of ra.

This work is made by the following commands:

inputdata(pxg, widthccd, heightccd, racentercat, deccentercat, magcatri, magcatrf, magcatbi,
magcatbf, sizeracat, sizedeccat);
widthheightcat(sizeracat, sizedeccat, widthcat, heightcat, pxg);
limites(racentercat, deccentercat, sizeracat, sizedeccat, racati, racatf, deccati, deccatf, spdcati,
spdcentercat, spdcatf);
searchfiles(racati, racentercat, racatf, spdcati, spdcentercat, spdcatf,
racatil, racatfl, racati2, racatf2,
spdcatil, spdcatfl, spdcati2, spdcatf2,
ffcat, sscat, rrcat);
createchunk(ffcat, sscat, rrcat, racati, racatf, spdcati, spdcatf,
magcatri, magcatrf, magcatbi, magcatbf,
racatil, racatfl, racati2, racatf2,
spdcatil, spdcatfl, spdcati2, spdcatf2);
chunkvector("chunk”, racat, deccat, scat, qcat, fffcat, bbbcat, rrrcat, ncat);
centroradecOO(racat, deccat, rrrcat, racentercat, deccentercat, racatl, deccatl, rrrcatl,
racatkl, deccatkl, ncat, rrcat, sizeracat);
radang(racatkl, deccatkl, racatl, deccatl, radcat, angcat, ncat);
trasladar(racatl, deccatl, rrrcatl, ncat, racat2, deccat2, rrrcat2, ncatp, racati, deccati);

chunkpixel(racat2, deccat2, rrrcat2, racatp, deccatp, rrrcatp, pxg, ncatp);

Finally one obtains:
- USC data in normal units from chunkvector(), and

- USC data in pixel units from chunkpixel().

Note:
The PRA does not work for case "A" and "B" (see figure 16). Even when screen's

catalog is completely inside of zonexxxx.cat but is very close to limits of SPD ("0'" and
"180").

28

6.2. Data from FITS

The FITS data is generated from CCD camera. The program to do that could be a

subject of another project. There are already many programs to do that.

The FITS data could be considered like a set of data from USC but with noise
(perturbations) and deviation; so it is possible to get it beginning from USC but introducing
some random noises and deviation (see observations of section 3. 1). That is:

. Translate data USC (it would simulate the deviation because the motors of the telescope).
2. Made a little perturbation (it would simulate the noises introduce by the CCD camera

itself).
This work is made by the following commands:

getorigenccdteo(raorigenccdteo, decorigenccdteo, (widthcat-widthced), (heightcat-heightccd));
getceddata(racatp, deccatp, rrrcatp, ncatp, racedp, decccdp, rrreedp, needp, widtheed,
heightccd, raorigenccdteo, decorigenccdteo, perturbcedrad, perturbeccdmag);

Finally one obtains:
- FITS data in pixels from getccddata()

Note:
The CCD camera is not perfect: It is susceptible to the following sources of noise:

Photon noise - Random fluctuations in the photon signal of the source. The rate at which
photons are received is not constant.

Thermal noise - Statistical fluctuations in the generation of thermal signal. The rate at which
electrons are produced in the semiconductor substrate due to thermal effects is not constant.
Readout noise - Errors in reading the signal; generally dominated by the on-chip amplifier.
Quantization noise - Errors introduced in the A/D (analog/digital) conversion process.
Sensitivity Variation - Sensitivity variations from photosite to photosite on the CCD detector or
across the detector. Modern CCD's are uniform to better than 1% between neighboring

photosites and uniform to better than 10% across the entire surface.

29

6.3. The pattern recognition algorithm

6.3.1 The first solution

The first solution is the first (ra, dec) in the region

ra : [0, (widthcat-widthced)]
dec : [O, (heightcat-heightccd)]

which meets with
perturbrad condition:
| perturbccdrad + desvorigen| < perturbrad

where perturbrad is the maximum perturbation of the coordinates of stars.
and

magnitude condition :

| perturbccdmag | < perturbmag

where perturbmag is the maximum perturbation of the magnitude of the stars
perturbeedrad and desvorigen are define in Figure 17.
The first solution (raorigenccdl, decorigenccd]) is calculated by:
pattern(racatp, deccatp, rrrcatp, ncatp, widthcat, heightcat, raccdp, decccdp, rrrecdp,

ncedp, widtheed, heighteed, 0, (widthcat-widtheed), 0, (heightcat-heightccd),

perturbrad, perturbmag, raorigenccdl, decorigenced]1, variance, swini);

30

»'ﬁ

ﬁ perturbc 14

r r
—p
esvorigen
>
(raorigenccd1, decorigencedl) (raorigenccdteo, decorigenccdteo)
first solution exact solution

Figure 17. Relation between first solution and exact solution

6.3.2. The possible solutions

What the pattern-recognition() is really doing is to compare each (x, y)€S to each (u, v)eT,
guessing if both have the same coordinate origin (look at figure 18):

31

S,T, desvori
T rturbccedrad
r r
perturbrad
origen
(raorigenccdl, decorigenccdl) (raorigenccdteo, decorigenccdteo)
first solution exact solution

Figure 18. Real comparison made for pattern-recognition()

Therefore
r =r' + perturbrad

and

perturbrad = perturbccdrad + desvorigen.

Where perturbcedrad and desvorigen are unknown. That is the pattern-recognition()

manipulate the perrurbrad parameter.

Given that the first solution (raorigenccdteo, decorigenccdteo) should be in a vicinity whose

radius is equal to perturbrad, then all possible solutions should be within the same vicinity.

32

If the exact solution is in the vicinity boundary (extreme case) then one can see there are
possible solutions out of vicinity. But given these possible solutions should meet with

“perturbrad condition”, then the radius of the vicinity should be equal to 2*perturbrad (look at
figure 19).

[perturbeedrad + desvorigen| < 2* perturbrad

first solution
-—‘
exact solution
possible solution
\

NG
|

2*perturbrad ——

Figure 19. Vicinity of possible solutions

To estimate the number of possible solutions (numsolposs) keep in mind
1- the perturbrad is an integer because it is in pixels

2- The III quadrant of the vicinity was already tried because of the chosen order (see the
secction 4.2)

33

Let numsolpossmax be the number of points in the outer square and numsolpossmin be the

number of points in the inner square (look at Figure 19).

Lets p,= perturbrad
p1 = integer part of (V(2)*p.)

numsolpossmin = (2* p; + 1)- (p1 + *+1

=3%p +2%p, +1
numsolpossmax = (4* p,+1)* - 2*p, + 1)*+ 1
=12*%p,°> +4*py+ 1
Therefore

numsolpossmin < numsolposs <numsolpossmax

Which depends just on perturbrad. Notice that if perturbrad is small then n<<N: and that

numsolposs is never zero.

This is calculated by:

numsolvicinity(perturbrad, numsolpossmin, numsolpossmax);
6.3.3. The Solutions and the Best One

If all possible solutions are required to meet the “magnitude condition”, it will obtain the right

solutions; so always
0 < numsol(number of right solutions) < numsolposs

The right solutions and the best one of them are found by:

if (swini==1)
{
il = raorigenccdini-2*perturbrad;
Jj1 = decorigenccdini-2*perturbrad;
i2 = raorigenccdini+2*perturbrad;
J2 = decorigenccdini+2*perturbrad;

if(i1<0)

if(i2>(widthcat-widthccd))
{
i2 = widthcat-widthced;
}
if(j2>(heightcat-heightccd))
{
j2 = heightcat-heightccd;
}

for(j=jl; j<=j2; j++)
for(i=il; i<=i2; i++) {
if((i>=raorigenccdini)||(j>=decorigenccdini))
{

pattern(racatp, deccatp, rrrcatp, ncatp, widthcat, heightcat,
raccdp, deccedp, rrrecdp, needp, widtheed, heighteed,
i,1,j.J,
perturbrad, perturbmag, raorigenccd, decorigenccd,

variance, sw);

35

if(sw==1)
{
numsol++;
solutionsra[numsol] = raorigenccd;
solutionsdec[numsol] = decorigenccd;

solutionsvar[numsol] = variance=;

}

}

ordenar2(solutionsra, solutionsdec, solutiomsvar, numsol);
raorigencced = solutionsra[1];

decorigenced = solutionsdec[1];

where:
- The best solution is (raorigenccd, decorigenccd), and

- “numsol” is the number of solutions founded

Note:
It is important to notice that the real problem has a third coordinate which does not depend

on the translation, it is the "magnitude” (it means it is the same in the FITS and in the USC).
This coordinate allows us to get "numsol" because each solution which meets the “perturbrad
condition” should meet the magnitude condition, at the same time. And given that magnitude
coordinate does not depend on translation, it gives us a strong condition, which allows us

choose the “right solutions”.

Notice that standard deviation of perturbrad and perzurbmag is calculated by compare()
subroutine(Its is inside of pattern-recognition()). This result allows us to choose the best

solution: the best one is that with minimum standard deviation (solutionsvar[1]).

CHAPTER VII. RESULTS

To get CCD data it was assumed

perturbcedrad = 1pixel
perturccdmag = 0.5

in subroutine getccddata()

To calculate corrections it was assumed

perturbrad = 2pixels
perturbmag = 0.6

in subroutine pattern-recognition()
Pixel per degree = 4000

A.
Screen cat (pixels) Screen ccd (pixels)
Width 778 766
Hight 667 510
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 8.0 8.0 -2.0 -1.8 1.0
Declination 16.0 16.0 63.0 56.7
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 8.0 8.0 -2.0 -1.8 1.0
Declination 30.0 30.0 -7.0 -6.3
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 5.0 5.0 1.0 0.9 1.0
Declinatior 40.0 40.0 39.0 35.1

36

37

B.
screen cat (pixels) screen ccd (pixels)
Width 667 556
Hight 667 556
CCD origin _ corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 81.0 81.0 -25.0 -22.5 4.0
Declination 64.0 64.0 -8.0 -7.2
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 37 37 19 17.1 9.0
Declination 101 101 45 -40.5
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 64.0 64.0 -8.0 -7.2 < 1.0
Declination 16.0 16.0 40.0 36.0
C.
screen cat (pixels) screen ccd (pixels)
Width 778 667
Hight 889 722
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 43 43 13.0 11.7 9.0
Declination 52 52 32.0 28.8

38

CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 58 58 2 -1.8 1.0
Declination 5 5 79 71.1
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 71 71 -15.0 -13.5 31.0
Declination 164 164 -80.0 -72.0
D'
screen cat (pixels) screen ccd (pixels)
Width 556 444
[Hight 667 556
CCD origen corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 80 80 -24.0 -21.6 3.0
Declination 64 64 -8.0 7.2
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension 14 14 42.0 37.8 <l1.0
Declination 53 53 3.0 2.7
CCD origin corrections duration
Generated Calculated (pixels) (arcsec) (sec)
Right ascension | 89 89 -33.0 -29.7 3.0
Declination 104 104 48.0 -43.2

Table 1. Corrections on RA and DEC to several cases

CHAPTER VIII. DISCUSSION

1). The list of the stars from USC generated here was compared with the one generated by
United State Naval Observatory (USNO), for several entries. The results are in agreement, even
though the short version of USNO (USNO-A2.0) was used. The USNO-A2.0 contains
information about 500 hundred million stars, while the USC Jjust contains a tenth of these.

The list was also compared with the one generated by the Lowell observatory, which uses the
same catalog. The lists are in agreement. But there are some little differences between them.
There is a couple more stars; this could be because each was using a different approximate

methods and different criteria to try the problem boundary.

In general the list looks very well compared to the two lists mentioned above.

-

2). The data obtained from the USC and FITS is in pixels. This data was generated thinking to
plot the sky in the future. Beside, it could be used to show the calculated "corrections” by the

pattern-recognition() graphically.

3). The pattern-recognition() subroutine works not Just for a little "originccdteo”. And its

result depends on "perturbrad” and "perturbmag” chosen, which are the unique variables one

can manipulate.

4) The corrections of astronomical coordinates depend on the accuracy of "originccd" found.

Because, "originccd” is really what the pattern-recognition() finds.

39

CHAPTER IX. CONCLUSIONS AND PERSPECTIVES

The program lists the star of any portion of the sky centered in (racentercat, deccentercat)
astronomical coordinates .

The program can find the correction on RA and DEC astronomical coordinates with about
Ipixel of accuracy considering "perturbrad" <2 pixels and "perturbmag” < 0.6 .

The program can list in pixel units the data from FITS as much as from USC. This data could be
used to get show the corrections to do in graphically.

The corrections will become quite useful to send a fine adjustment command to computer
controlling the telescope, and then check the current position where the telescope is pointing.

40

41
APPENDIX A
The Right Ascension and Declination

One needs to locate the positions of stellar objects on the sky. Each point of the celestial sphere
is identified by using a two numbers. These numbers depend on coordinate system used and
could be constant or variable in time. There are several coordinte systems in use but the most

used by astronomers is the equatorial coordinate system, the one that was used in this project.

The equatorial coordinate system uses the equatorial plane of the Earth as the fundamental
plane, which does not depend on earth motion. Moreover it could be considered an inertial

system or fixed coordinate system; in which the calculations are best carried out.

This coordinate system has its origin in earth's center and its prircipal axis pointing to the vernal

equinox.
The two angles are right ascension and declination.

Right ascension (RA):
is measured in the equatorial plane. It is the angle between the vernal

equinox and the point where meridian which contains the object crosses the equator. It varies

between 0 and 24 hours. It is measured counterclockwise.

Declination (DEC):
is measured in the plane normal to the equatar, which contains the object. It

is the angle between equator and position vector of an object. Itvaries between -90 and

+90 degrees. It is positive in the northern hemisphere.

South polar distance (SPD): It is measured in the same plane asDEC. It is the angle between
the South Pole and the object. That is: SPD =DEC + 90. It varies
between 0 and 180 degrees.

42

The USNO-SA2.0 Star Catalog
(USO)

The USC is a digital file which contains information about five hundred million stellar objects.
This information was obtained by the Precision Measuring Machine (PMM) at the US Naval
Observatory. It was built and operated by the US. Naval Observatory Flagstaff Station during
the scanning and processing of the Palomar Observatory Sky Survey I (POSS-I) O and E plates,
the UK Science Research Council SCR-J Survey plates, and the European Southern
Observatory ESO-R survey plates.

The USC uses the RA and SPD coordinate system to locate each stellar objects; based on the
system of J2000 at the epoch of the survey blue plate. SPD was used instead DEC because SPD
is far easier to manipulate than DEC since it is positive and for compatibility with the ESA

Hipparcos and Tycho mission and catalogs.

The information about stellar objects has been stored in USC in such a way as to minimize the

storage requirements as well as for easy access:

-The coordinates were converted to integers in the following, manner (An integer number is
saved using less memory than a real number):
RA =RA*15*%3600*100
SPD = (DEC + 90)*3600*100
(original RA is in decimal hours and
original DEC is in decimal degrees).

-The entire sky is partitioned into 24 zones of SPD, each of 7.5 degrees.

-In each zone, the catalog is sorted by increasing value of RA.

-Each of the 24 zones of the catalog contains 3 different kinds of files, and the naming

convention is: ZOnexXxxx.yyy

43

xxx = 10*SPD
Yyy = acc (ASCI accelerator file)
= cat (binary catalog file)

= lut (binary lookup table for GSC stars).

-Each zonexxxx.cat file is a binary file containing 3 32-bit integer for each entry.
(it means 32-bit for RA, 32-bit for DEC and 32-bit for MAG(magnitude)).

-The byte order is BIG-ENDIAN, which is the default for machines like Silicon Graphics
(LITTLE-ENDIAN is the default byte order for machines like DEC).

-Since the catalog files can be quite long, it was convenient to refer to zonexxxx.acc file, and

use a combination of the direct and sequential access.

-The zonexxxx.acc file contains the first index for the first object every each 15 minutes of RA

and the number of objects in that chunk of RA

-The MAG has been packed according to the following format: MAG = SQFFFBBBRRR

S sign is (-) if there is a correlated GSC entry, (+) if not.
Q = 1 if magnitude(s) might be in error, or is O if looked ok.
FFF = field on which this object was detected.

BBB = 10 times the blue magnitude

RRR = 10 times the red magnitude

Flexible Image Transport System
(FITS)

When CCD cameras were integrated into a telescope system the digital images became useful.
.The problem was that these images were not always useful to other astronomers because, each
astronomer or astronomical observatory recorded the images according with their own computer
facilities. This was a great inconvenience, because the astronomers often wish to compare their

images with others in order to verify their own results.

It was necessary to quickly solve the image interchange problem. The solution was the adoption
of an "unique image interchange format" called FITS (Flexible Images Transported System).

Everyone who needed to interchange images adopted it or was left out.

The FITS needed to be very flexible (It should be so flexible that it can adapt to any changes,
and so that it even can be used outside of astronomy). This would be the best feature for its

evolution.

So one can say:
FITS is an unique data format developed for interchanging astronomical data between

installations conveniently.

APPENDIX B

The C++ Program
/*

Main Program

*/

#include <iostream.h>
#include <fstream.h>
#include <time.h>
#include <dos.h>
#include <math.h>
#include <conio.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <iomanip.h>
#include <io.h>
#include <time.h>

const int ne = 2000;
const double pi = 3.1416;

const double perturbccdrad = 1;
const double perturbccdmag = 0.5;
const double perturbrad = 2;

const double perturbmag = 0.6;

45

struct record{long rasc; long spdsc; long magsc; };

void menu(char &option);
void centroradec0OO(double ra[ne], double dec[ne), double rrrfne],
double rak, double deck,
double ral[ne], double decl[ne], double rrri[ne],
double &rakl, double &deckl,
int n, int rr, double sizera);
void searchfiles(double &rai, double rak, double &raf,
double spdk, double spdi, double spdf,
double &spdil, double &spdf1, double &spdi2, double &spdf2,
double &rail, double &rafl, double &rai2, double &raf2,
int &f, int &s, int &r);
void limites(double ra, double dec, double sizera, double sizedec,
double &rai, double &raf,double &deci, double &decf,
double &spdi, double &spd, double &spdf);
void print_limites(double ra, double dec, double sizera, double sizedec,
double rai, double raf,double deci, double decf,
double magri, double magrf, double magbi, double magbf);
void readzone(int ff, double rai, double raf, double spdi, double spdf,
double magri, double magrf,
double magbi, double magbf);
void createchunk(int ff, int ss, int rr,
double rai, double raf, double spdi, double spdf,
double magri, double magrf,
double magbi, double magbf,
double rail, double rafl, double rai2, double raf2,
double spdil, double spdfl, double spdi2, double spdf2);
long bigtolit(long nl, int b, int v);
void namefiles(int ff, char namezone1[20], char namezone2[20]);
void nrfcat(char filename[20], long nrecordacc, long &nrecordcat);

void nrfacc(double raip, long &nrecordacc);

46

47
void print_ra (double rasc);
double convert_ra(long rasc);
void print_dec (double dec);
double convert_dec(long spdsc);
void convert_mag(long magsc, char &sig, int &q, int &fff, double &bbb, double &rrr);
void print_mag(char s, int q, int fff, double bbb, double rrr);
void chunkvector(char filename[20], double ra[ne], double dec[ne],
char s[ne], int q[ne}, int fff{ne], double bbb[ne], double rrr[ne], int &n);
void inputdata(double &pxg, double &widthccd, double &heightccd, double &raks, double
&decks, double &magri, double &magrf,
double &magbi, double &magbf, double &sizera,
double &sizedec);
void escrivector(double ra[ne], double dec[ne],
char s[ne], int q[ne], int fff{ne], double bbb[ne],
double rrr{ne], double rad[ne], double ang[ne}, int nel);
void escrivectorl(double ux[ne], double uy[ne], double uz[ne], int ne 1);
void trasladar(double ux[ne], double uy[ne}, double uz[ne], int nu,
double vx[ne], double vy[ne], double vz[ne], int &nv,
double despx, double despy);
void chunkpixel(double ux[ne], double uy[ne], double uz[ne],
double vx[ne], double vy[ne], double vz[ne], double pXg, int n);
void ordenar(double ra[ne], double dec[ne],
char s[ne], int q[ne], int fff{ne], double bbb[ne],
double rrr[ne], double rad[ne], double ang[ne], int nel);
void ordenar2(double x[200], double y[200], double z[200], int nel);
void cabecera(int x, int y);
void cabeceral(char titulo[80], char justi, int fila);
void eraselines(int ini, int fin);
void radang(double x0, double y0, double x1[ne], double yline],
double rad[ne], double ang[ne], int nel);
void fillvector(double x[ne], double y[ne], double z[ne], int n,
double x1[ne], double y1[ne], double zl[ne], int n1);
void inputdata(double &ra, double &dec, int &year, int &month, double &day);

double julianday(int year, int month, double day);

void propermotion(double jd, double &ra, double &dec);
void aberration(double jd, double &ra, double &dec);
void precession(double jd, double &ra, double &dec);
void nutation(double jd, double &ra, double &dec);

void print_dec (double dec);

void print_ra(double rasc);

void utnow(int &year, int &month, double &day);

void ra360dec90(double &ra, double &dec);

void corrections(double &ra, double &dec);

void print_gmt();

double roundpos(double a);
double difvect(double ux, double uy, double vx, double vy);
void getorigenccdteo(double &dx1, double &dyl, double limx, double limy);
void getccddata(double ux[ne], double uy[ne], double uz{ne}, int nu,
double vx[ne], double vy[ne], double vz[ne], int &nv,
double Ixccd, double lyccd, double dx1, double dy1, double desvrad, double
desvmag);
void perturberccd(double x1[ne], double y1[ne], double zl[ne], int nl, double desvrad, double
desvmag);
void pattern-recognition(double rx[ne], double ry[ne], double rz[ne], int r, double Ixr, double
lyr,
double tx[ne], double ty[ne], double tz[ne], int t, double Ixt, double Iyt,
double dxi, double dxf, double dyi, double dyf,
double desvrad, double desvmag, double &sdx, double &sdy, double &variance, int
&sw);
void printresult(double dx, double dy, double dx1, double dy1, double dx11, double dyll,
double Ixcat, double lycat, double Ixced, double lyccd, double pxg,
double perturbccdradp, double perturbccdmagp,
double duration,
int numsolut, int numsolmin, int numsolmax, char &accept, int sw);

void rangestars(double ux[ne], double uy[ne], double uz[ne], int nu,

48

49
double vx[ne], double vy[ne], double vz[ne], int &nv,
double lix, double liy, double Ifx, double Ify);
void comparar(double ux[ne], double uy[ne], double uz[ne],
double vx[ne], double vy[ne], double vz[ne],
int nu, int nv, double desvrad, double desvmag, double &variance, int &sw);
void getresult(double Ixr, double lyr, double Ixrl, double lyrl,
double dx11, double dy11, double &dx, double &dy);
void widthheightcat(double sizera, double sizedec, double &lracat, double &Ideccat, double
pxg);
void numsolvicinity(double p, int &min, int &max);

void main()
{

char op, accept;
double pxg, widthcat, heightcat, widthccd, heightced;

double racat[ne]; double deccat[ne]; char scat[ne]; int gcat[ne];
int fffcat[ne]; double bbbcat[ne]; double rrrcat[ne];
double radcat[ne]; double angcat[ne];

double racatl[ne], deccatl[ne], rrrcat[ne];

double racat2[ne}, deccat2[ne], rrrcat2[ne];

double racatp[ne], deccatp[ne], rrrcatp[ne];

double variance;

double racentercat, deccentercat, spdcentercat, sizeracat, sizedeccat, racatkl, deccatkl:

double racati, racatf, deccati, deccatf, spdcati, spdcatf, magcatri, magcatrf, magcatbi,
magcatbf;

double racatil, racatfl, racati2, racatf2;

double spdcatil, spdcatfl, spdcati2, spdcatf2;

int sscat, ffcat, rrcat;

int ncat, ncatp, nccdp;

50

time_t timei, timef;

int sw, swini, num;

double duration;

double raorigenccdteo, decorigenccdteo, raorigenccdini, decorigencedini, raorigenccd,

decorigenccd, racorrec, deccorrec;

double raccdp[ne], decccdpine], rrreedp(nel];

double solutionsra[200], solutionsdec[200], solutionsvar[200];

int numsolpossmin, numsolpossmax, numsol;
inti,il,i2,j,j1,j2;

a2:
FILE *point2;

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

point2 = fopen("chunk”, "w+b");
fclose(point2);

inputdata(pxg, widthccd, heightced, racentercat, deccentercat, magcatri, magcatrf, magcatbi,
magcatbf, sizeracat, sizedeccat);
widthheightcat(sizeracat, sizedeccat, widthcat, heightcat, pxg);
limites(racentercat, deccentercat, sizeracat, sizedeccat, racati, racatf, deccati, deccatf, spdcati,
spdcentercat, spdcatf);
searchfiles(racati, racentercat, racatf,
spdcati, spdcentercat, spdcatf,
racatil, racatfl, racati2, racatf2,
spdcatil, spdcatfl, spdcati2, spdcatf2,

ffcat, sscat, rrcat);

51
createchunk(ffcat, sscat, rrcat,
racati, racatf, spdcati, spdcatf, magcatri, magcatrf, magcatbi, magcatbf,
racatil, racatfl, racati2, racatf2,
spdcatil, spdcatfl, spdcati2, spdcatf2);
chunkvector("chunk", racat, deccat, scat, qcat, fffcat, bbbcat, rrrcat, ncat);
centroradecOO(racat, deccat, rrrcat, racentercat, deccentercat, racatl, deccatl, rrrcatl, racatkl,
deccatkl,
ncat, rrcat, sizeracat);
radang(racatkl, deccatkl, racatl, deccatl, radcat, angcat, ncat);
trasladar(racatl, deccatl, rrrcatl, ncat, racat2, deccat2, rrrcat2, ncatp, racati, deccati);
chunkpixel(racat2, deccat2, rrrcat?2, racatp, deccatp, rrcatp, pxg, ncatp);
getorigenccdteo(raorigenccdteo, decorigenccdteo, (widthcat-widthced), (heightcat-
heightccd));
getccddata(racatp, deccatp, rrrcatp, ncatp, raccdp, decccdp, rrrcedp, ncedp, widtheed,
heightced, raorigenccdteo, decorigenccdteo, perturbeedrad, perturbccdmag);

al:
clrscr();
menu(op);
switch(op)
{
case '1"
clrscr();
print_limites(racentercat, deccentercat, sizeracat, sizedeccat, racati, racatf, deccati,
deccatf,
magcatri, magcatrf, magcatbi, magcatbf);
ordenar(racat, deccat, scat, qcat, fffcat, bbbcat, rrrcat, radcat, angcat, ncat);
escrivector(racat, deccat, scat, qcat, fffcat, rrrcat, bbbcat, radcat, angcat, ncat);
getchar();
goto al;
case 2"
clrser();
cabeceral("list from catalog in pixels", 'c', 1);

escrivector 1(racatp, deccatp, rrrcatp, ncatp);
getchar();
goto al;
case '3"
clrscer();
cabeceral("list from ccd in pixels", 'c’, 1);
escrivectorl(raccdp, deccedp, rrrcedp, ncedp);
getchar();
gotoal;
case '4"
timei = time(NULL);
numsol = 0;
pattern-recognitionracatp, deccatp, rrrcatp, ncatp, widthcat, heightcat, raccdp,
decccdp, rrreedp, needp,
widtheed, heightccd, 0, (widthcat-widtheed), 0, (heightcat-heightccd),

perturbrad, perturbmag, raorigenccdini, decorigenccdini, variance, swini);

if (swini==1)
{
il = raorigenccdini-2*perturbrad;
Jj1 = decorigenccdini-2*perturbrad;
i2 = raorigenccdini+2 *perturbrad;

J2 = decorigenccdini+2*perturbrad;

if(i1<0)

52

if(i2>(widthcat-widthcced))
{
i2 = widthcat-widthced;
}
if(j2>(heightcat-heightccd))
{
J2 = heightcat-heightccd;
}

for(j=j1; j<=j2; j++)
for(i=il; i<=i2; i++) {
if((i>=raorigenccdini)||(j>=decorigenccdini))
{
pattern-recognition(racatp, deccatp, rrrcatp, ncatp, widthcat, heightcat,

raccdp, deccedp, rrrccdp, ncedp, widtheed, heightced,

L. Js

perturbrad, perturbmag, raorigenced, decorigenccd,

variance, sw);

if(sw==1)
{
numsol++;
solutionsra[numsol] = raorigenccd;
solutionsdec[numsol] = decorigenccd;

solutionsvar[numsol] = variance;

}

}

ordenar2(solutionsra, solutionsdec, solutionsvar, numsol);
raorigenccd = solutionsra[1l];

decorigenccd = solutionsdec[1];

53

timef = time(NULL); duration = difftime(timef, timei);
numsolvicinity(perturbrad, numsolpossmin, numsolpossmax);
getresult(widthcat, heightcat, widthced, heightced, raorigenced, decorigenccd,
racorrec, deccorrec);
printresult(raorigenccdteo, decorigenccdteo, raorigenccd, decorigenced, racorrec,
deccorrec,
widthcat, heightcat, widthced, heightced, pxg,
perturbrad, perturbmag, duration, numsol, numsolpossmin, numsolpossmax,
accept, swini);
getchar();

gotoal;

case 'S":
goto a2;
case '6";
clrscr();
return;

void chunkvector(char filename[20], double ra[ne], double dec[ne],
char s[ne], int q[ne], int fff[ne], double bbb[ne],

double rrr[ne], int &n)

int f, nn, ql, fffl ;
double bbbl, rrrl, magl, ral, decl;
long rale, decle, sqfbrle;

char sl;

FILE *point;
struct record raspdmag;

point = fopen (filename , "rb");

54

n=0;
while ((f=fread(&raspdmag, sizeof(struct record), 1, point))== 1)
{

n++;

rale = bigtolit(raspdmag.rasc, 32, 8);
decle = bigtolit(raspdmag.spdsc, 32, 8);
sqfbrle = bigtolit(raspdmag.magsc, 32, 8);

ral = convert_ra(rale);

decl = convert_dec(decle);

corrections(ral, decl);

convert_mag(sqfbrle, s1, ql, fff1, bbbl, rrrl);
ra[n] =ral;
dec[n] =decl;
s[n] =sl1;
q[n] =ql;
fff[n] = fff1;
bbb{n] = bbbl;
rrr{n] = rrl;
}

fclose(point);

double convert_ra(long rasc)

{
return(rasc/3600/100.0000);

}

void print_ra(double rasc)

{
char sgra;
int rah, ram;

double rahl, raml, ras;

if(rasc<0)
{
sgra ="'-
}

else

sgra ="+';

rahl = fabs(rasc/15.00);
rah =rahl;

raml = (rahl - rah)*60.00;

ram =raml;

ras = (raml - ram)*60.00;
printf("%c %02d %02d %05.2f", sgra, rah, ram, ras);
}

double convert_dec(long spdsc)

{
return(spdsc/3600/100.00 - 90.00);

}

void print_dec (double dec)

{

char sgdec;

56

57

int decg, decm;
double decs, decl, decgl, decml;

if(dec<0)
{
sgdec ="',
}
else
{
sgdec ="+

}
decl = fabs(dec);
decg =decl;
decml = (decl - decg)*60.00;

decm =decml;
decs = (decml - decm)*60.00;

decm = fabs(decm);
decs = fabs(decs);
printf("%c %02d %02d %05.2f", sgdec, decg, decm, decs);

}

void convert_mag(long magsc, char &sig, int &q, int &fff, double &bbb, double &irr)
{

unsigned long magl, mag?2, mag3;

magl = magsc/1000.0;
magl = magl1*1000.0;

it = labs(mag1-magsc)/10.0;

mag?2 = mag1/1000000;
mag2 = mag2*1000000;
bbb = labs(mag2-mag1)/1000/10.0;

mag3 = mag?2/1000000000;
mag3 = mag3*1000000000;

fff = labs(mag3-mag2)/1000000;

q = labs(mag3/1000000000);

if(magsc<0)

{
sig ="-';

}

else
{
sig="+';
}

void print_mag(char s, int q, int fff, double bbb, double rrr)

{
printf("%c %3d %5d %7.2f %7.2f", s, q, fff, bbb, rr);

}

void escrivector(double ra[ne], double dec[ne],
char s[ne], int g[ne), int fff{ne], double bbb[ne],
double rrr{ne], double rad[ne], double ang[ne], int nel)

{

int n, nn, nnn;

nn = 14;
nnn = nn;
n=nnn;
cabecera(2, nn-3);
for(int i=1; i<=nel; i++)
{
gotoxy(2, n); n++, nn++;
print_ra(ra[i]);
printf(" ");
print_dec(dec[i]);
printf(" ");
print_mag(s[i], q[i], fffli], bbb(i], rrr[il);
printf(" ");
printf("%7.2f %8.2f\n", rad[i], angf[i]);

if(n==24)&&(nn!=(ne1+nnn)))
{
gotoxy(1,25);cout<<"total objects found : "<<nel;
gotoxy(28,25);cout<<"total objects listed : "<<(nn-nnn);
gotoxy(57,25); cout<<"press ENTER to continue":
getchar(Q);
eraselines(nnn, 24);
n=nnn;
}
}
eraselines(25,25);
gotoxy(1,25);cout<<"total objects found : "<<nel;
gotoxy(28,25);cout<<"total objects listed : "<<(nn-nnn);

void chunkpixel(double ux[ne], double uy[ne], double uz[ne],
double vx[ne], double vy[ne], double vz[ne], double pxg, int n)

59

for(int i=1; i<=n; i++)
{
vx[i] = roundpos(ux[i]*pxg);
vyli] = roundpos(uy[i]*pxg);
vz[i] = uz[i];

}

long bigtolit(long n1, int b, int v)
{

char source 1[50}, source2[50], source3[50], *endptr;

int j, k, lenl, len2, mil, mfl, mi2, mf2;

k=blv;

Itoa(nl, sourcel, 2);
lenl = strlen(sourcel);
len2 = b-lenl;

for(int i = 0; i<= (len2-1); i++)

{

source2[i] ='0";

}
j=0;

for(int i=len2; i<=(b-1); i++)
{
source2[i] = sourcel[j];
j++

}

for(j = 0; j<=k-1; j++)

r

60

{
mil = v¥j;
mfl =mil + (v -1);

mi2 = v¥(k-1-j);
mf2 = mi2 + (v-1);

for(int i=0; i<=(v-1); i++)

{
source3[mi2+i] = source2[mil+i];
}
}
return(strtol(source3, &endptr, 2));

}

void nrfcat(char filename[20], long nrecordacc, long &nrecordcat)

{
char rah1[10], index1[10], nobje1[10];

char *endptr;
double rah, lar[96];

long nobjecat;

FILE *point;

point = fopen(filename, "rt");
fseek(point, 30*(nrecordacc-1), 0);
fread(&rahl, sizeof(rahl), 1, point);
fread(&indexl1, sizeof(index1), 1, point);

fread(&nobjel, sizeof(nobjel), 1, point);

rah = strtod(rah1, &endptr);
nrecordcat = strtol(index1, &endptr, 10);

nobjecat = strtol(nobjel, &endptr, 10);
fclose(point);

}

void nrfacc(double raip, long &nrecordacc)

{
int i;

double Ira[97];

for(i=0; i<=96; i++)
{
Ira[i] = .25%i;
}

for(i = 1; i<=96; i++)
{
if(((raip/15.00)>=lIra[i-1]) && ((raip/15.00)<=lIra[i]))
{
if((raip/15.00)==lra[i])
{

nrecordacc = i+l ;

}

else

{

nrecordacc =1i;

}
break;

void searchfiles(double &rai, double rak, doub!le &raf,
double spdi, double spdk, double spdf,

62

double &rail, double &rafl, double &rai2, double &raf2,
double &spdil, double &spdfl, double &spdi2, double &spdf2,
int &f, int &s, int &r)

int i;

double Ispd[25];

for(i=0; i<=24; i++)
{

Ispd[i] = 7.5%i;
}

for (i = 1; i<=24; i++)
{
if ((spdk >= Ispd[i-1]) && (spdk <= Ispd[i]))
{
f=i;
break;

if (spdi < Ispd[f-1])
{
s=-1;
}
else
{
if (spdf >= Ispd([f])

}
}
if(s=-1)
{
spdil = spdi;

spdfl = Ispd[f-1];
spdi2 = Ispd[f-1];
spdf2 = spdf;

}

else

{
spdil = spdi;
spdfl = 1spd[f];
spdi2 = Ispd[f];
spdf2 = spdf;

rail = 0;

rafl = raf;

rai2 = 360 + rai;
raf2 = 360;

rai = rai;
raf = raf;

}

if (raf > 360.0)

r=1;

rail =0;

rafl = raf - 360;
rai2 = rai;
raf2 = 360;

rai = rai - 360.0;
raf = raf - 360.0;

void centroradecOO(double ra[ne], double dec[ne], double rrr[ne],
double rak, double deck,
double ral[ne], double decl[ne], double rrrl[ne],
double &rakl, double &deckl,
int n, int rr, double sizera) '

{ intnl;

double lim;

if(rr==1)
{
if(rak>sizera)
{
rakl = rak-360;
}

else

{
rakl = rak;

}

deckl = deck;

65

for(int i=1; i<=n; i++)

{
if(ra[i] >= sizera)
{
ral[i] = rafi]-360;
}
else
{
ral{i] = ra[i];
}

decl[i] = dec[i];

rrrlfi] = roxfi];

}

else

{
rakl = rak;
deckl = deck;

fillvector(ra, dec, mr, n, ral, decl, rrrl, nl);

}

void escrivectorl(double ux[ne], double uy[ne], double uz[ne], int nel)

{

int n, nn, nnn;

nn=>5;
nnn = nn;

n=nnn,

gotoxy(2, nn-2);
cout << setw(20)<< "ra" << setw(20)<< "dec" << setw(20)<< "mag";

66

for(int i=1; i<=nel; i++)
{

gotoxy(2, n++); nn++;

cout << setw(20) << ux[i] <<setw(20)<< uy[i] << setw(20)<< uz[il<<end];
if(n==24)&&(nn'!=(ne1+nnn)))
{
gotoxy(1,25);cout<<"total objects found : "<<nel;
gotoxy(28,25);cout<<"total objects listed : "<<(nn-nnn);
gotoxy(57,25); cout<<"press ENTER to continue";
getchar();
eraselines(nnn, 24);
n=nnn;
}

}

eraselines(25,25);

gotoxy(2,25);cout<<"total objects found : "<<nel;

gotoxy(28,25);cout<<"total objects listed : "<<(nn-nnn);

void trasladar(double ux[ne], double uy[ne], double uz{ne], int nu

double vx[ne], double vy[ne], double vz[ne], int &nv,

k4

double despx, double despy)

{
for(int i=1; i<=nu; i++)
{
vx[i] = ux[i]- despx;
vyli] = uy[i]- despy;
vz[i] = uz[i];
}
nv = nu;

}

67

double roundpos(double a)

{

double diference;

diference = a-floor(a);

if (diference < 0.5)

{
return(floor(a));

}

else

{

return{ceil(a));
}

void readzone(int ff, double rai, double raf, double spdi, double spdf,
double magri, double magrf,
double magbi, double magbf)
double rara, dede;
long nrecordacc, nrecordcat;
char namezone 1[20], namezone2[20];
int j;

double ral; double decl; char s1; int q1;
int fff1; double bbb1; double rirl;

68

long double a;

unsigned long sqfbrle;
long rale, decle;

struct record raspdmag;
FILE *pointl, *point2;

namefiles(ff, namezone 1, namezone2);

pointl = fopen(namezonel, "rb");

point2 = fopen("chunk”, "a+b");

nrfacc(rai, nrecordacc);

nrfcat(namezone2, nrecordacc, nrecordcat);

fseek(pointl, 12*(nrecordcat-1), 0);

do
{

j = fread(&raspdmag, sizeof(struct record), 1, pointl);

rale = bigtolit(raspdmag.rasc, 32, 8);
ral = convert_ra(rale);

}

while(ral<rai);

while(ral<=raf)
{
if(j!=1) break;
decle = bigtolit(raspdmag.spdsc, 32, 8);
sqfbrle = bigtolit(raspdmag.magsc, 32, 8);
decl = convert_dec(decle);
convert_mag(sqfbrle, s1, ql, fffl, bbbl, rrrl);

69

if(((dec1+90.00)>=spdi)&&((dec1+90)<=spdf)
&&(rrr1>=magri)&&(rrrl <=magrf)
&&(bbb1>=magbi)&&(bbb 1<=magbf))
{
fwrite(&raspdmag, sizeof(struct record), 1, point2);
}

J = fread(&raspdmag, sizeof(struct record), 1, pointl);
rale = bigtolit(raspdmag.rasc, 32, 8);

ral =convert_ra(rale);

fclose(pointl);
fclose(point2);

void namefiles(int ff, char namezone1[20], char namezone2[20])

{
switch(ff)

{

case 1:
strcpy(namezonel, “e:\zone0000.cat");
strcpy(namezone?2, "e:\zone0000.acc");
break;

case 2:
strcpy(namezonel, "e:\zone0075.cat");
strcpy(namezone2, "e:\zone0075.acc");
break;

case 3:
strcpy(namezonel, "e:\zone0150.cat");
strcpy(namezone2, "e:\zone0150.acc");
break;

70

case 4:
strcpy(namezonel, "e:\zone0225.cat");
strcpy(namezone2, "e:\zone0225.acc");
break;

case 5:
strcpy(namezonel, "e:\zone0300.cat");
strcpy(namezone?2, "e:\zone0300.acc");
break;

case 6:
strcpy(namezonel, "e:\zone0375.cat");
strcpy(namezone?2, "e:\zone0375.acc");
break;

case 7:
strcpy(namezonel, "e:\zone0450.cat");
strcpy(namezone2, "e:\zone0450.acc");
break;

case 8:
strcpy(namezonel, "e:\zone0525.cat");
strcpy(namezone?2, "e:\zone0525.acc");
break;

case 9:
strcpy(namezonel, "e:\zone0600.cat");
strcpy(namezone2, "e:\zone0600.acc");
break;

case 10:
strcpy(namezonel, "e:\zone0675.cat");
strccpy(namezone?, "e:\zone0675.acc");
break;

case 11:
strcpy(namezonel, "e:\zone(0750.cat");
strcpy(namezone2, "e:\zone0750.acc");
break;

case 12:

71

strcpy(namezonel, "e:\zone0825.cat");
strcpy(namezone2, "e:\zone0825.acc");
break;

case 13:
strcpy(namezonel, "e:\zone(0900.cat");
strcpy(namezone2, "e:\zone0900.acc™);
break;

case 14:
strcpy(namezonel, "e:\zone0975.cat");
strcpy(namezone?2, "e:\zone0975.acc");
break;

case 15:
strcpy(namezonel, "e:\zone1050.cat");
strcpy(namezone?2, "e:\zone1050.acc™);
break;

case 16:
strccpy(namezonel, "e:\zonel125.cat");
strcpy(namezone2, "e:\zonel 125.acc”);
break;

case 17:
strcpy(namezonel, "e:\zone1200.cat");
strcpy(namezone2, "e:\zone1200.acc");
break;

case 18:
strcpy(namezonel, "e:\zonel275.cat");
strcpy(namezone2, "e:\zone1275.acc");
break;

case 19:
strcpy(namezonel, "e:\zone1350.cat");
strcpy(namezone?2, "e:\zone1350.acc");
break;

case 20:
strccpy(namezonel, "e:\zone1425.cat");

72

strcpy(namezone?2, "e:\zone1425.acc");
break;

case 21:
strcpy(namezonel, "e:\zone1500.cat");
strcpy(namezone2, "e:\zone1500.acc");
break;

case 22:
strcpy(namezonel, "e:\zonel575.cat");
strcpy(namezone2, "e:\zonel575.acc");
break;

case 23:
strcpy(namezonel, "e:\zone1650.cat");
strcpy(namezone?2, "e:\zone1650.acc");
break;

case 24:
strcpy(namezonel, "e:\zone1725.cat");
strcpy(namezone?2, "e:\zonel725.acc");
break;

void limites(double ra, double dec, double sizera, double sizedec,
double &rai, double &raf, double &deci, double &decf,
double &spdi, double &spd, double &spdf)

rai =ra - (sizera/2);
raf =ra + (sizera/2);

deci = dec - (sizedec/2);

decf = dec + (sizedec/2);

spdi = deci + 90.0;
spd =dec +90.0;

73

74
spdf = decf + 90.0;

void createchunk(int ff, int ss, int rr,
double rai, double raf, double spdi, double spdf,
double magri, double magrf,
double magbi, double magbf,
double rail, double rafl, double rai2, double raf2,
double spdil, double spdf1, double spdi2, double spdf2)

(> D& &(ff<24))||((ff==1)& &(ss!=-1))||((ff==24) & &(ss!=1)))
{
if(ss!=0)
{
if(ss==-1)
{
if(rr==1)
{
readzone(ff-1, rail, rafl, spdil, spdfl, magri, magrf, magbi, magbf);
readzone(ff, rail, rafl, spdi2, spdf2, magri, magrf, magbi, magbf);
readzone(ff-1,rai2, raf2, spdil, spdfl, magri, magrf, magbi, magbf);
readzone(ff,rai2, raf2, spdi2, spdf2, magri, magrf, magbi, magbf);
}

else

{
readzone(ff-1, rai, raf, spdil, spdfl, magri, magrf, magbi, magbf);
readzone(ff, rai, raf, spdi2, spdf2, magri, magrf, magbi, magbf);

}

else

if(rr==1)

readzone(ff, rail, rafl, spdil, spdf1, magri, magrf, magbi, magbf);
readzone(ff+1, rail, rafl, spdi2, spdf2, magri, magrf, magbi, magbf);
readzone(ff, rai2, raf2, spdil, spdfl, magri, magrf, magbi, magbf);
readzone(ff+1,rai2, raf2, spdi2, spdf2, magri, magrf, magbi, magbf);

}

else

{
readzone(ff, rai, raf, spdil, spdfl, magri, magrf, magbi, magbf);
readzone(ff+1, rai, raf, spdi2, spdf2, magri, magrf, magbi, magbf);

}

}

else
{
if(rr==1)
{
readzone(ff, rail, rafl, spdi, spdf, magri, magrf, magbi, magbf);
readzone(ff, rai2, raf2, spdi, spdf, magri, magrf, magbi, magbf);
}
else
{
readzone(ff, rai, raf, spdi, spdf, magri, magrf, magbi, magbf);
}

void ordenar(double ra[ne], double dec[ne],

char s[ne], int q[ne}, int fff[ne], double bbb{ne],

double rrr{ne], double rad[ne], double ang[ne], int nel)

double aux;

char auxl;

75

int aux2;

inti, j, k, I;

for(i=1; i<=(nel-1); i++)
for(j= (i+1); j<=nel; j++)
if (ra[i] > ra[j])
{
aux = ra[i];
rafi] = ra[j];

rafj] = aux;

aux = decfi];
decfi] = dec[j];

dec(j] = aux;

auxl =s[i];
s[i] =sjI;

s(j] = aux1;

aux2 = q[i];
qli] = q[j1;
q[j] = aux2;

aux = rrrfi];
rrr(i] = rrefj];

rrrfj] = aux;
aux = bbb(i];
bbb[i] = bbb[jI;

bbb[}] = aux;

aux =rad[i];

rad[i] =rad[j];

rad[j] = aux;
aux = ang[i];

ang[i] = ang[j];
ang[j] = aux;

void cabecera(int x, int y)

(
gotoxy(x, y);
printf("%13s", "ra ");
printf(" ");
printf("%13s", "dec ");
printf(" ");

printf("%s %3s %S5s %15s", "s", "q", "fff", "mag ");
printf("%7s %8s\n", "rad", "ang");

printf("%14s", "hr min sec ");

printf(" ");

printf("%13s", "deg min sec");

printf(" ");

printf("%18s %7s", "red", "blue");

printf(" ");

printf(" %8s %6s\n", "(arcsec)","(deg)");

void print_limites(double ra, double dec, double sizera, double sizedec,
double rai, double raf, double deci, double decf,
double magri, double magrf, double magbi, double magbf)

gotoxy(1, 1); printf("field of view :"); gotoxy(51, 1); print_gmt();
gotoxy(1, 2); printf(" width : ");print_ra(sizera); printf("\n");

gotoxy(1, 3); printf(" hight : ");print_dec(sizedec); printf("\n");

gotoxy(1, 4);printf("centered in : (");
print_ra(ra); printf(" , "); print_dec(dec); printf(")");

gotoxy(l, 5);printf("limits of ra : (");
print_ra(rai); printf(" , "); print_ra(raf); printf(")");

gotoxy(1, 6);printf("limits of dec : (");
print_dec(deci); printf(" , "); print_dec(decf); printf(")");

gotoxy(1, 7);printf("limits of mag :");
gotoxy(1, 8);printf(" red : (%05.2f , %05.2f)", magri, magrf);
gotoxy(1, 9);printf(" blue : (%05.2f , %05.2f)", magbi, magbf);

void eraselines(int ini, int fin)
{
for(int i= ini; i<=fin; i++)
{
gotoxy(1, i); clreol();

}

void inputdata(double &pxg, double &widthced, double &heightced, double &raks, double

&decks, double &magri, double &magrf,
double &magbi, double &magbf, double &sizera, double &sizedec)

int rah, ram, decg, decm;
double ras, decs;

double width, height;

clrscr();

78

gotoxy(1, 1); cout << "pixel per degree i
gotoxy(1, 2); cout << "width of ccd camera (arcsec):";

gotoxy(1, 3); cout << "height of ccd camera (arcsec):";

gotoxy(24, 6); cout << "right ascension (hr min sec):";
gotoxy(24, 7); cout << "declination (deg min sec) :";

gotoxy(24, 8); cout << "minima red mag "

otoxy(24, 9); cout << "maxima red ma "
gotoxy g

gotoxy(24, 10); cout << "minima blue mag b
gotoxy(24, 11); cout << "maxima blue mag "
gotoxy(24, 12); cout << "width of catalog (arcsec) :";

gotoxy(24, 13); cout << "height of catalog (arcsec) :";

do
{
gotoxy(32, 1); clreol();
gotoxy(32, 1); scanf("%lIf", &pxg);
}
while(pxg<3600);

do
{
gotoxy(32, 2); clreol();
gotoxy(32, 2); scanf("%lIf", &width);
}
while((width<400)||(width>3600));

do
{
gotoxy(32, 3); clreol();
gotoxy(32, 3); scanf("%If", &height);

while((height<400)|[(height>3600));

do
{
gotoxy(55, 6); clreol();
gotoxy(55, 6); scanf("%d %d %If", &rah, &ram, &ras);
}
while((rah<0)}|(rah>24)
l[(ram<0){(ram>59)
[[(ras<0.0)}|(ras>=60.0)
[l((rah==24)&&((ram!=0.0)||(ras!=0.0)))
)

do

{
gotoxy(55, 7); clreol();

gotoxy(55, 7); scanf("%d %d %lf", &decg, &decm, &decs);

}

while((decg<-90)|[(decg>90)
[[(decm<0)|j(decm>59)
[[(decs<0.0)||(decs>=60.0)
lI((decg==90)&&((decm!=0.0)||(decs!=0.0)))
[l((decg==-90)&&((decm!=0.0)||(decs!=0.0)))
);

do
{
gotoxy(55, 8); clreol();
gotoxy(55, 8); scanf("%If", &magri);
}
while(magri<=-6);

80

do

gotoxy(55, 9); clreol();
gotoxy(55, 9); scanf("%lf", &magrf);

}
while(magrf<= magri);

do
{
gotoxy(55, 10); cireol();
gotoxy(55, 10); scanf("%If", &magbi);

}
while(magbi<=-6);

do
{
gotoxy(55, 11); clreol();
gotoxy(55, 11); scanf("%If", &magbf);

}
while(magbf<=magbi);

do
{
gotoxy(55, 12); clreol();
gotoxy(55, 12); scanf("%If", &sizera);

}
while((sizera<=0)||(sizera>3600));

do

{
gotoxy(55, 13); clreol();

gotoxy(55, 13); scanf("%If", &sizedec);

81

while((sizedec<=0)||(sizedec>3600));

raks = (rah + ram/60.0 + ras/3600.0)*15;
decks = decg + decm/60.0 + decs/3600.0;
sizera = sizera/3600.0;

sizedec = sizedec/3600.0;

widthced = roundpos(width*pxg/3600);
heightced =roundpos(height*pxg/3600);

getchar();
clrscr();

void radang(double x0, double y0, double x1[ne], double yl[ne],

double rad[ne], double ang[ne], int nel)

{
double dx, dy;

for(int i=1; i<=nel; i++)

{

dx = (x1[i]-x0)*3600;
dy = (y1[i]-y0)*3600;

rad[i] = sqrt(pow(dx, 2)+(pow(dy, 2)));
if((dx!=0.0)&&(dy!=0.0))
{

angf[i] = atan(fabs(dy/dx))*180/pi;

if(dx>0.0)
{

if(dy>0.0)
{
ang[i] = ang[i];
}

else

{

ang[i] = 360-ang(i];

}
}
else
{
if(dy>0.0)
{

ang[i] = 180-ang{i];

}

else

{

ang(i] = 180+ang[il;

}

}

else
{
if((dx!=0)&&(dy!=0))
{
angi] =-1;
}
else
{
if(dx==0.0)
{
if(dy>0.0)
{

83

ang[i] = 90.0;
}
else
{
angl[i] = 270.0;
}
}
else
{
if(dx>0.0)
{
ang[i] = 0.0;
}
else
{
ang[i] = 180.0;
}
}
}
}
}
}

void fillvector(double x[ne], double y[ne], double z[ne], int n,
double x1[ne], double y1[ne], double z1[ne], int nl)
{
for(int i = 1; i<=n; i++)
{
x1[i] = x[i];
yllil = y[il;
zlfi] = 2[i};
}

nl=n;

84

double julianday(int year, int month, double day)
{

double a, b, c, d, e;

if(month>2)
{
}

else

{
year = year-1;
month = month+12;

}

modf(year/100.0, &a);
modf(a/4.0, &c);

b=2-a+c;
modf((365.25*(year+4716)), &d);

modf(30.6*(month+1), &e);

return(d + e + day + b - 1524.5);
}

void propermotion(double jd, double &ra, double &dec)
{
double tl, dra, ddec;

tl = (jd - 2451545.0)/365.25;

dra =0.0*15;

85

ddec =0.0;

dra =dra*tl;
ddec =ddec*t1;

dra = dra/3600.0;
ddec = dra/3600.0;

ra =ra+dra;

dec =dec + ddec;

void aberration(double jd, double &ra, double &dec)

{

double L2, L3, L4,L5,L6,L7,L8;

double L, D, M, F;

double a[40], x1[40], x2[40], y1[40], y2[40], z1[40], z2[40];
double dra, ddec;

double T, f, c;

double x, y, z;

¢ =17314463350;
f=3.1416/180.0;

T =(d - 2451545.0)/36525;

L2 =3.1761467 + 1021.3285547*T;
L3 =1.7534703 + 628.3075849*T;
14 =6.2034809 + 334.0612431*T;
L5 =0.5995465 + 52.9690965*T;
L6 =0.8740168 + 21.3299095*T;
L7 =5.4812939 + 7.4781599+T;
L8 =5.3118863 + 3.8133036*T;

86

87
L =3.8103444 + 8399.6847337*T;
D =5.1984667 + 7771.3771486*T;
M =2.3555559 + 8328.6914289*T;
F =1.6279052 + 8433.4661601*T;

afl] =L3;
a[2] =2%*L3;
af3] =Ls;
a[4] =L;

a[5] =3*L3;
a[6] =L6;
a[7] =F;

a[8] =L +M;
a[9] =2*L5;

a[10] = 2*L3 - L5;
a[11] = 3*L3 - 8%L4 + 3*L5;
a[12] = 5*L3 - 8%L4 + 3*L5;
a[13] = 2%L2 - L3;

a[14] = L.2;

a[15] = L7;

a[16] = L3 - 2*L5;

a[17] = L8;

a[18] =L3 +LS;

a[19] = 2%L.2 - 2%L3;

a[20] =L3 - LS;

a[21] = 4*L3;

a[22] = 3*L3 - 2%L5;

a[23] =L2 - 2+L3;

a[24] = 2%L.2 - 3*L3;

a[25] = 2*L6;

a[26] = 2+L.2 - 4*L3;

a[27] = 3%L3 - 2*L4;

a[28] =L + 2*D - M;

af29] = 8*L2 - 12%L3;
a[30] = 8*L2 - 14*L3;
a[31] =2*1L4;

a[32] =3*L2 - 4*L3;
a[33] = 2*L3 - 2*L5;
a[34] = 3*L2 - 3*L3;
a[35] = 2*L3 - 2*L4;
a[36] =L - 2*D;

x1[1] =-1719914-2*T; x2[1] =-25;
x1[2] =6434 + 141*T; x2[2] =28007 - 107*T;

x1[3] =715; x2[{3] =0;
x1[4] =715; x2[4] =0;
x1[5] =486 - 5*T; x2[5] =-236 -4*T;
x1[6] =159; x2[6] =0;
x1[7] =0; x2[71 =0;
x1[8] =39; x2[8] =0;
x1[9] =33; x2[9] =-10;
x1[{10] =31; x2[10] =1;
x1[11] =8; x2[11] = -28;
x1[12] =8; x2[12] = -28;
x1{13]} =21; x2[13]=0;
x1[14] =-19; x2[14] =0;
x1[15]1=17; x2[15] =0;
x1[16] = 16; x2[16] =0;
x1[17] = 16; x2[17]1=0;
x1[18] =11; x2[18] =-1;
x1{19] =0; x2[19] =-11;
x1[20] =-11; x2[20] =-2;
x1[21] =-7; x2[21] =-8;
x1[22] =-10; x2[22] = 0;
x1[23] =-9; x2[23] =0;
x1[24] =-9; x2[24] =0;

88

x1[25] = 0;
x1[26] =0;
x1[27] =8;
x1[28] =8;
x1{29] = 4;
x1[30] =4;
x1[31] =-6;
x1[32] =-1;
x1{33] =4;
x1[34] =0;
x1[35] =5;
x1[36] =5;

y1[1] =25 - 13*T;

yl[3] =6;
yl{4] =0;

y1[5] =-216 - 4*T;

yl[6] =2;
yl{7] =0;
yl[8] =0;
y1[9] =-9;
yl[10] = 1;
yl[11] =25;
y1[12] = -25;
y1[13]=0;
y1[14] = 0;
y1[15] =0;
y1[16] =0;
yl[17]1=1;
yl[18} =-1;
y1{19] = -10;
y1[20] = -2;

x2[25] = 9;
x2[26] = 9;
x2[271 =0;

x2[28] =0;

x2[29] =-7;
x2[30] =-7;
x2[31] =-5;
x2[32] =-1;
x2[33] = -6;
x2[34] = -7;
x2[35] = -5;
x2[36] = 0;

y2[1] =1578089 + 156*T;
y1[2] =25697 - 95*T; y2[2] =-5904 - 130*T;

y2[3] =-657;
y2[4] =-656;

y2[5] =-446 + 5*T;

y2[6] =-147;
y2[7] =26,
y2[8] =-36;
y2[9] =-30
y2[10] = -28;
y2[11]} =§;
y2[12] =-§
y2[13] =-19;
y2[14] =17,
y2[15] =-16;
y2[16] = 15;
y2[17] =-15;
y2[18] =-10;
y2[19] =0;
y2[20] =9;

89

yl[21] =-8; y2[21] =6;
yl[22] =0; y2[22] =9;
yl[23]=0; y2[23] =-9;
yl[24] =0; y2[24] = -8;
y1[25] =-8; ¥2[25] =0;
y1[26] =8; y2[26] = 0;
y1[27] =0; y2[27] =-8;
y1[28] =0; y2[28] =-7;
y1[29] =-6; y2[29] = 4;
y1[30] =6; y2[30] = 4;
yl[31] =-4; y2[31] =5;
y1[32] =-2; y2[32] =-7;
yl[33] =-5; y2[33]1=4;
yl[34] =-6; y2[34] = 0;
y1[35] =4, y2[35] =-5;
y1{36] =0; y2[36] =-5;

z1[1] =10 + 32*T; z2[1] = 684185 - 358+*T;
z1[2] = 11141 - 48*T; z2[2] =-2559 - 55*T;

z1[3] =-15; z2[3] =-282;
z1[4] =0; z2[4] =-285;
z1[5] =-94; z2[5] =-193;
z1[6] =-6; z2[6] =-61;
z1{7] =0; z2[7] =-59;
z1[8] =0; z2[8] =-16;
zI1[9] =-5; z2[9] =-13;
zI1[10] =0; z2[10] =-12;
zI{11]=11; z2[11]1=3;
z1[12] =-11; z2[12] =-3;
z1{13] =0; z2[13] =-8;
z1[14] =0; z2[14] = 8;
z1[15] =0; z2[15]} =-7;

zI1[16] = 1;

22[16] =17,

z1[17] =-3; zZ2[17] =-6;
z1[18] =-1; z2[18] =-5;
zI1[19] = 4; z2[19]1 =0;
21[20] = -1; 22[20] = 4;
zl[21] =-3; z2[21]1=3;
z1[22] = 0; 22[22] = 4;
z1[23]1 =0; z2[23] =4;
z1[24] =0; z2[24] = -4;
z1[25] =-3; z2[25]1=0;
zl[26] = 3; z2[26] = 0;
z1[27]1=0; z2[27] =-3;
z1[28] =0; z2[28] =-3;
z1[29] = -3; z2[29] = 2;
z1[{30] = 3; z2[30] =-2;
z1[31] =-2; z2[31]1=2;
zi[32] =1; z2[32] =4,
z1[33] =-2; z2(33]=-2;
z1[(34] =-3; z2[34]1 =0;
z1[35] =-2; z2[35]1 =-2;
z1{36] = 0; z2[36] =-2;
x =0; y=0; z =0;

for(int i=1; i<=36; i++)

{

91

x =x + (x1[i]*sin(a[i]) + x2[i]*cos(a[i]));
y =y + (y1[i]*sin(a[i]) + y2[i]*cos(a[il));
z =z + (zl[i]*sin(a[i]) + z2[i]*cos(a[i]));

}

dra = (y*cos(ra*f) - x*sin(ra*f))/(c*cos(dec*f));

ddec = -((x*cos(ra*f) + y*sin(ra*f))*sin(dec*f) - z*cos(dec*f))/c;

ra =ra + dra/f;

dec =dec + ddec/f;
}

void precession(double jd, double &ra, double&dec)
{

double t1, 2, m ,0, n;

double dra, ddec;

tl =(jd - 2451545.0)/365.25;
t2 =t1/100.0;

m = (3.07496 + 0.00186*t2);
n =(1.33621 - 0.00057%2);
o= (20.0431 - 0.0085*t2);

dra = m + n*sin(ra*pi/180.0)*tan(dec*pi/180.0);
dra = 15*dra/3600 ;

ddec = o*cos(ra*3.1416/180);
ddec = ddec/3600;

dra =dra*tl;
ddec = ddec*tl1;

ra =ra+dra;

dec =dec + ddec;

void nutation(double jd, double &ra, double &dec)
{

double d, m, m1, ff, a;

double T, L, L1;

double w[60], u[60], v[60];

92

double f, dra, ddec, e, de, da;
f=3.1416/180;
T = (jd - 2451545)/36525;

d =297.85036 + 445267.111480*T - 0.0019142*pow(T, 2) + pow(T,3)/189474.0;
m =357.52772 + 35999.050340*T - 0.0001603*pow(T, 2) - pow(T, 3)/300000.0;
ml = 134.96298 + 477198.867398*T + 0.0086972*pow(T,2) + pow(T,3)/56250.0;
ff =93.27191 +483202.017538*T - 0.0036825*pow(T,2) + pow(T,3)/327270.0;
a =125.04452 - 1934.136261*T + 0.0020708*pow(T,2) + pow(T, 3)/450000.0;

L =280.4665 + 36000.7698*T;
L1=218.3165 + 481267.8813*T;

e =23.439302 - (46.8150*T + 0.00059*pow(T,2) - 0.001813*pow(T,3))/3600.0;

da = -17.20*sin(a*f) - 1.32*sin(2*L*f) - 0.23*sin(2*L1*f) + 0.21*sin(2*a*f);
de = 9.20*cos(a*f) + 0.57*cos(2*L*f) + 0.10*cos(2*L1*f) -0.09*cos(2*a*f);

dra = (cos(e*f) + sin(e*f)*sin(ra*f)*tan(dec*f))*da - cos(ra*f)*tan(dec*f)*de;

ddec = sin(e*f)*cos(ra*f)*da + sin(ra*f)*de;

dra = dra/3600.0;
ddec = ddec/3600.0;

ra=ra +dra;

dec =dec + ddec;

}

void utnow(int &year, int &month, double &day)

{
char *tzstr = "TZ=PST8PDT";//Pacific Standard Time & Daylight Savings

93

time_t t;
struct tm *gmt, gmtl;

putenv(tzstr);
tzset();

t = time(NULL);
gmt = gmtime(&t);
gmtl = *gmt;

year = gmtl.tm_year + 1900;
month = gmt1.tm_mon +1;
day =gmtl.tm_mday + (gmtl.tm_sec/3600.0 + gmtl.tm_min/60.0 ~+ gmtl.tm_hour)/24.0;

void ra360dec90(double &ra, double &dec)

{
if(ra>360.0)

{

ra=ra - 360;

}

if(ra<0)
{

ra =ra + 360;

}

if(dec>90.0)

{
dec =180.0 - dec;

}

if(dec<-90)
{
dec =-180.0 - dec;
}
}

void corrections(double &ra, double &dec)
{
double jd, day;

int year, month;

utnow(year, month, day);

Jd = julianday(year, month, day);
propermotion(jd, ra, dec);
aberration(jd, ra, dec);
precession(jd, ra, dec);
nutation(jd, ra, dec);
ra360dec90(ra, dec);

void print_gmt()
{

char *tzstr = "TZ=PST8PDT";//Pacific Standard Time & Daylight Savings

time_tt;

struct tm *gmt;

putenv(tzstr);
tzset();

t =time(NULL);
gmt = gmtime(&t);
printf("GMT : %s", asctime(gmt));

95

96

void menu(char &option)

{
gotoxy(22, 9); cout << "[1]: List of the stars" ;
gotoxy(22, 11); cout << "[2]: List from catalog in pixels";
gotoxy(22, 13); cout << "[3]: List from ccd in pixels";
gotoxy(22, 15); cout << "[4]: Calculate deviation";
gotoxy(22, 17); cout << "[S]: Begin again";
gotoxy(22, 19); cout << "[6]: Quit";

gotoxy(22, 21); cout << "enter your option: ";

option ='0";

while((option !="1") && (option !='2") && (option !="'3") && (option!='4")
&& (option !="5")&& (option '='6"))

{

gotoxy(42, 21); cout << " "; //clreol();

gotoxy(42, 21); cin >> option;

}

}

double difvect(double ux, double uy, double vx, double vy)

{
return(sqrt(pow((ux-vx), 2) + pow((uy-vy), 2)));

}

void getccddata(double ux[ne], double uy[ne], double uz[ne], int nu,

double vx[ne], double vy[ne], double vz[ne], int &nv,

double Ixecd, double lyccd, double dx1, double dyl, double desvrad, double desvmag)
{

int u, m, nul;

double lix, Ifx, liy, Ify, aux;

double ux1[ne], uyl{ne], uzl[ne];
lix = 0; liy = 0; Ifx = Ixccd; Ify = lyccd;

trasladar(ux, uy, uz, nu, uxl, uyl, uzl, nul, dx1, dyl);
perturberced(ux1, uyl, uzl, nul, desvrad, desvmag);
rangestars(ux1, uyl, uzl, nul, vx, vy, vz, nv, lix+perturbccdrad, Ifx-perturbccdrad,

liy+perturbcedrad, Ify-perturbcedrad);
}

void perturberccd(double x1[ne], double y1[ne], double zl[ne], int n1, double perturbccdrad,
double perturbccdmag)
{
int i, ix, iy;

double iz;

for(inti = 1; i<=n1; i++)

{

ix = random(perturbccdrad+1);

iy = random(perturbccdrad+1);

if(random(2)==0)
{
x1fi] = x1[i] - ix;
}

else

{

x1[i] = x1[i] + ix;

}

if(random(2)==0)
{
ylil = y1[i] - iy;

}

else
{
yl[i] = yl[i] +iy;
}

if(random(2)==0)
{
zl1[i] = zl1[i] - perturbccdmag;
}

else

{
z1[i] = z1[i] + perturbccdmag;

}

void pattern-recognition(double rx[ne], double ry[ne], double rz[ne], int r, double Ixr, double
lyr,

double tx[ne], double ty[ne], double tz[ne], int t, double Ixt, double Iyt,

double dxi, double dxf, double dyi, double dyf,

double desvrad, double desvmag, double &sdx, double &sdy, double &variance, int
&sw)
{

int s, ns, nn;
double dx, dy;
double difx, dify;

double sx[ne], sy[ne], sz[ne];
nn =0;

if((>3)&&(r>3))
{

98

99

for (dy = dyi; dy<=dyf; dy++)
{
clrscr();
gotoxy(30, 12); cout<< "calculating...";
for (dx = dxi; dx<= dxf; dx++)
{
trasladar(rx, ry, rz, r, sx, sy, sz, s, dx, dy);

rangestars(sx, sy, sz, s, sX, sy, sz, s, 0, Ixt, 0, lyt);

if(s>=t)

{

comparar(sx, sy, sz, tx, ty, tz, s, t, desvrad, desvmag, variance, ns);

if(ns==t)
{
nn=1;
sdx =dx;
sdy =dy;
dx = dxf;
dy = dyf;
variance = variance/ns;
}
}
}
}
if(nn=1)
{
sw=1;
}
else
{
sw =0;

100

else

sw=0;

void getresult(double Ixr, double lyr, double Ixrl, double lyrl,
double dx11, double dyl 1, double &dx, double &dy)

dx = roundpos((Ixr-lxr1)/2 - dx11);
dy = roundpos((lyr-lyr1)/2 - dyl1);

void printresult(double dx, double dy, double dx1, double dyl, double dx11, double dyl I,
double Ixcat, double lycat, double Ixccd, double lyced, double pxg,
double perturbcedradp, double perturbccdmagp,
double duration, int numsolut, int numsolmin, int numsolmax, char &accept, int sw)

clrscr(Q);

gotoxy(1, 1); cout<< "duration (sec) : " << duration;

gotoxy(46, 1); cout<< "screen cat (pixels) ";
gotoxy(46, 2); cout<< " width : "<<lxcat;
gotoxy(46, 3); cout<< " hight : "<<lycat;

gotoxy(46, 4); cout<< "screen ccd (pixels) ";
gotoxy(46, 5); cout<< " width : "<<lxced;
gotoxy(46, 6); cout<< " hight : "<<lyccd;

gotoxy(27, 9); cout<< "ccd origin"; gotoxy(58, 9); cout<< “corrections”;
gotoxy(20, 10); cout<< "generated"; gotoxy(35, 10); cout<< "calculated";
gotoxy(53, 10); cout<< "pixels"; gotoxy(67, 10); cout<< "arcsec";

gotoxy(1, 12); cout<< "rigth ascension :";

gotoxy(l, 13); cout<< "declination :";
gotoxy(l, 16); cout<<"rad perturbation :";
gotoxy(l, 17); cout<<"mag perturbation :";
gotoxy(l, 18); cout<<"possible solutions :";

gotoxy(1, 19); cout<<"solutions founded :";

switch(sw)

{

case 1:

gotoxy(20, 12);cout<<dx;
gotoxy(20, 13);cout<<dy;

gotoxy(35, 12);cout<<dxl;
gotoxy(35, 13);cout<<dyl;

gotoxy(53, 12); cout<<dx11;
gotoxy(53, 13); cout<<dyl1;

gotoxy(67, 12); cout<<(dx11/pxg*3600);
gotoxy(67, 13); cout<<(dy11/pxg*3600);

break;

case O:

{
gotoxy (20, 12);cout<<dx;

gotoxy(20, 13);cout<<dy;

101

102

gotoxy(35, 12);cout<<” x ";
gotoxy(35, 13);cout<<” x ";

gotoxy(53, 12);cout<<" x ";
gotoxy(53, 13);cout<<”" x ";

gotoxy(67, 12);cout<<” x ";

gotoxy(67, 13);cout<<" x ";
break;

}
gotoxy(22, 16); cout<<perturbccdradp;

gotoxy(22, 17); cout<<perturbccdmagp;
gotoxy(22, 18); cout<<"["<<numsolmin<<","<<numsolmax<<"]";

gotoxy(22, 19); cout<<numsolut;

void rangestars(double ux[ne], double uy[ne], double uz[ne], int nu,
double vx[ne], double vy[ne], double vz[ne], int &nv,
double lix, double Ifx, double liy, double Ify)
{
nv=0;
for(int s=1; s<=nu; s++)

{

if((ux[s]>=lix)&&(uy[s]>=liy) & & (ux[s]<=I1fx)& & (uy[s]<=Ify)&&(uz[s]>=1)& &(uz[s]<=30))
{
nv++;
vx[nv] = ux[s];

vy[nv] = uy(s];

103

vz[nv] = uz[s];

void comparar(double ux[ne], double uy[ne], double uz[ne],
double vx[ne], double vy[ne], double vz[ne],
int nu, int nv, double desvrad, double desvmag, double &variance, int &ns)
{
double difr, difm;

double variancevect, variancemag;

as = 0;

variancevect = 0;

variancemag = 0O;

for(int i = 1; i<= nu; i++)

{
for(int j=1; j<=nv; j++)
{

difr = difvect(ux[i], uy[i], vx[jl, vy[j1);
difm = fabs(uz[i}-vz[j1);

if((difr<=desvrad*1.4 143)& & (difm<=desvmag))
{
ns++;
j=nv;
variancevect = variancevect + pow(difr, 2);
variancemag = variancemag + pow(difm, 2);

}

variancevect = pow(variancevect, 0.5);

variancemag = pow(variancemag, 0.5);

variance = (variancevect+variancemag)/2;

}

void escrivector(double rx[ne], double ry[ne], double rz[ne], int nel)

{
for(int s=1; s<=nel; s++)
{
cout <<"rx[" << s<< "= ";
cout << setprecision(2) << rx[s]; cout << " ";
cout <<"ry[" <<s<<"]=";
cout << setprecision(2) <<ry[s]; cout<< " ";
cout <<"rz[" << s<< "]=";
cout << setprecision(2) <<rz[s] << endl;
}
}

void getorigenccdteo(double &dx1, double &dy1, double limx, double limy)
{

dx1 = random(limx+1);

dyl = random(limy+1);
}

void widthheightcat(double sizeracat, double sizedeccat, double &lracat, double &ldeccat,

double pxg)
{

Iracat = roundpos(sizeracat*pxg);

Ideccat = roundpos(sizedeccat*pxg);

}

void cabeceral(char titulo[80], char justi, int fila)
{

104

int columna;

columna = (80 - strlen(titulo))/2

switch (justi)

{

case 'l
break;

case '’
break;

case 'c":

gotoxy(columna, fila); cout<<titulo;

break;

void ordenar2(double x[200], double y[200], double z[200], int nel)

{

double aux;

inti, j, k;

for(i=1; i<=(nel-1); i++)
for(j= (i+1); j<=nel; j++)

if(z[i]>z[j])

{

aux = x[i];
x[i] = x[jI;

x[j] = aux;

aux = yfi];
ylil = y(j];
y(jl = aux;

’

105

aux = z[i];
z[i] =z[j];

z[j] = aux;

void numsolvicinity(double p, int &min, int &max)

{
double p1;

double fraction, integer;
double number = 100000.567;

modf((sqrt(2)*p), &p1);
min = 3*pow(pl, 2) + 2*pl + 1;

max = 12*pow(p, 2) + 4%p + ;
}

106

BIBLIOGRAPHY

Water Savich, 1960,

C++ The object of the programming
Addison- Wesley Publishing Company, inc.
Steven Holzner, 1991,

C Programming

Brady Publishing.

Leendert Ammeraal, 1991,
C for programmers
Wiley Professional Computing.

Jean Meeus, 1991,
Astronomical Algorithms

Library of Congress Cataloging -in-Publication Data.

Aubrey Jones FRAS, 1978,
Mathematical Astronomy with a Pocket calculator
John Wiley and Sons.

107

