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Resumo

Modelos para dados longitudinais e tempo até a ocorrência de um evento de interesse são

propostos no contexto de modelagem conjunta. Três estruturas de regressão diferentes

para os dados longitudinais são apresentadas com evolução baseada em modelo linear

dinâmico hierárquico generalizado. Essas estruturas de regressão são padrão, quant́ılica

e regressão com mudança de regime markoviana. Em termos da função de risco base de

sobrevivência algumas formas paramétricas e semi-paramétricas são usadas e validadas

com resultados simulados. Algumas relações de dependência são exploradas para a função

semi-paramétrica. Em todas as propostas, a ligação entre os dois sub-modelos é uma

escolha flex́ıvel que é discutida. O procedimento de inferência é desenvolvido sob a

abordagem Bayesiana. Métricas de comparação são adaptadas e usadas para validação

de modelo além de métricas padrão. Quatro conjuntos de dados são usados para ilustrar

as metodologias propostas.
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Abstract

Models for longitudinal and time-to-event data are proposed in the context of joint

modeling. Three alternative regression models for the longitudinal data are presented

with time evolution based on Generalized Hierarchical Dynamic Linear Model. These

regression models are standard, quantile and Markov switching regression. For the

survival baseline hazard function some parametric and semi-parametric forms are used and

validated through simulated results. Some dependence relations are explored for the semi-

parametric function. In all proposals, the link between the two sub-models is a flexible

choice which is discussed. Inference procedure is developed under the Bayesian approach.

Comparison metrics are adapted and used for model validation alongside standard metrics.

Four data sets are used to illustrate the proposed methodologies.
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Chapter 1

Introduction

All scientific innovation which aims to be used on the real world must be justified

by data driven results. Medical research is not an exception and new technological

instruments allow for immediately available and reliable data, which leads to requiring

more consideration from Statisticians. This allows for data based decisions in terms of

diagnosis and treatment.

However, the use of an instrument to collect data implies that there might be some

disparity between the measured value and the desired information. This could be the

consequence of measuring error, information withholding by the patient or human error,

for example. Such disparity should be taken into account in the decision making process,

and can be done via statistical modeling.

A way to statistically take this measuring disparity into account is to take the same

measure repeatedly over time. If these measures are related to the desired information,

commonly called true value, in a particular form then the repeated measures can

aggregate knowledge towards the true value. This form can be a parametric distribution

where the true value is the distribution expected value. One way to think this is to say

that the measured values are the true value plus a random noise.

The very fact that the measures are taken over time means that the desired true value

may change between one measuring session and the other. This can be understood as

a dynamic, which may be represented through a temporal dependence. In order to

represent this dynamic, a large variety of time series models is available for use. This
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process is usually called longitudinal measurements modeling and there are numerous

ways to represent this dependence and not all of them are time series models. Nonetheless

the nature of the data is directly relatable to such models.

Sometimes this longitudinal information influences the risk of occurrence of an event for

that patient. Some examples are the count of CD4 cells, which may be measured with

error, influences the risk of death of patients infected with HIV. Another example is the

PANSS score, an index which is calculated and therefore may misrepresent the desired

information, influences the risk of crisis of schizophrenic patients. Traditionally the risk

of occurrence of an event is modeled with a class of models called survival models, which

allow the inclusion of independent variables that are related to the event occurrence risk.

Then, we can use the learned information from the longitudinal process as a variable to

explain this risk.

Adding the longitudinal filtered information into the occurrence risk characterizes a class

of models called joint models, which is the focus of this thesis. There are many ways for

this information to be added and this configures a choice for the researcher.

The main contribution provided is the dynamic treatment of the longitudinal

measurements through a time series. A direct consequence of this is that future

predictions of the longitudinal information are easily obtained. Hence occurrence times

prediction become also available, which is desired in the context of survival models. Other

available models also provide longitudinal prediction, but only through extrapolation.

Other contributions include some options based on already existing ideas adapted to the

proposed longitudinal modeling with evolution over time. One example is using quantile

regression to model the longitudinal measurement. One extension which cannot be found

in other works incorporates shifting levels for the longitudinal trajectory with Markov

switching regimes.

Next a brief historical review of joint models and the fundamental groundwork for the

thesis is presented.
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1.1 Brief historical review

This thesis works with settings where the sample units, also called individuals, are

followed-up over time and typically different types of outcomes are collected. These

measurements we denominate as longitudinal outcomes, i.e., the same outcome measured

repeatedly over time for the same individual, and event time outcomes, that is, the time

until a specific event of interest occurs. The main assumption of the data is that the

longitudinal outcomes contain information that influences the event time or at least the

risk that the event will happen as a function of time.

Originally the longitudinal measurements were used as raw data input into relative risk

survival models for the event times. However, some works in the early 1990’s noted

that modeling the longitudinal measurements is preferable (Ibrahim et al. 2004) Section

7.1.1. Since then, separate analysis of the longitudinal and time-to-event data were

common, but (Ibrahim et al. 2010) argue that this may lead to inefficient or biased results.

With this in mind, DeGruttola and Tu (1994), Faucett and Thomas (1996), Wulfsohn

and Tsiatis (1997), Ibrahim et al. (2004) and Wang and Taylor (2001) combine all

information and represent both structures through a single model called joint model,

where DeGruttola and Tu (1994) and Wulfsohn and Tsiatis (1997) develop a frequentist

solution and the others develop a Bayesian solution. Throughout this thesis, we refer

to each structure as sub-model, that is, the joint model combines a longitudinal and a

survival sub-model.

In the above references models in the class called Shared Random Effects (SRE) are

developed to which the proposals in this thesis belong as well. Other solutions are well

explained in Klein et al. (2014).

Most of the SRE proposals are generalized by Henderson et al. (2000). The Bayesian

approach introduced by Guo and Carlin (2004) is described below. Let yij represent the

endogenous longitudinal outcomes for individual i taken at interview j (possibly missing),

where i = 1, . . . , N and j = 1, . . . , Ji. All N individuals are followed over a time interval
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[0, τ ]. Denote the interview times as sij. Each individual i has a (possibly censored)

survival time ti to a certain endpoint. The joint model is given by

hi(t) = h0(t) exp (x′1i(t)β1 +W1i(t)) , t > 0

yij = µ2i(sij) +W2i(sij) + εij,
(1.1)

where the first equation represents the hazard function for the survival sub-model

and assuming that ti ∼ Weibull(r, µ1i(t)), where log(µ1i(t)) = x′1i(t)β1 + W1i(t) and

r > 0. The connection between these two equations lies with the fact that W1i(t) and

W2i(sij) are correlated. They will be detailed below. Note that this is similar to a Cox

Proportional Hazards Model (Cox 1972) where the baseline hazard function assumes a

parametric Weibull form h0(t) = rtr−1, but any baseline function can be used, and also

adding the process W1i(t). The vectors x1i(t) and β1 represent (possibly time-dependent)

explanatory variables and their corresponding regression coefficients. The individual

specific intercept of W1i(t) is often called a frailty.

For the longitudinal sub-model represented by the second line of (1.1), µ2i(s) = x′2iβ2

is the mean response, W2i(s) = d′2iU i incorporates subject-specific random effects, and

εij ∼ N (0, σ2
ε ) is a sequence of mutually independent measurement errors. The W2i(s)

can be viewed as the true individual-level longitudinal trajectory after they have been

adjusted for the overall mean trajectory and other fixed effects. The form of W2i(s)

is similar to W1i(t), including subject-specific covariate effects and an intercept. The

vectors x2i(s) and β2 represent possibly time-varying explanatory variables and their

corresponding regression coefficients, respectively. They may or may not have elements

in common with x1i and β1 in the survival sub-model. The U i are vectors of random

effects corresponding to the explanatory variables d2i(s) (which may be a subset of

x2i(s)) and are typically modeled as iid N (0,Σ) random variables.

Association between the longitudinal and survival processes can arise in two ways. One is

through explanatory variables present in both equations. The other is through stochastic

dependence between W1i and W2i. This can be achieved by jointly modeling the two

processes via a latent zero-mean bivariate Gaussian process on (W1i,W2i)
′, which is

independent across different subjects.
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Another view deserves special attention and is described in Rizopoulos (2012, Chapter 4),

where instead of correlated latent processes in the two sub-models, some true unobserved

trajectory is included into the hazard function as a latent covariate. Then his model is

described by:

hi(t) = h0(t) exp (x′1i(t)β1 + αmi(t)) , t > 0,

yi(t) = mi(t) + εi(t), mi(t) = x′2iβ2 + z′i(t)bi,
(1.2)

where {Mi(t) = mi(u), 0 ≤ u < t} denotes the history of the true unobserved longitudinal

process up to time point t, the α term quantifies the effects of the underlying longitudinal

outcome to the risk for the event. The term mi(t) is a mixture of fixed and random

components x′2iβ2 + z′i(t)bi, where z′i(t)bi is some function of t, say a polynomial. Note

that every mixed effects model can be easily recovered by a hierarchical structure.

An important feature of the models presented by Rizopoulos (2012, Chapter 5) and

Rizopoulos and Ghosh (2011), is the addition of other ways that mi(t) is inserted into

the hazard function, such as ∂mi(t)
∂t

. This sets a precedent in the sense that productions

in joint modeling should consider this flexibility as they are proposed. This thesis is not

indifferent to this relevant discussion (Section 1.2.1) to which the term bridge is used to

make reference.

Both the models from Henderson et al. (2000) and Rizopoulos (2012) provide desirable

features. The former provides a rigorous structure for the longitudinal sub-model while

the latter quantifies the impact of the longitudinal sub-model on the hazard function.

This aspect of this class of models is the motivation for this thesis, which is to create a

hazard-quantifiable rigorous structure for the longitudinal sub-model.

1.2 Research setting

This section presents a general model framework which can be classified as a Shared

Random Effects model. The data described in Section 1.1 is modeled assuming that

the censoring of event times is non-informative and that data from different subjects is

generated by independent processes.

One of the main characteristics of longitudinal data widely known in the literature is
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time dependence, as discussed. Another is that the longitudinal trajectories have some

common feature, which is usually considered as the mean response. On the other hand

the mean response is not the only feature that can be analyzed. One could be interested,

for example, in a particular quantile of the distribution of the longitudinal outcomes,

especially when they are not symmetrical.

The time dependence can be modeled by a Dynamic Linear Model (DLM) framework as

described by West and Harrison (1997), albeit with few longitudinal measurements for

each individual. This class of models can locally approximate complex evolutions, as well

as allow for the prediction of future observations. Extensions of DLM are available to deal

with non Gaussian and non linear responses, which are useful since some longitudinal

outcomes can be counts, proportions or dichotomies for instance.

The hierarchy is modeled by a common value added to a random effect which captures

individual-specific features. An important advantage of this is the sharing of common

information between individuals. Fortunately, hierarchy has already been combined into

DLMs in Gamerman and Migon (1993). Adding the generalization from West et al.

(1985), we obtain a Generalized Hierarchical Dynamic Linear Model (GHDLM), which

can be used to model the longitudinal outcomes. Remember that it is known that all

joint mixed random effects models can be written in a hierarchical form. This means that

the proposal is comparable to benchmark models, but with a dynamic structure added.

Thus we note that all proposals in this thesis is the pertinent combination of already

established models in the literature, both in the longitudinal and survival viewpoints.

The novelty in this work is to combine these models in a joint model.
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The general model structure is given by

Observation equation:

yij ∼ Ef(ηij, ψ), E(yij | ηij, ψ) = g−1(λij),

Structural equation:

λij = F ′iθij + vi, vi ∼ N (0, V )

System equation:

θij = Gjθi,j−1 +wj, wj ∼ N (0,W )

Initial information:

θ0 | D0 ∼ N (m0,C0),

(1.3)

where the longitudinal observations are described in the Exponential family (Ef).

As is commonly presented, [yij | ηij, ψ] = b(yij, ψ) exp(ψ(yijηij − a(ηij))), with mean

E(yij | ηij, ψ) = g−1(λij), where g−1 is assumed to be some twice-differentiable function

of λij, where ηij and ψ denote the natural and dispersion parameters in the exponential

family, respectively.

The linear predictor, which is the g(·) transformation of the mean trajectory of the

observations, is represented by the term λij. We call this the general model since we can

use the versatility of Dynamic Linear Models construction, through the choice of F i, Gj,

θij and W , as well as the hierarchical structure through vi.

A clear example is the ability to recover the linear growth version of the popular mixed

model shown in (1.2). By choosing F = (1, 0, 0)′, θij = (θ0ij, θ1j, bi)
′, the first line of the

three-dimensional matrix G is (1, δj, δj), where δj is the timespan between the j − 1th

and the jth visit, the second line is (0, 1, 0) and the third line is (0, 0, 1). Finally, W has

a 0 for the third variance. That way, the random effect for the intercept is vi and for the

slope it is bi. The exact derivation can be found in the Appendix A.1.

Another advantage of this general structure is the possibility of inclusion of covariates

in F and their respective time evolving effects per individual in θij. If eventually some

effects do not evolve in time, all that is needed is to set their respective variance in the

matrix W to 0.
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For simplicity, all development in this thesis is on a particular case of (1.3) where

θij ≡ θj, ∀i = 1, . . . , N , that is, θj is a common term which evolves over time. Although

this is a simplification, it still allows for great complexity, as is seen throughout the thesis.

This represents a model with random effects on the intercept term, that is a random

fluctuation on the mean per individual. Figure 1.1 shows a model without the random

effect vi and one with this effect.

A component that still needs discussion in order for the model to be fully specified is

presented next.

1.2.1 The bridge term

Bearing in mind the original motivation of the joint model, the bridge term is understood

as the filtered information from the longitudinal data relevant to the hazard function.

This information is sometimes simple to understand, such as CD4 cells true count

measured with error by an instrument, but not always so, such as schizophrenia

symptoms severity measured by a questionnaire that results in the PANSS score, which

is a constructed measure. When the information is simple, then it is easy to define the

bridge term by using, say, the mean trajectory g-transform (i.e. the linear predictor λij).

When it is not straightforward then this bridge term should be discussed in order to

ensure that it carries the desired information. For this reason, the proposed class of

models does not specify a bridge term, therefore the joint model is completely specified

only after the choice of this term. To make this choice, note that whatever term in

the longitudinal sub-model which is not the yij themselves represents some filtered

information. For instance, choosing λij or θj, which are different components of the

distribution of yij, represent distinct information to be bridged over to the hazard

function. It is, therefore, the researcher’s job to realize what is most appropriate from

the logical point of view. The bridge term choice based on what makes most sense to the

problem should matter more than model comparison metrics. Note that this could also

mean a quantile of the distribution of yij.
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Figure 1.1: Graphical representation of common evolution (above) and random effect for

the intercept (below) dynamic models
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Note that the model deals with missing data due to patients who miss their interview

or some other reason, which can be informative or not. Missing data also includes

censorship, however this thesis does not include modeling for informative censorship.

Missing data can also affect the choice of the bridge term, since the uncertainty raised by

this situation is bridged to the hazard function differently depending on this choice. In

other words, if one bridge choice is punishing with respect to missing data, then another

bridge might be needed.

Although Rizopoulos and Ghosh (2011) present different bridge options, they do not

discuss the implications of each option. To show the importance of this choice we draw

attention to the hazard function of the standard model:

hi(t) = h0(t) exp{Z ′β1 + α(a0i + a1it)}

= h0(t) exp{Z ′β1}exp{b0i + b1it}.
(1.4)

where a0i and a1i are features from the longitudinal sub-model. Note that the observed

times ti are included in the likelihood function both in h0(t) and in b0i + b1it and

also exp{b0i + b1it} forms a Gompertz baseline hazard function. This means that

whatever form the true baseline hazard function has, h0(t) is sure to underestimate it to

compensate for the Gompertz exponential growth.

Therefore we consider that this discussion is not currently present in the literature and

propose that it should be.

This discussion is started in all chapters of this thesis, which are summarized below.

Chapters 2 and 3 provide the first versions of the proposal by changing the longitudinal

sub-model then exploring on the baseline hazard function.

Further development is in chapter 4 where there is no parametric form to model yij and

λij represents the distribution’s quantile instead of expected value.

Finally, the quality of life index will be considered as a longitudinal outcome variable.

Although there are methods that analyze this variable in a survival context, most of
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them do not consider joint models. Those that do, in their turn, do not take into account

what is considered a core feature of the quality of life, which is the change of health

states. With that in mind, the model in (1.3) can easily incorporate level states that

change at any given time. This is done in Chapter 5.

All inference procedure described in the thesis is based on the Bayesian paradigm. The

sampling of the posterior distribution is obtained via MCMC methods.

The theory in this introduction is meant as a general version and each chapter of this

thesis focuses on its own subject. This dissertation has been organized in four reports

format, which means that Chapters 2 through 5 are meant to be standalone texts. As

a consequence, the base theory is presented in each of the chapters, therefore some

discussions are repeated in them. In every chapter of this thesis we use comparison

metrics based on the ideas from Zhang et al. (2017) to validate the model. These metrics

are detailed in appendix Section A.2.3, and is the same for all chapters.

Some real data examples are used throughout the thesis. Each chapter briefly describes

the data sets used in them, but the following references provide deeper descriptions as

well as the context in which they were collected. The Schizophrenia data set used in

Chapters 2 and 5 is detailed by Diggle et al. (1998). AIDS data set used in Chapter 2

is detailed by DeGruttola and Tu (1994). The Liver cirrhosis data set used in Chapters

3 and 4 in Andersen et al. (1993) and the diarrhea study with Brazilian children in the

state of Bahia used in Chapter 5 is detailed in Barreto et al. (1994).
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Chapter 2

Joint Modeling of Time-to-event and Longitudinal

Measurements Data: A Dynamic Generalized

Hierarchical Approach

This chapter introduces a broad class of dynamic generalized hierarchical models for

jointly analyzing the behavior of a sequence of longitudinal measurements and time-

to-event data. The distribution of the time-to-event is conditional on the filtered

longitudinal measurements and follows a dynamic generalized hierarchical structure.

This class includes and extends a number of specific models proposed in recent years.

Bayesian inference is implemented via Markov chain Monte Carlo methods. The proposed

methodology is applied to the analysis of clinical trial datasets on schizophrenia and AIDS.

2.1 Introduction

Over the past decade joint models for sequences of longitudinal measurements and

time-to-event data have become a valuable tool in chronic diseases studies. Many clinical

trials consist of following up a group of individuals over time to examine the relationship

between one or more explanatory variables (longitudinal measurement) and the risk of

developing a disease (time-to-event) (Ibrahim et al. 2010).

In practice, what is being modeled are situations in which individuals are observed

and monitored on a regular or intermittent schedule until the event’s occurrence. For

example, in HIV infected patients clinical trials a natural biomarker for the evolution

of the disease is the CD4 lymphocyte count. This biomarker is measured intermittently
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and its relationship with time to seroconversion or death is of interest.

Wen and Menggang (2014) mention three classes of joint models which can be grouped

into two main families which are widely used in practice. One is the shared random

effects (SRE) class of models, which includes characteristics of the longitudinal marker

as predictors in the model for the time-to-event data. This family mainly has three

alternative approaches. The first models the time-to-event data given the longitudinal

markers, the second models the longitudinal markers given the time-to-event, and the

third models both components given a common term. A less well-known approach is the

joint latent model family, which involves assuming that the population is divided into

homogeneous groups of individuals with respect to both the marker trajectory and the

event risk, as in Proust-Lima et al. (2014). This class of models will not be pursued

here. Instead, in this thesis, a multivariate model is proposed, but due to its complexity

most of the work is focused on a hierarchical univariate model, which fits in the SRE class.

Both families of joint models consider that the observations from all individuals are not

independent and identically distributed, indicating that each individual shares a common

average, being disturbed by some noise per individual usually known as a random effect.

Under the parametric and semi-parametric approaches, a wide class of models was

proposed by Henderson et al. (2000), whose inference was developed via the EM

algorithm. Alternatively, Guo and Carlin (2004) provide a Bayesian model in the

class of SRE models. The hierarchical model developed by Guo and Carlin (2004)

contains intercept and slope coefficients and the linking of sub-models is done through

latent parameters common to both components describing a global hierarchical regression.

Almost all recent developments in joint models assume a longitudinal Gaussian model for

the marker and a right-censored survival model for the time-to-event component (Brown

et al. 2005; Chi and Ibrahim 2006; Ibrahim et al. 2010; Guo and Carlin 2004). However,

in most studies on chronic diseases, the variable for prediction does not always follow a

Gaussian distribution. The repeated measurements, say single or multiple progression

markers of a disease, are continuous or discrete random quantities. On the other hand,

13



the time-to-event data can be of a different nature: single or multiple events, recurrent

events, competing risks, etc. Nevertheless, our contribution covers the case of a single

marker of disease progression and a single event time. Our effort concerns the joint

distribution of all components of the model. These include the time-to-event component

as well as the longitudinal component and all the uncertainty presented. In short, this

means that the event time is described conditional on parameters and on the longitudinal

component, which in turn has its own parameters.

When this type of data is modeled, the reason for the probabilistic description of the

longitudinal markers is that they are assumed to be measured with error. Our purpose

is to decompose this marker measurement to obtain its filtered unobservable true

trajectory. Following that, some adequately chosen (preferably smooth) terms of this

sub-model are used as inputs in the survival model. These terms will be referred to as

link components throughout the text. It will be shown that some models in the literature

can be written as the proposed model when a convenient link is used. Note that if the

marker measurement has no uncertainty, the survival data can be analyzed as simply as if

it had known covariates, and any standard model can be used, for instance the extended

Cox model Rizopoulos (2012, Chapter 3). Thus, given the link, the time-to-event model

is completely defined.

The longitudinal process is described given a temporal trend. In this context, this trend

is usually modeled globally, that is, through fixed parameters of a polynomial (Chi

and Ibrahim 2006) or spline (Brown et al. 2005) component. Instead, we propose a

dynamic polynomial trend, i.e., the parameters evolve over time, which determines a local

temporal trend. An important advantage of this trend description is that the proposed

model allows the prediction of survival probabilities based on dynamic prediction, i.e.,

dynamic risk predictions per individual in the sense of Rizopoulos (2011).

We explore the incorporation of the temporal trend into the sub-model in two ways.

The first is the Gaussian multivariate version, whose general construction includes

regular follow-up times for each individual. Although it is theoretically feasible, its

computational cost is high. In the second approach, we come closer to models more
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used in practice by making simplifying hypotheses that yield a hierarchical dynamical

model (Gamerman and Migon 1993). Furthermore, the hierarchical version can be

easily extended to response variables that belong to the exponential family (Paez and

Gamerman 2011), which is not usually seen in the context of the SRE class. In short,

the model we are proposing is an extension of the Guo and Carlin (2004) model.

In order to compare the proposed model with others in the recent literature, we apply

the comparison criterion introduced by Zhang et al. (2017), useful to measure the

contribution of the longitudinal component.

The applications presented in this article came from the studies of Henderson et al.

(2000) and Guo and Carlin (2004). The former authors investigated the relationship

between the patient’s mental state measured through a score from a weekly follow-up

and the times of events for reasons related to the mental state score. The AIDS dataset

was analyzed in Guo and Carlin (2004) and Rizopoulos (2011) and both work with

transformed data. We use the dataset to illustrate the proposed method and work with

the data in the original scale, which is an advantage as will be shown.

We can extend the idea of joint approach to other types of models, such as frailty, cure

rate and multistate models. The thesis is divided into four sections. Section 2.2 presents

the structure of the model. Section 2.3 discusses the inference procedure. In Section 2.4

of the thesis appendix a small simulation study is presented. In Section 2.5, two datasets

are analyzed using the proposed methodology. Finally, Section 2.6 concludes the thesis

with a discussion and remarks on future works.

2.1.1 The Dataset Structure

The main data to be modeled are time-to-event observations, which is right-censored. In

order to explain and predict these times, suppose that covariates are available for each

individual. One of these covariates is observed and monitored on a regular schedule until

the occurrence of the event and is assumed to be measured with error. As a way to deal

with this, a longitudinal component is added to the model.
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This component, in turn, also has available covariates which are used to better model

its measurement error. Any given covariate can be used in the time-to-event part, the

longitudinal part, or both.

An example, as is seen later in Section 2.5.1, could be a patient with Schizophrenia who

is followed up until he experiences a crisis. In each interview, this patient fills up a

form which will be used to constitute a score (called PANSS1 score) which quantifies his

syndrome in a scale. In this example, the PANSS score is the longitudinal measurement

and the crisis is the event.

2.1.2 Notation and Definitions

Suppose that we have a set of N individuals followed-up and measured with respect

to one marker over a time interval (0, τ ], where τ is the maximum event time. Those

measurements may be collected at different time points for each individual and provide

information for the measurement until the occurrence of the event of interest.

Specifically, the observed time of the event of interest, called time-to-event, for the ith

individual is defined by Ti = min(T ∗i , Ci), where Ci denotes the censoring time and T ∗i

denotes the true event time.

Formally, the sequence of scheduled dates, sij, must satisfy the relationship

0 ≤ si1 < si2 < . . . < siJi ≤ ti, where ti is the observed value of Ti and Ji is the

number of follow-up measurements for the ith individual, j = 1, . . . , Ji.

Let di represent the indicator of right censoring for the ith individual, that is di = 1 if

individual i experiences the event at time T ∗i ≤ Ci and di = 0 if it is censored.

Finally, we denote density functions by [ · | · ], which represents a conditional density

function.

1Positive And Negative Syndrome Scale
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2.2 Joint Model Buildup

The model involves two components. The first determines how the covariates influence

the time-to-event component and the second is the model for the marker measurement.

This component will be modeled with different levels of complexity.

2.2.1 Modeling the time-to-event data

The model for the event time is done as in Guo and Carlin (2004), but rewritten in

hierarchical form, as follows:

Ti|r, ξi ∼ W(r, exp{X ′1iβ1 + ξ′iα}),

log(hi(t)) = Z ′iγi, Z ′i = (X ′1i, ξ
′
i) ,

γi = γ + ζi, ζi ∼ N (0,Σζ), i = 1, . . . , N.

(2.1)

Note that this model is equivalent to modeling the hazard function for each individual

hi as a relative risk function, that is, hi(t) = h0(t) exp(Z∗′i γ
∗
i ), where h0(t) is some

baseline hazard function and Z∗′i γ
∗
i is the same as Z ′iγi, only without the first term. The

time-to-event of the ith individual follows a parametric Weibull hierarchical regression,

denoted by W(·, ·), whose relative hazard is described by a multiplicative model, with

r > 0 as the shape parameter and h0(t) = rtr−1 as the Weibull baseline hazard function.

The regressor Zi is a (q1 + q∗)-dimensional vector. This term includes two blocks.

The first is composed of q1 regressors, denoted as X1i, assumed to be known without

measurement error. We include the index 1 to the covariates assossiated with the

time-to-event sub-model. The second is an arbitrary q∗ dimensional latent term ξi, which

can be understood as a placeholder related to a longitudinal marker taken over time.

This placeholder is chosen by the researcher and different choices, such as longitudinal

mean or median, imply different models. We discuss this in more details in Section 2.2.1.

The regression coefficient γ ′i = (β′1i,α
′) is a (q1 + q∗)-dimensional vector capturing the

effect of X1i and also ξi. This term is decomposed as the sum of a common mean γ,

with a individual-specific latent component, ζi, which is often called the frailty term, is

normally distributed with zero mean and variance Σζ .
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Consider that the measurements for each individual may occur at different follow-up

times, so irregularly spaced interview dates should be considered. For this, let δij =

sij − si(j−1), j = 1, . . . , Ji be defined as the time between consecutive visits. The situation

where all Ji are potentially different for each individual will be called the non-regular

case. In contrast, the regular case is defined as the case where Ji = J,∀i, although the

times sij need not be the same.

The Latent Term ξi: The Link Component

We address now the flexibility of the proposed model through the choice of the ξi

term. This term carries the information of one measurement taken over time, called the

longitudinal measurements. A common strategy is to model this measurement, as it is

assumed to be taken with error, and use the random effect or the average trajectory in

ξi, which is generally the linear predictor of the longitudinal model. For non-Gaussian

longitudinal outcomes a transformation of the average must be used in ξi. However, the

proposed method has a wider range of possibilities, and the researcher may choose the

terms which make the most sense to their study. In this chapter the average trajectory

will be used and in one of the applications an alternative is presented.

Our proposal is focused on the modeling this measurement. For this we assume a dynamic

linear structure. Thus, the model is supported by the dynamic linear model (DLM) theory

in Migon et al. (2005). This allows for the forecasting of yet unattained values in a natural

and probabilistic fashion, according to DLM theory. These predictions can be used in turn

to predict future failure probabilities, which is comparable to Rizopoulos (2011) and Guo

and Carlin (2004).

2.2.2 The Multivariate Longitudinal Model

This model assumes that the measurement markers are Gaussian and independent across

individuals. A multivariate polynomial dynamic linear Gaussian model is proposed

stacking the individuals’ measurements at the visit j in a vector assuming the regular case.

Let yj be an N -dimensional vector, yj = (y1j . . . , yNj)
′ representing the N individuals

evaluated at visit times j = 1, . . . , J . The vector yj potentially contains missing
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information, so we call Λ = (λ·1, . . . ,λ·J) the true unobserved N ×J-dimensional matrix,

so that each λij is the expected value of each yij. We represent the N -dimensional jth

column of Λ as λ·j.

An intuitive choice to use as ξi in (2.1), i.e. the term which connects equations (2.1)

and (2.2), is λi·, that is, the J-dimensional ith row of Λ, which represents the average

trajectory per individual at all observed times. Consequently, q∗ = J in (2.1). Note that

this implies that all individuals contribute with all J times to the hazard function, which

may not be compatible with the reality of the study, since some individuals have their

event before the end of the study. This means that the interview times after their event

times have no observed value. By treating these interviews as missing data, Bayesian

inference can easily incorporate their uncertainty into the hazard function, and their

predictive distribution does not have a strong influence on the final result.

A normal multivariate DLM with a polynomial component of order p and q2 covariate

effects associated with the jth interview for all individuals jointly is given by

yj | λ·j = λ·j + εj, εj ∼ N (0,Σ),

λ·j = F ′θj,

θj = Gjθj−1 +wj,wj ∼ N (0,W ),

θ0 | D0 ∼ N (m0,C0), j, . . . , J, (2.2)

where θ′j = (µ′j,β
′
2j) is a (p + q2)N -dimensional column vector and consists of the effect

of the elements of F for all individuals; the term µj is a pN -dimensional vector describing

the polynomial effect, and the term β2j is a q2N - dimensional vector describing the

covariates effects. These terms are allowed to evolve smoothly over time, according to

the evolution equation.

The θj evolution equation defines a multivariate dynamic linear model with quadruple

{F ,Gj,Σ,W } structure based on West and Harrison (1997).

The component F is a N(p+q2)×N design matrix and contains components representing

hierarchical, temporal and fixed effects. More specifically, F ′ = blockdiag{F ′i}, where
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F ′i = (e′p,X
′
2i) and the term ep = (1, 0, . . . , 0), as a p- dimensional vector. The term X2i

is a q2- dimensional vector.

The (p + q2)N × (p + q2)N -dimensional transition matrix Gj is obtained based on

δij, which describes the time span between two consecutive appointment schedules for

individual i. At j = 1 the appointment scheduled is si0 = 0, and δi1 = si1. Specifically,

Gj = blockdiag {diag(Lp(δij), Iq2×q2)} , where Lp(δij) is a p × p matrix in which the

diagonal elements are all equal to 1 and those above the diagonal are δij. This block

diagonal transition matrix is defined for each individual. For instance, with p = 2, for

individual i at interview j, the transition matrix is an upper triangular 2 × 2 matrix

L2(δij) with elements a11 = a22 = 1; a12 = δij; a21 = 0.

The terms Lp and ep ensure that a polynomial model of order p is recovered. The term

Iq2×q2 indicates that the covariate coefficients follow a random walk evolution but can

also be fixed throughout time. Many alternative evolution’s structure can be considered

as can be seen in Section 2.5.

The covariance matrix Σ in the multivariate proposal leads us to estimate the very dense

N×N matrix with N(N +1)/2 free unknown parameters. To work around this difficulty,

we will require that a structure be imposed on the elements of Σ and some restrictions

must be assumed. This point will be taken up later.

The last term W defines the (p + q2)× (p + q2) covariance matrix with elements on the

diagonal associated with the variance related to polynomial and covariates effects. Thus

W = blockdiag{W p,0q2×q2}, specifically W p = diag(Wp) is a p-dimensional matrix in

which each element is associated with the polynomial effects and the term 0q2×q2 is a

q2 × q2 matrix for the covariates effects and defines the coefficients as fixed, i.e., we

set the last q2 variances of W to zero. Then β2j are constant and the coefficients are

parameterized as a fixed linear function recovering the longitudinal part as is widely used

in literature.

At time j = 0, define the initial prior information θ0 | D0 ∼ N (m0,C0), for
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known m0 and C0. The term Dj contains all the information collected until time j,

Dj = {Dj−1 ∪ yj} including all individuals, for j = 1, . . . , J. The initial information is

summarized in D0, containing all hyperparameters associated with the prior distributions.

Note that the term F ′θj represents the mean trajectory of all individuals at time j.

Furthermore, given ξi, the failure time ti in (2.1) is conditionally independent of yij.

This means that changes in the modeling of yij influence the time-to-event model in a

filtered manner through the appropriate ith block of F ′θj when ξi = λi·.

Returning to the dense Σ matrix with many different and non-null elements, we need

to take care of its structure. To do that, we assume the same follow-up times for all

individuals sj with J visits, which is theoretically restrictive, but is not unusual to find

in practice. This allows us to establish a single common representation of the transition

matrixGj at visit j for all individuals, which leads to a common θj term for all individuals.

A direct consequence is the sharing of information of all individuals for the estimation of

θj, where the expected value of each individual yij can be obtained simply with a random

effect. This is ultimately equivalent to Σ being a diagonal matrix.

Common Evolution θj

The change in the modeling structure of the component related to the single marker

forces the term θj to be common for every individual.

Note that now in equation (2.2), the term Gj is a (p + q2) × (p + q2) transition matrix

and is the same for all individuals; the θj component is a (p + q2)-dimensional vector

capturing the effect of the elements of F i; the perturbation wj is a (p + q2)-dimensional

vector following a zero mean multivariate normal distribution with diagonal covariance

matrix W ; the other terms coincide with the previous Section 2.2.2. Furthermore, note

that what once had dimension N(p+ q2) now has dimension (p+ q2).

One can see that the joint model is simple, since it is constructed as a relative risk Weibull

regression model of the time-to-event data, conditional to a latent longitudinal dynamic

linear Gaussian model. A powerful feature of this model is that the SRE class of models
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presented in Ibrahim et al. (2010), Henderson et al. (2000), Guo and Carlin (2004) and

Rizopoulos (2012, Chapter 4), can all be written as special cases of it. In Section A.2.1

of the thesis appendix we discuss how these cases are recovered using our proposal.

Considering the regular case, we present an extension of the model in case the longitudinal

marker is not normal.

Hierarchical Dynamic Generalized Model

A hierarchical structure is commonly used when modeling this type of longitudinal

variable, adding a random effect per individual to λij, say vi. This term ensures that

the mean trajectory is different between all individuals beyond the covariates in the Fi.

Also, this makes the proposed model comparable with standard models in the literature.

Usually, models assume that the mean trajectory g-transform (i.e. the linear predictor

λij) is some continuous function of time which has been observed at a finite set of points,

thus it is usually modeled as a Gaussian process (Henderson et al. 2000). We do not go

that far and instead do not make any assumptions beyond what is observed other than

they are Gaussian at those specific time points.

Notice that because of the change of dimension of Gj and consequently θj, the

unidimensional λij term is now modeled individually. Also, it becomes more practical

only to use F i multiplied by the common term θj to model λij, instead of using all

of them in a single equation through F multiplied by a huge N(p + q2)-dimensional

θj. Theoretical discussions on this can be seen in Ibrahim et al. (2010) and Rizopoulos

(2012, Chapter 2). This addition is applied in the context of the model described below.

Suppose that the density functions of the outcomes yij are conditionally independent and

come from the exponential family of distributions, denoted as Ef. The model for the

observations yi1, yi2, . . . , yiJ for the ith individual, at times si1, si2, . . . , siJ is defined as the

hierarchical generalized dynamic linear model to model the longitudinal component and
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it is given by

yij ∼ Ef(ηij, ψ), g(E(yij | ηij, ψ)) = λij,

λij = F ′iθj + vi, vi ∼ N (0, V ),

θj = Gjθj−1 +wj, wj ∼ N (0,W ),

θ0 | D0 ∼ N (m0,C0). (2.3)

Note that equation (2.3) differs from (2.2) in that the former is a univariate hierarchical

form while the latter is a multivariate Gaussian representation. To put it more formally,

[yij | ηij, ψ] = b(yij, ψ) exp(ψ(yijηij − a(ηij))), with mean E(yij | ηij, ψ) = g−1(λij),

which is assumed to be some twice-differentiable function of λij, where ηij and ψ denote

the natural and dispersion parameters in the exponential family, respectively. The

terms a(·), b(·) are known functions specifying the member of the exponential family.

Different choices for these functions include the Binomial, Poisson, Gamma, and Normal

distributions among others (van den Hout and Muniz-Terrera 2016).

We complete the specification of the first level by defining g(·) as a known monotonic link

function. The latent term λij is a time-varying component for each individual, modeled

via the dynamic linear model with regression components associated with the effects θj,

which is allowed to evolve smoothly over time. The other terms coincide with the previous

longitudinal Gaussian model (2.2). Here, the reader can easily verify that model (2.3) is

a special case of equation (2.2) under the regular case, when the Gaussian family is chosen.

In many applications, the individuals present highly nonlinear longitudinal trajectories,

so it is advisable to consider flexible time functions to describe them. Often this is done

via high-order local polynomials or splines. It is well known, that a dynamic polynomial

model is equivalent to polynomial splines (Wahba 1978; Biller and Fahrmeir 1997).

The link component between the longitudinal and survival processes, ξi, can be achieved

in many alternative ways beyond λi·. Some authors, like Ibrahim et al. (2010) and

Rizopoulos (2012, Chapter 5), link these components through the average longitudinal

trajectory, while others link them through a latent stochastic dependence, such as a latent

zero-mean bivariate Gaussian process as in Henderson et al. (2000). Many alternative are
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present in Rizopoulos and Ghosh (2011). The link component between the two sub-models

is very flexible in this model. Exploring this flexibility, though potentially powerful, could

add much more complexity to the model description and will not be discussed further in

this work.

Joint Distribution and Likelihood Function

Let us denote the available information as {yij, ti, di; j = 1, . . . , J ; i = 1, . . . , N}. Then

the joint density can be written as [yij, ti, di | Θ] = [ti, di | λi,Θ][yij | λi,Θ] and the joint

likelihood of the joint dynamic hierarchical model (2.3) is

L(Θ | y, t,d) =
N∏
i=1

[ti, di | ξi,γi, r][γi | γ,Σζ ]

×
J∏
j=1

[yij | λij, ψ][λij | θj, V ][θj | θj−1,W ][θ0].

We denote the complete unknown parameters vector by Θ = {ψ,Λ,θ, V,W ,Σζ ,γ, r}.

2.3 Inference

In order to complete the requirements for Bayesian analysis, prior distributions must be

defined. In this context, we will be restricted to standard proper prior distributions, with

hyperparameter values chosen so that the priors have minimal impact relative to the data.

The term ψ in (2.3) is an uncertainty related to the longitudinal measurement and in the

Gaussian model this term is denoted by σ2. We use the inverse Gamma prior distribution

IG(ag, bg), where ag, bg are known hyperparameters for the variance components {σ2, V }.

To W and Σζ matrix, we use inverse-Wishart, IW(R, g) scale matrix R and g degrees

of freedom.

To reduce notation of the posterior distribution, we define the vector θ′ = (θ′1, . . . ,θ
′
J)

which represents the latent terms that drive the system evolution. As already defined

in equation (2.3), the first p components of each θj is time dependent while the last

q2 components are time-invariant and follow a N (mβ,Cβ). For the parameters γ ∼

N (mγ,Cγ) related to the regression in the survival sub-model, we use a multivariate

normal distribution with mean mγ and variance Cγ. Considering the comment about
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estimating the shape parameter r presented by Guo and Carlin (2004), we used r ∼

Exp(c), where c = 0.1 in the applications. This prior distribution is slowly decreasing on

the positive real line. In our examples, the other hyperparameters were chosen to represent

fairly vague prior information, in particular the hyperparameters of inverse Gamma priors

are given by ag = bg = 0.01 which has infinite mean and variance. For the multivariate

Normal distribution the mean vector as 0 and covariance matrix diag(100) and for the

inverse-Wishart the hyperparameters are R as diagonal matrix with 100 in every entry

of the diagonal and adequate dimension for the problem, i.e. p and g = 10.

2.3.1 Posterior Inference

Since the {F i,Gj, V,W } quadruple depends on unknown parameters, a sequential

analysis of θ would not produce an adequate inference (not completely specified).

Instead, all unknown components of the model must be treated as parameters and an

adequate inference procedure is to find their posterior distribution.

Assuming independence in the prior distributions, the posterior distribution is given by

[ψ,θ, V,W ,γ,Σζ , r | DJ ] ∝
N,J∏
i,j=1

b(yij, ψ) exp(ψ(yijηij + a(ηij)))

∝ [λij | θj, V ][θj | θj−1,W ][θj+1 | θj,W ]× (rtr−1i exp(Z ′iγi))
di exp(−

∫ ti

0

hi(u)du)

× [γi | γ,Σζ ][ψ][V ][W ][Σζ ][γ][r][θ0], (2.4)

where b(·, ·) and a(·) characterize the distribution in the exponential family and ψ is the

respective dispersion parameter. Since the joint posterior distribution in (2.4) does not

have a known closed form, we propose the use of MCMC methods to obtain samples

from it. The main concern is to sample from the full conditional density of Θ, which also

does not have a closed form.

Here we present the inference scheme to obtain posterior distribution samples for the

unknown quantities in the model based on our joint model defined in (2.1) and (2.3).

Formally, we used equations (2.1) and (2.3) to find the full conditional density.

Implementation of the Gibbs sampler is straightforward. Let [θj | DJ , ·] denote the
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distribution of θj given the remaining parameters, for example. Then at each iteration of

the Gibbs sampler with Metropolis steps, we proceed as follows:

• Sample the conditional density of θj from conditional density θj | θ−j,DJ , · ∼

N ((NV −1 + |W |−1)−1(|W |−1Gjθj−1 + V −1
∑N

i=1 λij), (NV
−1 + |W |−1)−1);

• Sample W from parametric model W | DJ , · ∼ IW (R + Ĥ , g + p + J), where

hj = θj −Gjθj−1, Ĥ =
∑J

j=1 hjh
′
j;

• Sample ψ from parametric model [ψ |,DJ , ·] = IG(N+J+ag,
∑N,J

i,j (yij−λij)2/2+bg);

• Sample V from parametric model [V |,DJ , ·] = IG(N+J+ag,
∑N,J

i,j (λij−F ′iθj)2/2+

bg);

• sample Σζ from parametric model Σζ | DJ , · ∼ IW (R+
∑N

i=1 γ
′
iγi, N +g+q1 +q∗),

• Sample γ from the kernel of conditional density log[γ | DJ , ·] ∝
∑N

i=1(diZ
′
iγ −

exp(Z ′iγ)ti)− 1
2
(γ ′Cγ − 2γCmγ);

• Sample r |,DJ , · from log[r |,DJ , ·] ∝
∑N

i=1 di log(rtr−1i ) − cr +∑N
i=1−rt

r−1
i exp(Z ′iγi)ti.

In our blocked Metropolis sampling step, all proposed steps are Cauchy or (exponential)

with mean equal to the current value and variances tuned to get acceptance rates to get

around a 20-50%.

2.4 Simulation Study

To assess the performance of the proposed dynamic hierarchical joint modeling approach,

we conducted a small simulation study to investigate parameter estimation for our joint

model. We used only three scheduled longitudinal measurements for each individual

(J = 3). The measurement points used in the simulation are considered at times s1 = 1,

s2 = 2 and s3 = 3. We generated scenarios with 500 replications each with N = 250

subjects. The true longitudinal trajectory was simulated as λij ∼ N (F ′iθj, V ) where

the initial distribution of θ0 was θ0 ∼ N (m0,C0), with mean and covariance matrix

given by m′0 = (0.5, 0.001) and C0 = 10I2. The variance of the random term vi in (2.3)

was chosen as V = 2 and the vector F ′i = (1, 0) is the ith row of the design matrix,
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for i = 1, . . . , N and j = 1, 2, 3. To describe the evolution equation θj we used the

matrix Gj = L2(1) =

1 1

0 1

, for j = 1, 2, 3. The covariance matrix of the evolution

equation was chosen as a diagonal matrix with diagonal inputs W1 = 0.05 and W2 = 0.01

corresponding to the variance of the evolution level and the variance of the evolution

increasing term, respectively. Finally, the observed longitudinal data was simulated from

a Gaussian distribution with 0 mean and variance σ2 = 0.05. Note that θj = µj, i.e.

there are no covariates in this particular sub-model, so that β2j has no components.

Given ξ′i = (λi1, . . . , λiJ), the term Z ′i = (1, ξ′i) is built. We consider no covariates for the

time-to-event sub-model and set the intercept β1 = 1. Finally, the main interest in the

inference is the vector α, chosen as α′ = (0.1,−0.15,−0.05), for this vector represents

the impact of the longitudinal trajectory on the hazard function. Using these effects,

the survival function S(t) = exp
(
−
∫ t
0
h(u)du

)
is computed for each time point t. By

applying the inversion method, the survival times are generated from equation (2.1) with

parameter r = 1 associated with the Weibull baseline hazard function h0(t) = rtr−1.

Since it is not desirable to have event times much later than the last longitudinal visit,

we used the exponential distribution with mean 2 for the right censoring times, so that

we expect about 17.4% of the censored times to be above 3.5. Note that we set Σζ = 0,

which means that γ ′i = (β1,α
′), for i = 1, . . . , N . Code used for data generation can be

found in Section A.2.6.

The computational implementation is developed in the R language (R Development Core

Team 2018) running on an Intel R© i5 2300 Windows PC with 4GB RAM memory. The

prior distributions considered were described in Section 2.3. We fit our proposed model

for each simulated data set.

Table 2.1 shows simulation results based on 500 simulated data sets. The overall results of

the scenarios show that the bias of the estimated values of the variances of the longitudinal

sub-model are slightly negative in contrast to the variance of the Gaussian perturbation

of the equation for yij in (2.3), σ2 which presents positive bias. Observe that the standard

deviations of the variance terms W1,W2 can be considered high. This clearly demonstrates

that this and other aspects of the estimation need more research. Although our simulation

study was brief, it shows that these true parameter values are (approximately) recovered
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Table 2.1: Summaries from 500 simulated data sets under the proposed model (P:

parameter, True: true value, Bias: computed with the mean as the measure of location,

rMSE: root of the mean-squared error, and SD: average of the posterior standard

deviations).

P True Bias rMSE sd

α1 0.1000 0.0617 0.0712 0.0356

α2 -0.1500 0.0380 0.0533 0.0374

α3 -0.0500 0.0219 0.0416 0.0354

β11 1.0000 0.0525 0.0829 0.0642

r 1.0000 0.0258 0.0453 0.0372

V 2.0000 -0.0122 0.0230 0.0195

W1 0.0500 -0.0495 0.2303 0.2249

W2 0.0100 -0.0244 0.1027 0.0997

σ2 0.0500 -0.0136 0.2630 0.2249

by fitting our model. Other statistics such as relative variation show unfavorable results,

which leads us to believe deeper simulation studies may be required.

2.5 Real Data Analysis

The aim of this Section is to show the performance of our proposal compared with

competing models. It is also desirable to validate the modeling of the longitudinal

component through a dynamic structure in the joint model. In order to do this, we

adapted the comparison criteria of Zhang et al. (2017), which is detailed in appendix

Section A.2.3.

The dataset analyses are conducted using the R software (R Development Core Team

2018). The prior distribution specification is based on Section 2.3. The parameters

are estimated by using MCMC sampling. We ran the chain for 500, 000 iterations and

discarded the first 100, 000 iterations to avoid any transient effect. Thinning of 100 was

used to eliminate autocorrelation, providing a final sample of 4000 iterations from which

to draw posterior distributions. Convergence was verified with the diagnostics in the R

package coda (Plummer et al. 2006). Some of these convergence diagnosis are simple
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graphical ways of summarizing the data.

Computational time (calculations were done with an Intel R©i5 2300 Windows PC with

4GB memory) for the Schizophrenia dataset was approximately 4.2 minutes and for the

CD4 count dataset, around 9 minutes for each model. Model selection is performed using

the comparison criteria mentioned above.

2.5.1 Schizophrenia Dataset

The commonly analyzed Schizophrenia dataset is used to exemplify our proposed method.

Henderson et al. (2000) presented a thorough analysis of the use of the shared random

effect in joint models using this dataset.

This dataset consists of N = 150 patients who were assessed using the Positive and

Negative Syndrome Scale (PANSS). This is a medical scale used for measuring symptom

severity of patients with schizophrenic conditions. It is decomposed in three scales:

positive scale (7-49), negative scale (7-49) and general psychopathology scale (16-112)

https://en.wikipedia.org/wiki/Positive_and_Negative_Syndrome_Scale. Lower

PANSS scores indicate weaker symptoms and higher scores imply more severe conditions.

Assuming the regular situation as described in Section 2.2.1, the score is denoted by

yij and describes the mental state assessment for the ith individual at scheduled times

sj = {0, 1, 2, 4, 6, 8}. The assessments are weekly.

Chronically ill mental health patients were randomly allocated on one of the following

three treatments: placebo (1), risperidone (2) and haloperidol (3). All groups had

forcibly 50 patients in them. Other available information identifies the events due to

reasons that were thought to be related to their mental state, i.e. the event times are

collected based on the patient’s mental state. Eight weeks without news of the patient’s

mental state configure a non-informative censorship.

Since the event time can also be non-informative, in cases where the event was not

related to the individual’s mental state, a right censoring indicator was created, receiving
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the value 0 when the event is non-informative, and 1 otherwise.

Informative event times occurred for 40% of the individuals; 50% of the remaining ones

dropped out for unidentified reasons. The censoring indicator was set to 0 in these cases.
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Figure 2.1: (a) Observed trajectories of PANSS score for the 150 patients and average

trajectory (blue curve). (b) Kaplan-Meier curve for the follow-up time and 95% pointwise

confidence band.

Figure 2.1(a) shows the observed longitudinal measures plotted against time for the 150

patients included in the analysis. The heterogeneity of the patients’ PANSS score is

apparent in this plot. The smooth curve represents the average trajectory by treatment

with its confidence interval. This indicates that a random effect on the average score

might be adequate. Figure 2.1(b) summarizes the survival probability based on the

nonparametric Kaplan-Meier approach (Kaplan and Meier 1958). The filled dots on the

horizontal axis represent uncensored data.

The fitting procedure can be seen in detail in appendix Section A.2.2. Our analysis

begins by fitting the best model developed by Henderson et al. (2000) in a Bayesian setup
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to explore some aspects of our proposal. In particular, we wish to assess the added value

of incorporating a dynamic structure by comparing the contribution of the inclusion of

the latent component to explain the hazard function when such a structure is not present.

An exploration of the link component between the longitudinal and survival models can

also be performed by using components other than λij, which shows the versatility of the

model. We do not present this here, as our purpose is only to introduce the model in a

simple and intuitive way.

In order to reach this objective, we first set the evolution’s variance W ≡ 0, which

corresponds to assuming time invariance for the vector θj in equation (2.3). It is equivalent

to the model of Henderson et al. (2000) and will be denoted the global dynamic (GD)

model as a benchmark. In opposition, the proposed model is denoted local dynamic (LD).

The following Bayesian comparison criteria are used: deviance information criterion

(DIC) and logarithm of the pseudomarginal likelihood (LPML), as described in Zhang

et al. (2017), as well as their components pD and LPMLSurv|Long, which represents the

logarithm of the pseudomarginal likelihood restricted to the survival sub-model. Two

comparison metrics are derived based on Zhang’s idea of contribution differential, called

∆LPMLSurv and ∆DICSurv. They measure the contribution to the respective metrics

of adding the longitudinal measurements sub-model to the joint distribution. For further

details, see Section A.2.3 of the thesis appendix.

Both models are compared using the aforementioned criteria. According to Table 2.2,

clearly the LD model attains the largest values LPML and smallest DIC. Thus, the local

dynamic model is preferred by these methods. Note that the LPMLSurv|Long component

is very similar for both models, while the other metrics have bigger differences. This

is not unexpected, as LPMLSurv|Long measures the LPML metric for the survival

sub-model only, which is the same in both cases.

Also in Table 2.2, the value of including the temporal structure can be verified by the

∆LPMLSurv and ∆DICSurv values. These comparison criteria are consistently higher for

our proposal.

31



Table 2.2: Comparison of Bayesian model selection methods for the locally dynamic model

(LD) and globally dynamic model (GD)

DIC pD LPML LPMLSurv|Long ∆LPMLSurv ∆DICSurv ∆pDSurv

LD 336.446 331.560 -2.924 -0.478 -0.021 336.164 331.550

GD 509.368 505.015 -5.057 -0.585 -0.128 509.085 505.004

Table 2.3: Comparison of Bayesian model selection methods for the fully Bayesian model

(FullBayes) and posterior mean of the latent term model (PostMean).

DIC pD LPML ∆DICSurv ∆pDSurv

FullBayes 318.005 314.243 -2.090 317.722 314.232

PostMean 497.968 492.859 -2.938 497.685 492.849

Now we discuss the issue of choosing the link between the two components. This point

was also discussed in Henderson et al. (2000). The treatment covariate was included

both in the dynamic and survival components. To explore the possibilities, two particular

models related to our proposal were fitted; the fully Bayesian (FullBayes) model links all

the information present in the posterior distribution of ξi = λi·, the latent component of

interest. The performance of the FullBayes model was compared to a model that links

the components through E(λij | DJ), that is the posterior mean of the latent term. This

model is called PostMean.

The results of Table 2.3 heavily favor the (FullBayes) model, indicating that linking

the components by merely substituting the latent term with an estimate might mean

ignoring a great deal of information. This information difference could indicate that the

posterior distribution of the latent term might be very skewed.

Also note that the full information of the posterior of Λ carries the hierarchical structure

of the model, evidencing the borrowed strength among patients present in the common

mean score of PANSS.

In order to single out the value of the dynamic modeling of the longitudinal component,

we plotted a graphic with a comparison of the hazard functions. The average hazard

functions were plotted. This average is evaluated at every iteration of the MCMC
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Figure 2.2: Survival probabilities calculated with the posterior mean and 95% credible

interval of: solid line our proposal (LD); dashed line a survival regression without the

longitudinal process; the dotted lines model from Henderson et al. (2000) (GD).
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algorithm. Figure 2.2 shows the posterior curves with their credible intervals, where the

difference between the three survival functions can be seen. It is noteworthy that until

the third follow-up time, all the functions are roughly the same. Between times 3 and

5.5, while the solid and dashed lines decrease at approximately the same rate, the dotted

line decreases more rapidly. After time 5.5, the red (dotted) survival function decreases

so fast that it drops below even the violet (dashed) one.

One could interpret this difference by noting that since the violet (dashed) line represents

the unfiltered covariate and it evolves over time at a rate comparable to the green

(solid) line, then they must have something in common that the red (dotted) one does

not. The only difference between the red (dotted) line and the green (solid) one is the

dynamic structure of the covariate filter. A logical conclusion is that the green (solid)

line successfully captures a structure present in the actual data which makes a difference

in the long-term evolution of the survival function. This happens as a consequence of the

progressive filtering of the dynamic model.

Another important result involves the comparison of the treatment, which shows the

posterior mean of the survival probability curve conditional on the PANSS score

(joint model) compared to the survival curve without the longitudinal process. These

probabilities show evidence of the difference between the survival probability for patients

treated with risperidone and haloperidol at four months when we consider the joint model.

See Figure 2.5.1 for further details. One can see that treatment haloperidol provides

lesser risk than risperidone, but both are outperformed by the placebo. The next analysis

exemplifies the use of our proposal for count data.

2.5.2 AIDS Dataset

The number of CD4 cells per cubic millimeter of blood is widely used as a biomarker for

progression of the AIDS syndrome.

In practice, based on a high degree of skewness toward high CD4 counts (see the Figure

2.4(a)), some authors suggest the use of ya, i.e., some power transformation of the

longitudinal measurements. For instance, in the joint model specified for the shared effect
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Figure 2.3: Survival probabilities computed with the posterior mean of the parameters.

Solid line: our proposal for all individuals, dashed line: patients under treatment placebo,

dashed-dotted line: patients under treatment risperidone, dotted line: patients under

treatment haloperidol, solid line: all patients, and stepped lines: Kaplan-Meier curves.
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Figure 2.4: (a) Histogram of the observed CD4 cell counts for 467 patients. (b) Kaplan-

Meier curves for the follow-up time and 95% pointwise confidence bands.

approach, Guo and Carlin (2004) fitted the joint model using a = 1/2, while Rizopoulos

(2011) adjusted the CD4 cell counts while working with a = 1/4. We could consider an

asymmetrical distribution for this, but for now, we focus on the exponential family of

distributions.

Deciding which transformation captures the most information about the process of the

dataset is a challenge. Our objective is to show that good results can be obtained by

analyzing the data in their original scale.

Figure 2.4(a) shows the skewness toward the right in the CD4 cell counts distribution.

From the frequency histogram, it can be seen that the lower the counts, the higher the

frequency.

For the AIDS dataset, 467 HIV-infected patients were enrolled and randomly assigned

to two antiretroviral drugs: didanosine (ddI) and zalcitabine (ddC). The objective was

to compare their efficacy and safety. CD4 cell counts were recorded at five time points
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sj, j = 1, . . . , 5, representing the times: 0 (baseline), 2, 6, 12 and 18 months. We

combined a longitudinal model for the treatment with a model for the survival experience

of the patients who had failed (died) or were intolerant of the zidovudine (AZT)

therapy. Figure 2.4(b) summarizes the survival probability based on the nonparametric

Kaplan-Meier approach, where the filled dots on the horizontal axis represent uncensored

times.

We denote the CD4 count for the ith individual at time j as yij. There are four

explanatory variables which were included in the analysis: drug (ddI = 1, ddC = 0);

gender (male = 1, female = −1); previous infection at study entry ( prev = 1

when AIDS was diagnosed and −1 otherwise); and stratum (AZT failure = 1, AZT

intolerance = −1).

To show the performance of our proposal, we fit the CD4 count as a joint generalized

polynomial DLM for the biomarkers. Two scenerios under regular situations are

examined: The CD4 cells as y
1/2
ij and yij are fitted by the polynomial model assuming

Gaussian and Poisson responses, respectively.

The former is equivalent to the model developed in Guo and Carlin (2004), and the

latter is the proposed model where the data are kept in the original scale. For this, the

variance W was set to 0 at all times j = 1, . . . , J . For the survival component, model

(2.1) was used in both cases. After defining the prior distributions (see Section 2.3), we

estimate the parameters by using MCMC sampling.

Table 2.4: Bayesian model selection criteria for the dynamic longitudinal sub-model:

Poisson response (Poisson) and normal longitudinal sub-model (Normal). Metrics divided

by 10.

DIC pD LPML LPMLSurv|Long ∆LPMLSurv ∆DICSurv ∆pDSurv

Poisson 11.214 1.379 -9.093 -2.022 -0.032 10.105 1.370

Normal 21.718 12.265 -6.807 -2.024 -0.034 20.609 12.256

A similar conclusion is obtained when comparing the Poisson and Gaussian models when
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the temporal structure is described in the local sense using ξi = λiJ as a link component

between sub-models. Table 2.4 indicates that the largest values of LPML and the smallest

values of DIC are obtained when the Poisson distribution is assumed for the longitudinal

measurements in the original scale. Again, as in the last application, the difference in

LPMLSurv|Long is very small between both models, since the survival sub-model is the

same. More interesting are the ∆ metrics. ∆LPMLSurv has a slight preference towards

the Poisson model, yet the values are very small, indicating that adding the longitudinal

sub-model contributes little to the forecasting in this particular dataset. On the other

hand, the ∆DICSurv value is very large, compared with the absolute DIC metrics of the

model. This means that the longitudinal component greatly improves the model fit. Not

only that, the Poisson model is strongly preferred over the Normal one.

2.6 Discussion and Future Directions

The main novelty in this thesis is related to the modeling of the longitudinal sub-model,

using dynamic and different link components between sub-models. An important point

to discuss is the use of the forecast function as a link component between sub-models for

prediction in longitudinal data, whenever the hazard function for a individual who has

not yet failed is relevant in future times.

Thus, we proposed a new class of join parametric models for longitudinal and survival

data. Although our proposed models are a natural extension of Guo and Carlin (2004),

our proposed methods are different from theirs in several aspects.

First, the models proposed by Henderson et al. (2000) are within the static joint model

framework. Second, the proposed dynamic models allow transmitting the information

using the latent true structure equation and knowing the effect at every measured

point in time. Furthermore, this term makes it possible to filter the uncertainty of the

measures of the longitudinal part, which makes it more suitable for the survival sub-model.

Third, dynamic models provide great flexibility in modeling the longitudinal measurement

because with our longitudinal model, there is no restriction on polynomial’s order, as

shown by our examples. Fourth, we formally carried out Bayesian model comparisons
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via DIC and LPML decomposition. Fifth, the proposal shows good results when

the analysis has non Gaussian outcomes. The applications show the advantage of

including local dynamics over global dynamics. A direct future work would be to test

the forecasting capabilities of the proposed model.

About the implementation, it is important to emphasize that the algorithms when the

response variable is Gaussian was developed in R, while the analysis of count data

was implemented in Jags (Su and Yajima 2015) due to easy implementation and fast

convergence.

An important analysis that has not been done for this article is robustness verification.

All results from our simulations are from estimating models which were the same as the

generating ones. In order to verify robustness of the proposal, we need to simulate data

from other models and see how well our proposal fits these data, as well as predict them.

We expect that data generated from the models in Rizopoulos (2012, Chapter4) and Guo

and Carlin (2004) would be well estimated with our model, since these models are special

cases of our proposal, as can be seen in Section A.2.1 of the thesis appendix. However,

this actual verification has not been performed for this article.

In this context, recently it has become impossible to ignore the power of analytical

approximation of posterior distributions. One cannot ignore that MCMC methods give

approximate results to integrals, but numerical INLA in Rue et al. (2009) has been

producing impressive results with insignificant computing times. Our intention, then, is

to not miss the opportunity in our approach.

The model presented here can be seen as a generalization of what is available in the

literature so far. Much has been developed to extend particular cases of the available

models. This means that many of these can be adapted for use with the proposal here.

We intend to do so, hoping that it can be done with less effort since it is just an adaptation.
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Chapter 3

A flexible joint model for time-to-event and a sequence

of longitudinal biomarker data

In this chapter we introduce a class of full dynamic hierarchical joint models that

relates the simultaneous behaviour of a sequence of longitudinal measurements and the

time-to-event for each individual. To allow for greater flexibility, the key components of

the model are treated dynamically. For the individual-specific longitudinal evolutions we

use a polynomial generalized hierarchical approach while a semi-parametric approach is

used for the event time, both of them dynamically structured. This chapter presents a

theory which is well established in a survival model context and inserts it when modeling

the event time jointly with a stochastic longitudinal component. The advantage of doing

this comes in the form of great versatility in structuring the baseline hazard function.

The estimation is done under the Bayesian paradigm using MCMC methods.

To compare models, metrics are developed, with a similar logic seen in Zhang et al.

(2017), based on the decomposition of the DIC and LPML allowing to determine the

relevance and contribution of the longitudinal trajectory to the model; the performance

between the proposed model and a standard model is compared.

The methodological novelties are illustrated through an extensive simulation study and

an application on real liver cirrhosis data. The results show the gain of the use of our

proposed model.

40



3.1 Introduction

In many medical trials where the time span before an important event is of interest, the

individuals go to repeated interviews or appointments until such an event happens. Such

studies are commonly known as follow-up studies. In these interviews, measurements are

taken, which are assumed to be related to the studied event, and are commonly referred

to as longitudinal measurements.

Many statistical models have been developed for this type of data and are known as

joint models. This constitutes a very active area of statistical research that has received

a lot of attention in the recent years. In this context the seminal papers of Faucett and

Thomas (1996) and Wulfsohn and Tsiatis (1997) introduce what could be nowadays

called the standard joint models to treat longitudinal measurements with a survival

dataset. Numerous papers have appeared proposing several extensions focused mainly

on the mixed model for the longitudinal data and relative risk model for the time-to-event.

Although the standard joint model, i.e. the model proposed in Ibrahim et al. (2010),

is an extremely powerful tool for fitting and predicting there are some gaps in the

literature. For example, modeling the temporal evolution of the data via DLM could

be an advantage. In this context, under a parametric approach, chapter 2 develops

a dynamic model to treat the longitudinal markers. Now we take another look at

the time-to-event sub-model by proposing a semi-parametric approach. This not

only provides more flexibility to the baseline hazard function, but it also allows for

some or all the covariate effects in the hazard function to vary over different time intervals.

In particular, a piecewise exponential distribution is used, which may have a temporal

dependence structure. The hazard function may be influenced by the longitudinal markers

differently at each interval, and this effect might also have a temporal dependence. This

proposal provides medically relevant summary measures, which will in fact help accuracy

for the decision making process. A consequence of this choice of baseline hazard function

is the natural challenge of the choice of that structure. Two forms were taken in this

work and are compared with benchmarks in the literature, namely the Markovian process
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(Gamerman 1991) and the Gamma process presented in Nieto-Barajas (2002).

Even thought the example in this chapter is based on health research, the model is

proposed in a very general context being usable in many areas of research, such as

sociology, civil engineering, petroleum engineering, industry, economics, social dynamics,

education, epidemiological studies among others. For instance, same illustrative examples

can be found in Rizopoulos (2012, Chapter 1).

This chapter is organized as follows: the proposed model is introduced in Section 3.2 and

the inference procedure is presented in Section 3.3. The new methodology is illustrated

with a simulation Section 3.4 and the analysis of real data involving patients diagnosed

with cirrhosis in Section 3.5. Finally, in Section 3.6 some conclusion and discussion about

the proposed model are drawn.

3.2 Model

The proposed joint model is defined by two sub-models which are linked by some

components present in both of them. This link term will be called bridge component. To

better understand the model, we first present the data required by it and notation used

throughout the chapter.

Suppose a set of N individuals are followed-up and measured with respect to a single

marker over the study time length interval [0, τ ∗), where τ ∗ is the maximum dropout

time. Those measurements may be collected at different time points for each individual

until the occurrence of the event of interest.

The survival data usually, called time-to-event, consists of the time until the occurrence

of an event. It is denoted by Ti, i = 1, . . . , N , for the ith individual and is defined by

Ti = min(T ∗i , Ci), where Ci denotes the censure time and T ∗i denotes the true event time.

Let di represent the realization of the random variable Di which is an indicator of right

censoring for the ith individual, that is di = 1, if individual i experiences the event

T ∗i ≤ Ci and di = 0, if it is censored. The time-to-event for each individual is assumed
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to be influenced by some regression variables one of which, called bridge, is related to a

longitudinal measurement of that individual.

The longitudinal data consist of observed repeated measurements, denoted by yij, for

each individual i in the study. Let its respective random variable be denoted by Yij.

Each individual is followed up in J determined interview dates denoted sij, j = 1, . . . , J .

We denote the vector Y i = (Yi1, . . . , YiJ). Missing-at-random data may occur and the

respective yij for the missing interview sij are treated as an unknown quantity and can

be inserted into the parameter vector of the model.

It is important to note that the sequence of scheduled dates, sij, must satisfy the

relationship 0 ≤ si1 < si2 < . . . < siJ ≤ ti, where ti is the observed value of Ti.

For simplicity, all data considered in this work are assumed to be regular. That means

that all individuals have the same number of interviews. Thus the situation where the

number of visits are potentially different for each individual will be called the non-regular

case. The extension to the non-regular case can be developed in a future work through

Gaussian processes (Henderson et al. 2000).

Next the two sub-models will be defined. First, the time-to-event model, then the model

for the longitudinal response.

3.2.1 Semi-parametric survival model formulation

The survival data is modeled using a flexible piecewise exponential class of distributions

(PE) (Ibrahim et al. 2004, Chapter 3). It is reasonable to assume a time structure for

the hazard function values, since any true hazard function is probably a smooth function

of time, thus two intervals in time would probably not have very different values of the

function, which can be intuitively modeled by a time dependence. The procedure to

understand the piecewise exponential class consists of the segmentation of the time axis

in K disjoint intervals determined by the partition τ = {0 = τ0, τ1, . . . , τK < ∞} in

R+, where τK > Tmax = max{t1, . . . , tn}, that is, τK is larger than the largest observed

time. To denote in which interval the event times fall, we define the variable Ik = (τk−1, τk].
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In Rizopoulos and Ghosh (2011) an argument is made that the knots positions

τk, k = 1, . . . , K, will affect the smoothness of the marginal survival function S(t). In

this work, once K has been chosen, we divide the time axis in K equally long intervals.

The choice of the number of intervals K is crucial and has been widely discussed in the

recent literature (Harrel 2001; Rizopoulos and Ghosh 2011). We take advantage of the

inclusion of the longitudinal sub-model in order to deal with this issue. Assuming that

our objective is to know the effects of J interviews, we consider J as a lower bound for

K. On the other hand it is undesirable that K grows too large, as this increases the

number of parameters to estimate. This will be further discussed later.

One way to model the hazard function h(t) is to represent it by a log-linear function

of a linear regression whose intercept may be interpreted as the log-baseline hazard

function log(h0k), k = 1, . . . , K. This regression’s covariates may be decomposed into

a set of q1 known covariates X1i and one element of the q∗-dimensional latent term

ξi = (ξi1, . . . , ξiK)′ which carries the filtered information from the longitudinal sub-model.

Define the effects β1 relative to X1i and αk to ξik.

Formally, we assume N observations, each potentially right censored, and fixed and known

partitions τ . Then, with a fully specified hazard function, the random variable time-to-

event has a PE distribution in ∪kIk given by the model:

Ti | ξi ∼PE[hi(· | ξi), τ ],hi = (hi1, . . . , hik, . . . , hiK);

log hik(t | ξi) = Z ′ikγk; k = 1, . . . , K,
(3.1)

where Zik and γk are (1 + q1 + 1)-dimensional vectors. Vector Zik = (1,X ′1i, ξik)
′ unites

all regressors, and vector γk = (log(h0k),β
′
1, αk)

′ includes all the effects of Zik. The

representation of the hazard function is rewritten as:

log hik(t | ξi) = log(h0k(t)) +X ′1iβ1 + ξikαk; k = 1, . . . , K. (3.2)

Note that the covariates are included as it is assumed that the hazard function is not the

same for every individual, and these differences are explained by Zikγk. Additionally, it

is possible to include a frailty term to expand on this notion, although this has not been

44



done in this chapter.

In order to complete the sub-model specification. We consider the dependence of the γk

over time. The dynamic part is given by

γk = G(∆)γk−1 + ωk, ωk ∼ N (0,Ω),

γ0 | D0 ∼ N (M0, C0).
(3.3)

G(∆) is the system evolution of the interval Ik and ∆ = τk − τk−1 defines the constant

length of the intervals. One can see that the first equation in (3.1) and the first equation

in (3.3) when put together is a non-Gaussian non-linear dynamic model as described

by West et al. (1985). Such a survival analysis has been done in Gamerman (1991). In

the remainder of this chapter, only the baseline hazard function and the effects αk are

modeled as being time-variant. For that purpose the variances relative to β1 in Ω must

be set to 0 and its respective blocks of G(∆) to an identity block. We allow αk to evolve

over time, since we expect that the filtered information of the longitudinal measurements

should correspond to its respective interval. In other words, we expect that the kth

longitudinal measurement is only influential at the kth interval.

Alternatively, h(t) can be written as hik(t | ξi) = h0k(t) exp{X ′1iβ1 + ξikαk}, so that

h0k(t) can be modeled in its original scale. Since this function is constant by parts, it

is only necessary to describe the joint distribution of the values they assume at every

interval. Although the simplest model would consider them to be independent, we can

describe more complex structures.

Consider a Markovian structure for h0k|h0(k−1) as a Gamma Process, based on Nieto-

Barajas (2002). In short the Gamma process starts with h01 ∼ G(a1, b1) and define

uk | h0k ∼ Po(ckh0k) and h0(k+1) | uk ∼ G(ak+1 + uk, bk+1 + ck) where different choices

for ak, bk and ck yield different process structures. For further details, read Nieto-

Barajas (2002). Note that two dynamic structures for the baseline hazard function will

be considered in this chapter, but any dynamic structure is easy to adapt in this proposal.

Since the model is conditional to the latent term ξi, i = 1, . . . , N , we assume a

probabilistic description for this term. We further assume that this sub-model draws
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information from longitudinal measurements taken with error (Rizopoulos 2012, Chapter

1), which happen in J different times. Although ξi can be chosen to be any component

of the longitudinal sub-model, one very direct choice is the J filtered values of those

longitudinal measurements, represented by ξi = (λi1, . . . , λiJ), defined in the next

Section. In other words, ξik = λik for the sake of example.

An important detail in this model is the choice of the number of intervals K. Since

in this work it is otherwise of no interest, we force that K ≥ J . If K = J and ξi has

J components, then we can “plug” each component of the longitudinal sub-model in

the hazard function at each interval simply as a covariate. This is done throughout the

rest of this chapter. However, if K > J , then this is also possible, except that there

will be intervals whose respective component of the longitudinal sub-model have had

no measurements. This is worked around by a dependence structure, so that in those

intervals, the latent covariate borrows information from the ones adjacent to it. This

dependence structure is a dynamic model, as will be described below.

3.2.2 Dynamic modeling of the longitudinal markers

The longitudinal component is modeled as a dynamic hierarchical linear model.

Essentially, this component models a covariate that is assumed to be measured over time

with some error. To allow for flexibility, a generalized dynamic hierarchical linear model is

assumed, as described by Gamerman and Migon (1993). In mathematical terms, suppose

that the density function of the outcomes yi1, yi2, . . . , yiJ for the ith individual, at times

si1, si2, . . . , siJ are exchangeable and come from the exponential family of distributions Ef,

i.e., [yij | ηij, ψ] = b(yij, ψ) exp{ψ(yijηij − a(ηij))}, with mean E[yij | ηij, ψ] = g−1(λij),

which is assumed to be some twice differentiable function of λij, where ηij and ψ denote

the natural and dispersion parameters in the exponential family, respectively. We can

assume that yij is the covariate measured with error and g−1(λij) is its respective true

unobserved value. The terms a(·) and b(·) are known functions specifying the member of

the exponential family. Thus the hierarchical generalized dynamic linear model for the
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longitudinal component is given by

yij ∼ Ef [ηij, φ], i, . . . , N ;

g(E[yij|ηij, φ]) = λij, j, . . . , J ;

λij = F ′iθj + vi, vi ∼ N (0, V );

θj = G(δj)θj−1 +wj,wj ∼ N (0,W );

θ0|D0 ∼ N (m0,C0). (3.4)

The latent term λij is a time varying component for each individual at interview j,

modeled via the dynamic linear model, where the regression components associated to

the effects θ′j = (µ′j,β
′
2j) is a (p+ q2) dimensional vector and consists of the effects of the

elements of F i for all individuals; the term µj, is a p-dimensional vector describing the

polynomial effect and the term β2j, is a q2-dimensional vector describing the covariates

effects. These terms are allowed to evolve smoothly over time according to the evolution

equation, characterized by the matrix G(δj), which is also denoted by Gj for simplicity.

Gj and wj are explained in better detail later in this Section.

The quadruple (F i,Gj, V,W ) identifies the dynamic model, as described in West and

Harrison (1997). Here, vi represents the random effects whose variance is V . F i and Gj

are chosen to represent a second order polynomial and the covariates from the model so

that θj includes their respective effects.

The vector F ′i = (e′p,X
′
2i) is composed by the block e′p = (1, 0, . . . , 0), a p-dimensional

vector and the block X2i, a q2-dimensional vector. In summary, for the ith individual, F i

is the ith row of the design matrix with (p + q2) terms and contains components which

are multiplied by the hierarchical, temporal and fixed effects.

The transition matrix Gj whose dimension is (p + q2) × (p + q2) is obtained based on

δj = sj − sj−1, which describes the time span between two consecutive appointment

schedules, assumed to be the same for all individuals. At j = 1, δ1 is set to s1 as

s0 = 0. Specifically Gj = blockdiag {diag(Lp(δj), Iq2×q2)} , where Lp(δj) relates to the

superposition of dynamic linear models, except that the time increments is δj instead of
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1. In the special case of p = 2, which is the one used throughout this chapter,

L2(δj) =

1 δj

0 1

 .

The terms Lp and ep ensure that a polynomial linear growth model is recovered. The

term Iq2×q2 of Gj indicates that the covariate coefficients follow a random walk evolution,

but it can be fixed in time too by setting the respective block in W as a matrix of zeros.

The last term W defines the (p + q2)-dimensional covariance matrix whose elements in

the diagonal are associated with the variance related to the polynomial and covariates

effects of θ.

At time j = 0, define the initial prior information θ0 | D0 ∼ N (m0,C0), for known m0

and C0. The initial information is summarized in D0 containing all hyper parameters

associated with the prior distributions.

Note that the joint model is fully defined by equations (3.1) and (3.4) given some baseline

hazard function. Also, note that the joint model is obtained by [Ti, Di | ξi][Y i | Λ], while

observing that Ti, Di and Y i are independent given the choice of ξi. The bridge term ξi

can be any term from the longitudinal sub-model and its choice may be relevant to the

analysis, but it must make sense from a physical viewpoint. As an illustration, the choice

for this chapter is to use ξi in (3.2) as λi·, that is, the ith row of the N × J-dimensional

matrix Λ, composed of the λij terms. Then the vector λi· represents the average

trajectory g-transform (i.e. the linear predictor λij) per individual.

Note that this implies that all individuals contribute with all J times to the hazard

function, which may not be compatible with the reality of the study, since some individuals

have their event before the end of the study. This means that the interview times after

their event times have no observed value. By treating these interviews as missing data,

Bayesian inference can easily incorporate their uncertainty into the hazard function, and

their predictive distribution does not have a strong influence on the final result. In the

next Section, the inference procedure will be described.
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3.3 Inference

Since the analysis is done under the Bayesian paradigm, the inference is done over the

posterior distribution of the unknown quantities in the model. The model construction

described above provide the groundwork of the likelihood function Lt,d,y(·) of the

parameters, which will be described in detail in Section 3.3.2. The posterior distribution

is obtained by

π(·|t,d,y) ∝ Lt,d,y(·)π(·),

where π(·) represents the prior distribution of the parameters. To complete the Bayesian

inference specification, prior distributions must be set for all unknown quantities in the

model.

3.3.1 Prior

To specify the prior distribution, consider the parameter vector Θ =

(γk,α, ψ,Λ,θ,β2, V,W1,W2), where θ = (θ′1, . . . ,θ
′
J). We assume independent

and non informative marginal prior distributions for the longitudinal effects

γk ∼ N (0; 1000IJ), k = 2, . . . , q1 + 1. For all dispersion parameters,

ψ, V,W1,W2 ∼ IG(0.01, 0.01). The prior, then, is π(Θ) = π(γk)π(ψ)π(V )π(W1)π(W2).

3.3.2 Likelihood

The likelihood function is obtained through the product [ti, di | ξi][yi | ξi], when viewed as

a function of the parameters. The first factor comes from the survival model and depends

on the individual survival functions Si(t) and the individual hazard functions hi(t). But

Sik(t | ξi, ·) = exp

{
−
∫ t

0

hik(s)ds

}
, k = 1, . . . , K;

hik(t) = h0k(t) exp{Z ′iγk + ξikαk}, ∀t ∈ Ik, (3.5)

where log hik(t) = log h0k(t)+X ′1iβ1+ξikαk. The likelihood contribution associated to the

survival component for the ith individual is given by: [ti, di | ξi] =
∏K

k=1

{
hik(t)

dikSik(t)
}

,

where the term dik = diI(τk−1 < t ≤ τk) is the right censured indicator in interval Ik for
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individual i.

The likelihood contribution from longitudinal measurements is:

[yi | ξi] =
∏J

j=1 b(yij, ψ) exp{ψ(yijηij − a(ηij))}, where ηij and ψ denote the natural and

dispersion parameters in the exponential family, respectively. The terms a(·), b(·) are

known functions specifying the member of the exponential family.

Finally the likelihood function is evaluated by Lt,d,y(Θ) =
∏

i[ti, di | ξi][yi | ξi]. Details

about its derivation can be found in Section A.3.1. We find the posterior distribution

from π(Θ | t,d,y) ∝ Lt,d,y(Θ)π(Θ).

The resulting posterior distribution is not known in closed form. Therefore, MCMC

methods are employed to obtain samples from the distribution. An important advantage

of the proposed model and the MCMC inference method is the automatic solution to two

integrals which, traditionally, bring trouble to the analysis. First, the hazard function

is easy to integrate, since it is constant in intervals, which means that it is analytically

integrable. The second one is related to the bridge term. In other works, the bridge effect

is a random effect and must be integrated out for the inference procedure, which is usually

the main computation bottleneck. In our model, even if a random effect is used for the

bridge term, the MCMC method provides a simple way to integrate it out.

3.4 Simulation study

In this Section, our effort is to present a simulation study to illustrate the performance

of the proposed model using a sample generated from a relative risk parametric survival

model and dynamic non-Gaussian sub-model for the longitudinal measures. The chosen

baseline hazard function was the Gompertz function, that is, h0(t) = eag+bgt, where

ag = 0 and bg = 1 are the scale and shape parameters of the Gompertz distribution,

respectively.

Beyond varying the baseline hazard function, we varied the total of longitudinal

measurements J and the sample size N . The different values for J were 3, 5 and 7, and

for two different sample sizes: 50 and 100. Note that, in every case, K = J . Model fit
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was done with two proposals of baseline hazard functions: the log Normal process and

the Gamma process. Each scenario was repeated 1000 times. This means that, in total,

2 ∗ 3 ∗ 1000 = 6000 datasets were simulated, and for each, 2 models were fitted, meaning

that in total, 2 ∗ 2 ∗ 3 ∗ 1000 = 12000 results were analyzed. The simulation procedure to

obtain {y, t,d} is detailed below.

Hierarchical dynamic joint using ξij = λij as a bridge function.

Input: N, J , mean 2 for the right censoring, F ,G, V,W , a, b,m0,C0

• Initial information: (θ0)← N (m0,C0), j = 1;

• System equation: (θj)← N (Gjθj−1,W ) to j = 2, . . . , J ;

• Structure equation: (λij)← N (F ′iθj, V );

• Observation equation: yij ← Po(exp(λij));

• The true times t∗i using the inverse probability method

(t∗i )← S(t) =
∫ t∗i
0
h0(u | a, b) exp(

∑J
j=1 αjξij)du;

• Obtain the censored time (ci) using exponential distribution;

• Calculate the observed time (ti, di) (ti; di)← min(t∗i , ci); I(t∗i ≤ ci);

• Return y, t,d

The algorithm to elaborate our inference procedure is developed in R with an Intel R©i5

2300 Windows PC with 4GB memory. The prior distributions considered were described

in Section 3.3. The mean computational time was 16.545 minutes per adjusted sample.

We ran the chain for 500, 000 iterations and discarded the first 250, 000 iterations as a

burn-in period. Thinning of 50 was used to eliminate autocorrelation, providing a final

sample of 5000 iterations from which to draw samples from the posterior distributions.

Details about the data generation procedure and full conditional distributions can be

seen in Section A.3.1 of the thesis appendix

For results verification, note that the purpose of this simulation study is to verify
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the model’s ability to reconstruct the true baseline hazard function. Since it is not

straightforward how to measure the quality of estimation for each individual, we limit the

comparison to the model parameters and baseline hazard function. Furthermore, since a

semi-parametric hazard function is an output of the model, it is desirable to understand

the model’s sensitivity to the discretization of the time axis through τ .

Estimation by MCMC of the baseline hazard functions can be seen in Figure 3.1. The

black solid line represents the function that generated the data (i.e. et), the lighter

boxplots represent the log Normal process and the darker boxplots represent for the

Gamma process. The boxplots are built with the average posterior mean resulting from

all 1000 simulations.

Although the log Normal process performs poorly when K = 3, it captures the hazard

function well when K = 5, especially when n = 100. For K = 7 the estimation seems

to accommodate the true baseline function with exponential growth by increasing the

posterior variance. Also note that the narrower the last interval, the higher the posterior

variance of h0K . This is due to the fact that we are approximating a function with very

fast growth by a constant function in that interval.

For the Gamma process, however, all graphics show that it can come very close to the true

function, although it only outperforms the log Normal process when K = 3. Therefore, an

argument can be made in benefit of both propositions. For K = 7 the posterior variance

in the last interval does not cover most of the function. This is due to the fact that in

the Gamma distribution mean and variance are linearly connected. Also the Markovian

dependence seems to be too strong to allow the last interval’s estimation to be higher.

The results of the proposed model are shown through the mean square error (MSE) in

Figure 3.3 and absolute bias in Figure 3.2. All the biases are small both for the Gamma

process and the log Normal process. For all parameters it is no higher than 1.2% and

there is a clear advantage for the datasets with n = 100. For the α6 and α7 parameters

there is higher bias since most of the individuals have failed by the last intervals so

there is few data for estimation. This is more apparent for the Gamma process. The

parameters with highest bias are W1 and W2. However, if we look at the true values of
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the variances of the longitudinal process, we see that the signal-noise ratio is small (0.2),

therefore the information for W1 and W2 is not abundant.

Similar results are obtained when we analyze the MSE. In summary all parameters show

that the model was able to estimate the values very well because the bias and the MSE

are small.

Posterior statistics based on 1000 datasets are shown in Table 3.1. This presents the

mean posterior estimates for all scenarios. The global results show that these true

parameter values are mostly recovered by fitting our model. As in chapter 2, the relative

variation shows bad results, which may call for more simulated studies.
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Table 3.1: Comparison of posterior mean. They are computed with

the mean based on 1000 posterior means calculated for each simulated

dataset for all scenarios. The fully dynamic joint model Gamma Process

(GP) and Log Normal Process (NP) were compared.

GP NP

K=7 5 3 7 5 3

P TrueN = 100 50 100 50 100 50 100 50 100 50 100 50

V 0.10 0.109 0.098 0.098 0.089 0.102 0.088 0.110 0.109 0.097 0.093 0.102 0.090

W1 0.02 0.018 0.024 0.021 0.012 0.019 0.037 0.040 0.041 0.045 0.008 0.040 0.050

W2 0.01 0.011 0.006 0.057 0.064 0.063 0.054 0.021 0.028 0.013 0.049 0.011 0.023

α1 0.10 0.099 0.089 0.094 0.087 0.090 0.091 0.095 0.065 0.089 0.059 0.088 0.077

α2 -0.20 -0.199 -0.179-0.191-0.180-0.172-0.179-0.190-0.185-0.189-0.180-0.187-0.179

α3 0.20 0.197 0.199 0.201 0.187 0.195 0.191 0.194 0.197 0.202 0.193 0.201 0.190

α4 -0.10 -0.106 -0.089-0.099-0.097 - - -0.099-0.089-0.098-0.087 - -

α5 0.30 0.299 0.293 0.304 0.088 - - 0.296 0.102 0.303 0.311 - -

α6 0.20 0.210 -0.199 - - - - 0.204 0.156 - - - -

α7 -0.10 -0.110 0.103 - - - - -0.097-0.065 - - - -

To further show the advantage of modeling the baseline hazard function with a Markovian

structure on top of the longitudinal measurements, we compare our proposition with

other models in the literature by fitting them with benchmark real datasets.

Next, we present results obtained from fitting the proposed model on real data. The

dataset is taken from Andersen et al. (1993). It concerns the measurement of liver

function in cirrhosis patients treated either with standard or novel therapy.

The dataset is included in two packages, namely JMbayes in Rizopoulos (2016) and joineR

in Philipson et al. (2017). It can be accessed with the command data(liver).

3.5 Liver cirrhosis longitudinal data

Here we illustrate a fully Bayesian joint model proposed using Gamma process for

the baseline hazard function and Gaussian response for the longitudinal sub-model.

This dataset gives the longitudinal observations of Prothrombin index, a measure of
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liver function, for 488 patients from a controlled trial into Prednisone treatment of

liver cirrhosis. The time-to-event observations consist of time of death and associated

censoring indicators are also recorded along with a single baseline covariate - the allocated

treatment arm in this instance. The data are originally analyzed in Andersen et al.

(1993)(p. 19) and were also analyzed in Henderson and Diggle (2002). The variable

Prothrombin index is measured in % and their follow-up times are measured in years

with a total of J = 17 interviews. The patient treatment indicator is coded as 0 =

placebo; 1 = Prednisone. The patient event time to death is measured in years and the

censoring indicator is coded as 1 = died (59.8% of the cases) and 0 = censored.

We did some preliminary tests to define the minimum MCMC configuration to

achieve convergence. In this case, we settled with 100000 iterations after a burn-in

period of 50000 iterations. The effective iterations were thinned by storing every 10th

iteration in order to decrease autocorrelation in the sample. The main results are shown

below. Samples of the posterior were drawn using the software Jags (Su and Yajima 2015).

In Figure 3.5, the level, that is the average trend of the longitudinal measurement, can

be seen, as well as the 3 quartiles of the observations at each follow-up time. It can be

seen that the trajectory is not always linear, as is usually assumed, both when looking

at the unfiltered data and the modeled filtered trajectory. The proposed trajectory,

on the other hand, seems to follow the distribution of the observed measurements correctly.

Figure 3.4, the baseline hazard functions are compared. The independent Gamma

function from Rizopoulos and Ghosh (2011) and the Gompertz function from Henderson

et al. (2000) are compared with the Gamma process as was proposed. The independent

Gamma function seems to overestimate the hazard function done with both other

methods in the early follow-up times, while the Gompertz function seems underestimate

it in the late follow-up times. Although different, the independent Gamma function is a

special case of what was proposed, so an argument can be made that the more general

form is more appropriate.

Table 3.2 compares the proposed model using the Gamma process represented by Fd
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Figure 3.4: Baseline hazard function by interval k: estimated using the package joineR

based on Henderson et al. (2000) SRE approach (M3), Rizopoulos and Ghosh (2011)

(dashed and dotted, respectively, M2) and our proposal (hard line with credible intervals,

M1)

Table 3.2: Comparison of Bayesian model selection methods for the

fully dynamic joint model considering Gamma Process (GP) compared

to the standard joint model (SRE) using the package in Rizopoulos

(2016).(Metrics divided by 100).

DIC pD LPML ∆LPMLSurv ∆DICSurv ∆pDSurv

Fd (GP) 346.333 330.791 -166.552 -24.304 44.674 44.614

SRE 346.981 9.756 -175.249 - - -
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Figure 3.5: Longitudinal data: for each j interview time, the level µj with credibility

interval (blue hard line, M1) and estimated linear trajectories by Rizopoulos and Ghosh

(2011) (red dotted, M2) and Henderson et al. (2000) (green dash-dotted, M3)
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(GP) with a benchmark model represented by SRE. It can be seen that the full dynamic

model is preferred, both in a fitting sense and a forecasting sense. Note that the column

relative to the pD metric prefers the benchmark model. This column penalizes the

inclusion of parameters, so this means that the inclusion of parameters in the proposed

model is compensated by the improvement in the fit.

The three last columns of the Table are contributions to the metrics from the survival

sub-model. They cannot be compared since the package in Rizopoulos (2016) does not

provide them as an output. However we note that they are much smaller than the full

metric, which leads us to believe that the longitudinal sub-model is the main contributer

to the metrics.

3.6 Discussion

We relaxed parametric distributional assumptions for the survival process and modeling

the relative hazards using a semi-parameter model for the joint modeling of longitudinal

measurements and time-to-event data where both sub-models evolve with a Markovian

structure, and demonstrated its use through a real data example and a simulation

study. The main strength of this framework is that it effectively handles the dependence

structure between hazard increments. In addition, it was shown in the simulation study

that the two possibilities for h0 are good options.

The type of data to be applied on our model already has a solid literature background.

However, for some reason, the longitudinal process has not been modeled dynamically.

This is surprising as it is a very natural framework for time evolving information.

Moreover, it seems more flexible to use a semi parametric baseline hazard function such

as the piecewise exponential. As much as this hazard function is already used for this

type of data in Rizopoulos (2012), the Markovian dependence is new. A very important

aspect to note is that all parts of the proposed model are not new by themselves but

they had not been put together as in this text.

An interesting exercise could be done about the choice of ξi. While we chose the mean

trajectory g-transform (i.e. the linear predictor λij), many other choices are possible
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and potentially relevant. The global trend µ1 is also an interesting choice as well as the

random effect vi. Although we believe that much could be learned from looking into this,

this was not the main objective of this chapter. However, the flexibility is very promising.
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Chapter 4

Quantile joint model for the longitudinal marker and

event time dataset

In this chapter, the problem of using the information of a longitudinal measurement in a

survival framework is considered linking the sub-models which is known as joint model.

This type of model has been gaining attention in the statistical literature, but little

has been published modeling the longitudinal measurement with a dynamic evolution,

despite it being a natural structure for this time varying data. More than this, some data

are not adequately modeled by its mean trajectory, as the longitudinal measurement’s

distribution might be skewed or heavily tailed. Quantile regression (QR) is used as a way

to reduce vulnerability to these issues, while maintaining the dynamic structure. This

particular approach is new in the area as far as we know. We show one advantage of this

procedure by developing the prediction of survival probabilities, which can be achieved

due to the natural forecasting feature of dynamic models. We exemplify the model with

two examples using real data. We also show an additional advantage of the model by

exploring two different links between the sub-models and discuss the results.

4.1 Introduction

In the last fifteen years there has been focus on clinical trial research with longitudinal

data where the outcomes are measured at multiple times for each individual until

an event of interest occurs. Many applications in survival analysis deals with time

dependent responses measured with error in a framework usually called time-to-event

joint models (JM). This explains the large amount of contributions to the longitudinal

and time-to-event joint models developed in the recent literature. A thorough review of
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the area is provided by Ibrahim et al. (2010).

Within the traditional JM framework, a linear random model for the longitudinal

expected values, which we call moment based model, is used to describe the longitudinal

outcome. However, in many clinical studies it is of interest to make inference or prediction

on median, lower, or higher quantiles of the longitudinal outcome’s distribution. In

other words we are interested in the conditional quantile, rather than the conditional

mean. In contrast to modeling the regression mean, original QR models offer a flexible

framework that relaxes some distributional assumptions, and provides a way to study

covariate effects on various quantiles of the outcome. Since its introduction by Koenker

and Bassett (1978) QR modeling can be understood as a distribution free approach,

no matter what the original distribution of the data is, while Kotz et al. (2012) was

able to represent the density of a quantile regression by assuming that the response

follows an asymmetric Laplace Distribution (ALD). This representation is central for the

Bayesian approach introduced by Yu and Moyeed (2001), where the inference is based on

a sampling algorithm exploring a location-scale mixture representation of the ALD.

The flexibility of the quantile regression method in Yu et al. (2003) has allowed this

new thinking to be applicable in many situations, consolidating it as a convenient tool

with very attractive properties, including less vulnerability to heavy tails and skewness.

These advantages are not ignored and are brought to the JM context. Thus we set

aside the modeling of the conditional mean of the response distribution and bring

forward a tool for researchers interested in predicting distribution quantiles, particularly

when the interest is in the distribution’s tails. Nevertheless, quantile regression has

been extensively studied for cross sectional data while less developed for longitudinal

data. Some researchers considered marginal quantile regression models for analyzing

longitudinal data; a simple and complete review is given by Leng and Zhang (2014).

Quantile regression has already been proposed with a fully Bayesian approach in JMs by

Wen and Menggang (2014). Farcomeni and Viviani (2015) incorporated a linear quantile

mixed model into a JM for longitudinal and survival processes, for which they used a

Monte Carlo Expectation Maximization algorithm for parameter estimation.

64



We propose a dynamic quantile regression method in state space form to accommodate the

temporal dependence of the longitudinal data. Furthermore, hierarchical characteristics

have been included in the longitudinal data analysis. We are specifically interested in

estimating the risk of the event for those individuals who have not yet experienced

the event. To this end, the dynamic framework offers a natural way of making such

personalized predictions of future probabilities. This dynamic framework has already

been explored in a moments based model context in Chapter 2. To complete the model

specification, we describe the survival sub-model as a well established relative risk model

with Weibull baseline hazard function.

Recently a dynamic version quantile of QR was introduced by Gonçalves et al. (2018).

This approach takes into account all facilities inherent to the well known class of dynamic

linear model (DLM), including forecasting. Two alternative forms of inference were

implemented in their work. The first uses MCMC and the other applies linear Bayes. We

extend the Gonçalves et al. (2018) work by including a hierarchical component. In order

to predict event probabilities for event-free patients, we explore a key feature of these

dynamic predictions which is that the predictions can be dynamically updated as soon

as an additional longitudinal measurement from the target individual become available,

providing instantaneous risk assessment.

Our approach differs from standard models in a few ways. We consider a full Bayesian

dynamic hierarchical QR joint model for statistical inference inspired in Yang et al.

(2018) and extending Gonçalves et al. (2018). Also, by taking advantage of the posterior

distribution of model parameters and subject-specific latent effects, we develop a

dynamic prediction procedure for future event probability based on the proposed QR

and dynamically update that probability. Lastly, we provide a discussion on the choice of

component(s) that links the two sub-models, survival and longitudinal, which we call the

bridge component. These characteristics make our proposed method a flexible alternative.

After this introductory Section the rest of this chapter is structured as follows. Section 4.2

reviews the standard quantile regression. Section 4.3 contains our proposal for longitudinal

and time-to-event data. In Section 4.3.1 and Section 4.3.2, we give details about the
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inference and the predictions for our model. Sections 4.4.1 and 4.4.2 provide some

illustration of our proposal with real data. Some conclusions and future work are presented

in Section 4.5.

4.1.1 Preliminaries

Suppose that we have a set of N individuals followed-up and measured with respect to

one marker over a time interval (0, τ ], where τ is the maximum dropout time. Those

measurements may be collected at different time points for each individual and provide

information for the measurement until the occurrence of the event of interest.

Specifically, the observed time of the event of interest, called time-to-event, for the ith

individual is defined by Ti = min(T ∗i , Ci), where Ci denotes the censoring time and T ∗i

denotes the true event time.

Let di represent the indicator of right censoring for the ith individual, that is di = 1 if

individual i experiences the event at time T ∗i ≤ Ci and di = 0 if it is censored.

Formally, the sequence of scheduled dates, sij, must satisfy the relationship

0 ≤ si1 < si2 < . . . < siJi ≤ ti, where ti is the observed value of Ti and Ji is the

number of follow-up measurements for the ith individual, j = 1, . . . , Ji. The situation

where all Ji are potentially different for each individual will be called the non-regular

case. In contrast, the regular case is defined as the case where Ji = J,∀ i, although the

times sij need not be the same.

To ease the description of the inference algorithm we denote a marginal distribution

function by [ · ] and a conditional one by [ · | · ].

4.2 Quantile regression

In this work a dynamic hierarchical QR model is developed to analyze longitudinal

markers and a parametric model for the time-to-event data as relative risk sub-model.

This demonstrates the flexibility which can be achieved through the component ξi, which
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bridges the longitudinal and survival sub-models. This component is refered to as bridge.

The usual assumption in the standard joint models is that the time-to-event is conditional

to the mean of the longitudinal marker response (the mean trajectory). In this thesis,

we deal with cases where another feature of the longitudinal measurements’ distribution

is more appropriate to the study, namely a particular quantile. The interest in this type

of modeling varies per application, so some examples will be given in the appropriate

Sections. Additionally, many examples and justifications can also be seen in Yu et al.

(2003). In this context, it is necessary to explore the use of a new way to make predictions

based on quantiles of the longitudinal process. To this end, quantile regression provides

a flexible, distribution-free way to study covariate effects at different quantiles of the

longitudinal outcomes and it is robust not only with respect to deviation from normality,

but also to outlying observations (Yang et al. 2018). We would like to note that the

goal of this work is to present a methodology to model the data using a quantile which

is most adequate according to the data analyst or by the nature of the application. It

is not our interest, in this chapter, to determine the most adequate quantile for a given

application nor provide a method to determine it.

A comment on the interpretation of the bridge component is in order. The quantile of

the distribution of the longitudinal measurements yij can be used as the bridge value. An

usual interpretation is to say that the chosen quantile is the true underlying longitudinal

marker of the measurement yij (Yang et al. 2018). This particular interpretation makes

a further assumption on the sampling process, which we do not verify, therefore we do

not use in this work. If, for example, the chosen quantile is 0.9, then saying that the

quantile is the true underlying longitudinal marker means that the observed values yij are

typically much lower than the true values. This is true if yij consistently under-represents

the true values. In order to state that, this repeated pattern must be verified, or at least

assumed, which can only be done with an appropriate expert’s opinion, which is not

done in the sample applications of Sections 4.4.1 and 4.4.2.

For the joint QR modeling, we focus on the longitudinal sub-model as an extension of the

Bayesian method of Gonçalves et al. (2018) based on the location-scale representation of
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the asymmetric Laplace distribution to a dynamic hierarchical context. Our development

is motivated by two real datasets. The first is a mental study of schizophrenic disease

where the primary clinical interest is to utilize longitudinal scores and other covariates

to predict the risk of developing schizophrenic disease, see Henderson and Diggle (2002)

and Henderson et al. (2000). The second is related to the liver cirrhosis longitudinal data

previously analyzed by Andersen et al. (1993).

This chapter proceeds as follows. In 4.3, we give details of the dynamic hierarchical QR

and statistical methods used for inference and dynamic predictions. In 4.4.1 and 4.4.2,

we present two real case studies to motivate the proposed method where we show how

our proposal provides good performance to model this kind of data. We end this chapter

with a conclusion and discussion about future work in Section 4.5.

4.3 Bayesian linear hierarchical quantile joint model

The standard linear quantile models use random effects and assume that the conditional

quantile of the outcome is a linear function of covariates. The νth quantile of a random

variable Y is defined as QY (ν) = F−1Y (ν) = inf{y : FY (y) ≥ ν} for ν ∈ [0, 1]. The term

FY (y) represents the cumulative distribution function of the random variable Y . The

model proposed in this thesis does not use random effects for covariates.

The Bayesian QR was introduced by Yu and Moyeed (2001) using the asymmetric Laplace

distribution (ALD). The inference is based on a sampling algorithm exploring a location-

scale mixture representation of the ALD (Kotz et al. 2012). Under this parameterization,

the random error is represented as εij = κ1νεij + κ2ν
√
σεijςij with ςij ∼ N (0, 1), εij ∼

exp(1/σ), κ1ν = 1−2ν
ν(1−ν) and κ22ν = 2

ν(1−ν) . This re-parameterization leads to the longitudinal

sub-model of our proposal to be written as

yij = λij + κ1νεij + κ2ν
√
σεijςij,

λij = F ′iθj + vi, vi ∼ N (0, V )

θj = Gjθj−1 +wj, wj ∼ N (0,W )

θ0 | D0 ∼ N (m0,C0),

(4.1)

where the νth quantile λij is F i multiplied by the common term θj plus a random effect
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per individual denoted by vi. The term vi is included since it differentiates the quantiles

of the individuals beyond the covariates in F i. Also, it allows us to compare our model

with others which include a comparable term. The term V represents the variance of

vi assuming the Gaussian distribution. The (p + q2)-dimensional vector F ′i = (e′p,X
′
2i)

where ep = (1, 0, . . . , 0) is a p-dimensional vector and X2i is a q2-dimensional covariates

vector.

The common evolution θj = (µ′j,β
′
2j) is a (p+q2)-dimensional vector capturing the effects

of the elements of F i. The term µj is a p-dimensional vector describing the polynomial

effect, and the term β2j is a q2-dimensional vector describing the covariates effects. These

terms are allowed to evolve smoothly over time, according to the evolution equation.

The transition matrix Gj is (p + q2) × (p + q2)-dimensional. The construction of this

term depends on the times between consecutive visits δij = sij − si(j−1), j = 1, . . . , J,∀ i.

We work with the situation where all measurements for each individual may occur at

equal follow-up times, the regular case, which means Ji = J,∀ i. The linear predictor

λij represents the νth quantile of the distribution of yij, and µ1j, the first term of θj,

represents the mean level of the trajectories of the νth quantile. The perturbation wj is a

(p + q2)-dimensional vector following a zero mean multivariate normal distribution with

diagonal covariance matrix W . Finally, the initial terms m0 and C0 are known prior

information.

It is worth to point out that the goal of the dynamic hierarchical QR analysis is to

describe the evolution of a quantile of the longitudinal measurements’ distribution. The

uncertainty component vi personalizes each individual from the information sharing

structure F ′iθj. The resulting information is carried by a component ξi which can

be defined as, say, ξi = (λi1, . . . , λiJ)′, where λij = Qyij(ν) are the quantiles of yij.

This choice is discussed in the end of this Section. In the log hazard function of the

time-to-event sub-model, described below, the effect of the ξi is quantified by a parameter

vector α. A positive αj, for a given j, indicates that the hazard rate will be exp(αj)

times higher with a unit increase of the νth conditional quantile at that interview.

To build the joint model we use the relative risk Weibull regression model for the time-

to-event data. This sub-model was rewritten from Guo and Carlin (2004) considering its
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hierarchical form, as follows:

Ti|r, hi ∼ W(r, exp{X ′1iβ1 + ξ′iα}), i = 1, . . . , N

log(hi(t)) = log(h0(t)) +X ′1iβ1i + ξ′iα

γi = γ + ζi, ζi ∼ N (0,Σζ),γ
′
i = (β′1i,α

′)

(4.2)

It is cleaner to write the second line of (4.2) with a single predictor, say Z ′i = (X ′1i, ξ
′
i), so

that the second line can be written as hi(t) = h0(t) exp(Z ′iγi), where h0(t) is some baseline

hazard function. For this work, we have chosen it as the well known Weibull function.

It is defined for a shape parameter r > 0 and h0(t) = rtr−1 is the baseline hazard function.

The regressor Zi is a (q1 + q∗)-dimensional vector. This term includes two blocks.

The first is composed of q1 regressors, denoted as X1i, assumed to be known without

measurement error. We include the index 1 to the covariates as they are associated with

the time-to-event sub-model. The second is an arbitrary q∗ dimensional latent term ξi,

discussed below.

The regression coefficient γi is decomposed as the sum of a common mean γ, with a

individual-specific latent component, ζi which is normally distributed with zero mean

and variance Σζ . ζi is commonly called the frailty term.

Combining the quantile regression with the time-to-event sub-models characterizes

the joint model. This combination takes place through the term ξi, which has many

possible choices. To properly make this choice, we interpret what the model does with

the information. We assume that the longitudinal measurements yij include some, at

some level, information relevant to the hazard function. Whatever this information,

we would like to filter it into the hazard function through ξi. The key point of a

stochastic description of the yij is to use some characteristic of its distribution, which we

assume carries the desired information. This chapter gives the possibility to make this

characteristic be a feature of the chosen quantile of the distribution. This feature can

be the evolving trajectory µ1j, the cumulated trajectory µ1J or the quantiles themselves

λij or even the cumulated quantile λiJ . The model in (4.1) uses ξi = (λi1, . . . , λiJ)′ and

the examples from Sections 4.4.2 and 4.4.1 compare this choice with ξi = 1
J

∑
j λij. Note
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that, in this last case, α is unidimensional.

Note that ξi = (lambdai1, . . . , λiJ)′ implies that all individuals contribute with all J

times to the hazard function, which may not be compatible with the reality of the study,

since some individuals have their event before the end of the study. This means that

the interview times after their event times have no observed value. By treating these

interviews as missing data, Bayesian inference can easily incorporate their uncertainty

into the hazard function, and their predictive distribution does not have a strong

influence on the final result.

Once the model is completely defined, we proceed with the following Section which details

the inference procedure.

4.3.1 Inference

The location–scale mixture representation of the ALD described in Section 4.3 is employed

to ease the implementation of the full Bayesian inference approach via Markov Chain

Monte Carlo (MCMC). The complete likelihood function is given by the equation below.

L(Θ | DJ)

=
N∏
i=1

(h0(t) exp(X ′1iβ
′
1i + ξ′iα))di

× exp(−
∫ t

0

h0(u) exp(X ′1iβ
′
1i + ξ′iα)du)[γ ′i | γ,Σζ ]

× [θ0]
J∏
j

N (yij | λij + κ1νεj, κ
2
2νσεij)

×N (λij | θ, V )N (θj | θj−1,W ),

where the collection of unknown parameters related with our proposed model is

Θ = {σ,Λ, V,W ,θ,β1,β2,α, r,Σζ}, where θ = (θ′1, . . . ,θ
′
J). The term DJ = (y, t,d)

contains all the information collected until time J . The posterior distribution of the

model parameters is given by [Θ|DJ ] ∝ L(Θ | DJ)[Θ]. We consider the case where

the variance block of W relative to the covariates effects is given by Wβ2j
≡ 0.

Consequently, without an evolution structure for the covariates effects of the longitudinal
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component, our model only evolves the polynomial terms of θj, i.e. µj.

A fully Bayesian inferential approach via MCMC for the joint model to estimate all

parameters simultaneously is proposed. We assume that the disturbance terms εij, vi,

and wj are mutually independent of each other. To complete the Bayesian inference

specification scheme, we next need to specify prior distributions for all of the unknown

parameters in Θ. We used weakly informative prior distributions for the parameters.

We assume normal distribution priors for β1, α and β2, with β1 ∼ N (M1,V1),

β2 ∼ N (M2,V2), α ∼ N (M3,V3). An inverse gamma (IG) prior is specified for σ, i.e.,

σ ∼ IG(a0, b0). For the disturbance variance V , we use the inverse gamma as prior

V ∼ IG(a1, b1). The prior to the evolution effects variance matrices, W , are set as an

Inverse-Wishart (IW) distribution, W ∼ IWp(R0, g0). For the parameter r of the baseline

hazard function we assume the exponential distribution, r ∼ Exp(b2). For simplicity, in

the application exercises, no frailty term was used, i.e, Σζ ≡ 0

In Section 4.4.1 and Section 4.4.2 (the real data analysis), the prespecified

hyperparameters are given by M1 = M2 = M3 = 0, V1 = 1000Iq1 , V2 = 1000Iq2 ,

V3 = 10000Iq∗ , a0 = 0.001, b0 = 0.001, g0 = 2, R0 = 0.001I2, a1 = 0.001, b1 = 0.001 and

b2 = 0.1. We assumed that all parameters are independent a priori, which means that

matrices such as W can be assumed to be diagonal.

After specifying the models for the observed data denoted by DJ =

{(yi1, . . . , yiJ , ti, di), i = 1, . . . , N} and the prior distributions for the unknown model

parameters, we can make statistical inference for the parameters based on their posterior

distributions under the Bayesian framework. The posterior distribution can be seen in

equation (4.3).
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[Θ | y, t,d]

∝
N∏
i=1

[ti, di | γi, r][γ ′i | γ,Σζ ]

×
J∏
j

[yij | λij, σ][λij | θj, V ][θj | θj−1,W ][θ0]

× [σ][V ][W ][β2][r][α][β1].

(4.3)

Due to the complexity of the joint model, the posterior distribution of [Θ | DJ ] in (4.3)

is not known in closed form, thus we obtain samples from it through MCMC methods.

An advantage of the hierarchical representation of our proposed model is that they are

easily implemented using the package Jags (Su and Yajima 2015) of the R free software

(R Development Core Team 2018). Furthermore, one feature of this package is that it is

not necessary to explicitly specify the full conditional distributions. The program code

is available in the Appendix Section A.4.

The advantages of using a full Bayesian approach include that the uncertainty of the

parameter estimates is fully captured in the posterior distribution and no asymptotic

theory is needed to derive the standard error. Another advantage of our proposal is

related to estimating the risk of different filtered values of the longitudinal marker for

those individuals who are still vulnerable to the event. To this end, the proposed model

framework offers a natural way of making such personalized dynamic predictions of

future survival probabilities, based on the ideas of Rizopoulos (2011) and Taylor et al.

(2013).

A key feature of this dynamic prediction framework is that the predicted longitudinal

markers can be dynamically updated as additional longitudinal measurements from the

target individual become available, providing on-line risk assessment.

To make dynamic predictions in the proposed model we base ourselves on Gonçalves et al.

(2018). The next Section details the prediction procedure further.
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4.3.2 Prediction with the dynamic hierarchical quantile joint

model

A by-product of the parameter estimation is the ability to obtain personalized dynamic

predictions. Our goal is to predict survival probabilities. There are two cases to

be considered: a new subject is susceptible to the event. After observing the data

available of all individuals, the event time for the new individual is to be predicted

on the basis of its covariates and on the information gathered so far; a subject

who is still in the study but the event has not yet occurred for them. During the

observation process, we may be interested in predicting the (remaining) event time

of an individual for whom the event has not yet occurred given longitudinal markers.

Only the first case will be developed, with the second being directly derived from the first.

After fitting a sample of size N to our proposed model, we are interested in predicting

survival probabilities for a new specific individual, at a specific time point s during

follow-up. We would like to utilize all available information we have at hand to produce

predictions of survival probabilities. The new subject i′ must provide a set of longitudinal

measurements yi′ = {yi′j; j = 1, . . . , J∗ < J}, meaning that the new subject must have

at least one interview, but not all J interviews.

Since most individuals fail before time J and the ones who do fail after that time do

so shortly after, then it is not recommended that the survival probability be forecast

much beyond time J , as this would mean an extrapolation on the observed data. A

new individual with J∗ interviews is assumed that they have not yet experienced the

event by that time. Then the goal of the forecast is to predict the survival function at

time s, J∗ < s ≤ J . This function is completely determined by the hazard function.

Since all non-individual specific components are estimated from the N individuals, all

that is left is to forecast the remaining J−J∗ values of the quantiles for the new individual.

In order to obtain predictions of the quantiles at times (interviews) j′ = J∗ + 1, . . . , J ,

we use the distribution associated with λi′j′ | Θ, which is identical to [λi′j′ | θj′ , V,DJ∗ ] =

[λi′j′ | θ′j]. The notation for the accumulated data DJ∗ and the variance V have been
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suppressed for visualization reasons. Since the available data only goes as far as J∗, then

we need [λi′j′ | θJ∗]. The distribution can be obtained by

[λi′j′ | θj′−1] =

∫
[λi′j′ | θj′ ,θj′−1][θj′ | θj′−1]dθj′

[λi′j′ | θj′−2] =

∫
[λi′j′ | θj′−1,θj′−2][θj′−1 | θj′−2]dθj′−1

...

[λi′j′ | θJ∗ ] =

∫
[λi′j′ | θJ∗+1,θJ∗ ][θJ∗+1 | θJ∗ ]dθJ∗+1.

(4.4)

We can obtain [λi′j′ | θj′ ,θj′−1] in the first line of (4.4) since the model is Markovian,

which means that [λi′j′ | θj′ ,θj′−1] = [λi′j′ | θj′ ]. The same applies to the other lines.

Also, we already have [θj′ | θj′−1] in the first line of (4.4) and the equivalents of the other

lines from the evolution equation.

Next, we use the [λi′j′ | θj′ ,θj′−1] distribution as the “bridge” term to construct Zi and

the relative risk function hi(t), in the survival component. The probability of surviving

at time s > J∗ given survival until J∗, that is, [T ≥ s | T > J∗,DJ∗ ], can be derived from

[T ≥ s | T > J∗,DJ∗ ]

=

∫ ∫
[T ≥ s | T > J∗,Θ,λ,DJ∗ ][λ | Θ,DJ∗ ][Θ | DJ∗ ]dΘdλ

=

∫ ∫
S(s | Θ,λ)

S(J∗ | Θ,λ)
[λ | Θ,DJ∗ ][Θ | DJ∗ ]dΘdλ,

where the term S(J∗ | Θ) is the survival function at J∗ time conditional to the MCMC

outputs with B iterations, and λ = (λi′1, . . . , λi′J)′. We use the MCMC outputs to obtain

the posterior distribution of the predicted survival function. Formally, we sample Θ from

[Θ | DJ∗ ], and obtain a numerical Monte Carlo approximation of [T ≥ s | T > J∗,DJ∗ ]

and it is given by [T ≥ s | T > J∗,DJ∗ ] ≈ 1
B

∑
b=1:B

S(s|Θb)

S(J∗|Θb)
.

The second case, where a subject in the study has not yet experienced the event, is easily

adapted from these results.

4.4 Application

Both applications are implemented using the package Jags (Su and Yajima 2015) of the R

free software (R Development Core Team 2018). We obtained a Markov chain sample with
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500000 iterations and discarded the first 250000 iterations as the Burn-in period. In order

to reduce sample autocorrelations we thin each chain by keeping every 5th simulated draw.

Visual methods, such as trace plots and correlation diagnostics were used for convergence

assessment. The chains convergence were confirmed using standard tools within the coda

package in R (Plummer et al. 2006).

In both applications, we compare two different choices for ξi, as discussed in the end of

Section 4.3. One choice, referred to as J-dimensional bridge is ξi = (λi1, . . . , λiJ)′. For

the other choice, referred to as 1-dimensional bridge, we have ξi = 1
J

∑
j λij, added for

comparison with other methods as they insert only one value to quantify the effect of the

longitudinal measurement.

4.4.1 Schizophrenia dataset

This dataset (Henderson and Diggle 2002) contains information regarding the treatment

of patients suffering from mental health issues. It is known that the PANSS (Positive and

Negative Syndrome Scale) score is a useful tool that influences the risk that a patient

will have a schizophrenic crisis. A patient that has a high score for a long period of

time requires a treatment much more intense than one who maintains a low score. If

the modeling of the crisis hazard is done through the expected value of the score, then

patients with extremely high scores will pull all the patients’ average up, which may lead

to unnecessary treatment.

If, however, the modeling is done through a well chosen quantile of the distribution, then

these discrepancies will be taken into account as we expect that quantile based analysis

will be less impacted by extreme values. Also, as a customizing feature of the model, the

biomedical specialist will be able to determine the quantile which most makes sense in

terms of the analysis.

The dataset involves N = 150 patients who were assessed using the PANSS score. This

is a medical scale used for measuring symptom severity of patients with schizophrenic

conditions. A low PANSS score indicates that a patient has weak symptoms and a high
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score implies a severe condition.

Assuming the regular case, the scale is denoted by yij and describes the mental state

assessment for the ith individual at scheduled times sj = {0, 1, 2, 4, 6, 8}. The assessments

are weekly timed.

Chronically ill mental health patients were randomly allocated on one of the following

three treatments: placebo (1), risperidone (2) and haloperidol (3). All groups had

forcibly 50 patients in them. Other available information identifies the events due to

reasons that were thought to be related to their mental state, i.e. the event times are

collected based on the patient’s mental state. Eight weeks without news of the patient’s

mental state configure a non-informative censorship.

Since the event time can also be non-informative, in cases where the event was not

related to the individual’s mental state, a right censoring indicator was created, receiving

the value 0 when the event is non-informative, and 1 otherwise.

To show the performance of the model for different choices of ν, levels of quantiles are

shown: 0.1, 0.5 and 0.9. Figure 4.1 shows how the choice of quantile can greatly influence

the conclusions. The graphics show the mean levels of the trajectories of each of the

quantiles for each choice of ξi. An interesting thing to note is that in both graphics, the

trajectories of quantiles 0.5 and 0.9 are very similar when compared with quantile 0.1.

This is evidence that the distribution of yij is not symmetric and that the choice of the

quantile ν in the analysis is a relevant task. The lack of symmetry can indicate that

using the mean of the distribution of yij instead of a quantile might be as damaging as a

poor choice of ν.

It is also noticeable that both graphics are somewhat similar. In order to analyze that,

note that the trajectories in the graphics are not only influenced by the longitudinal

measurements, but also by the event times, since the inference is done simultaneously on

all parameters of the joint model and they compose most of the bridge terms ξi, although

the 1-dimensional bridge less so. Therefore the similarity between both graphics is not
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Figure 4.1: PANSS score for a sample of 150 patients with three quantile regression curves:

The curves were obtained for the posterior mean of µj1, j = 1, . . . , 6 which represent the

mean level of the trajectories of the νth 0.1, 0.5 and 0.9 quantiles.

a surprise and is even an expected result, as it shows a consistent estimation of these

mean trajectories, which is evidence that they are in fact representing features of the

longitudinal measurements and are not being heavily influenced by the observed event

times.

Figure 4.2 provides the posterior marginal distributions for the effect of the treatment

on the PANSS score, which is expected to be negative, as the treatment is expected to

reduce the score. The only quantile showing such behavior is 0.1, which may show that

it can provide more information to the analysis than the other 2 quantiles, which show

light positive effect. This again shows the importance of the choice of ν. Both choices of

ξi show similar patterns with this respect. Most of all, it is clear that quantile regression

provides a powerful and versatile tool.

Table 4.1 compares the results between these models. Columns 2 through 5 describe the

models with a 6-dimensional bridge, where ξi = (λi1, . . . , λi6)
′, and columns 6 through 9

describe the models with a 1-dimensional bridge, where ξi = J−1
∑

j λij.
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Figure 4.2: Density of the posterior marginal distributions of β21, the treatment effect in

the longitudinal sub-model for each quantile.

The following Bayesian comparison criteria are used: deviance information criterion

(DIC) and logarithm of the pseudomarginal likelihood (LPML), as described in Zhang

et al. (2017), as well as their components pD. It is noteworthy that the DIC and

LPML are best used when the response follows a parametric distribution, which is not

the case in quantile regression. The choice has been made for consistency of the thesis.

Also a comparison metrics is derived based on Zhang’s idea of contribution differential,

called ∆LPMLSurv. They measure the contribution metric of adding the longitudinal

measurements sub-model to the joint distribution. ∆LPMLSurv = LPML−LPMLSurv,

where LPMLSurv is the logarithm of the pseudomarginal likelihood for a survival model

which uses the longitudinal measurements as covariates of the relative risk function. For

further details, see the supplementary material.

The models with a 6-dimensional bridge are much closer in terms of the selection criteria

LPML and DIC. However, the indices for the models with a 1-dimensional bridge are

very heterogeneous with great differences.

For each bridge choice, a different LPMLSurv is used for reference, since they come from

different models, that is, for the 6-dimensional bridge, all 6 longitudinal measurements

are included as separate covariates in the relative risk function, while in the 1-dimensional
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Table 4.1: Comparison of Bayesian model selection methods for the quantile joint models

considering two choices of the bridge term ξi.

Q
6-dimensional bridge 1-dimensional bridge

∆LPMLSurv
a LPML DIC pD ∆LPMLSurv LPML DIC pD

10% 84.744 -32.527 57.721 0.998 -27.562 -32.176 58.059 1.223

50% 85.174 -32.698 60.028 2.661 -4.158 -8.770 9491.134 9469.403

90% 85.226 -32.641 59.330 1.960 2.814 -1.799 5754.909 5744.786

aAbbreviations: ∆LPMLSurv, Contribution metric of adding the longitudinal measurements sub-model to the

joint distribution; LPML, Logarithm of the Pseudomarginal Likelihood; DIC, Deviance Information Criterion;

pD, DIC component.

model, the average of the 6 values are used as a single covariate. The values of LPMLSurv

are approximately −117 and −4.6 respective to the 6- and 1-dimensional bridges. These

values allow us to expect the 1-dimensional bridge models to have better LPML metrics.

A note on ∆LPMLSurv is in order, since it can indicate the importance of both

the longitudinal sub-model and the bridge choice. The models with a 6-dimensional

bridge have great contribution to model prediction, that is, all of them are above 84,

which means that modeling the longitudinal component has great positive impact on

predictions. However, for the 1-dimensional bridge, only quantile 0.9 seems to be giving

a positive impact on prediction. For the other quantiles, more research is needed to

analyze why they provide negative contributions.

The DIC clearly favors the 6-dimensional model. The 0.1 quantile is the preferred model

for this metric for both bridge choices. Note that this quantile in the 1-dimensional

bridge is almost as preferred as the 6-dimensional bridge. This might show that ν = 0.1

is ideal, especially if we join the results of Table 4.1 with the results of Figure 4.2.

Another important parameter in the model is the shape parameter r in the Weibull

survival function. Its estimation shows interesting differences between the models and

can be seen in Figure 4.3. The estimation of r is different between 1- and 6-dimensional

bridges. 1-dimensional bridge leads to very similar estimation of the parameter for all
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Figure 4.3: Boxplot of the posterior marginal distributions of the Weibull r shape

parameter for each quantile.

quantiles, which seem to be slightly lower than the ones estimated by the 6-dimensional

bridge models.

We interpret this by noting that changing covariates in a survival (sub-)model can lead to

changes in the baseline hazard function, here represented by changes in the estimation of

r, since each individual’s hazard function is the product of the baseline function and the

exponential of the linear predictor. This happens in the 6-dimensional bridge, but not in

the 1-dimensional, which is consistent with the fact that the longitudinal information is

condensed into a single value. This might indicate that the fitting power of the linear

predictors of the 1-dimensional bridge models might be somewhat similar. This raises a

question of how much different the 1-dimensional bridge QR analysis is compared to a

similar model using the expected values of yij. Even more so, the choice of the ξi bridge

component is relevant.
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There is a strong point for the 1-dimensional bridge, since it summarizes the longitudinal

information well, meaning that two studies with different values of J have comparable

bridge terms if they both have a 1-dimensional bridge. In summary, we do not recommend

any particular bridge in this study over the other.

The results shown in this Section show the potential power to be explored with our

proposal. Possible extensions of this application are discussed in the conclusion of this

chapter. Next, we use the survival dataset collected in randomized clinical trials with the

objective of comparing Prednisone versus Placebo in Liver Cirrhosis Patients.

4.4.2 Liver data analysis

This dataset is taken from Andersen et al. (1993)(p. 19) and was analyzed in Henderson

and Diggle (2002). It consists of the longitudinal observations of a Prothrombin index,

a measure of liver function, for 488 patients from a controlled trial of liver cirrhosis.

The time-to-event observations consist of time of death and associated (uninformative)

censoring indicator, which happen due to cirrhosis related impossibility to remain in the

study (40.2% of the cases), are also recorded along with a single baseline covariate - the

allocated treatment in this instance. The variable Prothrombin index is measured in %

and their follow-up times are measured in years with a total of J = 17 interviews. The

treatment indicator is coded as 0 = placebo; 1 = Prednisone. Our work is motivated by

the inclusion of various levels of the Prothrombin index in the hazard function, through

different choices of the quantile ν (see Section 4.3). A small exploratory analysis is done

on the data before model estimation to get familiarized with the dataset.

Figure 4.4(a) shows the boxplots of observed Prothrombin indexes plotted against time

for the 488 patients included in the analysis compared by treatment Prednisone arm = 1

versus Placebo arm = 0.

The overdispersion and heterogeneity of the longitudinal markers is apparent in this

plot. The dots represent the medians inside each box. The heavy tails and asymmetry of

the markers distributions suggest that the analysis of their quantiles might be adequate
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Figure 4.4: (a) Boxplots of Prothrombin index for the follow-up times, the points represents

the median values. (b) Empirical survival probability (Kaplan-Meier) for Prednisone

(arm = 1) versus Placebo (arm = 0).

instead of the usual moment regression. Figure 4.4 (b) summarizes the survival’s

probability and their respective confidence intervals based on the non parametric

Kaplan-Meier approach (Kaplan and Meier 1958) by treatment. It can be seen that

patients on treatment Prednisone appear to have a higher survival rate than those

on Placebo. This occurs between percentiles 25% and 80% of the empirical survival

distribution. The median event time for the patients on Placebo appears to be 6.3 years

versus about 8 years for the ones on Prednisone. This indicates that the latter might be

significantly important to prevent patients from dying.

We use the proposed dynamic quantile regression joint model to combine this information,

especially since the Prothrombin index is so heterogeneous.

In the proposed model, all parameters are functions of quantile ν. Thus, by choosing

different quantiles, one can conduct a comprehensive analysis of the relationship between

the Prothrombin and event time. The research aimed at the Liver dataset is made with

the goal of assessing the treatment effects. It is known that the Prothrombin index shows

significant interaction with the treatment in such a manner that high Prothrombin index
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is associated with a beneficial effect of the Prednisone treatment (Andersen et al. 1993).

Since it is an index, the Prothormbin can be modeled as a longitudinal measurement.

We can take different strategies to utilize the flexibility of our proposal. For example,

conducting a study over the entire conditional distribution of the longitudinal outcome,

we can fit the dynamic quantile regression joint model through a set of pre-selected

quantiles, collect and compare the resulting parameter estimations.

Less varying values of the Prothrombin index indicate a relatively stable effect on the

hazard function. No matter how it varies, we expect the relative effect α in the hazard

function to be negative, since greater index is expected to yield smaller risk.

Different quantiles were chosen for the analysis: ν ∈ {0.1, 0.5, 0.9}. The median was

chosen as a mean equivalent and the other two to represent the distribution extremes.

Additionally, as in Section 4.4.1, the two same bridge components were considered. All

Markov Chains have converged as verified by the methods discussed in Section 4.3.1.

The use of quantile regression is supported by Figure 4.5 which represents the mean levels

of the trajectories for the νth quantiles for the model where the bridge is 1-dimensional.

These suggest that the associated conditional distributions are skewed to the left, since

the fitted median curve is nearly equal to the 0.9 quantile curve, being visibly different

only from year 8 onwards. The choice of ν in an analysis should represent which quantile

is pertinent to the analysis. If, say, patients with high level of the Prothrombin index

with respect to the population are relevant, then a high value of ν is used. Figure 4.5

shows that the bridge choice also influences the longitudinal modeling. In both graphics

the last points show lower quantiles above higher quantiles, which is an indication of lack

of information. This is usual in this type of data since over the course of time, there are

less and less observations due to the survival process.

Figure 4.6 shows the estimation of the shape parameter r > 0 of the Weibull distribution,

used to model the baseline hazard function. It can be seen that, for the 1-dimensional

bridge, the parameter marginal posterior distribution is concentrated around slightly

above 0.9, which indicates a decreasing hazard function, and is stable over all quantiles.
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Figure 4.5: Prothrombin measurements for a sample of 488 patient with three quantile

regression curves: The curves were obtained for µj1, j = 1, . . . , 17 that represent the mean

level of the trajectories of the νth quantiles.

A different scenario is observed for the 17-dimensional bridge. They are all larger than

0.9 for all quantiles. Also, two clusters can be identified. For quantile 0.1, the distribution

has a median slightly larger than 1, while for quantiles 0.5 and 0.9 the distribution is

also roughly the same, but around almost 0.95.

Figure 4.7 shows the effects of Prednisone on the Prothrombin index. We can see

that its effect is large and very different depending on the bridge choice. Clearly

the effect is smaller for quantile 0.1. Also, we can see that its posterior for quantile

0.9 in the 17-dimensional bridge might not be uni-modal or that it is not very informative.

Table 4.2 contains the estimated regression coefficients based on the posterior distributions

for the 1-dimensional bridge models. That which is more easily interpretable are

the exponentiated coefficients, provided by the column exp(coef), which denote the

multiplicative change in the risk due to each covariate. We observe that the Prednisone

treatment effect β11 in Table 4.2 reduces the risk for the event by about 6%, consistent

over all quantiles. It coincides with the conclusion of Andersen et al. (1993). On the
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parameter for each quantile.

other hand, one unit decrease in the ξi (bridge) is associated with a 17.5% increase in

the risk for the 0.1 quantile model. Observe that the coefficient posterior distribution

includes the value 0 in its 95% credible interval, which could mean that the effect is not

statistically significant. Further research may include an attempt to model the fact that

both high and low levels of Prothrombin index are associated with high risk. For this, a

2-dimensional longitudinal model may be necessary to model a quadratic level.

Finally, to conclude the analysis of this dataset, the models are compared with the

measures explained in Section 4.4.1. The results show preference towards a 1-dimensional

bridge, with better DIC and LPML metrics. Quantile 0.1 shows preference in both

cases when compared with the other quantiles, with better LPML in the 17-dimensional

bridge column and with better DIC in the 1-dimensional bridge column. Clearly there

is no preferred bridge choice, as the metrics are usually very close. For quantile 0.9 the

same discussion from Section 4.4.1 about the bridge choice applies. This is still a work
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Figure 4.7: Densities of the posterior marginal distributions of β21 for each quantile.

Table 4.2: Summary of the estimated regression coefficients based on the posterior distributions

related the survival sub-model. 1-dimensional bridge term.

Qa P median exp(coef) exp(-coef) mean sd 2.5% 25% 75% 97.5%

10%

α -0.161 0.851 1.175 -0.057 0.545 -0.931 -0.390 0.143 1.292

β11 -0.064 0.938 1.066 -0.063 0.117 -0.293 -0.141 0.015 0.164

50%

α -0.003 0.997 1.003 -0.006 0.016 -0.056 -0.007 0.002 0.010

β11 -0.074 0.929 1.077 -0.076 0.117 -0.310 -0.153 0.004 0.149

90%

α -0.007 0.993 1.007 -0.045 0.073 -0.200 -0.109 0.001 0.065

β11 -0.075 0.928 1.078 -0.076 0.118 -0.304 -0.157 0.005 0.155

aAbbreviations: Q, quantile; P, parameter; sd, standard deviation; 2.5%, 25%, 75%, 97.5% quantiles of

distribution.
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Table 4.3: Comparison of Bayesian model selection methods for the quantile joint models

considering two choices of the bridge term ξi.

Q
6-dimensional bridge 1-dimensional bridge

∆LPMLSurv
a LPML DIC pD ∆LPMLSurv LPML DIC pD

10% 95.816 -331.414 296.446 6.635 -316.489 -330.631 291.613 1.163

50% 96.076 -356.726 319.891 27.467 -312.047 -326.215 25206.869 24923.989

90% 96.330 -379.396 463.602 168.904 30.367 16.213 84526.242 84488.225

aAbbreviations: ∆LPMLSurv, Contribution metric of adding the longitudinal measurements sub-model to the

joint distribution; LPML, Logarithm of the Pseudomarginal Likelihood; DIC, Deviance Information Criterion;

pD, DIC component.

in progress, as it is still necessary to compare the model with other models without a

dynamic component, as well as some modeling nuances, such as frailty, which can be

added.

4.5 Conclusions and future work

A joint model for survival and longitudinal data was presented using quantile regression

for the longitudinal sub-model. A Weibull baseline hazard function was used although

any function can be used as well. Two choices of bridge terms were tested in two real

datasets which have already been analyzed in other works. Despite the lack of a clear

conclusion about which quantile or bridge function to use, it is clear that the proposal

provides flexibility and the possibility of including information into the joint model from

a new perspective.

Table 4.3 illustrates that using quantiles away from 50% provide better fit for the

dataset, giving evidence that quantile regression based models have useful versatility

in the analysis. However, when the study does not provide an interpretative indication

of which quantile should be used to draw appropriate conclusions, then tables like 4.3

could help determine which quantile to use based on goodness of fit. Thus, a possible

extension is the estimation of the quantile ν. If regarded as an unknown parameter, we
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can estimate it jointly with other parameters in the model to infer on the quantile that

provides the best fit for that particular dataset. This can be useful when a particular

quantile cannot be provided by the researcher, so it becomes more attractive to use the

quantile which best fits the data. This idea is new in our context but not in the marginal

QR approach (Chokethaworn et al. 2017).

Another important feature of the model, which also provides versatility, is the choice

of the bridge term. Its choice has also not been fully probed, and that could be an

interesting follow-up to the analysis. It could be also of value to verify how much the

time-to-event data is influencing the longitudinal trajectories. There is also knowledge

to be obtained from comparing the results obtained in this chapter with a joint model

using moment regression, particularly a model whose only difference is with respect to

the mean/median.
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Chapter 5

Joint model with Markov switching regimes to

longitudinal marker and event time dataset

This chapter discusses joint models for a longitudinal biomarker and a failure time

outcome in the setting of including a latent term employing a Markov switching regression

model. This inclusion directly affects the mean longitudinal trajectory which allows a

bidirectional regime change. This characteristic provides more flexibility to the proposal

compared to the quality adjusted to lifetime model. The inference procedure is done

under the Bayesian paradigm and MCMC methods are used to obtain samples of the

posterior distribution. The proposed methodology is applied to the analysis of a clinical

trial dataset. We analyze the case study of children with episodes of diarrhea.

5.1 Introduction

It is a known fact that quality of life impacts the health of patients with chronic diseases.

A widely used novel technique is known as palliative care and has the goal to improve

the quality of life of patients undergoing treatment. The method for measuring quality

of life is subjective - and prone to arbitrariness - and currently varies per disease usually

through filling forms. In Fiteni et al. (2015) a procedure is described for pancreatic

cancer, for instance.

Measurements of quality of life have been treated in the medical context in a lifetime

analysis framework since the 1980’s. The widely used methodology called Quality

Adjusted Lifetime (QAL) is introduced by Gelber et al. (1989). The heath state induced

by the quality of life is Markovian according to Chen and Sen (2001). Ghosh and
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Mukhopadhyay (2007) use a Bayesian approach for a one-directional state evolution,

that is, the states can only change in one direction or not move at all. Silva et al. (2009)

develops a frequentist approach for bidirectional states.

The problem is essentially characterized by the presence of two components. One is

associated with the quality of life and the other with the event time. It is intuitive that

these components can be treated as done in Chi and Ibrahim (2006), that is, treated

jointly. Additionally, the quality of life can also be non-progressive, that is, bidirectional,

and the state levels are not necessarily known.

The method proposed in this work follows this joint model and attempts to incorporate

these desired properties. We model quality of life and event time simultaneously

using the joint modeling of a longitudinal marker and time-to-event data. This well

accepted approach in the literature of survival models is clearly explained in Rizopoulos

(2012). In this context, we consider a multi-state model which uses unknown states at

different times. These unknown states, when used correctly, may be considered the true

longitudinal trajectory in a joint model.

Furthermore, the proposed model can be extended to be used in any situation where there

is a change in regime for a given response, so it is not restricted to quality of life modeling.

This is done in the example application. The next Section reviews a Markov-switching

regression model and introduces it in the joint model context. Section 5.3 presents the

Bayesian inference procedure for the model. In Section 5.4 we exemplify the model with

data of children with diarrhea episodes and we conclude the work in Section 5.5 with a

discussion.

5.2 Joint model with Markov-switching regimes

In this Section we discuss situations in which the occurrence of an event is influenced

by one or more variables with potential bidirectional regime change. Markov switching

models, see Hamilton (1989), have been successfully used for fitting economic and

financial time series, for example, interest rates, exchange rates, consumption costs and

so on. We use this structure so that the longitudinal marker process assumes sudden

91



discrete shifts in level due to sudden abnormal events. Note that we use the first-order

Markov switching process, see Kim and Nelson (1999), applied to longitudinal markers

data, where only the markers’ first moment varies. This way, transitions are unrestricted

with respect to direction, opposed to the QAL approach.

The proposed joint model with Markov-switching regimes is based on the introduction of

a latent structure (states) into the mean longitudinal component trajectory. A survival

sub-model is built conditional on the states in a multiplicative way with respect to the

hazard function. This proposal extends the models in Chapters 2 and 3, where the

longitudinal sub-model is replaced by a dynamic linear Markov-switching structure.

The inference procedure is done under the Bayesian paradigm and MCMC methods are

used to obtain samples of the posterior distribution. Decomposable comparison criteria

that evaluate fit and prediction of the model are used to determine the relevance of

including the longitudinal biomarkers modeling based on Zhang et al. (2017).

5.2.1 Mathematical definition

We focus on the class of linear regime-switching models (MSW) assuming that the

regimes occurring at all times j = 1, . . . , J can not be observed. They are defined by

an unobservable process, which we denote as Sj. The model is defined so that regimes

are updated stochastically. The class of MSW models with K regimes is based on

the assumption that a regime is determined by the discrete ergodic first order Markov

process, hence it is only necessary to consider the current and the previous states:

P (Sj = m|Sj−1 = l, Sj−2 = k, . . .) = P (Sj = m|Sj−1 = l) = plm for 1 ≤ l,m ≤ K, where

plm is a state transition probability. The transition means that the process moves from

state l at the time j − 1 to the state m at time j in the Markov chain. Some restrictions

for the probabilities are 0 ≤ plm ≤ 1,
∑K

m=1 plm = 1. For details on MSW models see,

e.g., Hamilton (1989) and Hamilton (1994).

For the survival sub-model, let Ti = min(T ∗i , Ci) be the random variable relative to the

observed event time for the ith subject, where T ∗i is the true underlying event time, Ci is
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the censoring time and i = 1, . . . , N where N is the number of individuals. The observed

value of Ti is represented by ti. Let di be the event censored indicator for the ith subject

(1 if the event is observed, and 0 otherwise), and Di its respective random variable.

Let Yij be the continuous longitudinal outcome for individual i measured at time j. Its

realizations yij are measured at times aij, for times of visit j = 1, . . . , Ji. Assume, for

simplicity, that the follow-up times can be different, but the number of visits must be

the same, that is Ji = J,∀ i = 1, . . . , N , which is called the regular case. A first direct

consequence of this is that the measurements times aiJi will be comparable along all

individuals, which means we can denote all visits simply as aj, j = 1, . . . , J .

A common assumption for the longitudinal measurements Yij is that they are a function

of time, but it is observed only for a finite set of times, which we call j. Since no further

information of these measurements is available, then we assume that the observed values

are fixed values per individual added to random values, which means that we make no

assumptions about the longitudinal process outside the observed times. We consider a

hierarchical model for the fixed value per individual. If we assume that this fixed value

is constant over a period of time, and also that the range of possible values is not only

finite, but also known, then a Markov-switching regimes model is not unrealistic.

Let Yi(t) = {yij : j = 1, . . . , J ; j ≤ t} be the set of observed longitudinal measurements

until time t. Define the K-dimensional vector M = {µ1, . . . , µK}, where µ1 > . . . > µK.

The ordering of the values µk, k = 1, . . . ,K is arbitrary but necessary for identifiability.

Then let Mi(t) = {µsj + vi : j = 1, . . . , J ; j ≤ t; sj ∈ {1, . . . ,K}}, where vi is a random

effect, be the filtered longitudinal process at the observed times per individual until time

t. The states sj defines the index of the level in M enabled at time j. The proposed idea

is to make Yi(t) equal to Mi(t) plus an appropriately sized Gaussian random vector.

Then we denote hi(t | ξi, ·) as the hazard function for the survival sub-model, where ξi

is somehow related to Mi(J).

Unless otherwise noted, we will use ξi =Mi(J), so the hazard function is hi(t | Mi(J), ·).

Note that this implies that all individuals contribute with all J times to the hazard

function, which may not be compatible with the reality of the study, since some
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individuals have their event before the end of the study. This means that the interview

times after their event times have no observed value. By treating these interviews as

missing data, Bayesian inference can easily incorporate their uncertainty into the hazard

function, and their predictive distribution does not have a strong influence on the final

result.

The term ξi is introduced to provide some versatility in the choice of the linking

components and will be addressed again in the applications.

The Markov-switching regimes are the µsj , modeled through a Markovian structure. Since

the possibilities for their values are finite, then all we must do is define an appropriate

transition matrix for the consecutive values. Note that the values are shared for all

individuals through the hierarchy, although they are differentiated by the random effect

vi. The proposed Markov switching joint model can be written as a set of two sub-models

yij = λij + eij, eij ∼ N (0, σ2)

λij = µsj + vi, vi ∼ N (0, V ),

log hi(t) = Z ′iγ + log(ψi),

(5.1)

where µsj is described by a K-state first-order Markov process introduced in Section 5.2.1,

which models the longitudinal markers data. The second equation models a relative risk

survival sub-model given an arbitrary baseline hazard function and will be detailed later

in this Section.

The term λij represents the level for subject i at time j. The random effect vi is modeled

as a Gaussian random variable with 0 mean and variance V whilst Sj is modeled according

to a K-state first-order Markov process, where µsj ∈ M . The initial probabilities for S0

are given by the K-dimensional vector q. The K × K-dimensional transition matrix for

this process is defined by the transition probabilities where every row must add up to 1

and the transition probability of the states µl to µm is 0 if |l −m|≥ 2. This 1-step only

restriction is meant to represent a smooth state evolution. The transition probabilities

are unknown model parameters.

To complete the model specification, the second sub-model in (5.1) must be defined.
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By considering γ as composed by a four block vector (log(h0(t)),β
′,α′, log (ψ))′

and also Zi = (1,X ′i,λ
′
i, 1)′, we can rewrite the sub-model as log hi(t | λi) =

log h0(t) +X ′iβ + λ′iα+ log(ψi), where λi = (λi1, . . . , λij)
′, h0(t) is some baseline hazard

function, X i is a covariates vector for subject i whose effects are represented by β and

log(ψi) ∼ N (0,Ψ) is a frailty term.

The two sub-models are linked by the term λi and α quantifies the effect of this term in

the hazard function multiplicatively.

In this work, we use two parametric forms for the baseline hazard function h0(t), namely

the Weibull distribution, whose mathematical form is rtr−1 for positive r, and the

Gompertz distribution, which has a log representation by η0 + η1t for η0 ∈ IR and η1 > 0.

We also use a semi-parametric form for the baseline hazard function. This form discretizes

the interval [0,max(t) + dt), where dt is an infinitesimal increment to ensure that the

largest observed time is in the interval. The choice of number of intervals is not trivial

and is justified in Chapter 3. For this model, we use K = J intervals denoted by Ik =

[τk−1, τk), k = 1, . . . , K, where τk are the chosen equally spaced nodes for the discretization,

restricted by τ0 = 0 and τK = max(t) + dt. We denote δ = τk − τk−1 the constant length

of the intervals. For each Ik, k = 1, . . . , K, the function is defined by:

logh0k = G(δ) logh0(k−1) + ωk, ωk ∼ N (0,Ω),

logh00 | D0 ∼ N (c0,C0),
(5.2)

where G(δ) is an evolution matrix for logh0k. For versatility, one can define logh0k as a

vector and achieve, say, polynomial growth models, but in our case, we use a 1-dimensional

value for it, which means that G(δ) is scalar. The matrix Ω is some covariance matrix. In

our 1-dimensional case, it is merely the variance of the evolution equation. Finally, the

initial terms c0 and C0 are known prior information.

5.2.2 Two states: A particular case

As an example we implement our proposal assuming that the structural change model has

two states, i.e., µsj ∈ {µ1, µ2}, where µ1 > µ2. In this case the true longitudinal marker
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Figure 5.1: Markov Switching model for two states is represents through directed acyclic

graphs (DAG).

λij, follows a distribution conditional to a latent process Sj ∈ {1, 2}. Then

yij|λij ∼ N (λij, σ
2)

λij|Sj ∼ N (µsj , V )

P (Sj = m|Sj−1 = l) = plm; l,m ∈ {1, 2}

P (S0 = 1) = 1− P (S0 = 2) = q1,

(5.3)

where q1 is the first element of the initial probabilities vector q, say, 0.5 if no other

information is available. Note that p11 +p12 = 1 and p22 +p21 = 1, so for a binary process

Sj, there are only two free parameters, say p11 and p22. The DAG in Figure 5.1 shows

the states dynamics of this particular case in an intuitive way.

The next Section we describe the inference procedure.

The usual challenge in the inference process is about the latent terms. Most of the

parameters have a dependence with the Sj unobservable quantities. Many advanced

techniques can be found in the literature, for instance Kim (1994) proposed an interesting

implementation alternative. Kim and Nelson (1999) applied them in many practical

situations. We use their idea for sampling from the full conditional of Sj.

5.3 Inference

The pseudo-likelihood function for the model with K states is the product of two factors.

To facilitate notation, consider s = s0, s1, s2, . . . , sJ , where s0 is the initial state. To
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include the transition probabilities, note that the matrix is

A =



p11 p12 0 0 0 . . . 0

p21 p22 p23 0 0 . . . 0

0 p32 p33 p34 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 pK−1,K−2 pK−1,K−1 pK−1,K

0 . . . 0 0 0 pK,K−1 pK,K


. (5.4)

Since every row must sum to 1, we can concatenate the unknown parameters as p =

p12, p21, p22, p32, p33, . . . , pK−1,K−2, pK−1,K−1, pK,K−1. Then, the first factor of the pseudo-

(data augmentation) likelihood function Lli is given by

Lli(S, σ
2, V, q,p,λi,µ | yi) =

J∏
j=1

N (yij | λij, σ2)N (λij | µsj , V )P (Sj = m), (5.5)

where P (Sj = m) = (q′Aj)(m), with m being the state. Note that all values in M =

are unknown quantities of the model and must be estimated. This marginal probability

can be derived in two steps. First, we find the conditional distribution P (Sj = m | S0 =

l) = Aj(l,m), the position l,m from the j-step transition matrix (Gamerman and Lopes

2006). Then, we marginalize with respect to S0 by P (Sj = m) =
∑

l P (Sj = m | S0 =

l)P (S0 = l). Since P (S0 = l) = ql, then this probability is as stated.

This factor of the pseudo-likelihood is not computable due to the data augmentation of

S, but this problem will be dealt with easily in the MCMC based inference, which is

detailed later.

The second factor of the pseudo-likelihood function comes from the survival sub-model

and depends on the baseline hazard function. For notation simplicity, call Ri =

(X ′iβ + λ′iα+ log (ψi)). Then the factor is, for the Weibull, Gompertz and Piecewise

97



exponential, respectively:

Lsi (r,β,α,λi,Ψ|ti, di) =
(
rtr−1i

)di exp(diRi) exp

(
−
∫ ti

0

exp (Ri) ru
r−1du

)
Lsi (η0, η1,β,α,λi,Ψ|ti, di) =

(
eη0+η1ti

)di exp(diRi) exp

(
−
∫ ti

0

exp (Ri) e
η0+η1udu

)
Lsi (h0,Ω,β,α,λi,Ψ|ti, di) = [h00]

K∏
k=1

(h0k)
di exp(diRi) exp

(
−
∫ ti

0

exp (Ri) e
h0kdu

)
×

× [h0k | h0,k−1].
(5.6)

We combine the parameters vector of the longitudinal sub-model into Θl =

(S, σ2, V, q,p,λi,µ) and of the survival sub-model into Θs = (base,β,α,Λ,Ψ), where

base represents the parameters in the chosen baseline hazard function, so that base =

(h0,Ω) for the semi-parametric baseline function, base = r for the Weibull baseline

function and base = (η0, η1) for the Gompertz baseline function. The complete parameter

vector is obtained by Θ = Θl∪Θs. To complete the model specification the term ξi must

chosen as to represent the desired filtered information from the longitudinal sub-model to

be included in the hazard function. The likelihood function of the joint model is obtained

by:

L(Θ|t,d,y) =
N∏
i=1

Lli(Θl | yi)Lsi (Θs | ti, di) (5.7)

To complete the model specification for the Bayesian inference , we need to choose prior

distributions for Θ.

5.3.1 Prior distribution

In order to complete the requisites for the Bayesian analysis, prior distributions must be

defined. To begin with, the prior distribution for the initial probabilities q ∼ Dir(u0),

where u0 are known hyperparameters for q = (q1, q2, . . . , qK). Inverse-Wishart and inverse

Gamma distributions are assigned for the variance components. To σ2 ∼ IG(aσ2 , bσ2)

, V ∼ IG(aV , bV ), where a·, b· are known hyperparameters and to Ω ∼ IW (R, g) we

use inverse-Wishart, IW(R, g) with scale matrix R and g degrees of freedom given

hyperparameters. The prior distributions for components of A transition matrix

pl ∼ Dir(ul0), for pl = (pl1, pl2, . . . , plK) and l = 1, . . . ,K. For the parameters related
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to the mean trajectory µ = (µ1, . . . , µK)′ we assume independent normal priors for the

univariate terms of µ ∼ N (mµ, zµIK). Technically speaking, to enforce that µ2 > µ1, we

used in the application with 2 states a prior where µ2 = µ1 + ζ with ζ ∼ N (0, σ2
ζ )I(0,∞),

which has been inspired by Kim and Nelson (1999). Similar priors are used for the effects

α ∼ N (mα, zαIK) and for the effects β in survival sub-model we take β ∼ N (mβ, zβIx)

and to complete the prior specification we assign the distribution exponential prior

for the r parameter in the Weibull baseline hazard, it is r ∼ Exp(c). Finally for

η0 ∼ N (mη0 , Cη0) and for η1 we use a truncated normal prior, it is η1 ∼ N(0,+∞)(mη1 , Cη1).

In our applications the hyperparameters were chosen to represent fairly vague prior

information.

After choice of the prior distribution for the unknown parameter and assuming

independence prior we sample successively from the full conditional distributions.

5.3.2 Posterior distribution

All inference is done with respect to the posterior distribution π(Θ|t,d,y) ∝

L(Θ|t,d,y)π(Θ). It is not know in closed form for any of the choices of the

baseline hazard function. Therefore, conditional on all information up to time J ,

posterior inference on a joint model with Markov Switching model can be done through

a straightforward MCMC algorithm. Especially since they make the data augmentation

scheme (Tanner and Wong 1987) of the states Sj uncomplicated.

MCMC methods are based on a sample of the posterior distribution, made possible

with a Markov chain method. For this we need the full conditional distributions of all

unknown quantities of the model.

For V , σ2, h0k, r, µ, η0, η1, β and Ω, the full conditional distributions are straightforward.

We focus our comments on the states Sj, the transition probabilities plm of the transition

matrix A in (5.4) and the link between the two sub-models λij. To find the full

conditionals, note that the prior distribution assumes independence between all

parameters. This means that the dependence that matters for the full conditionals is in
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the pseudo-likelihood function.

The state Sj appears in the likelihood function in the following way:

N∏
i=1

N (λij | µsj , V )P (Sj = m). (5.8)

Since these are the latent variables of the data augmentation, the prior for them is the

model itself. This means that equation (5.8) is all that is needed for its sampling. Note

that P (Sj = m) = (q′Aj)(m) provides K states probabilities which are modified by

N (λij | µsj , V ). Therefore we can obtain the full conditional probabilities from:

P (Sj = m | ·) ∝
N∏
i=1

N (λij | µm, V )(q′Aj)(m), µm ∈M, (5.9)

where M = {µ1, . . . , µK}. Note that the information from the data y for these states

come from λi, i = 1, . . . , N .

The probabilities plm only appear in the likelihood in the terms P (sj = m). Since, in

their full conditionals, the states Sj, ∀ j are known, then (q′Aj)(m) = (q′Aj)(sj) is a

single term, which is a function of the probabilities in A. Then the joint full conditional

of all probabilities in A is

π(p | ·) ∝
J∏
j=1

(q′Aj)(sj)π(p) (5.10)

The above derivation is a direct result of the Markovian property of Sj. Other solution is

provided by Hamilton’s basic filter Hamilton and Susmel (1994). Some details of general

MCMC algorithm for Markov switching stochastic volatility models are found in (So

et al. 1998).

The mean trajectories λij appear in the likelihood both in Lli(Θl|y) and Lsi (Θs|t,d). Like

the states Sj, its prior is defined in the model itself. Then, their joint full conditional is

π(λij | ·) ∝ N (λij | µsj , V ) exp(diRi) exp

(
−
∫ ti

0

exp (Ri)h0(u)du

)
, (5.11)

where h0(t) is the chosen baseline hazard function for the survival sub-model. The term

Ri is as defined in (5.6).
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5.4 Application

One dataset was used as example for the model. It consists of a diarrhea study with

Brazilian children in the state of Bahia. We analyze a drop in feces volume which should

indicate a health improvement.

For simplicity, in this application, we assume two states and do not incorporate the

fragility term. The model was implemented with relatively vague priors for all model

parameters. The prior for q1 ∼ Beta(0.1, 0.1), p11 ∼ Beta(0.1, 0.1) and p22 ∼

Beta(0.1, 0.1), while the hyperpameters related to σ2 and V are aσ2 = bσ2 = aV =

bV = 0.1. For the mean trajectory µ, bridge effects α and covariates effects β, we assume

independent normal priors with mean 0 and variance 100. Finally the hyperparameters

for the priors relative to the baseline hazard function are defined depending on the chosen

function. For Ω, when the semi-parametric baseline function is used, we chose R0 = 2

and g0 = 0.1. When the Weibull function is used, we chose c = 0.01. When the Gompertz

baseline function is used, we chose mη0 = 0, Cη0 = 100, mη1 = 0.1, Cη1 = 1.

MCMC was run for 100,000 iterations, being the last 5,000 used as the posterior sample.

Diferent starting values were tried as well as diferent MCMC burn-in lengths. In general

the results were pretty much the same, with the chain converging, in practical terms,

after 50,000 iterations. All computation was done in the free R software (R Development

Core Team 2018) and MCMC computation was used with the Jags package (Su and

Yajima 2015). In the Appendix Section A.5 we show some details related the algorithm.

Convergence of Markov Chains was verified with the coda package (Plummer et al. 2006).

5.4.1 Children with episodes of diarrhea

This study is about episodes of diarrhea in the childhood. This datset was collected by

Federal University of Bahia, Bahia, in Serrinha, 170 km northwest of Salvador, capital of

the state of Bahia, Brazil (between December/1990 and December/1991). It was originally

analyzed in Barreto et al. (1994) and is available in Carvalho et al. (2012) (2012, p. 414).

A new variable with event times was created on the original data in order for the proposed

model to be used. The study was designed to determine whether there exists an effect

of vitamin A supplementation on diarrhea and acute lower-respiratory-tract infections in

young children in Brazil. We focus on the recovery of the diarrhea.
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The childhood dataset includes 860 children in the age range of 6 − 48 months. The

children were randomly assigned to treatment vitamin A (434 patients) or placebo (426)

every 4 months for 1 year. They were followed up at home three times a week, and

data about the occurrence and severity of diarrhea were collected. We understand the

longitudinal marker by the target enteral volume (ml/kg/d) of children diagnosed with

pediatric diarrhea according to the standard definition of 3 liquid or semi-liquid stools

in 24 h. We understand the event of interest as the time until there is evidence of no

diarrhea episode. These definitions were based on Barreto et al. (1994). Time-to-event

information and censoring indicator are recorded along with a solitary baseline covariate

- the allocated treatment arm in this instance.

In Figure 5.2 we can see the Kaplan-Meier empirical estimation of survival probability

for both treatments. Both survival functions evolve separately until 40 weeks where they

come closer at about 0.92 probability. After 60 weeks, the vitamin A treatment has a

great survival decline, which may indicate that excessive treatment might be prejudicial

to the patient. This could be a motivation to detect improvement sooner in order to

avoid excessive treatment.

The objective of this joint model analysis is to take into account the effect of the dynamic

trajectory of the mean severity of diarrhea on the time needed for the diarrhea to stop in

children. Figure 5.3 shows the observed longitudinal measures plotted against time for the

860 patients included in the analysis. The heterogeneity of the patients’s immunological

responses is apparent in this plot, both at every inteview and between interviews. The

most important feature of the plot for the model is the last 6 interviews, where there

seems to be a shift of mean trajectory. This shift is meant to be modeled with the Markov

Switch structure in order to answer the question whether the difference is relevant or not.

Furthermore it is desired to know the magnitude of the difference and how much it impacts

the hazard function.

The first 3 rows of Table 5.1 represent the proposed model with a 27-dimensional bridge,

with baseline hazard function choices, respectively, Weibull, Gompertz and Piecewise

exponential. The next 3 rows represent the same baseline hazard function, but with a

1-dimensional bridge choice ξi = 1
27

∑
j λij. This choice is easier to compare with other
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Figure 5.2: Empirical survival probability (Kaplan-Meier) for the childhood with episodes

of diarrhea by treatments vitamim A (Vit A) and placebo (pla).
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Figure 5.3: Boxplot of pediatric diarrhea target enteral volume (ml/kg/d) for 860 patients

in 27 interview.
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Mda DIC pD LPML

Weib27 13080.358 845.019 -2976.659

Gomp27 13094.273 857.028 -2977.012

PE27 13096.534 860.002 -2977.017

Weib1 26464.021 49518.146 -12553.609

Gomp1 -42244.081 890.483 -2976.804

PE1 13205.538 841.095 -2976.922

PERizo 19976.151 910.214 -10255.350

Table 5.1: Comparison of Bayesian model selection

methods.

aAbbreviations: LPML, Logarithm of the Pseudomarginal

Likelihood; DIC, Deviance Information Criterion; pD, DIC

component.

models in the literature, such as the one in (Rizopoulos and Ghosh 2011), which is

represented in the last row of the table.

Note that the semi-parametric baseline hazard function is a generalization of the

Gompertz function, since for the latter h0(t) = exp(η0 + η1t) and for the former,

the equation (5.2) represents a DLM with linear growth, which means that h0(t) has

log-linear growth, just as in the Gompertz function. The equivalence is achieved when

the variance in (5.2) is zero.

The preferred comparison metric is LPML, since the main objective of the model is

prediction of the event time, that is, the full recovery of the patient in this case. In this

sense, the preferred models are Weib27, Gomp1 and PE1. However, since the baseline

hazard function of the PERizo model is the same as PE1, we select this model for the

analysis. Note that this model has preferred metrics when compared to the benchmark

PERizo model. Both models estimate the same baseline hazard function, which can be

seen in Figure 5.4.

To further compare the chosen model with the benchmark PERizo model, the marginal

posterior distribution of the effects of the bridge term from both models are shown in

Figure 5.5.
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Figure 5.4: Baseline hazard function by interval k: estimated using the Rizopoulus model

Rizopoulos and Ghosh (2011) under SRE approach (PERizo), (dashed) and our proposal

(solid line with credible intervals, PE1)
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Figure 5.5: Posterior density of the effect bridge estimated using the Rizopoulus model

Rizopoulos and Ghosh (2011), (dashed line, PERizo) and our proposal (solid line, PE1)

with their credible intervals.

We see that the are very close from one another. The vertical line represents the posterior

mean in the benchmark model (0.308), which shows that the marginal posterior for the

parameter in the proposed model is slightly higher (0.34) than the benchmark model.

Relevant information output from the model are the transition probabilities and Markov

state levels. This is shows in Figure 5.6 through the marginal posterior distributions

for p11, p22, µ1 and µ2. Remember that p12 = 1 − p11 and p21 = 1 − p22. We can see

that the state 1, that is level close to 3 (posterior mean of µ1), consists of most of the

states. The state 2 happens more seldom with higher mean value, about 4.25 (posterior

mean of µ2), and the mean trajectory returns to state 1 with high probability. Note

that, although seldom, state 2 represents higher chance of recovery, seen through effect

α. That means that when the state goes to 2, then there is a exp(0.34∗ (4.25−3)) ≈ 1.53

increase of the hazard function, i.e., when the state goes to 2, there is a 53% increase

chance of recovery. On the other hand, when the state returns to 1, there is a 34.6%
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Figure 5.6: Posterior density of the parameters estimated using our proposal (PE1).

Where P11 and P22 are the transition probability. The densities for µ1 and µ2 represent

the level trajectory.
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(exp(0.34 ∗ (3− 4.25))− 1 ≈ −0.346) decreased chance of recovery.

5.5 Conclusion

An extension of the model of Chapter 3 was proposed with a Markov Switching mean

trajectory. The general theory was developed for any state dimension with a special case

of 2 states. The latter was exemplified with a case study of diarrhea in small children.

The model was developed with the intention of being a complementary tool for diagnosis,

since it could detect an improvement of the patient’s health not necessarily seen directly

from the measurements. This could help avoid an aggressive treatment when it is not

necessary. Another longitudinal measurement which the proposal intends to model is

quality of life, which is known to affect patient’s health. An example was not provided

due to lack of available data.

Although a simulation study was not performed for this work, we are confident the model

can lead to useful results due to the analysis of the example application in the text. In

it, two states are clearly identifiable in the model and the longitudinal variable has a

non-zero impact on the hazard function which measures the recovery rate.

Clearly the model can be improved by adding covariates in the longitudinal sub-model,

as well as a more complex mean evolution. The goal of this work is only to present

the Markov Switching states as a viable option in itself, but the reader can easily add

more components to the model as they see fit, which is encouraged by us. This added

complexity justifies a simulated study which could yield interesting proposals.

The literature of joint models has grown fast recently, and the proposed model is a small

contribution to the already large array of options available. The ideas presented here are

meant to be used by the reader in the most convenient form for them, although the theory

is already developed for a dynamic evolution of the longitudinal marker here.
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Chapter 6

Conclusions and future work

In this thesis, we worked in the context of joint models of longitudinal and time-to-event

data. We note that the nature of the data is closely related to an already established

field in the Statistical literature, namely (generalized) hierarchical dynamic linear

models (GHDLM). We use this idea as a starting point to explore the behavior of

other components of the joint model. This led to a discussion about what joins the

two sub-models, namely longitudinal and survival. Since there are two clearly separate

sub-models that are linked, some model comparison metrics become useful to assess each

sub-model’s part in the whole model. Ultimately, the proposed models are very flexible to

address various research questions with different applications. Finally we have proposed

an easy and elegant way of modeling the longitudinal markers and time-to-event data.

The main innovation of this work is with respect to modeling the longitudinal markers.

In order for the class of GHDLMs to be used, some care must be taken about aspects

of the model, such as, not all measurements are evenly distributed over time. Once

these details are taken care of, then the model becomes very flexible and even recovers

the mean trajectory of most benchmark models in the literature, as verified by sample

applications. The general version of the model presented in equation (1.3) provides even

more flexibility. In this thesis, some extensions to joint models have been adapted to

the proposed GHDLM. It is clear that other extensions for other models can be as easily

adapted.

Once the longitudinal structure has been proposed, some exploration of the baseline

hazard function became attractive. Among the options, the semi-parametric function
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brought special attention since the values evolution could be described in more than one

way. A dynamic model can be argued in the log scale, but a Markovian structure can be

achieved without transformation via the Gamma process.

An important discussion that emerged over the development of this thesis was about the

linking component between the two sub-models, which we called the bridge component.

Many choices for this component are possible and over the thesis we tried to convey the

notion that the ideal choice is whatever is most natural for the problem at hand. Some

example choices are present in the thesis, such as mean trajectory g-transform (i.e. the

linear predictor λij) or some quantile of the longitudinal measurements’ distribution.

There are likely options not portrayed in this thesis and we would like to encourage

researchers to create their own, such that their work is best represented by the model.

Despite the flexibility provided by the bridge term in the proposed class of models, a

formal comparison metric which considers the implications of different choices has not

been developed. It could be done in a future work by analyzing the information added

and lost by each choice in the hazard function. Note that this metric is different from

the ones developed in chapter A.2.

In the introduction of this thesis we noted the importance of this choice. A future work

proposition is a thorough analysis of implications of different choices.

Lastly, but not less importantly, we base ourselves on Zhang et al. (2017) to create metrics

that decompose the well known metrics DIC and LPML to show the contribution of

the longitudinal sub-model to the metrics. This allowed us to compare similar models

with, say, different bridge choices, which showed different contribution metrics.

Chapter 2 presents the dynamic structure for the longitudinal markers, through both

multivariate and hierarchical approaches. The hierarchical approach is called GHDLM

and is the starting point of the rest of the thesis. It introduces a special case of the

hierarchical dynamic model developed by Gamerman and Migon (1993). This case

includes a locally and a globally evolving mean, which makes it easy to compare with

other models as they use a globally evolving mean through a polynomial. The normality
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assumption common in joint models is relaxed and replaced by an exponential family

assumption. This is illustrated with the analysis of CD4 cells counts in an AIDS dataset

also analyzed in Guo and Carlin (2004) through a square root transformation. We

maintain the original scale of the data.

Chapter 3 focuses on the event time sub-model. Based on our proposal in the previous

chapter we shift the parametric assumption of the time-to-event data into the semi-

parametric assumption. It is natural to assume that the baseline hazard function is time

dependent, which we model through a Markovian structure. It is compared with the

standard model (Rizopoulos 2011) through a liver cirrhosis dataset application.

Chapter 4 offers a new way to think of the problem. For this we remove the parametric

distribution for the longitudinal measurements and provide a tool to deal with, say,

non-symmetric or heteroscedastic data. For this, quantile regression is used and we can

keep the hierarchical dynamic structure of the model. A discussion is provided about the

appropriate choice of the quantile used. The model is applied to the liver cirrhosis and

Schizophrenia datasets which show non-symmetric longitudinal measurements. This is

yet another tool in the set provided in this thesis.

Chapter 5 develops the cases where there are multiple states for the longitudinal markers.

This is particularly useful when analyzing quality of life impact on event times. The

theory is presented and a special case with two states is provided. An example application

with data from the state of Bahia in Brazil is analyzed, where the early identification of

the states may help avoid a potentially harmful over-treatment of the disease.

We used the Jags package in the R software to reduce the computational time of the

MCMC in the example applications. But for the MCMC algorithms relative to the

simulations a code was developed and implemented to sample parameters from the

Metropolis-Hastings algorithm by block, and thus the convergence of the chain is fast.

The MCMC output of multiple chains was used to assess the convergence using the

Plummer et al. (2006) package. We note that the chains were very similar to one another.

All calculations were done with an Intel R©i5 2300 Windows PC with 4GB memory. All
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code will be available in GitHub (under construction).

In the future, we can extend the simulated results, although we know that it will be

a superlative effort to cover every detail that the complexity of the model can reach.

The first direct extension is to use the general model as detailed in A.1. Also, some

existing developments in the literature can be included in the proposal, such as Gaussian

Processes for the continuous over time longitudinal trajectory as in Henderson et al.

(2000).

Many technological advances have been done recently, such as the software STAN and

the package Martins et al. (2013). An R package using either or both of these solutions

should be done to make it easier for use of the proposed methodologies.

This proposed methodology is not restricted to the analysis of datasets in the medical

area. It can also be useful for other types of areas such as education, engineering, finance,

sociology. Some context can be provided for these fields in the future in order to motivate

the model’s use.

Also, in this thesis, a censorship process was not considered in the model, which can be

done in the future.

We would also like to explore further properties of quantile regression in joint models to

probe all its usefulness.

An issue which needs to be looked at, with a similar line of thought that led to the

quantile regression for the longitudinal sub-model, is the residual life approach for the

time-to-event data.

Despite all the future work that needs to be done, we believe that the approach presented

in this thesis has great potential and can be easily used with good performance. Its

strongest point is the treatment of time varying data with a time sensitive model, which,

surprisingly, has not been done as carefully as in this thesis. This fact alone gives us
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confidence that a meaningful contribution to science can be found in this text.
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Appendix A

Appendix

A.1 The general model in detail: the longitudinal component

The framework of this thesis is the joint model, but the effort revolves mainly around

the longitudinal sub-model. As was presented in the Introduction, equation (A.1) shows

how the general sub-model (1.3) relates to the traditional linear mixed effects model

(1.2), written in a hierarchical form in equation (A.2), with θij = (µ′ij,β
′
2)′ where µij =

(µ1ij, µ2ij, a1i)
′ with µi0 = µ0, µ0 ∼ N (m0, C0), F i = (1, 0, 0, X ′2i)

′ and

G =


1 δj δj 0

0 1 0 0

0 0 1 0

0 0 0 I

 .

For simplicity’s sake, we focus only on the evolution of the three first components of θij,

as we set

W j =


W1 0 0 0

0 W2 0 0

0 0 0 0

0 0 0 0

 .

Therefore the evolution equations are given by

λij = µ1ij +X ′2iβ2 + vi, vi ∼ N (0, V )

µ1ij = µ1ij−1 + δj(µ2ij + a1i) + w1j, w1j ∼ N (0,W1)

µ2ij = µ2ij−1 + w2j, w2j ∼ N (0,W2).

(A.1)
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Observe that δj(µ2ij + a1i) represents the linear level growth for individual i, which is

basically a common linear growth δjµ2ij plus the random effect δj(a1i). When µ2ij is the

same at every interview time j, then the model has a mixed effects linear growth. For

the random intercept effect, all that is needed is a random vertical offset of the trajectory

per individual, achieved through the term vi in (1.3).

For reference, the standard true trajectory model that is recovered by the description

above is

yij = mi(t) +X ′2iβ2 + εij

mi(t) = (a0 + a0i) + (a1 + a1i)ta0i
a1i

 ∼ N
0,

Σa0i 0

0 Σa1i


(A.2)

Another option for a general linear growth model is

Observation equation:

yij ∼ Ef(ηij, ψ), E(yij | ηij, ψ) = g−1(λij),

Structural equations:

λij = F ′1iθij + v1i, v1i ∼ N (0, V1)

θij = F ′2iθj + v2ij

System equation:

θj = Gjθj−1 +wj, wj ∼ N (0,W )

Initial information:

θ0 | D0 ∼ N (m0,C0),

(A.3)

where v2ij = δjv
′
2i and v′2i ∼ N (0, V2). Then, if F ′1i = 1,∀ i then λij = F ′2iθj + δjv

′
2i + v1i

which constitutes the equivalence with the mixed effects linear growth model, if we

choose F 2i = (1, 0)′, θj = (µ1j, µ2j)
′ and Gj =

1 δj

0 1

 .

This alternative represents the linear growth model but another polynomial growth form

may require more hierarchy levels.
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A.2 Supplementary material for chapter 2

A.2.1 Revisiting Some Special Cases in the Literature

Some well-known models in the current literature are special cases of our general

structure. The first special case is the model developed by Guo and Carlin (2004), which

consists of a Bayesian version of the joint model proposed by Henderson et al. (2000).

The stochastic dependence is described by a latent stationary zero mean bivariate

Gaussian process shared by both the longitudinal and time-to-event processes.

Specifically, Guo and Carlin (2004) define the vector u′i = (u1i, u2i) following a Gaussian

process, i.e., ui ∼ N (0,U). They apply the mixed linear normal model to the longitudinal

component with latent part given by W1i(t) = u1i +u2it. To complete the joint modeling,

the hazard risk for time-to-event model is given by hi(t) = h0(t) exp(X ′1iγ1 + W2i(t)),

where W2i(t) = ζ1u1i + ζ2u2i + ζ3W1i(t) + u3i, with u3i denoting an independent frailty

term, modeled as iid N (0, U3) variables, independent of ui, for i = 1, . . . , N .

Based on our proposal under the regular situation, consider the normal univariate

second-order dynamic polynomial model with known F ′i = (1, 0,X2i), transition matrix

Gj as L2(δj) (note that δij = δj,∀ i, which means that we can write Lp(δij) as Lp(δj)),

where the elements are based on δj for all individuals. If W = 0, then the latent

parameter related to the evolution equation is θj = m1 + m2j and the disturbance

term is vi(j) = u1i + u2ij. Here we define vi as a function of the follow-up counter

j instead of using j as an index since, if we consider that λij = F ′iθj + vi(j), then

the stochastic increment between two successive interviews is vi(j) − vi(j − 1) = u2i,

which does not depend on j, that is, we remain in the proposed class of models. It

follows that the structure equation, which is the equation for λij in (2.3) is given by

λij = m1 + u1i + (m2 + u2i)j. This term is widely known as the mean trajectory and

this situation is comparable to equation (1) for the longitudinal data model in Guo and

Carlin (2004). We can interpret this as a static model in the sense that the coefficient is

parameterized as a fixed linear function of time, where the term vi(j) becomes equivalent

to W1i(t), so that a global linear trend component is obtained.
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Finally, take our survival sub-model in (1) where the components Zi = (X ′1i, ξ
′
i)
′, and

ξ′i = (u1i, u2i, vi(1), . . . , vi(J), 1) and γ ′i = (β′1, ζ1, ζ2, ζ
′
3, u3i), where ζ3 is a J-dimensional

vector with components vi(1), . . . , vi(J). Furthermore, we need to make the disturbance

component Σζ =

0 0

0 Σu3i

 to lose the full hierarchy considered in our model and to

describe the frequently used regression model to model the time-to-event data with an

exception of the term of frailty u3i. In this way, we realize that the model in Guo and

Carlin (2004) is a special case of our proposal.

The second special case is related to the SRE class of models developed by

Rizopoulos (2012, Chapter 4), who also considers the mixed regression model for

the longitudinal part. The time-to-event sub-model is defined through the relative risk

hi(t) = h0(t) exp(W ′
iγR + mi(t)αR), where mi(t) refers to the mean trajectory and this

term is included as the linear predictor in the relative risk function. The subscript “R”

is included to indicate parameters of Rizopoulos’ model. To model the longitudinal

component, consider the latent structure equation ξi = λi·, equivalent to mi(t). Then,

we get a mixed linear function of time based on the second-order polynomial DLM. For

the time-to-event model, consider the term Z ′i = (X ′1i, ξ
′
i) with X1i = W i and β1i = γR,

while α in (1) is a univariate effect of the link component αR. Note that the hierarchical

feature is not considered in Rizopoulos’ survival sub-model, which means that we need

to set the disturbance component Σζ = 0 because our model encompasses a hierarchical

regression to model the time to event. Therefore, we conclude that the standard model

developed in Rizopoulos (2012, Chapter 4) can be rewritten as a special case of our

proposal.

Once we define hi(t) = h0(t) exp(X ′1iβ1i + ξ′iα) and set Z ′i = (X1i, ξi), where ξi = ui is

a vector of random effects as in the first special case and α is a two-dimensional vector

capturing the effect of the ξi), we get a special case equivalent to the model developed in

Philipson et al. (2017). In this context, this model is identical to the model in the stjm

Stata package based on Crowther et al. (2013). Furthermore, in the three presented cases

the longitudinal component is modeled using the mixture random effects model.
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A.2.2 Dynamic Hierarchical Joint Model for the Schizophrenia

Dataset

The observations yij are given by the PANSS score and they describe the usual Gaussian

DLM form, with mean trajectory λij for each patient with evolution term θj and

disturbance term vi, for i = 1, . . . , 150 and j = 1, . . . , 6. We use a p = 2 degree

polynomial. The time-to-event parametric model (1) is used and we assume right-

censored times with X ′1i = (1, T reati) and the latent term ξ′i = (λi1, . . . , λiJ). For the

longitudinal sub-model, F ′i = (1, 0, T reati) and with follow-up times δ′ = (0, 1, 1, 2, 2, 2).

The prior distributions are r ∼ Exp(0.1), 1/σ2 ∼ IG(0.01, 0.01), 1/V ∼ IG(0.01, 0.01),

1/W1 ∼ IG(0.01, 0.01), 1/W2 ∼ IG(0.01, 0.01), β1 ∼ N (m0, 100I2), α ∼ N (m0, 100I6),

and β2 ∼ N (0, 100), with Σζ = 0, that is, without hierarchical effect in the survival

component.

The term λij denotes the structure equation to describe the filter term related to the

PANSS score and follows a hierarchical DLM structure for each patient and follow-up

time generated from a normal second-order polynomial DLM.

Note that by substituting the mean structure λij into the observation equation, we

obtain that for each patient and interview and for each score PANSSij, the mean

structure regarding patient i is decomposed as the common mean F ′iθj = µj1 + Treatiβ2

determining the borrowed information and showing the strength among patients belonging

to the same schedule j to better learn about the covariance structure of the elements of λij.

Conditional on vi, the elements of the score PANSSij are independent and integrating

the distribution of PANSSij with respect to vi, we obtain yij ∼ N (F ′iθj, σ
2 + V ). It

is directly calculable assuming that all processes errors εij, vi, and wj are mutually

independent for all interviews.

On the other hand, the hazard function for patient i is hi(t) = rtr−1 exp(β11 +Treatiβ12 +∑J
j=1 λijξij). This function includes the effect of the latent true score λij through α′ =

(α1, . . . , αJ). Furthermore, note that the two sub-models are linked by the term λi· and
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α quantifies the multiplicative effect of this term on the hazard function.

A.2.3 Decomposition of the Comparison Criteria

In order to evaluate the performance of the models, this section shows the comparison

criteria to assess the contribution of the longitudinal data to the fit of the survival data.

Specifically, we adapted the methodology in Zhang et al. (2017) to our proposal. Using the

factorization [ti, di,yi | ξi] = [ti, di | ξi][yi | ξi], for i = 1, . . . , N , it is easy to decompose

the Deviance Information Criterion as DIC = DICSurv,Long = DICSurv|Long + DICLong.

The smaller the value of DIC, the better is the fit of the model. We adopt the model

comparison criterion ∆DICSurv = DIC
Surv |Long

−DICSurv,0, where DICSurv,0 is the DIC

value calculated ignoring the uncertainty in the longitudinal component. We see that

∆DICSurv captures the improvement of the fit in the survival component due to the

longitudinal data with a penalty for the additional parameters in the survival component

of the joint model. A model with a small value of ∆DICSurv is preferred, noticing that

∆DICSurv can be negative. The same procedure is used to computed the decomposition

of the comparison criteria pD, then a small value of ∆pDSurv is preferred.

We also use the logarithm of the pseudo-marginal likelihood (LPML) as a criterion, which

is based on the conditional predictive ordinate (CPO), as defined in Gelfand and Mallick

(1995). Larger values of LPML indicate a preferable model. We define the LPML

decomposition as LPML = LPMLSurv,Long = LPMLSurv|Long +LPMLLong. We present

the model comparison criterion ∆LPMLSurv = LPMLSurv|Long − LPMLSurv,0, so that

∆LPMLSurv quantifies the gain in fit in the survival component due to the longitudinal

data with a penalty for the additional parameters in the survival component of the joint

model. A model with a large value of ∆LPMLSurv is preferred.
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A.2.4 Posterior histogram for the parameters for the

Schizophrenia Dataset model

µ11 µ12 µ13

µ14 µ15 µ16

α1 α2 α3

α4 α5 α6
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A.2.5 Posterior histogram for the parameters for the Aids

Dataset model

α1 α2 α3

α4 α5

β21 r τW1 τW2
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A.2.6 Simulated data generator for chapter 2

Sim.Nor.Wei <- function(N=N,J=J,p=p,x10=x10,x20=x20,W1=W1,W2=W2,V=V,sigma2=sigma2,

r=r,gamma=gamma,alpha=c(a1,a2,a3),mean.Cens=mean.Cens){

# longitudinal markers ......................

x0 = c(x10,x20) # initial values

y = matrix(0,N,J)

mu = matrix(0,N,J)

lambda = matrix(0,N,J)

v = matrix(0,N,J)

x = matrix(0,J,p)

w = cbind(rnorm(J,0,sqrt(W1)),rnorm(J,0,sqrt(W2)))

w[1,1] = W1

w[1,2] = W2

for(j in 1:J){

v[,j] = rnorm(N,0,sqrt(V))
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}

# evolution

# .........

x[1,1] = x0[1] + x0[2] + w[1,1]

x[1,2] = x0[2] + w[1,2]

# structure

# .........

mu[,1] = x[1,1] + v[,1]

lambda[,1] = mu[,1]

# observation

# ...........

y[,1] = rnorm(N,lambda[,1])

for (j in 2:J){

x[j,1] = x[(j-1),1] + x[(j-1),2] + w[j,1]

x[j,2] = x[(j-1),2] + w[j,2]

mu[,j] = x[j,1] + v[,j]

lambda[,j] = mu[,j]

y[,j] = rnorm(N,lambda[,j])

}

# simulate event times ........

gammas <- c(gamma,alpha)

Z <- cbind(1,mu)
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eta.t <- as.vector(Z %*% gammas)

invS <- function (t, u, i) {

h <- function (s) {

exp(log(r) + (r - 1) * log(s) + eta.t[i])

}

integrate(h, lower = 0, upper = t)$value + log(u)

}

u <- runif(N)

trueTimes <- numeric(N)

for (i in 1:N) {

Up <- 50

tries <- 5

Root <- try(uniroot(invS, interval = c(1e-05, Up), u = u[i], i = i)$root, TRUE)

while(inherits(Root, "try-error") && tries > 0) {

tries <- tries - 1

Up <- Up + 200

Root <- try(uniroot(invS, interval = c(1e-05, Up), u = u[i], i = i)$root, TRUE)

}

trueTimes[i] <- if (!inherits(Root, "try-error")) Root else NA

}

na.ind <- !is.na(trueTimes)

trueTimes <- trueTimes[na.ind]

# simulate censoring times from an exponential distribution,

# and calculate the observed event times, i.e.,

# min(true event times, censoring times)

Ctimes <- runif(N, 0, 2 * mean.Cens)

Time <- pmin(trueTimes, Ctimes)

event <- as.numeric(trueTimes <= Ctimes) # event indicator

True.par <- as.data.frame(c(sigma2,V,W1,W2,r,gammas))
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row.names(True.par)

<-c("sig2","V","W1","W2","r","gamma","alpha1","alpha2","alpha3")

names(True.par) <-c("Value")

Data.Sim <- as.data.frame(cbind(1:N,y,mu,trueTimes,Ctimes,Time,event))

names(Data.Sim)

<- c("id","y1","y2","y3","mu1","mu2","mu3","trueTimes","Ctimes","Time","event")

Simulado <- list(True.par=True.par,Data.Sim=Data.Sim)

return(Simulado)

}

Define

N # num observations

J # num interview

p # grau do polynomio

x10

x20

W1 # var evolution level

W2 # var evolution incresing

V # var structure

sigma2 # var observation

alpha = c(a1,a2,a3)

mean.Cens # mean of the exponential distribution for the censoring mechanism

simulado.dat <- Sim.Nor.Wei(N=N,J=J,p=p,x10=x10,x20=x20,W1=W1,W2=W2,

V=V,sigma2=sigma2, r=r,gamma=gamma,alpha=c(a1,a2,a3),mean.Cens=mean.Cens)
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A.3 Supplementary material for chapter 3

A.3.1 Bayesian Inference

For clarity of exposition, we consider the inference procedure for the dynamic hierarchical

sub-model with a piecewise exponential hazard function for h0(t) defined in Chapter (3).

In particular we detail the prior specification and posterior computation.

Ti | ξi ∼ PE(h0(·))

hi(t) = h0(t) exp{Z ′iβ1 + ξ′iα},
(A.4)

h0(t) =


h01 if t ∈ [τ0, τ1)

...

h0K if t ∈ [τK−1, τK)

The likelihood function is

L(h0,β1,β2,α, ψ,Λ,θ, V,W | t,d,y)

=
N∏
i=1

[
K∏
k=1

exp (dik(log h0k +X ′1iβ1 + ξ′iα))

]

× exp

− exp(X ′1iβ1 + ξ′iα)
K∑
k=1
τk≤ti

h0k(min{τk, ti} − τk−1)


×

N∏
i=1

N (θ0 |m0,C0)
J∏
j=1

b(yij, ψ) exp
{
φ(yijg

−1(λij))− a(g−1(λij))
}

exp

{
−(λij − F ′iθj)2

2V

}
× V 1/2N (θj | θj−1,W )fh(h0)

(A.5)

Write h0 = (h01, . . . , h0K)′, fh represents the time dependence structure chosen for the

piecewise baseline hazard function and θ = (θ1, . . . ,θJ). For the simulated data presented

in Section 3.4, where the responses yij are Poisson distributed with rate λij, then the
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likelihood function reduces to:

L(h0,β1,β2,α, ψ,Λ,θ, V,W | t,d,y)

=
N∏
i=1

[
K∏
k=1

exp (dik(log h0k +X ′1iβ1 + ξ′iα))

]

× exp

− exp(X ′1iβ1 + ξ′iα)
K∑
k=1
τk≤ti

h0k(min{τk, ti} − τk−1)


×

N∏
i=1

N (θ0 |m0,C0)
J∏
j=1

exp{−λij}
λ
yij
ij

yij!
exp

{
−(λij − F ′iθj)2

2V

}
× V 1/2N (θj | θj−1,W )fh(h0)

(A.6)

We assume independent normal priors for β2, α, and β1, that is N (µp,Σp), where µp and

Σp (a positive definite matrix) for p = β2,α,β1, are prespecified hyperparameters. When

the distribution of the exponential family is Gaussian then psi represents the distribution

variance. Then an inverse gamma (IG) prior is specified for ψ, i.e., ψ ∼ IG(a0, b0), where

a0 ≥ 0 and b0 ≥ 0 are prespecified. For W , we take an Inverse-Wishart (IW) prior with

known parametersR, g, whereR is a (2+q2)×(2+q2) positive definite matrix and g is the

degrees of freedom. For the parameter V ∼ IG(a1, b1), where a1, b1 are prespecified as well.

By the Bayes theorem we obtain the posterior distribution which is not known in closed

form. We use Markov Chain Monte Carlo techniques to draw samples from the posterior

distribution.

We use the Metropolis within Gibbs algorithm. The parameters vector β2,θj and V

can be sampled from its full conditional distribution, namely inverse gamma for V and

Normal for the other two.

For all other parameters a Metropolis step (Metropolis et al. 1953) is used. All proposal

distributions are either Cauchy centered on the previous step or log-Cauchy also centered

on the previous step, depending on whether it is real or positive valued.

A.3.2 Simulated data generator function for chapter 3

Define: K
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dados <- array(NA,dim=c(amostras,n,(K+3)))

a <- array(NA,dim=c(amostras,14,5))

temp.com <- array(NA,dim=c(amostras,3))

for(f in 1:amostras){

# Simulating 2nd order Poisson DLM

# ................................

# 2nd order

n # num observations

J # num interview

p # grau do polynomio

W1 # var evolution level

W2 # var evolution incresing

V # var structure

verdTRUE1 = c(V,W1,W2)

x10

x20

x0 = c(x10,x20) # initial values

y = matrix(0,n,J)

mu = matrix(0,n,J)

lambda = matrix(0,n,J)

v = matrix(0,n,J)

x = matrix(0,J,p)
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w = cbind(rnorm(J,0,sqrt(W1)),rnorm(J,0,sqrt(W2)))

for(j in 1:J){

v[,j] = rnorm(n,0,sqrt(V))

}

r1

r2

w[1,2] = r2

w[1,1] = r1

# evolution

# .........

x[1,2] = x0[2] + w[1,2]

x[1,1] = x0[1] + x0[2] + w[1,1]

# structure

# .........

mu[,1] = x[1,1] + v[,1]

lambda[,1] = exp(mu[,1])

# observation

# ...........

y[,1] = rpois(n,lambda[,1])

for (j in 2:J){

x[j,2] = x[j-1,2] + w[j,2]

x[j,1] = x[j-1,1] + x[j-1,2] + w[j,1]

mu[,j] = x[j,1] + v[,j]

lambda[,j] = exp(mu[,j])
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y[,j] = rpois(n,lambda[,j])

}

y2 = cbind(1:n,y)

x2 = x

y2 = as.data.frame(y2)

vi1 = rnorm(n,0,U1)

vi2 = rnorm(n,0,U2)

vi3 = rnorm(n,0,U3)

betai1 = b1 + vi1

betai2 = b2 + vi2

betai3 = b3 + vi3

x1 = mu[,1]

x2 = mu[,2]

x3 = mu[,3]

mean = betai1*x1 + betai2*x2 + betai3*x3

## baseline function Gompertz h0 = alpha0 + alpha0*t ( linear )

m.cen = 0.7 # (10;90%) (5;70) (2;60) (1;50)

cens.time = rexp(n,1/m.cen)

# h0 = a0 + a1*seq(0,max(cens.time),length=n)

# U0 = 0.1

# vi0 = rnorm(n,0,U0)

# h0i = h0 + vi0
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# h = exp(h0i + mean)

verdTRUE2 = c(U1,U2,U3,a0,a1,b1,b2,b3)

u = runif(n)

cc <- exp(a0+mean)

true.time <- (log( (- a1*log(u)/cc) +1) )/a1

Time = pmin(true.time, cens.time)*10

event = as.numeric(true.time <= cens.time) # event indicator

cat(paste0(round(100 * sum(event) / n, 1), "% experienced event\n"))

surv.data = as.data.frame(cbind(Time,event))

par(mfrow=c(1,2))

require(survival)

plot(survfit(Surv(Time, event)~1, data = surv.data), conf.int = FALSE,

mark.time = TRUE, ylab = "Proportion surviving", xlab = "Time")

plot( seq(0,max(Time),length=length(Time)), exp(a0+a1*sort(Time/10)),

ylab=expression(h[0]== exp (a[0]+a[1]*T)),xlab="Time",type = "l" )

names(y2) = c("id","y.1","y.2","y.3")

# To Balanced dataset

# ...................

require(joineR)
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Counts <- to.unbalanced(y2, id.col = 1, times = 1:J,

Y.col = 2:(J+1))

names(Counts)

names(Counts)[3] <- "Y"

Counts$time <- as.character(Counts$time)

require(ggplot2)

# Plotting 2nd order Poisson DLMs

# ......................................

h1 <- ggplot(na.omit(Counts), aes(Y))

h1+ geom_histogram(breaks=seq(0,200,5), alpha=0.5,

position="identity", lwd=0.2)+

ggtitle("Hist Poisson data simulation")

id.sort <- sort(Time, index.return = TRUE)$ix

y <- y[id.sort,]

Time <- Time[id.sort]

event <- event[id.sort]

K <- J

Q <- K

W <- cbind(1); ncW <- ncol(W)

qs <- seq(0,max(Time)+.5,length=K+1)

ind <- findInterval(Time, qs, rightmost.closed = TRUE)

D <- matrix(0, length(ind), Q)
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D[cbind(seq_along(ind), ind)] <- 1

D <- D * event

Tiq <- outer(Time, qs, pmin)

Lo <- Tiq[, 1:Q]

Up <- Tiq[, 2:(Q+1)]

T <- Up - Lo

P <- T / 2

P1 <- (Up + Lo) / 2

X1 <- cbind(1); ncX1 <- ncol(X1)

dados[f,,] <- cbind(y,Time,event,c(qs,rep(0,dim(y)[1]-length(qs))))

A.3.3 Posterior histogram for the parameters for the Liver

Dataset.

β21
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Figure A.1: The αk effect by interval k: estimated using the packagePhilipson et al. (2017)

based on Henderson et al. (2000) SRE approach (M3), Rizopoulos and Ghosh (2011)

(dashed and dotted, respectively, M2) and our proposal (hard line with credible intervals,

M1)

A.4 Jags code for Chapter 4

{

sigma ~ dgamma(0.01,0.01)

u ~ dgamma(1,sigma)

tauyi <- (1/b.tau)*(1/u)*sigma

mu1[1] ~ dnorm(0, 1)

mu2[1] ~ dnorm(0, 1)

tauyi[1] <- (1/b.tau)*(1/u[1])*sigma

for (j in 2:J) {

mu1[j] ~ dnorm(mu1[(j - 1)] + delta[j]*mu2[(j - 1)], tauw1j)

mu2[j] ~ dnorm(mu2[(j - 1)], tauw2j)

}

tauv ~ dgamma(0.01,0.01)

beta21 ~ dnorm(0,0.01)

for (i in 1:N) {

for (j in 1:J) {

y[i, j] ~ dnorm(lambda[i, j] + beta21*treat[i] + a.tau*u, tauyi)
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lambda[i, j] ~ dnorm(mu1[j], tauv)

ll[i, j] <- log(sqrt(tauyi)) +

(-tauyi/2) * (y[i,j] - lambda[i, j]-beta21*treat[i] - a.tau*u) *

(y[i, j] - lambda[i, j])

}

surt.cen[i] ~ dinterval(surt.time[i],cen[i])

surt.time[i] ~ dweib(r, muh[i])

log(muh[i]) <- beta1[1] + beta1[2]*treat[i] + alpha*mean(lambda[i,1:J])

ls[i] <- log(muh[i]) - surt.time[i]*muh[i]

}

r ~ dexp(10)

beta1[1:2] ~ dmnorm(mbeta1[], vbeta1[,])

alpha ~ dnorm(0, 0.001)

}

A.5 Jags code for Chapter 5

data {

for (k in 1:(K+1)) {

a[k] <- N*(k-1)/K; # partition the time axis

}

for (i in 1:N) {

for (k in 1:K) { # indicates event-time in interval k

d[i,k] <- (1 - event[i])*step(surv.time[i] - a[k])*step(a[k+1] - surv.time[i]);

}

}

}

{

for( i in 1 : N ) {

for( j in 1 : J ) {

y[i,j] ~ dnorm(lambda[i,j], tau)

lambda[i,j] <- mu[T[i,j]]

T[i,j] ~ dcat(P[])
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ll[i,j]<-log(sqrt(tau))+(-tau/2)*(y[i,j]-lambda[i,j])*(y[i,j]-lambda[i,j])

}

for (k in 1:K) {

# length of overlap of surv.time[i] with interval k

deltah[i,k] <- (min(surv.time[i], a[k+1]) - a[k])*step(surv.time[i] - a[k]);

# the piecewise exponential hazard rate lambda[k]

zeta[i,k] <- exp(h0[k] + alpha*mean(lambda[i,1:K]) + beta1*treat[i])

h[i,k] <- deltah[i,k]*zeta[i,k];

# define the likelihood

d[i,k] ~ dpois(h[i,k]);

}

}

h0[1] ~ dnorm(0.0, kappa);

for (k in 2:K) {

h0[k] ~ dnorm(h0[(k-1)], kappa);

}

kappa ~ dgamma(0.1,0.1)

tau ~ dgamma(0.1,0.1)

#sig ~ dunif(0.01,100) # vague Gelman prior for sigma

#kappa <- 1/(sig*sig)

#sigma ~ dunif(0.01,100) # vague Gelman prior for sigma

#tau<- 1/(sigma*sigma)

P[1] ~ dbeta(a.p1,b.p1)

P[2] ~ dbeta(a.p2,b.p2)

theta ~ dnorm(0.0, 1.0E-6)T(0.0, )

mu[2] <- mu[1] + theta
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mu[1] ~ dnorm(0.0, 1.0E-6)

alpha ~ dnorm(0.0, 1.0E-2)

beta1 ~ dnorm(0.0, 1.0E-2)

}
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Chen, P. and Sen, P. (2001). Quality adjusted survival estimation with periodic

observations. Biometrics, pages 868–874.

Chi, Y. and Ibrahim, J. G. (2006). Joint models for multivariate longitudinal and

multivariate survival data. Biometrics, 62:432–445.

Chokethaworn, K., Yamaka, W., and Maneejuk, P. (2017). Maximum entropy quantile

regression with unknown quantile. Thai Journal of Mathematics: Special Issue on

Entropy in Econometrics, page 107–119.

Cox, D. (1972). Regression model and life-tables (with discussion). Journal of the Royal

Statistical Society, pages 187–220.

Crowther, M. J., Abrams, K. R., and Lambert, P. C. (2013). Joint modeling of longitudinal

and survival data. Stata Journal, 13:165–184.

139



DeGruttola, V. and Tu, X. (1994). Modelling progression of cd4-lymphocyte count and

its relationship to survival time. Biometrics, pages 1003–1014.

Diggle, P., Heagerty, P., Liang, K., and Zeger, S. (1998). Analysis of Longitudinal Data.

Oxford University Press.

Farcomeni, A. and Viviani, S. (2015). Longitudinal quantile regression in the presence of

informative dropout through longitudinal-survival joint modeling. Statistical Methods

in Medical Research, 34:1199–1213.

Faucett, C. and Thomas, D. (1996). Simultaneously modelling censored survival data and

repeatedly measured covariates: A gibbs sampling approach. Statistics in Medicine,

pages 1663–1685.

Fiteni, F., Anota, A., Westeel, V., and Bonnetain, F. (2015). La qualité de vie relative
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