

UNIVERSIDAD CENTROCCIDENTAL "LISANDRO ALVARADO"

PLANIFICACIÓN HIDRÁULICA DE LA RED DE ABASTECIMIENTO DE AGUA POTABLE DE LA CIUDAD DE BARQUISIMETO TOMANDO EN CUENTA LA INCORPORACIÓN DE LAS FUTURAS FUENTES.

FREMY FALCÓN

Barquisimeto, 2011

UNIVERSIDAD CENTROCCIDENTAL "LISANDRO ALVARADO" DECANATO DE INGENIERIA CIVIL POSTGRADO EN RECURSOS HIDRÁULICOS

PLANIFICACIÓN HIDRÁULICA DE LA RED DE ABASTECIMIENTO DE AGUA POTABLE DE LA CIUDAD DE BARQUISIMETO TOMANDO EN CUENTA LA INCORPORACIÓN DE LAS FUTURAS FUENTES.

Trabajo presentado para optar al grado de Especialista en Recursos Hidráulicos

> AUTOR: ING. FREMY FALCÓN TUTOR: ING. LUIS MORA MORA

Barquisimeto, 2011

UNIVERSIDAD CENTRO OCCIDENTAL "LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESPECIALIZACIÓN EN RECURSOS HIDRAULICOS

PLANIFICACIÓN HIDRÁULICA DE LA RED DE ABASTECIMIENTO DE AGUA POTABLE DE LA CIUDAD DE BARQUISIMETO TOMANDO EN CUENTA LA INCORPORACIÓN DE LAS FUTURAS FUENTES.

Autor: Ing. Fremy Falcón.

Tutor: Ing. Luís Mora.

RESUMEN

La presente investigación tiene como finalidad proponer la planificación hidráulica de la red de abastecimiento de agua potable de la ciudad de Barquisimeto tomando en cuenta la incorporación de las futuras fuentes, o bien incorporando mas caudal a través de las fuentes existentes, para ello se realizó un exhaustivo análisis de demandas de usuarios discretizado en residenciales, comerciales, industriales y oficiales, el cual permitió determinar la demanda actual y futura de la ciudad. Estableciendose así un concepto previo de la evolución del sistema basada en ofertas y demandas a corto, mediano y largo plazo, ayudando a la definición preliminar de las aducciones que se encargarán de incorporar estas futuras fuentes. Seguidamente, se desarrolló un modelo hidráulico de la red de Barquisimeto, donde se simularon las distintas opciones de trabajo de las aducciones que traerán los gastos de las fuentes antes mencionadas, tratando de obtener una estrecha vinculación entre ellas a través de conexiones en puntos estratégicos de la red, logrando así fiabilidad en el abastecimiento de agua potable, creando anillos de servicio que recorren la red Alta del Oeste, Suroeste, Este, y Noreste del sistema de Barquisimeto. Una vez simulados los escenarios de mejoras se seleccionó la alternativa definitiva para las aducciones que se encargarán de incorporar las nuevas fuentes, se procedió a elaborar la ingeniería básica y por último se realizó un plan de inversión que garantiza el aprovechamiento del gasto afluente al sistema de distribución en el tiempo.

Palabras Claves: Red de abastecimiento, Modelo Hidráulico, Aducción.

INDICE GENERAL

RESUMEN		iii
INTRODUCCIÓN	N	1
CAPITULO		
I	EL PROBLEMA	
	Planteamiento del Problema	3
	Objetivos	
	General	5
	Específicos	5
	Justificación	6
	Alcances y Limitaciones	7
П	MARCO TEORICO	
	Antecedentes	10
	Bases Legales	13
	Bases Teóricas	14
III	MARCO METODOLOGICO	
	Tipo de Investigación	32
	Población y Muestra	32
	Diseño de la investigación o Procedimiento	33
IV	ANALISIS Y RESULTADOS	
	Estudio de Demandas	45
	Descripción del Sistema	46
	Estimación de los índices de Cobertura	91
	Perdidas Físicas del Sistema	94
	Balance Demanda Disponibilidad	105
	Modelo Hidráulico	115

	Análisis Económico	223
\mathbf{V}	CONCLUSIONES Y RECOMENDACIO	ONES
	Conclusiones	230
	Recomendaciones	233
REFERENCIA	AS BIBLIOGRAFICAS	235
ANEXOS		238

INDICE DE CUADROS

CUADRO	DESCRIPCIÓN				
2.1	CARÁCTERÍSTICAS DEL AGUA Y SU RELACIÓN CON α	26			
4.1	HORARIO DE SERVICIO SUB SISTEMA VILLA ROSA	56			
4.2	CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA VILLA ROSA.	57			
4.3	CAUDAL PROMEDIO DEL SUB SISTEMA LLENADERO	58			
4.4	RESUMEN TOTAL DEMANDAS POBLACIONALES ASISTIDAS POR CISTERNAS .	59			
4.5	HORARIO DE SERVICIO SUB SISTEMA CORIANO	62			
4.6	CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA CORIANO.	63			
4.7	HORARIO DE SERVICIO SUB SISTEMA LA PAZ.	66			
4.8	CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA LA PAZ	67			
4.9	HORARIO DE SERVICIO SUB SISTEMA LOMAS DE LEÓN.	71			
4.10	CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA LOMAS DE LEÓN	71			
4.11	CAUDALES POR SUB SECTOR DEL SUB SISTEMA GRAVEDAD OESTE	74			
4.12	CAUDALES POR SUB SECTOR DEL SISTEMA CASCO CENTRAL – ESTE	75			
4.13	CAUDALES POR SUB SECTOR DEL SISTEMA NORTE	76			
4.14	HORARIO DE SERVICIO SUB SISTEMA LA PEÑA	78			
4.15	HORARIO DE SERVICIO SUB SISTEMA CERRO GORDO	80			
4.16	HORARIO DE SERVICIO SUB SISTEMA ALTO JALISCO	83			
4.17	HORARIO DE SERVICIO DEL SUB SISTEMA EL JEBE.	85			
4.18	HORARIO DE SERVICIO DEL SUB SISTEMA LA SEGOVIANA – CRISTO VIENE	88			
4.19	TABLA RESUMEN DE LAS DOTACIONES Y POBLACIONES DE SUB SISTEMA OESTE	89			
4.20	TABLA RESUMEN DE LAS DOTACIONES Y POBLACIONES DE SUB SISTEMA NORTE	90			
4.21	TABLA RESUMEN DE LAS DOTACIONES Y POBLACIONES DE SUB SISTEMA CENTRO.	91			
4.22	INDICE DE COBERTURA DE LA ZONA OESTE	92			
4.23	INDICE DE COBERTURA DE LA ZONA NORTE.	93			
4.24	NUM DE USUARIOS POR ZONA Y USO	96			
4.25	NUM DE USUARIOS POR ZONA Y USO CON MICROMEDICIÓN	96			

4.26	NUM DE USUARIOS POR ZONA Y USO SIN MICROMEDICIÓN	96
4.27	CAUDAL EN I/s OBTENIDO DE LAS MEDICIONES	97
4.28	DIFERENCIA ENTRE EL CONSUMO ESTIMADO POR EXTRAPOLACIÓN Y LO MEDIDO.	97
4.29	DIFERENCIA ENTRE EL CONSUMO ESTIMADO POR EXTRAPOLACIÓN Y LO FACTURADO.	98
4.30	BALANCE DEMANDA DISPONIBILIDAD ESCENARIO SIN MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO SIN RECUPERACIÓN DE PERDIDAS FISICAS	105
4.31	BALANCE DEMANDA DISPONIBILIDAD ESCENARIO SIN MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO CON RECUPERACIÓN DE PERDIDAS FISICAS	106
4.32	BALANCE DEMANDA DISPONIBILIDAD ESCENARIO CON MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO SIN RECUPERACIÓN DE PERDIDAS FISICAS	107
4.33	BALANCE DEMANDA DISPONIBILIDAD ESCENARIO CON MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO CON RECUPERACIÓN DE PERDIDAS FISICAS	108
4.34	RUGOSIDADES EN LA TUBERÍAS PARA LOS DIFERENTES AÑOS DE SERVICIO	117
4.35	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR GRAVEDAD DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, SIN RECUPERACIÓN DE PERDIDAS FISICAS.	120
4.36	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR GRAVEDAD DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS	121
4.37	DOTACIÓN POR SUBSISTEMA Y SU INCIDENCIA	122
4.38	RESUMEN DE LOS REQUISITOS DEL NIVEL DEL SERVICIO DE AGUA PARA PROMOVER LA SALUD.	123
4.39	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS	125
4.40	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS.	126
4.41	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS	127
4.42	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON	128

	RECUPERACIÓN DE PERDIDAS FISICAS	
4.43	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS.	129
4.44	DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS.	130
4.45	CONSIDERACIONES ESTABLECIDAS EN EL MODELO DE EPANET. CON RECUPERACIÓN DE PERDIDAS FISICAS.	132
4.46	CONSIDERACIONES ESTABLECIDAS EN EL MODELO DE EPANET. SIN RECUPERACIÓNDE PERDIDAS FISICAS.	132
4.47	DEMANDA DE LOS SUBSISTEMAS QUE SE ENCUENTRAN AGUAS ARRIBA DE LOS ESTANQUES DE EL TOSTAO	150
4.48	DISPONIBILIDAD DE LA FUENTE PROVENIENTE DEL SHYQ C.A. PARA EL SISTEMA DE DISTRIBUCIÓN DE LA CIUDAD DE BARQUISIMETO	155
4.49	DETALLES DE ADUCCIÓN PROPUESTA PARA LA INCORPORACIÓN DEL CAUDAL PROVENIENTE DEL SHYQ CA, AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO.	159
4.50	DETALLES DE ADUCCIÓN PROPUESTA PARA LA INCORPORACIÓN DEL CAUDAL PROVENIENTE DEL SHYQ CA, AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO	160
4.51	COMPORTAMIENTO HORARIO DE LOS ESTANQUES DE EL TOSTAO PARA UN GASTO MEDIO DE 3.000 l/s.	165
4.52	BALANCE DEMANDA DISPONIBILIDAD DEL CAUDAL DE APORTE DEL EMBALSE DOS BOCAS	175
4.53	LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2011-2015	195
4.54	LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2016-2020 ALTERNATIVA 1	200
4.55	LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2011-2015. ALTERNATIVA 2	204
4.56	LONGITUDES TUBERÍAS A CAMBIAR EN PERÍODO 2021-2031. ALTERNATIVA 1	208
4.57	LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2021-2031. ALTERNATIVA 2	212
4.58	LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2031-2040	216
4.59	LONGITUDES DE TUBERÍAS A CAMBIAR Y CONSTRUIR EN PERÍODO 2041- SATURACIÓN	222
4.60	COSTO EN UNIDADES TIRBUTARIAS DE CONSTRUCCIÓN DE OBRAS DE ADUCCIONES Y ESTANOUES POST-TENSADOS	223

4.61	COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2011 - 2015	224
4.62	COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2016 - 2020. ALTERNATIVA 1	225
4.63	COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2016 - 2020. ALTERNATIVA 2.	225
4.64	COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LOS ESTANQUES NECESARIOS EN LA RED DE DISTRIBUCIÓN PARA EL PERÍODO 2016 - 2020	226
4.65	COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2021 - 2030	226
4.66	COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LOS ESTANQUES NECESARIOS EN LA RED DE DISTRIBUCIÓN PARA EL PERÍODO 2021 - 2030	226
4.67	COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2031 - 2040.	227
4.68	PLAN DE INVERSIÓN EN UNIDADES TIRBUTARIAS NECESARIO PARA MEJORAR LAS REDES E INCORPORAR LAS NUEVAS FUENTES AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO	229

INDICE DE FIGURAS

FIGURA	DESCRIPCIÓN				
4.1	NIVELES DE SERVICIO DE LA RED DE DISTRIBUCIÓN DE LA CIUDAD DE BARQUISIMETO	47			
4.2	ALIMENTADORES PRICIPALES DE LA RED DISTRIBUCIÓN DE BARQUISIMETO.	50			
4.3	ÁMBITO ESPACIAL DE ESTUDIO	53			
4.4	ESQUEMA DE LA COBERTURA DEL SUB SISTEMA VILLA ROSA	55			
4.5	ESQUEMA DE COBERTURA DEL SUB SISTEMA EL CORIANO	61			
4.6	ESQUEMA DE COBERTURA DEL SUB SISTEMA LA PAZ	65			
4.7	ESQUEMA DE COBERTURA DEL SUB SISTEMA LOMAS DE LEON	70			
4.8	ESQUEMA DE COBERTURA DEL SUB SISTEMA GRAVEDAD OESTE	73			
4.9	ESQUEMA DE COBERTURA DEL SUB SISTEMA GRAVEDAD CASCO CENTRAL – ESTE	75			
4.10	ESQUEMA DE COBERTURA DEL SUB SISTEMA GRAVEDAD NORTE	76			
4.11	ESQUEMA DE COBERTURA DEL SUB SISTEMA LA PEÑA	77			
4.12	ESQUEMA DE COBERTURA DEL SUB SISTEMA CERRO GORDO	79			
4.13	ESQUEMA DE COBERTURA DEL SUB SISTEMA ALTO DE JALISCO	82			
4.14	ESQUEMA DE COBERTURA DEL SUB SISTEMA EL JEBE	84			
4.15	ESQUEMA DE SERVICIO DEL SUB SISTEMA LA SEGOVIANA – CRISTO VIENE.	87			
4.16	ZONA DE ESTUDIO PARA LA ESTIMACIÓN DE LAS PÉRDIDAS FÍSICAS DE LA RED DE BARQUISIMETO (SUB SISTEMA GRAVEDAD OESTE – NORTE – CENTRO – ESTE)	95			
4.17	CAUDALES DE ENTRADA AL SISTEMA DE BARQUISIMETO	99			
4.18	ESQUEMA HIDRÁULICO DEL MODELO PLANTA – ESTANQUES DEL SHYQ, ALTERNATIVA 1. Q = 6.000 L/S	111			
4.19	ESQUEMA HIDRÁULICO DEL MODELO PLANTA – ESTANQUES DEL SHYQ, ALTERNATIVA 2. Q = 3.750 L/S	112			
4.20	TUBERÍA DE PVC CON INCRUSTACIONES, DIEZ AÑOS DE SERVICIO	118			
4.21	TUBERÍA DE PVC CON INCRUSTACIONES, DIEZ AÑOS DE SERVICIO	119			
4.22	TUBERÍA DE PVC CON INCRUSTACIONES, DIEZ AÑOS DE SERVICIO	119			

4.22	MODELO MATEMATICO DE LA RED DE DISTRIBUCION DE	121
4.23	BARQUISIMETO	131
4.24	PATRON DE DEMANDA PARA SUBSECTOR CASCO CENTRAL, ESCENARIO SIN RECUPERACIÓN DE PERDIDAS FISICAS EN LA RED DE DISTRIBUCIÓN.	133
4.25	MODELO MATRIZ NORTE Y ALIMENTADOR PRINCIPAL DE BARQUISIMETO.	134
4.26	NIVEL DE TANQUE EL TOSTAO, VALORES OBSERVADOS Y SIMULADOS.	135
4.27	PRESIÓN NODO DE EMPALME MATRIZ NORTE, VALORES OBSERVADOS Y SIMULADOS.	136
4.28	ESQUEMA DE SIMULACIÓN PARA DEMANDA ACTUAL, CASO CAUDAL MAXIMO HORARIO.	139
4.29	ESQUEMA DE SIMULACIÓN PARA DEMANDA ACTUAL, CASO CAUDAL DE INCENDIO.	140
4.30	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO CAUDAL MAXIMO HORARIO	143
4.31	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO CAUDAL DE INCENDIO	144
4.32	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO CAUDAL MAXIMO HORARIO.	146
4.33	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO CAUDAL DE INCENDIO.	147
4.34	RUTA ALIMENTADOR PROPUESTO PARA INCORPORACIÓN DE GASTO PROVENIENTE DE SHYQ C.A. AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, ALTERNATIVA 1	152
4.35	RUTA ALIMENTADOR PROPUESTO PARA INCORPORACIÓN DE GASTO PROVENIENTE DE SHYQ C.A. AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, ALTERNATIVA 1	153
4.36	TOPOLOGÍA DE LA RED DE BARQUISIMETO CON LA INCORPORACIÓN DE LA FUENTE DE SHYQ	154
4.37	ALIMENTADOR PROPUESTO PARA FUENTE PROVENIENTE DEL SHYQ	154
4.38	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO CAUDAL MAXIMO HORARIO. ALTERNATIVA 1	157
4.39	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO CAUDAL DE INCENDIO ALTERNATIVA 1	158
4.40	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO CAUDAL MAXIMO HORARIO, ALTERNATIVA 2	162

4.41	INCENDIO ALTERNATIVA 2	16
4.42	CURVA DE VARIACIÓN DE CONSUMO, INOS	16
4.43	COMPORTAMIENTO HORARIO DE LOS ESTANQUES DE EL TOSTAO PARA UN CAUDAL MEDIO DE 3.000 l/s.	16
4.44	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO CAUDAL MAXIMO HORARIO. ALTERNATIVA 1	16
4.45	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO CAUDAL DE INCENDIO ALTERNATIVA 1	17
4.46	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO CAUDAL MAXIMO HORARIO. ALTERNATIVA 2	17
4.47	ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO CAUDAL DE INCENDIO ALTERNATIVA 2	17
4.48	RUTA DE ADUCCIÓN PROPUESTA POR HIDROLARA PARA LA INCORPORACIÓN DEL CAUDAL PROVENIENTE DE DOS BOCAS AL SISTEMA DE BARQUISIMETO	17
4.49	RUTA DE ADUCCIÓN PROPUESTA PARA INCORPORACIÓN DEL CAUDAL DE DOS BOCAS AL SISTEMA DE BARQUISIMETO	17
4.50	ESQUEMA DE SIMULACIÓN PARA DEMANDA DE SATURACIÓN, CASO CAUDAL MAXIMO HORARIO. ALTERNATIVA 1	17
4.51	ESQUEMA DE SIMULACIÓN PARA DEMANDA DE SATURACIÓN, CASO CAUDAL DE INCENDIO. ALTERNATIVA 1	18
4.52	ESQUEMA DE SIMULACIÓN PARA DEMANDA DE SATURACIÓN, CASO CAUDAL MAXIMO HORARIO. ALTERNATIVA 2	18
4.53	ESQUEMA DE SIMULACIÓN PARA DEMANDA DE SATURACIÓN, CASO CAUDAL DE INCENDIO. ALTERNATIVA 2	18
4.54	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN BAJO UN FACTOR DE DEMANDAS DE 1,55 (DEMANDAS MINIMAS)	18
4.55	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN BAJO UN FACTOR DE DEMANDAS DE 1,55 (DEMANDAS MAXIMAS)	18
4.56	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN BAJO UN FACTOR DE DEMANDAS DE 1,55 (DEMANDAS MINIMAS) 2016	18
4.57	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN BAJO UN FACTOR DE DEMANDAS DE 1,55 (DEMANDAS MAXIMAS).2016	18
4.58	ESQUEMA DE ALIMENTADORES A SUSTITUIR PERÍODO 2011-2015	19
4.59	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QMAXH (PERÍODO 2011-2015)	19

4.60	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QINC (PERÍODO 2011-2015)	194
4.61	ESQUEMA DE ALIMENTADORES A SUSTITUIR PERÍODO 2016-2020	197
4.62	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QMAXH (PERÍODO 2016-2020)	198
4.63	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QINC (PERÍODO 2016-2020)	199
4.64	ESQUEMA DE ALIMENTADORES A SUSTITUIR PERÍODO 2016-2020	201
4.65	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QMAXH (PERÍODO 2016-2020)	202
4.66	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QINC (PERÍODO 2016-2020)	203
4.67	ESQUEMA DE ALIMENTADORES A SUSTITUIR PERÍODO 2021-2030	205
4.68	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QMAXH (PERÍODO 2021-2030)	206
4.69	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QINC (PERÍODO 2021-2030)	207
4.70	ESQUEMA DE ALIMENTADORES A SUSTITUIR PERÍODO 2021-2030	209
4.71	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QMAXH (PERÍODO 2021-2030)	210
4.72	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QINC (PERÍODO 2021-2030)	211
4.73	ESQUEMA DE ALIMENTADORES A SUSTITUIR PERÍODO 2031-2040	213
4.74	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QMAXH (PERÍODO 2011-2040)	214
4.75	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QINC (PERÍODO 2031-2040)	215
4.76	ESQUEMA DE ALIMENTADORES A SUSTITUIR PERÍODO 2040 - SATURACIÓN.	217
4.77	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QMAXH (PERÍODO 2040 -SATURACIÓN)	218
4.78	FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN MEJORAS PROPUESTAS CASO QINC (PERÍODO 2040 -SATURACIÓN)	219
4.79	SUBANILLOS PROPUESTOS PARA CASO DE INCORPORACIÓN DE DOS	220

INTRODUCCIÓN

El agua es una necesidad básica del ser humano y es fundamental su consumo para la vida, actualmente este recurso presenta serios problemas de escases debido a la mala intervención del hombre en las cuencas de los ríos y acuíferos.

Barquisimeto es la cuarta ciudad más importante del país, según censo Instituto Nacional de Estadística (I.N.E.) en el año 2001 cuenta con una población de 741.417 habitantes, y actualmente presenta graves problemas de suministro de agua. El desarrollo comercial y las bondades políticas – geográficas que ofrece la ciudad, alienta al estado y al inversionista a la construcción de centros comerciales, hoteles y urbanismos, trayendo como consecuencia un incremento significativo de la demanda a abastecer, es por ello que se hace necesario una estrategia que permita optimizar el agua potable a fin de poder cumplir las necesidades hídricas actuales y futuras de la población.

La presente investigación viene a resolver este problema, ya que tiene previsto planificar la red de abastecimiento de agua potable de la ciudad, construyendo un modelo conceptual hidráulico de los sistemas principales que la componen. Este modelo, permitió la simulación de escenarios alternativos para la operatividad de este sistema y planteó soluciones estratégicas que deberán ser detalladas en cuanto a la ingeniería de diseño, pero más importante aún, se presenta un plan de ejecución de las obras o actividades a corto, mediano y largo plazo.

En líneas generales, el plan hidráulico abarca las siguientes tareas: a) Estudio detallado de demandas de la ciudad de Barquisimeto considerando dotación actual según los planes de distribución de Hidrolara, y dotación según norma. b). Caracterización de las pérdidas físicas de la red de distribución para el análisis de demandas y plan de inversiones futuras en rehabilitaciones, c) Recopilación de los Análisis de la disponibilidad de las distintas fuentes posibles (Dos Cerritos, Sistema

Hidráulico Yacambú - Quíbor, Dos Bocas, Río Tocuyo, Río Turbio, etc) para el mejoramiento de los balances de oferta y demanda, d) Creación del macro modelo Barquisimeto para el análisis a de los diferentes escenarios de diseño, e) Diseño de los futuros alimentadores para la incorporación de las nuevas fuentes y e) plan de inversión para la recuperación de la estabilidad del servicio de agua potable a corto, mediano y largo plazo, tomando muy en cuenta la rehabilitación de las redes de distribución.

La presente investigación contará con los siguientes capítulos:

En el capítulo I, se plantea el problema a partir del cual se diseñaron los objetivos que guiaron la investigación, también se desarrolló la justificación alcance y limitaciones.

Luego, a fin de conocer la fundamentación teórica de la investigación se desarrolló el capítulo II llamado Marco Teórico, donde se hace referencia a los antecedentes, bases teóricas, bases legales y el sistema de variables las cuales son fundamentales para este estudio.

En el capítulo III referido al Marco Metodológico, se describe la naturaleza de la investigación, se establece la población y muestra estudiada, y posteriormente se describe el procedimiento utilizado para realizar este trabajo.

El capitulo IV se presentan los Análisis y Resultados que se encontraron durante el desarrollo de la investigación como: estudio de demandas, balances demanda - disponibilidad, el modelo hidráulico de la red de Barquisimeto, cuales fueron los escenarios de simulación, resultados de las simulaciones.

Por ultimo se presenta el Capitulo V referido a las Conclusiones y Recomendaciones en donde se expone de manera resumida las determinaciones a las cuales se llego en la presenta investigación.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA

Desde hace muchos años el hombre ha necesitado conducir el agua desde los ríos y lagos hasta sus asentamientos para realizar las necesidades vitales, el transporte del vital líquido los realizaban por medio de canales o tuberías. Aunque existen precedentes de las civilizaciones del antiguo Oriente y de los ingenieros griegos, los ingenieros romanos fueron los primeros que pusieron a punto las técnicas para conducir el agua, tanto así que se pudieron generalizar por todas las ciudades del Mediterráneo.

Por lo menos 40 ciudades del Imperio Romano tuvieron redes de abastecimiento de agua, entre ellos el imponente *Pont du Gard*, de tres niveles, que dotó de líquido a Nimes en Francia, el de Segovia en España, de dos niveles y 36 m de altura.

A partir del siglo XIX el aumento de la población en las zonas urbanas de Europa obligó a realizar grandes obras de conducción, distribución y tratamiento de las aguas, logrando mejorar significativamente los métodos y materiales para trasportar el agua.

En tiempos más recientes se han construido extensos acueductos en Europa entre ellos podemos mencionar: El acueducto que transporta agua a Glasgow el cual tiene una longitud de 56 km; el de Marsella, terminado en 1847 midiendo aproximadamente 97 km; el de Manchester que tiene 154 km de longitud; el de Liverpool que mide 109 km; y el segundo acueducto Kaiser Franz Joseph, en Viena de 232 kilómetros de longitud.

Así mismo en EEUU se han construido complejos sistemas de acueductos para transportar agua a las ciudades como Boston, Baltimore, Washington, St. Louis, Nueva York y Los Ángeles.

En Venezuela el primer acueducto fue construido en la cuidad de Caracas el cual conducía las aguas de Macarao a la Colina del Calvario y de allí a la ciudad de Caracas, paulatinamente crecía el país se construyeron acueductos en las principales ciudades, entre ellas se encontraba Barquisimeto.

Barquisimeto es la cuarta ciudad más importante de Venezuela, se encuentra ubicada en el Estado Lara, específicamente en el Municipio Iribarren y es un importante núcleo industrial, comercial y agrícola del país, a través del tiempo en la ciudad se han construido varios sistemas de distribución, el primero se construyó en 1.889, seguidamente en 1.929 el general Juan Vicente Gómez inauguró un nuevo sistema de abastecimiento, a partir de allí se realizaron mejoras continuas en el acueducto y se construyeron plantas de tratamiento y aducciones que incrementaron notablemente la cantidad de agua (oferta de agua) para la población.

Hoy en día Barquisimeto presenta problemas con el suministro de agua potable, debido a la gran oferta de agua y la ubicación geográfica de la ciudad, la población sufrió un aumento significativo que ha hecho que en este momento exista un déficit de agua de aproximadamente 1.800 l/s según datos suministrados por la empresa Hidrolara, C.A. (2010) "Balance Hidráulico del Sistema de Abastecimiento de la ciudad de Barquisimeto"

Actualmente el Ministerio del Poder Popular para el Ambiente está ejecutando obras que permitirán aumentar la oferta de agua a mediano y largo plazo en la ciudad, por otro lado la empresa hidrológica local, Hidrolara C.A., está realizando inversiones en estudios hidrogeológicos en sitios estratégicos, que permitirán realizar perforaciones para utilizar los acuíferos existentes en la zona que vendrán a mitigar el

déficit de agua a corto y mediano plazo. Todo esto nos arroja una serie de interrogantes como las siguientes: ¿Una vez que la ciudad de Barquisimeto cuente con toda el agua de las nuevas fuentes, tendrán las redes de distribución actuales la capacidad mecánica e hidráulica de trasportar un mayor caudal?, ¿En cuanto se verá afectada la eficiencia de conducción en la red de distribución al aumentar el caudal que transita por ella? Y finalmente ¿Será necesaria una propuesta hidráulica de la red de abastecimiento de agua potable de la cuidad de Barquisimeto que tome en cuenta la incorporación de las futuras fuentes?

OBJETIVOS:

GENERAL:

 Proponer la planificación hidráulica de la red de abastecimiento de agua potable de la ciudad de Barquisimeto tomando en cuenta la incorporación de las futuras fuentes.

ESPECIFICOS:

- Estimar los consumos de Barquisimeto a corto, mediano y largo plazo considerando usuarios residenciales, comerciales, industriales y oficiales.
- Efectuar una estimación de las pérdidas físicas del sistema en la red de abastecimiento.
- Estimar las demandas de Barquisimeto a corto, mediano y largo plazo, tomando en cuenta las pérdidas calculadas, estableciéndose dos escenarios: con recuperación de pérdidas físicas y sin ellas, a corto, mediano y largo.
- Construir un modelo hidráulico para la simulación de la macro red de distribución de Barquisimeto.

 Elaborar propuestas en la red de distribución para la incorporación de las nuevas fuentes, simulando cada una de ellas en el modelo hidráulico y estudiando su factibilidad operativa, técnica y económica.

JUSTIFICACIÓN

La carencia de un sistema de distribución de agua potable eficiente es un problema muy común en el país, ya que en la mayoría de los casos las ciudades crecen y muy pocas veces se planifican el crecimiento del servicio de agua potable, trayendo como consecuencia el retraso en el desarrollo de las urbes, ya que sin la infraestructura hidráulica necesaria para transportar el vital líquido se limita la inversión en áreas como vivienda, industria, comercio, etc.

Barquisimeto actualmente cuenta con una población de aproximadamente 750.000 habitantes según datos del Instituto Nacional de Estadística (2011). "Censo Poblacional 2011". El desarrollo comercial y las bondades políticas – geográficas que ofrece la ciudad (por ejemplo el Triángulo del este) alientan las inversiones a la construcción de centros comerciales, hoteles y urbanismos. Actualmente la ciudad cuenta con un sistema de distribución de agua potable poco eficiente, aunque no se ha medido exactamente el valor, se estima una eficiencia en el sistema de distribución de aproximadamente sesenta por ciento.

Otro dato importante de mencionar es que Hidrolara (2010) realizó el estudio "Balance Hidráulico del sistema de abastecimiento de la ciudad de Barquisimeto" en el cual se determinó que la ciudad de tiene un déficit de agua potable que oscila entre los 1.800 y 2.000 litros por segundo, sin contar que gran parte del oeste, norte y sureste de la ciudad son abastecidos por camiones cisternas, trayendo como consecuencia una disminución considerable en la calidad de vida de los habitantes

que allí moran, haciendo que su dotación diaria a veces no llegue ni siquiera a cincuenta litros por persona por día (50 l/p/d).

Debido a su importancia comercial e industrial para el desarrollo del país se están realizando fuertes inversiones en obras que permitirán garantizar la fuente de agua para la ciudad como son las construcciones de los Embalses Yacambú y Dos Bocas.

De los anteriores planteamientos, se deduce que es necesario realizar un estudio detallado sobre el sistema de distribución de agua potable de la ciudad de Barquisimeto, que permita primeramente evaluar las condiciones físicas, hidráulicas y de operación del sistema existente, para luego poder desarrollar un plan de inversión de obras hidráulicas a mediano y largo plazo que permitirá diseñar y construir los elementos hidráulicos necesarios (y en tiempo debido) que garanticen el funcionamiento óptimo del sistema del distribución de agua potable de la ciudad, permitiendo con esto cumplir con los requerimientos de crecimiento habitacional, industrial y comercial de Barquisimeto (los cuales son bastante altos), logrando así una mejora significativa en el servicio de distribución de agua potable de la ciudad, elevando considerablemente la calidad de vida de las personas que habitan en ella.

Adicionalmente con la ejecución de las obras hidráulicas propuestas al sistema de abastecimiento de la ciudad de Barquisimeto, se podrá planificar el crecimiento ordenado de la urbe, cumpliendo a cabalidad el Plan de Desarrollo Urbano realizado en el año 2004.

ALCANCES

En la presente propuesta se tiene previsto realizar la Planificación del sistema de abastecimiento de Barquisimeto para la incorporación de las futuras fuentes, a nivel de ingeniería básica, presentando un plan de inversión de las obras necesarias para mejorar la red de distribución. El análisis se hizo sobre la macro red de Barquisimeto

abastecida por gravedad, entendiéndose como macro red solo los alimentadores principales y secundarios, los sistemas de distribución final ó terciarios así como los subsistemas excluidos en el presente estudio se simularan como un nodo de consumo ó fuga, según sea el caso.

En el sistema en estudio se excluirá lo siguiente:

- Sub sistemas del Oeste: Villa Rosa, Llenadero Km11, Coriano, Pavia Bobare,
 La Paz, Zona industrial, Lomas de León.
- Sub sistemas del Norte: La Peña, Cerro Gordo, Altos de Jalisco, El Jebe, Cristo Viene, Llenadero San Juan, Cují Tamaca.

Sin embargo al momento de realizar el análisis de demanda se tomó en cuenta el sistema de gravedad más los subsistemas antes mencionados, debido a que fue necesario tomarlos en cuenta para calcular la capacidad de los alimentadores propuestos.

En términos financieros el presente trabajo presentará un plan de inversión a mediano y largo plazo que permitirá al organismo competente prever las inversiones en el momento indicado y tomar cualquier tipo de decisión al respecto.

LIMITACIONES

- Dificultad para realizar mediciones de presiones y caudales dentro de la red de abastecimiento actual, ya que la misma cuenta con muy pocos puntos para ello.
- Problemas con el inventario hidráulico, ya que no se conto con la información exacta de ubicación de válvulas, material de las tuberías colocadas, ya que la hidrológica no contaba con información procesada de todo el sistema.

- Problemas financieros, ya que no se conto con los recursos necesarios para realizar un plan de medición en toda la red y así poder tener un alcance mucho mayor.
- Las pérdidas físicas de la red fueron estimadas en función de los datos recopilados con las gerencias operativa y comercial de la empresa hidrológica (Hidrolara), y dependía de la existencia de sistemas de medición en la red (micro o macro medición), lo que se dificultó su cuantificación. Es por ello que el modelo fue analizado a distintos escenarios: con pérdidas y sin pérdidas, con el objeto de evitar la dependencia total de un modelo ideal que sólo es posible con acciones de mayor complejidad, de alta planificación, elevada inversión y con metas a largo plazo.

CAPITULO II

MARCO TEÓRICO

El marco teórico según Chávez (2000) permite "la revisión de la literatura a través de unas acciones que se han realizado para mejorar la dificultad que se plantea en el problema" (p.105). Dice el autor, que está conformado por los antecedentes de la investigación, bases teóricas, bases legales (si las hay), glosario de términos (opcional) y sistemas de variables. A continuación se desarrollan cada una de ellas:

ANTECEDENTES

Plantea Chávez (ob.cit.) que los antecedentes constituyen "los estudios previos que otros investigadores han ejecutado y que son similares al que se pretende ejecutar" (p.105). Partiendo de lo planteado anteriormente, se describen algunas investigaciones relacionadas con este estudio:

Antonio Caravacas; Antonio Vela; Asis Alvarez; Elisa Verruschi; Yris González. "Diseño de una Metodología para Estimar los Consumos de la Red de Distribución de Agua Potable de Barquisimeto, Venezuela", 2002. En el presente trabajo se desarrolló una metodología para la estimación de consumos de una red de distribución de agua potable, cuando no se cuenta con equipos de medición instalados en la red para la cuantificación de los mismos. Para tal fin se analizó la red de distribución de agua potable de la ciudad de Barquisimeto, que abastece a una población de alrededor de un millón de habitantes. Dicha metodología se plantea en dos etapas, la primera de ellas destinada a la estimación de los consumos a través de

variables como lo son: coeficientes de densidad poblacional y de superficie servida, y la otra, para la validación de los valores de presión obtenidos a través de la simulación al compararlos con los valores de presión medidos en algunos puntos de la red. Los resultados obtenidos indicaron que la calibración de la red, en cuanto al promedio de presiones, fue satisfactorio, sin embargo el análisis puntual demostró que se debe calibrar cada sector por separado para de esta forma lograr que la curva de comportamiento de presiones pueda ajustarse correctamente.

Este trabajo guarda relación con la investigación que se realiza ya que se aplicará parte de la metodología desarrollada en él para la determinación de los consumos, esto en los casos donde no se cuenten con medición, permitiendo así hacer las estimaciones de oferta y demanda que harán posible realizar el balance hidráulico que dará entrada al análisis de pérdidas físicas en la red.

Betancourt M. y Escalona M. "Plan de inversión y mantenimiento de los sistemas de acueductos de la población de Cubiro", 2002. se buscó información de campo para calibrar el modelo EPANET el cual sirvió para evaluar el estado del acueducto, en base a esto, propusieron estudiar las fuentes de abastecimiento del acueducto para garantizar la capacidad de almacenamiento, pudiendo asegurar la distribución continua del servicio de agua, además propusieron mejorar las estrategias de mantenimiento de las fuentes, especialmente en los desarenadores con el fin de remover los sedimentos que pudiesen obstruir las tuberías.

La investigación antes descrita se relaciona con el estudio que se presenta ya que al igual que en la población de Cubiro se tomaran datos de campos (presión y caudal) que permitirán pseudo-calibrar el modelo hidráulico en el Software EPANET, pero ahora teniendo en estudio la red de abastecimiento de agua potable de la ciudad de Barquisimeto.

Nadal N. y Pérez D. "Diagnóstico y evaluación del acueducto del Eneal, Municipio Crespo del estado Lara", 2005. Realizaron un inventario de todos los

componentes del sistema del acueducto, el cual utilizaron para evaluar con la ayuda del programa de simulación hidráulica EPANET las condiciones en que se encontraba dicho acueducto, determinando que en algunos tramos de la red no se cumple con las presiones establecidas por norma, por lo que recomendaron dividir la red en dos para evitar rotura en las tuberías, además recomendaron la implementación a corto plazo de la colocación de micromedidores para garantizar la disminución del consumo del agua, la colocación de manómetros y caudalímetros para una mejora en la operatividad del sistema.

El trabajo mencionado anteriormente guarda relación con la investigación que se realiza ya que el proceso de evaluación que se ejecuta en la red de abastecimiento de agua potable del sistema. El Eneal, servirá de base para desarrollar una evaluación acorde a las necesidades y funcionalidad de la propuesta que se desea diseñar.

Aguilar, Susjeys; Azuaje, Tulio. "Diagnostico y establecimiento de planes para rehabilitación y mantenimiento del sistema de acueductos existente en Sarare municipio Simón Planas", 2005. Este estudio consistió en el diagnóstico del sistema de distribución del acueducto actual de Sarare para evaluar las condiciones hidráulicas mediante la aplicación de un modelo de simulación, además del establecimiento de lineamientos para mejorar las condiciones de operación y mantenimiento, todo esto con el fin de dotar a las autoridades competentes de una herramienta eficaz a la hora de invertir los recursos. En dicho trabajo concluyeron que los consumos reales registrados en la distribución para la mayor parte de la población se encuentran por encima de 400 l/p/d, el cual es mayor a las dotaciones asignadas por la norma y que las redes de distribución poseen diámetros muy pequeños para las demandas actuales, actualmente la capacidad de almacenamiento de los tanques existentes se encuentran en condiciones deficitarias. Dentro de las recomendaciones expuestas en este trabajo se encuentra evaluar la capacidad de los gastos captados por el dique toma a fin de determinar la eficiencia de dicha estructura

y plantear las acciones a emprender para aumentar el caudal disponible para el abastecimiento presente y futuro de la población.

Los indicadores de consumo que se consiguen en este trabajo y su metodología de cálculo sirven de referencia para la investigación que se presenta.

Azuaje, Maria; Caruci, Jesus. "Evaluación de Modelos para la simulación Hidráulica de Redes de Distribución". 2007, el cual fue presentado para optar al título de ingeniero, hacen énfasis en la poca disponibilidad de agua para consumo humano que existe a nivel mundial y plantean la necesidad de optimizar los procesos de simulación de redes de acueductos, a través del uso y estudio de diferentes software (EPANET y WaterCAD 4.5) con el fin de conocer las características principales de algunos modelos de simulación hidráulica, para de esta manera ofrecer diferentes alternativas de solución de acuerdo a las necesidades que se le puedan presentar a una organización en un determinado momento.

El estudio anterior guarda relación con la investigación que se viene desarrollando, debido a que presenta las características de diferentes software en pro de mejorar los procesos de simulación de redes de acueductos, lo cual ofrece una herramienta primordial para el diseño de la propuesta, ya que se va a realizar utilizando el software EPANET.

BASES LEGALES

"NORMAS SANITARIAS PARA EL PROYECTO, CONSTRUCCIÓN, AMPLIACIÓN, REFORMA Y MANTENIMIENTO DE LAS INSTALACIONES SANITARIAS PARA DESARROLLOS URBANISTICOS" Gaceta Oficial de la República de Venezuela Nº 4103. Extraordinaria. Año 1989.

"ESPECIFICACIONES DE CONSTRUCCION DE OBRAS DE ACUEDUCTOS Y ALCANTARILLADOS". República de Venezuela. Instituto Nacional de Obras Sanitarias. Dirección General de Inspección. Construcción y Funcionamiento. Año 1976.

"NORMAS PARA EL DISEÑO DE LOS ABASTECIMIENTOS DE AGUA". República de Venezuela. Instituto Nacional de Obras Sanitarias. Caracas 1.965

BASES TEORICAS

Los sistemas de abastecimiento de agua incluyen este conjunto de obras e infraestructura, construidas para satisfacer las necesidades de la población. Dependen de la disponibilidad de las fuentes naturales de agua y de las capacidades técnicas y económicas de la población beneficiaria.

Demanda: la demanda teórica de agua potable se define como la cantidad de agua que los usuarios de un sistema de abastecimiento *pretenden* utilizar, asumiendo que no existe restricción alguna en la oferta de agua, se expresa generalmente en litros por segundo (l/s).

Consumo: es la cantidad de agua realmente utilizada por una comunidad o núcleo urbano para una fecha determinada, clasificándose sobre el tipo de uso y característica de la misma en: consumo domestico, consumo comercial o industrial, consumo público, consumo por pérdidas en la red y consumo por incendio.

Dotación: se define como la cantidad de agua correspondiente al consumo esperado en una comunidad de acuerdo a su composición orgánica y social, expresada generalmente en términos de litros/personas/días. En el caso de Venezuela se adoptan

los valores expresados en las normas sanitarias contenidas en la gaceta oficial Nº 4044 Ext. Del 8 de Septiembre de 1988.

Consumo medio diario (Qm): se define como un valor representativo de gasto, estimado en base a las variaciones estacionales, mensuales, diarias, y horarias de los consumos de agua de una determinada comunidad. Para su cálculo y estimación pueden utilizarse varias alternativas dependiendo de la formula seleccionada para expresar los consumos:

- Con base en dotaciones: se expresa como la sumatoria de las dotaciones asignadas a cada área del sistema a su zonificación de acuerdo a la normativa vigente.
- Con base en datos de población: resulta de las estimaciones de consumos per cápita para la población futura dentro del período de diseño.

Consumo máximo horario (QMH): es el valor asignado a la hora de máximo consumo del día de máximo consumo. Este valor de consumo debe ser satisfecho por el acueducto de manera eficiente sin que se generen situaciones deficitarias en el sistema. Generalmente se expresa como función del consumo medio (Qm) y con base en factores de proporcionalidad dependiendo del número de habitantes de la comunidad.

Caudal de Incendios: Es el Caudal destinado a combatir las emergencias por causas de los incendios y este se estima entre diez (10), dieciséis (16) o treinta y dos (32) l/s. Este caudal debe estar disponible en hidrantes localizados de manera tal que cubra un radio de doscientos metros.

Fuente de abastecimiento: es el espacio natural desde el cual se derivan los caudales demandados por la población a ser abastecida, pueden ser superficial o subterránea. No debe ni puede concebirse un buen proyecto si previamente no hemos definido y garantizado fuentes capaces para abastecer a la población futura del diseño. En la selección de la fuente juegan un papel importante los datos o registros

hidrológicos disponibles y las determinaciones estadísticas, pero es evidente que para poder garantizar un servicio continuo y eficiente es necesario que el proyecto contemple una fuente capaz de suplir el agua requerida para el día mas critico, es decir el día de máxima consumo.

Obra de captación: Son las estructuras encargadas de derivar el agua de cada una de las fuentes y son diseñadas según el caudal que se vaya a captar, por lo tanto, su diseño será dependiente del tipo de fuente, de sus características, y ha de ser afectado por un factor similar al considerado para la fuente.

Línea de aducción: definida como la tubería que conduce agua desde la obra de captación hasta el estanque de almacenamiento, debe satisfacer condiciones de servicio para el día de máximo consumo, garantizando de esta manera la eficiencia del sistema. Ello puede verse afectado además por situaciones topográficas que permitan una conducción por gravedad o que, por el contrario precisen de sistemas de bombeo.

Estanque de almacenamiento: generalmente es el elemento intermedio entre la fuente y la red de distribución, de su funcionamiento depende en gran parte el que pueda proyectarse y ofrecerse un servicio continuo a la comunidad. Un estanque de almacenamiento cumple tres propósitos fundamentales:

- Compensar las variaciones de los consumos que se producen durante el día.
- Mantener presiones de servicio en la red de distribución.
- Mantener almacenada cierta cantidad de agua para atender situaciones de emergencia tales como incendios e interrupciones por daños de tuberías de aducción o de estaciones de bombeo.

Red de distribución: Es el conjunto de tuberías y accesorios destinados a conducir las aguas a todos y cada una de los usuarios a través de las calles. Las redes pueden ser:

- Abiertas: nace de una fuente y su extremo termina en un tapón (sin retorno) que debe tener consumo permanente en su extremo para evitar estancamiento.
- Cerradas: está compuesta por mallas. Las mallas son una parte de la red que nace en el tanque y constituyen un circuito cerrado, poseen dos ramales que se unen en un punto que coincide con el punto de equilibrio.
- Mixtas: es la combinación de los dos casos anteriores.

Pérdidas por fricción: Al desplazarse una masa líquida por un conducto se originan esfuerzos tangenciales que se oponen al movimiento debido a la influencia de las rugosidades, de la viscosidad del fluido y la turbulencia del flujo.

Las pérdidas por fricción se presentan a lo largo de su longitud debido a:

- En régimen de flujo turbulento: mezcla entre las partículas del fluido y rozamiento entre fluido y las fronteras sólidas del conducto que confinan a la vena líquida.
- En régimen de flujo laminar: rozamiento entre fluido y las fronteras sólidas del conducto que confinan a la vena líquida. No existe mezcla de las partículas.

Existe un gran número de fórmulas para el cálculo de tuberías con flujo turbulento las cuales se han desarrollado con el objetivo de representar en forma matemática la resistencia al flujo a lo largo de un conducto. Esta resistencia al flujo comprende las fuerzas viscosas y las de fricción. Entre las formulas más utilizadas para cuantificar este valor tenemos:

• Darcy-Weisbach(1857)
$$h_f = \frac{fL}{D} \frac{V^2}{2g}$$

• Colebrook-White (1939).
$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{2.51}{\text{Re}\sqrt{f}} + \frac{\varepsilon/D}{3.71}\right)$$

• Hazen-Williams (1933)
$$h_f = 10.67 \cdot L \cdot \left(\frac{Q}{C_{HW} \cdot D^{2.63}}\right)^{1.85} \quad \text{(solo para Agua)}$$

Pérdidas locales: Se presentan en puntos fijos del conducto por cambios de forma, dimensiones de la sección recta, dirección del flujo o por presencia de controles. En estos casos ocurre una alteración al flujo normal de los filetes líquidos, debido al efecto de separación o turbulencias inducidas en el movimiento al presentarse obstáculos o cambios bruscos en la tubería, produciendo mezcla de las partículas y fricción entre ellas. Son usualmente las pérdidas menores en una conducción, pero no siempre.

• Método del coeficiente de resistencia *K*: Como la turbulencia es función directa de la velocidad, se ha planteado y comprobado experimentalmente que la energía empleada en vencer las resistencias locales es directamente proporcional a la energía cinética del fluido denominada pérdida local.

$$h_l = K \frac{V^2}{2g}$$

K = coeficiente sin dimensiones que depende de las condiciones particulares del aditamento, del número de Reynolds y de la rugosidad del tubo.

V = velocidad media de flujo en el conducto en la sección especificada.

Método de la longitud equivalente: Para efectos del cálculo de las pérdidas locales, se puede suponer que éstas se producen por la fricción en un tramo de tubería recta cuya longitud ficticia se denomina "Longitud equivalente" (Le).
 Por lo tanto, la Le corresponde a un tramo de tubería que produce por fricción una pérdida igual a la que produce el accesorio. Dicha Le remplaza a L en las ecuaciones de perdidas por fricción.

Pérdidas físicas en agua potable: estas no constituyen un consumo, pero es un factor que debe ser considerado. Las perdidas en los domicilios influyen en el consumo domestico. Es frecuente encontrar llaves en mal estado, artefactos

sanitarios y a veces cañerías de la misma forma.

Por otra parte las pérdidas que se presentan en los grifos, junto con las pérdidas ocasionadas por mal empleo de los consumos públicos, conducen a empeorar el consumo de agua. A continuación se definen los distintos tipos de perdidas.

- *Pérdidas de Agua*: diferencia entre el VOLUMEN DE ENTRADA AL SISTEMA y el CONSUMO AUTORIZADO. Las pérdidas de agua pueden considerarse como un volumen total para todo el sistema, o para sistemas parciales tales como las conducciones de agua bruta, de transporte o distribución. En cada caso, los componentes del cálculo se ajustarían consecuentemente. Las PÉRDIDAS DE AGUA consisten en PÉRDIDAS REALES y PÉRDIDAS APARENTES.
- Pérdidas Reales: pérdidas físicas de agua en el sistema presurizado hasta el punto de medida de uso del cliente. El volumen anual que se pierde a través de todo tipo de fugas, roturas y desbordamientos depende de las frecuencias, caudales y duración promedio de las fugas individuales.

Nota: Aunque las pérdidas físicas tras el punto de medida de caudal del cliente se excluyen de la evaluación de PÉRDIDAS REALES, éstas son a menudo significativas (particularmente en los sistemas donde no se realiza la contabilización del consumo domiciliario), y merecen atención si el objetivo es gestionar la demanda.

 Pérdidas Aparentes: representan toda clase de imprecisiones asociadas con la medida del agua producida y consumida, más el consumo no autorizado (robo o uso ilegal).

Nota: El subregistro de los contadores en los puntos de producción y el sobrerregistro de los contadores domiciliarios conducen a la subestimación de

las PÉRDIDAS REALES, mientras que las situaciones contrarias conducen a una sobrestimación de las mismas pérdidas.

Debido a la importancia del buen desempeño de las redes de distribución, para evitar pérdidas económicas por fugas en la misma, existe una tendencia en otros países de usar indicadores mejorados que miden de una mejor manera este parámetro.

Un ejemplo de estos es el ya reconocido IFI (Índice de Fugas por infraestructura) ó ILI por sus siglas en inglés. Este indicador toma en cuenta las pérdidas por conexiones y por unidad de longitud de tubería. Una versión simplificada de este indicador, se basa sólo en la pérdida de litros por conexión por día, existiendo una correlación con el ILI, tal como lo muestra Cuadro 2.1.

Cuadro 2.1. ILI – VERSUS LTS/CONEXIÓN/DIA.

Technical Performance		Ш	Litres/connection/day (when the system is pressurised) at an average pressure of:				
Category			10 m	20 m	30 m	40 m	50 m
pa s	A	1 - 2		< 50	< 75	< 100	< 125
Developed Countries	В	2 - 4		50-100	75-150	100-200	125-250
evel oun	C	4 - 8		100-200	150-300	200-400	250-500
ĞÖ	D	> 8		> 200	> 300	> 400	> 500
ng se	A	1-4	< 50	< 100	< 150	< 200	< 250
Developing Countries	В	4-8	50-100	100-200	150-300	200-400	250-500
	C	8 - 16	100-200	200-400	300-600	400-800	500-1000
	D	> 16	> 200	> 400	> 600	> 800	> 1000

FUENTE: International Water Association (IWA).

En el cuadro anterior se definen valores simplificados Litros/conexión/día (l/c/d). En la columna de la izquierda muestra el nivel de desempeño del sistema para países

desarrollados y países en vías de desarrollo. Para evaluar el caso de estudio se debe transformar las pérdidas físicas de l/s a l/c/d.

Reducción de Perdidas Físicas: Es el conjunto de acciones de planeamiento integrado destinadas a la reducción y control de las fugas de agua en cada uno de los componentes del sistema a costos compatibles con los beneficios obtenidos.

Premisas Básicas del Proyecto de Control de Fugas

- 1. Corregir ante todo, las fugas que representen mayor porcentaje del total de fugas inventariadas.
- 2. Identificar las causas de las fugas recomendando acciones de alto beneficio / costo y reducción de fugas.
- 3. Estructurar las acciones para propiciar la reducción de las fugas, la obtención de beneficios, la adecuación Gerencial del Sistema y el inicio de la solución de los problemas a largo plazo.
- 4. Implantar las acciones de acuerdo a la realidad de cada EPS, adecuando las acciones a situaciones específicas y las posibilidades de reversión directa de los volúmenes recuperados en venta de agua.

Factores importantes en la determinación del período de diseño. Simón Arocha (1977). "Abastecimiento de Agua, Teoría y Diseño"

El período de diseño se define como el tiempo para el cual el sistema es eficiente 100 %, ya sea por capacidad en la conducción del gasto deseado, o por la resistencia física de las instalaciones.

En la fijación del tiempo para el cual se considera funcional el sistema, intervienen una serie de variables que deben ser evaluadas para lograr un proyecto económicamente aconsejable, como:

1. Durabilidad o vida útil de las instalaciones. Dependerá de la resistencia física del material a factores adversos por desgaste u obsolescencia. Todo material se deteriora con el uso y con el tiempo, pero su resistencia a los esfuerzos y daños a los cuales estará sometido es variable, dependiendo de las características del material empleado. Así, al hablar de tuberías, como elementos de primer orden dentro de un acueducto, encontramos distintas resistencias al desgaste por corrosión, erosión y fragilidad; factores estos que serán determinantes en su durabilidad o en el establecimiento de períodos de diseño, puesto que sería ilógico seleccionarlos con capacidad superior al máximo que les fija su resistencia física. Siendo un sistema de abastecimiento de agua una obra muy compleja, constituida por obras de concreto, metálicas, tuberías, estaciones de bombeo, etc., cuya resistencia física es variable, no es posible pensar en períodos de diseño uniformes.

2. Facilidades de construcción y posibilidades de ampliaciones o sustituciones.

La fijación de un período de diseño está intimamente ligado a factores económicos. Por ello, al analizar uno cualquiera de los componentes de un sistema de abastecimiento de agua, la asignación de un período de diseño ajustado a criterios económicos estará regida por la dificultad o facilidad de su construcción que inducirán a mayores o menores períodos de inversiones nuevas, para atender las demandas que el crecimiento poblacional obliga.

Debe, por lo tanto, analizarse esta factibilidad como condición determinante en la fijación del período de diseño. Asimismo, puede entenderse que existen componentes del sistema que pueden construirse por etapas (estanques, plantas de tratamiento, etc.) previendo su desarrollo con el crecimiento de la demanda, pero que no necesariamente representan una unidad indivisible desde su inicio.

3. Tendencias del crecimiento de la población. Un sistema de abastecimiento de agua debe ser capaz de propiciar y estimular este desarrollo, no de frenarlo, pero el acueducto es un servicio cuyos costos deben ser retribuidos por los beneficiarios, pudiendo resultar en costos muy elevados si se toman períodos muy largos para ciudades con desarrollos muy violentos, con lo cual podría proporcionarse una quiebra administrativa.

Esto nos induce a señalar que de acuerdo a las tendencias de crecimiento de la población es conveniente elegir períodos de diseño más largos para crecimientos lentos y viceversa.

4. Posibilidades de mantenimiento y rata de interés. Las razones de durabilidad y resistencia al desgaste físico es indudable que representa un factor importante para el mejor diseño, pero adicionalmente habrá que hacer estas estimaciones de interés y de costo capitalizado para que pueda aprovecharse más útilmente la inversión hecha. Esto implica el conocimiento del crecimiento poblacional y la fijación de una capacidad de servicio del acueducto para diversos años futuros, con lo cual se podría obtener un período óptimo de obsolescencia, al final del cual se requeriría una nueva inversión o una ampliación del sistema actual.

La determinación de la capacidad del sistema de abastecimiento de agua de una localidad debe ser dependiente de su costo total capitalizado. Generalmente los sistemas de abastecimiento se diseñan y construyen para satisfacer una población mayor que la actual.

Rango de valores aconsejables para el período de diseño. Simón Arocha (1977). "Abastecimiento de Agua, Teoría y Diseño":

a. *Fuentes superficiales*: Sin regulación: deben proveer un caudal mínimo para un período de 20 a 30 años.

- Con regulación: las capacidades de embalse deben basarse en registros de escorrentía de 20 a 30 años.
- b. *Fuentes subterráneas*: El acuífero debe ser capaz de satisfacer la demanda para una población futura de 20 a 30 años, pero su aprovechamiento puede ser por etapas, mediante la perforación de pozos con capacidad dentro de períodos de diseño menores (10 años).
- c. *Obras de captación:* Dependiendo de la magnitud e importancia de la obra se podrán utilizar períodos de diseño entre 20 y 40 años.
 - Diques-tomas: 15-20 años. Diques-represas: 30-50 años.
- d. *Estación de bombe*o: Se entiende por estación de bombeo a los edificios, equipos, bombas, motores, accesorios, etc.
 - A las bombas y motores, con una durabilidad relativamente corta y cuya vida se acorta en muchos casos por razones de un mantenimiento deficiente, conviene asignarles períodos de diseño entre 10 y 15 años. Las instalaciones y edificios pueden ser diseñados tomando en cuenta las posibilidades de ampliaciones futuras y con períodos de diseño de 20 a 25 años.
- e. *Líneas de aducción:* Dependerá en mucho de la magnitud, diámetro, dificultades de ejecución de obra, costos, etc., requiriendo en algunos casos un análisis económico. En general, un período de diseño aconsejable está entre 20 y 40 años.
- f. *Plantas de tratamiento:* Generalmente se da flexibilidad para desarrollarse por etapas, lo cual permite estimar períodos de diseño de 10 a 15 años, con posibilidad de ampliaciones futuras para períodos similares.
- g. Estanques de almacenamiento: De concreto: 30-40 años, Metálicos: 20-30 años. Los estanques de concreto permiten también su construcción por etapas, por lo cual los proyectos deben contemplar la posibilidad de desarrollo parcial.
- h. Redes de distribución: Las redes de distribución deben diseñarse para el completo desarrollo del área que sirven. Generalmente se estiman períodos de

diseño de 20 años, pero cuando la magnitud de la obra lo justifique estos períodos pueden hacerse mayores: 30 a 40 años.

Las clases de tuberías frecuentemente utilizadas para la construcción de sistemas de abastecimientos de agua, depende del material empleado para su fabricación y de diversos factores que permitirán lograr un mejor diseño ya que su conocimiento implica la posibilidad de utilización de acuerdo a sus propiedades y a los riesgos que soportaran tales como su fragilidad, rugosidad, peso, grado de corrosividad y flexibilidad.

Rugosidad y años de servicio:

Durante el período de servicio de la tubería, el grado de alteración que experimenta su rugosidad inicial dependerá de la calidad de agua transportada y de la naturaleza de la superficie interior del conducto. Esa alteración puede reducir la capacidad hidráulica del elemento de conducción, bien sea por incremento del coeficiente de fricción, por disminución sensible del área neta de flujo o superposición de ambos efectos.

Diversas investigaciones experimentales parecen indicar que la rugosidad aumenta linealmente con el tiempo, por causa de la corrosión o por crecimientos orgánicos y depósitos calcáreos provocados por acciones físicas, químicas y bacteriológicas de ciertos tipos de aguas. Según ese criterio, la rugosidad K se calcula por:

 $K = \!\! K_O + \alpha T$

Ko: Rugosidad inicial (aproximadamente 0.0001 para PVC y PEAD; 0.05 para el ACERO)

α: Coeficiente de proporcionalidad

T: Tiempo de vida útil.

Para la estimación del coeficiente de proporcionalidad se utiliza la cuadro 2.2 en la cual se relaciona el coeficiente con la característica del agua. Esta tabla se usa mayormente para tuberías de PVC – PEAD.

CAPÍTULO II – MARCO TEÓRICO

Cuadro 2.2 Características del agua y su relación con α Según Colebrook - White

		VALORES DE a (mm/año)						
GRUPO	CARACTERISTICAS DEL AGUA	MINIMO	MEDIO	MAXIMO				
1	Aguas poco mineralizadas, no agresivas, poco contenido de minerales y de materia orgánica	0.005	0.025	0.055				
2	Aguas poco mineralizadas pero corrosivas (PH reducido), de contenido de hierro y materia orgánica inferior a 3 mh/l	0.055	0.07	0.18				
3	Agua muy corrosiva (PH muy bajo), con contenido de cloruros y sulfatos menores de 150 mg/l y hierro superior a 3 mh/l	0.18	0.2	0.4				
4	Aguas corrosivas (PH reducido) con contenido de cloruros y sulfatos entre 500 y 700 mg/l y considerable materia orgánica	0.4	0.51	0.6				
5	Aguas muy mineralizadas, de gran dureza, PH superior a 7, residuo sólido superior a 2000 mg/l	0.6	0.7	1				

FUENTE: "Tuberías a Presión" Manuel Vicente Méndez (2007)

Epanet: Es un programa para computador para el análisis de sistemas de distribución de agua potable. Aunque en general puede ser utilizado para el análisis de cualquier fluido no compresible con flujo a presión.

Modelado de sistemas de distribución de agua potable con Epanet:

La aplicación del EPANET como modelo automatizado de simulación, nos permite comprender de una manera más eficaz el comportamiento hidráulico y de la calidad del agua en redes de distribución a presión en un período del tiempo extendido. EPANET modela un sistema de distribución de agua como un conjunto de líneas conectadas por sus nudos extremos, las mismas representan tuberías, bombas o válvulas de control. Los nudos representan puntos de conexión entre tuberías o extremos de la misma, con o sin demandas, y también depósitos o embalses. El programa determina lo siguiente:

- El caudal que circula por cada una de las conducciones.
- La presión en cada uno de los nudos.

- El nivel de agua en cada tanque.
- La concentración de diferentes componentes químicos a través de la red durante un determinado período de simulación analizado en diferentes intervalos de tiempo.
- El tiempo de permanencia del agua en las tuberías.
- La procedencia del agua en cada punto de la red.

Esta herramienta puede aplicarse en diferentes análisis de sistemas de distribución entre los cuales se encuentra el diseño de programas de muestreo, calibración de modelos hidráulicos, análisis de cloro residual y valoración de riesgos en que se encuentran los consumidores. Ofrece un entorno de trabajo integrado que se emplea bajo sistemas operativos Windows, para el ingreso de los datos de entrada de la red, para el cálculo hidráulico y las simulaciones de la calidad del agua, y para poder visualizar los resultados obtenidos en una amplia variedad de formatos incluyendo planos de la red con códigos de colores, tablas de datos, gráficos de evolución y planos con curvas de isoniveles. Las características que proporciona el modelo de análisis hidráulico son las siguientes:

- No establece límites en cuanto al tamaño de la red que se requiere analizar.
- A través de las ecuaciones de Hazen-Williams, Darcy-Weisbach, o Chezy-Manning calcula las perdidas por fricción.
- Considera las pérdidas menores que se presentan en elementos como codos, acoplamientos, etc.
- Modela bombas tanto de velocidad fija como de velocidad variable.
- Determina el consumo de energía y costos de operación de bombeo de las estaciones.
- Los tanques pueden presentar una geometría variada para el almacenamiento del agua.

- Admite diferentes tipos de válvulas como válvulas de regulación, válvulas de retención, válvulas de aislamiento, válvulas reductoras de presión, etc.
- Contempla la posibilidad de establecer distintas categorías de consumos en los nudos, cada una con su respectiva curva de modulación.
- Permite modelar consumos dependientes de la presión que salen al exterior del sistema a través de emisores como los aspersores.
- Puede determinar el funcionamiento del sistema con el nivel de agua en el tanque y controles de tiempo o utilizar un sistema de regulación temporal.

EPANET modela los objetos físicos que conforman el sistema de distribución así como sus sistemas operacionales, tales como:

- Conexiones: Son puntos en la red donde se unen las líneas o por donde entra o sale el agua de la red. La información básica que se requiere para la conexión es:
 - Cota, normalmente sobre el nivel del mar.
- Demanda de agua (régimen de evacuación desde la red).
- Calidad del agua inicial.

Las conexiones pueden tener una demanda que varíe con el tiempo, tener diferentes categorías de demandas asignadas, tener una demanda negativa indicando que el agua entra en la red, ser fuente de calidad del agua por donde los constituyentes entran en la red y contener emisores haciendo que el caudal descargado dependa de la presión.

2. *Depósitos:* Son nudos que representan una fuente externa infinita o un sumidero para el sistema. Son utilizados para modelizar lagos, ríos, acuíferos subterráneos y conexiones a otros sistemas.

Ya que el depósito es un punto frontera de la red, su altura y calidad de agua no pueden verse afectada por lo que ocurra en el resto del sistema, por lo

tanto, no se ordenan características de salida. A pesar de todo, se puede hacer variar la altura con el tiempo si se le asigna un patrón de tiempo.

- 3. Tanques: Son nudos con capacidad de almacenamiento, donde el volumen de agua almacenada puede variar con el tiempo en el transcurso de la simulación. Los tanques operan limitados por sus niveles máximo y mínimo, el programa detiene el aporte de caudal si el nivel de agua es mínimo y detiene el consumo de caudal si el nivel de agua es máximo. Las principales características de los tanques son: Cota, donde el nivel del agua es cero, diámetro o geometría si no es cilíndrico, valores iniciales máximos y mínimos del nivel del agua, calidad del agua inicial.
- 4. *Tuberías:* Son líneas que llevan el agua de un punto de la red a otro. EPANET asume que todas las tuberías se encuentran completamente llenas en todo momento. La dirección del caudal desde el extremo con altura piezométrica mayor hacia el extremo de la conducción con menor altura, siguiendo siempre el sentido de la disminución de la altura. Los parámetros hidráulicos más importantes para las tuberías son: Nudos de entrada y salida, diámetro, longitud, coeficiente de rugosidad, estado (abierta, cerrada o con una válvula). La rugosidad de las paredes de la tubería origina pérdidas de carga, las cuales pueden determinarse por medio de diferentes métodos: Método de Hazen-Willians, Método de Darcy-Weisbach, Método de Chezy-Manning.
- 5. *Bombas:* Son elementos que aportan energía al fluido incrementando su altura piezométrica. Las características principales de las bombas son sus nudos de aspiración e impulsión y su curva característica a velocidad nominal. Los parámetros de salida más importantes son el caudal y la carga. El caudal fluye unidireccionalmente dentro de la bomba y el programa no permite que una bomba trabaje fuera del rango que determina su curva característica.

6. Válvulas: Son líneas que limitan la presión o el caudal en un punto determinado de la red. Sus principales parámetros son: Nudos de entrada y salida, diámetro, consigna, estado. Los tipos de válvulas que incluye EPANET son los siguientes:

Válvulas reductoras de presión: su función es de limitar la presión en un punto de la red de la tubería. EPANET diferencia tres estados en los que puede trabajar; parcialmente abierta, totalmente abierta o cerrada.

Válvulas sostenedoras de presión: su función es mantener la presión en un punto específico de la red. EPANET diferencia tres estados en los que puede trabajar; parcialmente abierta, totalmente abierta o cerrada.

Válvulas de rotura de carga: su función es forzar el valor de la caída de presión. El flujo a través de la válvula puede ir en cualquier dirección. Estas válvulas no representan a ningún componente físico, pero son muy útiles para simular situaciones en las que la caída de presión a través de la válvula es conocida.

Válvulas limitadoras de caudal: su función es el de limitar el caudal de paso a un valor prefijado.

Válvulas de regulación: su función es simular una válvula parcialmente cerrada ajustando el valor del coeficiente de pérdidas menores. Usualmente los fabricantes proporcionan una relación entre el grado de cierre de la válvula y el coeficiente de perdidas resultante.

Válvulas de propósito general: su función es representar una línea cuya relación perdida-caudal es proporcionada por el usuario, en lugar de seguir el comportamiento típico de las válvulas establecidos por las

formulas hidráulicas convencionales. Se utilizan para modelar turbinas, pozos de aspiración o válvulas para reducir el caudal y controlar el flujo inverso.

Las válvulas de compuerta y las válvulas de retención, que cierran o abren completamente las tuberías, no están consideradas como elementos separados sino que se incluyen como una característica de la tubería en que se encuentran.

CAPITULO III

TIPO DE INVESTIGACIÓN

El presente trabajo se enmarcó bajo la modalidad de investigación de campo, que para la Universidad Centroccidental "Lisandro Alvarado" (2002) "es la aplicación del método científico en el tratamiento de un sistema de variables y sus relaciones, las cuales conducen a conclusiones y al enriquecimiento de un campo del conocimiento o disciplina inherente a la Especialidad, con la sustentación de los experimentos y observaciones realizadas." (p.63), de carácter descriptiva-explicativa, definido por Hernández y otros (2003), como descriptivo aquello que "buscan especificar las propiedades importantes de personas, grupos, comunidades, o cualquier otro fenómeno que sea sometido a análisis" (p.120), y Sampieri y otros (1997), como explicativo aquello que "Viene a explicar por qué ocurre un fenómeno y en qué condiciones se da éste, o por qué dos o más variables están relacionadas" (p.67)

POBLACIÓN Y MUESTRA

La población en una investigación está definida por Morles.(1994), como el conjunto para el cual serán válidas las conclusiones que se obtengan.

En el presente trabajo la población de estudio estuvo constituida por los usuarios de la red de distribución de Barquisimeto que se surten por gravedad, cuyo horario de servicio se encuentre entre 16 y 24 horas (servicio continuo).

Para esta investigación no se tomó muestra, es decir se trabajó con todos los usuarios que existen, ya que se obtuvo la base de datos comercial de la hidrológica local, Hidrolara C.A.

PROCEDIMIENTO

Para el cumplimiento de los objetivos antes indicados se recopiló en primer lugar, las diferentes opciones de trabajo de las fuentes de abastecimiento disponibles (Acuífero el Turbio, Acuífero El Tocuyo, Dos Bocas, SHYQ C.A.) para el cumplimiento de la demanda actual y futura de la ciudad de Barquisimeto, considerando operaciones conjuntas entre ellas.

Esto permitió establecer un concepto primario de la evolución del sistema basada en ofertas y demandas a corto, mediano, largo plazo y población de saturación, ayudando a la definición preliminar de las aducciones que se encargan de incorporar estas futuras fuentes.

Seguidamente, se desarrolló un modelo hidráulico de la red de Barquisimeto, donde se simularon las distintas opciones de trabajo de las aducciones que traen los gastos de las fuentes antes mencionadas, obteniendo una estrecha vinculación entre ellas a través de conexiones en puntos estratégicos de la red, para así lograr fiabilidad en el abastecimiento de agua potable, para ello se crearon anillos de servicio que recorrerán la red Alta del Oeste, Suroeste, Este, y Noreste del sistema de Barquisimeto.

Luego de seleccionar la alternativa definitiva para las aducciones que se encargan de incorporar las nuevas fuentes, se procedió a elaborar la ingeniería básica que consta de: requerimientos de inversión, planos de planta y un plan de inversión que garantiza el aprovechamiento del gasto afluente al sistema de distribución, en un espacio extemporal de las fuentes.

Para tal fin se llevó a cabo las siguientes actividades:

- I. Recopilación de la información existente. (Cartografía de Barquisimeto, Topología de la red, disponibilidades de agua en el acuífero del Río Turbio, Disponibilidad de Agua en el Acuífero del Río tocuyo, Proyecto dos Bocas, Proyecto SHYQ, Censos, PDUL).
 - Información Cartográfica. (Fue entregada por Hidrolara, por medio del Departamento de Proyectos de Acueducto. Esta información contiene la cartografía base de Barquisimeto con la nomenclatura de calles, avenidas y sectores. La entrega de esta información se encuentra en formato digital, dentro del CD, en formato [.dwg] y se denomina "Cartografía y Topología red de Barquisimeto")
 - 2) Información topológica de la red de Barquisimeto. (La topología de la red, escasamente digitalizada y desactualizada, se encontraba en el mismo archivo de la cartografía. La información describe las redes principales (diámetro, ruta, ubicación, material) y con ella fue posible delimitar con los sub sistemas de abastecimiento para la construcción de los "Distritos de servicio").

Es de hacer resaltar que para la realización de las dos primeras tareas, se hicieron reuniones periódicas con el personal operativo de la empresa, a fin de verificar las rutas, diámetros y material de las tuberías existentes, por otra lado se revisó el histórico de los cuadros de reparaciones con las que se contaba en la hidrológica (1997 – 2011) depurando lo mas posible la información.

CAPITULO III – MARCO METODOLÓGICO

- 3) Información de estudios de disponibilidad de agua subterránea en el acuífero del Rio Turbio. (fue suministrado por la empresa hidrológica).
- 4) Información de estudios de disponibilidad de agua subterránea en el acuífero del Rio Tocuyo. Tesis de Grado de la ULA-CIDIAT.
- 5) Información actualizada SHYQ. (se solicitó a la empresa que realizó el estudio A.F. Ingenieros Civiles)
- 6) PDUL de Barquisimeto. (la hidrológica facilitó la información).
- 7) Información básica de los sistemas de producción, diámetro de aducciones, tanquillas de rebombeo. (la empresa hidrológica facilitó los datos).
- II. Estudio de demandas para la ciudad de Barquisimeto (dentro del ámbito de estudio). El mismo se estimó a partir de las siguientes acciones:
 - 1) Procesamiento de los datos estadísticos disponibles para las proyecciones de demandas (INE, PDUL). Para lograr tener datos cercanos a la realidad sobre la población de un sector se utilizaron diferentes métodos y técnicas, en este caso se toman como referencias imágenes satelitales que permiten, de manera grafica, determinar la cantidad de viviendas en un área. El método de cálculo de la población se realizó tomando una muestra de mínimo 20% de cada área diferenciada por su tipo de densidad, logrando datos que luego se pueden extrapolar al total de cada zona según su densidad.

En este caso se determinó de manera gráfica el número de viviendas y se tomó un factor de 4,5 habitantes por vivienda, factor promedio nacional de los habitantes por vivienda, para así determinar un valor de la población que sirva para determinar su dotación. A continuación se presentará y explicará cómo se desarrollo esta actividad y se realizará un cálculo tipo del efectuado para este trabajo:

Los sectores de estudio son la zona del oeste y norte de la ciudad de Barquisimeto. De dichos sectores se realizó un "collage" de imágenes de la totalidad de la zona seleccionada, para luego determinar los tipos de densidades que se usarán para el cálculo de las poblaciones.

Se determinaron y diferenciaron las densidades de manera visual sobre las imágenes tomando como punto principal la distribución de las viviendas presentándose algunas, por dar un ejemplo, con una distribución de manera desordenada a diferencia de otros sectores que presentan un orden urbanístico.

Luego de definidas y sectorizadas las densidades se calcularon las áreas de cada una de las densidades y en función de este valor se determinó el 20% para el muestreo y se ubicó dentro de las densidades para proceder al conteo gráfico de las edificaciones dentro de la muestra. Al lograr el conteo total en la muestra se realizaron los cálculos correspondientes para determinar la población en esa muestra y así determinar un valor de habitante por medida de área que sirvió para extrapolar al momento de calcular las poblaciones de cada uno de los sectores, realizando este procedimiento para cada una de la densidades.

Luego de realizados los cálculos y haber obtenido las diferentes densidades, se obtuvieron automáticamente los valores para presentar un mapa de densidades general, el cual permitió determinar la población de cada sector y subsector del Norte y Oeste. Este trabajo arrojó valores de habitantes con los que se determinó la dotación necesaria y que junto con valores de mediciones de caudal tomados del sistema permitió calcular la dotación que se está entregando, sirviendo estos valores para realizar varias comparaciones y cálculos que pueden ayudar a mejorar el servicio.

Es de hacer notar que se restaron las zonas vacías de cada sector que representaban aéreas considerables para lograr valores más cercanos a la realidad. En el mosaico de las imágenes se crearon por capas los siguientes aspectos:

Densidades: cada densidad presenta una capa con denominación y color representativo. Para el cálculo de las áreas se creó capa de sectores vacios para restarlos a las áreas principales.

Sectores: Capa que muestra los sectores corregidos, la cual permitió que se realizara su clasificación por horarios de servicio. Se creó una capa con los sectores antiguos para su revisión y comparación.

Cuando fue necesario la corrección del ámbito espacial de algún sector solo se trabajó con las polilíneas sobre el mosaico de las imágenes y se determinó el área corregida, luego se calculó según su densidad correspondiente.

2) Proyección poblacional y de demanda de cada sector. Para la proyección de la población en el tiempo se utilizó el método

del interés compuesto. En cuanto al cálculo de la demanda actual se determinó por mediciones de gasto en las entradas de cada uno de los subsistemas en estudio.

3) Estimación de las pérdidas físicas del sistema. Las Gerencias de Operativa y comerciales de la empresa Hidrológica (Hidrolara, C.A.) entregaron la información necesaria disponible para llevar a cabo esta tarea (micro medición, macro medición). De los gráficos de sectores de servicio de cada sub sistema se tomó el correspondiente al sub sistema "Gravedad", definiéndose así la zona de estudio. Esta información se encontraba en formato [.dwg]

Se migró la base de datos comerciales del Map Info al Arc Gis.

El gráfico de la zona de estudio en [.dwg] fue llevado al Gis, superponiéndolo con Base de datos de usuarios comerciales. La superposición a su vez se delimitó en cuatro sub sectores: Sub sector gravedad Oeste, Sub sector Gravedad Centro-Este, Sub sector Gravedad Norte y Sub sector Zona industrial.

Los datos de interés de la Base de datos de usuarios comerciales son específicamente el consumo obtenido por micromedición de los residenciales usos sociales. residenciales, comerciales, industriales, Oficiales Cooperativas. Sin embargo, como es natural en las mayorías de las hidrológicas, no se dispone del 100% de micromedición en todos los clientes, por lo que fue necesario realizar extrapolación para estimar estos consumos.

La extrapolación se logró usando ajustes estadísticos de los valores medidos. Se realizaron varios ajustes dentro del

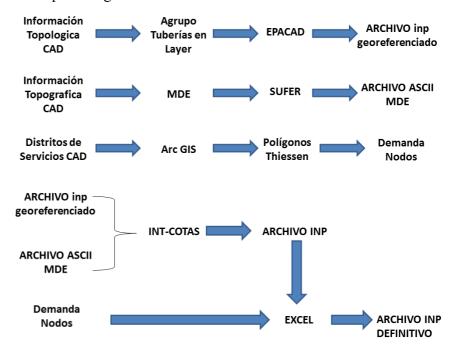
modelo bajo diferentes distribuciones estadísticas como Burr, Burr (4P), Dagum, Lognormal, Gamma, Pearson 6, Weibull, etc y se determinó cual se ajustaba mejor a través de una prueba de bondad de ajuste, para ello se utilizó el programa Easy Fit 5.3. El valor medio obtenido del ajuste fue asignado al valor "no medido" e incrementado en un 20% debido a que se considera que el usuario tiende a consumir este exceso al no contar con micro medición. Este fenómeno fue demostrado en un estudio realizado por Luis Mora (2000) denominado "Análisis de consumos promedios para los sistemas de abastecimiento de Mérida y El Vigía de Venezuela y el impacto de la Micro medición en su reducción".

Con los resultados de consumo y caudal de entrada a la zona de estudio, se realizó el balance.

Con el balance se obtuvo la pérdida total del sistema, en la región de estudio. Esta pérdida vino afectada por sobre registros en la macro medición (se asume de un +5%, para un escenario optimista) y de sub registro para la micromedición (en este caso es de -2%). Así mismo se asumió un 1% de clientes no facturados – no medidos (tomas ilegales o cualquier otro consumo autorizado), totalizando de esta manera las pérdidas aparentes. La diferencia entre el primer valor obtenido de pérdida total, se le restó lo obtenido como pérdida aparente obteniendo como resultado las pérdidas reales o físicas

4) Definición de valores objetivos para las pérdidas físicas del sistema. Para ello se utilizó el procedimiento propuesto por la

- International Water Association (IWA), se seleccionó un valor que para la presión de trabajo de la red y la condición de un país en vías de desarrollo no estuviese tan lejano a la realidad y pudiera cumplirse la meta en un período fijado.
- 5) Estimación de demandas para el escenario: sin recuperación de pérdidas físicas. Se realizó la proyección de la demanda en el tiempo, haciendo uso de los valores obtenidos en la proyección de población, a estas demandas encontradas se la agregó el valor de pérdidas físicas multiplicado por el número de usuarios, los resultados se muestran en el anexo 4.3.
- 6) Estimación de demandas para el escenario: con recuperación de pérdidas físicas. El procedimiento utilizado para la proyección de demanda es igual al que se aplicó en el escenario sin recuperación de pérdidas físicas, solo que al momento de considerar el gasto adicional por causa de las mencionadas pérdidas se múltiplo el numero de usuarios por el valor de pérdidas objetivo planteado en paso 4. Los resultados de los mismos se muestran en el anexo 4.3.
- 7) Sugerencias para la regulación de las pérdidas físicas, control y seguimiento de metas objetivo.
- III. Fase de campo. (Verificación de elementos principales del sistema en sitio, medición de presiones y caudales). Se realizó en campo las siguientes acciones:
 - 1) Ubicación de los estanques de almacenamiento, válvulas principales, Bocas de inspección de las tuberías principales.
 - 2) Medición de caudal y presión en puntos estratégicos del sistema para identificar caudales de entrada a subsistemas,



- estimación de pérdidas, etc. Para esta actividad se contó apoyo de la empresa hidrológica.
- 3) Medición de caudal y presión en las aducciones principales para la determinación de coeficientes de rugosidad y envejecimiento de tuberías. Para esta actividad se requirió apoyo de la empresa hidrológica.

IV. Elaboración del modelo hidráulico conceptual de la red de Barquisimeto

Esta actividad corresponde a la modelación en Epanet, por ser este un software libre y versátil, de las redes principales de Barquisimeto. Las acciones que se tomaron para elaborar este modelo se describen a continuación y se bosquejan en el esquema siguiente:

FIGURA 3.1. ESQUEMA DEL PROCEDIMIENTO UTILIZADO PARA GENERAR MODELO HIDRAULICO. (ARCHIVO DE ENTRADA EPANET).

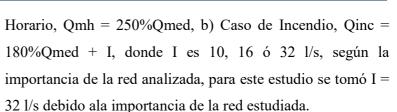
CAPITULO III – MARCO METODOLÓGICO

- Con base a la información de la topología de la red se realizó un plano digital de la misma en el software AutoCAD completamente geo referenciado. Para llevar el archivo *.CAD a Epanet se utilizó el software EpaCAD el cual permite convertir un archivo *.dxf a *.inp, previendo de que el archivo .dxf debe estar en formato 2000. (Ver anexo 3.1)
- 2) La distribución de caudal en los nodos se realizó por el método de las áreas y dichas áreas de influencia de cada nodo se determinó por Polígonos de Thiessen o de Voronoi, en el anexo 3.2 se muestra esta distribución. Para ello se utilizó el software ArcGIS 9.3.
- 3) Para la obtención de la cota de los nodos, se generó un modelo digital de elevación (MDE) en Surfer 9.0 de toda la ciudad de Barquisimeto, para ello se tomó como base la cartografía de Hidrolara la cual presenta curvas de nivel a cada metro, el MDE se guardó en formato ASCII *.grd.
 - 4) Para la asignación de las cotas en el modelo hidráulico de Epanet se desarrolló un software llamado INT-COTAS el cual permite interpolar las cotas de los nodos de un archivo *.inp generado en Epanet a partir de una superficie generada en Surfer con formato ASCII *.grd, el método que utiliza para este tarea es la interpolación bilineal.

Dada la inexistencia de software gratuitos que permitan realizar esta tarea y motivado a la gran cantidad de nodos que se generaron en el modelo (aproximadamente 1200 nodos), se desarrolló este software el cual se deja para uso libre. En el anexo 3.3 se muestran los detalles del software acerca de su usó.

- 5) Para culminar se evaluó la capacidad de almacenamiento del sistema de distribución, para ello se utilizó el procedimiento propuesto por Simón Arocha (1989) "Abastecimiento de Agua, Teoría y Diseño" (p.129), para las variaciones de consumo horario se tomó la curva elaborada por el Instituto Nacional de Obas Sanitarias (I.N.O.S.) para la ciudad de Caracas.
- V. Incorporación al modelo de las distintas alternativas para la entrada de las nuevas fuentes para distintos escenarios de pérdidas físicas: Con pérdidas, sin pérdidas. Simulación de cada alternativa. Análisis de los resultados de la simulación. Selección de la alternativa.

Con base en los resultados preliminares llevados por la Gerencia Técnica de Hidrolara (2011), acerca de la "Planificación Hidráulica de los Sistemas de Producción", estudio dirigido por el Ingeniero Jorkman Rondon, donde se planifica el aprovechamiento de las fuentes, se pudo simular diferentes escenarios de operación que permitieron el diseño de los elementos que incorporan futuras fuentes, de manera más óptima.


Las tareas realizadas fueron las que siguen:

 Corrida del modelo para los diferentes escenarios. Para cada uno de estos escenarios se tomaron en cuenta los casos contemplados en las "NORMAS SANITARIAS PARA EL PROYECTO, CONSTRUCCIÓN, AMPLIACIÓN, REFORMA Y MANTENIMIENTO DE LAS INSTALACIONES SANITARIAS PARA DESARROLLOS URBANISTICOS", las cuales son: a) Caudal Maximo

X

- 2) Reportes de la simulación, salidas de las variables de interés: presión, caudal, pérdidas.
- 3) Presupuestos basados en índices de costos de colocación de tuberías suministrados por la empresa hidrológica.
- 4) Selección de la alternativa con base en criterios específicos, de acuerdo a la situación de cada escenario, según la información que en su momento pudo suministrar la empresa hidrológica pudiendo ser: económico, social, político.

VI. Plan de inversión para garantizar relaciones eficientes de la oferta y demanda.

Se desarrolló de un plan de inversión para la adecuada y preventiva gestión de recursos, con el fin de ejecutar lo realmente necesario para solventar la problemática de manera paulatina, hasta cumplir con la meta final. Incurrir en inversiones que sólo se usan un tiempo después de su ejecución, genera ineficacia a pesar de que los costos por su ejecución expedita pudiesen permitir algunos ahorros. Como todo plan, se tomó en cuenta las diferentes variables y actores que participan en la jugada y que son decisorias en la viabilidad del plan. En este caso sólo existe una actividad:

- 1) Estimación de costos de las inversiones, basadas en índices de precios referenciales.
- 2) Elaboración de Plan de Inversión de los proyectos.

CAPITULO IV

En el capitulo que se presenta a continuación se muestran y analizan los resultados más relevantes obtenidos en el desarrollo de este trabajo, en el mismo se bosquejan los tópicos necesarios para comprender el sistema de distribución de la ciudad de Barquisimeto, su complejidad, sus subsistemas y su funcionamiento, para ello se realiza un estudio de demandas, en donde se desarrolla un exhaustivo trabajo de sectorización de la red y a partir de allí se calculan las dotaciones actuales que son entregadas por la hidrológica a los sectores en cuestión y por ende su demanda. También se determina la proyección de esta demanda a corto, mediano y largo plazo.

Del mismo se determina el índice de cobertura para los sectores dentro del ámbito del estudio que no cuentan con un servicio de 24 horas, permitiendo conocer como es el servicio con el que cuentan estos subsistemas en términos cualitativos. Seguidamente se determinan a través de un balance demanda – disponibilidad las pérdidas físicas que existen en el sistema, con lo que se plantean los escenarios de simulación para el modelo hidráulico, como son: demandas sin recuperación de pérdidas físicas y demandas aplicando un plan de recuperación de pérdidas físicas.

Por ultimo se genera el modelo hidráulico de la red de distribución de la ciudad, en donde se realizan las simulaciones de los escenarios planteados, seguidamente se determina la alternativa de solución y se cuantifica la misma en términos financieros, permitiendo elaborar un plan de inversión en el tiempo que garantiza las inversiones de manera adecuada.

IV.1. ESTUDIO DE DEMANDAS

Para el estudio de demandas se plantearon los escenarios siguientes:

- Demandas actuales en base a las dotaciones actuales con pérdidas físicas.
- Demandas a corto, mediano y largo plazo en base a las dotaciones mínimas sanitarias con pérdidas físicas
- Demandas a corto, mediano y largo plazo en base a las dotaciones máximas con pérdidas físicas
- Todas las anteriores sin pérdidas físicas, con estrategia de reducción.

Para cada caso se calculó la demanda a partir de una proyección poblacional quinquenal, para un horizonte de diseño máximo que contempla la población de saturación según el Plan de Desarrollo Urbano Local (PDUL) elaborado en el año 2003.

Se desarrolla el cálculo de la dotación actual, sin tomar en cuenta los sub sistemas de Pavia, Bobare, y otros que están fuera del ámbito de estudio.

Para estimar la dotación primeramente se necesita conocer la población actual de cada sub sector. A continuación se describe el sistema ya a su vez se determina por cada subsistema desarrollado su población, dotación actual.

IV.1.1. DESCRIPCION DEL SISTEMA BARQUISIMETO

El sistema de Barquisimeto se compone por tres niveles de servicio: Red Alta (Nivel 3) que corresponde a la red de la zona Oeste desde Villa Rosa hasta la Calle 43

de Barquisimeto; la Red Media (Nivel 2) que va de la calle 43 hasta la Av. Vargas y la Red Baja (Nivel 1) que va desde la Vargas hasta el Este de la ciudad.

Estos niveles están divididos altimétricamente en partes aproximadamente iguales, de 65 mts cada uno. Sin embargo, esta descripción de niveles es meramente teórica puesto que en la realidad no funcionan las válvulas reguladoras concebidas para tal fin en el "Plan Maestro del Oeste" desarrollado por Hidrolara en el año 2000, las cuales deberían separar los Niveles 3 y 2, y mucho menos se manifiesta la separación o regulación de los Niveles 2 y 1. Como se puede ver en la figura 4.1 a continuación:

FIGURA 4.1. NIVELES DE SERVICIO DE LA RED DE DISTRIBUCIÓN DE LA CIUDAD DE BARQUISIMETO

La fuente principal de abastecimiento es el embalse Dos Cerritos, del cual se obtiene 4.100 l/s durante 9 meses del año ya que en los otros 3 meses se regula a 3.500 l/s debido a los problemas de succión en las bombas cuando el nivel del embalse desciende a la cota 464 msnm, situación que se presenta sobre todo, en período de sequía, de tal manera que el caudal promedio es de 3.900 l/s aproximadamente.

Este gasto es bombeado por una aducción de 66" del cual existen derivaciones (250 l/s para la ciudad del Tocuyo), fugas y tomas clandestinas para riego, que hacen que el caudal que se recibe en la Planta de Tratamiento de Quíbor sea de 3.500 l/s. De estos 3.500 l/s se derivan 500 l/s para la ciudad de Quíbor y los 3.000 l/s restantes se envían para Barquisimeto a través de una aducción de 60".

En el tramo Quíbor – Barquisimeto también existen algunas pérdidas y salidas para acueductos rurales poco significativas que reducen el caudal de entrada a la ciudad de Barquisimeto a un valor de 2.800 l/s aproximadamente. En la entrada de la ciudad se inicia el primer sub sistema denominado Villa Rosa, seguidamente se tiene el empalme del Llenadero, El Coriano y Pavia Bobare, para finalmente descargar en los Estanques El Tostao (dos estanques de 30.000 m³ de capacidad cada uno), ubicados en el km 11 de la Av. Florencio Jiménez, cota 665 msnm.

En la entrada de estos estanques existe un tridente con dos válvulas reguladoras que al parecer no están en funcionamiento ya que la regulación se hace directamente de una válvula principal de 24" ubicada aguas arriba de este tridente. Es importante aclarar que sólo uno de los estanques está en funcionamiento, y se esperaba poner en servicio el otro luego de realizar algunos trabajos pendientes de mantenimiento. En la válvula reguladora se debe mantener una presión mínima de 15 psi mientras el llenadero se encuentre operando, esto significa que se regula por lo menos un 70% la

válvula principal. Una vez que finaliza la programación, la presión puede descender hasta 12 psi, permitiendo la apertura de la válvula quedando regulada en un 40%.

De los estanques sale una tubería de 66" que se encarga de suministrar a todos los sub sistemas ubicados aguas abajo de estos, Norte y Oeste, los cuales serán detallados más adelante. Esta tubería reduce a 60" hasta llegar a la Av. Cementerio donde existen tres líneas principales definidas por Hidrolara (2000) en el "Plan Maestro del Oeste" como los alimentadores de macro sectorización de acuerdo al siguiente plan: 1). Alimentador El Cementerio para el Sector Nor - Oeste, que corresponde a la tubería de 30" que transita por la Av. El Cementerio y surte la zona II y III; 2). Alimentador Las Margaritas para el Sector Sur que se refiere a la tubería de 30" que sale en la válvula conocida como Las Margaritas y tiene como ruta la Av. Los Horcones, encargada de suministrar a la zona Sur del centro de Barquisimeto (Brisas del Aeropuerto, calle 14, etc.); y el Alimentador Centro para el Sector Centro que se trata de la tubería que continúa por la Av. Florencio Jiménez de 30" hasta reducir en diferentes diámetros en el centro de la ciudad. Esta propuesta aún no ha sido probada y se opera de la manera en que se ha hecho los últimos años, con maniobras menores en diferentes válvulas de los tres alimentadores definidos anteriormente, por ejemplo: Maniobras en las válvulas El Obelisco y La Maderera pertenecientes al alimentador centro (según el Plan Maestro del Oeste), Maniobras en las válvulas 20 de Pueblo nuevo y 56 con 13 del alimentador Sur, y Maniobras en las válvulas Cementerio, Vengas y Univensa del alimentador Nor - Oeste. Esta explicación se puede ver esquematizada en la figura 4.2 que se muestra continuación:

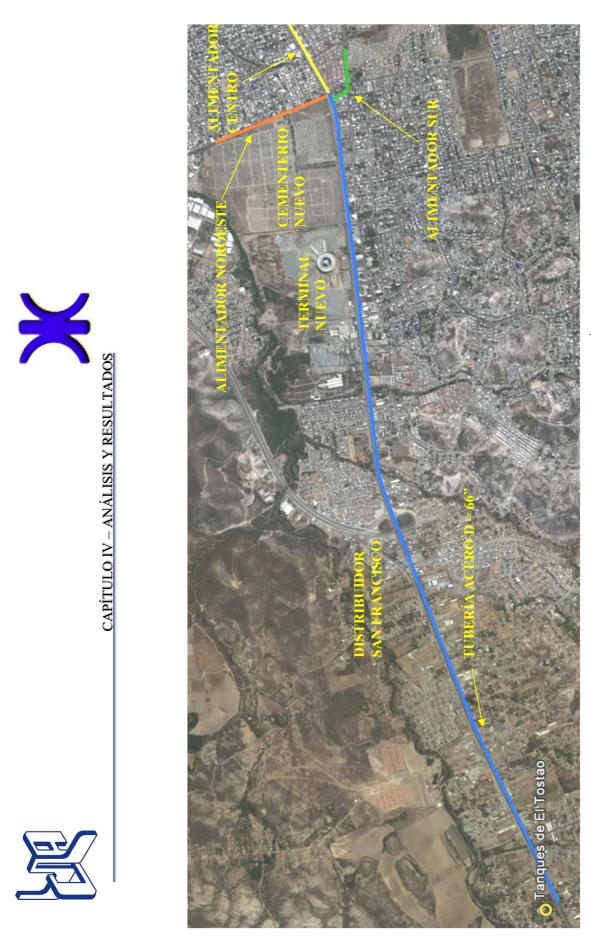


FIGURA 4.2. ALIMENTADORES PRINCIPALES DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO.

Otra de las fuentes del sistema es el campo de pozos de Macuto, ubicado al sur de Barquisimeto, a la margen derecha del Río Turbio. Este campo de pozos produce alrededor de 500 l/s de los cuales 250 l/s se envían para el Manzano (sector independiente del sistema Barquisimeto, fuera de la cobertura de este trabajo), y los otros 250 L/s se envían a Barquisimeto por una tubería de 30" a la altura de la calle 34, cota 570 msnm (piezométrica 580 msnm aproximadamente).

Así mismo existen otras fuentes pero que tienen un ámbito muy específico en cuanto a su cobertura, es decir, están casi independientes del sistema Barquisimeto, o por lo menos están en proceso de consolidación para su independencia total. Estas otras fuentes son: Campo de Pozos Titicare que surte a una población del sur de Barquisimeto; Campo de Pozos El Carabalí que se comparte para Barquisimeto y Palavecino, en Barquisimeto abastece a la zona de Santa Rosa y red baja del Este; y el Campo de Pozos El vidrio que da servicio a una población ubicada al Nor – Este de la ciudad. Estos sub sistemas no serán objeto de este estudio debido a la independencia señalada anteriormente.

Tal como se señaló al principio, de la tubería principal se derivan varios sub sistemas a saber:

- Sub sistemas del Oeste: Villa Rosa, Llenadero km11, Coriano,
 Pavia Bobare, La Paz, Zona industrial, Lomas de León,
 Gravedad Oeste.
- Sub sistemas del Centro: Gravedad Centro Este.
- Sub sistemas del Norte: La Peña, Cerro Gordo, Altos de Jalisco, El Jebe, Cristo Viene, Llenadero San Juan, Cují - Tamaca, Gravedad Norte.
- Otros Sub sistemas de abastecimientos de Barquisimeto fuera del ámbito de estudio: Sub sistema Carabalí - Barquisimeto para los

sectores Santa Rosa, Santa Elena (dependen del campo de pozos El Carabalí). Existe una propuesta a mediano plazo para expandir más el alcance en la zona de Santa Elena que está en ejecución con el sector privado, sin embargo en la actualidad el Urbanismo Santa Elena pertenece al sistema **Gravedad Centro** – **Este** y se surte a través del rebombeo Santa Elena ubicado en Fundalara, por lo tanto tiene su análisis actual de demanda en ese sub sistema.

- Sub sistema Nor Este para los sectores Chirgua El Cercado (depende del campo de pozos El Vidrio) Este sub sistema a pesar de tener su propia fuente presenta un crecimiento que se extiende más allá de sus actuales límites. Este crecimiento se evalúa en el estudio de demandas lo que permite conocer si es posible cubrirlo con la fuente de los pozos El Vidrio o si requerirá aporte del sistema de Barquisimeto o de alguna otra fuente (Dos bocas por ejemplo).
- Sub sistema Sur que surte a los sectores de El Manzano y El Roble, tiene su fuente propia desde el Campo de Pozos Macuto.
 Sub sistema Veragacha que posee su propia fuente de abastecimiento del campo de pozos Veragacha y que en un futuro dependerán de los pozos del Vidrio (de igual manera es el acuífero del rio Turbio).

El esquema siguiente muestra el ámbito del estudio de demandas de la presente investigación:

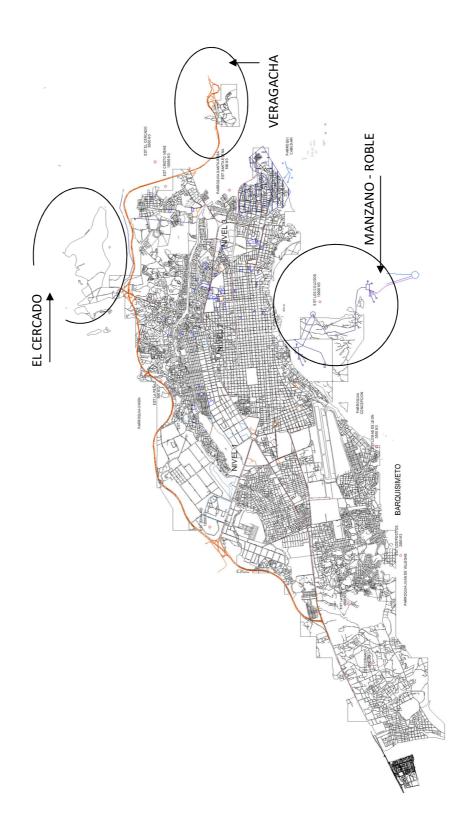


FIGURA 4.3. ÁMBITO ESPACIAL DE ESTUDIO (SE EXCLUYEN LOS SISTEMAS EL CERCADO – VERAGACHA Y EL MANZANO)

1.1. Sub sistema Villa Rosa:

Es el primer sub sistema de Barquisimeto y está ubicado en la Av. Florencio Jiménez, vía Buena Vista. Es una tanquilla de 1.000 m3 de capacidad en la cota 688 m.s.n.m. Posee una conexión directa de la aducción que viene de la Planta de Tratamiento de Quíbor. El sub sistema Villa Rosa consiste en un sistema de rebombeo que opera de manera programada y con diferentes caudales para tres sub sectores: Villa Crepuscular, Villa Rosa, y la Batalla.

El sub sector Villa Crepuscular se surte a través de una tubería de 16" en ACERO que luego reduce a 10" y se bombea de manera directa contra la red a través de unos Equipos de 150 HP con bombas tipo Turbina, alimentados por un Banco de transformadores de 3 x 100 KVA. Son tres equipos de los cuales opera sólo uno y el resto permanece en reserva alternándose según programación.

El sub sector Villa Rosa se abastece de la misma tanquilla y posee dos equipos (uno operativo y otro en reserva) con bombas tipo Turbina de 125 HP, alimentada por un banco de transformadores de 3 x 50 KVA, y bombea a través de una tubería de 10" de ACERO que descarga en el Estanque Postensado de Villa Rosa ubicado en la cota 790 msnm y de 2.000 m³ de capacidad. Desde el Estanque se derivan varios alimentadores con los que se surten diversas comunidades.

El sub sector La Batalla depende de un bombeo directo a la red a través de una tubería de 6". En la figura 4.4 se observa un esquema de la cobertura física del sistema; en el caudro 4.1 se muestra el Horario de Servicio y las comunidades beneficiadas para cada programación; en el cuadro 4.2 se muestran el número de horas de servicio de cada sub sector y su caudal de salida para el cálculo del caudal promedio del sub sistema.

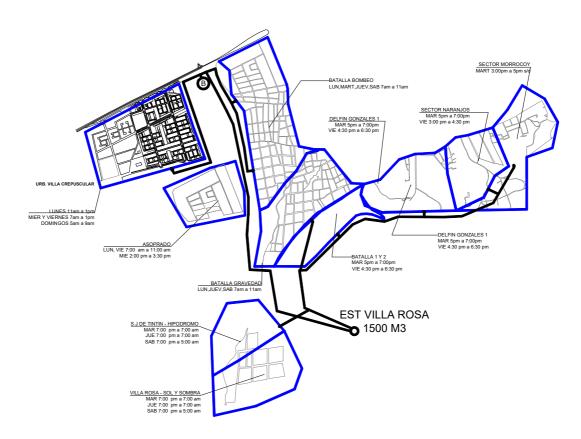


FIGURA 4.4. ESQUEMA DE LA COBERTURA DEL SUB SISTEMA VILLA ROSA

CUADRO 4.1. HORARIO DE SERVICIO SUB SISTEMA VILLA ROSA.

DOMINGO	VIII A CREDIISCIII AR	יובה כובו סכסביוו	RECUPERACION DE TANQUE																							
SÁBADO		BATALLA GRAVEDAD - BATALLA BOMBEO	מעושר פושאר בשם - מעושרים פושופרס			RECUPERACION DE TANQUE			VILA ROSA - SAN JOSE DE TINTIN - EL HIPODROMO - SOL Y SOMBRA																	
VIERNES		OUNTA CREDITION - ASORBADO	VIEW CHEL COCCUMIN ASSOCIATION		VIIIACREPIISCIIIAR	VIEW CHELOSCOPHIA	BECLIBERACION DE TANOLIE	RECOPENACION DE IANGUE	LOS NARANJOS - BATALLA 1 Y 2 RECUPERACION DE TANQUE																	
JUEVES		BATALLA GRAVEDAD -	BATALLA BOMBEO		RECLIPERACION DE	TANOLE	IAINQUE		VILLA ROSA - SAN JOSE DE TINTIN - EL HIPODROMO - SOL Y SOMBRA																	
MIÉRCOLES			VIII A CREDITICALII AR	VILLA CNET USCULAN			RECUPERACION DE TANQUE	RECUPERACION DE TANQUE -	<u> </u>																	
MARTES	BATALLA GRAVEDAD - DELFIN GONZALES	ALIMENTADOR VIEJO	BATALLA GRAVEDAD	פאן ארנה פוזארנטאט		BECLIBERACION DE TANOLIE	RECOPERACION DE LANÇOE			MORROCOY		OS NA BANIOS DELEIN CONZALES 14	EOS INARANJOS - DELFIN GONZALES - LA RATALLA 1 V 2													
LUNES		BATALLA BOMBEO - ASOBRADO - BATALLA	CANALLY BOMBEO - ASOT INDO - BATALLY			WILLY CREDITESTINA	VIELA CNETOESCOLAN					RECUPERACION TANQUE														
HORA	07:00:00 a.m 8:00 a.m	08:00:00 a.m 9:00 a.m	09:00:00 a.m 10:00 a.m	10:00:00 a.m 11:00 a.m	11:00:00 a.m 12:00 a.m	12:00 a.m. 01:00:00 p.m.	01:00:00 p.m. a 02:00:00 p.m.	02:00:00 p.m. a 03:00:00 p.m.	03:00:00 p.m. a 04:00:00 p.m.	04:00:00 p.m. a 04:30:00 p.m.	04:30:00 p.m. a 05:00:00 p.m.	05:00:00 p.m. a 06:00:00 p.m.	06:00:00 p.m. a 06:30:00 p.m.	06:00:00 p.m. a 07:00:00 p.m.	07:00:00 p.m. a 08:00:00 p.m.	08:00:00 p.m. a 09:00:00 p.m.	09:00:00 p.m. a 10:00:00 p.m.	10:00:00 p.m. a 11:00:00 p.m.	11:00:00 p.m. a 12:00:00 a.m.	12:00:00 a.m. a 01:00:00 a.m.	01:00:00 a.m. a 02:00:00 a.m.	02:00:00 a.m. a 03:00:00 a.m.	03:00:00 a.m. a 04:00:00 a.m.	04:00:00 a.m. a 05:00:00 a.m.	05:00:00 a.m. a 06:00:00 a.m.	06:00:00 a.m. a 07:00:00 a.m.

FUENTE: PROPIA

CUADRO 4.2. CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA VILLA ROSA.

DOTACIÓN (Vhab/día)	121	09					100				1.221	115		
POBLACIÓN DOTACIÓN (l/hab/dia)	9.691	6.129		15.086										
Q PROM (I/s)	14	4					17	9	42					
VOĽÚMEN (Vďía)	1.172.571,43	370.285,71					1.504.800.00				547.200,00	3.594.857,14		
PROMEDIO (hr/sem)	2,71	2,29					19.00				19,00	TOTAL		
TOTAL (hr/sem)	19	16					133				133			
D	4						2.1	i			21			
w		4					19				19			
>	9						28) •			18			
r,		4					20	ì			20			
Z	9						18	?			18			
M		4					20	ì			20			
H	3	4					17	•			17			
Q (1/s)	120	45		22										
SUB SISTEMA	VILLA CREPUSCULAR	BATALLA BOMBEO - BOLÍVAR - UREÑA	BATALLA GRAVEDAD	BATALLA 1 Y 2	D GONZALES	NARANJOS	MORROCOY	S J DE TINTIN - HIPODROMO	ASOPRADO	VILLA ROSA - SOL Y SOMBRA	TOMAS A LO LARGO DE LA AV PPAL			
SISTEMA						1000	VILLA KOSA							

FUENTE: PROPIA

1.2. Sub sistema Llenadero:

Este sub sistema corresponde al Llenadero ubicado en el km 11 de la Av. Florencio Jiménez. Se abastece directamente de la tubería de Aducción que viene de la Planta Quíbor, aguas arriba de los Estanques El Tostao, con un sistema de bombeo de succión directa (Bombas Horizontales modelo KSB de 30 HP y transformadores de 1 x 50 y 2 x 37.5 KVA), alimentado por una tubería de ACERO de 8" de diámetro. Está ubicada altimétricamente en la cota 670 msnm, y su función principal es dar servicio a los sectores que no poseen acueducto o aquellos donde se presentan fallas de servicio, como por ejemplo las zonas del sub sistema La Paz y Bobare. Existe un proyecto de reubicación del llenadero hacia las instalaciones de los Estanques El Tostao, ampliando su capacidad actual para reducir el tiempo de llenado de los cisternas.

CUADRO 4.3. CAUDAL PROMEDIO DEL SUB SISTEMA LLENADERO.

SISTEMA	SUB SISTEMA	Q (l/s)	L	M	M	J	V	S	D	TOTAL (hr/sem)	PROMEDIO (hr/sem)	VOLÚMEN (l/día)	Q PROM (1/s)	РОВ	DOTACIÓN (l/hab/día)
Llenadero	Llenadero	80	12.5	12.5	12.5	12.5	12.5	7		69,5	9,93	2.859.428,57	33,10	114.377	25

FUENTE: PROPIA

CUADRO 4.4. RESUMEN TOTAL DEMANDAS POBLACIONALES ASISTIDAS POR CISTERNAS.

SUB SISTEMA	PROGRAMACIÓN MENSUAL	l/mes	l/día	Vs	NUM DE HABITANTES DISTRIBUCION POR CISTERNAS	INCIDENCIA
VILLA ROSA	255	1.848.750,00	61.625,00	0,71	2.678,00	3%
CORIANO	208	1.508.000,00	50.266,67	0,58	2.184,00	3%
LA PAZ	2144	15.544.000,00	518.133,33	6,00	22.512,00	26%
LOMAS DE LEON	92	667.000,00	22.233,33	0,26	966,00	1%
GRAVEDAD	346	2.508.500,00	83.616,67	0,97	3.633,00	4%
PAVIA	1306	9.468.500,00	315.616,67	3,65	13.808,00	16%
BOBARE	1952	14.152.000,00	471.733,33	5,46	20.638,00	24%
CRESPO - CUJI	1354	9,816,500,00	327.216,67	3,79	14.217,00	17%
UNION - JUAREZ	96	696.000,00	23.200,00	0,27	1.008,00	1%
CATEDRAL - CONCEPCION - SANTA ROSA	65	471,25	15,71	0,00	682,00	1%
OTROS SECTORES	294	2.131.500,00	71.050,00	0,82	3.087,00	4%
TOTAL	8112	56209721	1873657	22	85413	1

FUENTE: PROPIA

Las tablas del detalle por cada sector de cisterna se presentan en el anexo 4.1

1.3. Sub sistema Coriano:

Este sub sistema se encuentra dentro de las instalaciones de los Estanques el Tostao, en el km 10,5 de la Av. Florencio Jiménez. Se ubica altimétricamente en la cota 665 msnm, y posee un empalme directo de la tubería de Aducción que viene de la Planta Quíbor, justo antes del sistema de regulación que está en la entrada de los Estanques El Tostao. La toma va directo a la succión de unos equipos horizontales que bombean de manera continua a través de una tubería de 16" de ACERO, hacia el Estanque Postensado El Coriano ubicado en el sector El Tostao, en la cota 714 msnm y de 1.500 m3 de capacidad.

Desde el estanque baja un alimentador principal de 20" que distribuye a los diferentes sectores del sub sistema: Jacinto Lara, Santa Rosalía y el Coriano.

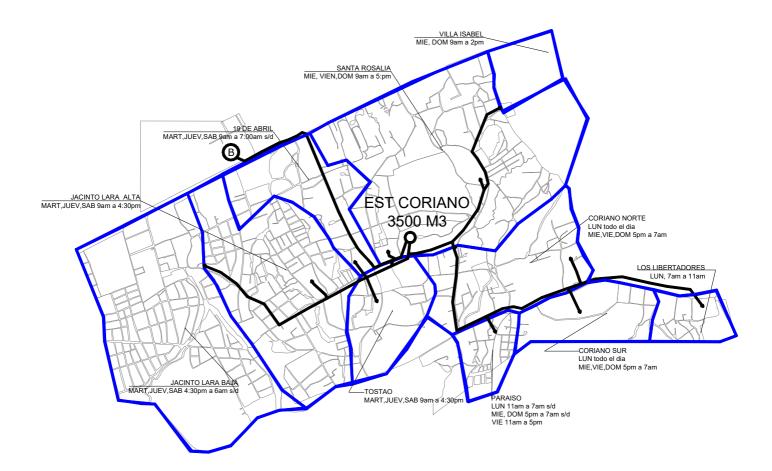


FIGURA 4.5. ESQUEMA DE COBERTURA DEL SUB SISTEMA EL CORIANO

CUADRO 4.5. HORARIO DE SERVICIO SUB SISTEMA CORIANO.

DOMINGO	RECUPERACION DE TANQUE	SANTA ROSALIA - VILLA ISABEL	SANTA ROSALIA	1 SUR - CORIANO 1 SUR - SANTA BARBARA - CORIANO 2 SUR - VALLE INMACULADA - PARAISO - TOSTAO 1 - RALOWAR - LOS YABOS - LA CABAÑA - MORROCOYPARTE BAJA - LIBERTADORES PARTE BAJA - PARAISO PARTE BAJA - PARAISO PARTE BAJA - PARAISO PARTE BAJA - PARAISO PARTE BAJA - LOS YABOS - FELIPE PARGAS -
SÁBADO	RECUPERACION DE TANQUE	19 DE ABRIL - J LARA - VENEZOLANOS SPRIMERO - 24 DE JULIO		19 DE ABRIL - BOLIVAR
VIERNES	RECUPERACION DE TANQUE -	מוזאין האני ספואמרי	SANTA ROSALIA	CORIANO 1 NORTE - CORIANO 1 SUR- SANTA BARBARA - CORIANO 2 SUR- VALIE INMACULADA - PARAISO - TOSTAD 1 - PALOMAR - LOS YABOS - LA CABAÑA - MORROCOY PARTE BAJA - LIBERTADORES PARTE BAJA PARAISO PARTE BAJA - LOS YABOS - FELIPE PARGAS - OCULTO
JUEVES	RECUPERACION DE TANQUE	19 DE ABRIL - J LARA - VENEZOLANOS PRIMERO - 24 DE	0 100	19 DE ABRIL - BOLIVAR
MIÉRCOLES	RECUPERACION DE TANQUE	SANTA ROSALIA - VILLA ISABEL - TRIGAL	SANTA ROSALIA	CORIANO 1 NORTE - CORIANO 1 SUR - SANTA BARBARA - CORIANO 2 SUR - VALLE INMACULADA - PARAISO - TOSTAO 1 - PALOMAR - LOS VABOS - LA CABAÑA - MORROCOY PARTE BAJA - LIBERTADORES PARTE BAJA PARAISO PARTE BAJA - LOS VABOS - FELIPE PARGAS - OCULTO
MARTES	RECUPERACION DE TANQUE	19 DE ABRIL - J LARA - VENEZOLANOS PRIMERO - 24 DE JULIO		19 DE ABRIL - BOLIVAR
LUNES	RECUPERACION DE TANQUE - LIBERTADORES	PARAISO - TOSTAO 1 - PALOMAR - LOS	TABOS - LA CABANA - IMURRUCUT - LIBERTADORES PARTE BAJA	CORIANO 1 NORTE - CORIANO 1 SUR - SANTA BARBARA - CORIANO 2 SUR - VALLE INMACLUADA - PARAISO - TOSTAO 1 - PALOMAR - LOS YABOS - LA CABAÑA - MORROCOY PARTE BAJA - LIBERTADORES PARTE BAJA

CUADRO 4.6. CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA CORIANO.

DOTACIÓN (l/día)		255										170									184		202
												55									32		35
POBLACIÓN		21.789	i -									29.865									12.582		64.235
Q PROM (Vs)		2	-									59									27		150
VOLÚMEN (I/día)		5 554 285 71										5.091.428,57									2.314.285,71		12.960.000,00
PROMEDIO (hr/sem)		10.29	2,67									9,43									4,29		TOTAL
TOTAL (hr/sem)		22	į									99									30		
D												14									10		
S		24	-																				
>												41									10		
J		24	1																				
M												14									10		
M		24	-	•																			
Т												24											
Q (l/s)		150	2									150									150		
SUB SISTEMA	J LARA P ALTA BOLIVAR	19 DE ABRIL	24 DE JULIO	VENEZOLANOS PRIMEROS	CORIANO 1 NORTE	CORIANO 1 SUR	SANTA BARBARA	CORIANO 2 SUR	VALLE INMACULADA	PARAISO	TOSTAO 1	PALOMAR	LOS YABOS	LA CABAÑA	MORROCOY PARTE	BAJA	FELIPE PARGAS	EL OCULTO	LIBERTADORES PARTE BAJA	SANA ROSALIA	TRIGAL	VILLA ISABEL	
SISTEMA											CORIANO												

1.4. Sub sistema Pavia Bobare:

Se encuentra dentro de las instalaciones de los Estanques de El Tostao, de la misma manera que el sub sistema coriano en la cota 665 msnm. Se trata de una estación de bombeo con equipos horizontales de 150 HP marca KSB alimentada por un Banco de Transformadores de 3 x 50 KVA. Desde la estación parte una aducción de ACERO de 16" que luego reduce a 12", por un trayecto aproximado de 5.1 Km. Este tramo de tubería fue colocado recientemente (año 2005) como parte del proyecto de sustitución de aducción, modificando su trayecto original por fuera de los terrenos de una finca adyacente a la estación. El resto de la tubería es de 10" en ACP y surte a las comunidades de Pavia antes de llegar a la estación de rebombeo de Bobare.

Desde la estación de El Tostao hasta la estación de Bobare tiene un trayecto de 9 km y desde esta última hasta el Estanque La Puerta de Bobare tiene un recorrido estimado de 24 km. El principal problema de esta aducción son las tomas ilegales que generan una eficiencia de conducción de 50%. Por otro lado el crecimiento de Pavia ya supera la capacidad instalada inclusive de la nueva tubería, por lo que se ha planteado una nueva sustitución en el proyecto denominado "Sustitución de la aducción Pavia Bobare".

En estos momentos se está planteando desincorporar unas comunidades que se han conectado provisionalmente, por ejemplo: Villa Productiva, Lagunita del Rubio, La Concordia, etc. Para ello se está planificando el futuro sub sistema Nor Oeste de Barquisimeto, algo análogo al sub sistema El Coriano pero del lado norte de la Av. Florencio Jiménez. El caudal que se envía a este sub sistema desde Barquisimeto es de 100 l/s aproximadamente.

1.5. Sub sistema La Paz:

Este sistema está conformado por una estación de bombeo con tanquilla subterránea de cota 630 msnm. de 400 m3 de capacidad y tres equipos verticales de 300 Hp cada uno, ubicada en la Av. Florencio Jiménez, km 5, canal sur, al lado del Hospital Rotario. Esta estación alimenta a través de una tubería de acero de D = 24" a un tanque de concreto Post -tensado con capacidad para 4.000 m3, ubicado en el cerro Los Caballos, cota de fondo 708 msnm. y cota de rebose 714 msnm. La distribución del sistema se realiza a través de una tubería de alimentación principal de D = 20" donde se encuentran ubicadas una serie de válvulas para cumplir el plan de distribución programado.

FIGURA 4.6. ESQUEMA DE COBERTURA DEL SUB SISTEMA LA PAZ

CUADRO 4.7. HORARIO DE SERVICIO SUB SISTEMA LA PAZ.

DOMINGO	RECUPERACION DEL TANQUE	LA PAZ SECTOR 0 - LA PAZ SECTOR · 5 - LA APOSTOLEÑA 1 al 4 - J M VARGAS 1			RECUPERACION DEL TANQUE - EL	TRIGAL - VALLE DORADO - J.M.V SECTOR 2- JM VARGAS					LA PAZ SECTOR 0 - LA PAZ SECTOR 5 - LA APOSTOETRA - J IM VAGGAS 1 - SJ OBRERO - R LINAREZ ALTA - VILLAS DEL OESTE NUEVA PAZ - ROTARIO 2
SÁBADO	RECUPERACION DEL TANQUE-ALI PRIMERA	- CALIFORNIA - PRADOS 1	5 DE JULIO - J G HERNANDEZ - C BLANCOS II (VEREDA 12 A LA 15) - R LINAREZ ALTA -	CERRADONES - JOSE FRIBAS-ALI PRIMERA - CALIFORNIA - PRADOS 1			RECUPERACION DEL TANQUE - PRADOS 2		RECUPERACION DEL TANQUE		5 DE JULIO - C BLANCOS II (VEREDA 16 A LA 23) - R LINMAREZ ALTA - LA LOLDHA - AV EL ROBLE - CERRALONES BAJA - PILA DE MONTEZUMA - JOSE G HERNANDEZ
VIERNES	RECUPERACION DEL TANQUE - PRADERA	. EL ROTARIO - PRADERA		LAS JUANAS - VILLA TORRE - ROTARIO- PRADERA					LA PAZ - RAFAEL LINAREZ B AJA-VILLAS DEL OESTE - NUEVA PAZ - J M VARGAS 1 - CARIBE I Y II - ROTARIO 2		
JUEVES	RECUPERACION DEL TANQUE- CALIFORNIA - ALI PRIMERA -	PRADOS 1	5 DE JULIO - J G HERNANDEZ - C BLANCOS II (VEREDA 12 A LA 15) - R	F RIBAS- CALIFORNIA - ALI PRIMERA - PRADOS 1				RECLIPERACION DEL TANDI IE			S DE JULIO - C BLANCOS II (VEREDA 16 A LA 22) - R LINAREZ ALTA - LA LCUHA - AV EL ROBLE - CERRALONES BAJA - PILA DE MONTEZUMA
MIÉRCOLES	SAN J OBRERO - LA APOSTOLEÑA 1 al 4 - RAFAEL	LINAREZ BAJA - LA PAZ -ALI PRIMERA - CALIFORNIA - PRADOS 1	RECUPERACION DEL TANQUE - EI TRIGAL - VALLE DORADO - J.M.V SECTOR 2-1 M VARGAS (INVASION) - LOS ANGELES CALLE LA VICTORIA -ALI PRIMERA - CALIFORNIA - PRADOS 1	EI TRIGAL - VALLE DORADO - J.M. V SECTOR 2- J.M. VARGAS (INNASION) - LOS ANGELES CALLE LA VICTORIA - LOS ANGELES 4 - CALIFORNIA - ALI PRIMERA - ROTARIO 4 - LOS ANGELES 2 CALLE 7- ALI PRIMERA - ROTARIO 4 - LOS ANGELES 2 CALLE 7- ALI PRIMERA - CALIFORNIA - PRADOS 1		EL TRIGAL - VALLE DORADO - J.M.V SECTOR 2- J M VARGAS (INVASION) - LOS ANGELES CALLE LA	VICTORIA - LOS ANGELES 4 - CALIFORNIA - ALI PRIMERA - ROTARIO 4 - LOS ANGELES 2 CALLE 7 - PRADOS 2		EI TRIGAL - VALLE DORADO - J.M.V SECTOR 2-1 M VARGAS (INVASION) - LOS ANGELES CALLE GA VICTORIA LOS ANGELES 4 - CALIFORNIA AL PRIMERA - ROTARIO 4 - LOS ANGELES 2 CALLE 7		EL TRIGAL-VALLE DORADO - JAM.Y SECTOR 2- JM VARGAS (INVASION) - LOS ANGELES CALLE TA VICTORA CALIFORNIA. ALI PRINCERA ROTARIO 4- LOS ANGELES Z CALLE 7- SAN J OBRERO - LA APOSTOLEÑA J al 4- RAFAEL INVAREZ BAJA - LAPAZ SECTOR 5- LA PAZ - SECTOR 0 - VILLÁS DEL OESTE - NUEVA PAZ
MARTES	RECUPERACION DEL TANQUE - LA	PRADERA	S DEJULIO - J G HERNANDEZ - C BLANCOS II (VEREDA 12 A LA 15) - R	LINAREZ ALTA - CERAJONES - JOSE F RIBAS - LA PRADERA		RECUPERACION DEL TANQUE - LA PRADERA			RECUPERACION DEL TANQUE		S DE JULIO - CELANCOSII (VEREDA 16 A 1.4.22) - R. IUNAREZ ALTA - LA ICUHA - A V EL ROBLE - CERRAJONES BAJA - PILA DE MONTEZUMA
LUNES	RECUPERACION DEL TANQUE	RECUPERACION DEL TANQUE - LOS ANGELES 4 - CALIFORNIA - ALI PRIMERA - PRADOS 1		LAS JUANAS - VILLA TORRE - LOS ANGELES 4 - CALIFORNIA - ALI PRIMERA - PRADOS 1	LAS JUANAS - VILLA TORRE - ROTARIO 4 - LOS ANGELES 2 CALLE 7				LA PAZ - PAFAEL LINAREZ B AJA- VILLAS DEL GESTE - NUEVA PAZ - LOS ANGELES - J NON YAGRAGA I - CARBER I PII - LA POSTOCIERA - SECTOR I JAI 4 - ROTARIO 4 - LOS ANGELES 2 CALLE 7 - ROTARIO 2		
HORA	07:00:00 a.m 8:00 a.m 08:00:00 a.m 9:00 a.m	09:00:00 a.m 10:00 a.m 10:00:00 a.m 11:00 a.m 11:00:00 a.m 12:00 a.m 12:00 a.m. 01:00:00 p.m.	01:00:00 p.m. a 02:00:00 p.m.	03:00:00 p.m. a 04:00:00 p.m.	04:00:00 p.m. a 05:00:00 p.m.	05:00:00 p.m. a 06:00:00 p.m.	06:00:00 p.m. a 07:00:00 p.m.	07:00:00 p.m. a 08:00:00 p.m.	08:00:00 p.m. a 09:00:00 p.m.	09:00:00 p.m. a 10:00:00 p.m. 10:00:00 p.m. a 11:00:00 p.m.	11300.00 pm a 12300.00 am 12000.00 am a 10300.00 am 11300.00 am a 10300.00 am 02300.00 am a 03300.00 am 03300.00 am a 04500.00 am 4400.00 am a 05500.00 am 0500.00 am a 0600.00 am

CUADRO 4.8. CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA LA PAZ.

	_				_	_	_																												
DOTACIÓN (I/día)	158	727	727	112	139	207										174														169					172
POBLACIÓN	2.738	7 110	4.110	4.425	885	1.788										52.918														39.426					106.298,78
Q PROM (Vs)	2	7	11	9	1	4										107														77					211,40
VOLÚMEN (Vdía)	432.000,00	056571 7306	3303/ 1,4260	493.714,29	123.428,57	370.285,71										9.207.542,86														6.681.771,43					18.265.314,29
PROMEDIO (hr/sem)	12,00	90 0	0,00	4,57	1,14	3,43										13,71														10,29					TOTAL
TOTAL (hr/sem)	84	Ç	02	32	8	24										96														72					
D	12					-	17		17				-							ć	5 7									1					
S	12	7	+ 7	6	4		-						-																	24					
>	12				-	12	4				_	1	-							7	5 7									,					
J	12	7	,	7		-	-		,				-																	24					
M	12	5	, †	6	4	-	17		17				16							5	5 7														
M	12				-	12	-		,				-																	24					
Т	12	7	,	7		-	4				-	4	7	77	T4					,	ΣΥ														
Q (Vs)	10	C	OC.	30	30	30										186,50														180,45					
SUB SISTEMA	LOS ANGELES BOMBEO	CALIFORNIA	ALI PRIMERA	PRADOS DE OCCIDENTE 1	PRADOS DE OCCIDENTE 2	LA PRADERA	J MV (INVASION)	J M VARGAS 2	LOS ANGELES LA VICTORIA	VALLE DORADO	LASJUANAS	VILLA TORRE - EL TRIGAL	LOS AN GELES 4	ROTARIO 4	LOS ANGELES 2 CLLE 7	LA PAZ	RAFAEL LINAREZ B AJA	VI LLAS DEL OESTE	NUEVA PAZ	J M V A RGAS 1	CARIBE I y II	LA APOSTOLEÑA SECTOR 1 al 4	ROTARIO 2	LOS AN GELES 2	S J OBRERO	5 DE JULIO - J G HERN NADEZ - LA	LUCHA	CERRITOS BLANCOS ALTA	RAFAEL LINAREZ ALTA	AGUA VIVA EL ROBLE - PILA DE	MONTEZUMA - J F RIBAS -	CERRAJONES	CERRITOS BLANCOS	CERRO MARA	
SISTEMA																	1	LA PAZ																	

1.6. Sub sistema Zona industrial:

Desde este sub sistema se surte parte de la Zona Industrial II y III de Barquisimeto. Comprende de un sistema de rebombeo ubicado en la Av. Las Industrias al lado de Sidetur en la cota 606 msnm con tres equipos que pueden operar en paralelo si el nivel de lo tanquilla lo permite. Son bombas de 200 HP tipo turbina marca Peerless, alimentada por un banco de transformadores de 3 x 250 KVA y bombean a un estanque Pos tensado de 12.000 m3 ubicado en la cota 666 msnm.

A la tanquilla llegan dos tuberías una de 12" de ACP y otra de 16" de PEAD, ambas dependen del sub sistema Gravedad Oeste, con dos empalmes, un empalme con la tubería de 24" que viene del ramal Nor Oeste (Cementerio), y otro empalme de aguas abajo de la válvula El Obelisco. Presenta estos dos empalmes para garantizar continuidad de servicio al principal cliente de la empresa hidrológica, ya que cada uno de ellos se alterna en el servicio con las maniobras del obelisco. Se mencionó que sólo una parte se surte del rebombeo de la Zona Industrial ya que la otra parte depende directamente de la tubería de 12" que alimenta la tanquilla, es decir, con un empalme aguas arriba de la estación Zona industrial.

En el año 2004 se realizó un estudio en este sub sistema dentro del proyecto "Plan Maestro para la Rehabilitación y Mejoramiento del sistema de Matrices de la zona Oeste de Barquisimeto" (Referencia No.5). El estudio permitió la elaboración de obras para mejoras de servicio en la zona industrial las cuales consistían en hacer depender a los dos sub sectores de la zona industrial del sistema de rebombeo. Para ello fue necesario construir un refuerzo a la aducción de la tanquilla (se trata de la tubería de PEAD de 16" que se hizo referencia al principio), y un alimentador que

empalmaría a la red que se surte directamente del empalme aguas arriba de la estación. Estos trabajos a pesar de que se ejecutaron no se han puesto en funcionamiento. El caudal promedio de entrada a este sub sistema es de 70 l/s.

1.7. Sub sistema Lomas de León:

Este sub sistema se abastece con fuente subterránea proveniente de un campo de pozos denominado Titicare, ubicado en la margen derecha del Río Turbio, 4 Km aguas arriba del campo de Pozos Macuto. La producción media de este campo de pozos es de 100 l/s y llegan a una tanquilla de bombeo de 500 m3 de capacidad de la cual se bombea por medio de dos equipos de 300 Hp y transformadores de 3 x 167.5 KVA, a través de una tubería de acero de 20" hasta llegar al Estanque Lomas de León en la cota 697 msnm y con una capacidad de 2.500 m3. Los equipos pueden operar simultáneamente de acuerdo a la disponibilidad en la tanquilla.

Desde el Estanque sale una tubería principal de 16" de Acero que recorre los sectores de Brisas del Turbio, Ali Primera y Antonio Ricaurte, presentando baja eficiencia en la conducción pues existen muchas tomas ilegales.

El nivel alto del sub sistema lo conforman los sectores: Lomas de León y colinas de J Félix Ribas, y el nivel bajo los sectores 1, 2, 3, 4 de la Carucieña y Garabatal. A estos sectores también se incorpora un componente no determinado aún desde el sistema Gravedad, a través de un empalme y una aducción de 16", ubicado en la 20 de Pueblo Nuevo con Av. Los Horcones, los días Lunes, Miércoles y Viernes en las noches cuando se hacen las maniobras de presurización de la Red Alta del Oeste.

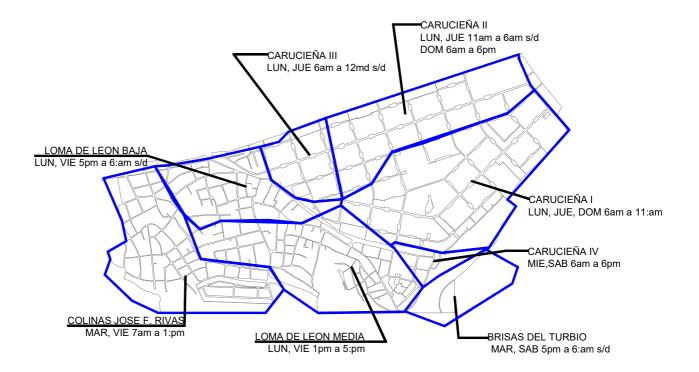


FIGURA 4.7. ESQUEMA DE COBERTURA DEL SUB SISTEMA LOMAS DE LEON

CUADRO 4.9. HORARIO DE SERVICIO SUB SISTEMA LOMAS DE LEÓN.

_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
DOMINGO												CARIUCIEÑA 2 - PARTE DEL	SECTOR 3											
SÁBADO		000000000000000000000000000000000000000	LUMAS DE LEON MEDIA - BRISAS DEL	LUKBIO											CARUCIEÑA SECTOR 4									
VIERNES				COLINAS DE JOSE FELIX KIBAS				0000000	LOIMAS DE LEOIN IMEDIA								OMAS DE LEON BALA	LOIMAS DE LEOIN BAJA						
JUEVES			CARUCIEÑA 1, 2, 3 - GARABATAL											CABLICIEÑA 1 3 CABLICIEÑA	CALLE 13 - GARARTAL	CALLE 13 - GARABATAL								
MIÉRCOLES		CARUCIEÑA 4			LI COMPT LIGHT CONTRACTOR OF THE CONTRACTOR OF T	RECOPERACION DEL TANQUE										CARUCIEÑA 4								
MARTES				COLINAS DE JOSE FELIX KIBAS				LOMAS DE LEON MEDIA - BRISAS DEL	TURBIO								LOMAS DE LEON BAJA - BRISAS DEL	TURBIO						
LUNES			CARUCIEÑA 1, 2, 3 - GARABATAL											CABLICIEÑA 1 3 CABLICIEÑA CALLE 13	GARACIEINA L, Z - CAROCIEINA CALLE L3 -	GANABATAL								
HORA	07:00:00 a.m 8:00 a.m	08:00:00 a.m 9:00 a.m	09:00:00 a.m 10:00 a.m	10:00:00 a.m 11:00 a.m	11:00:00 a.m 12:00 a.m	12:00 a.m. 01:00:00 p.m.	01:00:00 p.m. a 02:00:00 p.m.	02:00:00 p.m. a 03:00:00 p.m.	03:00:00 p.m. a 04:00:00 p.m.	04:00:00 p.m. a 05:00:00 p.m.	05:00:00 p.m. a 06:00:00 p.m.	06:00:00 p.m. a 07:00:00 p.m.	07:00:00 p.m. a 08:00:00 p.m.	08:00:00 p.m. a 09:00:00 p.m.	09:00:00 p.m. a 10:00:00 p.m.	10:00:00 p.m. a 11:00:00 p.m.	11:00:00 p.m. a 12:00:00 a.m.	12:00:00 a.m. a 01:00:00 a.m.	01:00:00 a.m. a 02:00:00 a.m.	02:00:00 a.m. a 03:00:00 a.m.	03:00:00 a.m. a 04:00:00 a.m.	04:00:00 a.m. a 05:00:00 a.m.	05:00:00 a.m. a 06:00:00 a.m.	06:00:00 a.m. a 07:00:00 a.m.

FUENTE: PROPIA

CUADRO 4.10. CAUDALES POR SUB SECTOR Y CAUDAL PROMEDIO DEL SUB SISTEMA LOMAS DE LEÓN.

VOLÚMEN (Váia) Q PROM (Vs) POBLACIÓN DOTACIÓN (Váia)	828		103	732				182			192,16
POBLACIÓN	305		767 77	14.737				20.931			35.970,09
Q PROM (Vs)	8		66	cc				44			80,00
VOĽÚMEN (ľ/día)	259.200,00		7 051 700 00	2.031.200,00				3.801.600,00			6.912.000,00
PROMEDIO (hr/sem)	24,00		0,01	10,23				13,71			TOTAL
TOTAL (hr/sem)	168		7	77				96			
D	24		7	7		-		,		-	
S D	24 24					24				2	
>	24					-		54		-	
L M M J V	24 24 24 24 24		,	† 7		-				-	
M	24					24				-	
M	54					-		24		18	
	24		,	1 7		-		•		-	
Q (l/s)	ε		7.	`		<i>LL</i>		F	`		
SUB SISTEMA	TITICARE	CARUCIEÑA 1	CARUCIEÑA 2	GARABATAL	CARUCIEÑA 3	CARUCIEÑA 4	L LEON BAJA	L LEON MEDIA	C.J.F.RIBAS	B TURBIO	
SISTEMA					I O V CITIE	IIICARE					

1.8. Sub sistema Gravedad Oeste:

Lo compone toda la red de distribución que se surte por gravedad de los Estanques El Tostao (665 msnm). Se inicia en el Oeste con el ramal del acueducto del Barrio Cerritos Blancos, y culmina en las redes bajas del Este, con los sectores del Ujano, Royal Garden, etc. Desde esta misma red se abastecen algunos otros sistemas de rebombeo mayormente del sistema Norte de Barquisimeto, que serán detallados más adelante. La red de este sub sistema presenta bastante continuidad de servicio, con horarios que van de 16 a 24 horas continuas.

Debido a la desbalance que existe entre la oferta y demanda de agua de la ciudad de Barquisimeto, los Estanques El Tostao no mantienen su nivel, de hecho, el nivel que se registra de 1.8 a 2.0 mts, corresponde básicamente al diámetro de la tubería de salida: 66" (1.65 mts), de manera que la tubería no está presurizada en toda su longitud y es lo que hace que existan los sistemas de rebombeo que no se justifican a excepción del sub sistema El Coriano.

Por otro lado, para poder garantizar buena entrada de caudal a estos rebombeos se deben realizar maniobras sectorizadoras en válvulas ubicadas en tuberías principales como la del Obelisco y Cementerio, que regulan el flujo hacia los niveles bajo de la ciudad y permitan un represamiento del agua hacia la zona Oeste de la ciudad. Desde este sub sistema se desprende el sub sistema Zona Industrial a través de los empalmes Cementerio y Las Industrias (aguas abajo de la válvula El Obelisco), tal como se acotó en la descripción de este sub sistema. Para este sub sistema, al igual que en el Casco Central y Norte, se realizó el estudio de consumo con la base de datos de la gerencia comercial de Hidrolara, ya que presentan alta incidencia de micro medición (>50%). El detalle de la metodología empleada para conocer el consumo de los usuarios que no tienen micro medición se explica en el capitulo 3. La figura siguiente muestra el ámbito del sub sistema.

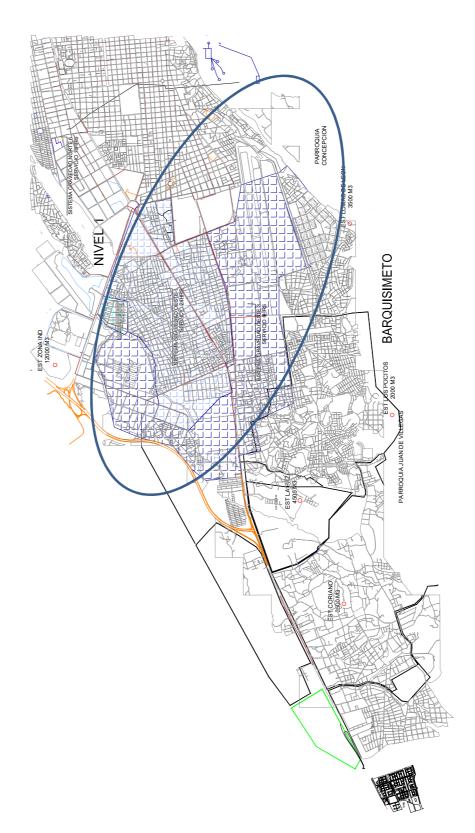


FIGURA 4.8. ESQUEMA DE COBERTURA DEL SUB SISTEMA GRAVEDAD OESTE

CUADRO 4.11. CAUDALES POR SUB SECTOR DEL SUB SISTEMA GRAVEDAD OESTE

SISTEMA	SUB SISTEMA	Q (I/s)	L	М	М	J	٧	S	D	TOTAL (hr/sem)	PROMEDIO (hr/día)	VOLÚMEN (I/día)	Q PROM (I/s)	POBLACIÓN	DOTACIÓN (I/hab/día)
	12 DE OCTUBRE														
	JARDINES DEL AEROPUERTO														
	URB LOS CHINOS														
	INVASIONES (LA ZAMURERA)														
GRAVEDAD OESTE	28 DE MAYO	240	24	24	24	24	24	24	24	168	24,00	20.736.000,00	240	95.264	218
	VALLE VERDE														
	VILLA GUADALUPE														
	LA CONCORIDA 3														
	RED MEDIA Y BAJA DEL OESTE														
											TOTAL	20.736.000,00	240	95.264	218

FUENTE: PROPIA

1.9. Sub sistema Gravedad Casco Central - Este:

Este sub sistema es la continuación del sub sistema Gravedad Oeste, se sitúa hidráulicamente aguas abajo de la cortina física resultante de las maniobras de la válvula el Obelisco y 20 de Pueblo Nuevo. A este sistema se le incorpora a la altura de la calle 34 el sistema de producción Macuto, con 250 l/s aproximadamente. Tiene además interconexión con el sub sistema Gravedad Norte a través de alimentadores principales que se derivan del "Alimentador Centro" (ver descripción general del sistema), tales como: Life Norte y Univensa. También presenta derivaciones menores que surten al sub sistema Cristo Viene y La Tapa y su límite de red por el Este lo representa el sub sistema Nor Este (El Cercado), y Las Colinas. Al igual que el sub sistema Gravedad Oeste, los datos de análisis fueron tomados de la base de datos del catastro de Hidrolara, con alta incidencia de micromedición.

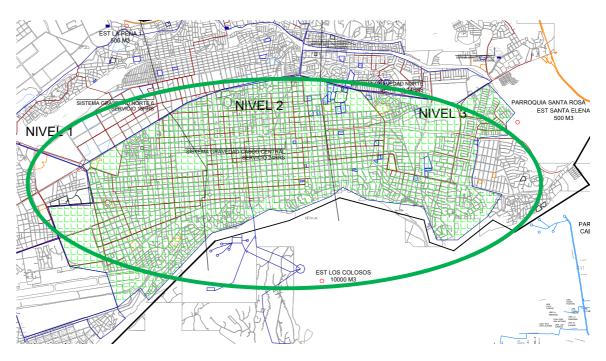


FIGURA 4.9. ESQUEMA DE COBERTURA DEL SUB SISTEMA GRAVEDAD CASCO ${\tt CENTRAL-ESTE}$

CUADRO 4.12. CAUDALES POR SUB SECTOR DEL SISTEMA CASCO CENTRAL - ESTE.

SISTEMA	SUB SISTEMA	Q (I/s)	L	М	М	J	٧	S	D	TOTAL (hr/sem)	PROMEDIO (hr/día)	VOLÚMEN (I/día)	Q PROM (I/s)	POBLACIÓN	DOTACIÓN (I/hab/día)
GRAVEDAD CASCO CENTRAL - ESTE	RED MEDIA Y BAJA CON SERVICIO CONTINUO	788	24	24	24	24	24	24	24	168	24,00	68.095.784,76	788	297.335	229
•											TOTAL	68.095.784,76	788	297.335	229

1.10. Sub sistema Gravedad Norte:

Este sub sistema se desprende del sub sistema Caso Central, y su ramal principal es el de Univensa y Life Norte, ambos ubicados aguas abajo de la válvula el Obelisco.

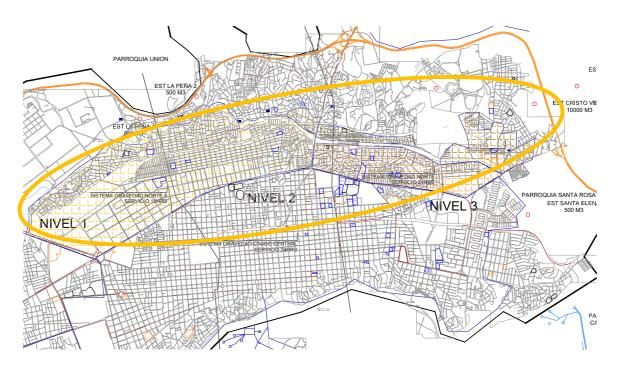


FIGURA 4.10. ESQUEMA DE COBERTURA DEL SUB SISTEMA GRAVEDAD NORTE

CUADRO 4.13. CAUDALES POR SUB SECTOR DEL SISTEMA GRAVEDA NORTE

	SISTEMA	SUB SISTEMA	Q (I/s)	L	М	М	J	٧	S	D	TOTAL (hr/sem)	PROMEDIO (hr/día)	VOLÚMEN (I/día)	Q PROM (I/s)	POBLACIÓN	DOTACIÓN (I/hab/día)
	GRAVEDAD NORTE *	RED MEDIA Y BAJA CON SERVICIO CONTINUO	259	24	24	24	24	24	24	24	168	24,00	22.349.629,26	259	86.705	258
-	ZONA INDUSTRIAL											TOTAL	22.349.629,26	259	86.705	258

1.11. Sub sistema La Peña:

Este sistema está conformado por una estación de bombeo con tanquilla subterránea de de 300 m3 de capacidad y dos equipos verticales de 15 Hp cada uno, ubicada en la Zona Industrial II calle A-3 Sector Barrio La Peña. Esta estación surte a dos estanques de almacenamientos aéreos en aceros cuya capacidad es de 100m3 cada uno denominados Estanques La Peña 1 y 2, cada uno de ellos cuenta con una cobertura específica de servicio. La capacidad de bombeo de cada equipo es de 11,5 l/s, combinados puede llegar hasta 17,7 l/s y el caudal medio aportado al sistema es de 10 l/s.

FIGURA 4.11. ESQUEMA DE COBERTURA DEL SUB SISTEMA LA PEÑA

CUADRO 4.14. HORARIO DE SERVICIO SUB SISTEMA LA PEÑA.

	SISTEMA	HORA	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO
01:00:00 a.m. a 02:00:00 a.m. 02:00:00 a.m. a 04:00:00 a.m. 03:00:00 a.m. a 04:00:00 a.m. 05:00:00 a.m. a 05:00:00 a.m. 05:00:00 a.m. a 05:00:00 a.m. 07:00:00 a.m. a 05:00:00 a.m. 07:00:00 a.m. a 05:00:00 a.m. 10:00:00 a.m 10:00 a.m. 10:00:00 a.m 10:00 a.m. 10:00:00 a.m 10:00 a.m. 10:00:00 p.m. a 05:00:00 p.m. 03:00:00 p.m. a 05:00:00 p.m. 04:00:00 p.m. a 05:00:00 p.m. 05:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 06:00:00 p.m. 06:00:00 p.m. a 06:00:00 p.m. 06:00:00 p.m. a 10:00:00 p.m. 06:00:00 p.m. a 10:00:00 p.m.		12:00:00 a.m. a 01:00:00 a.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2		RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
02,00000 a.m. a 03,0000 a.m. 03,00000 a.m. a 04,00000 a.m. 04,00000 a.m. a 05,000 a.m. 05,00000 a.m. a 05,000 a.m. 07,00000 a.m. a 07,000 a.m. 09,00000 a.m 10,00 a.m. 10,00000 a.m 10,00 a.m. 11,00000 a.m 10,00 a.m. 12,00 a.m 11,00 a.m. 12,00 a.m 11,00 a.m. 12,00 a.m 11,00 a.m. 12,00 a.m 11,00 a.m. 12,00 a.m 12,00 a.m. 01,00000 p.m. a 02,000 p.m. 02,00000 p.m. a 04,000 p.m. 04,00000 p.m. a 04,000 p.m. 05,00000 p.m. a 04,000 p.m. 05,00000 p.m. a 06,000 p.m. 06,00000 p.m. a 06,000 p.m. 06,00000 p.m. a 10,000 p.m. 10,00000 p.m. a 11,000 p.m.		101:00:00 a.m. a 02:00:00 a.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2		RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
04:00:00 a.m. a 04:00:00 a.m. 04:00:00 a.m. a 05:00:00 a.m. 05:00:00 a.m. a 05:00:00 a.m. 07:00:00 a.m. a 07:00:00 a.m. 07:00:00 a.m 8:00 a.m 09:00:00 a.m 8:00 a.m 11:00:00 a.m 11:00 a.m 11:00:00 a.m 11:00 a.m 11:00:00 a.m 11:00 a.m 11:00:00 p.m. a 02:00:00 p.m. 04:00:00 p.m. a 05:00:00 p.m. 07:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 06:00:00 p.m. 06:00:00 p.m. a 06:00:00 p.m.		102:00:00 a.m. a 03:00:00 a.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2		RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
04:00:00 a.m. a 05:00:00 a.m. 05:00:00 a.m. a 06:00:00 a.m. 06:00:00 a.m. a 07:00:00 a.m. 07:00:00 a.m 8:00 a.m. 10:00:00 a.m 10:00 a.m. 11:00:00 a.m 11:00 a.m. 11:00:00 a.m 12:00 a.m. 11:00:00 a.m 12:00 a.m. 11:00:00 p.m. a 02:00:00 p.m. 01:00:00 p.m. a 02:00:00 p.m. 04:00:00 p.m. a 05:00:00 p.m. 05:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 05:00:00 p.m. 07:00:00 p.m. a 05:00:00 p.m. 07:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 10:00:00 p.m.		103:00:00 a.m. a 04:00:00 a.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
05:00:00 a.m. a 06:00:00 a.m. 05:00:00 a.m. a 07:00:00 a.m. 07:00:00 a.m 8:00 a.m. 09:00:00 a.m 9:00 a.m. 10:00:00 a.m 10:00 a.m. 11:00:00 a.m 10:00 a.m. 11:00:00 a.m 12:00 a.m. 11:00:00 a.m 12:00 a.m. 12:00 a.m 12:00 a.m. 12:00:00 p.m. a 03:00:00 p.m. 03:00:00 p.m. a 05:00:00 p.m. 05:00:00 p.m. a 05:00:00 p.m. 05:00:00 p.m. a 05:00:00 p.m. 06:00:00 p.m. a 06:00:00 p.m. 10:00:00 p.m. a 10:00:00 p.m.		104:00:00 a.m. a 05:00:00 a.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2		RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
05:00:00 a.m. a 07:00:00 a.m. 07:00:00 a.m 8:00 a.m 08:00:00 a.m 9:00 a.m 10:00:00 a.m 10:00 a.m 11:00:00 a.m 12:00 a.m 11:00:00 a.m 12:00 a.m 12:00 a.m 01:00:00 p.m. 01:00:00 p.m. a 03:00:00 p.m. 03:00:00 p.m. a 03:00:00 p.m. 03:00:00 p.m. a 06:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 06:00:00 p.m. a 10:00:00 p.m.		105:00:00 a.m. a 06:00:00 a.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
05:00:00 a.m 8:00 a.m. 08:00:00 a.m 9:00 a.m. 10:00:00 a.m 10:00 a.m. 11:00:00 a.m 11:00 a.m. 11:00:00 a.m 12:00 a.m. 11:00:00 a.m 12:00 a.m. 11:00:00 p.m. a 02:00:00 p.m. 01:00:00 p.m. a 03:00:00 p.m. 03:00:00 p.m. a 04:00:00 p.m. 04:00:00 p.m. a 06:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 06:00:00 p.m. a 10:00:00 p.m.		106:00:00 a.m. a 07:00:00 a.m.	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 1	LA PEÑA 1, LA PEÑA 2	LAPEÑA 1, LA PEÑA 1	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 1	RECUPERACION TANQUE LA PEÑA 1 Y 2
05:00:00 a.m 10:00 a.m. 10:00:00 a.m 10:00 a.m. 10:00:00 a.m 11:00 a.m. 11:00:00 a.m 11:00 a.m. 11:00:00 a.m 11:00 a.m. 11:00:00 p.m. 12:00:00 p.m. 01:00:00 p.m. a 02:00:00 p.m. 02:00:00 p.m. a 02:00:00 p.m. 03:00:00 p.m. a 04:00:00 p.m. 05:00:00 p.m. a 04:00:00 p.m. 05:00:00 p.m. a 05:00:00 p.m. 05:00:00 p.m. a 07:00:00 p.m. a 10:00:00 p.m. a 10:00:00 p.m. a 10:00:00 p.m. a 11:00:00 p.m. a 11:00		107:00:00 a.m 8:00 a.m	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
0500000 a.m 11:00 a.m. 11:0000 a.m 11:000 a.m. 11:000 a.m 11:000 a.m. 11:0000 a.m 12:00 a.m. 11:0000 a.m 12:00 a.m. 11:0000 a.m 12:00 a.m. 11:0000 a.m 12:00 a.m. 01:0000 p.m. a 03:0000 p.m. 03:0000 p.m. a 04:0000 p.m. a 05:0000 p.m. 05:0000 p.m. a 10:00000 p.m. a 10:0000 p.m. 10:0000 p.m. a 10:0000 p.m. 10:0000 p.m. a 10:0000 p.m. a 11:0000 p.m. a 11:		108:00:00 a.m 9:00 a.m	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
11:00:00 a.m 11:00 a.m. 11:00 a.m. 11:00 a.m. 12:00 a.m. 10:00:00 p.m. a 03:00:00 p.m. 03:00:00 p.m. a 04:00:00 p.m. a 05:00:00 p.m. 10:00:00 p.m. a 06:00:00 p.m. 10:00:00 p.m. a 06:00:00 p.m. 10:00:00 p.m. a 10:00:00 p.m. 10:00:00 p.m. a 10:00:00 p.m. 10:00:00 p.m. a 10:00:		109:00:00 a.m 10:00 a.m	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
11:00:00 a.m 12:00 a.m. 12:00 a.m 01:00:00 p.m. 01:00:00 p.m. a 02:00:00 p.m. 03:00:00 p.m. a 03:00:00 p.m. 03:00:00 p.m. a 05:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 07:00:00 p.m. a 09:00:00 p.m. 09:00:00 p.m. a 10:00:00 p.m.	A	10:00:00 a.m 11:00 a.m	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
12:00 a.m. 01:00:00 p.m. a 01:00:00 p.m. a 02:00:00 p.m. 02:00:00 p.m. a 04:00:00 p.m. 04:00:00 p.m. a 04:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 05:00:00 p.m. a 06:00:00 p.m. 07:00:00 p.m. a 06:00:00 p.m. 07:00:00 p.m. a 10:00:00 p.m. 09:00:00 p.m. a 11:00:00 p.m.	ΈŲ	111:00:00 a.m 12:00 a.m	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
01:00:00 p.m. a 02:00:00 p.m. 02:00:00 p.m. a 03:00:00 p.m. 03:00:00 p.m. a 03:00:00 p.m. 04:00:00 p.m. a 05:00:00 p.m. 05:00:00 p.m. a 07:00:00 p.m. 06:00:00 p.m. a 09:00:00 p.m. 07:00:00 p.m. a 09:00:00 p.m. 09:00:00 p.m. a 11:00:00 p.m.	4 A	12:00 a.m. 01:00:00 p.m.	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
	7	101:00:00 p.m. a 02:00:00 p.m.	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		102:00:00 p.m. a 03:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1Y2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		103:00:00 p.m. a 04:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2		RECUPERACION TANQUE LA PEÑA 1 Y 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		104:00:00 p.m. a 05:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1Y 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		105:00:00 p.m. a 06:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2		RECUPERACION TANQUE LA PEÑA 1 Y 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	LA PEÑA 1, LA PEÑA 2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		106:00:00 p.m. a 07:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2			RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		107:00:00 p.m. a 08:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2		RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		108:00:00 p.m. a 09:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2		RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		109:00:00 p.m. a 10:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2		RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
		10:00:00 p.m. a 11:00:00 p.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1 Y 2	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2
1130030 p.m. a 71200.00 a.m. RECUPERACION TANQUE LA FRÂN 1Y2 RECUPERACION TANQUE LA PEÑA 1Y2 RECUPERACIO		11:00:00 p.m. a 12:00:00 a.m.	RECUPERACION TANQUE LA PEÑA 1Y2	RECUPERACION TANQUE LA PEÑA 1 Y 2					

1.12. Sub sistema Cerro Gordo:

Este sistema está conformado por una estación de bombeo con tanquilla subterránea y dos equipos verticales de 50 Hp cada uno, está ubicada en la vía principal de Cerro Gordo al lado de la quebrada La Ruezga y posee las siguientes coordenadas Este 463.902,00; Oeste 1.115.719,00. Esta estación es alimentada por medio del alimentador Asbesto Cemento D=400mm del sistema de distribución Norte y cuyo caudal proviene del sistema alto tocuyo, surte al sector de cerro gordo por medio de una tubería de asbesto cemento de D = 10" con bombeo directo a la red, esta tubería se alinea por la vía principal del sector y funciona como alimentador de las redes secundarias. La capacidad de bombeo de cada esquipo es de 45 l/s y el caudal medio aportado al sistema es de 4.29 l/s.

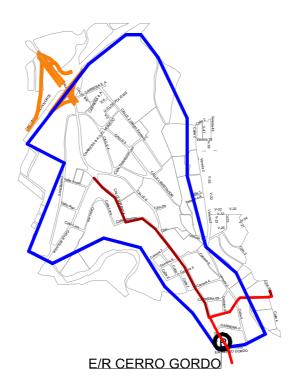
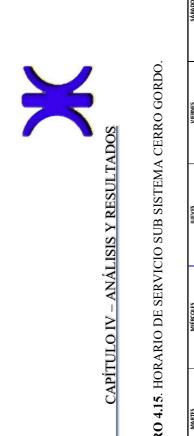



FIGURA 4.12. ESQUEMA DE COBERTURA DEL SUB SISTEMA CERRO GORDO

CUADRO 4.15. HORARIO DE SERVICIO SUB SISTEMA CERRO GORDO.

DOMINGO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	CIN SERVICIO						
SÁBADO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SERVICIO E/R CERRO GORDO	SERVICIO E/R CERRO GORDO	SERVICIO E/R CERRO GORDO	SERVICIO E/R CERRO GORDO	SIN SERVICIO	CIDNOS NIS													
VIERNES	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	CONSERVICE						
JUEVES	SIN SERVICIO	SERVICIO E/R CERRO GORDO	SIN SERVICIO																					
MIÉRCOLES	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	SIN SERVICIO	CICKABS NIS						
MARTES	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	SINSERVICIO	CONGESNIS						
LUNES	SIN SERVICIO	SERVICIO E/R CERRO GORDO	SIN SERVICIO	OD NOS																				
HORA	12:00:00 a.m. a 01:00:00 a.m.	01:00:00 a.m. a 02:00:00 a.m.	02:00:00 a.m. a 03:00:00 a.m.	03:00:00 a.m. a 04:00:00 a.m.	04:00:00 a.m. a 05:00:00 a.m.	05:00:00 a.m. a 06:00:00 a.m.	06:00:00 a.m. a 07:00:00 a.m.	07:00:00 a.m 8:00 a.m	08:00:00 a.m 9:00 a.m	09:00:00 a.m 10:00 a.m	10:00:00 a.m 11:00 a.m	11:00:00 a.m 12:00 a.m	12:00 a.m. 01:00:00 p.m.	01:00:00 p.m. a 02:00:00 p.m.	02:00:00 p.m. a 03:00:00 p.m.	03:00:00 p.m. a 04:00:00 p.m.	04:00:00 p.m. a 05:00:00 p.m.	05:00:00 p.m. a 06:00:00 p.m.	06:00:00 p.m. a 07:00:00 p.m.	07:00:00 p.m. a 08:00:00 p.m.	08:00:00 p.m. a 09:00:00 p.m.	09:00:00 p.m. a 10:00:00 p.m.	10:00:00 p.m. a 11:00:00 p.m.	41.00.00.00.00.00.00.00.00.00.00.00.00.00

1.13. Sub sistema Alto Jalisco:

Este sistema está conformado por una estación de bombeo con tanquilla subterránea y dos equipos verticales de 125 Hp cada uno, está ubicada en la carrera 2 con calle 1 del sector Alto de Jalisco. Esta estación es alimentada por medio del alimentador Asbesto Cemento D=400mm del sistema de distribución Norte y cuyo caudal proviene del sistema alto tocuyo, surte al Estanque de Concreto Alto de Jalisco cuya capacidad es de 3000lts y de aquí se distribuye a los sub sectores que dependen de este sistema, por medio de maniobras para sectorización, el caudal medio enviado al estanque es de 77,11 l/s y la capacidad de bombeo de cada equipo es de 150l/s.

Es de hacer notar que dentro de este sistema existen dos sectores con cotas elevadas, los mismos requieren de estaciones de rebombeo para poder ser abastecidos, estas estaciones son Estación de Rebombeo San Lorenzo I y II, que surten a los sectores que llevan su mismo nombre, las misma están conformadas por tanquillas subterránea y un equipo de bombeo sumergible de 15Hp cada uno, estas surten a los sectores por bombeo directo contra la red.

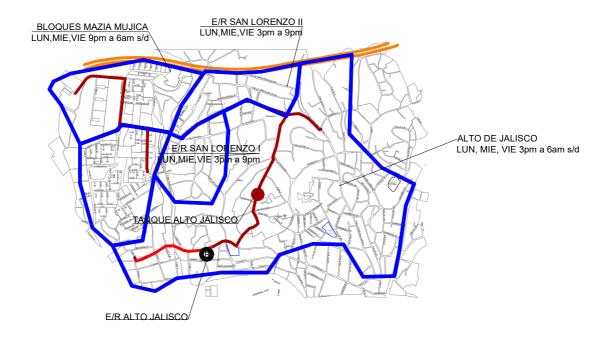
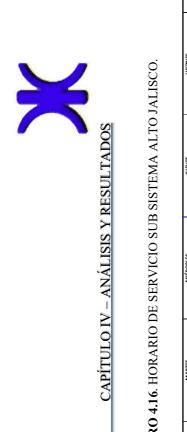



FIGURA 4.13. ESQUEMA DE COBERTURA DEL SUB SISTEMA ALTO DE JALISCO.

CUADRO 4.16. HORARIO DE SERVICIO SUB SISTEMA ALTO JALISCO.

RECUPERACION TANQUE ALTO JALISCO	MIÉRCOLES JUEVES VIERNI	RECUPERACION TANQUE ALTO JAUSCO - BLOQUES MAZIA RECUPERACION TANQUE ALTO JAUSCO MUJICA	RECUPERACION TANQUE ALTO JAUSCO ALTO DE JALISCO - BLOQUES MAZIA RECUPERACION TANQUE ALTO JALISCO MUJICA	RECUPERACION TANQUE ALTO JAUSCO ALTO DE JAUSCO - BLOQUES MAZIA RECUPERACION TANQUE ALTO JAUSCO MUJICA	RECUPERACION TANQUE ALTO JAUSCO - BLOQUES MAZIA RECUPERACION TANQUE ALTO JAUSCO MUJICA	RECUPERACION TANQUE ALTO JAUSCO ALTO DE JAUSCO - BLOQUES MAZIA RECUPERACION TANQUE ALTO JAUSCO MUJICA	RECUPERACION TANQUE ALTO JAUJSCO ALTO DE JAUJSCO - BLOQUES MAZIA RECUPERACION TANQUE ALTO JAUJSCO MUJICA	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JALISCO RECUPERACION TANQUE ALTO JALISCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JALISCO RECUPERACION TANQUE ALTO JALISCO	RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO RECUPERACION TANQUE ALTO JAUSCO	ALTO DE JALISCO- E/RSAN LORENZO I, RECUPERACION TANQUE ALTO JALISCO (E/R SAN LORENZO I) (F/R SAN LORENZO II)	ALTO DE JALISCO- E/RSAN LORENZO I, RECUPERACION TANQUE ALTO JALISCO ALTO DE JALISCO- E/R SAN LORENZO II E/R SAN LORENZO II	ALTO DE JALISCO- E/RSAN LORENZO I, ECUPERACION TANQUE ALTO JALISCO ALTO DE JALISCO- E/RSAN LORENZO II E/R SAN LORENZO II	ALTO DE JALISCO- E/RSAN LORENZO I, ECUPERACION TANQUE ALTO JALISCO ALTO DE JALISCO- E/R SAN LORENZO II E/R SAN LORENZO II	ALTO DE JALISCO- E/RSAN LORENZO I, RECUPERACION TANQUE ALTO JALISCO E/R SAN LORENZO II E/R SAN LORENZO II	ALTO DE JALISCO- E/RSAN LORENZO I, ECUPERACION TANQUE ALTO JALISCO ALTO DE JALISCO- E/R SAN LORENZO II E/R SAN LORENZO II	ALTO DE JALISCO - BLOQUES MAZIA RECUPERACION TANQUE ALTO JALISCO ALTO DE JALISCO - BLOQUES MAZIA MUJICA MUJICA	ALTO DE JALISCO - BLOQUES MAZIA
RECUPERACION TANQUE ALTO JALISCO		DE JALISCO - BLOQUES MAZIA MUJICA	DE JALISCO - BLOQUES MAZIA MUJICA	DE JALISCO - BLOQUES MAZIA MUIICA	DE JALISCO - BLOQUES MAZIA MUJICA	DE JALISCO - BLOQUES MAZIA MUJICA	DE JALISCO - BLOQUES MAZIA MUJICA	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	ERACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	FRACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	FRACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	RACION TANQUE ALTO JALISCO	PECLIPEPACION TANOLIE ALTO DE JALISCO -
	LUNES							DE:00:00 a.m. a 07:00:00 a.m. RECUPERACION TANQUE ALTO JALISCO REG	RECUPERACION TANQUE ALTO JALISCO REC	RECUPERACION TANQUE ALTO JALISCO REG	RECUPERACION TANQUE ALTO JALISCO REC	RECUPERACION TANQUE ALTO JALISCO REC	RECUPERACION TANQUE ALTO JALISCO REC	RECUPERACION TANQUE ALTO JALISCO REG	01:00:00 p.m. a 02:00:00 p.m. RECUPERACION TANQUE ALTO JALISCO									

1.14. Sub sistema El Jebe:

Este sistema está conformado por una estación de bombeo con tanquilla subterránea de 500 m3 de capacidad y dos equipos verticales de 200 Hp cada uno, ubicada en el inicio de Av. Principal El Jebe a 200mts de la Intercomunal Barquisimeto - Duaca. Esta estación alimenta a un tanque de concreto Post-tensado con capacidad para 1.500 m3, ubicado en el sector Propatria. La distribución del sistema se realiza a través de una tubería de alimentación principal donde se encuentran ubicadas una serie de válvulas para cumplir el plan de distribución programado. El caudal medio enviado al tanque es de 100 l/s y la capacidad de bombeo de cada equipo es de 130 l/s.

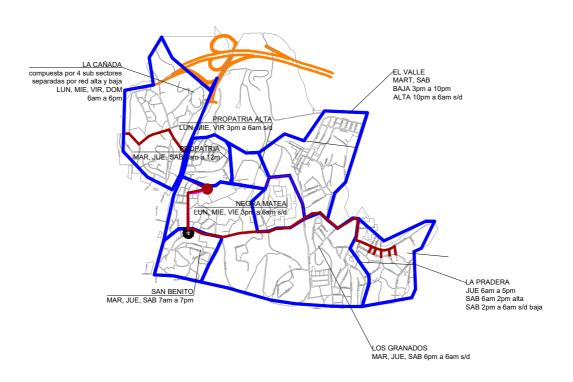
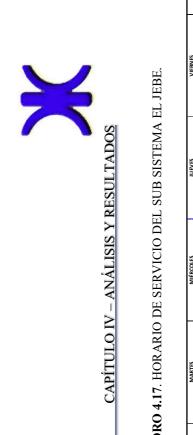



FIGURA 4.14. ESQUEMA DE COBERTURA DEL SUB SISTEMA EL JEBE.

CUADRO 4.17. HORARIO DE SERVICIO DEL SUB SISTEMA EL JEBE.

IEVES VIERNES SÁBADO	LOS GRANADOS PROPAT	A PARTE ALTA LOS GRANADOS PROPATRIA PARTE ALTA EL VALLE PARTE BLA PRADERA PARTE BALTA PARTE BALTA PARTE BALTA	A PARTE ALTA LOS GRANADOS PROPATRIA PARTE ALTA PARTE BAJA PARTE BAJA	A PARTE ALTA LOS GRANADOS PRODATRIA PARTE ALTA PARTE BAJA PARTE BAJA	A PARTE ALTA LOS GRANADOS PRODATRIA PARTE ALTA PARTE BALA PARTE BALA PARTE BALA PARTE BALA	A PARTE ALTA LOS GRANADOS PRODATRIA PARTE ALTA PARTE BAJA PARTE BAJA	- LA PRADERA LA CAÑADA - NEGRA MATEA PASTORA - LA PRADERA PARTE ALTA	IENITO - LA PRADERA LA CAÑADA - NEGRA MATÉA PASTORA - SAN BENITO - LA PRADERA	IENITO - LA PRADERA LA CAÑADA - NEGRA MATÉA PASTORA - SAN BENITO - LA PRADERA	IENITO - LA PRADERA LA CAÑADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA PARTE ALTA	IENITO - LA PRADERA LA CAÑADA - NEGRA MATÉA PASTORA - SAN BENITO - LA PRADERA	IENITO - LA PRADERA LA CAÑADA - NEGRA MATÉA PASTORA - SAN BENITO - LA PRADERA PARTE ALTA	I.A CAÑADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA PARTE ALTA PARTE ALTA	IENITO - LA PRADERA LA CAÑADA - NEGRA MATÉA PASTORA - SAN BENITO - LA PRADERA PARTE ALTA PARTE ALTA	IENITO - LA PRADERA LA CAÑADA PASTORA - SAN BENITO - LA PRADERA PRADERA PARTE BAJA	D - LA PRADERA PROPATRIA PARTE ALTA - LA CAÑADA PRADERA PARTE BAJA PRADERA PARTE BAJA	PROPATRIA PARTE ALTA - LA CAÑADA	PROPATRIA PARTE ALTA - LA CAÑADA EL VALLE	-LOS GRANADOS PROPATRIA PARTE ALTA EL VALLE PARTE BAJA - SAN BENITO - LA PRADERA PARTE BAJA	RANADOS PROPATRIA PARTE ALTA EL VALLE PARTE BAJA - LA PRADERA PARTE BAJA	RANADOS PROPATRIA PARTE ALTA EL VALLE PARTE BAIA - LA PRADERA	ADVI LANIE BADA	PROPATRIA PARTE ALTA
MIÉRCOLES IUEVES	3S GRANADOS PROPATI	EL VALLE PARTE BAJA - LOS GRANADOS PROPATRIA PARTE ALTA	EL VALLE PARTE BAJA - LOS GRANADOS PROPATRIA PARTE ALTA	EL VALLE PARTE BAJA - LOS GRANADOS PROPATRIA PARTE ALTA	EL VALLE PARTE BAJA - LOS GRANADOS PROPATRIA PARTE ALTA	EL VALLE PARTE BAJA - LOS GRANADOS PROPATRIA PARTE ALTA	LA CAÑ ADA - NEGRA MATEA PASTORA - LA PRADERA	LA CAÑADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA	LA CAÑ ADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA	LA CAÑADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA	LA CAÑADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA	LA CAÑ ADA - NEGRA MATEA. PASTORA - SAN BENITO - LA PRADERA	LA CAÑ ADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA	LA CAÑ ADA - NEGRA MATEA PASTORA - SAN BENITO - LA PRADERA	LA CAÑADA PASTORA - SAN BENITO - LA PRADERA	PROPATRIA PARTE ALTA - LA CAÑADA SAN BENITO - LA PRADERA	PROPATRIA PARTE ALTA - LA CAÑADA SAN BENITO - LA PRADERA	PROPATRIA PARTE ALTA - LA CAÑADA SAN BENITO	PROPATRIA PARTE ALTA SAN BENITO - LOS GRANADOS	DS PROPATRIA PARTE ALTA LOS GRANADOS	OS PROPATRIA PARTE ALTA LOS GRANADOS		DS PROPATRIA PARTE ALTA LOS GRANADOS
MARTES	PROPATRIA PARTE ALTA	PROPATRIA PARTE ALTA	PROPATRIA PARTE ALTA	PROPATRIA PARTE ALTA	PROPATRIA PARTE ALTA	PROPATRIA PARTE ALTA	PASTORA	PASTORA - SAN BENITO	PASTORA - SAN BENITO	PASTORA - SAN BENITO	PASTORA - SAN BENITO	PASTORA - SAN BENITO	SAN BENITO	SAN BENITO	SAN BENITO	A EL VALLE PARTE BAJA - SAN BENITO	A EL VALLE PARTE BAJA - SAN BENITO	A ELVALLE PARTE BAJA - SAN BENITO	EL VALLE PARTE BAJA - SAN BENITO - LOS GRANADOS	EL VALLE PARTE BAJA - LOS GRANADOS	EL VALLE PARTE BAJA - LOS GRANADOS		EL VALLE PARTE BAJA - LOS GRANADOS
TUNES							LA CAÑADA - NEGRA MATEA	LA CAÑADA - NEGRA MATEA	LA CAÑADA - NEGRA MATEA	LA CAÑADA - NEGRA MATEA	LA CAÑADA - NEGRA MATEA	LA CAÑADA - NEGRA MATEA	LA CAÑ ADA - NEGRA MATEA	LA CAÑADA - NEGRA MATEA	LACAÑADA	PROPATRIA PARTE ALTA - LA CAÑADA	PROPATRIA PARTE ALTA - LA CAÑADA	PROPATRIA PARTE ALTA - LA CAÑADA	PROPATRIA PARTE ALTA	PROPATRIA PARTE ALTA	PROPATRIA PARTE ALTA		PROPATRIA PARTE ALTA
HORA	12:00:00 a.m. a 01:00:00 a.m.	01:00:00 a.m. a 02:00:00 a.m.	02:00:00 a.m. a 03:00:00 a.m.	03:00:00 a.m. a 04:00:00 a.m.	04:00:00 a.m. a 05:00:00 a.m.	05:00:00 a.m. a 06:00:00 a.m.	06:00:00 a.m. a 07:00:00 a.m.	07:00:00 a.m 8:00 a.m	08:00:00 a.m 9:00 a.m	09:00:00 a.m 10:00 a.m	10:00:00 a.m 11:00 a.m	11:00:00 a.m 12:00 a.m	12:00 a.m. 01:00:00 p.m.	01:00:00 p.m. a 02:00:00 p.m.	02:00:00 p.m. a 03:00:00 p.m.	03:00:00 p.m. a 04:00:00 p.m.	04: 00: 00 p.m. a 05: 00:00 p.m.	05:00:00 p.m. a 06:00:00 p.m.	06:00:00 p.m. a 07:00:00 p.m.	07:00:00 p.m. a 08:00:00 p.m.	08:00:00 p.m. a 09:00:00 p.m.		09:00:00 p.m. a 10:00:00 p.m.

1.15. Sub sistema La Segoviana – Tanque Cristo Viene:

Este sistema está conformado por una estación de bombeo con tanquilla subterránea y dos equipos verticales de 250 Hp cada uno, ubicada en el sector la floresta frente a la urbanización la segoviana. Esta estación alimenta a través de dos fuentes, la primera es por medio de una tubería de asbesto cemento D = 8" que proviene del sistema de gravedad centro, la segunda es por medio de un pozo ubicado dentro de la urbanización la segoviana y cuyo caudal promedio de aporte es de 25 l/s, la tanquilla abastece a un tanque de concreto Pos tensado con capacidad para 10.000 m3, ubicado en el cerro Cristo Viene. La distribución del sistema se realiza a través de una tubería de alimentación principal donde se encuentran ubicadas una serie de válvulas para cumplir el plan de distribución programado. Es de hacer notar que desde este estanque se trasvasa agua hacia otro estanque de concreto post tensado de capacidad 1.500 m³ ubicado el cerro las clavellinas y abastece a la comunidad de Las Clavellinas y el jebe sector 19 de abril. Esta distribución se realiza por medio de maniobras ubicadas en los respectivos estanques de almacenamiento.

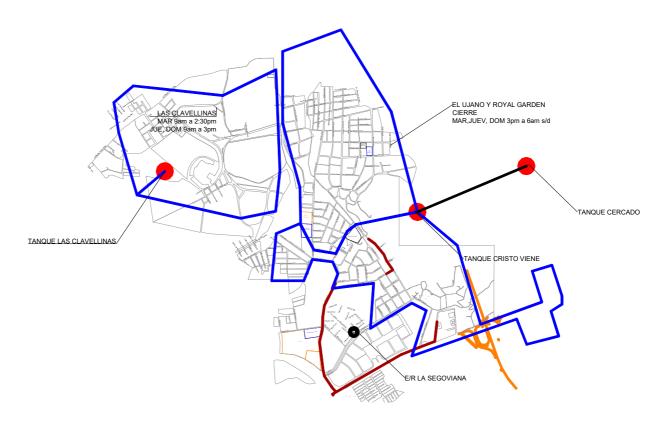
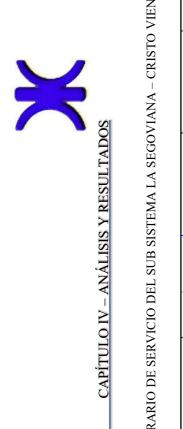



FIGURA 4.15. ESQUEMA DE SERVICIO DEL SUB SISTEMA LA SEGOVIANA – CRISTO VIENE

CUADRO 4.18. HORARIO DE SERVICIO DEL SUB SISTEMA LA SEGOVIANA – CRISTO VIENE.

SISTEMA	HORA	LUNES	MARTES	MIÉRCOLES	JUEVES	VIERNES	SÁBADO	DOMINGO
	12:00:00 a.m. a 01:00:00 a.m.	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN
	01:00:00 a.m. a 02:00:00 a.m.	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELWANO - ROYAL GARDEN	ELWANO - ROYAL GARDEN
	02:00:00 a.m. a 03:00:00 a.m.	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELWANO - ROYAL GARDEN
	03:00:00 a.m. a 04:00:00 a.m.	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN
	04:00:00 a.m. a 05:00:00 a.m.	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELWANO - ROYAL GARDEN	ELWANO - ROYAL GARDEN
	05:00:00 a.m. a 06:00:00 a.m.	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELWANO - ROYAL GARDEN
:NE	06:00:00 a.m. a 07:00:00 a.m.	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN
ΝE	07:00:00 a.m 8:00 a.m	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	EL WANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN			
OT	08:00:00 a.m 9:00 a.m	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN
SIBI	09:00:00 a.m 10:00 a.m	ELUJANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	LAS CLAVELIINAS
) ar	10:00:00 a.m 11:00 a.m	ELUJAN O - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	LAS CLAVELUNAS
ΛΟΙ	11:00:00 a.m 12:00 a.m	ELUJANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	LAS CLAVELUNAS
ΙΑΤ	12:00 a.m. 01:00:00 p.m.	ELUJANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	LAS CLAV ELLINAS	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	LAS CLAVELUNAS
- A	01:00:00 p.m. a 02:00:00 p.m.	ELUJANO - ROYAL GARDEN	LAS CLAVELLINAS	EL WANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	LAS CLAVELUNAS
NΑI	02:00:00 p.m. a 03:00:00 p.m.	ELUJANO - ROYAL GARDEN	IAS CLAVELLINAS	EL WANO - ROYAL GARDEN	LAS CLAVELLINAS	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	LAS CLAVELIINAS
۸Ο	03:00:00 p.m. a 04:00:00 p.m.	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
SEG.	04:00:00 p.m. a 05:00:00 p.m.	ELUJAN O - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
₩7	05:00:00 p.m. a 06:00:00 p.m.	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
	06:00:00 p.m. a 07:00:00 p.m.	ELUJAN O - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
	07:00:00 p.m. a 08:00:00 p.m.	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	EL WANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
	08:00:00 p.m. a 09:00:00 p.m.	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
	09:00:00 p.m. a 10:00:00 p.m.	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
	10:00:00 p.m. a 11:00:00 p.m.	ELUJANO - ROYAL GARDEN	RECUPERACIO N TAN QUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE
	11:00:00 p.m. a 12:00:00 a.m.	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE	ELUJANO - ROYAL GARDEN	ELUJANO - ROYAL GARDEN	RECUPERACION TANQUE

IV.1.2. DOTACIÓN PONDERADA POR ZONA

ZONA OESTE:

CUADRO 4.19. TABLA RESUMEN DE LAS DOTACIONES Y POBLACIONES DE SUB SISTEMA OESTE.

SUB SISTEMA	USUARIOS	CAUDAL MEDIO (l/s)	DOTACIÓN ACTUAL
VILLA ROSA	31.353	41,61	115
CORIANO	64.235	150	202
LA PAZ	106.299	211,4	172
TITICARE	35.970	80	192
LLENADERO	85.413	33,1	33
GRAVEDAD OESTE	100.119	240	218
DOTACIO	156,09		
DEFICIT ACTU MINIMA 25	454,93		

- La dotación media de toda la zona Oeste es de 156 l/hab/día y cubre un 60% de la dotación normada.
- La dotación media de la Red Alta del Oeste (aguas arriba del sub sistema gravedad oeste) es menor de 140 l/hab/día.

- Se requieren 450 l/s para alcanzar la dotación promedio (incluye las zonas sin servicio y que hoy se surten por cisternas). La mayor parte de este caudal se requiere en la red alta del Oeste (aguas arriba del sub sistema Gravedad Oeste).
- La dotación media de la Red Alta del Oeste es menor de 140 l/hab/día.

ZONA NORTE:

CUADRO 4.20. TABLA RESUMEN DE LAS DOTACIONES Y POBLACIONES DE SUB SISTEMA NORTE.

SUB SISTEMA	USUARIOS	CAUDAL MEDIO (l/s)	DOTACIÓN ACTUAL (l/hab/día)				
LA PEÑA	9.746	10	89				
CERRO GORDO	7.289	4,3	51				
ALTOS DE JALISCO	28.754	77,11	232				
TROMPILLO	12.995	3,7	25				
EL JEBE	EL JEBE 49.892 100						
LA TAPA	109.029	82,00	65				
GRAVEDAD	91.395	258,00	244				
CRISTO VIENE	37.277	83,50	194				
DOT.	154						
DEFICIT ACTUAL I	384						

- Dotación media de toda la zona Norte es de 153 l/hab/día (60% de la norma).
- Dotación media de la Red Alta del Norte es < 120 l/hab/día.
- Se requieren 370 l/s para alcanzar la dotación promedio.

ZONA CENTRO - ESTE:

CUADRO 4.21. TABLA RESUMEN DE LAS DOTACIONES Y POBLACIONES DE SUB SISTEMA CENTRO.

SISTEMA	SUB SISTEMA	Q (I/s)	TOTAL (hr/sem)	PROMEDIO (hr/día)	VOLÚMEN (I/día)	Q PROM (I/s)	POBLACIÓN	DOTACIÓN (I/hab/día)
GRAVEDAD CASCO CENTRAL - ESTE	SERVICIO CONTINUO	788	168	24,00	68.095.784,76	788	297.335	229
				TOTAL	68.095.784,76	788	297.335	229

FUENTE: PROPIA

• La dotación medía del sector centro – esta, la cual tiene servicio de 24 horas es de 229 l/hab/día.

IV.1.3. ESTIMACIÓN DE LOS INDICES DE COBERTURA.

A continuación se procede a determinar los índices de cobertura de los distritos de servicio que se encuentran dentro del sistema de gravedad pero que no tiene servicio las 24 horas.

CUADRO 4.22. INDICE DE COBERTURA DE LA ZONA OESTE.

CALCULO DE POBLACION ZONA OESTE						Horas Inte	errupción		
Sistema	Cent. Poblado	Pob total	Usuarios	Servicio	Programadas	(1)Fallas Eléctricas	(2)Resto de Fallas	Total	Hinter*l
	12 DE OCTUBRE	8,182	8182	14	10.30			10	84,277
GRAVEDAD OESTE 1	JARDINES DEL AEROPUERTO URB LOS CHINOS	4,328 844	4328 844	14 14	10.30 10.30			10 10	44,579 8.689
GRAVEDAD CESTE I	INVASIONES (LA ZAMURERA)	4,563	0	14	10.30			10	0,008
	28 DE MAYO	2,322	0	14	10.30			10	
	VALLE VERDE	2,565	2565	14	10.30			10	26,420
GRAVEDAD OESTE 2	VILLA GUADALUPE LA CONCORIDA 3	1,350 540	1350 540	14 14	10.30			10 10	13,905 5,562
GRAVEDAD OESTE 3	RED MEDIA Y BAJA DEL OESTE	70,570	70570	14	10.30			10	726,871
GRAVEDAD OESTE 4	SECTORES QUE SE SURTEN POR	3,633	0	14					
	CISTERNAS				10.30			10	200 070
VILLA ROSA 1	VILLA CREPUSCULAR VILLA JESÚS	9,691 1.080	9691	0	21.29 24.00			21 24	206,278
VILLA ROSA 2	BATALLA BOMBEO - BOLÍVAR - UREÑA	6,129	6129	2.29					
VILLA ROSA 2					21.71			22	133,079
	BATALLA GRAVEDAD	4,039	4039 0	19.00 19.00	5.00 5.00			5	20,196
	BATALLA 1 Y 2 DELFIN GONZALEZ	3.776	3776	19.00	5.00			5	18,879
	NARANJOS	925	925	19.00	5.00			5	4,62
VILLA ROSA 3	MORROCOY	899	899	19.00	5.00			5	4,496
	SAN JOSE DE TINTIN , EL HIPODROMO, VILLA ROSA, SOL Y	3,000	3000	19.00					
	SOMBRA	3,000	3000	19.00	5.00			5	15,000
	ASOPRADO	2,446	2446	19.00	5.00			5	12,231
VILLA ROSA 4	VIVIENDAS A LO LARGO DE LA VIA	448	448	19.00	F 00			-	0.04
	VILLA ROSA				5.00			5	2,241
VILLA ROSA 5	SECTORES SIN SERVICIO DE ACUEDUCTO (CISTERNAS):	2 946	0	0					
TILLA NOOM 5	MORROCOY - LA PASTORA - OTROS	2,340	U	J	24.00			24	
	JACINTO LARA ALTA - BOLÍVAR	6.560	6560	10.29	13.71			24 14	89.97
CODEANS	19 DE ABRIL	4,402	4402	10.29	13.71			14	60,37
COREANO 1	JACINTO LARA BAJA - 24 DE JULIO	7,031	7031	10.29	13.71			14	96,42
	VENEZOLANOS PRIMEROS	3,795	3795	10.29	13.71			14	52,04
	COREANO NORTE VALLE INMACULADA	4,977 2.582	4977 2582	9.43 9.43	14.57 14.57			15 15	72,52 37.62
	COREANO SUR - SANTA BARBARA	1.854	1854	9.43	14.57			15	27.00
COREANO 2	EL PARAISO	6,937	6937	9.43	14.57			15	101,08
	TOSTAO - MI CABAÑA	8,006	8006	9.43	14.57			15	116,65
	PALOMAR - LOS YABOS	2,478	2478	9.43	14.57			15	36,10
	LOS LIBERTADORES SANTA ROSALIA	3,032 9,321	3032 9321	9.43 4.29	14.57 19.71			15 20	44,17 183,76
COREANO 3	TRIGAL	1,640	1640	4.29	19.71			20	32,32
	VILLA ISABEL	1,620	1620	4.29	19.71			20	31,94
COREANO 4	SECTORES SIN SERVICIO DE	2,402	0	0	04.00			24	
LA PAZ 1	ACUEDUCTO (CISTERNAS): LOS ANGELES 1	2,738	2738	12	24.00 12.00			12	32,85
	LA CALIFORNIA	2,940	2940	9	15.14			15	44.52
LA PAZ 2	ALI PRIMERA	1,178	1178	9	15.14			15	17,84
LA PAZ 3	PRADOS DE OCCIDENTE 1	4,425	4425	5	19.43			19	85,97
LA PAZ 4 LA PAZ 5	PRADOS DE OCCIDENTE 2 LA PRADERA	885 1,788	885 1788	3	22.86 20.57			23 21	20,23 36,78
LA I AL V	J M VARGAS LA INVASIÓN	357	357	14	10.29			10	3.67
	J M VARGAS 2	1,029	1029	14	10.29			10	10,58
	LOS ANGELES LA VICTORIA	399	399	14	10.29			10	4,10
LA PAZ 6	VALLE DORADO LAS JUANAS	1,497 2,274	1497 2274	14 14	10.29 10.29			10 10	15,40 23,38
	VILLA TORRES	1.052	1052	14	10.29			10	10.82
	EL TRIGAL	1,640	1640	14	10.29			10	16,86
LA PAZ 7	LOS ANGELES 4	1,343	1343	14	10.29			10	13,81
LA PAZ 8	EL ROTARIO 4	1,612 241	1612	14 14	10.29 10.29			10 10	16,58 2.47
	LOS ANGELES 2 CALLE 7 LA PAZ	11,744	241 11744	14 14	10.29			10	120,79
	RAFAEL LINAREZ	3,035	3035	14	10.29			10	31,21
	VILLA DEL OESTE	751	751	14	10.29			10	7,72
	LA NUEVA PAZ	1,928	1928	14	10.29			10	19,83
LA PAZ 9	JOSE MARIA VARGAS 1 CARIBE I	2,275 3.213	2275 3213	14 14	10.29 10.29			10 10	23,40 33,05
v	CARIBE II	7,012	7012	14	10.29			10	72,12
	LA APOSTOLEÑA	5,992	5992	14	10.29			10	61,62
	ROTARIO 2	728	728	14	10.29			10	7,48
	LOS ANGELES 2 SAN JOSE OBRERO	2,074	2074 2722	14 14	10.29 10.29			10 10	21,32 27,99
	5 DE JULIO - J G HERNNADEZ - LA								
	LUCHA	19,190	19190	10	13.71			14	263,17
	CERRITOS BLANCOS ALTA	2,468	2468	10	13.71			14	33,85
LA PAZ 10	RAFAEL LINAREZ ALTA AGUA VIVA EL ROBLE - PILA DE	4,320	4320	10	13.71			14	59,24
	MONTEZUMA - J F RIBAS -	11,851	11851	10					
	CERRAJONES	4.5	4000	40	13.71			14	162,52
	CERRITOS BLANCOS CERRO MARA	1,020 576	1020 576	10 10	13.71 13.71			14 14	13,99 7,90
	LOS ANGELES S/AC	434	0	0	24.00			24	1,90
	CASA ITALIA S/AC	614	0	0	24.00			24	
LA DAZ 44	LA FUNDADORA S/AC	177	0	0	24.00			24	
LA PAZ 11	COLUMNA DE FUEGO LA CAPILLA - LA ESPERANZA S/AC	353 967	0	0	24.00 24.00			24 24	
	SECTORES SIN SERVICIO DE				∠4.00			24	
	ACUEDUCTO (CISTERNAS)	24,149	0	0	24.00			24	
TITICARE 1	TITICARE	302	302	24	0.00			0	
	CARUCIEÑA I	4,514	4514	10	13.71			14 14	61,90
TITICARE 2	CARUCIEÑA II CARUCIEÑA II	3,815 698	3815 698	10 10	13.71			14 14	52,31 9,57
L Z	GARABATAL	4,100	4100	10	13.71			14	56,22
	CARUCIEÑA III	1,610	1610	10	13.71			14	22,08
		4 000	1808	14	10.29			10	18,59
TITICARE 3	CARUCIEÑA IV	1,808			10.23				
	LOMAS DE LEON MEDIA	8,387	8387	14	10.29			10	86,26
TITICARE 3 TITICARE 4					10.29 10.29 10.29				86,26 43,19 45,01

CUADRO 4.22. INDICE DE COBERTURA DE LA ZONA OESTE. (CONTINUACIÓN)

Sistema	Pob total	Usuarios	Hinter*Usua
OESTE	374,732	331,091	4,099,970

ÍNDICE DE COBERTURA CONSIDERANDO TODAS LAS FALLAS	Ts	0.4277

FUENTE: PROPIA

"EN EL CÁLCULO DEL INDICE DE COBERTURA NO SE TOMA EN CUENTA EL SUB SISTEMA PAVIA BOBARE"

CUADRO 4.23. INDICE DE COBERTURA DE LA ZONA NORTE.

	CALCULO DE POBLACIO	N ZONA NORTE						Horas Inte	errupción		
Sistema	Cent. Poblado	Area (Ha)	Densidad (Hab/Ha)	Pob total	Usuarios	Servicio	Programadas	(1)Fallas Eléctricas	(2)Resto de Fallas	Total	Hinter*Usu
LA PEÑA	LA PEÑA 1	28.18	155	4,368	4368	10	14.00			14	61,151
LATENA	LA PEÑA 2	33.32	131	4,365	4365	10	14.00			14	61,109
E/R CERRO GORDO	CERRO GORDO	55.64	131	7,289	7289	2.30	21.70			22	158,168
	BLOQUE MAZIA MUJICA PARTE BAJA	38.89	131	5,095	5095	12	12.00				
	BLOQUE MAZIA MUJICA PARTE ALTA	37.00	100	3,700	3700	12	12.00			12	44,400
ALTO DE JALISCO	E/R SAN LORENZO I	19.76	50	988	988	12	12.00			12	11,856
	E/R SAN LORENZO I	4.39	131	575	575	12	12.00			12	6,901
	E/R SAN LORENZO II	21.20	131	2,777	2777	12	12.00			12	33,326
	ALTO JALISCO	53.97	50	2,699	2699	12	12.00			12 12	32,382 155.031
	ALTO JALISCO LA CAÑADA I	98.62 38.28	131 131	12,919 5.014	12919 5014	12	11.00			11	55,156
	LA CAÑADA II	38.28 16.40	131	2,149	2149	13	11.00			11	23,638
	PROPATRIA ALTA	16.40	131	2,149 1.951	1951	13	11.00			11	23,638
	PASTORA	12.64	131	1,951	1656	13	11.00			11	18.214
	NEGRA MATEA	18.39	50	920	920	13	11.00			11	10,115
	LOS GRANADOS	62.30	50	3.115	3115	13	11.00			11	34.265
EL JEBE	LOS GRANADOS	47.47	131	6,219	6219	13	11.00			11	68,404
	SAN BENITO	20.64	131	2,704	2704	13	11.00			11	29,742
	LA PRADERA ALTA	17.53	131	2,296	2296	13	11.00			11	25,259
	LA PRADERA BAJA	14.34	131	1,879	1879	13	11.00			11	20,666
	EL VALLE ALTA	18.89	131	2,475	2475	13	11.00			11	27,226
	EL VALLE BAJA	12.60	131	1,650	1650	13	11.00			11	18,151
LA TAPA	CUJI TAMACA	681.43	160	109,029	109029	13.00	11.00			11	1,199,317
	EL UJANO -ROYAL GARDEN	178.09	131	23,330	23330	15.00	9.00			9	209,968
	EL UJANO -ROYAL GARDEN	15.22	30	457	457	15.00	9.00			9	4,109
CRISTO VIENE	EL UJANO -ROYAL GARDEN	16.30	114	1,858	1858	15.00	9.00			9	16,724
	EL UJANO -ROYAL GARDEN	0.71	270	192	192	15.00	9.00			9	1,725
	LAS CLAVELLINAS	87.33	131	11,440	11440	3.00	21.00			21	240,245
ZONA GRAVEDAD NORTE	SISTEMA GRAVEDAD			91,395	91395	24.00	0.00			0	-
EL TROMPILLO	SIN SERVICIO POR TUBERIA			12,995	12995	0.00	24.00			24	311,880
							İ			0	-
31		TOTAL HABIT	ANTES	327,496	327,496	362	358	0	0	346	2,900,584

Sistema	Pob total	Usuarios	Hinter*Usua
NORTE	327,496	327,496	2,900,584

INDICE DE COBERTURA CONSIDERANDO TODAS LAS FALLAS TS 0.6310

IV.1.4. PÉRDIDAS FÍSICAS DEL SISTEMA

Este análisis, permite conocer un dato importante para el análisis inicial del sistema: Las Pérdidas Reales.

Las pérdidas deben ser tomadas muy en cuenta en los escenarios de demandas definiéndose dos posibles situaciones: el peor escenario que considera las pérdidas a lo largo del período de diseño, y el escenario optimista que asume la puesta en marcha de un plan de recuperación de pérdidas en un tiempo establecido. Claro que todo esto aplica siempre que el valor de recuperación de pérdidas sea mayor que los costos económicos que implica su reducción.

En ese caso podría suceder que una inversión en el sistema que minimice estas pérdidas permitiría la recuperación de un caudal importante, lo que pasa a ser un incremento de la disponibilidad real. También es importante considerar el aspecto de que si se desea incorporar nuevas fuentes de producción, si el sistema de distribución es muy ineficiente no se lograría el aprovechamiento deseado. En ese contexto, una inversión de rehabilitación de redes podría ser más útil que una nueva fuente.

La hipótesis inicial del análisis usada fue la de considerar que las pérdidas más representativas se encuentran en los sub sistemas: Pavia Bobare – El Manzano – Sub sistema Gravedad. Los otros sub sistemas fueron obviados debido a la poca continuidad del servicio y de la poca incidencia de las fugas en estos sectores. Para los primeros sub sistemas (Pavia y El Manazano) las pérdidas están representadas mayormente por uso indebido y sobreconsumo, y su cuantificación se hará de manera independiente en el correspondiente estudio de demandas. En cambio para el caso del Sub sistema gravedad (Oeste, Norte y Casco Central – Este) fue necesario un estudio más complejo ya que no presenta los mismos síntomas que los anteriores y los consumos por usuarios prácticamente están totalmente cuantificados.

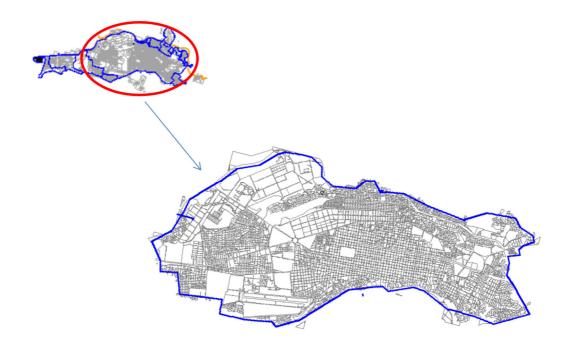


FIGURA 4.16. ZONA DE ESTUDIO PARA LA ESTIMACIÓN DE LAS PÉRDIDAS FÍSICAS DE LA RED DE BARQUISIMETO (SUB SISTEMA GRAVEDAD OESTE –NORTE – CENTRO – ESTE)

Datos de entrada.

CUADRO 4.24. NUMERO DE USUARIOS POR ZONA Y USO.

		NUM DE USUARIOS										
	OESTE 1	OESTE 2	OESTE 3	NORTE	NORTE 2	NORTE 6	ESTE	CASCO CENTRAL	ZONA INDUSTRIAL	TOTAL	TODO	
RESIDENCIALES SOCIAL TOTALES	203	0	2228	5	8	76	0	53	0	2,573.00	2569	
RESIDENCIALES TOTALES	10337	846	500	3901	1952	11399	377	27471	43	56,826.00	56898	
COMERCIALES TOTALES	610	21	179	63	10	589	2	5486	173	7,133.00	7089	
INDUSTRIALES TOTALES	31	0	27	5	0	125	0	284	186	658.00	655	
COOPERATIVA TOTALES	1	0	0	1	0	4	0	3	2	11.00	11	
OFIC ESTADAL TOTALES	48	2	8	17	3	56	0	146	2	282.00	275	
OFIC MUNICIPAL TOTALES	10	1	6	7	2	23	0	61	1	111.00	110	
OFIC NACIONAL TOTALES	15	2	10	8	1	24	1	115	1	177.00	174	
TOTAL	11,255.00	872.00	2,958.00	4,007.00	1,976.00	12,296.00	380.00	33,619.00	408.00	67,771.00	67,781.00	
INCIDENCIA	17%	1%	4%	6%	3%	18%	1%	50%	1%			

FUENTE: PROPIA

CUADRO 4.25. NUMERO DE USUARIOS POR ZONA Y USO CON MICROMEDICIÓN

. FUENTE: PROPIA

CUADRO 4.26. NUMERO DE USUARIOS POR ZONA Y USO SIN MICROMEDICIÓN.

CUADRO 4.27. CAUDAL EN 1/s OBTENIDO DE LAS MEDICIONES.

		Q (I/s) MEDIDOS											
	OESTE 1	OESTE 2	OESTE 3	NORTE	NORTE 2	NORTE 6	ESTE	CASCO CENTRAL	ZONA INDUSTRIAL	TOTAL	TODO		
RESIDENCIALES SOCIAL TOTALES	1,59	0,00	0,00	0,00	0,00	0,16	0,00	0,19	0,00	1,94	1,94		
RESIDENCIALES TOTALES	93,61	8,21	1,37	27,77	1,39	19,23	4,37	244,36	0,14	400,45	558,95		
COMERCIALES TOTALES	14,67	0,41	2,55	2,51	0,02	12,02	0,40	113,70	10,99	157,26	154,65		
INDUSTRIALES TOTALES	0,91	0,00	2,96	0,05	0,00	8,77	0,00	15,84	34,29	62,83	63,45		
COOPERATIVA TOTALES	0,02	0,00	0,00	0,00	0,00	0,10	0,00	0,00	0,07	0,19	0,19		
OFIC ESTADAL TOTALES	3,33	0,00	0,00	0,34	0,00	0,72	0,00	12,71	0,00	17,10	15,87		
OFIC MUNICIPAL TOTALES	0,09	0,00	0,32	0,07	0,00	0,42	0,00	2,60	0,00	3,50	3,12		
OFIC NACIONAL TOTALES	0,14	0,00	0,02	0,11	0,00	0,64	0,12	3,99	0,00	5,02	5,02		
TOTAL	114,36	8,61	7,23	30,85	1,41	42,06	4,89	393,39	45,48	648,29	803,19		
INCIDENCIA	18%	1%	1%	5%	0%	6%	1%	61%	7%	•	154,90		

FUENTE: PROPIA

Resultados obtenidos

CUADRO 4.28. DIFERENCIA ENTRE EL CONSUMO ESTIMADO POR EXTRAPOLACIÓN Y LO MEDIDO.

	Q (l/s) MEDIDOS	Q (l/s) (EXTRAPOLADOS)	DOTACIÓN TOTAL (l/s)
RESIDENCIALES SOCIAL TOTALES	2	20	22
RESIDENCIALES TOTALES	559	381	940
COMERCIALES TOTALES	155	78	233
INDUSTRIALES TOTALES	63	18	81
COOPERATIVA TOTALES	0	0	0
OFIC ESTADAL TOTALES	16	52	68
OFIC MUNICIPAL TOTALES	3	13	16
OFIC NACIONAL TOTALES	5	18	23
TOTAL	803	580	1.384

CUADRO 4.29. DIFERENCIA ENTRE EL CONSUMO ESTIMADO POR EXTRAPOLACIÓN Y LO FACTURADO.

	Q (l/s) EXTRAPOLADOS	Q (l/s) FACTURADOS	DIFERENCIA
RESIDENCIALES SOCIAL TOTALES	20	14	-6
RESIDENCIALES TOTALES	381	253	-128
COMERCIALES TOTALES	78	40	-38
INDUSTRIALES TOTALES	18	3	-14
COOPERATIVA TOTALES	0	0	0
OFIC ESTADAL TOTALES	52	18	-34
OFIC MUNICIPAL TOTALES	13	3	-10
OFIC NACIONAL TOTALES	18	28	10
TOTAL	580	361	-220

FUENTE: PROPIA

"Se puede notar la diferencia entre el caudal estimado de consumo y lo facturado, sería interesante revisar más a fondo este resultado ya que representa pérdidas económicas por sub facturación"

Balance Hídrico

El balance hídrico no es más que la diferencia entre la oferta y demanda del sistema de abastecimiento de la zona de estudio. Es necesario contar con estos datos de una manera confiable. Para la determinación de la oferta (caudal de entrada al sistema) se cuenta con los datos de registro de caudales de las estaciones de rebombeo de cada sub sistema, y para la demanda se tienen los cálculos realizados de consumo cuyos resultados se mostraron en el punto anterior. En la figura 4.17

representa gráficamente los valores de caudal de cada sub sistema, y el aporte final a la zona de estudio.

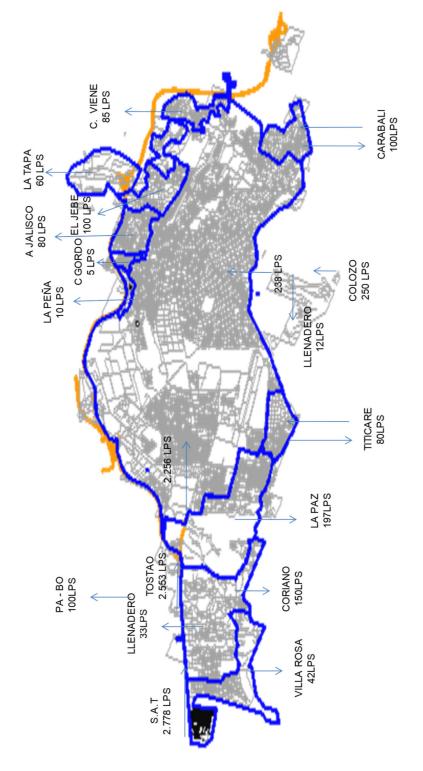


FIGURA 4.17. CAUDALES DE ENTRADA AL SISTEMA DE BARQUISIMETO

Cálculos Típicos:

Caudal en l/s entregado Total del sub sistema: Se obtiene del cuadro de balance de caudales, esto es

Q Oeste =
$$+ 2.256 \, l/s$$

Q Sur =
$$+238 \frac{1}{s}$$

Q Norte =
$$-340 \text{ l/s}$$

Consumo en l/s obtenido en la micromedición:

Consumo "estimado" en no medidos = 580 l/s (43% de los usuarios)

Ж

Pérdidas aparentes:

En ese sentido se ha definido un escenario optimista en donde se considera subregistro de los micro medidores y sobre registro de los contadores de los puntos de producción.

Según experiencia para el primero de ellos se tiene un porcentaje de error de 5% y en el segundo caso de un 2%. Haciendo los cálculos respectivos tenemos:

• Pérdidas aparentes: Sobre registros en Macro medición 2%

Sub registros en Micro medición 5%

• Pérdidas aparentes: 2.156 x (2%) = 43,12 l/s (Sobre registro)

1.399 x (5%) = 70.0 l/s (Sub registro)

Total Pérdidas aparentes = 113,12 l/s

Pérdidas reales:

Pérdidas totales: 756 l/s

Pérdidas aparentes: 113,02 l/s

Pérdidas Físicas= 755 - 113 = 642 l/s

En este sentido y haciendo énfasis en la metodología propuesta por la International Water Association (IWA), la cual se mostró en el capitulo 3, tenemos:

Indicador de pérdidas (IFI – 1 / conexión / día):

Tomando como referencia el cuadro desarrollado por International Water Association (IWA), mostrado en el capitulo 2 y mostrado a continuación:

CUADRO 2.1. ILI – VERSUS LTS/CONEXIÓN/DIA.(BIS)

	Technical Performance		Litres/connection/day (when the system is pressurised) at an average pressure of:							
	ategory	ILI	10 m	20 m	30 m	40 m	50 m			
ba se	A	1 - 2		< 50	< 75	< 100	< 125			
Developed Countries	В	2 - 4		50-100	75-150	100-200	125-250			
eve.	C	4 - 8		100-200	150-300	200-400	250-500			
ĞÖ	D	> 8		> 200	> 300	> 400	> 500			
E s	A	1-4	< 50	< 100	< 150	< 200	< 250			
Developing Countries	В	4-8	50-100	100-200	150-300	200-400	250-500			
one	C	8 - 16	100-200	200-400	300-600	400-800	500-1000			
٥	D	> 16	> 200	> 400	> 600	> 800	> 1000			

FUENTE: INTERNATIONAL WATER ASSOCIATION (IWA).

En el cuadro anterior anterior se definen valores simplificados l/conexión/día. En la columna de la izquierda muestra el nivel de desempeño del sistema para países desarrollados y países en vías de desarrollo. Para evaluar el caso de estudio se debe transformar las pérdidas físicas de l/s a l/conexión/día.

Pérdidas Físicas: 642 l/s

Conexiones: 67.771

Pérdidas Físicas: 642 l/s x 86.400 / 67.771 = 819 l/Conex/día

Presión media de la red: Pmáxima 20 metros de columna de agua (m.c.a.)

Nivel de desempeño de la red: "D" (819 >> 400)

Caudal de entrada al sistema: 2.156 l/s

Eficiencia en la red: $100\% - (642 / 2.156) \times 100 = 70\%$

• Para el caso de estudio, una eficiencia en la red de 70% (aparentemente aceptable según algunos estándares nacionales) es aceptable, sin embargo el indicador simplificado del ILI señala que el nivel de desempeño es inaceptble y que se amerita una intervención urgente en la red. Esto justifica ampliamente un plan de reducción de pérdidas en la red

• Por otro lado, no se están tomando en cuenta las pérdidas por toma ilegal y sobre consumo del sistema Alto Tocuyo, Pavia Bobare, Villa Rosa y el Manzano. Estas pérdidas están cuantificadas en un estimado de 300 l/s para un caudal mayor (en este caso se tomaría en cuenta toda la producción y no sólo el balance de la zona de estudio), de aproximadamente 4.000 l/s. No se consideran estas pérdidas ya que su tratamiento es muy diferente, ya que la mayoría son pérdidas en la conducción del sistema de producción. Evidentemente incorporarlos en el balance mejoraría sólo un poco la eficiencia de la red, alrededor del 72%. De igual manera siempre es recomendable considerar el volumen de pérdida, con un tratamiento especial tal como se indicó antes, ya que aumenta la disponibilidad de la oferta.

Valores objetivos de las pérdidas:

De acuerdo al indicador de desempeño, una red con presiones de trabajo de 20 m.c.a, y en un país en vías de desarrollo, es aceptable, o por lo menos viable, que el sistema aumente su nivel de desempeño al nivel "C". Esto se puede asumir como un resultado factible si se cumple desde ya un plan de recuperación de pérdidas físicas, pudiendo asumir que con algunas acciones se recupere el 70% del volumen perdido en un lapso corto de tiempo. A pesar de que el nivel "C" no es el deseado, ponerse como meta el nivel "B" es cuestionable, ya que precisamente las pequeñas pérdidas son las más difíciles de recuperar. En todo caso, es un buen inicio operar en el nivel "C" cuando hoy se está muy distante del nivel "D" inclusive.

Para un nivel de desempeño "C", de acuerdo al cuadro 2.1 es permisible unas pérdidas de 200 a 400 l/conexión/día. Asumiremos la media de este rango, es decir, 300 l/conexión/día.

Pérdidas físicas permisibles: 300 l/conexión/día

Pérdidas físicas permisibles: $300 \times 67.771 / 86.400 = 235 \text{ l/s}$.

Oportunidad = 642 - 235 = 407 l/s

"Este valor representa una oportunidad de recuperación con la ejecución de un buen plan, en un lapso aproximado de cinco (5) años".

Eficiencia en la red objetivo: $100\% - (235 + 113) \times 100 / 2.156 = 84\%$.

Por lo antes expuesto fue necesario plantear dos escenarios fundamentales en las simulaciones uno donde se aplica un plan de recuperación de pérdidas físicas al cual se llamó escenario intermedio y si no se aplicara llamado pesimista. En el escenario intermedio se plantea reducir las pérdidas en un lapso de 20 años a un nivel de desempeño B.

IV.2. BALANCE DEMANDA DISPONIBILIDAD:

A continuación se presenta el balance hídrico del sistema de abastecimiento de Barquisimeto considerando dos escenarios principales: con mejoras en los sistemas de producción o sin ellas presentado por la hidrológica en su estudio (2010) "Planificación Hidráulica de los sistema de Producción del Sistema de Barquisimeto.", tomando en cuenta para ambos casos recuperar o no las pérdidas físicas en la red de distribución:

- Sin Mejoras en los sistemas de producción:

TABLA 4.30. BALANCE DEMANDA DISPONIBILIDAD ESCENARIO SIN MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO SIN RECUPERACIÓN DE PERDIDAS FISICAS.

CASO			SIN I	RECUPER	ACIÓN DE 1	PERDIDAS	
AÑO	2011	2011	2016	2016	2021	2031	SATURACION
DEMANDA	MIN	MAX	MIN	MAX	MEDIA	MEDIA	MEDIA
GRAVEDAD	2,201	2,201	2,573	2,573	2,896	3,670	10,363
MATRIZ NORTE	250	381	279	428	477	565	1,601
LA PAZ	246	270	270	335	388	491	594
EL JEBE	110	110	93	93	105	133	114
LA SEGOVIANA	91	91	102	102	115	145	515
TOTAL	2,897	3,053	3,317	3,531	3,980	5,004	13,187
DISPONIBILIDAD SAT	2,672	2,658	2,545	2,571	2,495	2,495	2,495
DISPONIBILIDAD CAMPO DE POZOS MACUTO	292	292	292	292	292	292	292
TOTAL	2,964	2,950	2,837	2,863	2,787	2,787	2,787
BALANCE	67	-103	-480	-669	-1,193	-2,217	-10,400

FUENTE: PLANIFICACIÓN HIDRÁULICA DE LOS SISTEMA DE PRODUCCIÓN DEL SISTEMA DE BARQUISIMETO, HIDROLARA 2010

CUADRO 4.31. BALANCE DEMANDA DISPONIBILIDAD ESCENARIO SIN MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO CON RECUPERACIÓN DE PERDIDAS FISICAS.

CASO		(CON RECU	PERACIÓ	N DE PERI	DIDAS	
AÑO	2011	2011	2016	2016	2021	2031	SATURACION
DEMANDA	MIN	MAX	MIN	MAX	MEDIA	MEDIA	MEDIA
GRAVEDAD	2,201	2,201	2,425	2,425	2,375	2,824	8,060
MATRIZ NORTE	250	381	279	428	477	565	1,601
LA PAZ	246	270	270	335	388	491	594
EL JEBE	110	110	93	93	105	133	114
LA SEGOVIANA	91	91	102	102	115	145	515
TOTAL	2,897	3,053	3,168	3,383	3,460	4,159	10,884
DISPONIBILIDAD SAT	2,672	2,658	2,545	2,571	2,495	2,495	2,495
DISPONIBILIDAD CAMPO DE POZOS MACUTO	292	292	292	292	292	292	292
TOTAL	2,964	2,950	2,837	2,863	2,787	2,787	2,787
BALANCE	67	-103	-332	-520	-673	-1,372	-8,097

FUENTE: PLANIFICACIÓN HIDRÁULICA DE LOS SISTEMA DE PRODUCCIÓN DEL SISTEMA DE BARQUISIMETO, HIDROLARA 2010.

- Con Mejoras en los sistemas de producción:

CUADRO 4.32. BALANCE DEMANDA DISPONIBILIDAD ESCENARIO CON MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO SIN RECUPERACIÓN DE PERDIDAS FISICAS.

CASO			SIN R	ECUPER	ACIÓN DE	PERDIDAS	
AÑO	2011	2011	2016	2016	2021	2031	SATURACION
DEMANDA	MIN	MAX	MIN	MAX	MEDIA	MEDIA	MEDIA
GRAVEDAD	2,201	2,201	2,573	2,573	2,896	3,670	10,363
MATRIZ NORTE	250	381	279	428	477	565	1,601
LA PAZ	246	270	270	335	388	491	594
EL JEBE	110	110	93	93	105	133	114
LA SEGOVIANA	91	91	102	102	115	145	515
TOTAL	2,897	3,053	3,317	3,531	3,980	5,004	13,187
DISPONIBILIDAD SAT	3,387	3,372	3,260	3,285	3,210	3,210	3,210
DISPONIBILIDAD CAMPO DE POZOS MACUTO	292	292	292	292	292	292	292
TOTAL	3,678	3,664	3,551	3,577	3,501	3,501	3,501
BALANCE	781	611	234	46	-479	-1,503	-9,686

FUENTE: PLANIFICACIÓN HIDRÁULICA DE LOS SISTEMA DE PRODUCCIÓN DEL SISTEMA DE BARQUISIMETO, HIDROLARA 2010

CUADRO 4.33. BALANCE DEMANDA DISPONIBILIDAD ESCENARIO CON MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO CON RECUPERACIÓN DE PERDIDAS FISICAS.

CASO			CON R	ECUPER	ACIÓN DE	PERDIDAS	S
AÑO	2011	2011	2016	2016	2021	2031	SATURACION
DEMANDA	MIN	MAX	MIN	MAX	MEDIA	MEDIA	MEDIA
GRAVEDAD	2,201	2,201	2,425	2,425	2,375	2,824	8,060
MATRIZ NORTE	250	381	279	428	477	565	1,601
LA PAZ	246	270	270	335	388	491	594
EL JEBE	110	110	93	93	105	133	114
LA SEGOVIANA	91	91	102	102	115	145	515
TOTAL DEMANDA	2,897	3,053	3,168	3,383	3,460	4,159	10,884
DISPONIBILIDAD SAT	3,387	3,372	3,260	3,285	3,210	3,210	3,210
DISPONIBILIDAD CAMPO DE POZOS MACUTO	292	292	292	292	292	292	292
TOTAL DISPONIBILIDAD	3,678	3,664	3,551	3,577	3,501	3,501	3,501
BALANCE	781	611	383	194	42	-657	-7,382

FUENTE: PLANIFICACIÓN HIDRÁULICA DE LOS SISTEMA DE PRODUCCIÓN DEL SISTEMA DE BARQUISIMETO, HIDROLARA 2010

Observando los balances mostrados se nota a simple vista que el escenario sin mejoras en los sistemas de producción es muy desfavorable lo cual traería como consecuencia que para poder dar servicio a todos los usuarios del sistema de abastecimiento de Barquisimeto habría que bajar la dotación en el subsistema

gravedad a fin de poder tener caudal que entregar a las zonas del oeste (aguas arriba de los tanques de El Tostao) que están fuera de la red estudiada como son subsistema Villa Rosa, El Coreano, Llenadero, Pavia-Bobare, sin embargo se conoce que la hidrológica en estos momentos realiza algunas obras como "APROVECHAMIENTO DEL ACUÍFERO MACUTO – TITICARE PARA MEJORAS EN EL SISTEMA DE ABASTECIMIENTO DE AGUA POTABLE DE BARQUISIMETO", en el cual se plantea la perforación de una serie de pozos los cuales incorporarían más caudal al sistema, es por ello se descarta el escenario donde no se realizan mejoras en los sistemas de producción.

Como podemos apreciar en el cuadro 4.32 la disponibilidad de las fuentes actuales con la que cuenta la ciudad de Barquisimeto (S.A.T. y campo de pozos Macuto) es suficiente para cubrir los requerimientos hídricos de la población a una demanda mínima de por lo menos 100 l/hab/día hasta el año 2016, es por ello se procede a evaluar el funcionamiento de la red actual para el año 2011 y para el 2016, a partir de allí se necesita una nueva fuente, lo que se hace necesario la incorporación de caudal proveniente del Sistema Hidráulico Yacambú-Quíbor (SHYQ, C.A.) al sistema de Barquisimeto para equilibrar el balance.

Según datos oficiales se conoce del estudio realizado por A.F. Ingenieros Civiles en el año 2010 realizo para el SHYQ, C.A. el "análisis de alternativas para la incorporación del agua proveniente del SHYQ, C.A.", del cual se pudo conocer que existen dos alternativas para el suministro del caudal y se mencionan a continuación:

1) Debido a que la calidad del agua del embalse Yacambú – Quíbor, se prevé sea mejor que la del embalse Dos Cerritos, se ha propuesto como una de las alternativas,

asumir la demanda total de Barquisimeto desde el primero, haciendo una especie de intercambio entre las fuentes. En la actualidad se recibe desde Dos Cerritos aproximadamente 3.000 l/s en la entrada de Barquisimeto (en El Rodeo específicamente), y se esperaba recibir del SHYQ, C.A. 3.000 l/s para sumar 6.000 l/s entre ambas. Con la idea de intercambiar fuentes, el SHYQ, C.A. asumirá el total de los 6.000 l/s, quedando el embalse Dos Cerritos sólo para el abastecimiento de Quíbor y Tocuyo, y el resto para el sistema de riego. Para poder obtener estos 6.000 l/s del embalse, sería necesario bombearla desde el embalse Yacambú hasta la futura Planta de Tratamiento así que a esta alternativa se le ha denominado la "Propuesta de Bombeo".

2) se considera el abastecimiento desde el SHYQ, C.A. del caudal definido en el proyecto inicial para consumo urbano estimado en 3.750 l/s, manteniendo vigente la actual fuente del sistema Dos Cerritos. Para enviar este último caudal a la Planta de Tratamiento no se requiere bombeo como en el anterior por lo que a esta opción la llamaron "Propuesta de Gravedad".

Las dos alternativas fueron evaluadas simulando cada caudal en la aducción propuesta en el modelo elaborado de la aducción Planta – Estanques El Tostao. Las simulaciones fueron hechas para el mismo diseño en cuanto a longitud, cota de Planta y Estanques, diámetro y longitud de Tubería. La Planta de Tratamiento se ubicará en el "Cerro El Medio" en una cota de 713.65 msnm. Los Estanques se ubican con cota de rebose a 675 msnm. Para la primera alternativa (Q = 6.000 l/s), la presión de llegada al Estanque superaba los 22 m, para la segunda (Q = 3.750 l/s), la presión de llegada es mayor a 30 m. A continuación se muestran las figuras de los escenarios de simulación de las dos alternativas:

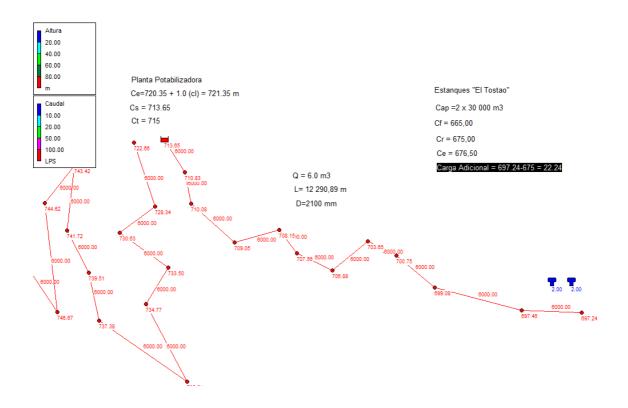


FIGURA 4.18. ESQUEMA HIDRÁULICO DEL MODELO PLANTA – ESTANQUES DEL SHYQ ${\rm CA,\ ALTERNATIVA\ 1.\ Q=6.000\ l/s}$

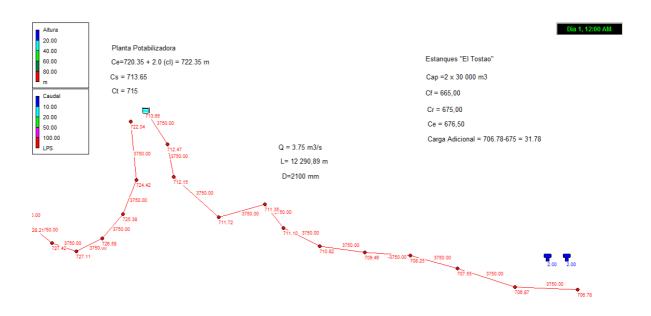
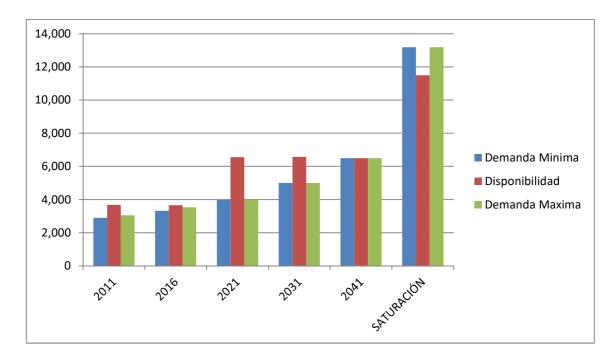


FIGURA 4.19. ESQUEMA HIDRÁULICO DEL MODELO PLANTA – ESTANQUES DEL SHYQ CA, ALTERNATIVA 2. Q = 3.750 l/s


Para el caso de este trabajo como no se cuenta con un escenario definitivo en cuanto a caudales y presiones de llegada al sistema de distribución de Barquisimeto se tomó un escenario más desfavorable que consiste en $Q_{SHYQ\ CA}=3.000\ l/s$ con una presión de llegada de 20 metros en los estanques de El Tostao.

Del mismo modo la demanda hídrica para la población máxima (población de saturación) prevista en el Plan de Desarrollo Urbano Local del año 2003 (PDUL 2003) es mucho mayor a la disponibilidad que ofrecen el S.A.T, el Campo de Pozos del Bosque Macuto y el agua proveniente del embalse Yacambú (SHYQ, C.A.) por lo que es necesario incorporar otra fuente que garantice el recursos a toda la población, se prevé que el embalse Dos Bocas sea el responsable de cumplir estos requerimientos hídricos.

Si hacemos el valor de la demanda igual a la suma de las fuentes y buscamos en que año ocurre esta demanda obtenemos que en el 2041 la demanda se hace igual a la disponibilidad, lo que nos dice que a partir de 2041 debe incorporarse el sistema Dos Bocas al sistema de abastecimiento de Barquisimeto, si no se aplicara un plan de reducción de pérdidas físicas en la red de distribución, en contraparte tenemos que al aplicar un plan de pérdidas físicas en la red de distribución alargaría la utilización de las fuentes SAT y SHYQ CA, hasta por lo menos un par de años más. Se conoce que el caudal máximo que tiene destinado el M.P.P.P. Ambiente para Barquisimeto será 5.000 l/s

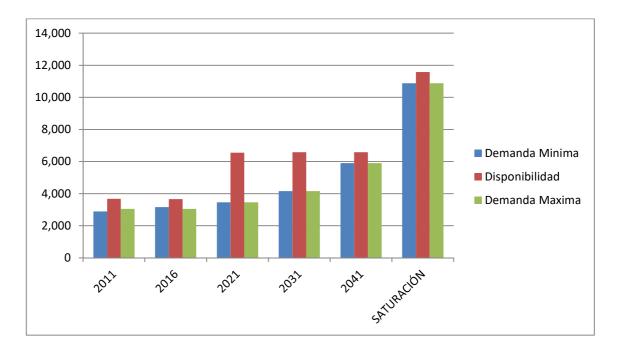

Lo antes expuesto se resume en el siguiente gráfico:

GRAFICO 4.1. BALANCE DEMANDA DISPONIBILIAD CON LA INCORPORACIÓN DE LAS FUTURAS FUENTES, ESCENARIO SIN RECUPERACIÓN DE PERDIDAS FISICAS EN LA RED DE DISTRIBUCIÓN.

GRAFICO 4.2. BALANCE DEMANDA DISPONIBILIAD CON LA INCORPORACIÓN DE LAS FUTURAS FUENTES, ESCENARIO CON RECUPERACIÓN DE PERDIDAS FISICAS EN LA RED DE DISTRIBUCIÓN.

En los gráficos mostrados se puede apreciar la relevancia que tienen las pérdidas físicas en la red de distribución, o lo que es lo mismo la aplicación de un plan de pérdidas físicas en el sistema de gravedad de la ciudad de Barquisimeto garantiza contar con la disponibilidad necesaria para satisfacer los requerimientos hídricos de la población en todo momento para los diferentes años de crecimiento, de no hacerlo no se contará con el gasto para cubrir la demanda máxima (población de saturación) contemplada en el PDUL 2003, lo que nos dice que habría que buscar una fuente adicional para poder hacerlo.

Se puede notar también que si se aplica el plan de reducción de pérdidas físicas, la disponibilidad es mayor en todo momento a la demanda lo que le agrega fiabilidad al sistema, dándole la posibilidad de cubrir la situaciones reales de desabastecimiento hídrico como son la disminución del caudal de extracción del SAT debido a la

disminución del volumen aprovechable del embalse causado por el gran contenido de sedimentos medidos en la última batimetría en él (según fuente oficial M.P.P.P. Ambiente, ver anexo 4.2) o cualquier otra circunstancia que se presente. Sin embargo, se realizará el análisis hidráulico a los escenarios con reducción de pérdidas físicas y sin ellas.

IV.3. MODELO HIDRAULICO:

IV.3.1 GENERACIÓN DE DATOS DE ENTRADA:

Primeramente revisando en el catastro de tuberías de Hidrolara y corroborándolo con el histórico de los cuadros de nodos de reparaciones con los que se contaba en la hidrológica (desde 1997 hasta 2011) y discutiendo con el personal operativo de más experiencia, se depuró la información y se obtuvieron los diámetros, ubicación, longitud, tipo material y el año de servicio de las tuberías principales y secundarias, con ello se determinaron las características topológicas principales del modelo matemático nodos, líneas, etc. y las características físicas del sistema como rugosidades:

IV.3.1.1. CÁLCULO DE RUGOSIDADES EN EL SISTEMA:

Según Méndez 2007. "Durante el período de servicio de la tubería, el grado de alteración que experimenta su rugosidad inicial dependerá de la calidad de agua transportada y de la naturaleza de la superficie interior del conducto. Esa alteración puede reducir la capacidad hidráulica del elemento de conducción, bien sea por incremento del coeficiente de fricción, por disminución sensible del área neta de flujo o superposición de ambos efectos".

Diversas investigaciones experimentales parecen indicar que la rugosidad aumenta linealmente con el tiempo, por causa de la corrosión o por crecimientos orgánicos y depósitos calcáreos provocados por acciones físicas, químicas y bacteriológicas de ciertos tipos de aguas. Según ese criterio, la rugosidad K se calcula por:

$$K = Ko + \alpha T$$

Ko: Rugosidad inicial (aproximadamente 0 para PVC, PEAD; 0.046 para el ACERO)

α: Coeficiente de proporcionalidad

T: Tiempo de vida útil (20 años para este proyecto)

Para la estimación del coeficiente de proporcionalidad se utiliza el cuadro 2.1 en la cual se relaciona el coeficiente con la característica del agua.

CUADRO 2.1 CARACTERISTICAS DEL AGUA Y SU RELACION CON α .

		VALORES DE a (mm/año)				
GRUPO	CARACTERISTICAS DEL AGUA	MINIMO	<i>MEDIO</i>	MAXIMO		
I	Aguas poco mineralizadas, no agresivas, poco contenido de minerales y de materia orgánica	0.005	0.025	0.055		
2	Aguas poco mineralizadas pero corrosivas (PH reducido), de contenido de hierro y materia orgánica inferior a 3 mh/l	0.055	0.07	0.18		
3	Agua muy corrosiva (PH muy bajo), con contenido de cloruros y sulfatos menores de 150 mg/l y hierro superior a 3 mh/l	0.18	0.2	0.4		
4	Aguas corrosivas (PH reducido) con contenido de cloruros y sulfatos entre 500 y 700 mg/l y considerable materia orgánica	0.4	0.51	0.6		
5	Aguas muy mineralizadas, de gran dureza, PH superior a 7, residuo sólido superior a 2000 mg/l	0.6	0.7	1		

FUENTE: TUBERÍAS A PRESIÓN, MANUEL VICENTE MENDEZ 2007

Para el caso que nos ocupa, agua proveniente en su mayoría del Embalse Dos Cerritos o lo que es lo mismo del SAT, agua poco mineralizada con índice de langelier promedio de -3.12 (datos suministrados por el departamento de calidad de agua de la hidrológica), es decir, pertenece al Grupo No. 1.

El valor asumido fue de 0.025 mm/año

Luego el valor de K_{ACERO} actual fue de:

 $K = 0.046 + 0.025 \times 31 = 0.821 \text{ mm}.$

A continuación se muestran los resultados obtenidos:

CUADRO 4.34. RUGOSIDADES EN LA TUBERÍAS PARA LOS DIFERENTES AÑOS DE SERVICIO.

	Ko	0.025	2011	2016	2021	2031
MATERIAL	AÑOS EN SERVICIO	RUGOSIDAD INICIAL (mm)			RUGOSIDAD TOTAL (mm)	RUGOSIDAD TOTAL (mm)
ACERO	31	0,046	0,821	0,946	1,071	1,321
ASBESTO CEMENTO	31	0,028	0,803	0,928	1,053	1,303
SENTAB	41	0,3	1,325	1,45	1,575	1,825
POLICLORURO DE VINILO	21	0	0,525	0,65	0,775	1,025
POLIETILENO DE ALTA DENSIDAD	11	0	0,275	0,4	0,525	0,775
HIERRO FUNDIDO	41	0,102	1,127	1,252	1,377	1,627

Se puede apreciar en la tabla anterior que las tuberías de hierro fundido, asbesto cemento, acero y concreto armado han alcanzado su vida útil y es necesario comenzar un plan de rehabilitación integral.

Por otro lado es bueno hacer notar que para el caso de tuberías plásticas (PVC, PEAD) no existe suficiente literatura que demuestre las incrustaciones de las mismas, y los fabricantes de estas tuberías venden sus como productos que no sufre incrustaciones, sin embargo dada la experiencia con la que cuenta la hidrológica se puede decir que las incrustaciones en tuberías plásticas son posibles, a continuación se presenta unas fotografías donde se puede evidenciar ese fenómeno.

FIGURA 4.20. TUBERÍA DE PVC CON INCRUSTACIONES, D = 75 mm. RED DE DISTRIBUCIÓN EL MANZANO, DIEZ AÑOS EN SERVICIO.

FIGURA 4.21. TUBERÍA DE PVC CON INCRUSTACIONES, D = 75 mm. RED DE DISTRIBUCIÓN EL MANZANO, DIEZ AÑOS EN SERVICIO.

FIGURA 4.22. TUBERÍA DE PVC CON INCRUSTACIONES, D = 75 mm. RED DE DISTRIBUCIÓN EL MANZANO, DIEZ AÑOS EN SERVICIO.

IV.3.1.2. CÁLCULO DE DEMANDAS FUTURAS EN EL SISTEMA:

El cálculo de la demanda se realizó por separado debido a la disparidad que existe en el horario de servicio de cada subsector del sistema de gravedad (distritos de servicio), en el anexo 4.3 se muestra las tablas de los usuarios y su consumo, a continuación se presenta el cuadro resumen de la demanda por subsectores de servicio dentro de la macrored de gravedad, para las situaciones con reducción de pérdidas físicas (escenario intermedio) y sin pérdidas físicas (escenario pesimista).

CUADRO 4.35. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR GRAVEDAD DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, SIN RECUPERACIÓN DE PÉRDIDAS FÍSICAS.

		ESC	CENARIO PESI	MISTA						
	DEMANDA (l/s) CON PERDIDAS REALES 819 l / conexión / día									
SUB-SISTEMA	AÑO 2011	AÑO 2016	AÑO 2021	AÑO 2031	MAXIMA SEGÚN PDUL					
CASCO CENTRAL - ESTE	1.057,24	1.298,54	1.462,49	1.853,59	7.018,37					
OESTE 1	310,56	350,34	394,13	499,44	908,43					
OESTE 2	21,70	24,60	27,76	35,24	45,24					
OESTE 3	85,81	89,41	100,26	126,65	274,03					
NORTE	124,18	140,01	157,42	199,48	545,27					
NORTE 2	55,37	64,51	72,62	92,10	85,99					
NORTE 6	381,88	413,23	464,78	588,94	710,92					
PERDIDAS APARENTES	164,66	192,46	216,62	274,50	775,15					
TOTAL	2.201,39	2.573,10	2.896,09	3.669,96	10.363,41					

CUADRO 4.36. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR GRAVEDAD DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PÉRDIDAS FÍSICAS.

	ESCENARIO INTERMEDIO										
	DEMANDA	DEMANDA (I/s) CON PLAN DE RECUPERACIÓN DE PERDIDAS									
SUB-SISTEMA	AÑO 2011	AÑO 2016	AÑO 2021	AÑO 2031	MAXIMA SEGÚN PDUL						
CASCO CENTRAL - ESTE	1.057,24	1.228,02	1.195,26	1.451,66	5.570,20						
OESTE 1	310,56	327,62	302,47	369,96	664,81						
OESTE 2	21,70	22,84	20,36	25,21	32,48						
OESTE 3	85,81	83,65	86,29	93,87	188,63						
NORTE	124,18	131,95	130,03	153,57	413,82						
NORTE 2	55,37	60,54	63,19	69,46	63,48						
NORTE 6	381,88	388,74	400,04	449,35	523,86						
PERDIDAS APARENTES	164,66	181,36	177,67	211,25	602,88						
TOTAL	2,201,39	2.424,74	2.375,31	2.824,33	8.060,16						

FUENTE: PROPIA

Para el caso de los sectores que se encuentran fuera del sistema de gravedad y con el fin de definir las dotaciones que su utilizarán en el modelo hidráulico se analizaron las dotaciones obtenidas para cada subsector y se extrajo lo siguiente:

CUADRO 4.37. DOTACIÓN SUBSISTEMA Y SU INCIDENCIA.

SUB SISTEMA	USUARIOS	CAUDAL MEDIO (l/s)	DOTACIÓN ACTUAL (l/hab/día)	INCIDENCIA	
LLENADERO	31.973	8,52	23		
TROMPILLO	12.995	3,7	25	18,82%	
CERRO GORDO	7.289	4,3	51	10,02 70	
LA TAPA	109.029	82,00	65		
LA PEÑA	9.746	10	89		
CENTRO - SUR	33.999	40,00	102	8,77%	
VILLA ROSA	31.353	41,61	115		
GRAVEDAD OESTE ALTA	11.140	15,68	122		
LA PAZ	106.298	211	172	20.000/	
EL JEBE	49.892	100	173	28,08%	
TITICARE	35.970	80	192		
CRISTO VIENE	37.277	83,50	194		
CORIANO	64.235	150	202		
GRAVEDAD OESTE	59.430	138,10	218		
CENTRO - ESTE	135.996	350,00	222	44 220/	
ALTOS DE JALISCO	28.754	77,11	232	44,33%	
GRAVEDAD NORTE	91.395	258,00	244		

FUENTE: PROPIA

Del cuadro anterior se observa que existe una gran variedad de dotaciones dentro de los diferentes subsectores, pero se pueden agrupar en

cuatro niveles de servicio los cuales denominamos: Nivel A, son los usuarios que tienen dotación ente 200 y 250 l/hab/día, Nivel B, los que presentan una dotación entre 200 y 120 l/hab/día, Nivel C, tienen dotación entre 120 y 100 l/hab/día, y por ultimo el Nivel D, que son los usuarios que tiene dotación menor a 100 l/hab/día.

Del mismo modo se tiene que solo el 44% de los usuarios cuentan con un servicio mayor a 200 l/hab/día (Nivel A), y que existe casi un 20% de los usuarios que no reciben ni siquiera la dotación mínima sanitaria (100 l/hab/día) establecida por la Organización Mundial de la Salud (**O.M.S 2003**). El cuadro a continuación muestra dicha información:

CUADRO 4.38. RESUMEN DE LOS REQUISITOS DEL NIVEL DEL SERVICIO DE AGUA PARA PROMOVER LA SALUD.

Nivel del servicio	Medición del acceso	Necesidades atendidas	Nivel del efecto en la salud
Sin acceso (cantidad recolectada generalmente menor de 5 l/r/d)	Más de 1.000 m ó 30 minutos de tiempo total de recolección	Consumo – no se puede garantizar Higiene – no es posible (a no ser que se practique en la fuente)	Muy alto
Acceso básico (la cantidad promedio no puede superar 20 l/r/d)	Entre 100 y 1.000 m ó de 5 a 20 minutos de tiempo total de recolección	Consumo – se debe asegurar Higiene – el lavado de manos y la higiene básica de la alimentación es posible; es dificil garantizar la lavandería y el baño a no ser que se practique en la fuente	Alto
Acceso intermedio (cantidad promedio de aproximadamente 50 l/r/d)	Agua abastecida a través de un grifo público (o dentro de 100 m ó 5 minutos del tiempo total de recolección)	Consumo – asegurado Higiene – la higiene básica personal y de los alimentos está asegurada; se debe asegurar también la lavandería y el baño	Bajo
Acceso óptimo (cantidad promedio de 100 l/r/d y más)	Agua abastecida de manera continua a través de varios grifos	Consumo – se atienden todas las necesidades Higiene – se deben atender todas las necesidades	Muy bajo

FUENTE: LA CANTIDAD DE AGUA DOMICILIARIA, EL NIVEL DEL SERVICIO Y LA SALUD, OMS, GINEBRA, 2003

Por lo tanto se tomará como dotación mínima la establecida por la O.M.S. (2003) en su informe "LA CANTIDAD DE AGUA DOMICILIARIA, EL NIVEL DEL SERVICIO Y LA SALUD, OMS, GINEBRA, 2003" el cual la establece en 100 l/hab/día.

Para el caso de la dotación máxima debería tomarse como lo establece la norma venezolana 250 l/hab/día, sin embargo dada la complejidad de la situación y todos los aspectos sociales, económicos, hidráulicos, etc. que implica esto esta situación se hace imposible por lo menos en un horizonte de diez (10) años, a demás que los usuarios que tienen un servicio continuo (Subsector Centro-Este) consumen alrededor de 220 l/hab/día, se tomara como dotación máxima un promedio entre dos sectores los cuales presentan el mismo tipo de servicio y las características socioeconómicas de sus habitantes son muy similares, estos sectores son los del Subsistema La Paz (Nivel de Servicio B) y Subsistema El Coreano (Nivel de Servicio A), resultando:

Dot La Paz = 172 l/hab/día

Dot Coreano = 202 l/hab/día

Dot promedio = 187 l/hab/día

Dado que aumentar la dotación a los subsistemas finales representa un problema muy complejo que implica aumentar la dotación de los subsectores por donde transita el gasto que va hasta los subsectores que se encuentran en la cola del sistema, se realiza un ajuste en la dotación en esta dotación máxima, por lo que se propone un valor máximo de dotación de 180 l/hab/día.

CUADRO 4.39. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS.

	DEMANDA (I/s) POBLACIÓN	DE	SATURACIÓN SEGÚN PDUL	2003					1.425,21	175,95	1.601,17
2031	DEMANDA (Us) PARA DOTACION DE 180 Uhab/dia	188,68	43,39	18,19	14,06	43,39	149,58	69,02	526,31	38,53	564,84
2021	DEMANDA (I/S) PARA DOTACION DE 180 Unab/día	148,85	34,23	14,35	11,09	34,23	149,58	54,45	446,77	30,39	477,16
9	DEMANDA(ÚS) PARA DOTACION DE 180 Vhab/dia	132,20	30,40	12,75	9,85	30,40	136,82	48,36	400,78	26,99	427,77
2016	DEMANDA (US) PARA DOTACION DE 100 Unab/dia	85,40	16,89	7,08	5,47	16,89	76,01	44,08	251,82	26,99	278,81
1	DEMANDA (US) PARA DOTACION DE 180 Unab/dia	115,35	27,00	11,33	8,75	27,00	125,14	42,95	357,52	23,98	381,50
2011	DEMANDA (US) PARA DOTACION DE 100 Unab/dia	75,81	15,00	6,29	4,86	15,00	69,52	39,14	225,63	23,98	249,60
TRIZNORTE	N° USUARIOS ACTUALES	12.405	2.880	1.208	934	2.880	408	4.215	24.930	100	
SUB SISTEMA MATRIZ NORTE	SECTORES	CUJI	SECTORES TAMACA	LA PEÑA	CERRO GORDO	TROMPILLO	ZONA INDUSTRIAL	ALTO JALISCO	SUB TOTAL	PERDIDAS (L/C/D)	TOTAL



CUADRO 4.40. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PÉRDIDAS FÍSICAS.

	DEMANDA (Vs) PARA POBLACIÓN DE SATURACIÓN SEGÚN PDUL 2003											522,41	71,35	593,75		
2031	DEMANDA(US) PARA DOTACION DE 180 Unab/dia	82,86	69,38	138,77	11,58	15,79	9,07	9,30	11,15	4,71	7,72	2,64	75,37	438,32	52,95	491,26
2021	DEMANDA(I/S) PARA DOTACION DE 180 Vhab/dia	65,36	54,73	109,47	9,13	12,46	7,16	7,34	8,80	3,71	6,09	2,08	59,45	345,77	41,77	387,54
2016	DEMANDA(VS) DEMANDA (VS) PARA DOTACION DE DOTACION DE 100 Uhab/dia	56,38	47,20	94,41	7,88	10,74	6,17	6,33	7,59	3,20	5,25	1,80	51,28	298,22	37,10	335,32
20	DEMANDA(VS) PARA DOTACION DE 100 Unab/dia	51,36	47,20	65,56	4,38	7,94	4,70	5,41	7,59	3,20	5,25	1,80	28,49	232,88	37,10	269,98
1	US) PARA DOTACION DE	46,80	43,17	59,84	7,20	7,23	4,29	4,95	6,94	2,93	4,80	1,64	46,90	236,68	32,95	269,63
2011	DEMANDA (VS) PARA DOTACION DE 100 Vhab/dia	46,80	43,17	59,84	4,00	7,23	4,29	4,95	6,94	2,93	4,80	1,64	26,06	212,63	32,95	245.58
MA LA PAZ	N° USUARIOS ACTUALES	5501	4145	9212	692	1049	603	618	299	282	461	158	5003	28468	100	[AL
SUB SISTEMA LA PAZ	SECTORES	LA PAZ1	LA PAZ1	LA PAZ1	LOS ANGELES	LA PAZ 2	LA PAZ 3	LA PAZ 3	LA PAZ 4	LA PAZ 4	LA PAZ 4	LA PAZ 4	LA PAZ CISTERNA	SUB TOTAL	PERDIDAS (L/C/D)	TOTAL

CUADRO 4.41. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PÉRDIDAS FÍSICAS.

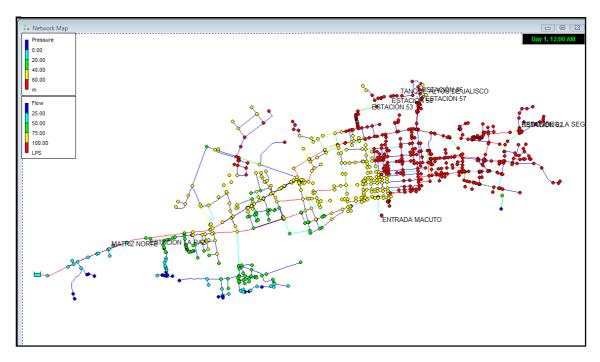
	DEMANDA (I/s) PARA	POBLACIÓN	DE	SATURACIÓN	SEGÚN PDUL	2003				252.50	28.06	280.55
2031	DEMANDA (Vs) PARA DOTACION DE 180 Uhab/dia	24.39	31.01	17.81	6.77	5.00	3.57	1.67	8.97	99.17	12.01	111.18
2021	DEMANDA (Us) PARA DOTACION DE 180 Uhab/dia	19.24	24.46	14.05	5.34	3.94	2.81	1.31	7.07	78.24	9.48	87.71
91	DEMANDA (l/s) PARA DOTACION DE 180 Uhab/dia	17.09	21.73	12.48	4.74	3.50	2.50	1.17	6.28	69.49	8.42	77.91
2016	DEMANDA (US) PARA DOTACION DE 100 Uhab/día	9.49	15.33	12.48	2.64	1.94	2.22	1.17	3.49	48.76	8.42	57.18
11	DEMANDA (Vs) PARA DOTACION DE 180 Vhab/dia	15.17	13.57	11.08	4.21	3.11	1.96	1.04	5.58	55.73	7.47	63.21
2011	DEMANDA (US) PARA DOTACION DE 100 Uhab/dia	8.43	13.57	11.08	2.34	1.73	1.96	1.04	3.10	43.25	7.47	50.73
TLLA ROSA	N° USUARIOS ACTUALES	1619	2059	1065	450	332	237	100	969	6458	001	T
SUB SISTEMA VILLA ROSA	SECTORES	VILLA ROSA	TOMAS VIA	VILLA ROSA CISTERNA	SUB TOTAL	PERDIDAS (L/C/D)	TOTAL					

CUADRO 4.42. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS.

DEMANDA	(I/s) POBLACIÓN DE SATURACIÓN	SEGÚN PDUL	2003	426,77	40,95	467,72
2031	DEMANDA (I/S) PARA DOTACION DE 180 Uhab/dia	194,67	7,31	201,98	20,57	222,55
2021	DEMANDA (Vs) PARA DOTACION DE 180 Vhab/dia	153,57	5,77	159,34	16,23	175,56
91	DEMANDA (US) PARA DOTACION DE 180 Uhab/día	136,40	5,12	141,52	14,41	155,93
2016	DEMANDA (US) DEMANDA (US) PARA DOTACION PARA DOTACION DE 100 Uhab/dia	136,40	2,85	139,24	14,41	153,65
11	DEMANDA (US) PARA DOTACION DE 180 Uhab/dia	150,00	4,55	154,55	12,80	167,35
2011	DEMANDA (Vs) PARA DOTACION DE 100 Uhab/día	150,00	2,53	152,53	12,80	165,33
L COREANO	N° USUARIOS ACTUALES	10573	486	11059	100	T
SUB SISTEMA EL COREANO	SECTORES	COREANO	COREANO CISTERNA	SUB TOTAL	PERDIDAS (L/C/D)	TOTAL

CUADRO 4.43. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN POR BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PERDIDAS FISICAS.

MA CR	SUB SISTEMA CRISTO VIENE	2011	2016	2021	2031	DEMANDA
	%	DEMANDA (Vs)	DEMANDA (I/s) PARA	DEMANDA(U/s)	DEMANDA (I/s)	(I/s)
	USUARIOS	PARA DOTACION	DOTACION DE 220	PARA DOTACION PARA DOTACION	PARA DOTACION	POBLACIÓN
٧.	ACTUALES	DE 220 Vhab/día	L/hab/día	DE 220 Vhab/día	DE 220 Vhab/dia	DE
						SATURACIÓN
	7177	82,24	92,59	104,25	132,15	SEGÚN PDUL
						2003
	7117	82,24	92,59	104,25	132,15	467,75
	100	0.21	36.0	63.01	12.25	30 27
	001	0,51	0,7	66,01	13,33	47,42
	TOTAL	90,54	101,94	114,78	145,50	515,00


CUADRO 4.44. DEMANDAS POR SUBSECTOR PARA RED DE DISTRIBUCIÓN DE BARQUISIMETO PARA LOS DIFERENTES AÑOS DE SERVICIO, CON RECUPERACIÓN DE PÉRDIDAS FÍSICAS.

DEMANDA	(I/s)	POBLACIÓN	DE	SATURACIÓN	SEGÚN PDUL	2003	103,24	10.43	C+,01	113,67
2031	DEMANDA (Vs)	PARA DOTACION	DE 220 l/hab/día		120,59		120,59	81 61	12,10	132,77
2021	DEMANDA (1/s)	PARA DOTACION	DE 220 Vhab/día		95,13		95,13	190	7,01	104,73
2016	DEMANDA (I/s) PARA	DOTACION DE 220	Vhab/día		84,49		84,49	8 5 3	CC,0	93,02
2011	DEMANDA (I/s) PARA	USUARIOS DOTACION ACTUAL	DE 300 Vhab/día		102,33		102,33	2.5%	00,'	109,91
EL JEBE	N°	USUARIOS	ACTUALES		6549		6549	100	001	Т
SUB SISTEMA EL JEBE		SECTORES			EL JEBE		SUB TOTAL	PERDIDAS	(T/C/D)	TOTAL

La topología del macro modelo matemático adoptado se muestra a continuación:

FIGURA 4.23 MODELO MATEMATICO DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO.

IV.3.1.3. CONSIDERACIONES EN EL MODELO:

Con el fin de disminuir el número de archivos para las simulaciones en el modelo se realizaron dos archivos uno para el escenario con recuperación de pérdidas físicas en la red y otro sin ellas, en dichos archivos se realizó en período extendido, con la salvedad de que cada hora simulada correspondía a un año de simulación, dicho de otras manera cada hora representa lo siguiente:

CUADRO 4.45. CONSIDERACIONES ESTABLECIDAS EN EL MODELO DE EPANET.

CASO	CON RECUPERACIÓN DE PÉRDIDAS						
HORA EN EPANET	01:00:00 02:00:00		03:00:00 04:00:00		05:00:00	06:00:00	
FECHA	2011		20	16	2021	2031	
	DEMANDA	DEMANDA	DEMANDA	DEMANDA	DEMANDA	DEMANDA	
	PARA	PARA	PARA	PARA	PARA	PARA	
ESCENARIO	DOTACION	DOTACION	DOTACION	DOTACION	DOTACION	DOTACION	
	DE 100	DE 180	DE 100	DE 180	DE 180	DE 180	
	l/hab/día	l/hab/día	l/hab/día	l/hab/día	l/hab/día	l/hab/día	

FUENTE: PROPIA

CUADRO 4.46. CONSIDERACIONES ESTABLECIDAS EN EL MODELO DE EPANET.


CASO	SIN RECUPERACIÓN DE PERDIDAS						
HORA EN	01:00:00	02:00:00	03:00:00	04:00:00	05:00:00	06:00:00	
EPANET	01.00.00	02.00.00	03.00.00	04.00.00	03.00.00	00.00.00	
FECHA	2011		20	16	2021	2031	
	DEMANDA	DEMANDA	DEMANDA	DEMANDA	DEMANDA	DEMANDA	
	PARA	PARA	PARA	PARA	PARA	PARA	
ESCENARIO	DOTACION	DOTACION	DOTACION	DOTACION	DOTACION	DOTACION	
	DE 100	DE 180	DE 100	DE 180	DE 180	DE 180	
	l/hab/día	l/hab/día	l/hab/día	l/hab/día	l/hab/día	l/hab/día	

FUENTE: PROPIA

Para lograr esto se utilizaron patrones de demanda que permiten simular los caudales en los diferentes escenarios, a continuación se muestra el patrón de subsistema Casco Central – Este. (Se muestra en el anexo 4.4 - patrones de demanda)

FIGURA 4.24. PATRON DE DEMANDA PARA SUBSECTOR CASCO CENTRAL, ESCENARIO SIN RECUPERACIÓN DE PÉRDIDAS FÍSICAS EN LA RED DE DISTRIBUCIÓN.

En el modelo se agrupó con etiquetas los diferentes nodos dependiendo del distrito de servicio donde se encuentre:

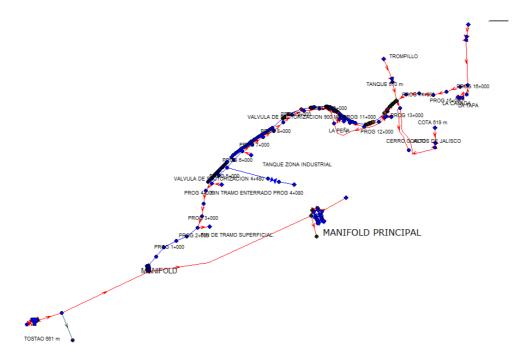
CC: Casco Central – Este, O1: Oeste 1, O2: Oeste 2,

O3: Oeste 3

N: Norte, N2: Norte 2, N6: Norte 6, MN: Matriz Norte,

LAPAZ : La Paz, JEBE : El Jebe, SEG : La Segoviana,

MACUTO: Macuto



De forma análoga se hizo con las etiquetas de las tuberías y con los patrones creados, los cuales se muestran en el anexo 4.4.

IV.3.1.4. VERIFICACIÓN DE LOS DATOS CARGADOS AL MODELO (PSEUDO CALIBRACIÓN):

Con el fin de darle validez a los datos incorporados al modelo tales como: longitud, diámetro, rugosidad, etc. Se cargaron los datos medidos durante la prueba de llenado a la Matriz Norte y se pudo observar lo siguiente:

FIGURA 4.25. MODELO MATRIZ NORTE Y ALIMENTADOR PRINCIPAL DE BARQUISIMETO.

Esta prueba tuvo una duración de tres (3) horas y media aproximadamente y en ella se tomaron niveles en el tanque y presiones en dos nodos y los resultados muestran que los valores observados y simulados son muy parecidos lo que permite corroborar los datos cargados al modelo. Los valores verdes son los datos medidos y los gráficos en rojo son los simulados.

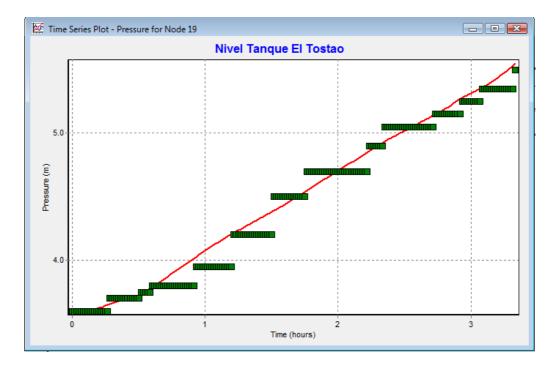
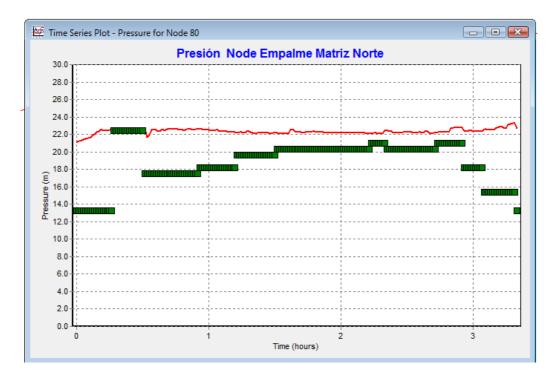



FIGURA 4.26. NIVEL DE TANQUE EL TOSTAO, VALORES OBSERVADOS Y SIMULADOS.

FIGURA 4.27. PRESIÓN NODO DE EMPALME MATRIZ NORTE, VALORES OBSERVADOS Y SIMULADOS.

IV.3.2. SIMULACIÓN DE ESCENARIOS:

IV.3.2.1. ESCENARIOS 2011:

A continuación se procede a evaluar el funcionamiento del sistema actual para las demandas que se presentan en el 2011, tomando como demanda mínima a) 100 l/hab/día y b) 180 l/hab/día, es decir que no si existe un distrito de servicio con dotación promedio menor a 100 o 180 l/hab/día será ajustado a la dotación mínima según sea el caso. Ambos casos se harán tomando en cuenta la aplicación de un plan de reducción de pérdidas físicas o no, y para cada caso establecido en la "NORMAS SANITARIAS PARA"

EL PROYECTO, CONSTRUCCIÓN, AMPLIACIÓN, REFORMA Y MANTENIMIENTO DE LAS INSTALACIONES SANITARIAS PARA DESARROLLOS URBANISTICOS". En síntesis los escenarios planteados para 2011 son:

Caso: Caudal Máximo Horario (250%Qm)

- Demanda Mínima 100 l/hab/día, sin reducción de pérdidas físicas en la red.
- 2. Demanda Mínima 180 l/hab/día, sin reducción de pérdidas físicas en la red.
- 3. Demanda Mínima 100 l/hab/día, con reducción de pérdidas físicas en la red.
- 4. Demanda Mínima 180 l/hab/día, con reducción de pérdidas físicas en la red.

Caso: Caudal de Incendios (180%Qm + I)

- 1. Demanda Mínima 100 l/hab/día, sin reducción de pérdidas físicas en la red.
- Demanda Mínima 180 l/hab/día, sin reducción de pérdidas físicas en la red.
- 3. Demanda Mínima 100 l/hab/día, con reducción de pérdidas físicas en la red.
- 4. Demanda Mínima 180 l/hab/día, con reducción de pérdidas físicas en la red.

IV.3.2.1.1 ESCENARIOS 2011, CON Y SIN RECUPERACIÓN DE PERDIDAS FISICAS:

Para este caso los dos escenarios que se plantean (con recuperación de pérdidas y sin recuperación de perdidas) coincide la demanda de los tres grandes subsistemas que contemplan la red di distribución de gravedad (Oeste Gravedad, Norte Gravedad y Centro – Este), así se puede notar en los cuadros 4.35 y 4.36 mostrados anteriormente, sin embargo los subsectores El Jebe y La Paz, los cuales dependen del sistema a gravedad, sí se les debe considerar los escenarios de dotación actual y dotación máxima.

En términos generales para el escenario mas favorable de demanda actual la red de distribución no tiene la capacidad hidráulica de transportan las condiciones de caudal máximo horario, solo presenta valores positivos de presión cuando se analiza el caudal de incendio, en el anexo 4.5 se muestran los resultados de las corridas, a continuación se muestran esquemáticamente los resultados obtenidos:

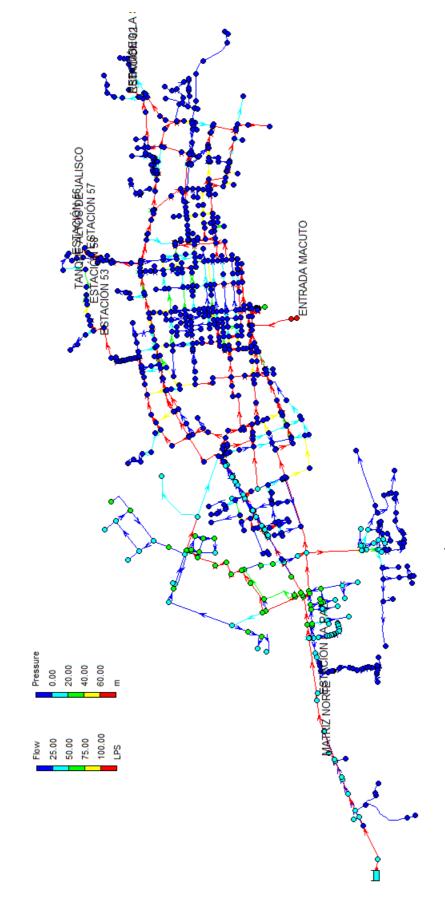


FIGURA 4.28. ESQUEMA DE SIMULACIÓN PARA DEMANDA ACTUAL, CASO: CAUDAL MAXIMO HORARIO

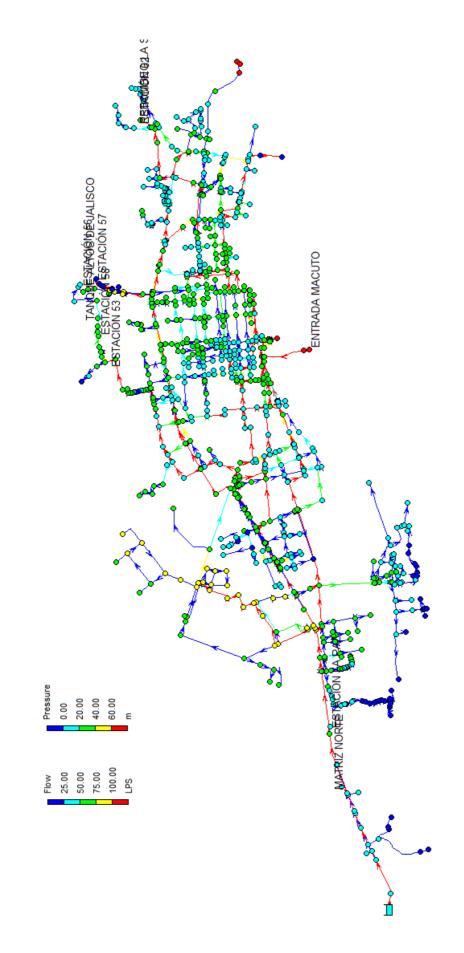


FIGURA 4.29. ESQUEMA DE SIMULACIÓN PARA DEMANDA ACTUAL, CASO: CAUDAL DE INCENDIO, (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808)

Se pudo notar en las figuras anteriores que la red de distribución de la ciudad de Barquisimeto no tiene capacidad hidráulica para transportar las demandas actuales que requiere el sistema, por lo que no fue necesario simular el escenario de demanda máxima, en conclusión se necesita un aumento inmediato en la red de distribución de la ciudad a fin de poder prestar un servicio adecuado.

IV.3.2.2. ESCENARIOS 2016:

Debido a que la distribución de la ciudad no cuenta con la capacidad hidráulica necesaria para cumplir los requerimientos demandados en el año 2011, se puede aseverar que a menos de que se apliquen mejoras en el sistema de distribución la misma seguirá sin tener capacidad hidráulica ya que las demandas en el año 2016 son mayores. Sin embargo a continuación se muestra como funciona la red de distribución si no se mejora:

Al igual que el escenario anterior se tiene los siguientes escenarios:

Caso: Caudal Máximo Horario (250%Qm)

- 5. Demanda Mínima 100 l/hab/día, sin reducción de pérdidas físicas en la red.
- 6. Demanda Mínima 180 l/hab/día, sin reducción de pérdidas físicas en la red.
- 7. Demanda Mínima 100 l/hab/día, con reducción de pérdidas físicas en la red.
- 8. Demanda Mínima 180 l/hab/día, con reducción de pérdidas físicas en la red.

Caso: Caudal de Incendios (180%Qm + I)

- 5. Demanda Mínima 100 l/hab/día, sin reducción de pérdidas físicas en la red.
- 6. Demanda Mínima 180 l/hab/día, sin reducción de pérdidas físicas en la red.
- 7. Demanda Mínima 100 l/hab/día, con reducción de pérdidas físicas en la red.
- 8. Demanda Mínima 180 l/hab/día, con reducción de pérdidas físicas en la red.

IV.3.2.2.1 ESCENARIOS 2016, SIN RECUPERACIÓN DE PERDIDAS FISICAS:

Tanto para el escenario con dotación mínima de 100 l/hab/día como para el de 180 l/hab/día la red sigue sin tener capacidad hidráulica para cumplir los requerimientos hídricos solicitados en los casos de caudal máximo horario e incendio, en las siguientes figuras se muestra de manera esquemática el funcionamiento de la misma ante estas situaciones:

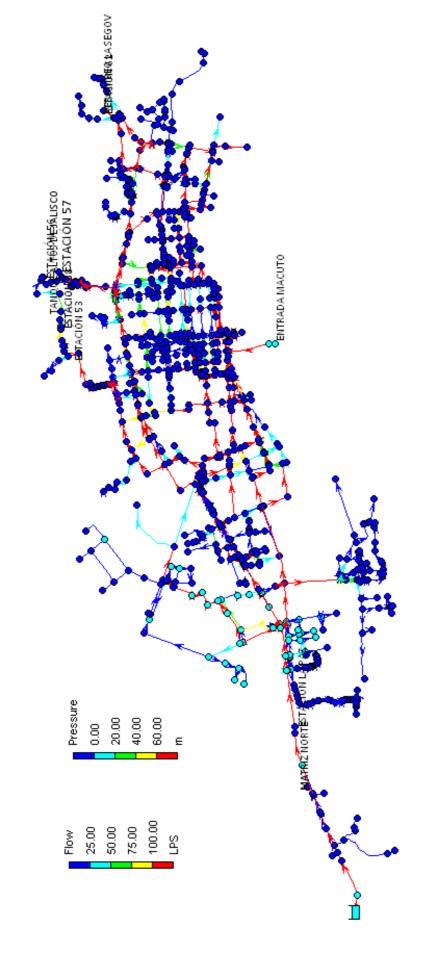


FIGURA 4.30. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL MAXIMO HORARIO

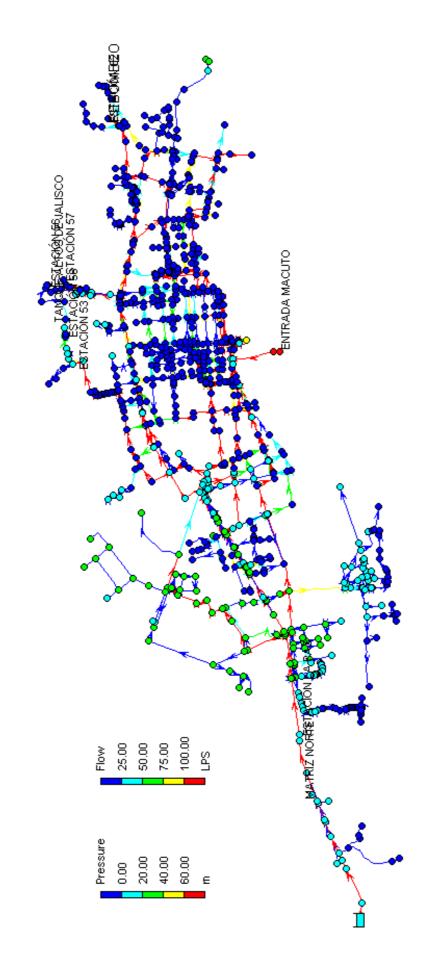


FIGURA 4.31. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808)

De las figuras anteriores se puede ver que para la corrida de caudal máximo horario, como era de esperarse, la red no tiene capacidad para distribuir la demanda. Con respecto a la corrida de incendios, la red media y baja no tiene capacidad hidráulica, sin embargo en la parte alta de la misma presenta presiones aceptables (> 10 m.c.a.).

IV.3.2.2.2 ESCENARIOS 2016, CON RECUPERACIÓN DE PERDIDAS FISICAS:

Al igual que en el escenario anterior se realizaron las diferentes simulaciones, la misma se muestra en el anexo 4.5, a continuación se presenta en forma de esquema la situación suscitada:

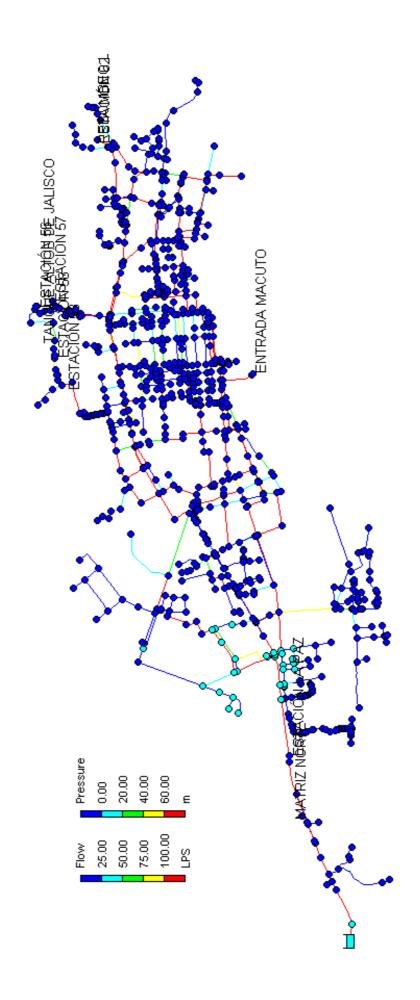


FIGURA 4.32. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL MAXIMO HORARIO

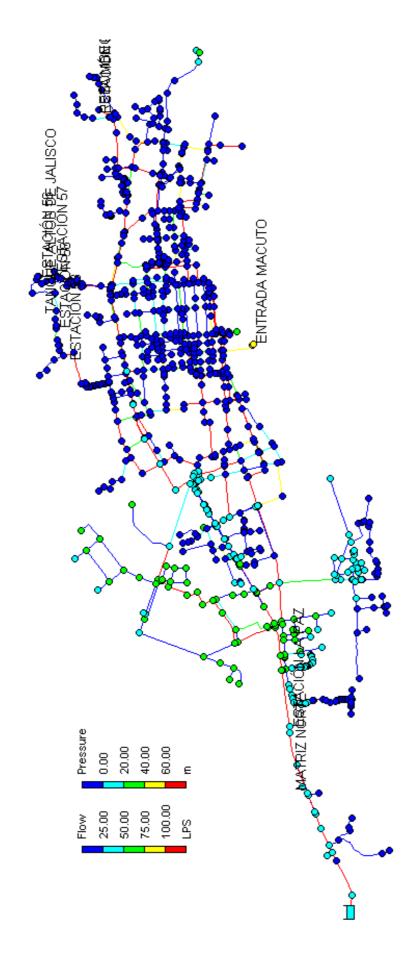


FIGURA 4.33. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808)

Puede notarse gráficamente que ambos escenarios presenta problemas, ya que no garantizan las presiones y los caudales mínimos necesarios para cumplir las dotaciones evaluadas, aunque para el escenario de incendio la red alta presenta presiones aceptables, las condiciones generales de la red no son satisfactorias.

En conclusión es necesario realizar una rehabilitación significativa en la red de distribución, cual debe considerar las incorporaciones de las futuras fuentes que están por llegar a la ciudad. Por otro lado la implementación de un plan de reducción de perdidas físicas no soluciona el problema sino se amplia la capacidad de conducción de las principales líneas de distribución.

IV.3.2.3. ESCENARIOS 2021 (INGRESO DE LA FUENTE PROVENIENTE DEL SHYQ C.A. AL SISTEMA DE ABASTECIMIENTO DE BARQUISIMETO):

En los escenarios del año 2021 se toma como dotación mínima 180 l/hab/día y como se mencionó anteriormente se asume la incorporación del caudal del SHYQ C.A. al sistema de abastecimiento de Barquisimeto, adicionalmente se supone que se debe recuperar el acuífero del bosque Macuto por lo que esta fuente deja de aportar gasto al sistema de distribución. Los escenarios de simulación se mencionan a continuación:

Caso: Caudal Máximo Horario (250%Qm)

- Demanda Mínima 180 lts/hab/dia, sin reducción de pérdidas físicas en la red.
- 2. Demanda Mínima 180 lts/hab/dia, con reducción de pérdidas físicas en la red.

Caso: Caudal de Incendios (180%Qm + I)

- 1. Demanda Mínima 180 lts/hab/dia, sin reducción de pérdidas físicas en la red.
- 2. Demanda Mínima 180 lts/hab/dia, con reducción de pérdidas físicas en la red.

Con el gasto proveniente SHYQ C.A. se prevé abastecer los subsectores del oeste que se encuentran aguas arriba de los tanques de El Tostao, ya que este gasto llegará con una carga de por lo menos 20 metros de carga, lo cual permite crear un nuevo distrito de servicio en

el oeste el cual llamamos Subsistema Oeste Alto que esta conformado por los subsistemas Villa Rosa, El Coreano, Pavia-Bobare, La Paz, Expansión de Oeste y Matriz Norte, logrando así disminuir los sectores que se abastecen por bombeo (rebombeo Villa Rosa, rebombeo El Coreano, rebombeo La Paz) minimizando los cotos por consumo eléctrico debido a la disminución de la potencia consumida.

Primeramente realizaremos un balance hídrico de oferta y demanda a fin de conocer el gasto disponible para incorporar el actual subsistema gravedad.

CUADRO 4.47. DEMANDA DE LOS SUBSISTEMAS QUE SE ENCUENTRAN AGUAS ARRIBA DE LOS ESTANQUES DE EL TOSTAO.

	DEMANDA (l/s)								
SUBSISTEMA	2021	2031	SATURACIÓN						
VILLA ROSA	87,71	111,18	280,55						
EL COREANO	175,56	222,55	467,72						
PAVIA	129,81	164,55	709,66						
EXPANSIÓN OESTE	82,98	269,88	456,78						
TOTAL	476,06	768,17	1.914,71						

FUENTE: PROPIA

En el cuadro anterior se muestra el gasto que dejará la futura aducción proveniente del SHYQ C.A. en las adyacencias de la estación de rebombeo Villa Rosa, de dicho empalme saldrá un alimentador que tendrá un alimeamiento paralelo al canal sur de servicio de la Avenida Florencio Jiménez la cual a lo largo de su recorrido proveerá el gasto de los subsistemas Villa Rosa, El Coreano, Pavia y las zonas de

expansión del Oeste de la ciudad. Esta línea seguirá su recorrido hasta las adyacencias de los estanques de El Tostao.

La continuación de este alimentador presenta dos variantes las cuales determinarán el funcionamiento futuro de la red de distribución de la ciudad, estas alternativas de incorporación se mencionan a continuación:

1) Como primera alternativa se propone extender la línea proveniente del SHYQ CA, hasta el tridente existente en la intersección de la Av. El Cementerio con la Av. Florencio Jiménez para luego incorporarse al sistema de distribución actual permitiendo darle más fiabilidad al sistema, a lo largo de este tramo se prevé cuatro empalmes: 1) a la matriz norte, 2) en la estación de rebombeo La Paz, 3) en el tridente de la Av. El Cementerio con Av. Florencio Jiménez, 4) se contempla un empalme en lo estanques de El Tostao que permita en cualquier momento unir allí la fuentes (S.A.T. y SHYQ C.A.). A continuación se presenta la ruta de la aducción:

FIGURA 4.34. RUTA ALIMENTADOR PROPUESTO PARA INCORPORACIÓN DEL GASTO PROVENIENTE DE SHYQ C.A. AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, ALTERNATIVA 1.

2) Como segunda alternativa de solución se evalúa extender la línea proveniente del SHYQ CA, hasta las adyacencias de la estación de rebombeo La Paz, el alineamiento propuesta es paralelo a la Av. Florencio Jiménez por el canal de servicio sur, para el mismo se proponen tres empalmes: 1) en los estanques de El Tostao, 2) en la matriz norte, 3) en la estación de rebombeo La Paz. En esta alternativa se interconectan las fuentes en lo estanques de El Tostao y se aprovecha la carga proveniente del SHYQ CA, para dar servicio a los subsistemas matriz norte y La Paz. En la figura 4.35 se presenta gráficamente lo antes expuesto.

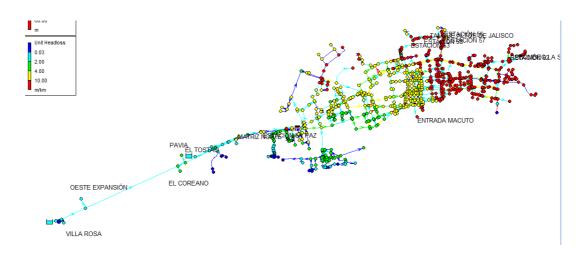


FIGURA 4.35. RUTA ALIMENTADOR PROPUESTO PARA INCORPORACIÓN DEL GASTO PROVENIENTE DE SHYQ C.A. AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, ALTERNATIVA 2.

A continuación se realiza la evaluación hidráulica de las dos (2) alternativas planteadas anteriormente, en la cual se analizó el funcionamiento de la red distribución existente frente a estas propuestas, para cada una se evaluaron los casos de cálculo mencionados anteriormente. A continuación se presenta la figura 4.36 en donde se muestra la configuración topológica de la red de distribución con la incorporación de la aducción proveniente del SHYQ C.A.

FIGURA 4.36. TOPOLOGÍA DE LA RED DE BARQUISIMETO CON LA INCORPORACIÓN DE LA FUENTE DE SHYQ CA.

Observando el sistema un poco más cerca se nota claramente el alimentador definido en párrafos anteriores:

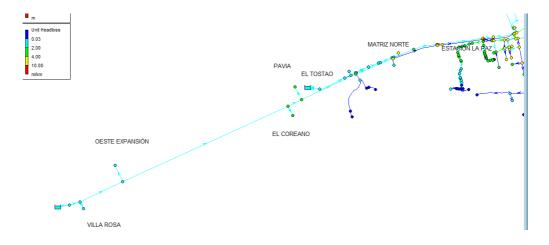


FIGURA 4.37. ALIMENTADOR PROPUESTO PARA FUENTE PROVENIENTE DEL SHYQ.

Para la incorporación de este alimentador se tomo como caudal máximo de aprovechamiento para la red de distribución 1.659 l/s, el cual se obtiene después de hacer el balance entre la oferta y la

demanda de los subsistemas que serán abastecidos por el gasto proveniente del SHYQ, CA. Dicho balance se muestra a continuación:

CUADRO 4.48. DISPONIBILIDAD DE LA FUENTE PROVENIENTE DEL SHYQ C.A. PARA EL SISTEMA DE DISTRIBUCIÓN DE LA CIUDAD DE BARQUISIMETO.

	2021,00
SUBSISTEMA	Q (l/s)
VILLA ROSA	87,71
EL COREANO	175,56
PAVIA	129,81
EXPANSIÓN OESTE	82,98
MATRIZ NORTE	477,16
LA PAZ	387,54
TOTAL DEMANDA	1340,76
DISPONIBILIDAD	3000
BALANCE	1659,24

FUENTE: PROPIA

IV.3.2.3.1. ESCENARIOS 2021, SIN RECUPERACIÓN DE PÉRDIDAS FÍSICAS:

ALTERNATIVA 1:

Las características del alimentador propuesto en esta alternativa se muestran en el cuadro 4.49, es bueno recalcar que dicho alimentador llega al punto previsto (Av. El Cementerio con mayor carga que la que existe en el sistema lo que hace que al empalmarse disminuya el caudal proveniente del SAT ya que este no cuenta con la carga hidráulica para revertirla, es por ello se hace necesaria la colocación de una válvula mariposa de 1200 mm (48") en el empalme propuesto para la confluencia de

las dos fuentes, la operación de esta válvula permitirá controlar el caudal de ingreso de cada una de las fuentes al sistema. En el cuadro 4.49 se puede ver que la perdida de carga de la tubería 29 es muy elevada, esto porque se la asignó un coeficiente de perdidas menores tal que simulará el efecto de la válvula.

Los diámetros de los empalmes se definen a fin de satisfacer todos los escenarios de simulación, a continuación se muestra de manera esquemática el funcionamiento de la red así como los resultados obtenidos en la simulación del nuevo alimentador propuesto, en el anexo 4.5 se muestran los resultados de toda la simulación:

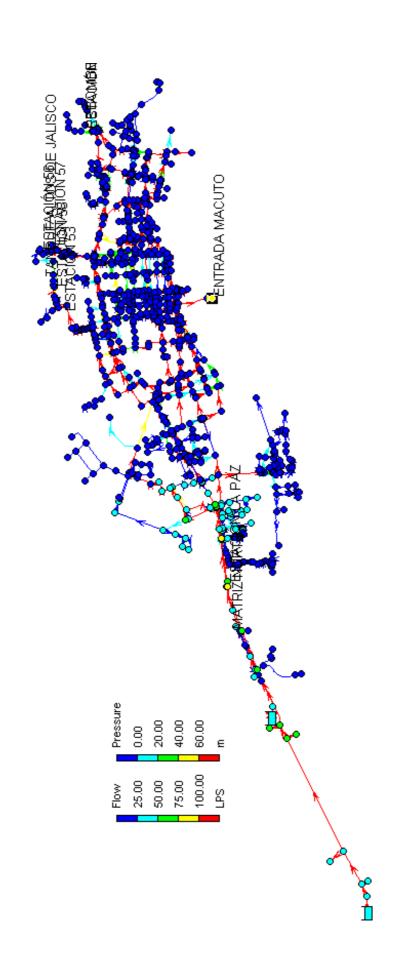


FIGURA 4.37. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 1.

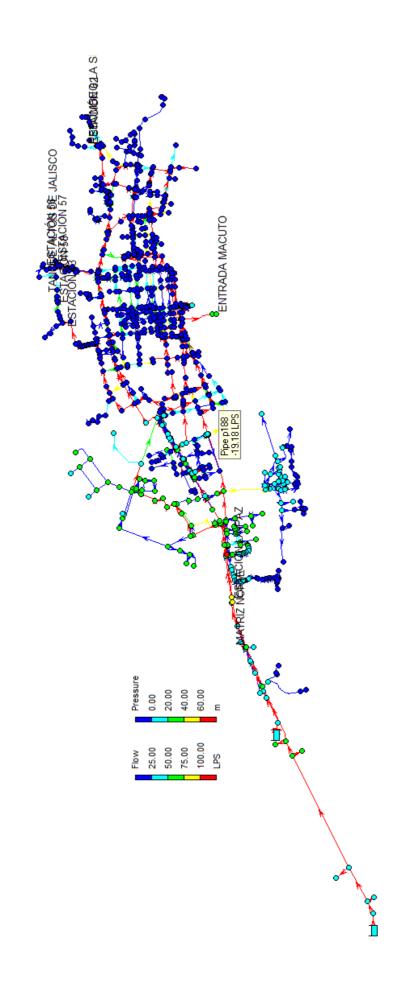


FIGURA 4.38. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, ALTERNATIVA 1.

(NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

CUADRO 4.49. DETALLES DE ADUCCIÓN PROPUESTA PARA LA INCORPORACIÓN DEL CAUDAL PROVENIENTE DEL SHYQ CA, AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO.

Link ID	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss	Friction Factor
	m	mm	mm	l/s	m/s	m/km	
Pipe 29	1026,35	1200	.046	1310.55	1.16	34.28	0.601
Pipe 30	1507,32	1200	.046	-1310.90	1.16	0.96	0.017
Pipe 31	1503	1200	.046	-1795.36	1.59	1.79	0.017
Pipe 32	1290	1500	.046	-2391.81	1.35	0.99	0.016
Pipe 33	1345	1500	.046	-2391.81	1.35	0.99	0.016
Pipe 24	50	1500	.046	2554.09	1.45	1.13	0.016
Pipe 23	2007	1800	.046	2773.54	1.09	0.52	0.015
Pipe 22	250	1800	.046	2877.26	1.13	0.56	0.015

FUENTE: PROPIA

En las figuras 4.37 y 4.38 mostradas anteriormente se puede observar que la red de distribución no tiene la capacidad hidráulica para distribuir la demanda solicitada, aun cuando se incorpore una fuente adicional y se conecte a la red en el punto de confluencia principal del sistema de distribución de la ciudad.

Concluyendo se puede decir que si no se rehabilita la red distribución no existe mejora alguna en la red media y baja de la ciudad así se incorpore la fuente proveniente del SHYQ CA.

ALTERNATIVA 2:

Para esta alternativa se propone un alimentador con menos longitud y diámetro, sin embargo debido a que la incorporación de la nueva fuente es en los estanques de El Tostao se debe tener

presente que el alimentador principal de la ciudad será el responsable de transportar gasto proveniente de ambas hasta el corazón de la red de distribución de la ciudad, lo que se traduce un incremento en el diámetro de esta línea. Las características físicas de este alimentador se muestran a continuación en el cuadro 4.50. Adicionalmente es necesario determinar si la capacidad de almacenamiento de la red de distribución es suficiente para cubrir las variaciones de consumo que se pueden presentar en la red.

CUADRO 4.50. DETALLES DE ADUCCIÓN PROPUESTA PARA LA INCORPORACIÓN DEL CAUDAL PROVENIENTE DEL SHYQ CA, AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO.

	Length	Diameter	Roughness	Flow	Velocity	Unit Headloss	Friction Factor
Link ID	m	mm	mm	1/s	m/s	m/km	
Pipe 22	2007	1800	0.046	3080.45	1.21	0.46	0.011
Pipe 23	50	1800	0.046	2861	1.12	0.4	0.011
Pipe 24	1345	1200	0.046	1080.91	0.96	0.48	0.012
Pipe 29	300	500	0.046	109.65	0.56	0.49	0.016
Pipe 30	1200	600	0.046	103.72	0.37	0.18	0.016
Pipe 31	500	700	0.046	162.28	0.42	0.2	0.015
Pipe 32	400	600	0.046	219.45	0.78	0.73	0.014
Pipe 33	12290	2100	0.046	3293.82	0.95	0.24	0.011
Pipe 27	200	900	0.046	1617.81	2.54	119.61	0.327

FUENTE: PROPIA

Los esquemas de simulación se muestran a continuación y en los mismos se puede apreciar que la red no tiene capacidad

hidráulica para conducir los gastos exigidos, sin embargo el funcionamiento del nuevo alimentador propuesto es adecuado.

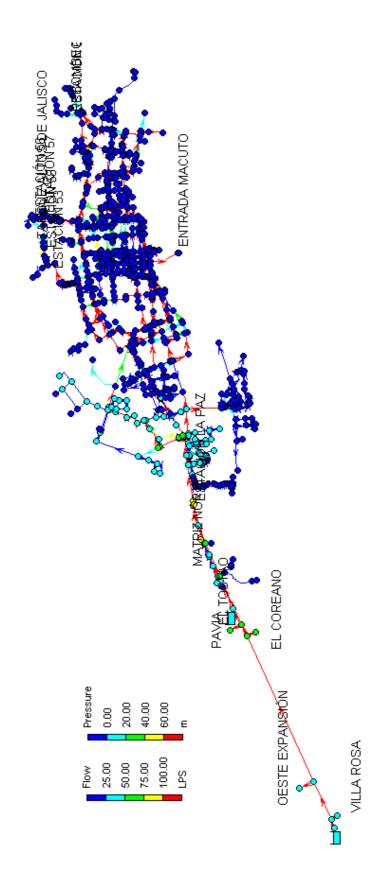


FIGURA 4.39. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 2.

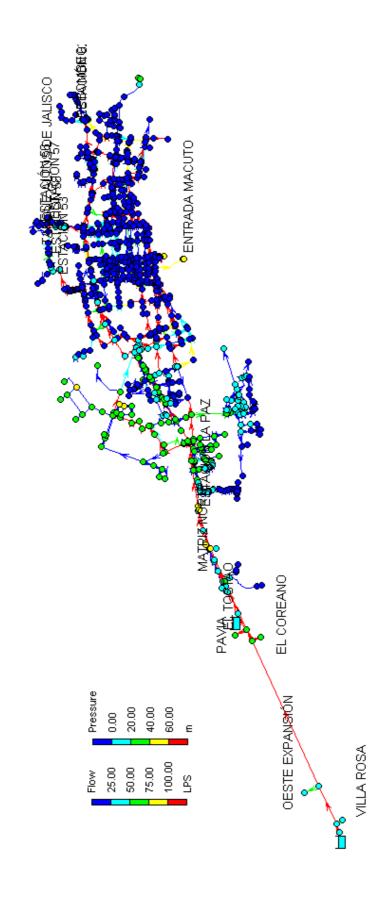
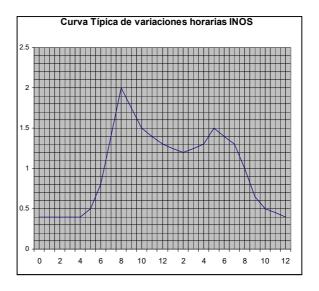


FIGURA 4.40. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, ALTERNATIVA 2.

(NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).



De los esquemas anteriores podemos decir que el funcionamiento de la red es deficiente, aunque para las corridas de incendio la red alta presenta presiones aceptables la misma no puede conducir el gasto requerido a la red media y baja, por ello se concluye que el comportamiento hidráulico de la red es deficiente.

EVALUACIÓN DEL ALAMACENAMIENTO EXISTENTE EN EL SISTEMA.

A continuación se evalúa la capacidad de los estanques de almacenamiento existentes en la red de distribución estudiada, los mismos se ubican en sector El Tostao y tienen una capacidad de 30.000 m³ cada uno, si se supone la curva de variación de consumo horaria desarrollada por el I.N.O.S. para la ciudad de Caracas, la cual se muestra a continuación:

FIGURA 4.41. CURVA DE VARIACIÓN DE CONSUMO INOS. **FUENTE:** INOS 1965

Para esta evaluación se pudo determinar el caudal medio máximo para el cual el volumen de almacenamiento actual permita compensar las variaciones de consumo que se presentan en la red, y se encontró que el caudal medio máximo es de aproximadamente 3.000 l/s, a continuación se presenta los resultados de manera tabular y grafica:

CUADRO 4.51. COMPORTAMIENTO HORARIO DE LOS ESTANQUES DE EL TOSTAO PARA UN GASTO MEDIO DE 3.000 l/s.

TIEMPO (h)	VARIACIÓN DE CONSUMO (% Qm)	VARIACIÓN CONSUMO (Qm)	VOLUMEN PARCIAL (m³)	VOLUMEN ACUMULADO (m³)	VOLUMEN MEDIO (VQm)	DIFERENCIA
1	0.4	1200	4320	4320	4320	0
2	0.4	1200	4320	8640	15084	-6444
3	0.4	1200	4320	12960	25848	-12888
4	0.4	1200	4320	17280	36612	-19332
5	0.4	1200	4320	21600	47376	-25776
6	0.8	2400	8640	30240	58140	-27900
7	1.45	4350	15660	45900	68904	-23004
8	2	6000	21600	67500	79668	-12168
9	1.7	5100	18360	85860	90432	-4572
10	1.52	4560	16416	102276	101196	1080
11	1.42	4260	15336	117612	111960	5652
12	1.32	3960	14256	131868	122724	9144
13	1.25	3750	13500	145368	133488	11880
14	1.2	3600	12960	158328	144252	14076
15	1.24	3720	13392	171720	155016	16704
16	1.3	3900	14040	185760	165780	19980
17	1.5	4500	16200	201960	176544	25416
18	1.4	4200	15120	217080	187308	29772
19	1.25	3750	13500	230580	198072	32508
20	1	3000	10800	241380	208836	32544
21	0.65	1950	7020	248400	219600	28800
22	0.5	1500	5400	253800	230364	23436
23	0.42	1260	4536	258336	241128	17208

24	0.4	1200	4320	262656	262656	0	I
∠ ⊣	0.4	1200	7320	202030	202030	U	П

FUENTE: PROPIA

Los valores de maximo almacenamiento y deficit son 27.900 m³ y -29.772 m³, respectivamente, lo que quiere decir que el tanque debe tener una capacidad de 60.444 m³, adicionalmente se debe prever un volumen de incendios el cual se estima según Simon Arocha (1989). "Abastecimiento de agua" con una duración de cuatro horas del gasto previsto para la corrida de incendios, lo que se traduce en 460,8 m³, quedando el volumen total en 60.905 m³, a continuación se muestra graficamente lo antes descrito.

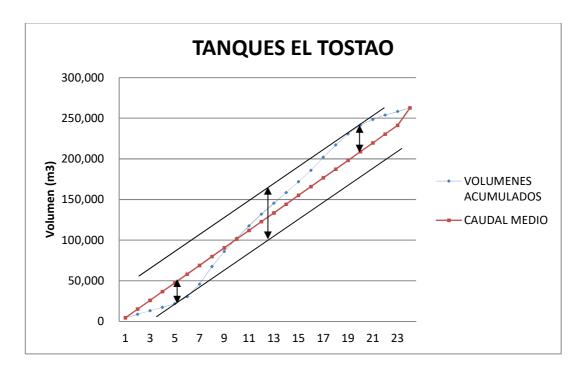


FIGURA 4.42. COMPORTAMIENTO HORARIO DE LOS ESTANQUES DE EL TOSTAO PARA UN GASTO MEDIO DE 3.000 1/s.

En la figura 4.42 podemos apreciar que el máximo para el cual los estanques existentes pueden compensar las variaciones horarias es 3.000 l/s, el cuadro 4.33 muestra el gasto medio exigido por la red para el año evaluado, el cual es de 3.460 l/s lo que nos dice que estos estanques no tiene capacidad de compensar las variaciones horarias de consumo presentadas en la red, sin embargo si solo se prestara servicio a la zona de gravedad los estanques de El Tostao tendrían la capacidad requerida para compensar las variaciones de consumo, para lograr este fin sería necesario independizar los subsistemas de El Jebe y La Segoviana del subsistema gravedad lo que requeriría plantear nuevas aducciones para los mismo ó la búsqueda de fuentes alternativas.

Por otro lado si se quisiera abastecer los 3.460 l/s es necesario contar con una capacidad de almacenamiento adicional de aproximadamente 10.000 m³, con los cuales podrían crearse un nuevo subsistema, o simplemente agregarlo al almacenamiento existente.

CUADRO 4.33. BALANCE DEMANDA DISPONIBILIDAD ESCENARIO CON MEJORAS EN LOS SISTEMAS DE PRODUCCIÓN PARA EI SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO, CASO CON RECUPERACIÓN DE PERDIDAS FISICAS. (BIS)

CASO	CON RECUPERACIÓN DE PERDIDAS						
AÑO	2011	2011	2016	2016	2021	2031	SATURACION
DEMANDA	MIN	MAX	MIN	MAX	MEDIA	MEDIA	MEDIA
GRAVEDAD	2,201	2,201	2,425	2,425	2,375	2,824	8,060
MATRIZ NORTE	250	381	279	428	477	565	1,601
LA PAZ	246	270	270	335	388	491	594
EL JEBE	110	110	93	93	105	133	114
LA SEGOVIANA	91	91	102	102	115	145	515
TOTAL DEMANDA	2,897	3,053	3,168	3,383	3,460	4,159	10,884
DISPONIBILIDAD SAT	3,387	3,372	3,260	3,285	3,210	3,210	3,210
DISPONIBILIDAD CAMPO DE POZOS MACUTO	292	292	292	292	292	292	292
TOTAL DISPONIBILIDAD	3,678	3,664	3,551	3,577	3,501	3,501	3,501
BALANCE	781	611	383	194	42	-657	-7,382

FUENTE: PLANIFICACIÓN HIDRÁULICA DE LOS SISTEMA DE PRODUCCIÓN DEL SISTEMA DE BARQUISIMETO, HIDROLARA 2010

IV.3.2.3.2. ESCENARIOS 2021, CON RECUPERACIÓN DE PERDIDAS FISICAS:

Al igual que en el escenario anterior se muestran los esquemas que bosquejan el funcionamiento de la red de

distribución para los diferentes escenarios, los cuales se muestran a continuación:

FIGURA 4.43. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 1

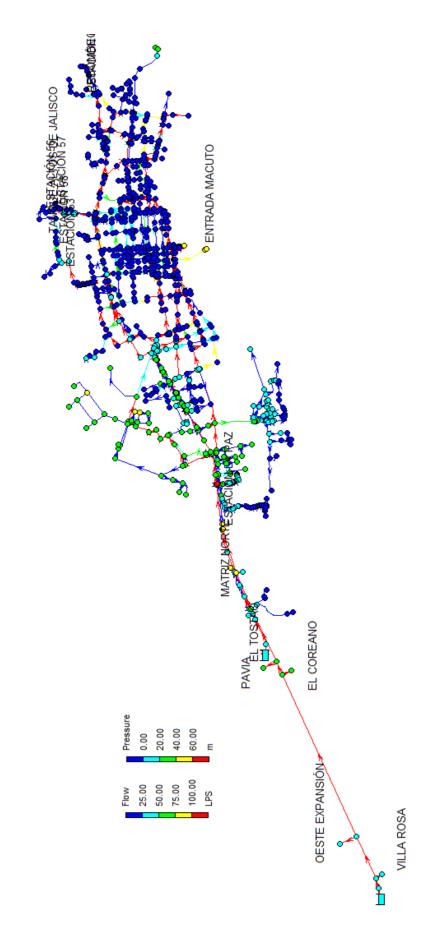
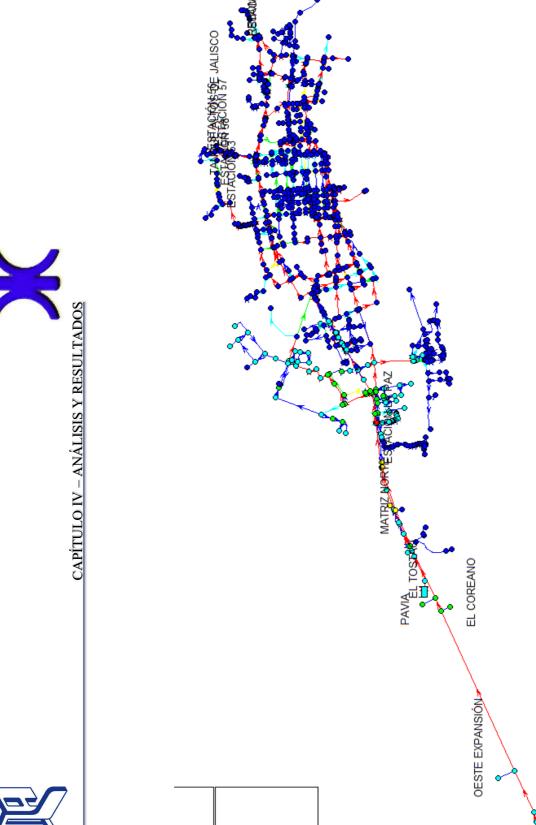



FIGURA 4.44. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, ALTERNATIVA 1

(NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

00.001

35.00 90.00 2.00

wol:

30.00

FIGURA 4.45. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2021, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 2

VILLA ROSA

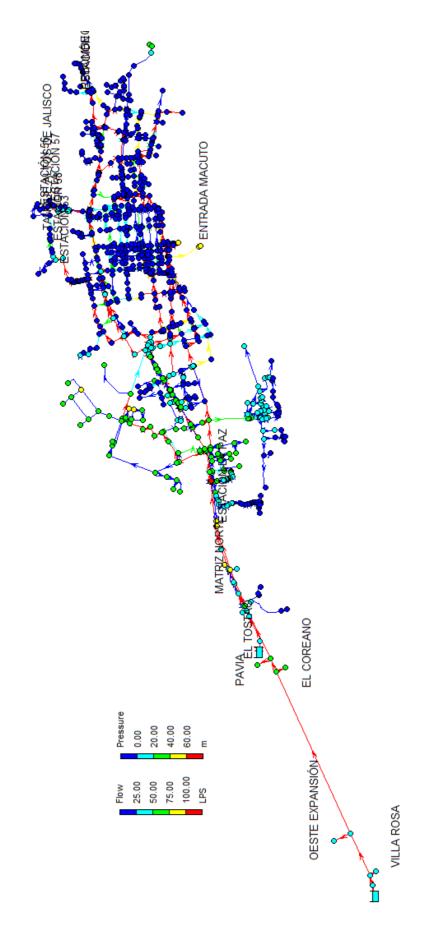


FIGURA 4.46. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, ALTERNATIVA 2

(NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

En la figuras 4.43, 4.44, 4.45 y 4.46 se observa que la red no tiene capacidad para cumplir con las demandas requeridas en el año 2021 para el caso de caudal máximo horario, sin embargo en las figuras 4.44 y 4.46 se muestra el esquema de simulación para el caso de incendio se nota que las presiones en la red alta son muy buenas (> 20 m.c.a.), sin embargo la red media y baja presentan presiones negativas.

En conclusión la red de distribución no cuenta con capacidad hidráulica para cumplir la demanda exigida para el año 2021, aun cuando de se incorpore una nueva fuente a la misma.

IV.3.2.4. ESCENARIOS 2031 (DISPONIBILIDAD DE FUENTE: SAT – SHYQ, C.A.):

Dado que en los escenarios de cálculo anteriores la red de distribución no ha contado con la capacidad hidráulica para cumplir con la demanda solicitada, y motivado a que en este horizonte de cálculo las mimas son mayores y las fuentes son las mismas, resulta simple predecir que la red de distribución no tiene capacidad para satisfacer las demandas solicitadas por lo que este escenario de cálculo no se analizó.

IV.3.2.5. ESCENARIOS POBLACIÓN MAXIMA SEGÚN PDUL 2003 (POBLACIÓN DE SATURACIÓN):

Con base al balance mostrado en los gráficos 4.1 y 4.2 y como se analizó anteriormente, para poder cumplir con la demanda requerida por el sistema para este momento es necesario incorporar una nueva fuente, este gasto se prevé sea suministrado por el embalse Dos Bocas, dicho caudal de aporte se tomará igual a 5.000 l/s o lo que es lo mismo 5 m³/s.

Partiendo del análisis realizado a los balances de los gráficos 4.1 y 4.2 se descarta el escenario donde no se realizan reducción de pérdidas físicas, ya que si no se aplicara un plan de reducción de pérdidas físicas en la red de distribución en por los menos 20 años (tiempo analizado por este estudio) las pérdidas reales en el sistema crecerían de tal forma que no se podrían cuantificar por lo menos en cuanto al alcance de este trabajo, lo que traería como consecuencia un disminución en la eficiencia de la red y por ende agudizaría el problema de fuente con el que cuenta actualmente la ciudad.

A continuación presentamos un nuevo balance a fin de conocer la magnitud del caudal real proveniente de embalse Dos Bocas que se va a incorporar de caudal al Sistema de Barquisimeto.

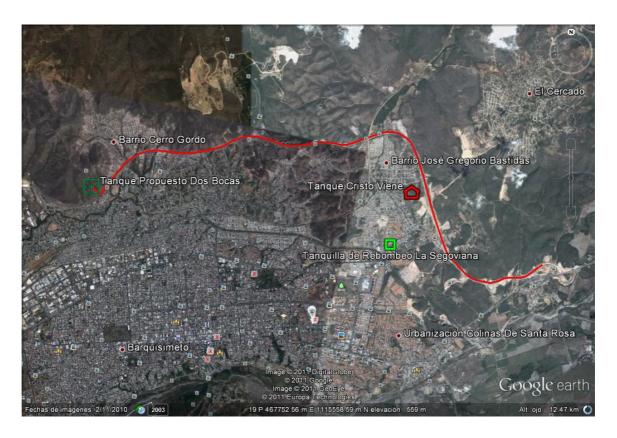
CUADRO 4.51. BALANCE DEMANDA DISPONIBILIDAD DEL CAUDAL DE APORTE DEL EMBALSE DOS BOCAS.

DISPONIBILIDAD	Q (l/s)
DOS BOCAS	5000
TOTAL DISPONIBILIDAD	5000
DEMANDA	Q (l/s)
PALAVECINO	1070
CHIRGUA EL CERCADO	200
EL MANZANO	100
TOTAL DEMANDA	1370
BALANCE	3630

FUENTE: PROPIA

El cuadro anterior muestra claramente que se disponen solo de 3.630 l/s para incorporar al sistema de distribución de Barquisimeto.

Recalculando el balance mostrado en el cuadro 4.33 podemos apreciar que existe un desbalance entre la oferta y la demanda de agua, lo que se traduce en que el sistema Dos Bocas debe entrar en funcionamiento antes del año donde se presenta la población de saturación (2041) y que para el momento en que llegue este año se debe conseguir disponibilidad, bien sea por la optimización de las fuentes que se tienen o con la búsqueda de nuevas, sin embargo para términos de este trabajo se establece las mejoras que se deben hacer en el sistema de distribución.



Según los datos obtenidos acerca del embalse Dos Bocas se conoce que esta alimentación llegará por el lado sur de la ciudad de Barquisimeto lo que cambia completamente el funcionamiento del sistema de distribución ya que el mismo está concebido para que las fuentes lleguen por el oeste y en este caso el gasto a incorporar llega por el sureste.

Se conoce según datos de la empresa hidrológica en su (2010) "Planificación de las futuras fuentes que abastecen a la ciudad de Barquisimeto" lo siguiente: "Dadas las condiciones topológicas de la ciudad se hace necesario hacer una anillo de servicio que agregué mayor fiabilidad al sistema de distribución permitiendo que en determinado momento se pueda intercambiar las fuentes según se necesite, por ello se considera que la fuente del Embalse Dos Bocas debe empalmarse a la matriz norte para cerrar así el sistema. El alineamiento se propone paralelo a la circunvalación norte específicamente por el canal norte, se prevé un empalme hasta la estación de rebombeo La Segoviana a fin de usar el Tanque Cristo Viene para cubrir los requerimientos hídricos de Chirgua y El Cercado, luego llega a empalmarse en el polígono de Tiro con el alimentador principal de Cují-Tamaca, y continua hasta culminar en un tanque que se propone en las adyacencias del Barrio La Peña en la cota 650,00 m"

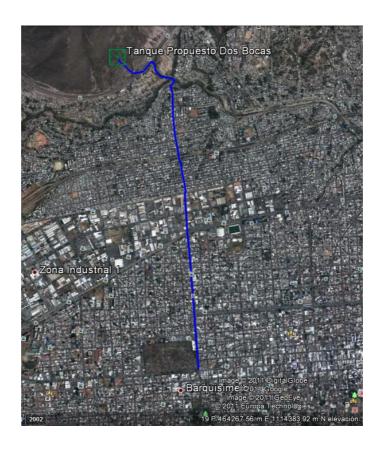


FIGURA 4.47. RUTA DE ADUCCIÓN PROPUESTA POR HIDROLARA PARA LA INCORPORACIÓN DE LA FUENTE PROVENIENTE DE DOS BOCAS AL SISTEMA DE BARQUISIMETO.

Con base en lo antes mencionado se analizará el sistema de distribución, en la figura siguiente se muestra el alimentador propuesto incorporar el sistema de Dos Bocas a la red de distribución de Barquisimeto

FIGURA 4.48. RUTA DE ADUCCIÓN PROPUESTA PARA INCORPORACIÓN DE DOS BOCAS AL SISTEMA DE BARQUISIMETO.

Como se puede apreciar en la figura 4.48 el alimentador viene del norte, en las adyacencias del barrio La Peña, atraviesa Barrio Unión para incorporarse a la zona industrial 1, finalmente se empalma en la calle 42, el cual coincide con el límite entre la red media y alta del sistema de Barquisimeto. Debido a que como ya se mencionó en el informe de la hidrológica el gasto se incorporará por el norte y la red no está concebida para ello se procedió a evaluar la red de distribución actual con este alimentador a fin de conocer el funcionamiento de la misma considerando las dos alternativas planteadas anteriormente, en

las figuras siguientes se muestra de manera esquemática la situación obtenida para los diferentes escenarios y casos de cálculo:

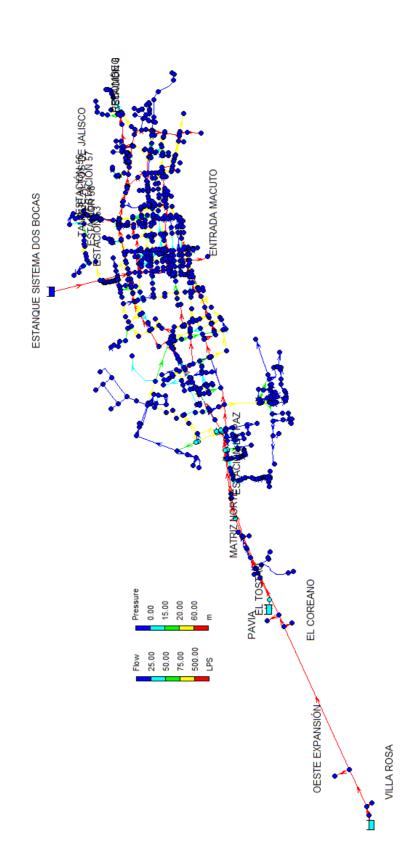


FIGURA 4.49. ESQUEMA DE SIMULACIÓN PARA DEMANDA SATURACIÓN, ALTERNATIVA I CASO: CAUDAL MAXIMO HORARIO.

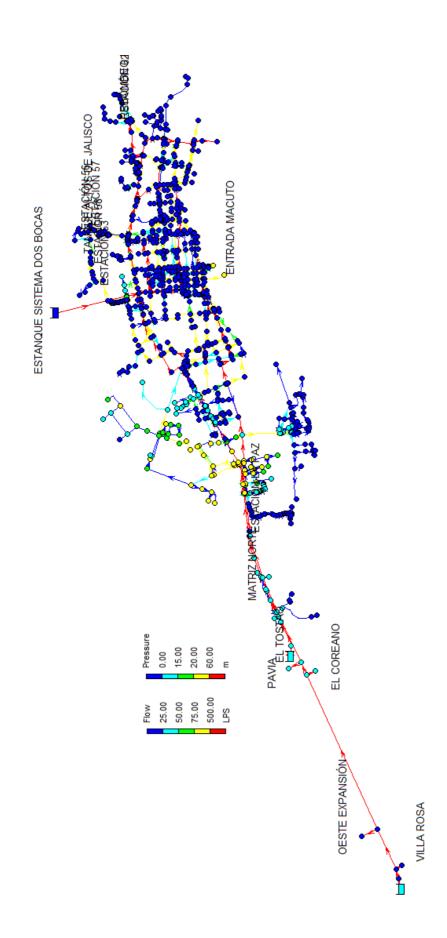


FIGURA 4.50. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, ALTERNATIVA 1 (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

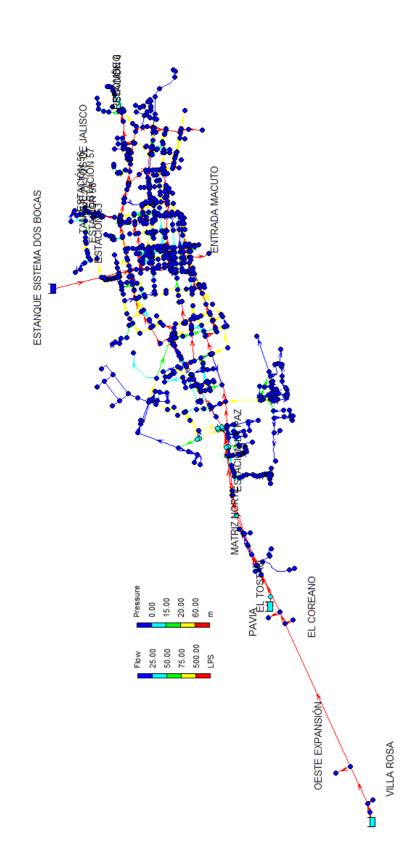


FIGURA 4.51. ESQUEMA DE SIMULACIÓN PARA DEMANDA SATURACIÓN, ALTERNATIVA 2

CASO: CAUDAL MAXIMO HORARIO.

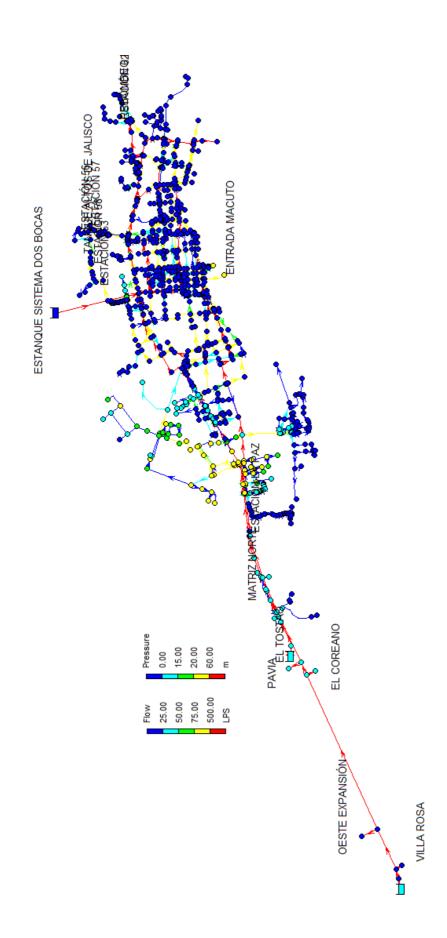


FIGURA 4.52. ESQUEMA DE SIMULACIÓN PARA DEMANDA 2016, CASO: CAUDAL DE INCENDIO, ALTERNATIVA 2 (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

En las figuras anteriores se observa que aun con la incorporación de la fuente proveniente del embalse Dos Bocas la red de distribución sigue sin tener capacidad hidráulica para transportar las demandas exigidas por los usuarios.

En síntesis para todos los escenarios evaluados desde el 2011 hasta el período de saturación, la red de distribución de la ciudad carece de la conducción hidráulica necesaria para cumplir la demanda requerida, sin embargo se debe tener presente que en los casos de cálculo el factor de incremento de la demanda fue considerado siguiendo las recomendaciones de las "NORMAS SANITARIAS PARA EL PROYECTO, CONSTRUCCIÓN, AMPLIACIÓN, REFORMA Y MANTENIMIENTO DE LAS INSTALACIONES SANITARIAS PARA DESARROLLOS URBANISTICOS" (1989).

Estas normas consideran factores picos de máximos consumos conseguidos en la ciudad de Caracas (para el caso de caudal máximo horario) y factores probabilísticos de ocurrencia de incendios en horas de consumo pico, es decir estos factores están hechos en base a casos generales y puede que si se realizara una curva de consumo para la ciudad de Barquisimeto los mismos puedan disminuir, lo que permitiría reducir el factor de demanda en las simulaciones, logrando así que la red gane capacidad de conducción ó lo que es lo mismo minimizaría las inversiones por concepto de ampliación de tuberías. A continuación se determina el factor de demanda máximo para el cual la red de distribución funciona adecuadamente:

Si el factor de demanda pico fuera igual a 1,55 la red tendría capacidad hidráulica de transportar las demandas exigidas el anexo 4.6, en las figuras siguientes se muestra esquemáticamente el funcionamiento de la red para ese factor de por la red hasta el período de 2011-2016 considerando demandas máximas (180 l/hab/día). Los resultados se muestran en demanda, considerando que no se realiza ningún plan de reducción de pérdidas físicas (condición más desfavorable).

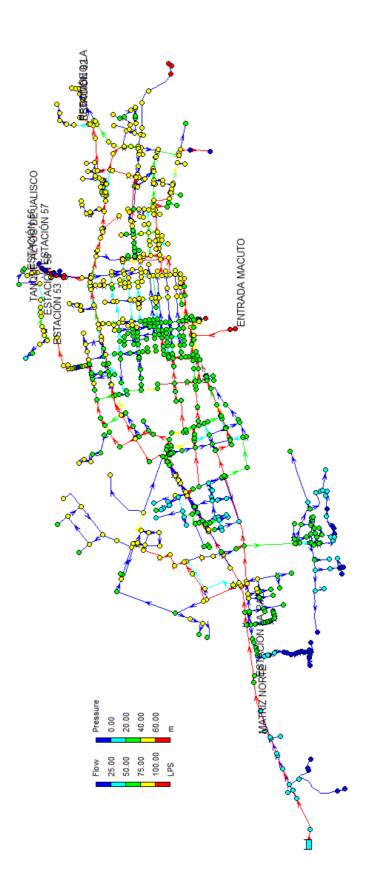


FIGURA 4.51. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN PARA UN FACTOR DE DEMANDA DE 1,55, CONSIDERANDO DEMANDAS MINIMAS (100 I/hab/día), AÑO 2011.

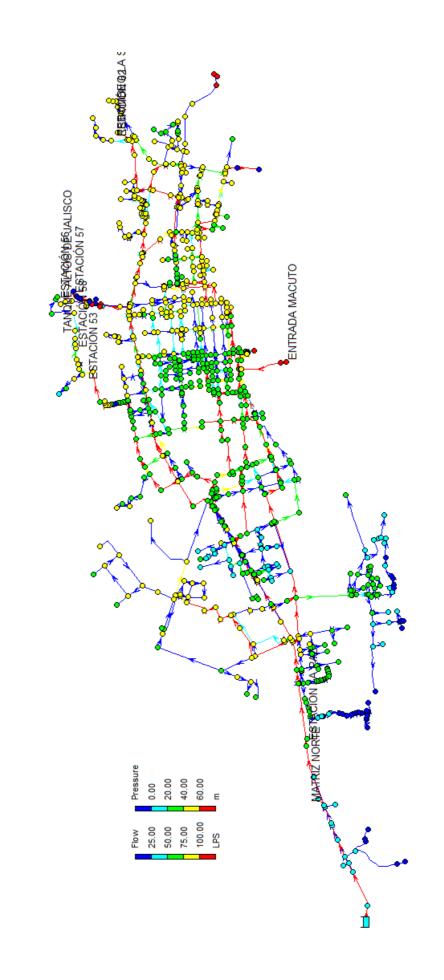


FIGURA 4.52. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN PARA UN FACTOR DE DEMANDA DE 1,55, CONSIDERANDO DEMANDAS MAXIMAS (180 l/hab/día), AÑO 2011.



FIGURA 4.53. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN PARA UN FACTOR DE DEMANDA DE 1,55, CONSIDERANDO DEMANDAS MINIMAS (100 l/hab/día), AÑO 2016.

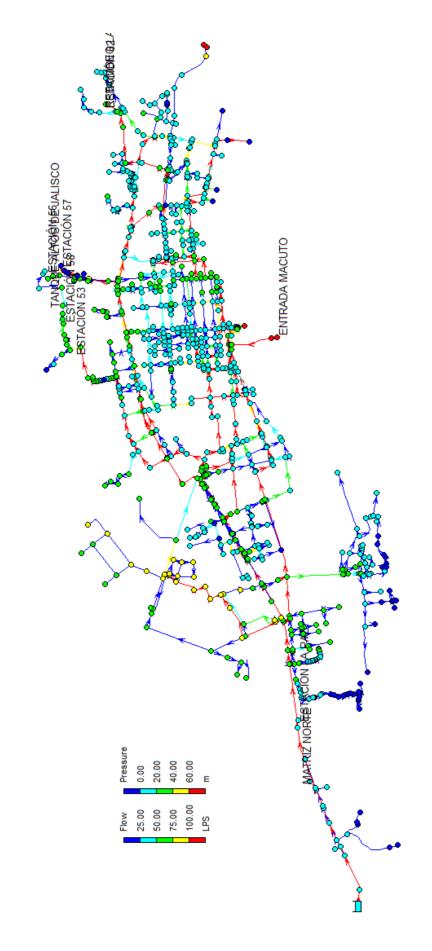


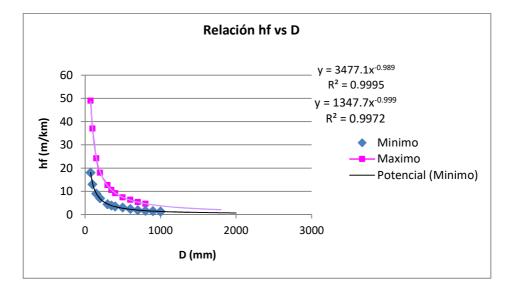
FIGURA 4.54. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN PARA UN FACTOR DE DEMANDA DE 1,55 CONSIDERANDO DEMANDAS MAXIMAS (180 l/hab/día), AÑO 2016.

En las figuras anteriores se observó que con un factor de demanda 1,55 la red distribución tiene capacidad hidraulica para transportar las demandas de año 2016 considerando demandas maximas, lo que permite dar mayor flexibilidad a un plan de rehabilitación y ampliación por lo menos cinco (5) años mas.

En sistensis se recomienda elaborar la curva de variaciones horarias de consumo para la ciudad de barquisimeto a fin de determinar los factores de mayoración corespondiente a cada caso de cálculo (caudal maximo horario y caudal de incendio), para la ciudad de Barquisimeto.

IV.3.2.6. PROPUESTA HIDRAULICA DE AMPLIACIÓN Y MEJORA EN LA RED DE DISTRIBUCIÓN DE LA CIUDAD DE BARQUISIMETO:

A continuación se presenta un plan de rehabilitación y ampliación en el tiempo, el cual garantiza el funcionamiento adecuado de la red de distribución durante el período considerado en este trabajo y tomando en cuenta las incorporaciones de las futuras fuentes, para ello se realiza el análisis de la red en el escenario mas critico (demandas de saturación) y se va disgregando en cada uno de los años evaluados en esta investigación a fin de que en cada uno de ello se realice la mejora correspondiente, garantizando así que todas las modificaciones propuestas vayan de la mano entre si.


Para este plan se toman en cuenta las dos (2) alternativas antes descritas, las cuales varían solo en la incorporación de la fuente proveniente del embalse Yacambú a la red de distribución de la ciudad

de Barquisimeto, sin embargo esta incorporación repercute en las modificaciones de períodos anteriores.

Para el criterio de selección de las tuberías a sustituir o rehabilitar se utilizó la metodología propuesta por Simón Arocha (1989) "Abastecimiento de agua, teoría y diseño", en el cual con base en rangos de perdidas por fricción aceptables se determina una banda de velocidades económicas, en el grafico siguiente se muestra una aproximación desarrollada por el profesor Luis Mora (2011) en la cual ajusta los valores aceptables de perdidas por fricción a una curva de correlación de tipo potencial para los diferentes diámetros.

GRAFICO 4.3. RELACIÓN hf VS. DIAMETRO, CONSIDERANDO VELOCIDADES ECONÓMICAS.

Para las mejoras se plantearon múltiples modificaciones en el sistema distribución a fin de ajustarlo a las condiciones más idóneas desde el punto de vista operacional y de funcionamiento hidráulico, tratando de cumplir con los valores normativos de presión y caudal

siempre que se pudiera, a continuación se presenta de manera esquemática las modificaciones planteadas y en el anexo 4.7 se muestra los resultados de las simulaciones para cada una de ellas.

- Modificaciones Propuestas para período 2011 – 2015:

Las modificaciones planteadas en este período consideran la ampliación de alimentador principal del sur y su prolongación desde la Av. El Cementerio hasta finales de la Av. San Vicente, también se prevé la ampliación de la línea que abastece al subsector Norte y otros alimentadores los cuales se muestran con línea roja en la figura 4.55. En las figuras 4.56 y 4.57 se muestra esquemáticamente el funcionamiento de la red de distribución para el escenario de dotación máxima.

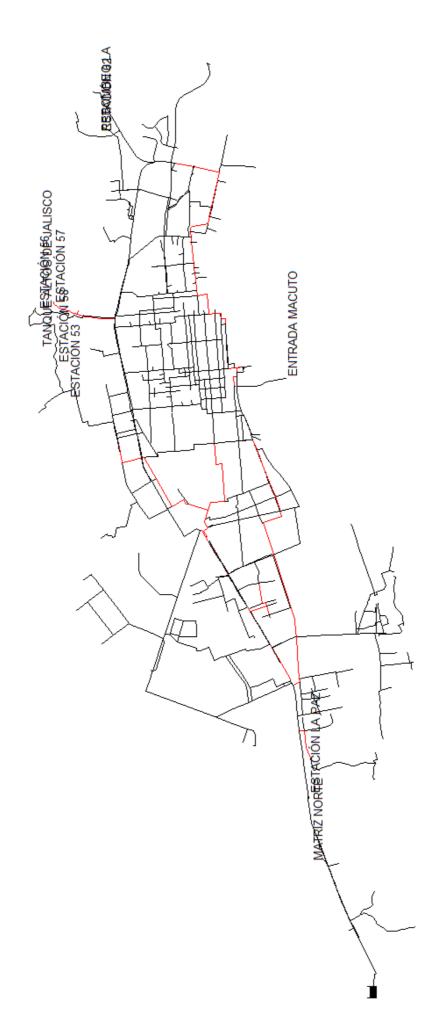



FIGURA 4.55. ESQUEMA DE ALIMENTADORES A SUSTITUIR COMO MEJORA DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO EN EL PERÍODO 2011 - 2015.

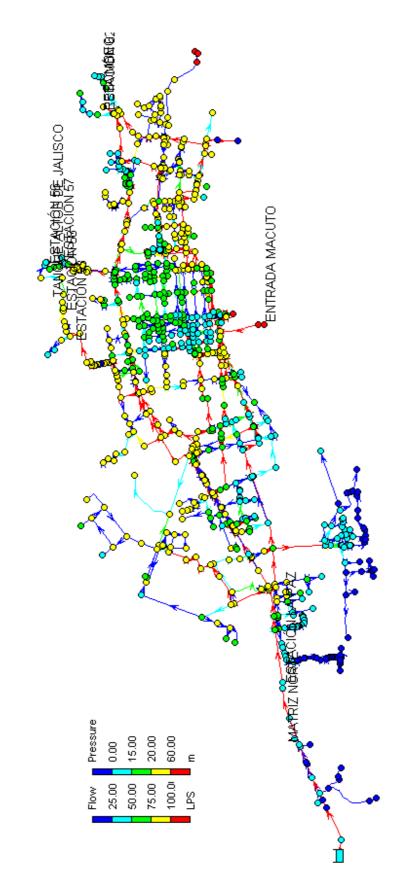


FIGURA 4.56. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2011-2015, CASO: CAUDAL MAXIMO HORARIO.

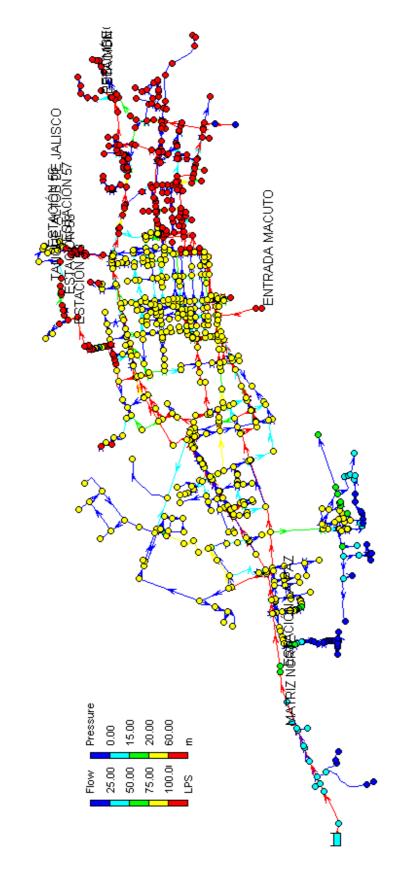


FIGURA 4.56. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2011-2015, CASO: CAUDAL DE INCENDIO.

(NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

En resumen los aliemntadores propuestos para sustituir agrupados por diametro se presentan en el cuadro 4.52, con la sustitución de estos alimentadores se garantiza el funcionamiento adecuado de la red en este período de tiempo.

CUADRO 4.51. LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2011-2015.

Diámetro (mm)	L (m)
300	1.545,10
400	2.186,47
500	1.895,40
600	834,23
700	2.709,07
900	6.735,15
1000	996,70
1200	6.185,03
1500	1.652,68
Total	24.739,83

FUENTE. PROPIA

- Modificaciones Propuestas para período 2016 – 2020:

Al igual que en el período anterior y considerando el análisis antes hecho a la red en donde la misma carece de capacidad hidráulica para conducir las exigencias hídricas requeridas, se de sustituir los alimentadores existentes por nuevos con mayor capacidad, sin embargo es necesario en este período sustituir el alimentador de 66 pulgadas que sale de los estanques de El Tostao, y este a su vez depende de el sitio donde se incorpore el gasto proveniente del embalse Yacambú a la red de distribución

de la ciudad, es por ello que a partir de este período debe comenzar a evaluar las dos alternativas, a fin que la modificación que se realice vaya de manera armónica con los cambios que cada una de ellas acarree.

1.- Alternativa 1(incorporación de la fuente proveniente del SHYQ CA en el tridente principal de la red):

En el análisis realizado a esta alternativa se tuvo presente que como el empalme que incorpora la nueva fuente se presenta aguas debajo de los estanques de El Tostao, lo cual disminuye el compromiso hidráulico de la línea principal de la ciudad de 66 pulgadas en transportar todo el gasto proveniente de ambas fuentes hasta el corazón de la red de distribución que en consecuencia arroja una disminución del diámetro propuesto. La totalidad de las modificaciones realizadas a la red de distribución se muestra de manera esquemática a continuación en línea roja:

DÚESTAGÓNDEJALISCO IÓMÉS§TACIÓN 57 ENTRADA MACUTO

FIGURA 4.57. ESQUEMA DE ALIMENTADORES A SUSTITUIR COMO MEJORA DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO EN EL PERÍODO 2016 - 2020. ALTERNATIVA 1

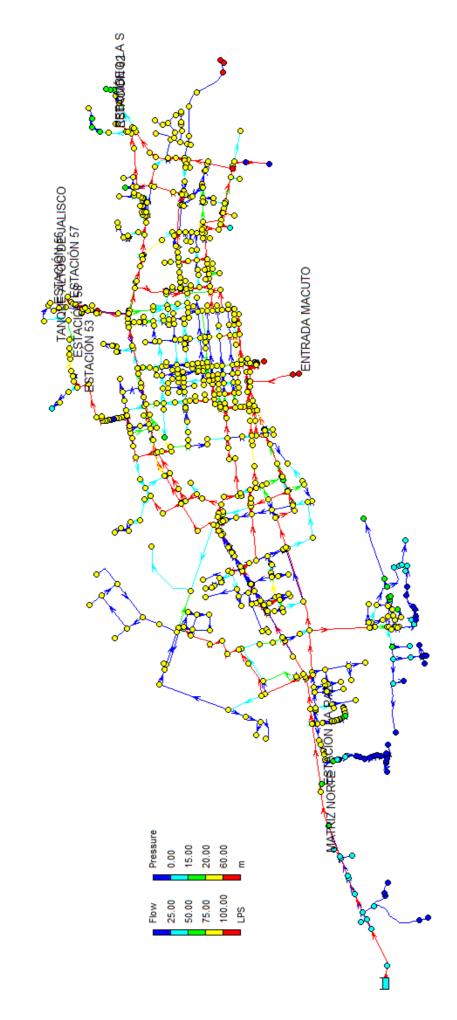


FIGURA 4.58. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2016-2020, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 1

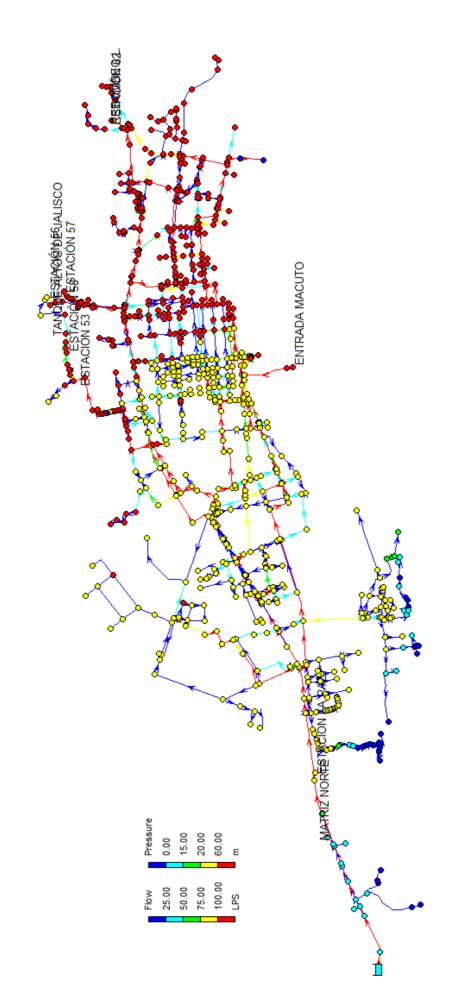


FIGURA 4.59. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808). PERÍODO 2016-2020, CASO: CAUDAL DE INCENDIO. ALTERNATIVA 1

CUADRO 4.51. LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2016-2020. ALTERNATIVA 1.

Diametro (mm)	L (m)
300	376,86
900	2606,93
1800	6715,69
Total	9699,48

FUENTE. PROPIA

2.- Alternativa 2 (incorporación de la fuente proveniente del SHYQ CA en los estanques de El Tostao):

En las consideraciones de esta alternativa se aumento el diámetro de la línea que sale de los estanques de El Tostao en relación con la propuesta anterior ya que todo el caudal que va a la red de distribución llegará por esta única tubería, adicionalmente se propone sustituir otras líneas a fin de mejorar el funcionamiento de la red de distribución la cual se muestra de forma esquemática en línea roja en la siguiente figura.

Por otro lado es importante mencionar que de seleccionarse esta alternativa es necesario realizar una ampliación en el sistema de almacenamiento de la red de distribución a fin de mejorar su funcionamiento en las horas pico de consumo.

VESTACIÓN 57 €SSTACIÓN 57 ENTRADA MACUTO CAPÍTULO IV – ANÁLISIS Y RESULTADOS

FIGURA 4.60. ESQUEMA DE ALIMENTADORES A SUSTITUIR COMO MEJORA DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO EN EL PERÍODO 2016 - 2020. ALTERNATIVA 2

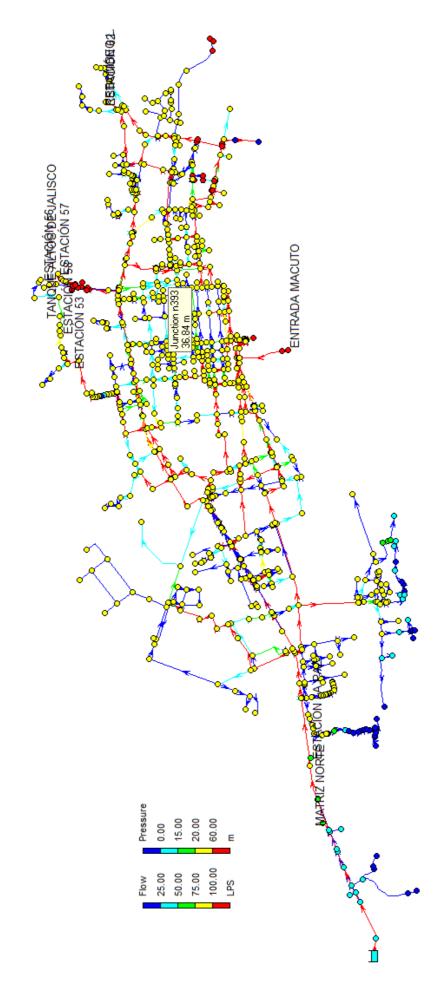


FIGURA 4.61. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2016-2020, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 2

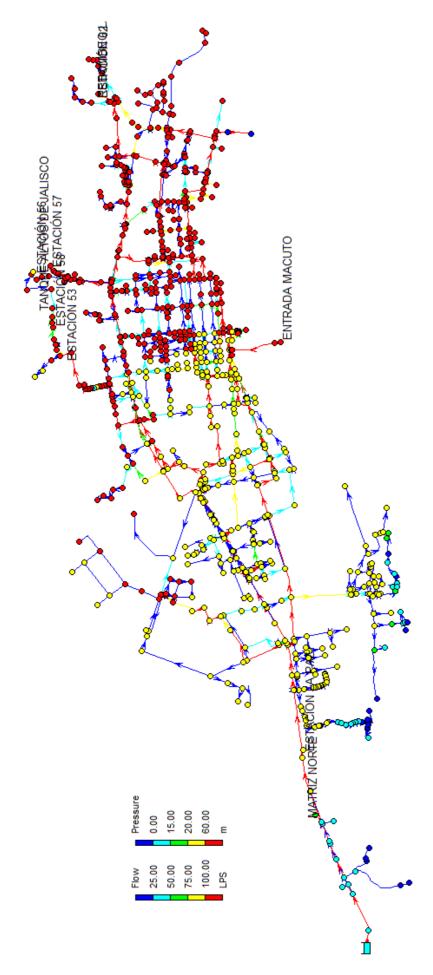


FIGURA 4.62. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808). PERÍODO 2016-2020, CASO: CAUDAL DE INCENDIO. ALTERNATIVA 2

En sistesis las longitudes de los alimentadores a sustituir se presentan agrupados por diametro en el cuadro siguiente:

CUADRO 4.52. LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2016-2020. ALTERNATIVA 2.

Diametro (mm)	L (m)
300	376,86
900	2606,93
2100	6715,69
Total	9699,48

FUENTE. PROPIA

 Modificaciones Propuestas para Incorporación de fuente proveniente del SHYQ CA a la red de distribución de Barquisimeto, período 2021 – 2030:

En estas mejoras planteadas en la red y en correspondencia con lo que se mostro en análisis anteriores se evalúan las alternativas uno (1) y dos (2):

1.- Alternativa 1 (incorporación de la fuente proveniente del SHYQ CA en el tridente principal de la red):

Como se mencionó anteriormente para incorporar este gasto en el tridente existente en la Av. Cementerio se proyecta un alimentador que permite hacer esta actividad cumpliendo las consideraciones hidraulicas adecuadas, del

mismo modo se sustituyen otras lineas principales las cuales se muestran con linea roja en la figura siguiente:

FIGURA 4.63. ESQUEMA DE ALIMENTADORES A CONSTRUIR Y SUSTITUIR COMO MEJORA DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO EN EL PERÍODO 2021 - 2030. ALTERNATIVA 1

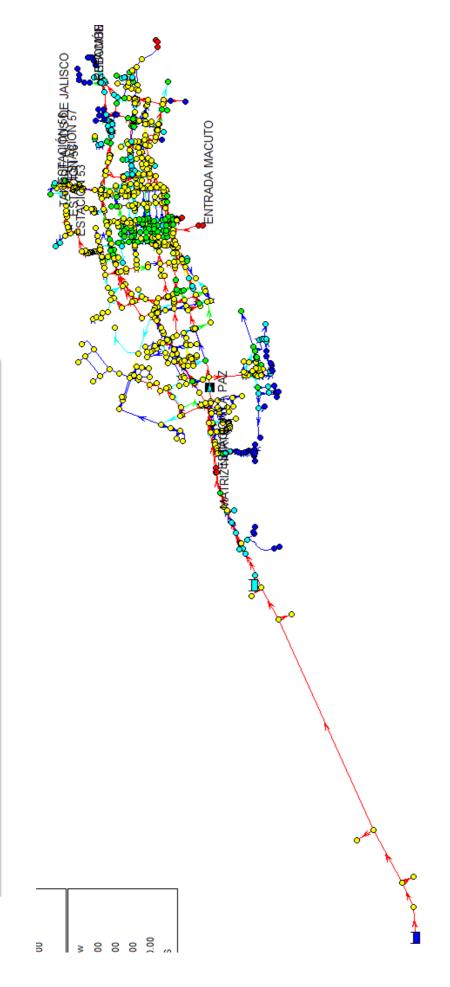


FIGURA 4.64. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2021-2030, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 1

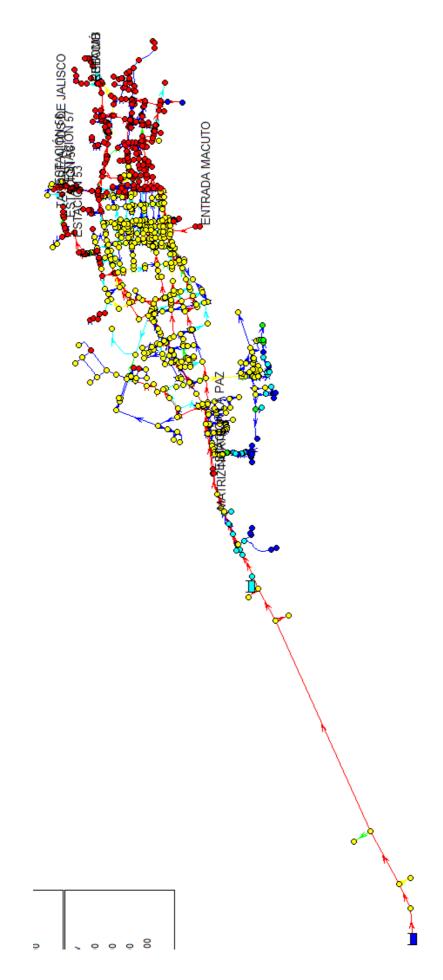


FIGURA 4.65. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808). PERÍODO 2021-2030, CASO: CAUDAL DE INCENDIO. ALTERNATIVA 1

CUADRO 4.53. LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2021-2031. ALTERNATIVA 1.

Diametro (mm)	L (m)
500	987,00
1200	4.036,67
1500	2.635,00
Total	7.658,67

FUENTE. PROPIA

2.- Alternativa 2 (incorporación de la fuente proveniente del SHYQ CA en los estanques de El Tostao):

A continuación se presenta las sustituciones correspondientes que garantizan el funcionamiento adecuado de la red, la linea roja en la figura siguiente representa dichas modificaciones:

FIGURA 4.66. ESQUEMA DE ALIMENTADORES A CONSTRUIR Y SUSTITUIR COMO MEJORA DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO EN EL PERÍODO 2021 - 2030. ALTERNATIVA 2

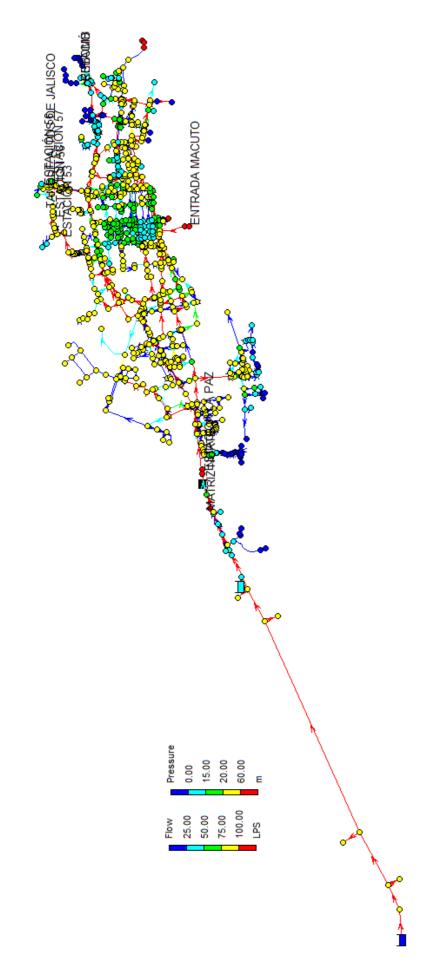


FIGURA 4.67. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2021-2030, CASO: CAUDAL MAXIMO HORARIO. ALTERNATIVA 2

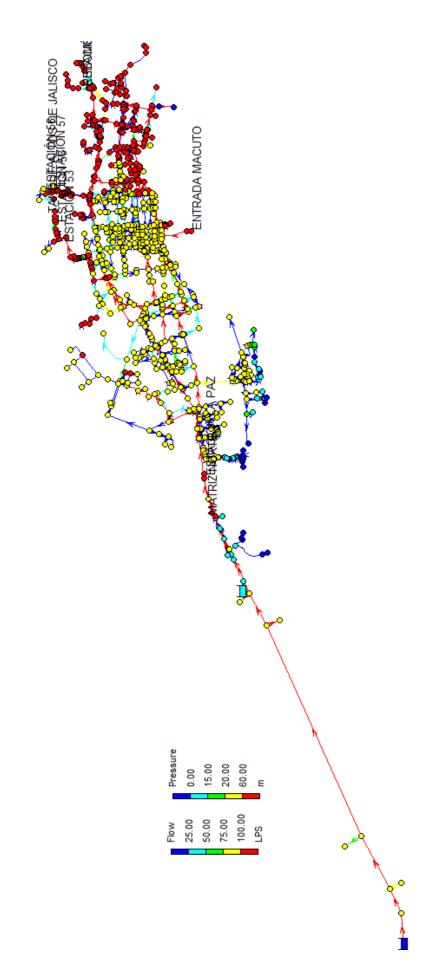


FIGURA 4.68. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL (NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808). PERÍODO 2021-2030, CASO: CAUDAL DE INCENDIO. ALTERNATIVA 2

Las tuberías que deben sustituirse son:

CUADRO 4.54. LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2021-2031. ALTERNATIVA 2.

Diametro (mm)	L (m)
700	1.503,00
1200	4.036,67
Total	5.539,67

FUENTE. PROPIA

- Modificaciones a la red de distribución de Barquisimeto, período 2031 – 2040:

En el análisis a este período se realizaron modificaciones aguas debajo de los dos empalmes propuestos para la incorporación de la fuente proveniente del embalse Yacambú y a nivel de la red media y baja de la ciudad, por lo que el funcionamiento de la misma es independiente de las alternativas que han venido evaluando anteriormente, es por ello que en este período no se presentan en función de las propuestas antes mencionadas, sino como una única solución. A continuación se presenta en línea roja los alimentadores modificados:

FIGURA 4.69. ESQUEMA DE ALIMENTADORES A CONSTRUIR Y SUSTITUIR COMO MEJORA DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO EN EL PERÍODO 2031 - 2040.

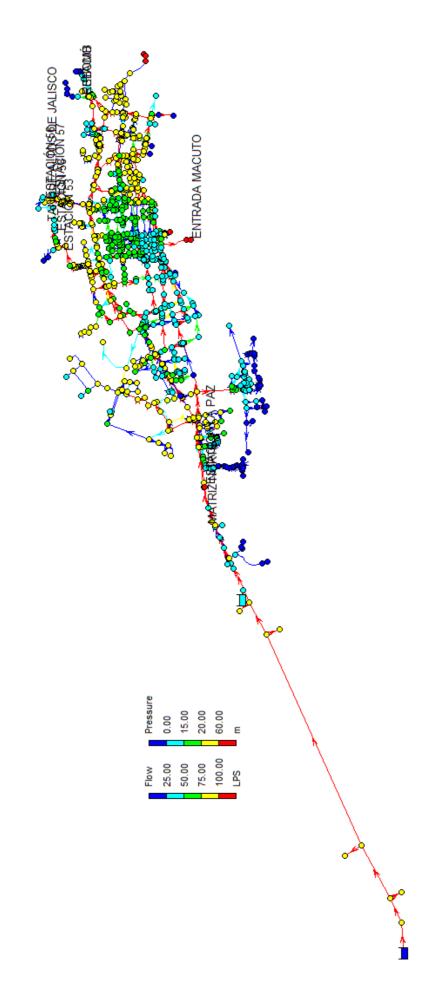


FIGURA 4.70. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2031-2040, CASO: CAUDAL MAXIMO HORARIO.

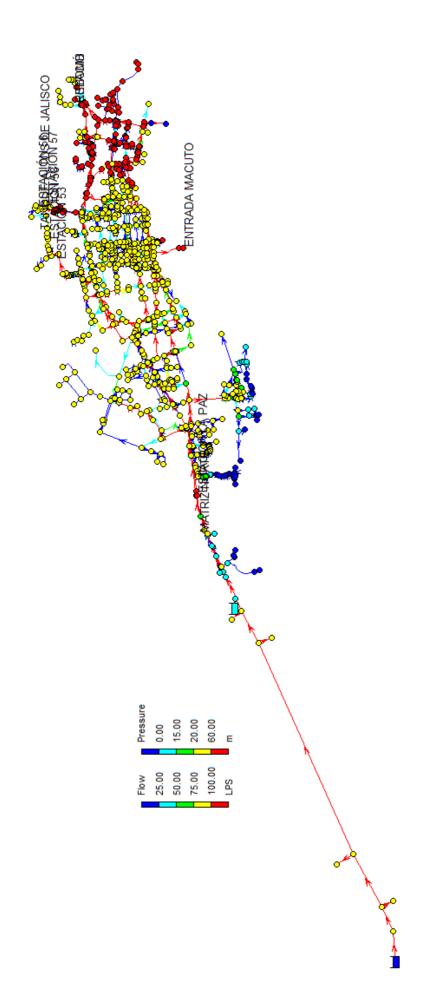


FIGURA 4.71. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2031-2040, CASO: CAUDAL DE INCENDIO.

(NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

La longitud total de las líneas que se deben sustituir se muestra en el cuadro a continuación:

CUADRO 4.55. LONGITUDES DE TUBERÍAS A CAMBIAR EN PERÍODO 2031-2040.

Diametro (mm)	L (m)
400	2.620,40
500	4.597,70
600	4.404,85
900	2.289,12
1000	981,10
1200	3.481,00
Total	18.374,17

FUENTE. PROPIA

- Modificaciones a la red de distribución de Barquisimeto, período 2040 – Población de Saturación:

En el escenario de saturación se considera una restructuración completa en la red de distribución, ya que como se mencionó anteriormente el sistema no esta concebido para incorporar una fuente alrededor de la red media y por su lado norte, es por ello se plantean subanillos de distribución que permiten cerrar subsistemas mas pequeños, permitiendo así mejorar las condiciones hidráulicas y operativas en la red. Por otro lado al igual que las modificaciones 2031-2040 no se toman en cuenta las (2) dos alternativas antes planteadas, ya que las sustituciones que aquí se presenta no dependen en lo absoluto de algunas de estas propuestas. A continuación se muestran en línea roja estas modificaciones.



FIGURA 4.72. ESQUEMA DE ALIMENTADORES A CONSTRUIR Y SUSTITUIR COMO MEJORA DE LA RED DE DISTRIBUCIÓN DE BARQUISIMETO EN EL PERÍODO 2040 - SATURACIÓN.

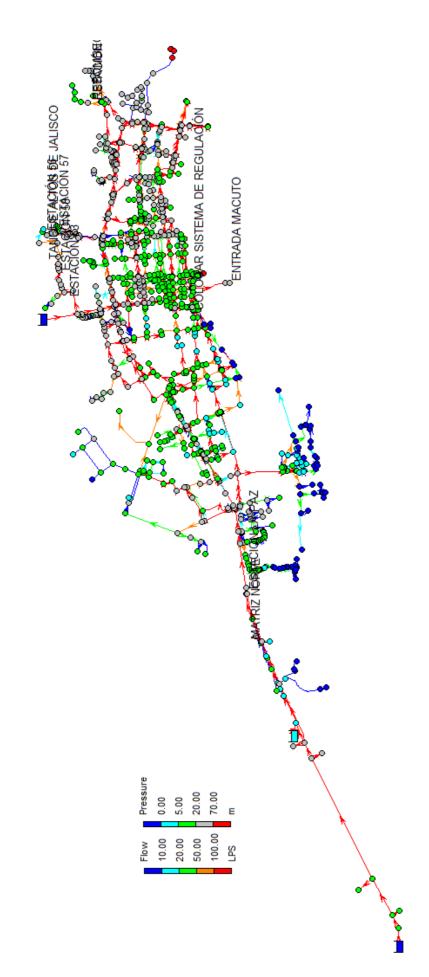


FIGURA 4.73. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2040 - SATURACIÓN, CASO: CAUDAL MAXIMO HORARIO.

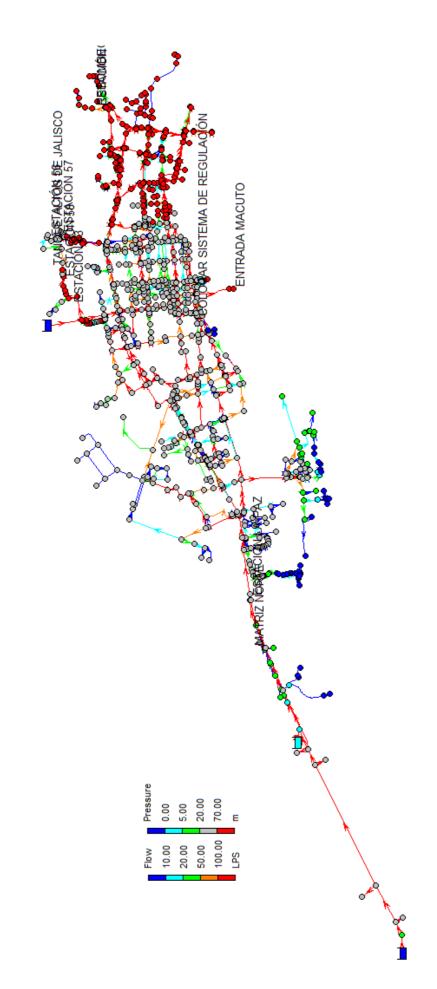


FIGURA 4.74. FUNCIONAMIENTO DE LA RED DE DISTRIBUCIÓN CONSIDERANDO LAS MEJORAS PLANTEADAS PARA EL PERÍODO 2031-2040, CASO: CAUDAL DE INCENDIO.

(NODOS INCENDIO: n72, n51, n84, n42, n731, n772, n748, n351, n629, n808).

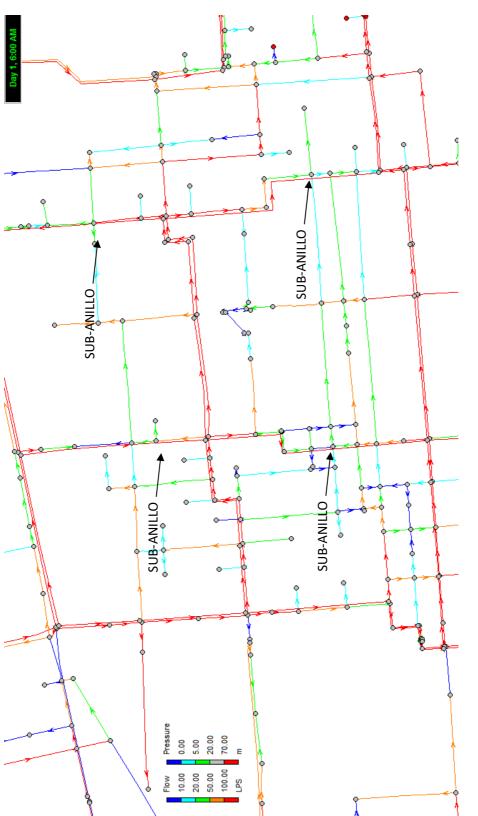


FIGURA 4.75. SUBANILLOS PROPUESTOS PARA INCORPORACIÓN DE FUENTE PROVENIENTE DE EMBALSE DOS BOCAS A LA RED DE DISTRIBUCIÓN DE LA CIUDAD DE BARQUISIMETO.

La incorporación del gasto proveniente del embalse Dos Bocas, permite redefinir el sistema de distribución en dos grandes subsistemas, el primero referente a la zona alta que estaría constituido por: la actual red alta del subsistema gravedad y todos los subsistemas aguas arriba de los estanques de El Tostao, los cuales tendrían como fuente el gasto proveniente del embalse Dos Cerritos y Yacambú, y l zona media y baja constituida por: la red media y baja del sistema gravedad los cuales tendrían como fuente el gasto proveniente del embalse Dos Bocas.

Dado a que la disponibilidad proveniente de los embalses Dos Cerritos y Yacambú es mayor a demanda que abastece se plantean una serie de interconexiones entre las redes, estas permitirán el paso del gasto excedente proveniente de la zona alta, dando así una versatilidad al sistema que aumenta notablemente su fiabilidad, permitiéndolo manejar mas fácilmente un situación adversa, como una interrupción en el sistema de abastecimiento Dos Bocas o cualquier otra fuente con las cual cuenta la red de distribución.

Las modificaciones realizadas se agrupan por diámetro y se muestran a continuación:

CUADRO 4.56. LONGITUDES DE TUBERÍAS A CAMBIAR Y CONSTRUIRI EN PERÍODO 2041-SATURACIÓN.

Diametro (mm)	L (m)
400	1.780,20
500	500,36
600	1.270,50
750	3.607,00
900	16.880,40
1000	348,00
1200	6.002,60
1500	1.286,00
1800	4.140,09
Total	35.815,15

FUENTE. PROPIA

De los analisis anteriores podemos decir que desde el punto de vista hidraulico las dos alternativas planteadas funcionan adeacuadamente, es por ello que no puede descartarse ninguna de ellas, en consecuencia es necesario realizar la selección de la alternativa a traves de una analisi económico.

Por otro lado dado a que las lineas principales y secundarias evaluadas en este estudio han exedido notablemente su vida util, se hace estrictamente necesario la sustitución de las lineas que no fueron consideradas para sustitución en esta investigación por unas del mismo diametro.

IV.3. ANÁLISIS ECONÓMICO:

Una vez definidas las propuestas hechas a lo largo de las simulaciones de los escenarios planteados se procede a cuantificar la magnitud de la inversión que es necesaria para la ejecución de las mismas. A continuación y haciendo uso de Índice de costos estimados realizados por el departamento de costos de la hidrológica, el cual se muestra en el cuadro 4.57, se determina el monto de la inversión requerida para cada quinquenio evaluado. Estos índices de costos los desarrolla la hidrológica con la base de datos de las obras ejecutadas tomando en cuenta los rendimientos alcanzados, en ellos se contempla para los diferentes diámetros y las características de la ejecución el precio unitario por metro lineal expresado en función de las unidades tributarias, logrando con esto de alguna manera no perder vigencia tan rápido en el tiempo.

CUADRO 4.57. COSTO EN UNIDADES TIRBUTARIAS DE CONSTRUCCIÓN DE OBRAS DE ADUCCIONES Y ESTANQUES POST-TENSADOS.

MATERIAL	DIAMETRO (mm)	RENDIMIENTO (Bs/m)	RENDIMIENTO (UNIDAD TRIBUTARIA/m) **
PEAD	300	1088,00	14,32
PEAD	400	1765,00	23,22
PEAD	500	2294,00	30,18
ACERO	600	8300,00	109,21
ACERO	700	11119,50	146,31
ACERO	750	12000,00	157,89
ACERO	900	13570,80	178,56
ACERO	1000	15483,87	203,74
ACERO	1200	17651,61	232,26
ACERO	1500	20961,29	275,81
ACERO	1800	22000,00	289,47
ACERO	2100	33000,00	434,21
_	DE CONCRETO TENSADO	$2000~\mathrm{Bs/m^3}$	26,32
** LA UNIDAD TRIBUTARIA UTILIZADA ES LA VIGENTE PARA AÑO 2011 (76 Bs/ UT)			

FUENTE: DEPARTAMENTO DE COSTOS DE HIDROLARA CA, 2011

CUADRO 4.58. COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2011 - 2015.

Diametro (mm)	L (m)	COSTO DE CONSTRUCCIÓN (UNIDAD TRIBUTARIA/m)	TOTAL
300	1545,10	14,32	22.119,33
400	2186,47	23,22	50.777,89
500	1895,40	30,18	57.211,15
600	834,23	109,21	91.106,70
700	2709,07	146,31	396.361,60
900	6735,15	178,56	1.202.649,30
1000	996,70	203,74	203.062,82
1200	6185,03	232,26	1.436.523,10
1500	1652,68	275,81	455.820,08
Total	24739,83	TOTAL	3.915.631,96

FUENTE: PROPIA

Para conseguir el total de inversión a realizarse en los períodos 2016 – 2021, se deben plantear las alternativas mencionadas anteriormente, en cada una de estas alternativas es necesario considerar obras adicionales a la construcción de alimentadores, ya que de lo contrario su funcionamiento hidráulico no seria el adecuado, estas obras adicionales corresponden a estanques de almacenamiento, estos estanques deben tener un volumen de por lo menos 160.000 m³ para compensar la demanda requerida para la población de saturación junto con los existentes, sin embargo para en este período solo es necesario un estanque de 25.000 m³, estos cálculos se muestra en el anexo 4.8. A continuación se presenta el costo de inversión que genera cada alternativa y el de los estanques requeridos:

CUADRO 4.59. COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2016 - 2020. ALTERNATIVA 1.

Diametro (mm)	L (m)	COSTO DE CONSTRUCCIÓN (UNIDAD TRIBUTARIA/m)	TOTAL
300	376,86	14,32	5.395,05
500	987,00	30,18	29.791,82
900	2.606,93	178,56	465.501,65
1200	4.036,67	232,26	937.549,16
1500	2.635,00	275,81	726.750,00
1800	6.715,69	289,47	1.944.015,53
Total	9.699,48	TOTAL	4.109.003,21

FUENTE: PROPIA

CUADRO 4.60. COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2016 - 2020. ALTERNATIVA 2.

Diametro (mm)	L (m)	COSTO DE CONSTRUCCIÓN (UNIDAD TRIBUTARIA/m)	TOTAL
300	376,86	14,32	5.395,05
700	1.503,00	146,31	219.902,74
900	2.606,93	178,56	465.501,65
1200	4.036,67	232,26	937.549,16
2100	6.715,69	434,21	2.916.023,29
Total	9.699,48	TOTAL	4.544.371,90

FUENTE: PROPIA

CUADRO 4.61. COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LOS ESTANQUES NECESARIOS EN LA RED DE DISTRIBUCIÓN PARA EL PERÍODO 2016 - 2020.

Descripción	Capacidad (m³)	COSTO DE CONSTRUCCIÓN (UNIDAD TRIBUTARIA/m³)	TOTAL
Estanque	25.000,00	26,32	657.894,74
		TOTAL	657.894,74

FUENTE: PROPIA

CUADRO 4.62. COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2021 - 2030.

Diametro (mm)	L (m)	COSTO DE CONSTRUCCIÓN (UNIDAD TRIBUTARIA/m)	TOTAL
400	2.620,40	23,22	60.855,34
500	4.597,70	30,18	138.777,94
600	4.404,85	109,21	481.055,77
900	2.289,12	178,56	408.752,50
1000	981,10	203,74	199.884,55
1200	3.481,00	232,26	808.490,32
Total	18.374,17	TOTAL	2.097.816,42

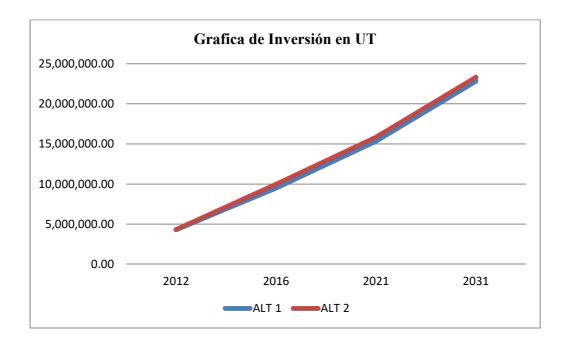
FUENTE: PROPIA

CUADRO 4.63. COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LOS ESTANQUES NECESARIOS EN LA RED DE DISTRIBUCIÓN PARA EL PERÍODO 2021 - 2030.

Descripción	Capacidad (m³)	COSTO DE CONSTRUCCIÓN (UNIDAD TRIBUTARIA/m³)	TOTAL
Estanque	135.000,00	26,32	3.552.631,58
		TOTAL	3.552.631,58

FUENTE: PROPIA

CUADRO 4.64. COSTO EN UNIDADES TIRBUTARIAS NECESARIO PARA REALIZAR LAS SUSTITUCIONES DE LAS REDES DE DISTRIBUCIÓN PARA EL PERÍODO 2031 - 2040.


Diametro (mm)	L (m)	COSTO DE CONSTRUCCIÓN (UNIDAD TRIBUTARIA/m)	TOTAL	
400	1.780,20	23,22	41.342,80	
500	500,36	30,18	15.102,97	
600	1.270,50	109,21	138.751,97	
750	3.607,00	157,89	569.526,32	
900	16.880,40	178,56	3.014.217,53	
1000	348,00	203,74	70.899,83	
1200	6.002,60	232,26	1.394.152,26	
1500	1.286,00	275,81	354.687,10	
1800	4.140,09	289,47	1.198.447,11	
Total	35.815,15	TOTAL	6.797.127,88	

FUENTE: PROPIA

Dado a que es necesario hacer una rehabilitación paulatina de toda la red de distribución a fin de alargar su vida útil en general se incrementa un diez porciento (10%) los montos de inversión determinados para cada período por este concepto. A continuación se presenta un plan de inversión que ilustra la situación:

GRAFICO 4.4. COSTO EN UNIDADES TIRBUTARIAS NECESARIOS PARA MEJORAR EL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO.

A continuación se propone un plan de desembolso se recomienda a la empresa hidrológica tomarlo en cuenta al momento de realizar su Plan Operativo Anual (POA)

CUADRO 4.65. PLAN DE INVERSIÓN EN UNIDADES TIRBUTARIAS NECESARIO PARA MEJORAR LAS REDES E INCORPORAR LAS NUEVAS FUENTES AL SISTEMA DE DISTRIBUCIÓN DE BARQUISIMETO.

	PLAN DE INVERSIÓN EN U.T.						
	AÑO	2012	2016	2021	2031	TOTAL	
ALTERNATIVA 1	REHABILITACIÓN DE REDES DE DISTRIBUCIÓN EXISTENTES	391.563,20	410.900,32	209.781,64	679.712,79	1.691.957,95	
	SUSTITUCIÓN DE ALIMENTADORES EN RED EXISTENTE	3.915.631,96	4.109.003,21	2.097.816,42	6.797.127,88	16.919.579,47	
	CONSTRUCCIÓN DE ESTANQUES DE ALMACENAMIENTO	0	657.894,74	3.552.631,58	0	4.210.526,32	
	TOTAL	4.307.195,15	5.177.798,26	5.860.229,65	7.476.840,67	22.822.063,74	
ALTERNATIVA 2	REHABILITACIÓN DE REDES DE DISTRIBUCIÓN EXISTENTES	391.563,20	454.437,19	209.781,64	679.712,79	1.735.494,82	
	SUSTITUCIÓN DE ALIMENTADORES EN RED EXISTENTE	3.915.631,96	4.544.371,90	2.097.816,42	6.797.127,88	17.354.948,16	
	CONSTRUCCIÓN DE ESTANQUES DE ALMACENAMIENTO	0	657.894,74	3.552.631,58	0	4.210.526,32	
A	TOTAL	4.307.195,15	5.656.703,82	5.860.229,65	7.476.840,67	23.300.969,29	

FUENTE: PROPIA

En conclusión del análisis económico realizado descartamos la alternativa 2, y seleccionamos la alternativa 1 como solución para la incorporación del gasto proveniente del SHYQ CA.

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

- Se requieren 450 l/s para alcanzar la dotación promedio (incluye las zonas sin servicio y que hoy se surten por cisternas). La mayor parte de este caudal se requiere en la red alta del Oeste (aguas arriba del sub sistema Gravedad Oeste).
- Los sectores Pavia Bobare y la paz representan el 50% de la dotación a través de camiones cisternas. la dotación media por este sistema es de 33 l/p/d. Para estos sectores se envían alrededor de 10 l/s, un 10% de la dotación total de sus respectivos sub sistemas.
- Existe una pérdida importante en Barquisimeto, mayor a los 600 l/s, lo que ubica al sistema en un nivel muy bajo de eficiencia (70%), ameritando una urgente intervención en las redes.
- Se presume un sobre consumo en los usuarios que no poseen micro medición de 20% (según estudios realizados en Mérida, ver referencia). De ser así, existen alrededor de 77 l/s que se podrían ahorrar con la instalación de 50.000 medidores.
- Según otros estudios, la disponibilidad inmediata para Barquisimeto es de 1.400 l/s.
 Si sometemos este caudal a la eficiencia actual (70%) la disponibilidad real sería de 980 l/s, que alcanzaría para satisfacer la demanda actual (800 l/s norte y oeste) pero insuficiente para los próximos años.
- Es necesario aplicar un plan de reducción de pérdidas físicas en el sistema de gravedad de la ciudad de Barquisimeto a fin de mejorar la eficiencia de conducción

<u>CAPITULO V – CONCLUSIONES Y RECOMENDACIONES</u>

de la red de distribución permitiendo así alargar el tiempo de incorporación de las futuras fuentes.

• Las demandas futuras de la ciudad de Barquisimeto a corto, mediano y largo plazo se resumen en la siguiente tabla:

AÑO	2011	2011	2016	2016	2021	2031	SATURACION
DEMANDA	MIN	MAX	MIN	MAX	MEDIA	MEDIA	MEDIA
GRAVEDAD	2,201	2,201	2,425	2,425	2,375	2,824	8,06
MATRIZ NORTE	250	381	279	428	477	565	1,601
LA PAZ	246	270	270	335	388	491	594
EL JEBE	110	110	93	93	105	133	114
LA SEGOVIANA	91	91	102	102	115	145	515
TOTAL DEMANDA	2,897	3,053	3,168	3,383	3,46	4,159	10,884

- Las tuberías de hierro fundido, asbesto cemento, acero y concreto armado (SENTAB) existentes en la red de distribución han alcanzado su vida útil y es necesario un plan de rehabilitación integral que permita sustituirlas, ya que su rugosidad es muy alta y esto tiende a disminuir la capacidad de conducción de las mismas.
- En términos generales la red de tuberías actual con la que cuenta Barquisimeto no tiene la capacidad hidráulica para distribuir los gastos demandados en ninguno de los períodos evaluados (2011 - Saturación). Además
- de ser muy vulnerable ya que existe una gran posibilidad de la aparición de cualquier tipo de falla mecánica en las misma por lo cual se reitera la necesidad de un plan de sustitución a fin de hacerlo más fiable.
- Es necesario aumentar los diámetros de los alimentadores existentes, a fin de ampliar su capacidad hidráulica y poder así conducir los requerimientos demandados por la red en los diferentes escenarios.

CAPITULO V - CONCLUSIONES Y RECOMENDACIONES

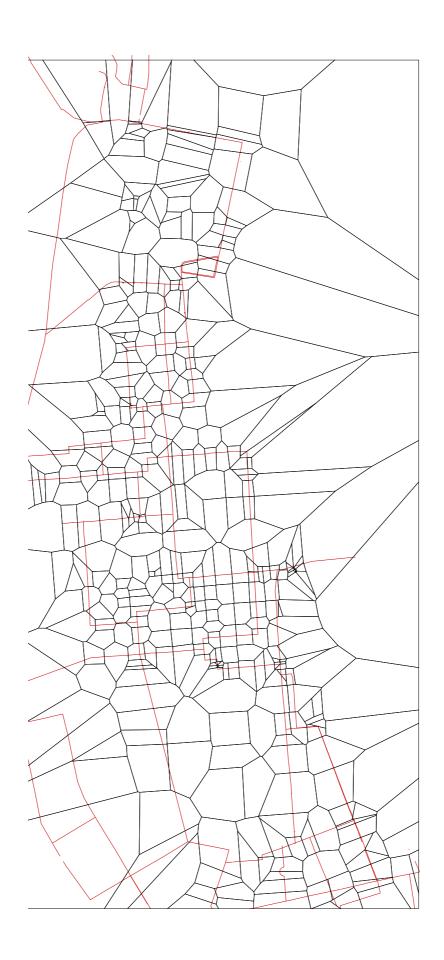
- La capacidad de almacenamiento con la que cuenta el macrosistema Gravedad es de 60.000 m³, lo que permite compensar hasta un caudal medio de 3.000 l/s, es decir, es insuficiente para compensar los picos de consumo que se presentarán para cada período de cálculo.
- Se necesitan por lo menos 160.000 m³ de almacenamiento para poder compensar las demandas presentadas a lo largo del período 2016 Saturación.
- El gasto proveniente del SHYQ debe incorporarse en el sistema de abastecimiento de Barquisimeto como máximo en el año 2021.
- La incorporación de caudal proveniente del SHYQ CA a la macrored de Barquisimeto le dará mayor fiabilidad al sistema ya que se puede alternar el caudal de cada una de las fuentes, permitiendo así atender cualquier situación imprevista como año extraordinario de sequía.
- El empalme de interconexión entre la fuente proveniente de SAT y la del SHYQ CA, debe ser en el tridente existente en la Av. El Cementerio.
- El gasto proveniente del Embalse Dos Bocas debe incorporarse como máximo en el año 2039 al sistema de distribución.
- Dicha incorporación genera un cambio en la concepción topológica del sistema de distribución ya que la fuente ingresará al sistema por el norte.
- La existencia de tres fuentes diferentes al sistema de abastecimiento de Barquisimeto, hizo posible la creación de anillos de servicio de interconexión entre las fuentes.
- Es necesario cumplir con el plan de inversión para garantizar que las obras se ejecuten en el tiempo debido.

RECOMENDACIONES

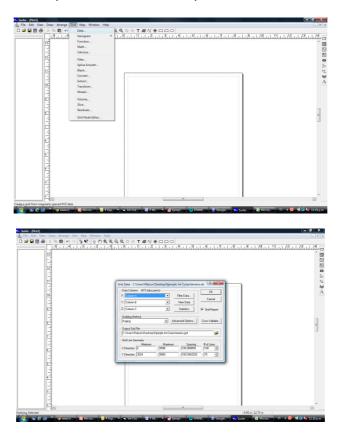
- Se recomienda mejorar el valor obtenido de pérdida física en la red. Esto se puede lograr realizando las siguientes acciones:
 - Aumentar la macro medición
 - Instalar micro medición testigo en las zonas extrapoladas estadísticamente
 - Mantener una frecuencia mensual de la estimación de las pérdidas y el uso del IFI como indicador de ese parámetro.
 - Instalar micromedición en los usuarios: industriales, comerciales, oficiales y cooperativas. (errores en la extrapolación, aumento de la facturación y uso eficiente en los oficiales)
 - Rehabilitar el laboratorio de medidores para realizar curvas de aferición y estimar sub registros plan de sustitución)
- Verificar el sobre consumo de 20% en sectores no medidos. Esto puede ser a través de un medidor testigo. De ser así, se debe evaluar económicamente la relación beneficio – costo de la instalación de 50.000 micromedidores para ahorrar al menos 70 l/s.
- Se debe prestar atención a los usuarios con consumos irregulares, ej: industriales por debajo de los 10m3/mes; residenciales por encima de los 40 m3/mes, etc.

CAPITULO V - CONCLUSIONES Y RECOMENDACIONES

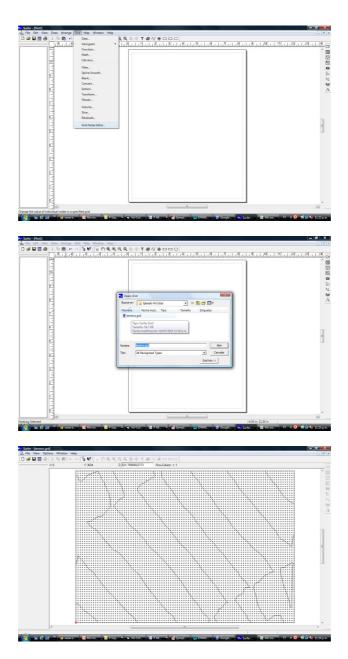
ZONA EN ESTUDIO	Clientes Residenciales con Consumo promedio por Encima de 40m3/mes	Clientes Residenciales Social con Consumo promedio por Encima de 40m3/mes	Clientes Comerciales con Consumo promedio por Debajo de 10m3/mes	Clientes Industriales con Consumo promedio por debajo de 10m3/mes	Clientes Residenciales con Consumo promedio por debajo de 10m3/mes
TOTAL OESTE	1608	28	74	3	0
TOTAL NORTE	865	3	47	7	3
ESTE	79	0	0	0	0
Z. INDUSTRIAL	3	0	6	4	0
CASCO CENTRAL	4694	1	797	25	5

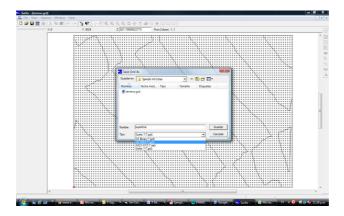

Los resultados indican unas pérdidas importantes que afectan el desempeño de la empresa hidrológica y no garantiza solución con obras en los sistemas de producción. Se sugiere una elaboración inmediata de un plan de recuperación de pérdidas físicas que permita en un lapso de 5 años la ejecución de medidas que mitiguen el problema.

- Se debe realizar un estudio detallado de reducción de pérdidas físicas en la red de distribución de la ciudad.
- Es necesario realizar un estudio mas detallado donde se determine la curva de variaciones horarias de consumo para la ciudad de Barquisimeto, y poder definir los factores de mayoración de los casos de cálculo exigidos por la norma venezolana vigente (caudal máximo horario, caudal de incendio)
- Se debe actualizar la información acerca de los proyectos SHYQ CA y Dos Bocas.
- Se recomienda realizar un plan de mediciones de presión y caudal con el fin de poder calibrar el sistema de distribución.

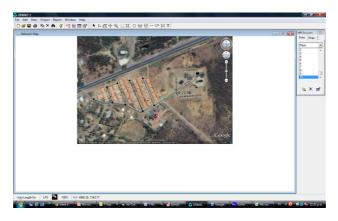


Ejemplo Programa Int-Cotas:

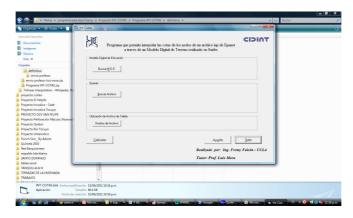

Ejecute el programa Epanet, seguidamente cargue el mapa de fondo "croquis-ejemplo.bmp"


Ejecute el Software Surfer, vaya al Menu GRID->Data y seleccione el archivo "terreno.xls"

Seguidamente vaya nuevamente al menú Grid->Grid Node Editor... y seleccione el archivo creado anteriormente "terreno.grd"

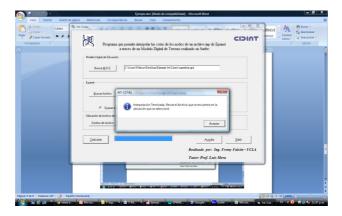


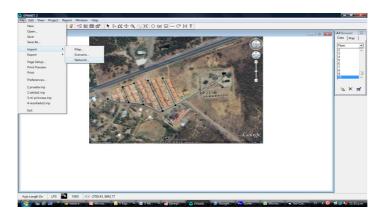
Por último una vez estando en el editor de nodo, vaya al menú FILE->Save As, colóquele el nombre que desee pero con la extensión GS ASCHII |*.grd

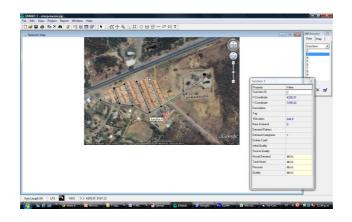

Ya se ha creado el MDE a utilizar en el Int-Cotas...

Genere la Red que se muestra en el mapa base de Epanet.

Exporte la red, vaya a Menu File->Export->Network... colóquele el nombre que desee y presione aceptar


Ahora Ejecute el Programa Int-Cotas


Busque el archivo del MDE y la red exportada de Epanet en cada botón que corresponda, recuerde seleccionar la versión de Epanet donde Exporto la Red. Note que una vez que abre los archivos su ubicación se muestra en unas etiquetas.


Por último colóquele nombre y ubicación al fichero de salida y presione el botón "Calcular", si todos los datos de entradas están bien aparecerá un mensaje que notificará la culminación de la interpolación.

Vaya a Epanet e importe el archivo que se interpoló y que tiene el nombre colocado anteriormente (File->Import->Network...), puede abrir el mapa de fondo con el que creó el archivo.

Puede notar que al revisar cada uno de los nodos los mismos tiene el atributo de cota.

DESARROLLADO POR: ING. FREMY FALCÓN FREMY911@GMAIL.COM

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA VILLA ROSA

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	VILLA ROSA	SAN JOSE DE TIN TIN	0	0.00
JUAN DE VILLEGAS	VILLA ROSA	ESC. DE SAN JOSE DE TIN TIN	0	0.00
JUAN DE VILLEGAS	VILLA ROSA	VILLA ROSA Sector la Lagunita(Octavio)	22	159,500.00
JUAN DE VILLEGAS	VILLA ROSA	MORROCOY	66	478,500.00
JUAN DE VILLEGAS	VILLA ROSA	AMB. BARRIO BOLIVAR	0	0.00
JUAN DE VILLEGAS	VILLA ROSA	BATALLA SECTOR II	8	58,000.00
JUAN DE VILLEGAS	VILLA ROSA	AMB. MORROCOY	0	0.00
JUAN DE VILLEGAS	VILLA ROSA	ESC. LA BATALLA	0	0.00
JUAN DE VILLEGAS	VILLA ROSA	AMB. VILLA ROSA	4	29,000.00
JUAN DE VILLEGAS	VILLA ROSA	ESC.VILLA ROSA	8	58,000.00
JUAN DE VILLEGAS	VILLA ROSA	BATALLA SECTOR 4 (25/10/06)	12	87,000.00
JUAN DE VILLEGAS	VILLA ROSA	ESC. LA MILAGROSA La Batalla	4	29,000.00
JUAN DE VILLEGAS	VILLA ROSA	VILLA ROSA SECTOR LA PASTORA	14	101,500.00
JUAN DE VILLEGAS	VILLA ROSA	AGUA VIVA VILLA ROSA P.baja (7000)	16	116,000.00
JUAN DE VILLEGAS	VILLA ROSA	ESC. AGUA VIVA VILLA ROSA	4	29,000.00
JUAN DE VILLEGAS	VILLA ROSA	VILLA ROSA SECTOR LA IGLESIA (Yuleima)	28	203,000.00
JUAN DE VILLEGAS	VILLA ROSA	BARRIO SIMON BOLIVAR SANTA EDUVIGIS II	8	58,000.00
JUAN DE VILLEGAS	VILLA ROSA	VILLA ROSA PARTE ALTA (Camioneta 350)	1	7,250.00
JUAN DE VILLEGAS	VILLA ROSA	VILLA ROSA (Parte Baja Camion 7000)	8	58,000.00
JUAN DE VILLEGAS	VILLA ROSA	AGUA VIVA VILLA ROSA (Parte Alta Camion350)	24	174,000.00
JUAN DE VILLEGAS	VILLA ROSA	CASA DE ALIMENTACION Nº 176 Delfin Gonzalez	4	29,000.00
JUAN DE VILLEGAS	VILLA ROSA	C.D.I. Centro Desarrollo Integral Brr Bolivar	24	174,000.00
			L/mes	1,848,750.00
			L/sem	431375
			L/d	61625
			Lps	0.713252315
			Dot (lpd) por	23.01587302
			cisternas	23.0158/302
			Núm de	
			habitantes	2670
			asistidos por	2678

cisternas

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA CORIANO

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	CORIANO	EL CORIANO	56	406,000.00
JUAN DE VILLEGAS	CORIANO	ESC. EL TOSTAO I Y II v Preescolar	12	87,000,00
JUAN DE VILLEGAS	CORIANO	ESC. LUIS BELTRAN PRIETO El Paraiso	8	58,000.00
JUAN DE VILLEGAS	CORIANO	EL TOSTAO CALLEJON LIBERTADOR	4	29,000.00
JUAN DE VILLEGAS	CORIANO	ALTOS PALOMAR	32	232,000.00
JUAN DE VILLEGAS	CORIANO	EL CORIANO II	0	0.00
JUAN DE VILLEGAS	CORIANO	LIBERTADOR SECTOR II	0	0.00
JUAN DE VILLEGAS	CORIANO	LIBERTADOR SECTOR III.	8	58,000.00
JUAN DE VILLEGAS	CORIANO	LA CONCORDIA SECTOR II	0	0.00
JUAN DE VILLEGAS	CORIANO	LA CONCORDIA SECTORES 7 Y 8	0	0.00
JUAN DE VILLEGAS	CORIANO	SANTA ROSALIA	0	0.00
JUAN DE VILLEGAS	CORIANO	CENTRO ASIST.ALEGRIA Y ESPERANZA El Tostao	0	0.00
JUAN DE VILLEGAS	CORIANO	LIBERTADOR SECTOR I (Camioneat 350 y 7000)	0	0.00
JUAN DE VILLEGAS	CORIANO	CORIANO SANTA BARBARA	8	58,000.00
JUAN DE VILLEGAS	CORIANO	LOS NARANJOS	40	290,000.00
JUAN DE VILLEGAS	CORIANO	AMB.PADRE ORION COREANO 1	0	0.00
JUAN DE VILLEGAS	CORIANO	LA CONCORDIA KM 15	8	58,000.00
JUAN DE VILLEGAS	CORIANO	CORIANO SAN ANTONIO	0	0.00
JUAN DE VILLEGAS	CORIANO	CORIANO VALLE INMACULADA	0	0.00
JUAN DE VILLEGAS	CORIANO	CORIANO TANQUE PUBLICO	0	0.00
JUAN DE VILLEGAS	CORIANO	AMB. CORIANO SANTA BARBARA	0	0.00
JUAN DE VILLEGAS	CORIANO	ESC.MIGUEL OTERO SILVA Coreano	0	0.00
JUAN DE VILLEGAS	CORIANO	ESC. NIÑO LIBERTADOR La Paz sector "0"	12	87,000.00
JUAN DE VILLEGAS	CORIANO	M.H. "MIS AMIGUITOS" El Coreano	0	0.00
JUAN DE VILLEGAS	CORIANO	AMB. LIBERTADOR	0	0.00
JUAN DE VILLEGAS	CORIANO	CORIANO STA BARBARA T.P.	0	0.00
JUAN DE VILLEGAS	CORIANO	EL TOSTAO	0	0.00
JUAN DE VILLEGAS	CORIANO	ESC. LIBERTADOR Barrio Bolivar	8	58,000.00
JUAN DE VILLEGAS	CORIANO	M.H. CORIANO SANTA BARBARA	0	0.00
JUAN DE VILLEGAS	CORIANO	AMB. EL CORIANO	4	29,000.00
JUAN DE VILLEGAS	CORIANO	ESC. JOSE ANT. PAEZ Coreano (Camioneta 350)	0	0.00
JUAN DE VILLEGAS	CORIANO	COLINAS DEL TOSTAO	0	0.00
JUAN DE VILLEGAS	CORIANO	ESC. SANTA ROSALIA	8	58,000.00
			L/mes	1,508,000.00
			L/sem	351866.6667
			L/d	50266.66667
			Lps	0.581790123
			Dot (lpd) por	23.01587302
			cisternas	23.01307302
			Núm de	

habitantes

asistidos por

2184

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA LA PAZ

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	LA PAZ	ESC. EXPEDITO CORTES Los Pocitos	12	87,000.00
JUAN DE VILLEGAS	LA PAZ	ESC. SAN JOSE OBRERO(Dentro del Cod. 966)	0	0.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	LOS POCITOS ANA MIQUILENA LA PAZ SECTOR CERO (Camión 7000)	52 12	377,000.00 87,000.00
JUAN DE VILLEGAS	LA PAZ	VALLE DORADO	0	0.00
JUAN DE VILLEGAS	LA PAZ	CARIBE SECTOR II	12	87,000.00
JUAN DE VILLEGAS	LA PAZ	LA APOSTOLEÑA SECTOR I	32	232,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	LA APOSTOLEÑA SECTOR II LOS POCITOS VIELMA	28 16	203,000.00 116,000.00
JUAN DE VILLEGAS	LA PAZ	LOS POCITOS VIELMA LOS POCITOS LUCY PEREZ	62	449,500.00
JUAN DE VILLEGAS	LA PAZ	VILLA TORRES	0	0.00
JUAN DE VILLEGAS	LA PAZ	LA PAZ SECTOR 15	12	87,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ	ESC. ROMULO GALLEGOS La Apostoleña	20	145,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	JOSE MARIA VARGAS PRADOS DE OCCIDENTE	0 16	0.00 116,000.00
JUAN DE VILLEGAS	LA PAZ	LOS ANGELES SECTOR 4	0	0.00
JUAN DE VILLEGAS	LA PAZ	PARAISO SECTOR 3	8	58,000.00
JUAN DE VILLEGAS	LA PAZ	PARAISO SECTOR 4	32	232,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	CARIBE CERRO NORTECamioneta 350 CARIBE CERRO SUR	192 20	1,392,000.00 145,000.00
JUAN DE VILLEGAS	LA PAZ	CARIBE SECTOR I	8	58,000.00
JUAN DE VILLEGAS	LA PAZ	CENTRO CRISTO REY LOS POCITOS	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	APOSTOLEÑA SECTOR TERRAZA	12	87,000.00
JUAN DE VILLEGAS	LA PAZ	SAN JOSE OBRERO	128	928,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	CARIBE CERRO LA CRUZ ESC. LA PAZ SECTOR 8	20 8	145,000.00 58,000.00
JUAN DE VILLEGAS	LA PAZ	LOS ANGELES SECTOR 3	0	0.00
JUAN DE VILLEGAS	LA PAZ	AMB. LA PAZ	0	0.00
JUAN DE VILLEGAS	LA PAZ	M.H. "CARIÑOSITOS" San Jose Obrero	2	14,500.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	M.H. "MIS CASITAS" La Paz Sector "0" NILDO CASTILLO (Camioneta 350)	2 0	14,500.00 0.00
JUAN DE VILLEGAS	LA PAZ	CARIBE CERRO SANTA CRUZ	20	145,000.00
JUAN DE VILLEGAS	LA PAZ	ESC. DR. RAUL LEONI El Caribe	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	DOÑA JUANA	0	0.00
JUAN DE VILLEGAS	LA PAZ	CASA DEL NIÑO-LOS POCITOS	12	87,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	LA PRADERA BELLA LUCHA P.baja (Camion 7000)	64 100	464,000.00 725,000.00
JUAN DE VILLEGAS	LA PAZ	AGUA VIVA EL ROBLE SECTOR 2	116	841,000.00
JUAN DE VILLEGAS	LA PAZ	PILA DE MONTEZUMA	188	1,363,000.00
JUAN DE VILLEGAS	LA PAZ	NUEVA LUCHA PARTE ALTA	48	348,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	ESC. AGUA VIVA EL ROBLE (Camioneta 350) PILA DE MONTEZUMA SECTOR II	8	58,000.00 0.00
JUAN DE VILLEGAS	LA PAZ	AGUA VIVA SECTOR LOS CHIVOS	0	0.00
JUAN DE VILLEGAS	LA PAZ	COLINAS DE LA LUCHA	136	986,000.00
JUAN DE VILLEGAS	LA PAZ	AGUA VIVA EL ROBLE SECTOR 3	45	326,250.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	AGUA VIVA EL ROBLE SECTOR 1 H.C.D. LA LUCHA	72 0	522,000.00 0.00
JUAN DE VILLEGAS	LA PAZ	(CASA NAZARETH) LA LUCHA	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	NUEVA LUCHA PARTE BAJA	148	1,073,000.00
JUAN DE VILLEGAS	LA PAZ	M.H.CACHORRITOS Agua viva El Roble	2	14,500.00
JUAN DE VILLEGAS	LA PAZ	U.E. NUEVA LUCHA	8	58,000.00
JUAN DE VILLEGAS	LA PAZ	ESC. ESTRELLA DE LA MAÑANA. Pila de Montezuma	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	BARRIO JOSE FELIX RIBAS	0	0.00
JUAN DE VILLEGAS	LA PAZ	ESC. MARIA ANG. LUISINCHI Jose Felix Rivas	0	0.00
JUAN DE VILLEGAS	LA PAZ	CENTRO DE SALUD LOS POCITOS	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	ESC. SAN JOSE OBRERO	16	116,000.00
JUAN DE VILLEGAS	LA PAZ	SAN JOSE OBRERO Parte Alta (Camioneta 350)	120	870,000.00
JUAN DE VILLEGAS	LA PAZ	LA PAZ SECTOR "0" Parte Alta (Camioneta 350)	20	145,000.00 29,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	LA MUNICIPAL Callj La Esperanza BRIGADA RURAL LOS POCITOS	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	M.H. NUEVA LUCHA Mariela Barreto	1	7,250.00
JUAN DE VILLEGAS	LA PAZ	CASA COMUNAL CARIBE II SECTOR NORTE	2	14,500.00
		Centro Odontologico (Camioneta 350)		
JUAN DE VILLEGAS JUAN DE VILLEGAS	LA PAZ LA PAZ	U.E. LA MILAGROSA La Pradera PELLA LUCHA (payto Alta Camion 250)	8	58,000.00 29,000.00
JUAN DE VILLEGAS	LA PAZ	BELLA LUCHA (parte Alta Camion 350) PRESCOLAR LOS ANGELES (Pila de Montezuma)	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	COLINAS DE LA LUCHA (Parte Baja)	2.4	174.000.00
JUAN DE VILLEGAS	LA PAZ	U.E.E. COLINAS DE JOSE FELIX RIVAS II	8	58,000.00
JUAN DE VILLEGAS	LA PAZ	CARIBE SECT.II carrera 4P.A.	8	58,000.00
JUAN DE VILLEGAS	LA PAZ	CASA DE ALIMENTACION Nº 277 Prados de Occidente N° 251	2	14,500.00
JUAN DE VILLEGAS	LA PAZ	CASA DE ALIMENTACION Nº 097 San Jose	2	14,500.00
JUAN DE VILLEGAS	LA PAZ	Obrero AGUA VIVA EL ROBLE SECTOR 2 A	60	435,000.00
JUAN DE VILLEGAS	LA PAZ	LOS ANGELES (Casa Italia)	20	145,000.00
JUAN DE VILLEGAS	LA PAZ	CASA DE ALIMENTACION COLINAS DE LA LUCHA	4	29,000.00
JUAN DE VILLEGAS	LA PAZ	Agua Viva el Roble sector 2 B C/Libertador y C/Union	20	145,000.00
JUAN DE VILLEGAS	LA PAZ	LOS POCITOS SECTOR 03	60	435,000.00
JUAN DE VILLEGAS	LA PAZ	LOS POCITOS SECTOR 04	60 L/mes	435,000.00 15,544,000.00
			L/mes L/sem	3626933.333
			L/d	518133.3333
			Lps	5.99691358
			Dot (lpd) por	23.01587302
			cistemas	

22512

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA LOMAS DE LEON

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	TITICARE	ESC. DANIEL CANONICO La Carucieña	12	87,000.00
JUAN DE VILLEGAS	TITICARE	URBANIZACION LA CARUCIEÑA	0	0.00
JUAN DE VILLEGAS	TITICARE	ESC. PINTO SALINAS Garabatal	8	58,000.00
JUAN DE VILLEGAS	TITICARE	COLINAS DE JOSE FELIX RIVAS	8	58,000.00
JUAN DE VILLEGAS	TITICARE	BRISAS DEL TURBIO	8	58,000.00
JUAN DE VILLEGAS	TITICARE	ESC.ROMULO BETANCOURT Loma de Leon	16	116,000.00
JUAN DE VILLEGAS	TITICARE	LOMAS DE LEON	32	232,000.00
JUAN DE VILLEGAS	TITICARE	ESC. RAMON GARCIA SENA La Carucieña)	4	29,000.00
JUAN DE VILLEGAS	TITICARE	JARDIN DE INFANCIA AGUSTIN ZUBILLAGA La Carucieña sector 1	4	29,000.00
			L/mes	667,000.00
			L/sem	155633.3333
			L/d	22233.33333
			Lps	0.257330247
			Dot (lpd) por cisternas	23.01587302
			Núm de	
			habitantes	0.00
			asistidos por	966
			cisternas	

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA GRAVEDAD

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Cap. Promedio	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	OESTE	TINAJITAS SECTOR EL TUNEL	7.25	24	174,000.00
JUAN DE VILLEGAS	OESTE	TINAJITAS SECTOR I	7.25	28	203,000.00
JUAN DE VILLEGAS	OESTE	TINAJITAS SECTOR III	7.25	36	261,000.00
JUAN DE VILLEGAS	OESTE	NEGRO PRIMERO TANQUE PUBLICO LAGUNITA	7.25	4	29,000.00
JUAN DE VILLEGAS	OESTE	CERRITOS BLANCOS I	7.25	60	435,000.00
JUAN DE VILLEGAS	OESTE	LA CONCORDIA KM 15	7.25	8	58,000.00
JUAN DE VILLEGAS	OESTE	NEGRO PRIMERO	7.25	8	58,000.00
JUAN DE VILLEGAS	OESTE	TINAJITAS SECTOR 3 TANQUE PUBL	7.25	15	108,750.00
JUAN DE VILLEGAS	OESTE	MOYETONES SECTOR III (Parte alta camion 350)	7.25	20	145,000.00
JUAN DE VILLEGAS	OESTE	LA PRADERA	7.25	64	464,000.00
JUAN DE VILLEGAS	OESTE	SANTO DOMINGO	7.25	52	377,000.00
JUAN DE VILLEGAS	PAVIA	MOYETONES SECTOR I	7.25	0	0.00
JUAN DE VILLEGAS	OESTE	LA MUNICIPAL Callj La Esperanza	7.25	4	29,000.00
JUAN DE VILLEGAS	OESTE	MOYETONES SECTOR III (Parte Baja)	7.25	20	145,000.00
JUAN DE VILLEGAS	OESTE	TINAJITAS III Sector El Playon	7.25	12	87,000.00
JUAN DE VILLEGAS	OESTE	LOS ANGELES (Casa Italia)	7.25	20	145,000.00
			L/mes	3	2,718,750.00
			L/sem	ı	582,589.29
			L/d		90,625.00
			Lps		1.05
			Dot (lpd) por	cisternas	22.86
			Núm de habitant	es asistidos	3,964.84

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA PAVIA

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	PAVIA	ALGARY Iglesia Vieja	13	94,250.00
JUAN DE VILLEGAS	PAVIA	TAPA E PIEDRA Los Rurales	18	130,500.00
JUAN DE VILLEGAS	PAVIA	ESC. FE Y ALEGRIA-LOS ROSALES	0	0.00
JUAN DE VILLEGAS	PAVIA	LA ESPERANZA SECTOR II	20	145,000.00
JUAN DE VILLEGAS	PAVIA	MOYETONES SECTOR I	0	0.00
JUAN DE VILLEGAS	PAVIA	LA ESPERANZA KM-5	51 0	369,750.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA PAVIA	LOS ROSALES SANTA TERESA	0	0.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO LA CARRETERA	0	0.00
JUAN DE VILLEGAS	PAVIA	HOGAIN EL EDEN Algary	2	14,500.00
JUAN DE VILLEGAS	PAVIA	ESC. LA ORQUIDEA	16	116,000.00
JUAN DE VILLEGAS	PAVIA	LA ORQUIDEA (Camión 350)	5	36,250.00
JUAN DE VILLEGAS	PAVIA	BRISAS DE PAVIA	16	116,000.00
JUAN DE VILLEGAS	PAVIA	EL MAMON	16	116,000.00
JUAN DE VILLEGAS	PAVIA	M.H. ABAJO CADENAS PAVIA KM.7	0	0.00
JUAN DE VILLEGAS	PAVIA	M.H. ARCO IRIS	2	14,500.00
JUAN DE VILLEGAS	PAVIA	EL MAMON (MENSUAL)	13	94,250.00
JUAN DE VILLEGAS	PAVIA	LOS CABALLOS	0	0.00
JUAN DE VILLEGAS	PAVIA	ESC. FE Y ALEGRIA ANA ZOTO (PAVIA)	0	0.00
JUAN DE VILLEGAS	PAVIA	BOCA ANCHA	0	0.00
JUAN DE VILLEGAS	PAVIA	ESC. DE ALGARY	8	58,000.00
JUAN DE VILLEGAS	PAVIA	ESC. LAS LAJITAS	4	29,000.00
JUAN DE VILLEGAS	PAVIA	ESC. TAPA E PIEDRA	4	29,000.00
JUAN DE VILLEGAS	PAVIA PAVIA	ESC. PIEDRA COLORADA	<u>4</u> 2	29,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA PAVIA	ESC. BANCO BARAGUA(Ddentro de cod 338) ESC. PADRE DIEGO	<u>2</u> 4	14,500.00 29,000.00
JUAN DE VILLEGAS	PAVIA	MERIENDA ESCOLAR PADRE DIEGO	8	58,000.00
JUAN DE VILLEGAS	PAVIA	CERRO BLANCO KM-26	44	319.000.00
JUAN DE VILLEGAS	PAVIA	MABUY ARRIBA	4	29,000.00
JUAN DE VILLEGAS	PAVIA	LOS CAMAGOS SECTOR I (28/07/06)	47	340,750.00
JUAN DE VILLEGAS	PAVIA	TANQUES PUBLICOS-ALGARY	0	0.00
JUAN DE VILLEGAS	PAVIA	ALGARY	0	0.00
JUAN DE VILLEGAS	PAVIA	PADRE DIEGO	48	348,000.00
JUAN DE VILLEGAS	PAVIA	PADRE DIEGO SAN ANTONIO	39	282,750.00
JUAN DE VILLEGAS	PAVIA	LAS VERAS BOCA ANCHA	25	181,250.00
JUAN DE VILLEGAS	PAVIA	LAS VERAS	41	297,250.00
JUAN DE VILLEGAS	PAVIA	PIEDRA COLORADA	69	500,250.00
JUAN DE VILLEGAS	PAVIA	TAPA E PIEDRA	2	14,500.00
JUAN DE VILLEGAS	PAVIA	M.H. EL CRAO LAS LAJITAS	2	14,500.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA PAVIA	BANCO BARAGUA (Incluye escuela) BLIBLIOTECA ROTARIA SIMON RODRIGUEZ la	29 1	210,250.00 7,250.00
JUAN DE VILLEGAS	PAVIA	esperanza CASA DE ALIMENTACION Nº 36 Cerro Blanco Km	2	14,500.00
JUAN DE VILLEGAS	PAVIA	26 PAVIA ABAJO Sector La Carretera	40	290.000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO Sector La Carretera PAVIA ABAJO Sector La Virgen I Parte Baja	13	94,250.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO Sector La Virgen i Parte Baja PAVIA ABAJO Sector La Empostadura	32	232,000.00
JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO Sector La Empostadura PAVIA ABAJO Sector La Virgen II Parte Alta	24	174,000.00
JUAN DE VILLEGAS	PAVIA	ESC. LAS VERAS	4	29,000.00
JUAN DE VILLEGAS	PAVIA	PADRE DIEGO (INPARQUES)	2	14,500.00
JUAN DE VILLEGAS	PAVIA	CERRO MONTE LAS LAJITAS T.P	2	14,500.00
JUAN DE VILLEGAS	PAVIA	ESC. LOS CAMAGOS	4	29,000.00
JUAN DE VILLEGAS	PAVIA	AMB. ALGARY	2	14,500.00
JUAN DE VILLEGAS	PAVIA	PADRE DIEGO TANQUE PUBLICO	36	261,000.00
JUAN DE VILLEGAS	PAVIA	ESC. MABUY	0	0.00
JUAN DE VILLEGAS	PAVIA	LOS POZOS (MENSUAL	7	50,750.00
JUAN DE VILLEGAS	PAVIA	BATATAL (MENSUAL)	24	174,000.00
JUAN DE VILLEGAS	PAVIA	LA CHISPA	5	36,250.00
JUAN DE VILLEGAS	PAVIA	MONTE OLOROSO	7	50,750.00
JUAN DE VILLEGAS	PAVIA	YACURITO (TANQUE PUBLICO)	18	130,500.00
JUAN DE VILLEGAS	PAVIA	MABUY ABAJO	12	87,000.00
JUAN DE VILLEGAS	PAVIA	MABUY ARRIBA (MENSUAL)	8	58,000.00
JUAN DE VILLEGAS	PAVIA	BARAGUITA	6	43,500.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA	LA ORQUIDEA (Parte Baja Camiòn 7000)	100 4	725,000.00 29,000.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA PAVIA	MER, ESCOLAR PIEDRA COLORADA	2	14,500.00
JUAN DE VILLEGAS JUAN DE VILLEGAS	PAVIA	PADRE DIEGO SAN ANTONIO (T.P.) LAS LAJITAS	37	268,250.00
JUAN DE VILLEGAS	PAVIA	CERRO BLANCO I CAMAGOS	14	101,500.00

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA PAVIA (CONTINUACIÓN)

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	PAVIA	CERRO BLANCO II ALGARY	8	58,000.00
JUAN DE VILLEGAS	PAVIA	ALGARY Los Mogotes	9	65,250.00
JUAN DE VILLEGAS	PAVIA	ALGARY La Laguna	22	159,500.00
JUAN DE VILLEGAS	PAVIA	TAPA E PIEDRA El Suspire	14	101,500.00
JUAN DE VILLEGAS	PAVIA	TAPA E PIEDRA La Quebrada	28	203,000.00
JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO Sector Multihogar	43	311,750.00
JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO Sector Los Claveles	40	290,000.00
JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO Sector Huacalera	18	130,500.00
JUAN DE VILLEGAS	PAVIA	PAVIA ABAJO Sector Camacaro	14	101,500.00
JUAN DE VILLEGAS	PAVIA	ALGARY-TANQUE PUBLICO Dentro del Cod 326)	0	0.00
JUAN DE VILLEGAS	PAVIA	ESC. LA FUNDACION	2	14,500.00
JUAN DE VILLEGAS	PAVIA	EL POTRERITO	0	0.00
JUAN DE VILLEGAS	PAVIA	ESC. CUESTA GRANDE	4	29,000.00
JUAN DE VILLEGAS	PAVIA	EL TIGRE (MENSUAL)	27	195,750.00
JUAN DE VILLEGAS	PAVIA	LAS ABEJAS (MENSUAL)	9	65,250.00
JUAN DE VILLEGAS	PAVIA	LA FUNDACION (MENSUAL)	7	50,750.00
JUAN DE VILLEGAS	PAVIA	MAGUEYAL	2	14,500.00
JUAN DE VILLEGAS	PAVIA	ALTO CUCHARAL (MENSUAL)	3	21,750.00
JUAN DE VILLEGAS	PAVIA	CABEZA E VACA (MENSUAL)	9	65,250.00
JUAN DE VILLEGAS	PAVIA	SALON GUINDAO (MENSUAL)	3	21,750.00
JUAN DE VILLEGAS	PAVIA	POZO BLANCO (MENSUAL)	6	43,500.00
JUAN DE VILLEGAS	PAVIA	LOS PLANES (MENSUAL)	3	21,750.00
JUAN DE VILLEGAS	PAVIA	PELIGRO AMARILLO (MENSUAL)	3	21,750.00
JUAN DE VILLEGAS	PAVIA	PLAYA AMARILLA (MENSUAL)	4	29,000.00
JUAN DE VILLEGAS	PAVIA	LOS CAMAGOS SECTOR II	27	195,750.00
JUAN DE VILLEGAS	PAVIA	LAS LECHOZAS (MENSUAL)	4	29,000.00
JUAN DE VILLEGAS	PAVIA	EL GARRAFON (MENSUAL)	6	43,500.00
JUAN DE VILLEGAS	PAVIA	CUESTA GRANDE (MENSUAL)	9	65,250.00
JUAN DE VILLEGAS	PAVIA	PUEBLO NUEVO	18	130,500.00
JUAN DE VILLEGAS	PAVIA	ESC. EL TIGRE	2	14,500.00
	•		L/mes	9,468,500.00
		1	L/sem	2,028,964.29
		1	L/d	315,616.67
			Lps	3.65
			Dot (lpd) por cisternas	22.86
			Núm de habitantes	13,808.23

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA BOBARE

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
AGUEDO FELIPE ALVARADO	BOBARE	CERRO BLANCO I (MENSUAL)	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CERRO BLANCO II	14	101,500.00
AGUEDO FELIPE ALVARADO	BOBARE	LA PICADORA	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ALTOS DE DURIGUA	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. FRANCISCO DE MIRANDA	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	NUCLEO NUTRICIONAL DE BOBARE	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	JEFATURA CIVIL DE BOBARE	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	BARAGUITA	34	246,500.00
AGUEDO FELIPE ALVARADO	BOBARE	SUSPIRAL	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	COMEDOR DE BOBARE Francisco de Miranda	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	JUNTA PARROQUIAL DE BOBARE	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	TIERRA E LOZA	12	87,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LA PUERTA DE BOBARE (MENSUAL)	9	65,250.00
AGUEDO FELIPE ALVARADO	BOBARE	AMB. DE BOBARE	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CAÑAOTE LAS BRUJITAS	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	POTRERO DE BUCARE	52	377,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. EL TACAL	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. CAÑAOTE DE DURIGUA	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	M.H. LA GUADALUPE II	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	POTRERO DE RAMIREZ	72	522,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. POTRERO DE RAMIREZ	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	CERRO COLORADO	12	87,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE BOBARE	LOS SEMERUCOS	19 14	137,750.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE	CAÑAOTE DE DURIGUA ESC. POTRERO DE BUCARE	8	101,500.00 58,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE	EL SANCHERO	35	253,750.00
AGUEDO FELIPE ALVARADO	BOBARE	ALBROJAL	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	M.H. NUESTRA SRA. DE COROMOTO	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC.EL SANCHERO	4	29,000.00
AGUEDO FELIFE ALVARADO	BOBARE	LA GUADALUPE	68	493,000.00
AGUEDO FELIPE ALVARADO	BOBARE	EL TACAL	25	181,250.00
AGUEDO FELIPE ALVARADO	BOBARE	CAÑAOTE EL TACAL	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	AMB. EL BUCHAL	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. EL BUCHAL	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. EL CARTERO	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	M.H. PEDACITO DE CIELO LA CHEP	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	M.H. BLANCA NIEVES-LAS BRUJITA	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. FUNDACION CHARCO LARGO	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	M.H. LA CENICIENTA POTRERO DE	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	M.H. ARNALDITO (Potrero de Bucare)	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	M.H. FRAJISTA CHARCO LARGO	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	POTRERO DE RAMIREZ (TANQUE PU	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CERRO LA CHEPA	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	COMED.BOLIVARIANO CHARCO LARGO	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS GALLONES	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	H.C.D. CHARCO LARGO LA PLAYA	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	EL CARTERO	29	210,250.00
AGUEDO FELIPE ALVARADO	BOBARE	LAS MULAS PARTE ALTA	21	152,250.00
AGUEDO FELIPE ALVARADO	BOBARE	COLINAS DE LA DEMOCRACIA	32	232,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS COCHINOS SECTOR FLOR BLANC	12	87,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS COCHINOS SECTOR EL CARDON	12	87,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS COCHINOS SECT SUSPIRAL	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LA PLAYA	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	EL CURARI VIA EL BUCHAL	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	LA FUNDACION	22	232,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE BOBARE	EL BUCHAL LAS BRUJITAS (parte Baja)	32 67	485,750.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE	POZO NUEVO	67 12	485,750.00 87,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE	ESC. CHARCO LARGO	4	29,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE	TUNA DE VACA	59	427,750.00
AGUEDO FELIPE ALVARADO	BOBARE	EL CURARI	14	101,500.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS QUEMADOS	78	565,500.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. LOS QUEMADOS	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	SIMARA	42	304,500.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. TUNA DE VACA	4	29.000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. LOS COCHINOS	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	RASTROJITOS	30	217,500.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. CONCENTR. CAUJARITO EL PAUJI	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS POCITOS	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CAUJARITO	14	101,500.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. DE SIMARA	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	UVEDAL (MENSUA	17	123,250.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS QUEMADOS (TANQUES PUBLICO	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	EL PAUJI	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. LAS BRUJITAS	4	29,000.00

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA BOBARE (CONTINUACIÓN)

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
AGUEDO FELIPE ALVARADO	BOBARE	COGOYAL	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. DE RASTROJITOS	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CHARCO LARGO LA PLAYA	28	203,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS COCHINOS AL FINAL	24	174,000.00 116,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE BOBARE	CHARCO LARGO VIA ESTADIUM CHARCO LARGO CERRO LEON	16 12	87,000.00
AGUEDO FELIPE ALVARADO	BOBARE	COPEYAL	3	21,750.00
AGUEDO FELIPE ALVARADO	BOBARE	SAN JOSE DE BOBARE (MENSUAL)	6	43,500.00
AGUEDO FELIPE ALVARADO	BOBARE	TUMBACOA EL CHIVATO (MENSUAL)	12	87,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LOS ADIVINOS (MENSUAL)	6	43,500.00
AGUEDO FELIPE ALVARADO	BOBARE	TIERRA BRAVA parte baja -	28	203,000.00
AGUEDO FELIPE ALVARADO	BOBARE	EL ARADO parte baja-	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	REQUEN	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	VEGA FRESCA parte baja-	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	MULTIHOGAR TIERRA BRAVA-(Dentro cod 390)	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. TIERRA BRAVA-(Dentro cod 390)	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. DE VEGA FRESCA-(Dentro cod 393)	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE (MENSUAL)	5 0	36,250.00 0.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE BOBARE	EL CAIMITO (MENSUAL) LA VAINILLA (MENSUAL)	13	94,250.00
AGUEDO FELIPE ALVARADO	BOBARE	EL COROZO (Camioneta 350)	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LAS BRUJITAS (PARTE ALTA Camioneta 350))	24	174,000.00
AGUEDO FELIPE ALVARADO	BOBARE	TUNA DE VACA (PARTE ALTA camioneta 350))	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	POZO NUEVO (PARTE ALTA)	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	COPEYAL (PARTE ALTA camioneta 350))	36	261,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LAS VEGAS(Camioneta 350)	24	174,000.00
AGUEDO FELIPE ALVARADO	BOBARE	AGUA DULCE (Camioneta 350)	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. EL COPEYAL(Camioneta 350)	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LAS GUARABARAS (Camioneta 350)	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CAMPO SOLO (Camioneta 350)	24	174,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. PARAMO NEGRO(Camioneta 350)	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. LAS VEGAS (Camioneta 350)	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	LAS MANDARINAS (Camioneta 350)	8	58,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE BOBARE	PARAMO NEGRO (Camioneta 350) MODULO POLICIAL	36 0	261,000.00 0.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE	BARRIO LAS CAMPANUELAS	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	BARRIO LAS DELICIAS	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CHARCO LARGO	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	CHARCO LARGO LA PLAYA (Dentro del Cod. 950)	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	CHARCO LARGO LA FUNDACION	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CHARCO LARGO CENTRO	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	BARAGUITA SECTOR SUSPIRAL	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC LA FUNDACION CHARCO LARGO(Dentro del Cod. 061)	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC LAS ALCANTARILLAS (Camioneta 350)	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	EL BUCHAL SECT EL CURARI	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	AMB. LOS QUEMADOS	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	CHARCO LARGO SECT LA PEÑITA	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	CUJISAL	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	TIERRA BRAVA PARTE ALTA(Camioneta 350)	20	145,000.00
AGUEDO FELIPE ALVARADO	BOBARE	EL ARADO PARTE ALTA (Camioneta 350)	24	174,000.00
AGUEDO FELIPE ALVARADO	BOBARE	VEGA FRESCA PARTE ALTA (Camioneta 350)	16	116,000.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE	BRR LA DEMOCRACIA (Bobare)	0	0.00 0.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE DO FELIPE ALVA	BRR LA CRUZ (Bobare) ESC. USERA despues de Tuna de Vaca	0	0.00
AGUEDO FELIFE ALVARADO	BOBARE	M.H. MUNDO DE ILUSIONES Los Quemados	2	14,500.00
AGUEDO FELIPE ALVARADO	ESPECIALES	COMEDOR POPULAR carrera 22/ calle 29	0	0.00
AGUEDO FELIPE ALVARADO	ESPECIALES	PLAZA LA CEIBA Cabudare	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	E.B.LA SABANA MATATERE	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	CASA DE ALIMENTACION Nº 83 La Manga	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	CASA DE ALIMENTACION Nº 81 La Guadalupe	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	BRR. GUILLERMO LUNA BOBARE	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. BASICA EL SANCHERO N.E.R. 334	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE BOBARE	CASA DE ALIMENTACION N° 342 El cartero ESC. ESTADAL CONCENTRADA El Caimito	0	0.00 0.00
AGUEDO FELIPE ALVARADO				36,250.00
AGUEDO FELIPE ALVARADO AGUEDO FELIPE ALVARADO	BOBARE BOBARE	EL CAIMITO Sector Guayabal-Paraparo EL CAIMITO Escuela	5 1	36,250.00 7,250.00
AGUEDO FELIPE ALVARADO	BOBARE	EL CAIMITO Escueia EL CAIMITO Sector sector Centro	10	72,500.00
AGUEDO FELIPE ALVARADO	BOBARE	EL CAIMITO Sector Sector Centro EL CAIMITO Sector Matatere	11	79,750.00
AGUEDO FELIPE ALVARADO	BOBARE	EL CAIMITO Algarrobo	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	EL CAIMITO Sector El Vateo	6	43,500.00
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE Sector La Plaza	8	58,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ESC. LA PLAZA Matatere	1	7,250.00

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA BOBARE (CONTINUACIÓN)

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE Sector Los Cañitos	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE Sector El Muerto	4	29,000.00
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE Sector Tierra Floja	6	43,500.00
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE Sector Urama	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE Sector La Sabana	13	94,250.00
AGUEDO FELIPE ALVARADO	BOBARE	MATATERE Sector El Caujaral	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	AMB. LA SABANA Matatere	0	0.00
AGUEDO FELIPE ALVARADO	BOBARE	CASA DE ALIMENTACION Nº 342 El Cartero	2	14,500.00
AGUEDO FELIPE ALVARADO	BOBARE	LAS MULAS PARTE BAJA	16	116,000.00
AGUEDO FELIPE ALVARADO	BOBARE	ALGARY Simara Verde	16	116,000.00
PARROQUIA AGUEDO FELIPE A	BOBARE	CASA DE LA CULTURA Bobare	0	0.00
PARROQUIA AGUEDO FELIPE A	BOBARE	CASA DE ALIMENTACION Nº 082 Las Delicias	1	7,250.00
AGUEDO FELIPE ALVARADO	BOBARE	EL SANCHERO Sector Los Peña	10	72,500.00
AGUEDO FELIPE ALVARADO	BOBARE	POTRERO DE BUCARE ARRIBA	80	580,000.00
AGUEDO FELIPE ALVARADO	BOBARE	POTRERO DE BUCARE CENTRO CARDON	48	348,000.00
			L/mes	14,152,000.00
			L/sem	3,032,571.43
			L/d	471,733.33
			Lps	5.46
			Dot (lpd) por	22.04
			cisternas	22.86
			Núm de	
			habitantes	20.620.00
			asistidos por	20,638.00
			cisternas	

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA QUE ABASTECE A LAS PARROQUIAS CATEDRAL – SANTA ROSA

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
PARROQUIA CATEDRAL	ESPECIALES	GOBERNACION DEL EDO. LARA	12	87.00
PARROQUIA SANTA ROSA	ESPECIALES	RESIDENCIA OFICIAL DEL GOBERNADOR	48	348.00
PARROQUIA SANTA ROSA	NORTE	CENTRO D REHABILITACION AL DROGADICTO (TAMACA LAS TUNAS)	4	29.00
PARROQUIA SANTA ROSA	NORTE	PREESCOLAR NUBELUZ Lomas Verdes	1	7.25
			L/mes	471.25
			L/sem	109.96
			L/d	15.71
			Lps	0.00
			Dot (lpd) por cisternas	0.02
			Núm de habitantes asistidos por cisternas	682.00

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA QUE ABASTECE A LAS PARROQUIAS

CRESPO – CUJI – TAMACA

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
MUNICIPIO CRESPO	NORTE	LOS POCITOS (MUNICIPIO CRESPO)	20	145,000.00
MUNICIPIO CRESPO	NORTE	LAS VERAS (MUNICIPIO CRESPO)	56	406,000.00
MUNICIPIO CRESPO	NORTE	EL PEGON (MUNICIPIO CRESPO)	24	174,000.00
PARROQUIA CUJI	NORTE	ESC. ANTONIO J. PACHECO	8	58,000.00
PARROQUIA CUJI	NORTE	ESC. EL CARDONAL	12	87,000.00
PARROQUIA CUJI	NORTE	ESC. EL JAYO	0	0.00
PARROQUIA CUJI	NORTE	ESC. DE URIBANA	4	29,000.00
PARROQUIA CUJI	NORTE	AMB. DE URIBANA	4	29,000.00
PARROQUIA CUJI	NORTE	H.C.D. LLANO ALTO LAS CASITAS Sra neida	0	0.00
PARROQUIA CUJI	NORTE	H.C.D. LLANO ALTO LAS CASITAS Sra. Negli	0	0.00
PARROQUIA CUJI	NORTE	CARCEL URIBANA	344	2,494,000.00
PARROQUIA CUJI	NORTE	EL JAYO PARTE ALTA	25	181,250.00
PARROQUIA CUJI	NORTE	ASOCIACION CIVIL MENGAR	0	0.00
PARROQUIA CUJI	NORTE	AMB. ANDRES BELLO 1	2	14,500.00
PARROQUIA CUJI	NORTE	PRADOS DEL NORTE SECTOR 2	4	29,000.00
PARROQUIA CUJI	NORTE	PARROQUIA EL CUJI	0	0.00
PARROQUIA CUJI	NORTE	SEBUCARA	0	0.00
PARROQUIA CUJI	NORTE	ANDRES BELLO II	0	0.00
PARROQUIA CUJI	NORTE	VALLE LINDO	9	65,250.00
PARROQUIA CUJI	NORTE	LAS NIEVES	0	0.00
PARROQUIA CUJI	NORTE	H.C.D. CARORITA ABAJO LA PLAYA	1	7,250.00
PARROQUIA CUJI	NORTE	H.C.D. CARORITA ABAJO EA FLATA H.C.D. CARORITA ABAJO El valle	1	7,250.00
PARROQUIA CUJI	NORTE	ESC. ANDRES BELLO	12	87,000.00
	NORTE			58,000.00
PARROQUIA CUJI	NORTE	ESC. ATANACIO GIRARDOT	8 12	
PARROQUIA CUJI		ESC. GRAN MARISCAL DE AYACUCHO		87,000.00
PARROQUIA CUJI	NORTE	ESC. VALLE LINDO	8	58,000.00
PARROQUIA CUJI	NORTE	ESC. ROMULO GALLEGOS (POTRE	12	87,000.00
PARROQUIA CUJI	NORTE	PRE-ESCOLAR EL CUJI	1	7,250.00
PARROQUIA CUJI PARROQUIA CUJI	NORTE NORTE	AMB. CARORITA ABAJO Centro Educacion Inicial Divina Pastora El Cuji	2	14,500.00 29,000.00
PARROQUIA CUJI	NORTE	ESC. CARORITA ARRIBA	8	58,000.00
PARROQUIA CUJI	NORTE	H.C.D. LAS VERITAS SRA. Brigida	1	7,250.00
PARROQUIA CUJI	NORTE	H.C.D. CARORITA ABAJO SRA. Carmen	1	7,250.00
PARROQUIA CUJI	NORTE	M. H. LAS NIEVES El Cuji El Roble Sra Victoria	2	14,500.00
PARROQUIA CUJI	NORTE	ANDRES BELLO I (NORKIS DUIN)	2	14,500.00
PARROQUIA CUJI	NORTE	U.E.N. FEDERMAN (Via las Veritas -Guayabal))	4	29,000.00
PARROQUIA CUJI	PARROQUIA CUJ	LAS VERITAS La Recta/ Villa Cantevista	4	29,000.00
PARROQUIA CUJI	PARROQUIA CUJ	LAS VERITAS Inters Las Tunas	4	29,000.00
PARROQUIA CUJI	PARROQUIA CUJ	LAS VERITAS Crr 1 / clle 1 Y 2	4	29,000.00
PARROQUIA CUJI	PARROQUIA CUJ	LAS VERITAS Av. Cristobal Colon / Cll paseo	4	29,000.00
PARROQUIA CUJI		LAS VERITAS Clle 2/ Crr 2	2	14,500.00
PARROQUIA CUJI	PARROQUIA CUJ	URIBANA Sector las Colinas	4	29,000.00
PARROQUIA CUJI	PARROQUIA CUJ	LAS VERITAS Ranchitos Stadium	4	29,000.00
PARROQUIA CUJI	NORTE	LAS VERITAS Callejon Stadium	4	29,000.00
PARROQUIA CUJI	NORTE	LAS VERITAS Urb, Armando Gabaldon Via Ppal/ 5 y	2	14,500.00
PARROOUIA CUJI	NORTE	LAS VERITAS calle 2 y 3 Cll Maranata	2	14,500.00
PARROQUIA CUJI	NORTE	MISION BRR ADENTRO vuelvan caras	4	29,000.00
PARROQUIA CUJI	NORTE	MISION BRR ADENTRO El Javo	4	29,000.00
PARROQUIA CUJI	NORTE	MISION BRR ADENTRO Er sayo MISION BRR ADENTRO Prados del Norte	4	29,000.00
PARROQUIA CUJI	NORTE	LAS VERITAS Coronel Silva	2	14,500.00
PARROQUIA CUJI	NORTE	LAS VERITAS Urb, Armando Gabaldon Via Ppal / 3	4	29,000.00
PARROQUIA CUJI	NORTE	y 2 LAS VERITAS Via Ppal / Cll 3	2	14,500.00
PARROQUIA CUJI	NORTE	ANDRES BELLO II Cll 4 / 6 y 7	4	29,000.00
PARROQUIA CUJI	NORTE	LAS VERITAS Via Ppal / cll2	2	14,500.00
PARROQUIA CUJI	NORTE	SECTOR LA CONEJERA Via el Trapiche/ Av.	2	14,500.00
PARROQUIA CUJI	NORTE	Ezequiel Zamora EL JAYO Av Cristobal Colon /cll Juan de Villegas	4	29,000.00
PARROQUIA CUJI	PAVIA	ALGARY Las Tinaiitas	14	101,500.00
PARROQUIA CUJI	PAVIA	TAPA E PIEDRA La Escuela	30	217,500.00
PARROUIA EL CUJI	NORTE	LAS VERITAS Sector kiosco de condimentos	1	7,250.00
			1	
PARROUIA EL CUJI	NORTE	FUNDACION SOCIAL KAIROS Sabana Grande LICEO CARORITA ABAJO	8	7,250.00 58,000.00
PARROQUIA EL CUJI	NORTE			

PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA QUE ABASTECE A LAS PARROQUIAS

CRESPO – CUJI – TAMACA (CONTINUACIÓN)

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
PARROQUIA EL CUJI	NORTE	U.E CARDENAL VIA EL TRAPICHE La Playa	4	29,000.00
PARROQUIA EL CUJI	NORTE	M.H. ANDRES BELLO II Sra Rafaela Mendoza	1	7,250.00
PARROQUIA EL CUJI	NORTE	U.E.LOS ROBLES EL CUJI	4	29,000.00
PARROQUIA EL CUJI	NORTE	U.E. LA VEGA EL CUJI	1	7,250.00
PARROQUIA EL CUJI	NORTE	H.C.D. MIS PRIMEROS PASOS Andres Bello II	1	7,250.00
PARROQUIA EL CUJI	NORTE	U.E. PRADOS DEL NORTE I	2	14,500.00
PARROQUIA TAMACA PARROQUIA TAMACA	NORTE NORTE	ESC. DOMINGO HURTADO AMB. EL POTRERO	12 8	87,000.00 58,000.00
PARROQUIA TAMACA PARROQUIA TAMACA	NORTE	LOS CAÑOS	8	58,000.00
PARROQUIA TAMACA	NORTE	ESC. FRANCISCO DE MIRANDA	4	29,000.00
PARROQUIA TAMACA PARROQUIA TAMACA	NORTE	U.E. LICEO JUAN BTA. RODRIGUEZ Tamaca	12	87,000.00
PARROQUIA TAMACA	NORTE	ESC. RETEN ABAJO	8	58,000.00
PARROQUIA TAMACA	NORTE	ESC. ROMERAL I	8	58,000.00
PARROQUIA TAMACA	NORTE	CASA DE ALIMENTACION Las Tunas Tamaca	2	14,500.00
PARROQUIA TAMACA	NORTE	ESC. VALLE HONDO	12	87,000.00
PARROQUIA TAMACA	NORTE	U. E. EL PAMPERO	12	87,000.00
PARROQUIA TAMACA	NORTE	ESC. LAS DELICIAS	12	87,000.00
PARROQUIA TAMACA	NORTE	ESC. LAS GALERAS	2	14,500.00
PARROQUIA TAMACA	NORTE	ESC. LAS TUNITAS	4	29,000.00
PARROQUIA TAMACA	NORTE NORTE	U. E. RASTROJITOS	12	87,000.00 58,000.00
PARROQUIA TAMACA PARROOUIA TAMACA	NORTE	CENTRO EDUC. ANDRES BELLO Pampero AMB. TAMACA	8 56	406,000.00
PARROQUIA TAMACA PARROQUIA TAMACA	NORTE	AMB. LAS PLAYITAS	2	14,500.00
PARROQUIA TAMACA	NORTE	ESC. SANTA INES Las Playitas	1	7,250.00
PARROQUIA TAMACA	NORTE	ESC. BASICA TAMACA	20	145,000.00
PARROQUIA TAMACA	NORTE	AMB. LAS TUNAS	2	14,500.00
PARROQUIA TAMACA	NORTE	TAMACA SECTOR LIBERTADOR	8	58,000.00
PARROQUIA TAMACA	NORTE	CLINICO EL PAMPERO	96	696,000.00
PARROQUIA TAMACA	NORTE	LAS TUNAS SECTOR EL ESTADI	8	58,000.00
PARROQUIA TAMACA	NORTE	ESC. CONCENTRADA TAMAQUITA	8	58,000.00
PARROQUIA TAMACA	NORTE	ESC.19 DE ABRIL TAMACA	12	87,000.00
PARROQUIA TAMACA	NORTE	PARROQUIA TAMACA	112	812,000.00
PARROQUIA TAMACA	NORTE	TAMACA 19 DE ABRIL	0	0.00
PARROQUIA TAMACA	NORTE	ESC. RETEN ARRIBA	12	87,000.00
PARROQUIA TAMACA PARROQUIA TAMACA	NORTE NORTE	ESC. LAS PLAYITAS	4	29,000.00 29,000.00
PARROQUIA TAMACA PARROQUIA TAMACA	NORTE	ESC. ROMERAL 3 CASA DE CURSILLOS TAMACA	8	58,000.00
PARROQUIA TAMACA PARROQUIA TAMACA	NORTE	ESCBAS. ALI PRIMERA El Cuji Las casitas	8	58,000.00
PARROQUIA TAMACA	NORTE	ESC. ARTURO U. PIETRI-SABILAS	12	87,000.00
PARROQUIA TAMACA	NORTE	M.H. LA LLANADA TAMACA	2	14,500.00
PARROQUIA TAMACA	NORTE	ESC. BOLIVARIANA LAS PALMITAS TAMACA	1	7,250.00
PARROQUIA TAMACA	NORTE	C.P.C. LA SABILA (Via Duaca)	4	29,000.00
PARROQUIA TAMACA	NORTE	ESC. BASICA TOROY Nucleo 584	2	14,500.00
PARROQUIA TAMACA	NORTE	HOGAIN COMUNITARIO LUZ Y VERDAD Brr las Tunas	4	29,000.00
PARROQUIA TAMACA	NORTE	U.E.E.CONCENTRADA MARIANGEL Carorita Abajo	4	29,000.00
PARROQUIA TAMACA	NORTE	COMISARIA 41 La Floresta Tamaca frente cementerio	2	14,500.00
PARROQUIA TAMACA	NORTE	URB.LA SABILA CASA DE ALIMENTACION	68	493,000.00
PARROQUIA TAMACA	PAVIA	ALGARY La canoa	21	152,250.00
PARROQUIA TAMACA	NORTE	ESC. BOLIVARIANA TACARIGUA TAMACA	4	29,000.00
PARROUIA TAMACA	NORTE	ESC. LAGUNA SALADA Tamaca	4	29,000.00
PARROQUIA TAMACA	NORTE	COMISARIA 40 (FRENTE A LA PLAZA LA SABILA)	8	58,000.00
PARROQUIA TAMACA	NORTE	H.C.D. Mis Angelitos y H.C.D. Araguaney (Tamaca Valle H.)	1	7,250.00
PARROQUIA TAMACA	NORTE	ESC. EL CALLAO Via Carorita abajo	4	29,000.00
			L/mes	9,816,500.00
			L/sem	2,290,516.67
			L/d	327,216.67
			Lps	3.79
			Dot (lpd) por	23.02
			cisternas Núm de habitantes	23.02
			asistidos por	14,217.00
			cisternas	

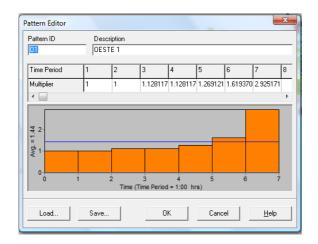
PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA QUE ABASTECE A LAS PARROQUIAS

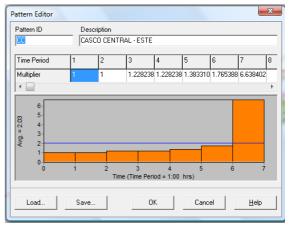
UNION – JUAREZ

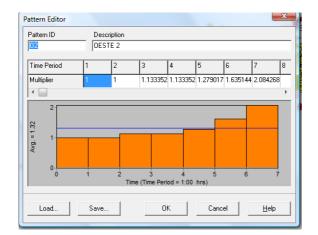
CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
PARROQUIA JUAREZ	ESPECIALES	CENTRO MISIONERO CARMELITAS	4	29,000.00
PARROQUIA UNION	NORTE	ESC. MANUELA SAENS .El Portachuelo	8	58,000.00
PARROQUIA UNION	NORTE	ESC. CORAIDE DE FERNANDEZ Los sin techo	12	87,000.00
PARROQUIA UNION	NORTE	ESC. SAN LORENZO II	4	29,000.00
PARROQUIA UNION	NORTE	COLINAS DE SAN LORENZO II Sector la Escuela	8	58,000.00
PARROQUIA UNION	NORTE	ANDRES CASTILLO	16	116,000.00
PARROQUIA UNION	NORTE	CIRCUNVALACION NORTE Frente al Brr la Pradera	1	7,250.00
PARROQUIA UNION	NORTE	CASA DE ALIMENTACION Nº 169 El Trompillo Jose Cruces	1	7,250.00
PARROQUIA UNION	NORTE	M.H. POTRERO Sra Aurora	2	14,500.00
PARROUIA UNION	NORTE	ESC. FE Y ALEGRIA Monseñor RomeroTrompillo	28	203,000.00
PARROUIA UNION	NORTE	ESC. APOSTOLICA SAN JOSE Urb Macias Mujica	12	87,000.00
			L/mes	696,000.00
			L/sem	162,400.00
			L/d	23,200.00
			Lps	0.27
			Dot (lpd) por	23.02
			cisternas	23.02
			Núm de	
			habitantes	1,008.00
			asistidos por	1,008.00
			cisternas	

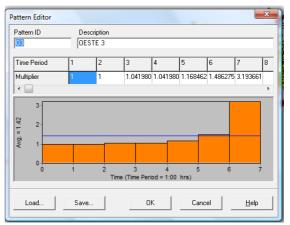
PROGRAMACIÓN DE CISTERNAS DEL SUB SISTEMA NO DEFINIDO

CLASIFICACION	SECTOR	NOMBRE COMUNIDAD	Program. Al Mes	DOTACIÓN MENSUAL (Lts/mes)
JUAN DE VILLEGAS	?	EL MUERTICO (Camioneta 350)	18	130,500.00
JUAN DE VILLEGAS	?	ALTO TROMPILLO (Camioneta 350)	32	232,000.00
JUAN DE VILLEGAS	?	CERRO FRIO (Camioneta 350)	44	319,000.00
JUAN DE VILLEGAS	?	EL TOTUMO (Camioneta 350)	28	203,000.00
JUAN DE VILLEGAS	?	EL PANDITO	24	174,000.00
JUAN DE VILLEGAS	?	BARRO NEGRO	7	50,750.00
JUAN DE VILLEGAS	?	BRISAS DEL PANDITO	10	72,500.00
JUAN DE VILLEGAS	?	EL ZAMURO	6	43,500.00
JUAN DE VILLEGAS	?	IGLESIA EL PANDITO	1	7,250.00
JUAN DE VILLEGAS	?	ESC. EL PANDITO	2	14,500.00
JUAN DE VILLEGAS	?	M.H. EL PANDITO	4	29,000.00
JUAN DE VILLEGAS	?	ESC. EL TOTUMO (Camioneta 350)	4	29,000.00
JUAN DE VILLEGAS	?	EL PANDITO (TANQUE PUBLICO)	24	174,000.00
JUAN DE VILLEGAS	?	LA VIGIA	16	116,000.00
JUAN DE VILLEGAS	?	CERRO DE AGUILAR	3	21,750.00
JUAN DE VILLEGAS	?	LOS MOCHUELOS	57	413,250.00
JUAN DE VILLEGAS	?	BRISAS EL PANDITO SECTOR LA FE	12	87,000.00
JUAN DE VILLEGAS	?	ALTO TROMPILLO Final P.A.	2	14,500.00
	•		L/mes	2,131,500.00
			L/sem	497350
			L/d	71050
			Lps	0.822337963
			Dot (lpd) por cisternas	23.01587302
			Núm de habitantes asistidos por cisternas	3087

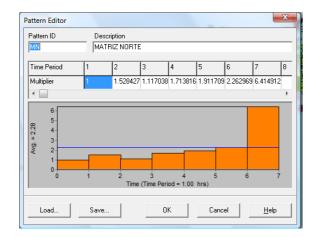


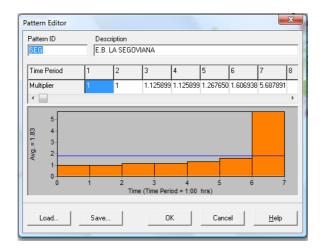


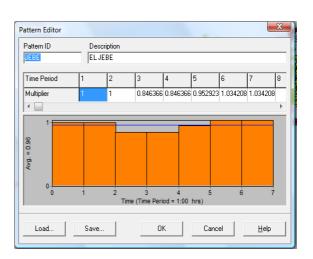

												CON MEDICION 2016 SIN N				SIN MEDICION 2016	
SUB SISTEMA	ESCENARIO	TIPO DE USUARIO	CONSUMO TOTAL EN (L/S)	CONSUMO TOTAL EN (LTS/DIA)	N° USUARIOS CON MICROMEDICION	DOTACION ACTUAL (L/U/D)	DOTACION ACTUAL USUARIO SIN MEDICION (L/U/D)	N° USUARIOS SIN MEDICIÓN	DEMANDA ACTUAL USUARIOS SIN MEDICIÓN (L/D)	DEMANDA ACTUAL USUARIOS SIN MEDICIÓN (L/S)	PROYECCION USUARIOS 2016	DEMANDA USUARIOS 2016 (L/D)	DEMANDA USUARIOS 2016 (L/S)	PROYECCION USUARIOS 2016	DEMANDA USUARIOS 2016 (L/D)	DEMANDA USUARIOS 2016 (L/S)	
		RESIDENCIAL SOCIAL RESIDENCIAL	0,253160143 331,4132759	21873,03638 28634107,04	5 19138	1496,943012	1796,331614	48 8710	38835,40134 2414441,915	2,02	21554	32265109,68	373,44	9861	17713626,05	205,02	
		COMERCIAL	331,4132759 152,0293281	13135333,95	19138 4416	2974,486855	3569,384226	1072	606223,6807	125,75 31,57	4973	14792123,13	171,21	2275	8120349,113	93,99	
		INDUSTRIAL	21,10556142	1823520,506	246	7412,684985	8895,221982	38	39934,2048	2,08	277	2053313,741	23,77	127	1129693,192	13,08	
	DATOS BASE	COOPERATIVAS	0	0	2	0	0	1	38,81822221	0,00	3	0	0,00	2	0	0,00	
CASCO		OFICIAL ESTADAL	16,93508116	1463191,012	71	20608,32412	24729,98894	75	623775,7941	32,49	80	1648665,929	19,08	37	915009,5908	10,59	
CENTRAL -		OFICIAL MUNICIPAL OFICIAL NACIONAL	3,464296697 5,476253625	299315,2346 473148,3132	23 48	13013,70585 9857,256525	15616,44702 11828,70783	38 68	91644,0412 107270,4404	4,77 5,59	26 55	338356,3522 542149,1089	3,92 6,27	12	187397,3643 295717,6957	2,17 3,42	
ESTE	OPTIMISTA	PEDIDAS OBJETIVO 200 L/C/D	55,44	473148,3132 4789800	23949	200	11828,70783	10050	2010000	23,26	26968	542149,1089 5393600	62,43	25 12339	295/17,6957 2467800,00	3,42 28,56	
	ILI = 200 L/C/D	TOTAL	586,11	50640289,09				TOTAL	5932164,295	227,54	TOTAL	57033317,94	660,11	TOTAL	30829593	356,82	
	INTERMEDIO	PEDIDAS OBJETIVO 200 L/C/D	227,02	19614231	23949	819		10050	8230950	95,27	26968	17906752	207,25	12339	8193096,00	94,83	
	ILI = VARIANDO L/C/D PESIMISTA	PEDIDAS OBJETIVO 819 L/C/D	757,69 227,02	65464720,09 19614231	23949	819		TOTAL 10050	31380146,89 8230950	299,55 95,27	TOTAL	69546469,94 22086792	804,94 255,63	TOTAL 12339	36554889 10105641	423,09	
	ILI = 819 L/C/D	TOTAL	757,69	65464720,09	23747	913		TOTAL	31380146,89	299,55	26968 TOTAL	73726509,94	853,32	TOTAL	38467434	116,96 445,22	
		RESIDENCIAL SOCIAL	2,12	183270,1781	144,00	1296,06436	1555,277232	59	91761,3567	1,00	9521	12339828.77	142,82	2347	3650235,664	42,25	
		RESIDENCIAL	124,73	10776250,05	8312	·		2025	3149436,395	34,39		,	·				
		COMERCIAL INDUSTRIAL	19,55 1,21	1688800,226 104426,3384	426 24	3964,319779 4351,097433	4757,183734 5221,316919	184 7	875321,8071 36549,21843	9,56 0,40	480 28	1902873,494 121830,7281	22,02 1,41	220 13	1046580,422 67877,11995	12,11 0,79	
	DATOS BASE	COOPERATIVAS	0,03	2407,242064	1	2407,242064	2888,690477	0	0	0,40	2	4814,484128	0,06	1	2888,690477	0,73	
		OFICIAL ESTADAL	4,44	383746,3631	24	15989,4318	19187,31815	24	460495,6357	5,03	28	447704,0903	5,18	13	249435,136	2,89	
OESTE 1		OFICIAL MUNICIPAL	0,12	10357,35884	2	5178,679421	6214,415306	8	49715,32245	0,54	3	15536,03826	0,18	2	12428,83061	0,14	
	ODTIMALCTA	OFICIAL NACIONAL	0,18	15873,58512	4	3968,396281	4762,075537	11	52382,8309	0,57	5	19841,9814	0,23	3	14286,22661	0,17	
	OPTIMISTA ILI = 200 L/C/D	PEDIDAS OBJETIVO 200 L/C/D TOTAL	20,69 173,06	1787400 14952531,34	8937	200		2318 TOTAL	463600 5179262,567	5,37 56,86	10067 TOTAL	2013400 16865829,59	23,30 195,21	2599 TOTAL	519800,00 5563532,089	6,02 64,39	
	INTERMEDIO	PEDIDAS OBJETIVO 200 L/C/D	84,72	7319403	8937	819		2318	1898442	21,97	10067	6684488	77,37	2599	1725736,00	19,97	
	ILI = VARIANDO L/C/D	TOTAL	237,09	20484534,34				TOTAL	6614104,567	73,47	TOTAL	21536917,59	249,27	TOTAL	6769468,089	78,35	
	PESIMISTA	PEDIDAS OBJETIVO 819 L/C/D	84,72	7319403	8937	819		2318 TOTAL	1898442	21,97	10067 TOTAL	8244873	95,43	2599 TOTAL	2128581	24,64	
	ILI = 819 L/C/D	TOTAL RESIDENCIAL SOCIAL	237,09 0,00	20484534,34 0	0,00	407:	488	TOTAL 0	6614104,567 0	73,47 0,00	TOTAL	23097302,59	267,33	TOTAL	7172313,089	83,01	
		RESIDENCIAL	10,93	944749,2405	743	1271,533298	1525,839958	103	157161,5157	1,72	837	1064273,371	12,32	116	176997,4351	2,05	
		COMERCIAL	0,54	46803,53666	15	3120,235777	3744,282933	6	22465,6976	0,25	17	53044,00821	0,61	8	29954,26346	0,35	
	DATOS BASE	INDUSTRIAL COOPERATIVAS	0,00	0	0	0	0	0	0	0,00	0	0	0,00	0	0	0,00	
		OFICIAL ESTADAL	0,00	0	0	0	0	2	0	0,00	0	0	0,00	0	0	0,00	
OESTE 2		OFICIAL MUNICIPAL	0,00	0	0	0	0	1	0	0,00	0	0	0,00	0	0	0,00	
020.22		OFICIAL NACIONAL	0,00	0	0	0	0	2	0	0,00	0	0	0,00	0	0	0,00	
	OPTIMISTA ILI = 200 L/C/D	PEDIDAS OBJETIVO 200 L/C/D TOTAL	1,75 13,23	151600 1143152,777	758	200		114 TOTAL	22800 202427.2132	0,26 2,23	854 TOTAL	170800 1288117.379	1,98 14,91	124 TOTAL	24800,00 231751,6986	0,29 2,68	
	INTERMEDIO	PEDIDAS OBJETIVO 200 L/C/D	7,19	620802	758	819		114	93366	1,08	854	567056	6,56	124	82336,00	0,95	
	ILI = VARIANDO L/C/D	TOTAL	18,66	1612354,777				TOTAL	272993,2132	3,04	TOTAL	1684373,379	19,50	TOTAL	289287,6986	3,35	
	PESIMISTA	PEDIDAS OBJETIVO 819 L/C/D	7,19	620802	758	819		114	93366	1,08	854	699426	8,10	124	101556	1,18	
	ILI = 819 L/C/D	TOTAL RESIDENCIAL SOCIAL	18,66 0,00	1612354,777 0,0	0			TOTAL 2228	272993,2132 2800976,673	3,04 30,59	TOTAL	1816743,379	21,03	TOTAL	308507,6986	3,57	
		RESIDENCIAL	1,83	158194,0	151	1047,642382	1257,170858	349	438752,6296	4,79	171	179146,8473	2,07	2902	3648309,831	42,23	
		COMERCIAL	3,40	294056,6	59	4984,010337	5980,812405	120	717697,4886	7,84	67	333928,6926	3,86	31	185405,1845	2,15	
	DATOS BASE	INDUSTRIAL COOPERATIVAS	3,95	341171,0	18	18953,94694	22744,73633	9	204702,627	2,24	21	398032,8858	4,61	10	227447,3633	2,63	
		OFICIAL ESTADAL	0,00	0,0	0	0	0	0 8	0	0,00	0	0	0,00	0	0	0,00	
OESTE 3		OFICIAL MUNICIPAL	0,43	36863,7	1	36863,66998	44236,40398	5	221182,0199	2,42	2	73727,33996	0,85	1	44236,40398	0,51	
OESTE 3		OFICIAL NACIONAL	0,03	2256,2	1	2256,234259	2707,481111	9	24367,33	0,27	2	4512,468518	0,05	1	2707,481111	0,03	
	OPTIMISTA ILI = 200 L/C/D	PEDIDAS OBJETIVO 200 L/C/D TOTAL	0,53 10,17	46000 878541,56	230	200		2728 TOTAL	545600 4953278,768	6,31 54,44	263 TOTAL	52600 1041948,234	0,61 12,06	2945 TOTAL	589000,00 4697106,264	6,82 54,36	
	INTERMEDIO	PEDIDAS OBJETIVO 200 L/C/D	2,18	188370	230	819		2728	2234232	25,86	263	174632	2,02	2945	1955480,00	22,63	
	ILI = VARIANDO L/C/D	TOTAL	11,82	1020911,559				TOTAL	6641910,768	73,99	TOTAL	1163980,234	13,47	TOTAL	6063586,264	70,18	
	PESIMISTA	PEDIDAS OBJETIVO 819 L/C/D TOTAL	2,18	188370 1020911.56	230	819		2728	2234232 6641910.768	25,86	263	215397	2,49	2945	2411955	27,92 75.46	
	ILI = 819 L/C/D	RESIDENCIAL SOCIAL	11,82 0,00	0	0			TOTAL 5	9630,573583	73,99 0,11	TOTAL	1204745,234	13,94	TOTAL	6520061,264	,	
		RESIDENCIAL	37,01	3197350,429	1992	1605,095597	1926,114717	1909	3676952,994	40,15	2243	3600229,424	41,67	2155	4150777,214	48,04	
		COMERCIAL	3,34	288380,493	43	6706,523093	8047,827712	20	160956,5542	1,76	49	328619,6316	3,80	23	185100,0374	2,14	
	DATOS BASE	INDUSTRIAL COOPERATIVAS	0,07	5889,304385	0	1963,101462	2355,721754	1	4711,443508	0,05	0	7852,405847	0,09	0	4711,443508	0,05	
		OFICIAL ESTADAL	0,46	39439,68547	5	7887,937095	9465,524514	12	113586,2942	1,24	6	47327,62257	0,55	3	28396,57354	0,33	
NORTE		OFICIAL MUNICIPAL	0,09	7994,530839	1	7994,530839	9593,437007	6	57560,62204	0,63	2	15989,06168	0,19	1	9593,437007	0,11	
	OPTIMISTA	OFICIAL NACIONAL PEDIDAS OBJETIVO 200 L/C/D	0,15 4.73	12569,17904 409000	2045	12569,17904 200	15083,01485	7 1962	105581,104 392400	1,15 4.54	2306	25138,35808 461200	0,29 5.34	2185	15083,01485 437000.00	0,17 5.06	
	ILI = 200 L/C/D	TOTAL	45.84	3960623.622	2045	200		TOTAL	4521379.585	4,54	TOTAL	4486356.504	51.93	TOTAL	4830661.72	55.91	
	INTERMEDIO	PEDIDAS OBJETIVO 200 L/C/D	19,38	1674855	2045	819		1962	1606878	18,60	2306	1531184	17,72	2185	1450840,00	16,79	
	ILI = VARIANDO L/C/D	TOTAL PEDIDAS OBJETIVO 819 L/C/D	60,49 19,38	5226478,622 1674855	2015	0.0		TOTAL 1962	5735857,585 1606878	63,68 18.60	TOTAL 2306	5556340,504 1888614	64,31 21.86	TOTAL 2185	5844501,72 1789515	67,64 20.71	
	PESIMISTA ILI = 819 L/C/D	TOTAL	19,38	1674855 5226478,622	2045	819		1962 TOTAL	1606878 5735857.585	18,60 63,68	2306 TOTAL	1888614 5913770,504	21,86 68,45	2185 TOTAL	1789515 6183176,72	20,71 71,56	
		RESIDENCIAL SOCIAL	0,00	0	0	1421 222404	1717 [00000	8 8	13740,69505	0,15							
		RESIDENCIAL	1,86	160308,109	112	1431,322401	1717,586882	1840	3160359,862	34,51	127	181777,945	2,10	2081	3574298,301	41,37	
		COMERCIAL INDUSTRIAL	0,02	1998,63271	0	999,3163549	1199,179626	8	9593,437007	0,10	3	2997,949065 0	0,03	2	2398,359252	0,03	
	DATOS BASE	COOPERATIVAS	0,00	0	0	0	0	0	0	0,00	0	0	0,00	0	0	0,00	
		OFICIAL ESTADAL	0,00	0	0	0	0	3	0	0,00	0	0	0,00	0	0	0,00	
NORTE 2		OFICIAL MUNICIPAL	0,00	0	0	0	0	2	0	0,00	0	0	0,00	0	0	0,00	
	OPTIMISTA	OFICIAL NACIONAL PEDIDAS OBJETIVO 200 L/C/D	0,00 0,26	0 22800	0 114	200	0	1862	0 372400	0,00 4.31	0 130	26000	0,00	2083	0 416600.00	0,00 4.82	
	ILI = 200 L/C/D	TOTAL	2,14	185106,7417	114	200		TOTAL	3556093,994	39,07	TOTAL	210775,894	2,44	TOTAL	3993296,66	46,22	
		PEDIDAS OBJETIVO 200 L/C/D	1,08	93366	114	819		1862	1524978	17,65	130	86320	1,00	2083	1383112,00	16,01	
	ILI = VARIANDO L/C/D	TOTAL	2,96	255672,7417		242		TOTAL	4708671,994	52,41	TOTAL	271095,894	3,14	TOTAL	4959808,66	57,41	
	PESIMISTA ILI = 819 L/C/D	PEDIDAS OBJETIVO 819 L/C/D TOTAL	1,08 2,96	93366 255672,7417	114	819		1862 TOTAL	1524978 4708671,994	17,65 52,41	130 TOTAL	106470 291245,894	1,23 3,37	2083 TOTAL	1705977 5282673,66	19,75 61,14	
		RESIDENCIAL SOCIAL	0,22	18822,67872	12	1312,405452	1574,886543	64	100792,7387	1,10	1916	2514568,847	29,10	11005	17331626,4	200,60	
		RESIDENCIAL COMERCIAI	25,62	2213578,996	1689			9710	15292148,33	166,98							
		COMERCIAL INDUSTRIAL	16,01 11,69	1383275,906 1010021,476	316 111	4377,455397 9099,292575	5252,946477 10919,15109	273 14	1434054,388 152868,1153	15,66 1,67	356 125	1558374,121 1137411,572	18,04 13,16	163 58	856230,2757 633310,7632	9,91 7,33	
	DATOS BASE	COOPERATIVAS	0,13	11609,83534	4	9099,292575 2902,458835	3482,950602	0	0	0,00	5	14512,29418	0,17	3	10448,85181	7,33 0,12	
		OFICIAL ESTADAL	0,95	82441,37858	6	13740,22976	16488,27572	50	824413,7858	9,00	7	96181,60834	1,11	4	65953,10286	0,76	
NORTE 6		OFICIAL MUNICIPAL	0,56	48446,85689	3	16148,9523	19378,74275	20	387574,8551	4,23	4	64595,80918	0,75	2	38757,48551	0,45	
	OPTIMISTA	OFICIAL NACIONAL PEDIDAS OBJETIVO 200 L/C/D	0,85 4,96	73798,40246 428600	2 2143	36899,20123 200	44279,04148	22 10153	974138,9125 2030600	10,64 23,50	2416	110697,6037 483200	1,28 5,59	2 11237	88558,08295 2247400.00	1,02 26,01	
	ILI = 200 L/C/D	TOTAL	61,00	5270595,529				TOTAL	21196591,13	232,79	TOTAL	5979541,855	69,21	TOTAL	21272284,97	246,21	
	INTERMEDIO	PEDIDAS OBJETIVO 200 L/C/D	20,31	1755117	2143	819		10153	8315307	96,24	2416	1604224	18,57	11237	7461368,00	86,36	
	ILI = VARIANDO L/C/D PESIMISTA	TOTAL PEDIDAS OBJETIVO 819 L/C/D	76,36 20,31	6597112,529 1755117	2143	819		TOTAL 10153	27481298,13 8315307	305,53	TOTAL 2416	7100565,855	82,18 22,90	TOTAL 11237	26486252,97 9203103	306,55 106,52	
	ILI = 819 L/C/D	TOTAL	76,36	6597112,529	2143	913		TOTAL	8315307 27481298,13	96,24 305,53	Z416 TOTAL	1978704 7475045,855	22,90 86,52	TOTAL	9203103 28227987,97	326,71	
	023440				•			- C-AL		303,33						, ,,,,,,,	

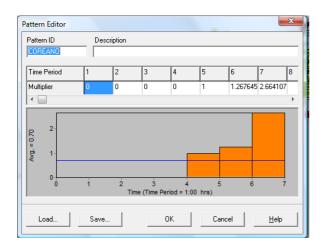

			CON MEDICION 202:	1		SIN MEDICION 2021		(ON MEDICION 203:	1		SIN MEDICION 2031		CON MEDICION POB	LACIÓN DE SATURACIÓ	N SEGÚN PDUL 2003
SUB SISTEMA	ESCENARIO	PROYECCION USUARIOS 2021	DEMANDA USUARIOS2021 (L/D)	DEMANDA USUARIOS2021 (L/S)	PROYECCION USUARIOS 2021	DEMANDA USUARIOS2021 (L/D)	DEMANDA USUARIOS2021 (L/S)	PROYECCION USUARIOS2031	DEMANDA USUARIOS 2031 (L/D)	DEMANDA USUARIOS 2031 (L/S)	PROYECCION USUARIOS 2031	DEMANDA USUARIOS 2031 (L/D)	DEMANDA USUARIOS 2031 (L/S)	PROYECCION USUARIOS MAXIMA (SATURACIÓN)	DEMANDA USUARIOS MAXIMA (SATURACIÓN) (L/D)	DEMANDA USUARIOS MAXIMA (SATURACIÓN) (L/S)
		24268	36327813,01	420,46	11103	19944669,91	230,84	30764	46051954,82	533,01	14075	25283367,47	292,63	151.388	244748745,4	2.832,74
		5599	16654151,9	192,76	2562	9144762,386	105,84	7097	21109933,21	244,33	3247	11589790,58	134,14	46629	149793135,4	1.733,72
	DATOS BASE	312	2312757,715	26,77	143	1272016,743	14,72	396	2935423,254	33,97	181	1610035,179	18,63	2597	20790802,34	240,63
		3 91	0 1875357,495	0,00 21,71	2 42	0 1038659,536	0,00 12,02	4 115	0 2369957,273	0,00 27,43	2 53	1310689,414	0,00 15,17	22 750	0 16692742,54	0,00 193,20
CASCO CENTRAL -		30	390411,1756	4,52	14	218630,2583	2,53	37	481507,1166	5,57	17	265479,5994	3,07	243	3415316,964	39,53
ESTE		61	601292,648	6,96	28	331203,8192	3,83	78	768866,0089	8,90	36	425833,4819	4,93	507	5397439,383	62,47
	OPTIMISTA ILI = 200 L/C/D	30364 TOTAL	6072800 64234583.95	70,29 743,46	13894 TOTAL	2778800 34728742,66	32,16 401.95	38491 TOTAL	7698200 81415841.68	89,10 942.31	17611 TOTAL	3522200 44007395,73	40,77 509.34	202136 TOTAL	40427200 481265382	467,91 5570.20
	INTERMEDIO	30364	6072800	70,29	13894	7085940	82,01	38491	7698200	89,10	17611	3522200	40,77	202.136	40427200	467,91
	ILI = VARIANDO L/C/D PESIMISTA	TOTAL 30364	64234583,95 24868116	743,46 287,83	TOTAL 13894	39035882,66 11379186	451,80 131,70	TOTAL 38491	81415841,68 31524129	942,31 364.86	TOTAL 17611	44007395,73 14423409	509,34 166,94	TOTAL 202136	481265382 165549384	5570,20 1916,08
	ILI = 819 L/C/D	TOTAL	83029899,95	960,99	TOTAL	43329128,66	501,49	TOTAL	105241770,7	1218,08	TOTAL	54908604,73	635,52	TOTAL	606387566	7018,37
		10720	13893809,94	160,81	2643	4110597,725	47,58	13590	17613514,66	203,86	3351	5211734,005	60,32	33.149	46400296,47	537,04
		541	2144697	24,82	248	1179781,566	13,65	685	2715559,048	31,43	314	1493755,693	17,29	756	3236787,813	37,46
	DATOS BASE	31	134884,0204	1,56	14	73098,43687	0,85	39	169692,7999	1,96	18	93983,70455	1,09	42	197365,7795	2,28
	DATOS BASE	2	4814,484128	0,06	1	2888,690477	0,03	2	4814,484128	0,06	1	2888,690477	0,03	2	5199,642858	0,06
		31 3	495672,3857 15536,03826	5,74 0,18	14	268622,4542 12428,83061	3,11 0,14	39 4	623587,84 20714,71769	7,22 0,24	18	345371,7268 12428,83061	4,00 0,14	43	742549,2126 22371,8951	8,59 0,26
OESTE 1		6	23810,37768	0,28	3	14286,22661	0,17	7	27778,77396	0,32	3	14286,22661	0,17	8	34286,94386	0,40
	OPTIMISTA	11334	2266800	26,24	2925	585000	6,77	14366	2873200	33,25	3707	741400	8,58	34004	6800800	78,71
	ILI = 200 L/C/D INTERMEDIO	TOTAL 11334	18980024,25 2266800	219,68 26,24	TOTAL 2925	6246703,93 1491750	72,30 17,27	TOTAL 14366	24048862,32 2873200	278,34 33,25	TOTAL 3707	7915848,877 741400	91,62 8,58	TOTAL 34004	57439657,76 6800800	664,81 78.71
	ILI = VARIANDO L/C/D	TOTAL	18980024,25	219,68	TOTAL	7153453,93	82,79	TOTAL	24048862,32	278,34	TOTAL	7915848,877	91,62	TOTAL	57439657,76	664,81
	PESIMISTA	11334	9282546	107,44	2925	2395575	27,73	14366	11765754	136,18	3707	3036033	35,14	34004	27849276	322,33
	ILI = 819 L/C/D	TOTAL	25995770,25	300,88	TOTAL	8057278,93	93,26	TOTAL	32941416,32	381,27	TOTAL	10210481,88	118,18	TOTAL	78488133,76	908,43
		943	1199055,9	13,88	131	199885,0345	2,31	1196	1520753,825	17,60	167	254815,273	2,95	1.779	2443022,356	28,28
		20	62404,71554	0,72	9	33698,54639	0,39	25	78005,89443	0,90	12	44931,39519	0,52	2	6739,709279	0,08
	DATOS BASE	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
		0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
OESTE 2		0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
	OPTIMISTA	963	0 192600	0,00 2,23	0 140	0 28000	0,00 0,32	0 1221	0 244200	0,00 2.83	0 179	0 35800	0,00 0,41	0 1781	0 356200	0,00 4.12
	ILI = 200 L/C/D	TOTAL	1454060,62	16,83	TOTAL	261583,58	3,03	TOTAL	1842959,719	21,33	TOTAL	335546,6681	3,88	TOTAL	2805962,066	32,48
	INTERMEDIO	963	192600	2,23	140	71400	0,83	1221	244200	2,83	179	35800	0,41	1781	356200	4,12
	ILI = VARIANDO L/C/D PESIMISTA	TOTAL 963	1454060,62 788697	16,83 9,13	TOTAL 140	304983,58 114660	3,53 1,33	TOTAL 1221	1842959,719 999999	21,33 11.57	TOTAL 179	335546,6681 146601	3,88 1,70	TOTAL 1781	2805962,066 1458639	32,48 16.88
	ILI = 819 L/C/D	TOTAL	2050157,62	23,73	TOTAL	348243,58	4,03	TOTAL	2598758,719	30,08	TOTAL	446347,6681	5,17	TOTAL	3908401,066	45,24
		193	202194,9797	2,34	3268	4108434,365	47,55	245	256672,3836	2,97	4143	5208458,866	60,28	11.871	13431487,73	155,46
		75	373800,7753	4,33	35	209328,4342	2,42	95	473480,982	5,48	44	263155,7458	3,05	36	193778,3219	2,24
	DATOS BASE	23	435940,7797	5,05	11	250192,0996	2,90	29	549664,4613	6,36	14	318426,3086	3,69	12	245643,1524	2,84
		0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
OESTE 3		2	73727,33996	0,85	1	44236,40398	0,51	2	73727,33996	0,85	1	44236,40398	0,51	1	39812,76358	0,46
020.20	0071141074	2	4512,468518	0,05	1	2707,481111	0,03	2	4512,468518	0,05	1	2707,481111	0,03	1	2436,733	0,03
	OPTIMISTA ILI = 200 L/C/D	295 TOTAL	59000 1149176,34	0,68 13,30	3316 TOTAL	663200 5278098,78	7,68 61,09	373 TOTAL	74600 1432657,635	0,86 16,58	4203 TOTAL	840600 6677584,806	9,73 77,29	11921 TOTAL	2384200 16297358,71	27,59 188,63
	INTERMEDIO	295	59000	0,68	3316	1691160	19,57	373	74600	0,86	4203	840600	9,73	11921	2384200	27,59
	ILI = VARIANDO L/C/D PESIMISTA	TOTAL 295	1149176,34 241605	13,30 2,80	TOTAL 3316	6306058,78 2715804	72,99 31,43	TOTAL 373	1432657,635 305487	16,58 3,54	TOTAL 4203	6677584,806 3442257	77,29 39.84	TOTAL 11921	16297358,71 9763299	188,63 113,00
	ILI = 819 L/C/D	TOTAL	1331781,34	15,41	TOTAL	7330702,78	84,85	TOTAL	1663544,635	19,25	TOTAL	9279241,806	107,40	TOTAL	23676457,71	274,03
		2526	4054471,478	46,93	2427	4674680,417	54,11	3203	5141121,198	59,50	3077	5926654,983	68,60	18.298	31719642,38	367,13
		55	368858,7701	4,27	25	201195,6928	2,33	70	469456,6165	5,43	32	257530,4868	2,98	42	304207,8875	3,52
	DATOS DASS	4	7852,405847	0,09	2	4711,443508	0,05	5	9815,507308	0,11	3	7067,165262	0,08	2	4240,299157	0,05
	DATOS BASE	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
		7 2	55215,55966 15989,06168	0,64 0,19	3	28396,57354 9593,437007	0,33 0,11	9	70991,43385 15989,06168	0,82	1	37862,09805 9593,437007	0,44 0,11	4	34075,88825 8634,093306	0,39 0,10
NORTE		2	25138,35808	0,29	1	15083,01485	0,17	2	25138,35808	0,29	1	15083,01485	0,17	1	13574,71337	0,16
	OPTIMISTA	2596	519200	6,01	2459	491800	5,69	3291	658200	7,62	3118	623600	7,22	18348	3669600	42,47
	ILI = 200 L/C/D INTERMEDIO	TOTAL 2596	5046725,63 519200	58,41 6,01	TOTAL 2459	5425460,58 1254090	62,79 14,51	TOTAL 3291	6390712,175 658200	73,97 7,62	TOTAL 3118	6877391,185 623600	79,60 7,22	TOTAL 18348	35753975,26 3669600	413,82 42,47
	ILI = VARIANDO L/C/D	TOTAL	5046725,63	58,41	TOTAL	6187750,58	71,62	TOTAL	6390712,175	73,97	TOTAL	6877391,185	79,60	TOTAL	35753975,26	413,82
	PESIMISTA ILI = 819 L/C/D	2596 TOTAL	2126124 6653649,63	24,61 77,01	2459 TOTAL	2013921 6947581,58	23,31 80,41	3291 TOTAL	2695329 8427841,175	31,20 97,54	3118 TOTAL	2553642 8807433,185	29,56 101,94	18348 TOTAL	15027012 47111387,26	173,92 545,27
	151 - 023 1/1/10	143	204679,1034		2343	4024306,064		182	260500,677		2971	5102950,625		3.141	4855446,356	
				2,37			46,58			3,02			59,06			56,20
		3 0	2997,949065 0	0,03	0	2398,359252 0	0,03	4 0	3997,26542 0	0,05	0	2398,359252	0,03	0	1079,261663 0	0,01
	DATOS BASE	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
		0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
NORTE 2		0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00	0	0	0,00
	OPTIMISTA	146	29200	0,34	2345	469000	5,43	186	37200	0,43	2973	594600	6,88	3142	628400	7,27
	ILI = 200 L/C/D INTERMEDIO	TOTAL 146	236877,05 29200	2,74 0.34	TOTAL 2345	4495704,42 1195950	52,03 13.84	TOTAL 186	301697,9425 37200	3,49 0.43	TOTAL 2973	5699948,985 594600	65,97 6.88	TOTAL 3142	5484925,617 628400	63,48 7.27
	ILI = VARIANDO L/C/D	TOTAL	236877,05	2,74	TOTAL	5222654,42	60,45	TOTAL	301697,9425	3,49	TOTAL	5699948,985	65,97	TOTAL	5484925,617	63,48
	PESIMISTA	146	119574	1,38	2345	1920555	22,23	186	152334	1,76	2973	2434887	28,18	3142	2573298	29,78
	ILI = 819 L/C/D	TOTAL	327251,05	3,79	TOTAL	5947259,42	68,83	TOTAL	416831,9425	4,82	TOTAL	7540235,985	87,27	TOTAL	7429823,617	85,99
		2158	2832170,966	32,78	12391	19514419,15	225,86	2736	3590741,318	41,56	15708	24738317,81	286,32	25.504	36149315,75	418,39
		401	1755359,614	20,32	184	966542,1517	11,19	508	2223747,342	25,74	233	1223936,529	14,17	431	2037617,938	23,58
	DATOS BASE	141 6	1283000,253 17414,75301	14,85 0,20	65 3	709744,8209 10448,85181	8,21 0,12	179 7	1628773,371 20317,21185	18,85 0,24	82 3	895370,3894 10448,85181	10,36 0,12	152 6	1493739,869 18807,93325	17,29 0,22
		8 8	1/414,/5301	1,27	4	65953,10286	0,12	10	137402,2976	1,59	5	82441,37858	0,12	9	133555,0333	1,55
NORTE 6		4	64595,80918	0,75	2	38757,48551	0,45	5	80744,76148	0,93	3	58136,22826	0,67	5	87204,3424	1,01
	OPTIMISTA	3 2721	110697,6037 544200	1,28 6,30	2 12651	88558,08295 2530200	1,02 29.28	4 3449	147596,8049 689800	1,71 7.98	2 16036	88558,08295 3207200	1,02 37.12	3 26110	119553,412 5222000	1,38 60.44
	ILI = 200 L/C/D	TOTAL	6717360,84	77,75	TOTAL	23924623,65	29,28	TOTAL	8519123,106	7,98 98,60	TOTAL	30304409,27	37,12	TOTAL	45261794,28	523,86
	INTERMEDIO	2721	544200	6,30	12651	6452010	74,68	3449	689800	7,98	16036	3207200	37,12	26110	5222000	60,44
	ILI = VARIANDO L/C/D PESIMISTA	TOTAL 2721	6717360,84 2228499	77,75 25,79	TOTAL 12651	27846433,65 10361169	322,30 119,92	TOTAL 3449	8519123,106 2824731	98,60 32,69	TOTAL 16036	30304409,27 13133484	350,75 152,01	TOTAL 26110	45261794,28 21384090	523,86 247,50
	ILI = 819 L/C/D	TOTAL	8401659,84	97,24	TOTAL	31755592,65	367,54	TOTAL	2824731 10654054,11	123,31	TOTAL	40230693,27	465,63	TOTAL	61423884,28	710,92

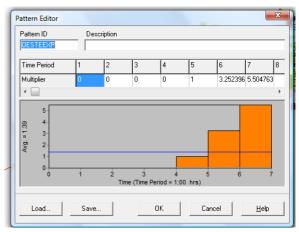




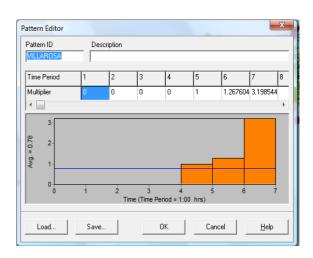






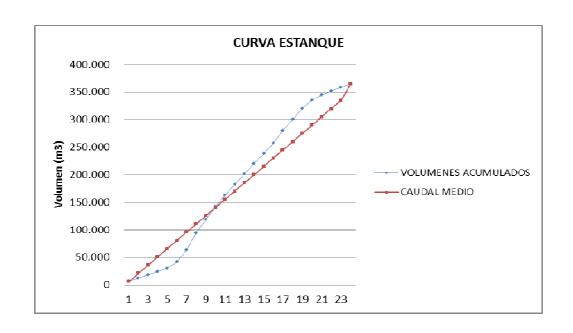




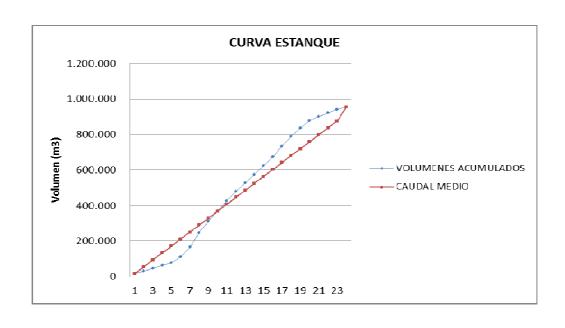




ANEXO 4.5 CORRIDAS DE LAS SIMULACIONES (VER CD)


ANEXO 4.6 CORRIDAS DE LAS SIMULACIONES PARA F = 1,55 (VER CD)

ANEXO 4.7 CORRIDAS MEJORAS PLANTEADAS EN LA RED DE DISTRIBUCIÓN (VER CD)


ESTANQUE CAPACIDAD 25.000 m³

	Q med (I/s)	4160				
TIEMPO (h)	VARIACIÓN DE CONSUMO (% Qm)	VARIACIÓN DE CONSUMO (Qm)	VOLUMEN PARCIAL (m³)	VOLUMEN ACUMULADO (m³)	VOLUMEN MEDIO (VQm)	DIFERENCIA
1	0,4	1664	5990,4	5990,4	5990,4	0
2	0,4	1664	5990,4	11980,8	20916,48	-8935,68
3	0,4	1664	5990,4	17971,2	35842,56	-17871,36
4	0,4	1664	5990,4	23961,6	50768,64	-26807,04
5	0,4	1664	5990,4	29952	65694,72	-35742,72
6	0,8	3328	11980,8	41932,8	80620,8	-38688
7	1,45	6032	21715,2	63648	95546,88	-31898,88
8	2	8320	29952	93600	110472,96	-16872,96
9	1,7	7072	25459,2	119059,2	125399,04	-6339,84
10	1,52	6323,2	22763,52	141822,72	140325,12	1497,6
11	1,42	5907,2	21265,92	163088,64	155251,2	7837,44
12	1,32	5491,2	19768,32	182856,96	170177,28	12679,68
13	1,25	5200	18720	201576,96	185103,36	16473,6
14	1,2	4992	17971,2	219548,16	200029,44	19518,72
15	1,24	5158,4	18570,24	238118,4	214955,52	23162,88
16	1,3	5408	19468,8	257587,2	229881,6	27705,6
17	1,5	6240	22464	280051,2	244807,68	35243,52
18	1,4	5824	20966,4	301017,6	259733,76	41283,84
19	1,25	5200	18720	319737,6	274659,84	45077,76
20	1	4160	14976	334713,6	289585,92	45127,68
21	0,65	2704	9734,4	344448	304512	39936
22	0,5	2080	7488	351936	319438,08	32497,92
23	0,42	1747,2	6289,92	358225,92	334364,16	23861,76
24	0,4	1664	5990,4	364216,32	364216,32	0

ESTANQUE CAPACIDAD 160.000 m³

	Q med (I/s)	10900				
TIEMPO (h)	VARIACIÓN DE CONSUMO (% Qm)	VARIACIÓN DE CONSUMO (Qm)	VOLUMEN PARCIAL (m³)	VOLUMEN ACUMULADO (m³)	VOLUMEN MEDIO (VQm)	DIFERENCIA
1	0,4	4360	15696	15696	15696	0
2	0,4	4360	15696	31392	54805,2	-23413,2
3	0,4	4360	15696	47088	93914,4	-46826,4
4	0,4	4360	15696	62784	133023,6	-70239,6
5	0,4	4360	15696	78480	172132,8	-93652,8
6	0,8	8720	31392	109872	211242	-101370
7	1,45	15805	56898	166770	250351,2	-83581,2
8	2	21800	78480	245250	289460,4	-44210,4
9	1,7	18530	66708	311958	328569,6	-16611,6
10	1,52	16568	59644,8	371602,8	367678,8	3924
11	1,42	15478	55720,8	427323,6	406788	20535,6
12	1,32	14388	51796,8	479120,4	445897,2	33223,2
13	1,25	13625	49050	528170,4	485006,4	43164
14	1,2	13080	47088	575258,4	524115,6	51142,8
15	1,24	13516	48657,6	623916	563224,8	60691,2
16	1,3	14170	51012	674928	602334	72594
17	1,5	16350	58860	733788	641443,2	92344,8
18	1,4	15260	54936	788724	680552,4	108171,6
19	1,25	13625	49050	837774	719661,6	118112,4
20	1	10900	39240	877014	758770,8	118243,2
21	0,65	7085	25506	902520	797880	104640
22	0,5	5450	19620	922140	836989,2	85150,8
23	0,42	4578	16480,8	938620,8	876098,4	62522,4
24	0,4	4360	15696	954316,8	954316,8	0

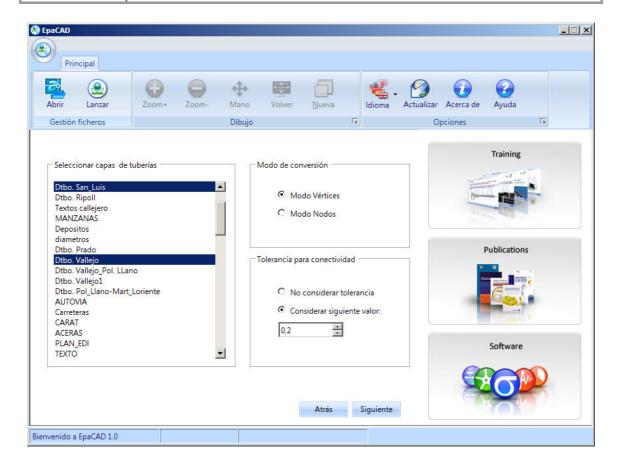
Desarrollado por el ITA Universidad Politécnica de Valencia www.ita.upv.es

El programa EpaCAD permite convertir ficheros de AutoCAD que contienen tuberías en ficheros que pueden ser abiertos con el programa de cálculo hidráulico EPANET

- El fichero obtenido con EpaCAD v 1.0 conserva información sobre los nudos y tuberías del plano de AutoCAD, sus coordenadas x e y, así como la elevación (cota z) de los elementos de la red.
- Puede importar varias capas de elementos y transformar convenientemente las polilíneas.
- También dispone de una herramienta para analizar la conectividad entre elementos, y la previsualización de la red antes de ser exportada a Epanet.
- Posteriormente, habrá que definir algunos elementos en Epanet, tales como depósitos, válvulas, bombas... y ciertas propiedades de las tuberías y nudos de consumo (diámetros, rugosidad y demanda base).

MANUAL DE AYUDA DEL PROGRAMA

Abrir


Se deberá indicar la ruta en la que se encuentra el fichero de AutoCAD que se quiere convertir.

El fichero deberá tener extensión .*dxf* (desde AutoCAD es posible guardar el documento con esta extensión. El programa lee archivos guardados como dxf de AutoCAD R12/LT2/2000/LT2000/20004 y versiones posteriores).

Una vez cargado el fichero se deberá:

1ºSeleccionar
capas de
tuberías

Se seleccionarán las capas que contienen tuberías del modelo. La selección puede ser única o múltiple, dependiendo de cómo se trabaja con el plano en AutoCAD.


2ºIndicar el
Modo de
conversión

Indica la forma en la que el programa debe convertir las polilíneas de las capas de AutoCAD seleccionadas.

Existen dos posibilidades:

• Modo Vértices:

La polilínea se transforma en una única tubería cuyo nudo inicial coincide con el primer extremo de la polilínea y el nudo final coincide con el extremo final de la polilínea.

Esta modalidad permite simplificar el modelo, ya que sólo se caracterizarán los dos nudos y la tubería.

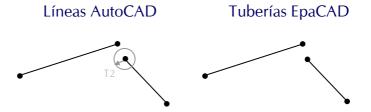
Modo Nodos:

Cada vértice de la polilínea se convierte en un nudo, convirtiéndose cada tramo de la misma en una tubería diferente.

Polilínea AutoCAD Tuberías EpaCAD

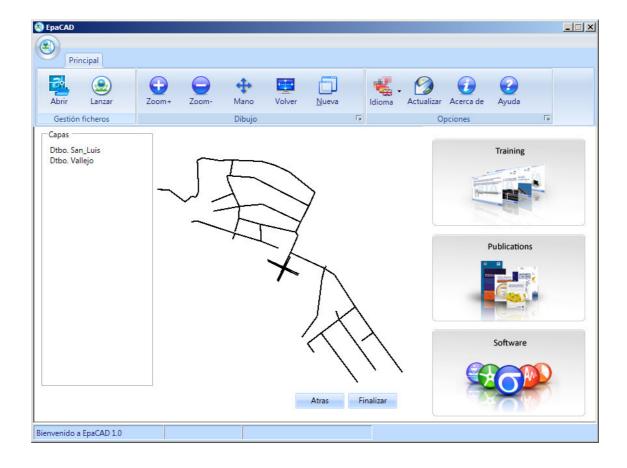
Esta modalidad permite introducir propiedades diferentes en cada uno de los nudos, así como en cada tramo de polilínea.

3º
Indicar la
Tolerancia
para la
Conectividad


Para la conversión es posible indicar la tolerancia con la que el programa considera que dos tuberías contiguas están conectadas, o bien, que no existe conexión entre ellas y solamente mantienen un trazado cercano.

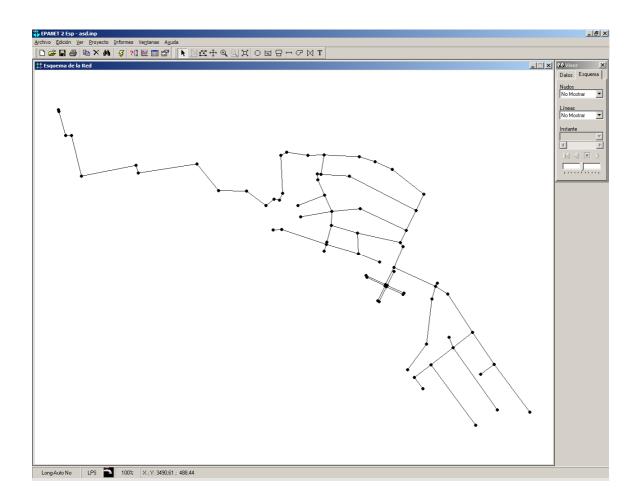
Si se desea que el programa considere una tolerancia para la conectividad, se deberá indicar el valor numérico (en metros) de la misma.

• **Ejemplo Tolerancia 1**: si el círculo generado intercepta las dos tuberías, el programa interpreta que ambas están conectadas:


• **Ejemplo Tolerancia 2**: si el círculo generado no intercepta las tuberías, el programa interpreta que ambas tuberías son independientes:

Posteriormente se podrá previsualizar la red de tuberías.

Si la previsualización es correcta pulse FINALIZAR e indique la ruta donde quiere guardar el fichero .inp generado.



Otros iconos del programa:

Lanzar

Abre en EPANET el último fichero generado. Su equipo deberá tener instalado EPANET.

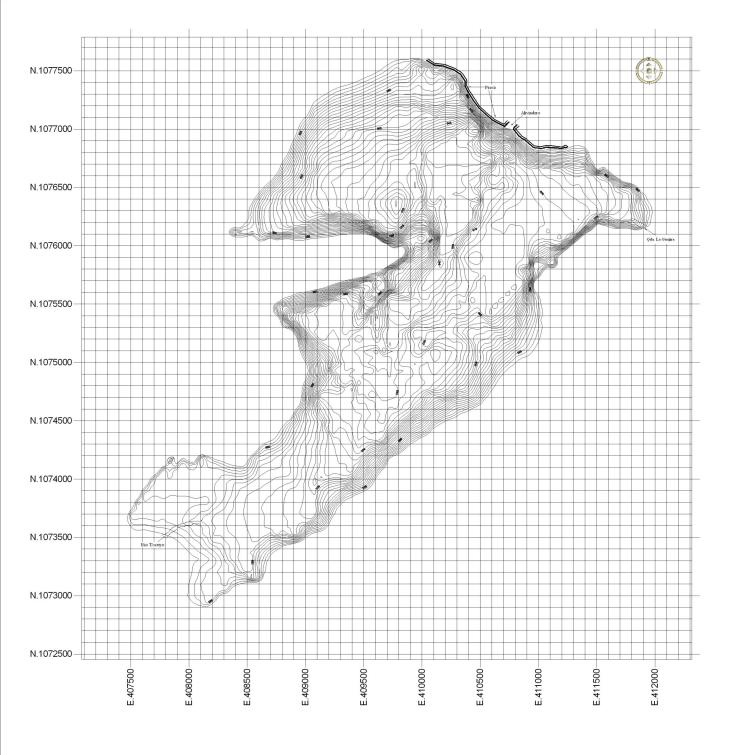
Actualizar

El programa se conecta al servidor del ITA para comprobar la existencia de una nueva versión del programa. En el caso existir ésta, se instala automáticamente.

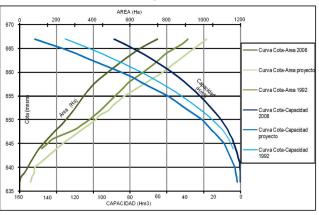
Ayuda

Descarga el fichero de ayuda del programa.

El equipo deberá disponer de un programa para la lectura de ficheros pdf.

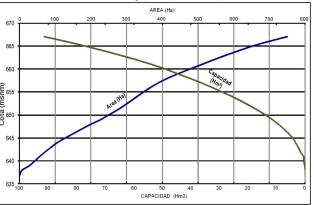


Información


Información acerca del desarrollo del programa y de la versión instalada.

Para cualquier sugerencia o aclaración sobre el funcionamiento del programa:

Javier Soriano Olivares ITA. Universidad Politécnica de Valencia informacion@ita.upv.es www.ita.upv.es



Curva Cota - Area - Capacidad 1968 - 1992 - 2008

TABLA AREA CAPACIDAD BATIMETRIA 2008		ATIMETRIA 2008		A CAPACIDAD CTO 1968	DIVERGEN	CIA 1968-2008	TABLA AREA CAPACIDAD BAT 1992			
COTA	AREA	CAPACIDAD	AREA	CAPACIDAD	AREA	CAPACIDAD	AREA	CAPACIDAD		
630				0.00						
631				0.22						
632				0.45						
633				0.67						
634				0.90						
635				1.12						
637	0.33	0.00	58.23	2.22	57.90	2.22				
638	6.13	0.03	65.42	2.77	59.29	2.74				
639	26.76	0.18	78.61	3.32	51.85	3.14				
640	41.78	0.53	79.80	3.87	38.02	3.34				
641	55.83	0.56	110.04	5.39	54.21	4.83				
642	71.31	1.65	140.28	6.91	68.97	5.26				
643	87.44	2.44	170.52	8.42	83.08	5.98				
644	105.00	3.40	200.76	9.94	95.76	6.54	119.82	5.34		
645	127.15	4.56	231.00	11.46	103.85	6.90	149.61	6.83		
646	150.92	5.95	266.91	14.66	115.99	8.71	179.40	8.33		
647	174.72	7.58	302.82	17.87	128.10	10.29	239.75	10.73		
648	199.08	9.44	338.73	21.07	139.65	11.63	300.10	13,13		
649	227.04	11.58	374.64	24.28	147.60	12.70	338.46	16.51		
650	248.87	13.96	410.55	27.48	161.68	13.52	376.82	19.89		
651	271.57	16.57	434.08	32.37	162.51	15.80	407.67	23.97		
652	291.78	19.38	481.15	37.26	189.37	17.88	438.52	28.05		
653	310.55	22.40	504.69	42.15	194.14	19.75	464.66	32.70		
654	328.67	25.59	536.07	47.04	207.40	21.45	490.80	37.34		
655	347.45	28.97	567.45	51.93	220.00	22.96	517.25	42.52		
656	367.04	32.54	609.17	58.63	242.13	26.09	543.70	47.69		
657	389.24	36.32	650.89	65.37	261.65	29.05	569.63	53.38		
658	414.81	40.34	692.61	72.08	277.80	31.74	595.57	59.08		
659	445.29	44.63	734.33	78.00	289.04	33.37	632.91	65.41		
660	478.01	49.25	776.05	85.52	298.04	36.27	670.25	71.74		
661	511.36	54.20	810.15	94.13	298.79	39.93	703.97	78.78		
662	544.23	59.48	844.25	102.75	300.02	43.27	737.70	85.82		
663	578.75	65.09	878.35	111.36	299.60	46.27	767.07	93.49		
664	615.50	71.05	912.45	119.28	296.95	48.23	796.44	101.16		
665	653.87	77.40	946.55	128.59	292.68	51.19	840.16	109.56		
666	699.65	84.16	981.84	138.80	282.19	54.64	883.88	117.96		
667	750.02	91.41	1,017.13	149.00	267,11	57.59	915.10	126.96		
667.05	752.54	91.77	1.018.89	149.51	266.36	57.74	916.66	127.41		

Curva Area - Capacidad (Batimetría) 2008

