

# OPTIMIZATION OF EARTH DISTRIBUTION IN LINEAR EXCAVATION PROJECTS

by

Juan Pablo Vásquez



December, 1991

Division of Construction Engineering and Management School of Civil Engineering Purdue University West Lafayette, Indiana 47907

# OPTIMIZATION OF EARTH DISTRIBUTION IN LINEAR EXCAVATION PROJECTS

AN INDEPENDENT RESEARCH STUDY SUBMITTED TO THE FACULTY OF THE

# SCHOOL OF CIVIL ENGINEERING PURDUE UNIVERSITY

BY

JUAN PABLO VASQUEZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING

**DECEMBER 1991** 

APPROVED:

Professor Jorge A. Vanegas Chairman, Advisory Committee

Professor Daniel W. Halpin

Member, Advisory Committee

Professor Bobby G. McCullouch Member, Advisory Committee

This Research Project and my Master of Science degree are dedicated with love to my future wife, Angie.

#### ABSTRACT

This independent research study was developed in order to provide an alternative to the conventional methods currently used in planning and estimating earthmoving operations for linear projects. The original program was created by Mr. Robert S. Toomy at Georgia Institute of Technology in 1984 using BASIC. This program uses a section to section matching algorithm, and a variation of the classic transportation algorithm to balance in the most efficient way the distribution of earth among cuts, borrow pits, fills and landfills.

The new program developed in this research project enhances Mr. Toomy's original program by updating the code to QuickBASIC, and by making modifications in the program structure and in some of the calculation methods used. It also introduces new features. All these improvements were made focusing on increasing the speed, flexibility and reliability of the program, while providing the user with a friendly interface.

# TABLE OF CONTENTS

| ABS | TRAC                                   | i                                     |
|-----|----------------------------------------|---------------------------------------|
| TAE | BLE O                                  | F CONTENTS ii                         |
| LIS | гог                                    | FIGURES iii                           |
| 1.0 | INTE                                   | RODUCTION 1                           |
|     | 1.1<br>1.2                             | Background 1 Application 1            |
| 2.0 | CURI                                   | RENT APPROACH TO EARTH DISTRIBUTION 3 |
| 3.0 | BASI                                   | C PROGRAM STRUCTURE 6                 |
|     | 3.1<br>3.2                             | Data Input                            |
|     | 3.3                                    | Transportation Algorithm Output       |
| 4.0 | PROG                                   | GRAM ENHANCEMENTS16                   |
|     | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6 | Structure Improvements                |
|     | 4.7                                    | Compilation                           |
| 5.0 | CONC                                   | CLUSIONS AND RECOMMENDATIONS          |
| 6.0 | REFE                                   | RENCES                                |
| APP | ENDIX                                  | A: SAMPLE OF THE ORIGINAL PRINTOUT    |
| APP | ENDIX                                  | K B: SAMPLE #1 OF THE NEW PRINTOUT    |
| APP | ENDIX                                  | C: SAMPLE #2 OF THE NEW PRINTOUT      |
| APP | ENDIX                                  | D: PROGRAM FLOW CHART                 |
| APP | ENDIX                                  | E: PROGRAM CODE                       |
| APP | ENDIX                                  | F: PROGRAM DISKETTE                   |

# LIST OF FIGURES

| Figure 1.1 - | Generic Layout for a Linear Excavation Project | 2  |
|--------------|------------------------------------------------|----|
| Figure 2.1 - | Volume vs. Distance Graph                      | 3  |
| Figure 2.2 - | Ground Profile and Mass Diagram.               | 4  |
| Figure 3.1 - | Section-to-Section Matching Process            | 10 |
| Figure 3.2 - | Source-Destination Distance Matrix             | 12 |
| Figure 3.3 - | Technology Table for a Transportation Problem  | 12 |
| Figure 3.4 - | Simulated Screen Display Example               | 15 |

#### 1.0 INTRODUCTION

The purpose of this independent research project is to develop a new version of a program for optimization of earth distribution in linear excavation projects using the Microsoft Quick-Basic programming language, using the program previously developed by Mr. Robert S. Toomy at the Georgia Institute of Technology in 1984 as a starting point (Toomy 1984).

# 1.1 Background

The program made by Mr. Toomy presents an alternative to the traditional earth distribution method based on the mass diagram, which is very limited and sometimes inaccurate. Mr. Toomy's approach uses a microcomputer and the linear programming techniques, specifically the classical transportation algorithm. This program originally used the IBM Basic version that was available in 1984. Thus, it is a very slow program. For large projects, this problem could render the program inadequate.

The result of this study is a new and improved program that makes use of the more powerful capabilities of Quick-Basic, such as its ability to compile. Also, by introducing modifications in the program structure, the speed of the application will be considerably increased. Also its flexibility and capabilities were improved by introducing modifications in the input and output procedures, calculation processes and results.

# 1.2 Application

This program is designed to be used in any linear project that involves earthwork along its axis, such as a highway project. Typically, these linear projects involve successive cuts of ground and fills of terrain depressions. Therefore, there is a need to balance the volumes of cuts and fills in the most efficient way. In addition, to compensate any difference between the total cut and fill volumes, some projects have borrow pits from which to obtain earth for fills, and landfills to place excess earth from

cuts. In these cases, when the project is large or there are special conditions on the job site, it may be less expensive to place the earth from a cut in a landfill, rather than in a fill, or to furnish a fill with earth coming from a borrow pit, instead of a cut. Thus, it becomes necessary to optimize the complete project taking into account cuts, fills, borrow pits and landfills. A schematic example of the layout of a linear earth moving work is shown in figure 1.1.



Figure 1.1.- Generic Layout for a Linear Excavation Project

#### 2.0 CURRENT APPROACH TO EARTH DISTRIBUTION

Typically in a linear earth moving project, to be able to begin the optimization of earth distribution between cuts, fills, borrow pits and landfills, it is necessary to start by obtaining the following data:

- (1) volumes of cut and fills.— after the land survey is made, the global volumes of cut and fills are calculated for the project, based on the survey measurements;
- (2) volumes of cut and fills for each station.— the project is divided into equal length sections called stations (typically 100 ft.), calculating the volume of cut or fill for each;
- (3) swell and shrink factors.— the geotechnical studies determine the soil properties, especifically the swell and shrink factors;
- (4) volume versus distance graph.— with all these data, a graph of volume versus distance is made to give a general idea about the earth moving that needs to be made, as shown in Figure 2.1.



Figure 2.1.- Volume vs. Distance Graph

Traditionally, the method used for the earthmoving distribution is the Mass Diagram. From the volume versus distance graph, a cumulative volume graph is made starting from the first station through the end, taking into account the distances involved. This is shown in Figure 2.2.



Figure 2.2.- Ground Profile and Mass Diagram
[Developed from (Merritt 1983)]

The cumulative volume is plotted in the vertical axis against the distance measured along the center line of the project, typically in stations 100 ft. apart, along the horizontal axis. Swell factors are applied to the cuts to obtain the loose volume that needs to be transported, and shrink factors are applied to the fill volumes to determine the bank volume needed. Equations II.1 and II.2 show the calculation of these volumes.

$$V_1 = V_b^* (1 + \text{Swell Factor})$$
 (II.1)

$$V_f = V_b * (1 - Shrink Factor)$$
 (II-2)

V<sub>b</sub> = Bank volume (cut volume in natural state)

 $V_1$  = Loose volume (volume after swell)

 $V_f$  = Fill volume (volume after shrinkage)

The Mass Diagram helps to calculate the volume of earth and the distance to haul it, allowing to distinguish between the *free haul*, i.e., which does not have an extra cost, and the *overhaul*, which is billed as an extra cost for the project because the transportation distance exceeds the one agreed for the free haul.

The transportation distance is determined by the span between centers of mass of the group of cuts and fills used to balance each other, i.e., the volume of a cut is used as the volume for a fill. This span is measured in the Mass Diagram between the points A and B, each of which is located at the midpoint between a peak of the profile and the X axis, or a valley of the profile and the X axis, as shown in Figure 2.2.

The Mass Diagram method assumes that the balance between cuts and fills for each station will be made sequentially and cumulatively from the first station to the last station of the project, i.e., accumulated cuts go to fills as these are encountered. The problem is that sometimes, because of cost factors, it may be necessary for example, to import material from borrow pits, or to export excess material from cuts to landfills. This method does not allow to account easily for these deviations from the basic approach. Also, since this approach to earth distribution is primarily manual, it is time consuming, and furthermore, given the simplistic nature of the assumptions, the results may not be very accurate.

To overcome these limitations, the approach used by the program developed in this investigation uses an automatic section to section matching for cut and fill volumes that are close together. Also, it distributes the remaining volumes taking into account available borrow pits and landfills, by using a special variation of the classic transportation algorithm to obtain an efficient solution. The use of an automated method will help reduce earthwork costs by developing an efficient distribution, and since it allows for fast calculations, several scenarios with different assumptions may be tested to obtain an optimal solution.

#### 3.0 BASIC PROGRAM STRUCTURE

This section summarizes the basic elements of the program structure.

## 3.1 Data Input

The program begins with the data input module. Data for a project can be introduced either directly using the keyboard, or imported from an existing file that was previously created with a text editor, or created with the program. This module of the program allows the review and modification of the data input as many times as it is necessary. The program will go beyond this module only when the user decides that all the data input is correct.

The data required for this module is:

- PRONAME\$ = Project Name; the name of the project.
- NUMSEC = Number of Sections, i.e., total number of sections in which the project is divided.
- SECLEN = Section Length, i.e., the distance in feet between the starting point of a section
  and its endpoint along the project axis. The project needs to be divided always into sections
  of equal length. Typically, the section length is 100 ft., but the program has the capability of
  allowing the user to determine different lengths.
- VOL(I) = Volume of each section, i.e., total volume in cubic yards of a given section. This
  volume has to be positive for the cuts and negative for the fills. These volumes are either
  provided by the survey team, or calculated beforehand from the data provided by the
  surveyors.
- SWELL(I) = Swell factor, i.e., factor to change from a bank volume to a loose volume.
   This factor is always is greater than 1. As an example, if the volume increases 15% going

- from 1 CY when it is in bank state to 1.15 CY when it is loose, a swell factor of 1.15 must be entered.
- SHRINK(I) = Shrink factor, i.e., factor to change from a bank volume to a compacted fill volume. This factor is always less than 1. As an example, if the volume decreases 15% going from 1 CY when it is in bank state to 0.85 CY after it is compacted, a shrink factor of 0.85 must be entered.
- UNITPRICE = Unit Price, i.e., the unit price in dollars required to haul 1 CY of material a distance of 100 feet.
- NBP = Number of Borrow Pits, i.e., the number of borrow pits that are available for importing material when there is no more material available from the cuts to complete the fills. When the data was acquired from a file and the user wishes to increase the number of borrow pits, he/she can increase them up to 6 additional borrow pits. This slight limitation is due to the dimensioning the variables for the swell and shrink factors when the data is acquired from an existing file.
- CBP(I) = Capacity of the Borrow Pits, i.e., the volume in cubic yards of each borrow pit
  available for the project.
- BPD(I) = Borrow Pit Distance, i.e., the distance in feet between the borrow pit and the
  section where the trucks enter the project for dumping the borrowed material.
- ES(I) = Entering Section, i.e., the section number at which the truck can enter to the
  project coming from the borrow pit. The total distance between a borrow pit and the
  destination fill section where the import material will be dumped is equal to the distance
  between this section and the entering section plus the distance between the entering section
  and the borrow pit.
- NLF = Number of Landfills, i.e., the number of landfills that are available for dumping
  excess material when there are no more fills to place material coming from the cuts.

- CLF(I) = Capacity of the Landfills, i.e., the volume in CY of each landfill. When the data
  is acquired from an existing file, the number of landfills may be increased without any
  limitations.
- LFD(I) = Landfill Distance, i.e., the distance between the landfill and the departing section.
- DS(I) = Departing Section, i.e., the section number at which the truck can exit the project
  to go to the landfill. The total distance between any cut section and a landfill is equal to the
  distance between this section and the entering section plus the distance between the entering
  section and the landfill.

At the beginning of the program, the user will be asked if the data will be entered from a file or using the keyboard. If a file is the choice, the program will ask first the drive source, and then the file name. The drive source must be entered as "B: ". After the data is read from the file, it is possible to display it in the screen for review. All the data imported from an existing file may be modified. The main limitation is that the number of sections must remain the same. Also, the number of available borrow pits may be increased up to 6 additional ones. The number of landfills does not have any limitations.

The reason for these limitations is that with dimensioned variables all existing data will be lost if any attempt to redimension a previously dimensioned variable is made. For example, the number of sections cannot be increased because the variables that contain section data are dimensioned to a number equal to the number of existing sections in the data imported from an existing file. Also, while importing the data from an existing file, the swell and shrink variables are dimensioned to a quantity equal to the number of sections plus the number of borrow pits plus six, in order to allow for the possibility of increasing the number of borrow pits up to six. However, these limitations can be overcome by modifying the number of sections or borrow pits directly in the existing file using a text editor.

If the key board input is the choice, the user will be asked to enter the data as needed. The general data of the project is asked first: the project name, the length of the sections, the number of sections, the unit price and number of borrow pits. The number of borrow pits is requested at this time because it is needed to dimension the swell and shrink factor variables up to a quantity equal to the number of sections plus the number of borrow pits. After this is done, the volumes of each section must be entered one by one. Then, the data on swell and shrink factors is introduced. Here the program asks for the number of zones with different kind of soils. If there are two non-adjacent zones with the same type of soil, they count as different ones. For example, if a 10,000 ft. project there is type A soil in the first 3,000 feet, type B soil in the next 5,000 feet, and type A soil again in the last 2,000 feet, the user must enter a 3 as the number of different zones.

After the soil factors are entered, or after data is read from an existing file, the program will ask for any section that has a percentage of unusable soil. For this, the number of sections is inquired first, and then, one by one the percentage of unusable material must be entered. For example, if 20 % of the volume of a section cannot be used, 20 must be entered. After this is done, and if the data were not acquired from a file, the borrow pits and landfills are entered one by one.

At all times, after the input of any type of data is complete, the program will offer the possibility to display it for review, in order to check the data and make any necessary corrections.

After all data is input and all the corrections and modifications are made, these data can be saved in a file for further use, and also printed to keep a hard copy record.

# 3.2 Program Execution

Using the project shown in Figure 1.1 as an example, this section will provide a general description of the program execution.

The borrow pits and landfills are located on both sides of the project and each one has an access route to link it with the project at one of the project sections. The material available from cuts and

borrow pits will be used for fill sections (i.e., terrain depressions). The excess material or the cut volumes that are too expensive to be placed in the fill sections will be hauled to and dumped at the landfills. A schematic view of such a project might look as the example shown in Figure 2.1. The volumes above the grade level of the project represent the cuts, and the volumes below the grade level of the project represent the fill sections.

# Section-to-Section Matching Process

After all the data is input, the first step in the program is to multiply each cut and borrow pit volume by its correspondent shrink factor. The total cut and fill volumes are then compared to know if extra borrow pit or landfill capacity is needed. Next, the section—to—section matching process takes place. Figure 3.1 shows the section—to—section matching process step—by—step.



Figure 3.1.- Section-to-Section Matching Process

In this process, the program first identifies a grade point, i.e., a point where the section volumes change from a cut to a fill section. After a grade point is identified the program starts to compare the cut volumes from one side of the grade point, with the fill volumes in the other.

If a cut section volume is greater than the closest fill section, the volume matched is equal to the fill volume. Otherwise, the volume matched will be equal to the cut volume. Then, both volumes are reduced by the matched volume amount. This operation turns the smaller volume, between the cut and fill, to zero leaving a remaining volume in the larger one. If the remaining volume is a cut, the program will compare it with the next fill volume. Otherwise, it will search for the next cut volume.

This process will continue until all cuts or fills are finished. Then, the program will look for the next grade point and start again the process. A cut volume is left as excess material when there are no other fill volume available in the adjacent group of fill sections, and viceversa for any additional required material for a fill section. The result for each volume matching step will be the volume (i,j), which means: shipped from a source (i) to a destination (j), and the distance (i,j) involved in the process.

At the end of the section—to—section matching process, some cut and fill volumes may remain without being used, and some will be completely matched and equal to zero. The remaining unused volumes will be taken into account for the transportation algorithm, while the others are discarded.

#### Transportation Algorithm

The remaining cut and fill sections, together with the borrow pits and landfills, are distributed using a variation of the classic transportation algorithm. In using this algorithm, the cuts and borrow pits are the sources, and the fills and landfills are the destinations. The project data will be arranged in a matrix containing the distances between the sources and the destinations, as shown in Figure 3.2. The distribution will be made in order to minimize the total transportation cost, which is proportional to the distance, between the source locations and the supply locations.

Transportation problems require a very large number of variables and constrains. Therefore the use of a standard simplex method will not be very efficient. Fortunately, the mathematical characteristics of the transportation model are so special, that its structural properties can be exploited in order to obtain a more efficient method of solution. One of its characteristics is that most of the coefficient in the constraints are zeros, and those which are not, appear in a recurrent pattern, as shown in Figure 3.3. This characteristic allows to develop a streamlined algorithm based in the simplex method. As a result, considerably savings in computational efforts are obtained.



Figure 3.2.- Source-Destination Distance Matrix



Figure 3.3.- Technology Table for a Transportation Problem
[Developed from (Wagner 1975)]

Hillier and Lieberman, and Wagner give a more detailed explanation of the transportation algorithm (Hillier & Lieberman 1986; Wagner 1975). The general description of the algorithm is as follows:

- (1) Initialization step: Construct an initial basic feasible solution. This means to find any solution that satisfies all the constrains, but not necessarily the most efficient. Go to the optimality test.
- (2) Iterative step: Here the program changes the initial solution redistributing the basic variable X<sub>ij</sub> (amount shipped from source i to destination j) which has the highest negative rate (in absolute value) to modify the total cost Z. That means that the variable X<sub>ij</sub> will be redistributed in order to obtain the higher reduction in the cost.
- (3) Optimality test: Derive the rate variables to obtain the new rates. If all the rates are bigger or equal to zero, the optimal solution has been found. Otherwise, the iterative step should be repeated.

The specific transportation algorithm used by Mr. Toomy in the original program, was directly taken from the book "Basic Programs for Production and Operations Management" of Pantumsinchai, Hassan and Gupta (Pantumsinchai et al. 1983). This algorithm is described next.

#### We define

m = Number of supply points.

n = Number of demand points.

S; = Supply amounts.

D<sub>i</sub> = Destination amounts.

#### having

i = 1, 2, ..., m

j = 1, 2, ..., n

Also, we define:

 $C_{ij}$  = The unit transportation cost ( or distance ) from the supply location i to the demand location j  $X_{ij}$  = The amount to be shipped from the supply location i to the demand location j.

The problem is to minimize the total cost of the operation, that is:

$$Minimize Z = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} * X_{ij}$$

Subject to the following constraints:

(1) Each source must be equal to the total amount shipped from it.

$$\sum_{j=1}^{n} x_{ij} = s_{i}$$
For  $i = 1, ..., m$ 

(2) Each destination must be equal to the total amount shipped to it.

$$\sum_{i=1}^{m} x_{ij} = D_{j}$$

For j = 1, ..., n

(3) All the shipments must be equal or greater than 0.

$$X_{ij} \ge 0$$
 for all i and j.

# 3.3 Output

The results of the program execution are shown by the program in two different ways. First, there is a graphical display on the screen made with scaled bars representing the volumes on the vertical axis, and the distances on the horizontal axis. The volumes are cuts when the bars are positive,

and fills when they are negative. The borrow pits are represented by scaled bars located in the upper part of the graph and the landfills by those located in the bottom. At the beginning of the graphical display, all the rectangles are colored green. The user must press ENTER at each step of the earth distribution process. The cuts and borrow pits will become black when emptied, and the fills and landfills will turn blue when filled. This graph will show step by step how the earth distribution is made from one source to a destination, providing the user at the end, with a good grasp of the overall earth distribution for the project. In each step, a printout in the screen will indicate the number of the source (i.e., cut section or borrow pit), and the number of the destination (i.e., fill section or landfill). Also the volume involved in each step will be also indicated, as shown in Figure 3.4.



Figure 3.4.- Simulated Screen Display Example

The second way to see the results of the program execution is via a printed output, which provides a listing of the results. These results are sorted in the three types of distribution that are possible:

· cut section to fill section,

· borrow pit to fill section, and

cut section to landfill area.

These printouts have the number of the sections, borrow pits or landfills that are exchanging volumes, the distance involved in the process and the shrink and loose volumes hauled. Also, at the end of the printout, the total cost, the total loose volume and the total shrink volume are given. When there are remaining cut or fill sections, which were not matched in the process, a list of them and their remaining volumes is printed.

#### 4.0 PROGRAM ENHANCEMENTS

This study enhanced the original program by Mr. Toomy in several ways. This section highlights each enhancement, and provides an explanation and description of why and how they were made.

### 4.1 Structure Improvements

The use of Basic 7.0 and Quick Basic 4.5 makes new functions and features available. First, the line numbers were removed due to the use of structured loops and subroutines. Because some parts of the original program are very entangled, it was necessary to keep some line numbers as labels.

The IF THEN and GOTO loops were replaced by the IF THEN, ELSE, ELSEIF and END IF loops. The use of these loops results in a structured programming approach that runs smoothly and faster, permitting an easy understanding of the code while reading the program for further corrections.

As an example, the following loop

3040 IF SO=DXO THEN 3200 3050 IF SO>DXO THEN 3130 3060 M=M9+1 3070 N=N9

```
3080 S(M)=DXO-S0
```

3090 FOR J=1 TO N

-3100 C(M,J)=0

3110 NEXT J

3120 GOTO 3220

3130 M=M9

3140 N=N9+1

3150 D(N)=SO-DOX

3160 FOR I=1 TO M

3170 C(I,N)=0

3180 NEXT I

3190 GOTO 3220

3200 M=M9

3210 N=N9

3220 M1=M+N-1

# was replaced by

IF SO < DXO THEN

M=M9+1

N≠N9

S(M)=DXO-S0

FOR J=1 TO N

C(M,J)=0

NEXT J

ELSEIF SO > DXO THEN

M=M9

N=N9+1

D(N)=SO-DOX

FOR I=1 TO M

C(I,N)=0

**NEXT I** 

**ELSE** 

M=M9

N=N9

END IF

MI=M+N-1

Furthermore, the availability of the functions ON ERROR GOTO and SELECT CASE, helped to create a subroutine for error trapping and handling. The ON ERROR GOTO function is placed next to a function that might potentially cause an error, e.g., a file input, file output or a printing output. When an error is detected by the ON ERROR GOTO function, the error handler subroutine is triggered. By using this subroutine, a wider variety of errors can be handled because the handler has a list of the possible errors. The number of the error is contained on the ERR variable. With this number, the handler subroutine uses the SELECT CASE function to print the corresponding error message and the solution for it. This allows a continuous operation of the program without interruptions and the potential loss of data. This error handling is especially critical when running the compiled program.

## 4.2 Calculations Improvements

Several improvements were made to the calculation procedures.

# Different Soil Properties

Because it is possible to have different soil properties in a large project, the possibility to use different swell and shrink factors was added to this program. The program first asks for the number of zones with different soil properties in the project. Then, the soil properties and the boundary sections (beginning and end) for each zone are entered. The program automatically distributes the swell and shrink factors among the volumes of the sections within the boundaries, saving time in the data input.

To achieve this, the following algorithm was created:

CLS:LOCATE 12,12

INPUT " HOW MANY ZONES WITH DIFFERENT SOIL PROPERTIES DO THEPROJECT HAVE ="; NPR

DIM GSHRINK(NPR), GWELL(NPR), START(NPR), XEND(NPR)

CLS

FOR I = 1 TO NPR

CLS

LOCATE 12,12

PRINT"WHICH SECTIONS COMPRISE SOIL TYPE # ("; I;")"

```
- LOCATE 14,12
 INPUT " NUMBER OF THE FIRST SECTION (START)=";START(I)
 LOCATE 16.12
 INPUT " NUMBER OF THE LAST SECTION (END)=";XEND(I)
 LOCATE 18.12
 INPUT " SHRINK FACTOR (e.i 0.80 for 20% shrinkage from bankvol.) ="; GSHRINK(I)
 LOCATE 20,12
 INPUT " SWELL FACTOR (e.i. 1.20 for 20% swell from bank vol.) ="; GSWELL(I)
 CLS
 NEXT I
 FOR I=1 TO NPR
 FOR K = START(I) TO XEND(I)
 SHRINK(K) = GSHRINK(I)
 SWELL(K) = GSWELL(I)
 NEXT K
 NEXT I
```

### Volume Calculations

The original program made the earth distribution calculations using bank volumes. This implied that the fill volumes had to be divided by the shrink factor in order to match them with the cut volumes. Nevertheless, when having different shrink and swell factors, this approach is not valid anymore because the cuts will shrink in different proportions for different soils properties. Therefore, in the new version the earth distribution calculations are made in shrink volumes, which means that cut sections and the borrow pits are multiplied by their own shrink factors before any calculation is made, obtaining in this way the compacted volume that will complete the fill sections.

As a consequence of this change, the following routine

```
1290 FOR G=1 TO NUMSEC

1300 IF VOL(G) >= 0 THEN TCUT=TCUT+VOL(G): GOTO 1320

1310 VOL(G)=INT(VOL(G)/SHRINK):SVOL(G)=VOL(G):TFILL=TFILL- VOL(G)

1320 SVOL(G)=VOL(G):IF SVOL(G) > BIGVOL THEN BIGVOL=SVOL(G)

1330 NEXT G
```

### was changed for:

```
FOR G=1 TO NUMSEC

IF VOL(G) >= 0 THEN

VOL(G)=INT(VOL(G))*SHRINK(G))

TCUT = TCUT + VOL(G)

ELSE

TFILL = TFILL - VOL(G)

END IF

SVOL(G) = VOL(G)

IF SVOL(G) > BIGVOL THEN BIGVOL = SVOL(G)

NEXT
```

Notice how the positive volumes (cuts) are now each multiplied by their corresponding shrink factor. Furthermore, the following routine was added in order to multiply the borrow pit volumes by their shrink factor.

```
FOR G=1 TO NBP

CBP(G) = CBP(G)*SHRINK(G+NUMSEC)

TBPIT=TBPIT+CBP(G)

NEXT
```

Because this last routine is placed in the program after the data is already saved, the capacity of the borrow pits CBP is saved in the same unit they were entered, i.e., in bank volume.

Also, the following counters were modified in order to use the swell factor of each section while calculating the total cost of the haulage:

```
2250 FOR C= 1 TO NUMSEC
2260 FOR F=1 TO NUMSEC
2270 IF XA(C,F)=0 THEN 2290
2280 TSCYS=TSCYS+XA(C,F)*SWELL*ABS(C-F)
2290 NEXT F
2300 NEXT C
```

# They were changed to:

**NEXT L** 

```
FOR C=1 TO NUMSEC
        FOR F=1 TO NUMSEC
        IF XA(C,F) \Leftrightarrow 0 THEN
              TSCYS=TSCYS+XA(C,F)*SWELL(C)/SHRINK(C)*ABS(C-F)*UNITPRICE/100
              TOTVOL = TOTVOL+XA(C,F)*SWELL(C)/SHRINK(C)
              TOTSHRVOL=TOTSHRVOL+XA(C,F)
        END IF
The following one:
        5480 FOR L=1 TO M1
        5490 IF X(L) = 0 THEN 5510
        5495 I=A(K):J=B(L):IF C(I,J)=90000! THEN 5510
        5500 TSCYS=TSCYS+X(L)*SWELL*C(I,J)
        5510 NEXT L
was changed to
       548 FOR L=1 TO M1
        IF X(L)<>0 THEN
              I=A(L):J=B(L)
              IF I <= M8 AND J<= N8 THE SV=CLOC(I)
              IF I > M8 I <= M9 AND J <= N8 THEN SV=I-M8+NUMSEC
              IF I \leq M8 AND J > N8 AND J \leq N9 THEN SV=CLOC(I)
              IF I <= M9 AND J <= N9 THEN
                  TSCYS=TSCYS+X(L)*SWELL(SV)/SHRINK(SV)*C(I,J)*UNITPRICE/100
               TOTVOL = TOTVOL + X(L) + SWELL(SV) / SHRINK(SV)
               TOTSHRVOL=TOTSHRVOL+X(L)
              END IF
              END IF
       END IF
```

### Volume Results

The original program gave the total haulage volume results in bank volume. However, the loose volume is required to know how much volume must be transported and the shrunk one is needed to know the compacted volume that will be placed in the fills. This is not a big problem while having only one shrink and swell factor, because it is easy to calculate. However, if the project has two or more types of material with different soil properties, the transformation from bank to loose volume is very time consuming.

In order to overcome this difficulty, the results are given in both loose and compacted volumes, and to do so, two counters were added to calculate the totals, TOTVOL for the loose volume and TOTSHRVOL for the shrunk volume, as shown in the last routine.

Because the total cost of the operation is important, the variable TSCYS is multiplied now by the unit cost in order to have the volume hauled not only multiplied by the distance involved, but also multiplied by the hauling unit cost. In the original program the volumes used were bank volumes. This is not a correct approach because the volume hauled is loose volume instead of bank volume. Therefore, with the enhancement, the cumulative total price is obtained, multiplying each loose volume by the unit price and the haulage distance involved.

#### Unusable Volumes

Sometimes the sections may contain materials or types of soils that can not be used to fill. Thus, a routine was created to handle this eventuality. First, the program ask if there are sections with unusable volumes. Then it asks the number of the sections and the percentage of the volume that can not be used, reducing the volume of the section by the specified percentage. For example, if 20% of the volume of a section can not be used, 20 must be entered. The volume of the correspondent section will be reduced then by 20% by multiplying the volume by (1-20/100), i.e., 0.8.

The following routine was added to deal with this problem:

INPUT " ARE THERE ANY SECTION WITH UNUSABLE VOLUME Y/N "; A\$
IF A\$ = "Y" THEN

LOCATE 14.12

INPUT " IN HOW MANY SECTIONS ":NUM

DIM SN(NUM)

FOR I = 1 TO NUM

CLS: LOCATE 4,8

INPUT "WHICH SECTION (ENTER THE SECTION NUMBER)"; SN(I)

PRINT

PRINT "HOW MUCH VOLUME IN % \*CAN NOT BE USED\* INSECTION("; \$N(I);")"

PRINT

PRINT " e.i. enter 40 for 40% of wasted volume=":

INPUT WASTE

VOL(SN(I))=VOL(SN(I))\*(1-WASTE/100)

**NEXT** 

# Incomplete Fills and Cuts

In the original program, sometimes some fills remain not completed at the end of the calculations, and the program does not notice it. The original program checks if the total cut plus borrow pits volume is larger than the total fill volume, and if the total fill plus landfill volume is larger than the total cut volume. If they are not, more landfill or borrow pit volume is requested to avoid that some cuts or fills would remain incomplete. However, even after this checking is satisfied, some fill sections may remain empty and the problem is still not noticed. This happens because for the transportation algorithm solution, sometimes it is cheaper to send the cut volumes to the landfills instead than to some fills. Also, because there is enough space available in the landfills, and no more volume available in the borrow pits.

To detect this problem, a programming routine was added to identify the remaining volumes and print them. In addition, some recommendations to overcome this situation are printed too. These recommendations are either to reduce the landfill capacity, or to increase the borrow pits volume close to the empty fills. In the case of remaining cuts, the recommendation is the opposite. Thus, when this problem occurs, the engineer in charge must try different possible solutions using his/her own criteria

depending on the resources available in the field. These different alternatives may be entered in the program in order to choose the best one depending on the outputs.

The routine used is as follows:

```
FOR I= 1 TO NUMSEC
IF ABS(SVOL(I)) > 1 THEN
      REMAINFLAG=1
      PRINT "SECTION (";I;") HAS A REMAINING VOLUME OF "; SVOL(I)
END IF
NEXT
IF REMAINFLAG = 1 THEN
      PRINT
      PRINT "RUN THE PROGRAM AGAIN DOING THE FOLLOWING CHANGES"
      PRINT ""
      PRINT "-FOR A REMAINING FILL, INCREASE THE CLOSER"
      PRINT " BORROW PIT BY A VOLUME EQUAL TO THE REMAINING"
      PRINT " VOLUME DIVIDED BY THE BORROW PIT SHRINK FACTOR OR"
      PRINT " REDUCE THE LANDFILLS CAPACITY"
      PRINT " "
      PRINT "-FOR A REMAINING CUT, INCREASE THE CLOSER"
      PRINT " LANDFILL BY A VOLUME EQUAL TO THE REMAINING"
      PRINT " VOLUME OR REDUCE THE BORROW PITS CAPACITY"
      PRINT ""
      PRINT " STRIKE ANY KEY TO CONTINUE"
      PAUSES = INPUTS(1)
END IF
```

When the graphic display is skipped because of a large number of sections, the volumes (SVOL) of the remaining sections matched in the transportation algorithm are not reduced by the corresponding amount of cut or fill volume. This implies that they do not become zero. Therefore, it is impossible to control if any section remains unbalanced.

For this reason, a routine was added which reduces the volumes of the sections, when the graphic display is skipped, by the amount balanced by the transportation algorithm. This routine is as follows:

```
653 IF GRAPHFLAG = 1 THEN
       TSCYS = TSCYS * 100
       FOR I=1 TO NUMSEC
       FOR J= 1 TO NUMSEC
       SVOL(I) = SVOL(I) - XA(I,J)
       SVOL(J) = SVOL(J) + XA(I,J)
       NEXT J
       NEXT I
       FOR L = 1 TO M1
       I = A(L)
       J = B(L)
       IF I <= M8 AND J<= N8 THEN
       SVOL(CLOC(I)) = SVOL(CLOC(I)) - X(L)
       SVOL(FLOC(J)) = SVOL(FLOC(J)) + X(L)
       END IF
       IF I > M8 AND I <= M9 AND J <= N8 THEN
       SVOL(FLOC(J)) = SVOL(FLOC(J)) + X(L)
       END IF
       IF J > N8 AND J \le N9 AND I \le M8 THEN
       SVOL(CLOC(I)) = SVOL(CLOC(I)) - X(L)
       END IF
       NEXT L
END IF
```

# 4.3 File Input and Output Improvements

The file output routine was created in order to save all the input data of the project. In this way, it is very fast and easy to rerun the program. Also, it is possible to modify all the input data imported from an existing file. This allows to run the program for the same project many times, trying different assumptions and conditions in order to find the better solution, e.g., by reducing the capacity of the landfills, less cut volume will go to the landfills and will be going to the fills instead, reducing in this

way the volume used from the borrow pits. This sensitivity analysis allows the user to choose from many alternatives, the most economic and practical solution.

Because of the file output routine creation, the file input routine was modified to acquire also the borrow pits and landfills data.

## 4.4 Graphical Output Improvements

The original graphic output resolution was very poor because the capabilities of the old Basic were limited. Therefore, it was increased using SCREEN 8 instead of SCREEN 1. SCREEN 8 gives a 200 x 640 screen compared to the 200 x 320 of SCREEN 1. This modification allows not only to have a better resolution, but also to handle a project up to 192 sections, instead of the original 96, for the graphical display. If the project has more than 192 sections, the graphical display will be skipped, and the user will receive only the printed output data.

The display of the graphs, which is presented step-by-step in a sequential manner, is controlled by the new version manually instead of automatically. This change was made because the automatic control is made by a counter loop. Therefore, the difference in speed among computers will cause a slow pause when using a slow computer, and a fast pause in the opposite case. By having this part of the program done manually, the user has more control and will be able to appreciate better some critical part of the distribution.

# 4.5 Screen Output Improvements

The input data display was enhanced showing the shrink and swell factor of each section when the sections volumes are printed in the screen. Only the cuts (positive volumes) have their swell and shrink factor printed, because the fills are empty spaces that do not have any soil property.

Also a control of the quantity of data displayed in the screen was included to stop the displaying process allowing to review all the data carefully.

The use of comas for the display of numbers was introduced in order to permit an easy, fast and accurate review of the data displayed in the screen.

## 4.6 Printed Output Improvements

As it is shown in Appendix A, the original output data printed looks very confusing. To overcome this problem, the new output data is sorted using loops and printed in columns. This provides an elegant and easier to check printout, as shown in Appendix B.

In the original program, the volumes hauled between stations are given in bank volume. In order to know the exact amount of earth that must be transported, these volumes must be converted to loose volume. This calculation would consume a great amount of time in a large project. Therefore, the output was modified, in order to print the shrink and loose volumes for each hauled volume and for the total operation.

In the new version of the program, it is possible to obtain a printout of the data input. This allow to create a hard copy which is useful to keep together with all the project documentation. This output gives all the data of the cut and fill volumes, borrow pits and landfills.

Finally, in the previous program solutions of 0 volume transported were printed sometimes as a result. This problem was overcome by using an IF THEN filter before any printing subroutine printout. This filter does not allow any printout of a solution smaller than 1, which could be printed rounded to 0.

# 4.7 Compilation

The program was compiled in order to increase the speed and the flexibility to use it directly invoked from the operating system without the need to call Basic or Quick Basic in advance. This makes it easier to learn and use, because the user does not need to know Quick Basic or Basic to run it.

and he/shedoes not need to use or buy a Quick Basic package. All this reduces some of the barriers or resistance that the potential users may have to start using the program.

#### 5.0 CONCLUSIONS AND RECOMMENDATIONS

This program will make available to people involved in earth moving operations, the use of a construction management tool. Although the program does not provide an exact solution because of the natural differences between what is planned in advance and the operations in the job site, it is a good and close approximation to a realistic solution, and it offers more advantages than the Mass Diagram method.

This program is not only fast, accurate, easy to operate and does not require any special skills, but it is also inexpensive because it does not need any special hardware or software. Additionally, its use is not time consuming. This characteristic gives it a powerful advantage, i.e., the capability to enable a user to try different alternatives for the solution in order to find the most economic and efficient one. This does not imply necessarily the least expensive solution (but which could be technically not feasible), but rather the most technically feasible at the lowest possible cost. The use of this program will allow users to make more accurate estimates of the earth moving costs, and to plan operations in a more efficient manner.

All these characteristics should make it easier to accept the program. With more people using this approach, new ideas and suggestions for improvement can be received as a feedback. This will lead to even more enhancements and additional features. The continuous improvement cycle will make it more powerful, flexible and suitable for many different project characteristic over time.

To conclude, the following recommendations are given in an attempt to assist researchers in the future to develop additional enhancements to this program.

A more structured programing.— With the use of more subroutines, the structure of the program can be improved. In doing so, most of the label numbers should be eliminated. However,

this kind of improvement is very difficult to make because some parts of the program are very entangled, and any changes should be made very carefully in order to maintain the logic of the program. As a result of this suggested enhancement, the program will not only be faster, but also easier to understand while reviewing its code.

Menu based format.— With the use of subroutines, it will be easier to introduce a menu based format in a future version. The menu based format will add flexibility to the program, will make it easier to use.

Matrix format output.— The printout of the results using a source and destination matrix will give a better idea of the earth distribution plan. The matrix could look as the Source-Destination Distance Matrix shown in figure 3.2.

Add extra unit cost for borrow pits and landfills.— Sometimes the use of borrow pits and landfills can be charged with an extra cost. This extra cost can be added using an equivalent distance that reflects the extra cost. For example, the haulage unit cost for cut material within a project is \$1.00/cy/100ft.. Additionally, material from a borrow pit may have an extra cost of \$0.50 per cubic yard for any reason. This extra cost can be taken into account by increasing the borrow pit haulage distance by:

$$\frac{\$ \ 0.50 \ / \ cy}{\$ 1.00 \ / \ cy \ / \ 100 ft} = 50 \ ft.$$

This operation can easily be introduced in the program after the borrow pits and landfills data introduction section.

Dimensioned variables for distances.— Sometimes during construction, it is more difficult or costly to go through some sections than through others, e.g., using bypasses because of culverts installation or bridge construction, or having sections with steep slopes.

This problem can be overcome by increasing the length of the section taking into account

(1) the distance involved in the bypass,

- (2) the higher slope, or
- (3) any extra cost (as with the borrow pits extra cost).

However, in the present program the lengths of the sections are assumed equal. Therefore, in order to modify the lengths, dimensioned variables for each section length should be used. To save time in the data introduction, the length can be assumed first as equal, automatically assigning to each section length variable a default value using a FOR NEXT loop. Then, in the next step, these distances can be modified manually for any section which needs to be modified.

A consequence of this change is that normally the distance between two stations is calculated by subtracting the stations' position numbers, and multiplying the result by the unique section length. With the dimensioned variables, a counter should be created in order to sum the lengths of all the sections in between the two sections. This can be made easily using an FOR NEXT loop.

Use of shadow prices.— The transportation algorithm provides shadow prices which can be used to make a sensitivity analysis. The shadow prices indicate the sensitivity of the total cost when changes are made in the different variables of the cost function Z. These shadow prices can be used by the user to know where to make changes in order to improve the solution.

### 6.0 REFERENCES

- Hillier and Lieberman. (1986). Introduction to Operations Research. Holden-Day, Oakland, CA.
- Merrit, Frederick. (1983). Standard Handbook for Civil Engineers. Frederick S. Merrit, West Palm Beach, FL.
- Pantumsinchai and Pricha. (1983). <u>Basic programs for production and operations management</u>.

  Prentice Hall, Englewood Cliffs,NJ.
- Toomy Robert. (1984). The Development of an Earth Distribution Analysis Program for Microcomputers, thesis presented to the Georgia Institute of Technology, at Atlanta, Georgia, USA, in partial fulfillment of the requirements for the degree of Master in Science.
- Wagner, Harvey. (1975). Principles of Operations Research. Prentice Hall, Englewood Cliffs, NJ.

| <del> </del><br> -<br> - |  |  |  |
|--------------------------|--|--|--|
| 1                        |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
| )                        |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |
|                          |  |  |  |

# APPENDIX A: SAMPLE OF THE ORIGINAL PRINTOUT

## PROJECT TEST3B

### PROJECT NUMBER

### EARTH DISTRIBUTION PLAN

| AMOUNT | FROM | CUT  | SECTION | 5  | TO | FILL SECTION  | 4  | IS | 3 | DISTANCE | IS | 1  |
|--------|------|------|---------|----|----|---------------|----|----|---|----------|----|----|
| AMOUNT | FROM | CUT  | SECTION | 6  | TO | FILL SECTION  | 3  | IS | 4 | DISTANCE | IS | 3  |
| AMOUNT | FROM | CUT  | SECTION | 6  | TO | FILL SECTION  | 4  | IS | 1 | DISTANCE | IS | 2  |
| AMOUNT | FROM | CUT  | SECTION | 7  | TO | FILL SECTION  | 2  | IS | 1 | DISTANCE | IS | 5  |
| AMOUNT | FROM | CUT  | SECTION | 7  | TO | FILL SECTION  | 3  | IS | 2 | DISTANCE | IS | 4  |
| AMOUNT | FROM | CUT  | SECTION | 11 | TO | FILL SECTION  | 9  | IS | 3 | DISTANCE | IS | 2  |
| AMOUNT | FROM | CUT  | SECTION | 11 | TO | FILL SECTION  | 10 | IS | 2 | DISTANCE | IS | 1  |
| AMOUNT | FROM | CUT  | SECTION | 12 | TO | FILL SECTION  | 8  | IS | 4 | DISTANCE | IS | 4  |
| AMOUNT | FROM | CUT  | SECTION | 12 | TO | FILL SECTION  | 9  | IS | 1 | DISTANCE | IS | 3  |
| AMOUNT | FROM | BORE | ROW PIT | 2  | TO | FILL SECTION  | 1  | IS | 2 | DISTANCE |    | 12 |
| AMOUNT | FROM | BORE | OW PIT  | 1  | TO | FILL SECTION  | 2  | IS | 3 | DISTANCE | IS | 3  |
| AMOUNT | FROM | CUT  | SECTION | 13 | TO | LANDFILL AREA | 2  | IS | 3 | DISTANCE | IS | 7  |
| AMOUNT | FROM | CUT  | SECTION | 14 | TO | LANDFILL AREA | 2  | IS | 3 | DISTANCE | IS | 8  |
| AMOUNT | FROM | CUT  | SECTION | 13 | TO | LANDFILL AREA | 1  | IS | 2 |          | IS | 12 |
| AMOUNT | FROM | CUT  | SECTION | 12 | TO | LANDFILL AREA | 1  | IS | 2 | DISTANCE |    | 11 |
|        |      | . –  |         |    |    |               | _  |    | ~ |          |    |    |

TOTAL HAULAGE COST IN THIS PROJECT IS- \$ 181

TOTAL VOLUME IN CY IS- 36

# APPENDIX B: SAMPLE #1 OF THE NEW PRINTOUT

PROJECT TEST5 INPUT DATA

| SECTION<br>NUMBER                         | VOLUME<br>(+) BANK<br>(-) SHRINK                | SHRINK<br>FACTOR             | SWELL<br>FACTOR              |
|-------------------------------------------|-------------------------------------------------|------------------------------|------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | -2<br>-4<br>-6<br>-4<br>2<br>4<br>2<br>-4<br>-4 | 0.85<br>0.80<br>0.90         | 1.25<br>1.29<br>1.10         |
| 11<br>12<br>13<br>14                      | 4<br>7<br>3<br>2                                | 0.95<br>1.00<br>0.75<br>0.97 | 1.05<br>1.00<br>1.30<br>1.08 |

## BORROW PIT DATA FOR PROJECT: TEST5

| BORROW PIT | CAPACITY | ENTERING | DISTANCE  | SWELL        | SHRINK       |
|------------|----------|----------|-----------|--------------|--------------|
| NUMBER     | (CY)     | SECTION  | X100 (FT) | FACTOR       | FACTOR       |
| 1 2        | 2<br>4   | 2        | 3<br>4    | 1.10<br>1.15 | 0.80<br>0.88 |

## LANDFILL DATA FOR PROJECT: TEST5

| LANDFILL | CAPACITY | DEPARTING | DISTANCE  |
|----------|----------|-----------|-----------|
| NUMBER   | (CY)     | SECTION   | X100 (FT) |
| 1 2      | 5<br>6   | 6<br>12   | 5         |

PROJECT: TEST5

PROJECT NUMBER :

## EARTH DISTRIBUTION PLAN

| FROM CUT                              | TO FILL                  | DISTANCE                           | SHRINK                          | LOOSE                          |
|---------------------------------------|--------------------------|------------------------------------|---------------------------------|--------------------------------|
| SECTION                               | SECTION                  | x100 FT                            | VOLUME                          | VOLUME                         |
| 5                                     | 4                        | 1                                  | 2                               | 3                              |
| 6                                     | 3                        | 3                                  | 2                               | 3                              |
| 6                                     | 4                        | 2                                  | 2                               | 3                              |
| 7                                     | 3                        | 4                                  | 2                               | 2                              |
| 11                                    | 9                        | 2                                  | 2                               | 2                              |
| 11                                    | 10                       | 1                                  | 2                               | 2                              |
| 12                                    | · 8                      | 4                                  | 4                               | 4                              |
| 12                                    | 9.                       | 3                                  | 2                               | 2                              |
| FROM BORROW                           | TO FILL<br>SECTION       | DISTANCE<br>x100 FT                | SHRINK<br>VOLUME                | LOOSE<br>VOLUME                |
| 1                                     | 2                        | 3                                  | 2                               | 3                              |
| 2                                     | 3                        | 10                                 | 2                               | 3                              |
| 2                                     | 2                        | 11                                 | 2                               | 2                              |
| FROM CUT<br>SECTION<br>12<br>13<br>14 | TO LANDFILL AREA 2 2 2 2 | DISTANCE<br>x100 FT<br>6<br>7<br>8 | SHRINK<br>VOLUME<br>1<br>3<br>2 | LOOSE<br>VOLUME<br>1<br>5<br>2 |
|                                       |                          |                                    |                                 |                                |

| TOTAL | HAULAGI | E COST | IN ' | THIS | PROJECT | IS= | \$ | 176 |
|-------|---------|--------|------|------|---------|-----|----|-----|
| TOTAL | LOOSE   | VOLUME | IN   | CY   | IS=     |     | 39 |     |
| TOTAL | SHRINK  | VOLUME | IN   | -GA- | īs=     |     | 30 |     |

## SECTION ( ${f 1}$ ) HAS A REMAINING VOLUME OF ${f -2}$

### RECOMENDATIONS:

RUN THE PROGRAM AGAIN DOING THE FOLLOWING CHANGES:

- FOR A REMAINING FILL INCREASE THE CLOSER BORROW PIT BY A VOLUME EQUAL TO THE REMAINING VOLUME DIVIDED BY THE BORROW PIT SHRINK FACTOR
- FOR A REMAINING CUT INCREASE THE CLOSER LANDFILL BY A VOLUME EQUAL TO THE REMANING VOLUME.

# APPENDIX C: SAMPLE #2 OF THE NEW PRINTOUT

PROJECT LAWRENCEVILLE BYPASS INPUT DATA

| SECTION<br>NUMBER | VOLUME<br>(+) BANK<br>(-) SHRINK | SHRINK<br>FACTOR | SWELL<br>FACTOR |
|-------------------|----------------------------------|------------------|-----------------|
| 1                 | 2,391                            | 0.85             | 1.15            |
| 2                 | 26,576                           | 0.85             | 1.15            |
| 3                 | 111,898                          | 0.85             | 1.15            |
| 4                 | 116,543                          | 0.85             | 1.15            |
| 5                 | -97,189                          | -                |                 |
| 6                 | -64,951                          | •                |                 |
| 7                 | -32,856                          | 0.00             |                 |
| 8                 | 18,198                           | 0.85             | 1.15            |
| 9<br>10           | 74,750<br>-9, <b>936</b>         | 0.85             | 1.15            |
| 11                | -114,890                         |                  |                 |
| 12                | -34,000                          |                  |                 |
| 13                | 4,791                            | 0.85             | 1.15            |
| 14                | 53,952                           | 0.85             | 1.15            |
| 15                | 16,795                           | 0.85             | 1.15            |
| 16                | -5,811                           |                  |                 |
| 17                | -15,417                          |                  |                 |
| 18                | -60,327                          |                  | -               |
| 19                | -27,494                          |                  |                 |
| 20                | -22,810                          |                  |                 |
| 21<br>22          | -15,589<br>-56,092               |                  |                 |
| 23                | -7,400                           |                  |                 |
| 24                | -23,555                          |                  |                 |
| 25                | -66,397                          |                  |                 |
| 26                | -5,025                           |                  |                 |
| 27                | 24,672                           | 0.85             | 1.15            |
| 28                | 49,910                           | 0.85             | 1.15            |
| 29                | -73,668                          |                  |                 |
| 30                | -3,741                           |                  |                 |
| 31                | 13,931                           | 0.85             | 1.15            |
| 32                | -10,727                          |                  |                 |
| 33                | -13,878<br>25,402                | 0.85             | 1.15            |
| 35                | 68,288                           | 0.85             | 1.15            |
| 36                | 28,660                           | 0.85             | 1.15            |
| 37                | 61,190                           | 0.85             | 1.15            |
| 38                | 67,794                           | 0.85             | 1.15            |
| 39                | 6,601                            | 0.85             | 1.15            |
| 40                | -101,693                         |                  |                 |
| 41                | 52,884                           | 0.85             | 1.15            |
| 42                | 79,805                           | 0.85             | 1.15            |
| 43 .              | -69,369                          |                  |                 |
| 44                | -765                             | A 95             | 1 15            |
| 45<br>46          | 21,193                           | 0.85<br>0.85     | 1.15            |
| 46<br>47          | 18,707<br>-321                   | 0.03             | 1.15            |
| 47<br>48          | -17,232                          |                  |                 |
| 49                | 400                              | 0.85             | 1.15            |
| 50                | 22,733                           | 0.85             | 1.15            |
|                   | ,·                               |                  | - · ·           |

## PROJECT LAWRENCEVILLE BYPASS INPUT DATA

|                   | <b></b>                          |                  | ****            |
|-------------------|----------------------------------|------------------|-----------------|
| SECTION<br>NUMBER | VOLUME<br>(+) BANK<br>(-) SHRINK | SHRINK<br>FACTOR | SWELL<br>FACTOR |
| 51                | 63,855                           | 0.85             | 1.15            |
| 52                | 60,117                           | 0.85             | 1.15            |
| 53                | -67,302                          | •                |                 |
| 54                | 5,639                            | 0.85             | 1.15            |
| 55                | -13,259                          |                  |                 |
| 56                | 1,125                            | 0.85             | 1.15            |
| 57                | -70,116                          |                  |                 |
| 5 <b>8</b>        | -69,383                          |                  |                 |
| 59                | -69,383                          |                  |                 |
| 60                | 7.965                            | 0.85             | 1.15            |

PROJECT: LAWRENCEVILLE BYPASS

PROJECT NUMBER :

## EARTH DISTRIBUTION PLAN

-----

| FROM CUT      | TO FILL       | DISTANCE          | SHRINK           | LOOSE         |
|---------------|---------------|-------------------|------------------|---------------|
| SECTION       | SECTION       | x100 FT           | VOLUME           | VOLUME        |
| 3             | 6             | 3 :               | 45,597           | 61,690        |
| 3             | 7             | 4                 | 32,856           | 44,452        |
| 4             | 5             | 1                 | 97,189           | 131,491       |
| 4             | 6             | 2                 | 19,354           | 26,185        |
| 8             | 11            | 3                 | 18,198           | 24,621        |
| 9             | 10            | i                 | 9,936            | 13,443        |
| 9             | 11            | 2                 | 64,814           | 87,690        |
| 13            | 12            | ī                 | 4,791            | 6,482         |
| 14            | 11            | 3                 | 24,743           | 33,476        |
| 14            | 12            | 2                 | 29,209           | 39,518        |
| 15            | 11            | 4                 | 7,135            | 9,653         |
| 15            | 16            | i                 | 5,811            | 7,862         |
| 15            | 17            | $\bar{\tilde{z}}$ | 3,849            | 5,207         |
| 27            | 25            | 2                 | 19,647           | 26,581        |
| 27            | 26            | ĩ                 | 5,025            | 6,799         |
| 28            | 24            | 4                 | 3,160            | 4,275         |
| 28            | 25            | 3                 | 46,750           | 63,250        |
| 31            | 29            | 2                 | 10,190           | 13,786        |
| 31            | 30            | i                 | 3,741            | 5,061         |
| 34            | 32            | 2                 | 10,727           | 14,513        |
| 34            | 33            | 1                 | 13,878           | 18,776        |
| 37            | 40            | 3                 | 27,298           | 36,933        |
| 38            | 40            | 2                 | 67,794           | 91,721        |
| 39            | . 40          | 1                 | 6,601            | 8,931         |
| 42            | 43            | i                 | 69,369           | 93,852        |
| 42<br>42      | 44            | 2                 |                  |               |
|               | 47            | 1                 | 765              | 1,035         |
| 46            |               |                   | 321              | 434           |
| 46            | 48            | 2<br>2            | 17,232           | 23,314        |
| ——51 <u> </u> | <del>53</del> | 1                 | <del>7,185</del> | 9,721         |
| 52<br>57      | 53            |                   | 60,117           | 81,335        |
| 54            | 55<br>55      | 1.                | 5,639            | 7,629         |
| 56            | 55<br>50      | 1                 | 1,125            | 1,522         |
| 60            | 59            | 1                 | 7,965            | 10,776        |
| 1             | 17            | 16                | 2,391            | 3,235         |
| 2             | 17            | 15                | 9,177            | 12,416        |
| 2<br>3        | 18            | 16                | 17,399           | 23,540        |
|               | 18            | 15                | 33,445           | 45,249        |
| 34            | 29            | 5                 | 797              | 1,078         |
| 35            | 29            | 6                 | 62,681           | 84,804        |
| 35            | 24            | 11                | 5,607            | 7,586         |
| 36            | 24            | 12                | 14,788           | 20,007        |
| 36            | 23            | 13                | 7,400            | 10,012        |
| 36            | 22            | 14                | 6,472            | 8,7 <b>56</b> |
| 37            | 22            | 15                | 33,892           | 45,854        |
| 41            | 55            | 14                | 6,495            | 8,787         |
| 41            | 57            | 16                | 46,389           | 62,762        |

| FROM CUT    | TO FILL     | DISTANCE | SHRINK | LOOSE  |
|-------------|-------------|----------|--------|--------|
| SECTION     | SECTION     | x100 FT  | VOLUME | VOLUME |
| 42          | 57          | 15       | 9,671  | 13,084 |
| 45          | 57          | 12       | 14,056 | 19,017 |
| 45 :        | 58          | 13       | 7,137  | 9,656  |
| 46          | 58          | 12       | 1,154  | 1,561  |
| 49          | 58          | 9        | 400    | 541    |
| 50          | 58          | 8        | 22,733 | 30,756 |
| 51          | 58          | 7        | 37,959 | 51,356 |
| 51          | 59          | 8        | 18,711 | 25,315 |
| FROM BORROW | TO FILL     | DISTANCE | SHRINK | LOOSE  |
| PIT         | SECTION     | x100 FT  | VOLUME | VOLUME |
| FROM CUT    | TO LANDFILL | DISTANCE | SHRINK | LOOSE  |
| SECTION     | AREA        | x100 FT  | VOLUME | VOLUME |

7,547

TOTAL HAULAGE COST IN THIS PROJECT IS- \$
TOTAL LOOSE VOLUME IN CY IS- 1,497,388

TOTAL SHRINK VOLUME IN CY IS- 1,106,765

DUE TO INSUFFICIENT CUT AND BORROW, THE FOLLOWING FILL SECTIONS REMAIN: (SHRINK VOLUME)

```
FILL SECTION 18 - VOLUME - 9,483

FILL SECTION 19 - VOLUME - 27,494

FILL SECTION 20 - VOLUME - 22,810

FILL SECTION 21 - VOLUME - 15,589

FILL SECTION 22 - VOLUME - 15,728

FILL SECTION 59 - VOLUME - 42,707
```

### RECOMENDATIONS:

RUN THE PROGRAM AGAIN DOING THE FOLLOWING CHANGES:

- FOR A REMAINING FILL INCREASE THE CLOSER BORROW PIT BY A VOLUME EQUAL TO THE REMAINING VOLUME DIVIDED BY THE BORROW PIT SHRINK FACTOR
- FOR A REMAINING CUT INCREASE THE CLOSER LANDFILL BY A VOLUME EQUAL TO THE REMANING VOLUME.

# APPENDIX D: PROGRAM FLOW CHART





PROGRAM CODE

#### PROGRAM CODE

```
SCREEN 0: CLEAR : CLS : KEY OFF
PRINT: PRINT
PRINT "
PRINT "
                   Quick BASIC
PRINT "
             * EARTH DISTRIBUTION PROGRAM *"
PRINT "
             **************
PRINT "
PRINT: PRINT
PRINT " QUICK BASIC PROGRAM FOR AUTOMATIC EARTH DISTRIBUTION ANALYSIS "
PRINT " WRITTEN BY JUAN PABLO VASOUEZ AT PURDUE UNIVERSITY IN SEPTEMBER"
PRINT " 1991, BASED IN THE PROGRAM MADE BY MR. ROBERT S. TOOMY FROM"
PRINT " GEORGIA INSTITUTE OF TECHNOLOGY IN MAY 1984."
PRINT: PRINT: PRINT
INPUT "**** PRESS RETURN TO CONTINUE *****". A$
CLS: PRINT: PRINT
PRINT " OPTIMIZATION OF THE DISTRIBUTION OF CUT AND FILL"
PRINT " FOR LINEAR PROYECTS"
PRINT
PRINT " DATA REQUIRED:"
PRINT " - NUMBER OF SECTIONS"
PRINT " - CUT IN CY (-)"
PRINT " - FILL IN CY (+)"
PRINT " - SWELL AND SHRINKAGE FACTORS "
PRINT " - BORROW PIT (IF ANY) NUMBER, LOCATION AND CAPACITY"
PRINT " - LANDFILL (IF ANY) NUMBER, LOCATION AND CAPACITY"
PRINT
PRINT " RESULTS:"
PRINT " - VOLUME OF EACH CUT SECTION GOING TO A FILL SECTION"
PRINT " - DISTANCE INVOLVED"
PRINT " - TOTAL HAULAGE IN STATION-YARDS FOR THE PROJECT"
PRINT: PRINT: PRINT
INPUT "**** PRESS RETURN TO CONTINUE *****", A$
SCREEN 0: CLEAR : CLS : LOCATE 12, 12
10 INPUT "WILL INPUT BE READ FROM A DATA FILE (Y/N)"; AS$
IF AS$ = "Y" THEN
5
      CLS: LOCATE 12, 12
      INPUT "FROM WHICH DRIVE ex. B: "; DRIVE$
      LOCATE 14, 12
      INPUT "NAME OF THE INPUT FILE": NIFS
      CLOSE
      ON ERROR GOTO HANDLER
      OPEN DRIVES + NIFS FOR INPUT AS #1
      INPUT #1, PRONAMES, PNUMS, NUMSEC, SECLEN, UNITPRICE, NBP
      DIM VOL(NUMSEC), XA(NUMSEC, NUMSEC), SVOL(NUMSEC), SWELL(NUMSEC + NBP + 6),
          SHRINK(NUMSEC + NBP + 6)
      FOR I = 1 TO NUMSEC
      INPUT #1, I, VOL(I), SWELL(I), SHRINK(I)
      NEXT
       INPUT #1, NBP
      DIM CBP(NBP), ES(NBP), BPD(NBP)
```

```
FOR I = 1 TO NBP
       INPUT #1, I, CBP(I), ES(I), BPD(I), SWELL(NUMSEC + I), SHRINK(NUMSEC + I)
       INPUT #1. NLF
       DIM CLF(NLF), DS(NLF), LFD(NLF)
       FOR I = 1 TO NLF
       INPUT #1, I, CLF(I), DS(I), LFD(I)
       NEXT
       FILEFLAG = 1
       CLOSE
ELSE
       IF AS$ <> "N" THEN
              PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 10
      ELSE
              CLS: LOCATE 11, 12
              INPUT "PROJECT NAME": PRONAMES
              INPUT "TOTAL NUMBER OF SECTIONS": NUMSEC
              INPUT "SECTION LENGHT IN FEET"; SECLEN
              INPUT " COST $/CY/100 FT "; UNITPRICE
              INPUT "NUMBER OF BORROW PITS": NBP
              DIM VOL(NUMSEC), XA(NUMSEC, NUMSEC), SVOL(NUMSEC), SWELL(NUMSEC + NBP),
                 SHRINK(NUMSEC + NBP)
              FOR G = 1 TO NUMSEC
              CLS: LOCATE 13, 8
              PRINT "VOLUME IN CY OF CUT (-) OR (+) FILL FOR SECTION ("; G; ") = ";
              INPUT; VOL(G)
              NEXT
              CLS: LOCATE 12, 12
              INPUT " HOW MANY ZONES WITH A DIFFERENT SOIL PROPERTY DO THE PROJECT
                 HAVE ="; NPR
              DIM GSHRINK(NPR), GSWELL(NPR), START(NPR), XEND(NPR)
              CLS
             FOR I = 1 TO NPR
              CLS
              LOCATE 12, 12
              PRINT " WHICH SECTIONS COMPRISE SOIL TYPE # ("; I; ")"
             LOCATE 14, 12
              INPUT " NUMBER OF THE FIRST SECTION (START)="; START(I)
              LOCATE 16, 12
              INPUT " NUMBER OF THE LAST SECTION (END)="; XEND(I)
              LOCATE 18, 12
              INPUT " SHRINK FACTOR (e.i 0.80 for 20% shrink from bank vol.) = "; GSHRINK(I)
              LOCATE 20, 12
              INPUT " SWELL FACTOR (e.i. 1.20 for 20% swell from bank vol.) = ": GSWELL(I)
             CLS
              NEXT I
              FOR I = 1 TO NPR
             FOR K = START(I) TO XEND(I)
              SHRINK(K) = GSHRINK(I)
              SWELL(K) = GSWELL(I)
             NEXT K
              NEXT I
      END IF
END IF
```

```
14 CLS
LOCATE 12, 12
INPUT "IS THERE ANY SECTION WITH UNUSABLE VOLUME Y/N": A$
IF A$ = "Y" THEN
       LOCATE 14. 12
       INPUT " IN HOW MANY SECTIONS"; NUM
       DIM SN(NUM)
       FOR I = 1 TO NUM
       CLS: LOCATE 4, 8
       INPUT " WHICH SECTION (ENTER THE SECTION NUMBER)"; SN(I)
       PRINT
       PRINT " HOW MUCH VOLUME IN % *CAN NOT BE USED* IN SECTION("; SN(I); ")"
       PRINT
       PRINT "e.i Enter 40 for 40% of wasted volume=";: INPUT WASTE
       VOL(SN(I)) = VOL(SN(I)) * (1 - WASTE / 100)
       NEXT
       CLS
       PRINT: PRINT
       PRINT "NEW VOLUMES ARE:"
       PRINT "-----"
       PRINT
       FOR I = 1 TO NUM
       PRINT "VOL("; SN(I); ") = "; VOL(SN(I))
      PRINT
      PRINT "PRESS ANY KEY TO CONTINUE": AA$ = INPUT$(1)
      ELSEIF AS \Leftrightarrow "N" THEN
      LOCATE 14, 12
      PRINT "PLEASE ANSWER Y OR N"
       GOTO 14
END IF
IF FILEFLAG = 1 THEN
     CLS
15
       LOCATE 12, 12
       INPUT "DO YOU WANT TO RENAME THE PROJECT Y/N ": A$
       IF A$ = "Y" THEN
             LOCATE 14, 12
              INPUT " ENTER NEW NAME "; PRONAME$
      ELSEIF AS \diamond "N" THEN
             LOCATE 14, 12
              PRINT "PLEASE ANSWER Y OR N"
              GOTO 15
      END IF
16
     CLS
       LOCATE 12, 12
       INPUT "DO YOU WANT TO CHANGE THE UNIT COST Y/N ": A$
      IF A$ = "Y" THEN
              LOCATE 14, 12
             INPUT " COST $/CY/100 FT "; UNITPRICE
      ELSEIF AS < "N" THEN
              LOCATE 14. 12
              PRINT "PLEASE ANSWER Y OR N"
             GOTO 15
      END IF
END IF
```

```
20 CLS
25 LOCATE 12, 12
INPUT "DO YOU WANT TO REVIEW YOUR INPUT DATA (Y/N)"; A$
IF A$ = "Y" THEN
       CLS
       PRINT "
                   PROJECT ": PRONAMES: " INPUT DATA"
       PRINT" -
       PRINT " SECTION
                             VOLUME
                                        SHRINK
                                                  SWELL"
       PRINT "
                        (+) BANK
                                   FACTOR FACTOR"
       PRINT "
                       (-) SHRINK
       PRINT"-
       COUNTER2 = 0
       FOR G = 1 TO NUMSEC
       IF VOL(G) > 0 THEN
              PRINT USING "
                             ##
                                   #,##,###,#
                                                #,##
                                                        #.## "; G; VOL(G); SHRINK(G); SWELL(G)
       ELSE
             PRINT USING " ##
                                   #,###,#### ": G: VOL(G)
       END IF
       COUNTER2 = COUNTER2 + 1
       IF COUNTER2 = 16 THEN
             PRINT " PRESS ANY KEY TO CONTINUE"
             PAUSE$ = INPUT$(1)
             COUNTER2 = 0
             CLS
             PRINT "
                          PROJECT "; PRONAMES; " INPUT DATA"
             PRINT" -
             PRINT " SECTION
                                   VOLUME
                                               SHRINK
                                                         SWELL"
             PRINT "
                              (+) BANK
                                          FACTOR
                                                   FACTOR"
             PRINT "
                              (-) SHRINK
             PRINT" -
      END IF
      NEXT G
      PRINT: PRINT
ELSEIF A$ <> "N" THEN
      PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 25
END IF
IF A$ = "N" THEN LOCATE 14, 12
30 INPUT "DO YOU WISH ANY CHANGE (Y/N)"; B$
IF B$ = "Y" THEN-
      CLS: LOCATE 12, 12
      INPUT "ENTER THE SECTION NUMBER TO BE CHANGED"; G: PRINT
      LOCATE 14, 12
      INPUT "ENTER THE VOLUME OF THE SECTION IN CUT(-) OR FILL(+)"; VOL(G)
      GOTO 20
ELSEIF B$ ⇔ "N" THEN
      PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 30
END IF
TFILL = 0: TCUT = 0: TBPIT = 0: TLF = 0
IF FILEFLAG = 1 THEN
      CLS
35
      INPUT "DO YOU WANT TO REENTER YOUR BORROW PIT AND LANDFILL DATA Y/N": A$
      IF A$ = "N" THEN
             GOTO 50
      ELSEIF A$ <> "Y" THEN
             LOCATE 14. 12
             PRINT "PLEASE ANSWER Y OR N"
             GOTO 35
```

```
END IF
       LOCATE 6, 12: PRINT " YOU CAN MODIFIED ALL THE DATA BUT YOU CAN ONLY ADD"
      LOCATE 8, 12: PRINT " SIX (6) NEW BORROW PITS. (THE NEW LANDFILL HAVE" LOCATE 10, 12: PRINT "NOT ANY LIMITATION"
END IF
CLS
40 LOCATE 12, 12
INPUT "ARE BORROW PITS AVAILABLE (Y/N)": A$
IF AS = "Y" THEN
       CLS: LOCATE 12, 12
       ERASE CBP. ES, BPD
       INPUT "NUMBER OF BORROW PITS"; NBP
       DIM CBP(NBP), ES(NBP), BPD(NBP)
       FOR K = 1 TO NBP
       CLS
       LOCATE 10, 12
       PRINT "CAPACITY IN CY FOR BORROW PIT #("; K; ")="; : INPUT CBP(K)
      LOCATE 12, 12
       PRINT "WHAT IS THE NEAREST SECTION THAT TRUCKS FROM THE"
       LOCATE 13, 17
       INPUT "BORROW PIT CAN ENTER THE PROJECT AREA": ES(K)
      LOCATE 15, 12
      PRINT "WHAT IS THE DISTANCE FROM THE BORROW PIT TO THIS"
      LOCATE 16, 17
       INPUT "SECTION IN FEET"; BPD(K)
       BPD(K) = BPD(K) / SECLEN
       LOCATE 18, 12
       INPUT "SWELL FACTOR AS A FRACTION OF BANK VOLUME (I.E 1.25)"; SWELL(NUMSEC + K)
      LOCATE 20, 12
      INPUT "SHRINK FACTOR AS A FRACTION OF BANK VOLUME (I.E 0.95)"; SHRINK(NUMSEC + K)
      NEXT
       CLS
ELSEIF AS <> "N" THEN
       PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 40
END IF
50 CLS
55 LOCATE 12, 12
INPUT "DO YOU WANT TO SEE THE BORROW PIT DATA (Y/N)": A$
IF A$ = "Y" THEN
       CLS
      PRINT: PRINT: BORROW-PIT DATA FOR PROJECT: "; PRONAME$
      PRINT " ---
      PRINT: PRINT
      PRINT " BORROW PIT CAPACITY ENTERING
                                                    DISTANCE
                                                                SWELL SHRINK "
      PRINT " NUMBER
                            (CY)
                                   SECTION
                                               x100 (FT)
                                                        FACTOR FACTOR "
      PRINT "--
      FOR K = 1 TO NBP
      PRINT USING "
                             #,##,###
                                        ###
                                                #,###
                                                               #.## "; K; CBP(K); ES(K);
          BPD(K); SWELL(NUMSEC + K); SHRINK(NUMSEC + K)
      PRINT: PRINT: PRINT: PRINT
ELSEIF A$ <> "N" THEN
       PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 55
END IF
```

```
IF A$ = "N" THEN LOCATE 14, 12
60 INPUT "DO YOU WISH TO MAKE ANY CHANGES (Y/N)"; AS$
IF AS$ = "Y" THEN
       120 CLS
       LOCATE 8, 12
       INPUT "WHAT IS THE NUMBER OF THE BORROW PIT"; K
       LOCATE 10, 12
       PRINT "CAPACITY IN CY FOR BORROW PIT #("; K; ")="; : INPUT CBP(K)
       LOCATE 12, 12
       PRINT "WHAT IS THE NEAREST SECTION THAT TRUCKS FROM THE"
      LOCATE 13, 17
       INPUT "BORROW PIT CAN ENTER THE PROJECT AREA"; ES(K)
      LOCATE 15, 12
      PRINT "WHAT IS THE DISTANCE FROM THE BORROW PIT TO THIS"
      LOCATE 16, 17
       INPUT "SECTION IN FEET"; BPD(K)
      BPD(K) = BPD(K) / SECLEN
      LOCATE 18, 12
      INPUT "SWELL FACTOR AS A FRACTION OF BANK VOLUME (I.E 1.25)"; SWELL(NUMSEC + K)
      LOCATE 20, 12
      INPUT "SHRINK FACTOR AS A FRACTION OF BANK VOLUME (I.E 0.95)"; SHRINK(NUMSEC + K)
      GOTO 50
ELSEIF AS$ <> "N" THEN
      PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 60
END IF
IF BPFLAG = 1 THEN 70
IF FILEFLAG = 1 THEN
      CLS:
      LOCATE 12, 12
INPUT "DO YOU WANT TO REENTER YOUR LANDFILL DATA YIN"; AS
IF AS = "N" THEN
             GOTO 80
      ELSEIF A$ <> "Y" THEN
             LOCATE 14, 12
             PRINT "PLEASE ANSWER Y OR N"
             GOTO 86
      END IF
END IF
90 CLS
95 LOCATE 12, 12
INPUT "ARE LANDFILLS AVAILABLE (Y/N)"; AS$
IF AS$ = "Y" THEN
      CLS: LOCATE 12, 12
      INPUT "NUMBER OF LANDFILLS="; NLF
      ERASE CLF, DS, LFD
      DIM CLF(NLF), DS(NLF), LFD(NLF)
      FOR H = 1 TO NLF
100
      CLS: LOCATE 10, 12
      PRINT "WHAT IS THE CAPACITY OF THE LANDFILL ("; H; ")=";
      INPUT CLF(H)
      LOCATE 12. 12
      PRINT "FROM WHAT SECTION CAN TRUCKS LEAVE THE PROJECT"
      LOCATE 13, 12
      INPUT "AREA FOR THE LANDFILL": DS(H)
      LOCATE 15, 12
      PRINT "WHAT IS THE DISTANCE FROM THIS SECTION TO THE"
      LOCATE 16, 12
      INPUT "LANDFILL IN FEET"; LFD(H): LFD(H) = LFD(H) / SECLEN
```

```
IF HFLAG = 1 THEN 80
       NEXT H
ELSEIF AS$ <> "N" THEN
       PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 95
END IF
80 CLS
85 LOCATE 12, 12
INPUT "DO YOU WANT TO SEE THE LANDFILL DATA (Y/N)"; AS$
IF AS$ = "Y" THEN
       CLS: PRINT: PRINT
       PRINT "
               LANDFILL DATA FOR PROJECT:"; PRONAME$
       PRINT"
       PRINT: PRINT
       PRINT " LANDFILL
                            CAPACITY
                                          DEPARTING
                                                         DISTANCE"
       PRINT " NUMBER
                                                    x100 (FT)"
                                       SECTION
                             (CY)
       PRINT" =
       FOR H = 1 TO NLF
       PRINT USING "
                              #,###,###
                                           ###
                                                     #,###"; H; CLF(H); DS(H); LFD(H)
       NEXT
       PRINT: PRINT
ELSEIF AS$ <> "N" THEN
       PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 85
END IF
IF AS$ = "N" THEN LOCATE 14, 12
110 INPUT " DO YOU WISH TO MAKE ANY CHANGE (Y/N)"; AS$
IF AS$ = "Y" THEN
130
       CLS
       LOCATE 8, 12: INPUT "WHAT IS THE NUMBER OF THE LANDFILL"; H
       HFLAG = 1
       GOTO 100
ELSEIF AS$ <> "N" THEN
       PRINT " PLEASE ANSWER WITH Y OR N "
       GOTO 110
END IF
TLF = 0
FOR H = 1 TO NLF
TLF = TLF + CLF(H)
NEXT
IF LFFLAG = 1 THEN 70
131 CLS: LOCATE 12, 6
INPUT " DO YOU WANT TO SAVE THE DATA IN A FILE Y/N "; A$
IF A$ = "Y" THEN
132 INPUT " FROM WHICH DRIVE ex. B: "; DRIVE$
       INPUT "WHAT IS THE NAME OF THE FILE THAT WILL STORE THIS DATA"; NIF$
       CLOSE
       ON ERROR GOTO HANDLER
       OPEN DRIVES + NIFS FOR OUTPUT AS #1
       WRITE #1, PRONAMES, PNUMS, NUMSEC, SECLEN, UNITPRICE, NBP
       FOR I = 1 TO NUMSEC
       WRITE #1, I, VOL(I), SWELL(I), SHRINK(I)
       NEXT
       WRITE #1. NBP
       FOR I = 1 TO NBP
       WRITE #1, I, CBP(I), ES(I), BPD(I), SWELL(I + NUMSEC), SHRINK(I + NUMSEC)
       NEXT
       WRITE #1, NLF
       FOR I = 1 TO NLF
       WRITE #1, I, CLF(I), DS(I), LFD(I)
```

```
NEXT
       CLOSE
      IF ERR = 53 THEN
             CLS: LOCATE 12, 12
             INPUT "DRIVE NOT READY, CHECK IT AND PRESS ENTER": P$
             GOTO 132
             RESUME
      END IF
ELSEIF AS \Leftrightarrow "N" THEN
      PRINT "PLEASE ANSWER WITH Y OR N "
      INPUT " **** PRESS ENTER TO CONTINUE***"; AS
      GOTO 131
END IF
IF LFFLAG = 1 THEN 70
BIGVOL = 0
FOR G = 1 TO NBP
CBP(G) = CBP(G) * SHRINK(G + NUMSEC)
TBPIT = TBPIT + CBP(G)
NEXT
FOR G = 1 TO NUMSEC
IF VOL(G) >= 0 THEN
       VOL(G) = INT(VOL(G) * SHRINK(G))
      TCUT = TCUT + VOL(G)
ELSE
      TFILL = TFILL - VOL(G)
END IF
SVOL(G) = VOL(G)
IF SVOL(G) > BIGVOL THEN BIGVOL = SVOL(G)
NEXT
70 CLS
PRINT: PRINT
PRINT "
           INPUT DATA FOR PROJECT ": PRONAMES
PRINT "
PRINT: PRINT
PRINT " TOTAL NUMBER OF SECTIONS =": NUMSEC
PRINT USING "TOTAL LOOSE VOLUME OF CUT = ###,### CY ": TCUT
PRINT USING "TOTAL AMOUNT OF FILL = ###,### CY"; TFILL
PRINT USING " PROJECT LENGHT
                                   = ###,###,### YD": NUMSEC * SECLEN
PRINT " NUMBER OF BORROW PITS
                                 ="; NBP
PRINT " CAPACITY OF BORROW PITS ="; TBPIT
PRINT " NUMBER OF LANDFILLS
                               ="; NLF
PRINT " CAPACITY OF LANDFILLS ="; TLF
PRINT: PRINT
INPUT "*****PRESS RETURN TO CONTINUE*****", AS$
IF BPFLAG = 1 THEN
      IF LFFLAG = 1 THEN
75
             PRINT " DO YOU WANT TO SAVE THE MODIFIED DATA IN A FILE Y/N ": A$ = INKEY$
             IF A$ = "Y" THEN
                    GOTO 132
             ELSEIF A$ <> "N" THEN
                    PRINT "PLEASE ANSWER WITH Y OR N "
                    PRINT " **** PRESS ANY KEY TO CONTINUE***": B$ = INKEY$
                    GOTO 75
             END IF
      END IF
END IF
```

```
IF TFILL > TCUT + TBPIT THEN
      CLS: LOCATE 10, 2
      PRINT "REQUIRED FILL EXCEEDS AVAILABLE CUT"
      PRINT USING "AND BORROW PIT CAPACITY BY ##,###,###,### "; TFILL - (TCUT + TBPIT)::
          PRINT "CY"
      PRINT
      INPUT "DO YOU WANT TO ADD MORE CAPACITY (Y/N)"; AS$
140
      IF AS$ = "Y" THEN
             BPFLAG = 1: GOTO 120
      ELSEIF AS$ <> "N" THEN
             PRINT " PLEASE ANSWER Y OR N ": GOTO 140
      END IF
      NOXBP = 1
      END IF
IF TCUT > TFILL + TLF THEN
      CLS: LOCATE 10, 2
      PRINT "REQUIRED CUT EXCEEDS REQUIRED FILL"
      PRINT USING "AND LANDFILL CAPACITY BY ##,###,###,###"; TCUT - (TFILL - TLF); : PRINT "CY"
      PRINT
      150 INPUT "DO YOU WANT TO ADD MORE LANDFILL CAPACITY (Y/N)"; AS$
      IF AS$ = "Y" THEN
             LFFLAG = 1: GOTO 130
      ELSEIF AS$ <> "N" THEN
             PRINT " PLEASE ANSWER Y OR N "
             GOTO 150
      END IF
      NOXLF = 1
END IF
155 CLS
LOCATE 12, 12
INPUT "DO YOU WANT TO PRINT YOUR INPUT DATA (Y/N)"; A$
IF AS = "Y" THEN
      ON ERROR GOTO HANDLER
                    PROJECT "; PRONAMES; " INPUT DATA"
      LPRINT "
      LPRINT " ~
      LPRINT " SECTION
                                         SHRINK
                                                   SWELL"
                              VOLUME
      LPRINT " NUMBER
                             (+) BANK
                                         FACTOR
                                                   FACTOR"
      LPRINT "
                        (-) SHRINK
      LPRINT " ---
      COUNTER2 = 0
      FOR G = 1 TO NUMSEC
      IF VOL(G) > 0 THEN
             LPRINT USING "
                                   #,###,####
                                                 #,##
                                                        #.## "; G; VOL(G); SHRINK(G);
                 SWELL(G)
      ELSE
             LPRINT USING " ##
                                   #,###,#### "; G; VOL(G)
      END IF
      COUNTER2 = COUNTER2 + 1
      IF COUNTER2 = 50 THEN
             LPRINT CHR$(12)
             COUNTER2 = 0
             LPRINT: LPRINT
             LPRINT "
                           PROJECT "; PRONAMES; " INPUT DATA"
             LPRINT " -
                                                SHRINK
                                                          SWELL"
             LPRINT " SECTION
                                     VOLUME
             LPRINT " NUMBER
                                    (+) BANK
                                               FACTOR
                                                          FACTOR"
             LPRINT "
                               (-) SHRINK
             LPRINT " -
```

```
END IF
     NEXT G
     LPRINT CHR$(12)
     IF NBP \Leftrightarrow 0 THEN
            COUNTER2 = 0
           LPRINT: LPRINT
           LPRINT " BORROW PIT DATA FOR PROJECT: "; PRONAMES
            LPRINT " --
            LPRINT : LPRINT
            LPRINT " BORROW PIT CAPACITY ENTERING DISTANCE SWELL SHRINK "
            LPRINT " NUMBER
                                                  X100 (FT) FACTOR FACTOR "
                                 (CY) SECTION
           LPRINT "-
            FOR K = 1 TO NBP
                                                           #,## #.## "; K; CBP(K);
            LPRINT USING " ###
                                 #_###_###
                                            ###
                                                   #,###
               ES(K); BPD(K); SWELL(NUMSEC + K); SHRINK(NUMSEC + K)
            COUNTER2 = COUNTER2 + 1
            IF COUNTER2 = 50 THEN
                  LPRINT CHR$(12)
                  COUNTER2 = 0
                  LPRINT: LPRINT
                           BORROW PIT DATA FOR PROJECT: "; PRONAME$
                  LPRINT "
                  LPRINT " --
                  LPRINT : LPRINT
                  LPRINT " BORROW PIT CAPACITY ENTERING DISTANCE SWELL
                     SHRINK "
                                                        x100 (FT) FACTOR FACTOR "
                  LPRINT " NUMBER
                                       (CY)
                                              SECTION
                  PRINT "---
            END IF
            NEXT
            LPRINT CHR$(12)
     END IF
     IF NLF <> 0 THEN
            COUNTER2 = 0
            LPRINT: LPRINT
            LPRINT " LANDFILL DATA FOR PROJECT:"; PRONAMES
            LPRINT " -----
            LPRINT : LPRINT
            LPRINT " LANDFILL CAPACITY
                                            DEPARTING DISTANCE"
            LPRINT " NUMBER
                               (CY) SECTION x100 (FT)"
            LPRINT "
            FOR H = 1 TO NLF
            LPRINT USING " ##
                               #,###,###
                                             ###
                                                      #,###"; H; CLF(H); DS(H); LFD(H)
            COUNTER2 = COUNTER2 + 1
            IF COUNTER2 = 50 THEN
                  LPRINT CHR$(12)
                  COUNTER2 = 0
                  LPRINT: LPRINT
                  LPRINT " LANDFILL DATA FOR PROJECT:"; PRONAMES
                  LPRINT "
                  LPRINT: PRINT
                                                  DEPARTING
                                                                 DISTANCE"
                  LPRINT " LANDFILL CAPACITY
                                               SECTION x100 (FT)"
                  LPRINT " NUMBER
                                    (CY)
                  LPRINT " ----
            END IF
            NEXT
            LPRINT CHR$(12)
      END IF
ELSEIF A$ <> "N" THEN
```

```
LOCATE 14, 12
       PRINT " PLEASE ANSWER WITH Y OR N ": GOTO 155
END IF
CLS: LOCATE 10
PRINT "
PRINT "
                 * SECTION TO SECTION MATCHING *"
PRINT "
PRINT "
PRINT "
G = 1
IF VOL(G) \le 0 THEN C = 1: GOTO 190
165 G = G + 1
IF G = NUMSEC + 1 THEN 220
IF VOL(G) >= 0 THEN 165
F = G
C = G - 1
170 IF VOL(C) + VOL(F) < 0 THEN 180
XA(C, F) = ABS(VOL(F))
VOL(C) = VOL(C) + VOL(F)
VOL(F) = 0
F = F + 1
IF F = NUMSEC + 1 THEN 220
IF VOL(F) < 0 THEN 170
G = F
GOTO 165
180 \text{ XA(C, F)} = \text{VOL(C)}
VOL(F) = VOL(F) + VOL(C)
VOL(C) = 0
C = C - 1
IF C = 0 THEN 190
IF VOL(C) > 0 THEN 170
190 C = C + 1
IF C = NUMSEC + 1 GOTO 220
IF VOL(C) \le 0 GOTO 190
F = C - 1
200 IF VOL(C) + VOL(F) < 0 THEN 210
XA(C, F) = ABS(VOL(F))
VOL(C) = VOL(C) + VOL(F)
VOL(F) = 0
F = F - 1
IF F <> 0 THEN
        IF VOL(F) < 0 THEN 200
END IF
G = C
GOTO 165
210 \text{ XA(C, F)} = \text{VOL(C)}
VOL(F) = VOL(C) + VOL(F)
VOL(C) = 0
C = C + 1
IF C = NUMSEC + 1 THEN 220
IF VOL(C) >= 0 THEN 200
GOTO 190
220 FOR C = 1 TO NUMSEC
FOR F = 1 TO NUMSEC
IF XA(C, F) \Leftrightarrow 0 THEN
        TSCYS = TSCYS + XA(C, F) * SWELL(C) / SHRINK(C) * ABS(C - F) * UNITPRICE / 100
        TOTVOL = TOTVOL + XA(C, F) * SWELL(C) / SHRINK(C)
        TOTSHRVOL = TOTSHRVOL + XA(C, F)
```

```
END IF
NEXT F
NEXT C
M8 = 0: N8 = 0
FOR G = 1 TO NUMSEC
IF VOL(G) > 0 THEN
       M8 = M8 + 1
ELSEIF VOL(G) < 0 THEN
       N8 = N8 + 1
END IF
NEXT G
CLS: LOCATE 10
PRINT "
PRINT "
                   TRANSPORTATION ALGORITHM WORKING
PRINT "
PRINT "
PRINT "
M9 = M8 + NBP
N9 = N8 + NLF
S = M9 + 1; D = N9 + 1; R = D + S
DIM A(R), B(R), C(S, D), D(D), S(S), K(D), R(S)
DIM U(S), V(D), E(R), F(R), H(R), T(R), X(R)
DIM CLOC(S), FLOC(D)
1 = 0: J = 0
FOR G = 1 TO NUMSEC
IF VOL(G) > 0 THEN
       I = I + 1
       CLOC(I) = G
       S(I) = VOL(G)
ELSEIF VOL(G) < 0 THEN
       J = J + 1
       FLOC(J) = G
       D(J) = ABS(VOL(G))
END IF
NEXT G
FOR I = 1 TO M8
FOR J = 1 TO N8
C(I, J) = ABS(CLOC(I) - FLOC(J))
NEXT J
NEXT I
IF NBP <> 0 THEN
        FOR K = 1 TO NBP
        I = M8 + K
        S(I) = CBP(K)
        FOR J = 1 TO N8
        C(I, J) = ABS(FLOC(J) - ES(K)) + BPD(K)
        NEXT J
        NEXT K
END IF
IF NLF <> 0 THEN
        FOR H = 1 TO NLF
        J = N8 + H
        D(J) = CLF(H)
        FOR I = 1 TO M8
        C(I, J) = ABS(CLOC(I) - DS(H)) + LFD(H)
        NEXT I
        NEXT H
        IF NBP \Leftrightarrow 0 THEN
```

```
FOR I = (M8 + 1) TO M9
              FOR J = (N8 + 1) TO N9
              C(I, J) = 90000!
             NEXT J
              NEXT I
       END IF
END IF
DXO = 0
FOR J = 1 TO N9
DXO = DXO + D(J)
NEXT J
SO = 0
FOR I = 1 TO M9
SO = SO + S(I)
NEXT I
IF SO < DXO THEN
       M = M9 + 1
       N = N9
       S(M) = DXO - SO
       FOR J = 1 TO N
       C(M, J) = 0
       NEXT J
ELSEIF SO > DXO THEN
       M = M9
       N = N9 + 1
       D(N) = SO - DXO
       FOR I = 1 TO M
       C(I, N) = 0
       NEXT I
ELSE
       M = M9
       N = N9
END IF
M1 = M + N - 1
323 GOSUB DETERMINE
325 GOSUB INITIALIZE
IF 19 = 0 THEN 548
GOSUB FIND
GOSUB IMPROVE
GOTO 325
DETERMINE:
E7 = .001
FOR I = 1 TO M
R(I) = E7
U(I) = S(I) + E7
NEXT I
FOR J = 1 TO N - 1
K(J) = 0
V(J) = D(J)
NEXT J
K(N) = M * E7
 V(N) = D(N) + K(N)
L1 = 0
 344 FOR L = 1 TO M
IF U(L) <> 0 THEN 348
NEXT L
 GOTO 373
```

348 I = L

```
349 \text{ CO} = 1E+20
FOR J = 1 TO N
IF V(J) \Leftrightarrow 0 THEN
         IF CO > C(I, J) THEN
                 CO = C(I, J)
                 L = J
        END IF
END IF
NEXT J
\dot{J} = L
L1 = L1 + 1
A(L1) = I
B(L1) = J
IF U(I) \leftarrow V(J) THEN
        X(L1) = U(1)
         V(J) = V(J) - U(I)
         U(I) = 0
         K(J) = K(J) - R(I)
         T(L1) = R(I)
        GOTO 344
ELSE
        X(L1) = V(J)
        \mathrm{U}(\mathrm{I})=\mathrm{U}(\mathrm{I})-\mathrm{V}(\mathrm{J})
         V(J) = 0
        R(I) = R(I) - K(J)
        T(L1) = K(J)
        GOTO 349
END IF
373 IF L1 	M1 THEN
        PRINT "ERROR, No. OF BASIC CELLS ARE NOT EQUAL TO M+N+1"
        STOP
ELSE
        FOR L = 1 TO M1
        X(L) = X(L) - T(L)
        IF X(L) < E7 THEN X(L) = 0
        NEXT L
END IF
RETURN
INITIALIZE:
FOR I = 1 TO M
R(I) = -1
NEXT I
FOR J = 1 TO N
K(J) = -1
NEXTJ
M3 = 1
N3 = 0
I = A(1)
U(I) = 0
R(I) = 0
FOR L = 1 TO M1
IF A(L) = I THEN
        J = B(L)
        K(J) = I
         V(J) = C(I, J)
        N3 = N3 + 1
END IF
NEXT L
```

```
404 FOR J = 1 TO N
IF K(J) >= 0 THEN
       FOR L = 1 TO M1
       IF B(L) = J THEN
              IF R(A(L)) < 0 THEN
                      I = A(L)
                      R(I) = J
                      U(I) = C(I, J) \cdot V(J)
                      M3 = M3 + 1
              END IF
       END IF
       NEXT L
END IF
NEXT J
LO = 1
GOTO 432
418 FOR I = 1 TO M
IF R(I) > 0 THEN
       FOR L = 1 TO M1
       IF A(L) = I THEN
              IF K(B(L)) \le 0 THEN
                      J = B(L)
                      K(J) = I
                      V(J) = C(I, J) - U(I)
                      N3 = N3 + 1
              END IF
       END IF
       NEXT L
END IF
NEXT I
LO = 2
432 IF N3 = N THEN
       IF M3 \Leftrightarrow M THEN
                      IF LO = 1 THEN 418
                      GOTO 404
       END IF
ELSE
       IF LO = 1 THEN 418
       GOTO 404
END IF
GXO=0!
I9 = 0
FOR I = 1 TO M
FOR J = 1 TO N
G1 = U(I) + V(J) - C(I, J)
IF G1 > 1E-08 THEN
        IF G1 > GXO THEN
               GXO = G1
               I9 = I
               J9 = J
        END IF
END IF
NEXT J
NEXT I
RETURN
FIND:
H(1) = 19
LO = 19
```

```
L = 0
455 L = L + 1
IF H(L) >= 0 THEN
       IF R(LO) = 0 THEN 466
       H(L+1) = -R(LO)
       R(LO) = -R(LO)
       LO = -R(LO)
       GOTO 455
END IF
H(L + 1) = K(LO)
K(LO) = -K(LO)
LO = -K(LO)
GOTO 455
466 \text{ HO} = L
T(1) = -J9
LO = J9
L = 0
471 L = L + 1
IF T(L) >= 0 THEN
       IF R(LO) > 0 THEN
               T(L + 1) = -R(LO)
               R(LO) = -R(LO)
               LO = -R(LO)
               GOTO 471
       END IF
ELSE
        IF K(LO) > 0 THEN
               T(L+1) = K(LO)
               K(LO) = -K(LO)
               LO = -K(LO)
               GOTO 471
        END IF
END IF
TT = L
LO = T(TT)
FOR L = 1 TO HO
IF H(L) = LO THEN 489
NEXT L
489 HO = L
E(1) = 19
F(1) = J9
L1 = 1
HO = HO - 1
IF HO > O THEN
        FOR L = 1 TO HO
        L1 = L1 + 1
               IF H(L) \le 0 THEN
               E(L1) = H(L+1)
               F(L1) = -H(L)
        ELSE
               E(L1) = H(L)
               F(L1) = -H(L+1)
        END IF
        NEXT L
END IF
TT = TT - 1
IF TT > 0 THEN
        FOR L = 1 TO TT
```

```
L1 = L1 + 1
        J = TT - L + 2
        IF T(J) >= 0 THEN
                E(L1) = T(J)
                F(L1) = -T(J-1)
        ELSE
                E(L1) = T(J - 1)
                F(L1) = -T(J)
        END IF
        NEXT L
END IF
RETURN
IMPROVE:
FOR L = 2 TO L1
FOR J = 1 TO M1
IF E(L) = A(J) THEN
        IF F(L) = B(J) THEN
                H(L) = J
                GOTO 528
        END IF
END IF
NEXTJ
528 NEXT L
XO = 1E + 20
L2 = L1/2
FOR L = 1 TO L2
L3 = L * 2
IF X(H(L3)) < XO THEN
        XO = X(H(L3))
        LA = H(L3)
END IF
NEXT L
X(LA) = X(LA) + XO
A(LA) = I9
B(L4) = J9
FOR L = 1 TO L2
I = L * 2
J = I - 1
IF J O 1 THEN
        X(H(J)) = X(H(J)) + XO
END IF
X(H(I)) = X(H(I)) - XO
NEXT L
RETURN
548 \text{ FOR L} = 1 \text{ TO M}1
IF X(L) \Leftrightarrow 0 THEN
        I = A(L): J = B(L)
        IF C(I, J) \Leftrightarrow 90000! THEN
                IF I \leftarrow M8 AND J \leftarrow N8 THEN SV = CLOC(I)
                IF I > M8 AND I \leftarrow M9 AND J \leftarrow N8 THEN SV = I - M8 + NUMSEC
                IF I \leftarrow M8 AND J \rightarrow N8 AND J \leftarrow N9 THEN SV = CLOC(I)
                IF I <= M9 AND J <= N9 THEN
                        TSCYS = TSCYS + X(L) * SWELL(SV) / SHRINK(SV) * C(I, J) * UNITPRICE / 100
                        TOTVOL = TOTVOL + X(L) * SWELL(SV) / SHRINK(SV)
                         TOTSHRVOL = TOTSHRVOL + X(L)
                END IF
        END IF
END IF
```

```
NEXT L
CLS
SCREEN 8
COLOR 2, 0
LOCATE 1, 2: PRINT "EARTH DISTRIBUTION PLAN: "; LEFT$(PRONAME$, 12)
LOCATE 2, 2: PRINT "-----
R = 50 / BIGVOL
S = 580 / NUMSEC
IF S < 3 THEN
        CLS
        LOCATE 8, 12
        PRINT "NUMBER OF SECTION TOO LARGE FOR GRAPHICAL DISPLAY"
        GRAPHFLAG = 1
        GOTO 653
END IF
FOR I = 1 TO NUMSEC
IF SVOL(I) > 0 THEN
        LINE (S * I, 100)-((I + 1) * S, 100 - SVOL(I) * R - 1), 2, BF
ELSEIF SVOL(I) < O THEN
        LINE (S * I, 100)-((I + 1) * S, 100 - SVOL(I) * R + 1), 2, BF
END IF
NEXT I
FOR K = 1 TO NBP
LINE (ES(K) * S, 75)-((ES(K) + 1) * S, 75 - CBP(K) * R), 2, BF
NEXT K
FOR H = 1 TO NLF
LINE (DS(H) * S, 175)-((DS(H) + 1) * S, 175 - CLF(H) * R), 2, BF
NEXT H
LOCATE 23, 1: INPUT "PRESS ENTER TO CONTINUE"; AS$
FOR I = 1 TO NUMSEC
FOR J = 1 TO NUMSEC
IF XA(I, J) <> 0 THEN
       LOCATE 5, 1
       PRINT USING "CUT ## TO FILL ## AMOUNT IS ######.# C.Y. "; I; J; XA(I, J)
       FOR N = 1 TO XA(I, J) * R
       LINE (I * S + 1, (99 - (SVOL(I) * R)) + N) - ((I + 1) * S - 1, (99 - (SVOL(I) * R)) + N), 0
       LINE (J * S + 1, (101 - SVOL(J) * R) - N) - ((J + 1) * S - 1, (101 - (SVOL(J) * R)) - N), 1
       NEXT N
       SVOL(I) = SVOL(I) - XA(I, J)
       SVOL(J) = SVOL(J) + XA(I, J)
       LINE (I * S, 100)-((I + 1) * S, 100), 2
       FOR T = 1 \text{ TO } 150
       NEXT T
       LOCATE 23, 1
       INPUT "PRESS ENTER TO CONTINUE"; AS$
END IF
NEXTJ
NEXT I
FOR L = 1 TO M1
IF X(L) < .1 THEN 628
LOCATE 5, 1: PRINT " "
I = A(L)
J = B(L)
IF I \leftarrow M8 AND J \leftarrow N8 THEN
       LOCATE 5, 1
       PRINT USING "CUT ## TO FILL ## AMOUNT IS ######.# C.Y."; CLOC(I); FLOC(J); X(L)
       FOR N = 1 TO X(L) * R
```

```
LINE (CLOC(I) * S + 1, (99 - (SVOL(CLOC(I)) * R)) + N)-((CLOC(I) + 1) * S - 1, (99 - (SVOL(CLOC(I)) *
           R(1) + N(1) = 0
       LINE (FLOC(J) * S + 1, 101 - SVOL(FLOC(J)) * R - N)-((FLOC(J) + 1) * S - 1, 101 - SVOL(FLOC(J)) * R
           - N), 1
       NEXT N
       SVOL(CLOC(T)) = SVOL(CLOC(T)) - X(L)
       SVOL(FLOC(J)) = SVOL(FLOC(J)) + X(L)
       LINE (CLOC(I) * S, 100)-((CLOC(I) + 1) * S, 100), 2
       LOCATE 23, 1
       INPUT "PRESS ENTER TO CONTINUE": AS$
ELSEIF I > M8 AND I <= M9 AND J <= N8 THEN
       K = I - M8
       LOCATE 5, 1
       PRINT USING "B. PIT ## TO FILL ## AMOUNT IS ######## C.Y."; K; FLOC(J); X(L)
       FOR N = 1 TO X(L) * R
       LINE (ES(K) * S + 1, 75 - (CBP(K) * R) + N) - ((ES(K) + 1) * S - 1, 75 - (CBP(K) * R) + N), 0
       LINE (FLOC(J) * S + 1, 101 - SVOL(FLOC(J)) * R - N) - ((FLOC(J) + 1) * S - 1, 101 - SVOL(FLOC(J)) * R
           - N), 1
       NEXT N
       SVOL(FLOC(J)) = SVOL(FLOC(J)) + X(L)
       CBP(K) = CBP(K) - X(L)
       LINE (ES(K) * S, 75)-((ES(K) + 1) * S, 75), 2
       LOCATE 23, 1
       INPUT "PRESS ENTER TO CONTINUE": ASS
ELSEIF J > N8 AND J <= N9 AND I <= M8 THEN
       H = J - N8
       LOCATE 5, 1
       PRINT USING "CUT ## TO L. FILL ## AMOUNT IS ######.# C.Y.": CLOC(I): H: X(L)
       FOR N = 1 TO X(L) * R
       LINE (CLOC(I) * S + 1, (99 - (SVOL(CLOC(I)) * R)) + N)-((CLOC(I) + 1) * S - 1, (99 - (SVOL(CLOC(I)) *
           R) + N = 0
       LINE (DS(H) * S + 1, 175 - (CLF(H) * R) + N) - ((DS(H) + 1) * S - 1, 175 - (CLF(H) * R) + N), 1
       NEXT N
       CLF(H) = CLF(H) - X(L)
       LINE (CLOC(I) * S, 100)-((CLOC(I) + 1) * S, 100), 2
       SVOL(CLOC(I)) = SVOL(CLOC(I)) - X(L)
       LINE (DS(H) * S, 175)-((DS(H) + 1) * S, 175), 2
       LOCATE 23, 1
       INPUT "PRESS ENTER TO CONTINUE"; AS$
END IF
628 NEXT L
LOCATE 4, 1: PRINT ""
TSCYS = TSCYS * 100
LOCATE 4, 1
PRINT USING "
                     TOTAL COST IN $ IS = ###,###,###,###"; TSCYS: LOCATE 5, 1
PRINT USING "
                     TOTAL VOLUME IN C.Y. IS = ###,###,###": TOTVOL
LOCATE 23, 1: INPUT "PRESS ENTER TO CONTINUE": AS$
LOCATE 23. 1: PRINT "
SCREEN 0: WIDTH 80
IF NOXBP = 1 THEN
REMAINFLAG = 1
PRINT: PRINT: PRINT
LOCATE 4, 6: PRINT "DUE TO INSUFFICIENT CUT AND BORROW,"
LOCATE 6, 6: PRINT "THE FOLLOWING FILL SECTIONS REMAIN:": PRINT: PRINT
FOR L = 1 TO M1
IF X(L) \diamondsuit 0 THEN
       I = A(L)
       J = B(L)
```

```
IF I = M9 + 1 AND J <= N8 THEN PRINT "FILL SECTION"; FLOC(J); : PRINT USING " VOLUME =
           #,###,###"; X(L)
END IF
NEXT L
LOCATE 23. 1: INPUT "PRESS RETURN TO CONTINUE". ASS
ELSEIF NOXLF = 1 THEN
REMAINFLAG = 1
LOCATE 4, 6: PRINT "DUE TO INSUFFICIENT LANDFILL CAPACITY,"
LOCATE 6, 6: PRINT " THE FOLLOWING CUT SECTIONS REMAIN:": PRINT : PRINT
FOR L = 1 TO M1
IF X(L) \Leftrightarrow 0 THEN
       I = A(L)
       J = B(L)
       IF I <= M8 AND J <= N9 + 1 THEN PRINT " CUT SECTION"; CLOC(I); : PRINT USING " VOLUME =
           #,###,###"; X(L)
END IF
NEXT L
LOCATE 23, 1: INPUT "PRESS RETURN TO CONTINUE". ASS
END IF
653 IF GRAPHFLAG = 1 THEN
       TSCYS = TSCYS * 100
       FOR I = 1 TO NUMSEC
       FOR J = 1 TO NUMSEC
       SVOL(I) = SVOL(I) - XA(I, J)
       SVOL(J) = SVOL(J) + XA(I, J)
       NEXT J
       NEXT I
       FOR L = 1 TO M1
       I = A(L)
       J = B(L)
       IF I <= M8 AND J <= N8 THEN
              SVOL(CLOC(I)) = SVOL(CLOC(I)) \cdot X(L)
              SVOL(FLOC(J)) = SVOL(FLOC(J)) + X(L)
       END IF
       IF I > M8 AND I \le M9 AND J \le N8 THEN
              SVOL(FLOC(J)) = SVOL(FLOC(J)) + X(L)
       END IF
       IF J > N8 AND J \leftarrow N9 AND I \leftarrow M8 THEN
              SVOL(CLOC(I)) = SVOL(CLOC(I)) \cdot X(L)
       END IF
       NEXT L
END IF
IF NOXBP <> 1 THEN
      IF NOXLF \Leftrightarrow 1 THEN
              CLS
              FOR I = 1 TO NUMSEC
              IF ABS(SVOL(I)) > .1 THEN
                     REMAINFLAG = 1
                     PRINT "SECTION ("; I; : PRINT USING ") HAS A REMAINING VOLUME OF
                         #,###,### CY"; SVOL(I)
                     COUNTER3 = COUNTER3 + 1
                     IF COUNTER3 = 16 THEN
                         COUNTER3 = 0
                         PRINT "PRESS ANY KEY TO CONTINUE"
                         A\$ = INPUT\$(1)
                     END IF
              END IF
              NEXT
```

```
END IF
END IF
IF REMAINFLAG = 1 THEN
      CLS
      PRINT
      PRINT " RECOMENDATIONS:"
      PRINT
      PRINT " RUN THE PROGRAM AGAIN DOING THE FOLLOWING CHANGES:"
      PRINT "
      PRINT " - FOR A REMAINING FILL INCREASE THE CLOSER BORROW PIT "
      PRINT " BY A VOLUME EQUAL TO THE REMAINING VOLUME DIVIDED "
      PRINT " BY THE BORROW PIT SHRINK FACTOR"
      PRINT ""
      PRINT " - FOR A REMAINING CUT INCREASE THE CLOSER LANDFILL "
      PRINT " BY A VOLUME EQUAL TO THE REMANING VOLUME."
      PRINT
      PRINT " STRIKE ANY KEY TO CONTINUE"
      PAUSE$ = INPUT$(1)
END IF
654 CLS
LOCATE 12, 12
INPUT "DO YOU WANT A PRINTED COPY OF YOUR RESULTS (Y/N)"; AS$
IF AS$ = "N" THEN
      GOTO 699
ELSEIF AS$ <> "Y" THEN
      PRINT " PLEASE ANSWER WITH (Y) OR (N)"
      PRINT "":
      INPUT " *****PRESS ENTER TO CONTINUE****"; QQQQQ
      GOTO 654
END IF
CLS: LOCATE 12, 12: PRINT "PRINTER WORKING"
ON ERROR GOTO HANDLER
LPRINT: LPRINT "
                   PROJECT: "; PRONAME$
LPRINT: LPRINT "
                   PROJECT NUMBER:"; PNUM$
LPRINT: LPRINT: LPRINT"
                          EARTH DISTRIBUTION PLAN"
           -----": LPRINT
LPRINT "
COUNTER = 0
                                                         LOOSE "
LPRINT "
          FROM CUT TO FILL
                                 DISTANCE
                                             SHRINK
LPRINT " SECTION SECTION
                                           VOLUME
                                                      -VOLUME"----
                                 x100 FT
FOR C = 1 TO NUMSEC
FOR F = 1 TO NUMSEC
IF XA(C, F) >= 1 THEN
      LPRINT USING "
                                         ####
                                                ###,###
                                                           ###,### "; C; F; ABS(C - F); XA(C,
                         ###
                                 ###
          F); XA(C, F) * SWELL(C) / SHRINK(C)
      COUNTER = COUNTER + 1
      IF COUNTER = 46 THEN
             LPRINT CHR$(12)
             COUNTER = 0
             LPRINT "
                                              DISTANCE
                                                          SHRINK
                                                                      LOOSE "
                        FROM CUT
                                    TO FILL
             LPRINT "
                                                                    VOLUME"
                                              x100 FT
                                                        VOLUME
                        SECTION
                                   SECTION
      END IF
END IF
NEXT F
NEXT C
FOR L = 1 TO M1
IF X(L) >= 1 THEN
      I = A(L)
      J = B(L)
```

```
IF I \leftarrow M8 AND J \leftarrow N8 THEN
                                                                    ###,### "; CLOC(I); FLOC(J);
                                         ###
                                                  ####
                                                         ###,###
             LPRINT USING "
                                 ###
                 C(I, J); X(L); X(L) * SWELL(CLOC(I)) / SHRINK(CLOC(I))
              COUNTER = COUNTER + 1
              IF COUNTER = 46 THEN
                    LPRINT CHR$(12)
                    COUNTER = 0
                    LPRINT "
                                           TO FILL
                                                       DISTANCE
                                FROM CUT
                                                                    SHRINK
                                                                                 LOOSE "
                    LPRINT "
                                                       x100 FT
                                SECTION
                                           SECTION
                                                                  VOLUME
                                                                               VOLUME"
             END IF
       END IF
END IF
NEXT L
LPRINT ""
LPRINT "
           FROM BORROW TO FILL
                                     DISTANCE
                                                  SHRINK
                                                              LOOSE "; ""
LPRINT "
           PIT
                    SECTION x100 FT
                                          VOLUME
                                                      VOLUME"
FOR L = 1 TO M1
IF X(L) >= 1 THEN
       I = A(L)
       J = B(L)
       IF I > M8 AND I \leftarrow M9 AND J \leftarrow N8 THEN
             LPRINT USING "
                                 ###
                                                  ####
                                                         ###,####
                                                                    ###,### "; I - M8; FLOC(J);
                 C(I, J); X(L); X(L) * SWELL(I - M8 + NUMSEC) / SHRINK(I - M8 + NUMSEC)
              COUNTER = COUNTER + 1
             IF COUNTER = 45 THEN
                    LPRINT CHR$(12)
                    COUNTER = 0
                    LPRINT "
                                FROM BORROW TO FILL
                                                          DISTANCE
                                                                       SHRINK
                                                                                   LOOSE ": ""
                    LPRINT "
                                PIT
                                        SECTION
                                                    x100 FT
                                                               VOLUME
                                                                           VOLUME"
             END IF
      END IF
END IF
NEXTL
LPRINT ""
LPRINT "
           FROM CUT TO LANDFILL DISTANCE
                                                  SHRINK
                                                              LOOSE "
LPRINT "
                       AREA
                                 x100 FT
                                         VOLUME
           SECTION
                                                        VOLUME"
FOR L = 1 TO M1
IF X(L) >= 1 THEN
      I = A(L)
      J = B(L)
       IF I <= M8 AND J > N8 AND J <= N9 THEN
             LPRINT USING "
                               ###
                                         ###
                                                         ###,####
                                                                    ###.### ": CLOC(I): J - N8:
                                                  ####
                 C(I, J); X(L); X(L) * SWELL(CLOC(I)) / <math>SHRINK(CLOC(I))
              COUNTER = COUNTER + 1
             IF COUNTER = 50 THEN
                    LPRINT CHR$(12)
                    COUNTER = 0
                    LPRINT "
                                            TO LANDFILL DISTANCE
                                FROM CUT
                                                                       SHRINK
                                                                                   LOOSE "
                    LPRINT "
                                SECTION
                                           AREA
                                                     x100 FT
                                                                VOLUME
                                                                             VOLUME"
              END IF
       END IF
END IF
NEXT L
LPRINT: LPRINT: LPRINT: LPRINT
                 TOTAL HAULAGE COST IN THIS PROJECT IS= $ ###,###,###,###"; TSCYS
LPRINT USING "
LPRINT: LPRINT USING "
                       TOTAL LOOSE VOLUME IN CY IS= ###,###,###"; TOTVOL
LPRINT: LPRINT USING "
                         TOTAL SHRINK VOLUME IN CY IS= ###,###,###"; TOTSHRVOL
LPRINT CHR$(12)
```

```
IF NOXBP = 1 THEN
       COUNTER = 0
       LPRINT: LPRINT: LPRINT: LPRINT: LPRINT
       LPRINT "
                   DUE TO INSUFFICIENT CUT AND BORROW,"
       LPRINT "
                   THE FOLLOWING FILL SECTIONS REMAIN:"
       LPRINT "
                   (SHRINK VOLUME)": LPRINT
       FOR L = 1 TO M1
       IF X(L) \Leftrightarrow 0 THEN
              I = A(L)
              J = B(L)
              IF I = M9 + 1 AND J \leftarrow N8 THEN LPRINT USING "
                                                              FILL SECTION ###"; FLOC(J); :
                  LPRINT USING " - VOLUME = #,###,###"; X(L)
              COUNTER = COUNTER + 1
       END IF
       IF COUNTER = 45 THEN
              LPRINT CHR$(12)
              COUNTER = 0
       END IF
       NEXT L
END IF
IF NOXLF = 1 THEN
       COUNTER = 0
       LPRINT: LPRINT: LPRINT: LPRINT: LPRINT
       LPRINT "
                  DUE TO INSUFFICIENT LANDFILL CAPACITY,"
       LPRINT "
                  THE FOLLOWING SECTIONS REMAIN:"
       LPRINT "
                  (SHRINK VOLUME)": LPRINT
       FOR L = 1 TO M1
       IF X(L) \Leftrightarrow 0 THEN
              I = A(L)
              J = B(L)
              IF I <= M8 AND J = N9 + 1 THEN LPRINT USING "
                                                             CUT SECTION ###": CLOC(I)::
                  LPRINT USING " - VOLUME = #,###,### "; X(L)
              COUNTER = COUNTER + 1
       END IF
       IF COUNTER = 45 THEN
              LPRINT CHR$(12)
              COUNTER = 0
       ENDIF
       NEXT L
END IF
IF NOXBP <> 1 THEN
       IF NOXLF <> 1 THEN
              COUNTER = 0
              FOR I = 1 TO NUMSEC
              IF ABS(SVOL(I)) > 1 THEN
                     LPRINT: LPRINT: LPRINT
                     LPRINT "SECTION ("; I; ") HAS A REMAINING VOLUME OF "; SVOL(I)
                     COUNTER = COUNTER + 1
                     IF COUNTER = 45 THEN
                        LPRINT CHR$(12)
                        COUNTER = 0
                     END IF
              END IF
              NEXT
       END IF
END IF
```

```
IF REMAINFLAG = 1 THEN
      IF COUNTER > 45 THEN LPRINT CHR$(12)
      LPRINT: LPRINT: LPRINT
      LPRINT " RECOMENDATIONS:"
      LPRINT
      LPRINT " RUN THE PROGRAM AGAIN DOING THE FOLLOWING CHANGES:"
      LPRINT ""
      LPRINT " - FOR A REMAINING FILL INCREASE THE CLOSER BORROW PIT "
      LPRINT " BY A VOLUME EQUAL TO THE REMAINING VOLUME DIVIDED "
      LPRINT " BY THE BORROW PIT SHRINK FACTOR"
      LPRINT " - FOR A REMAINING CUT INCREASE THE CLOSER LANDFILL "
      LPRINT " BY A VOLUME EQUAL TO THE REMANING VOLUME."
      LPRINT
      LPRINT CHR$(12)
END IF
699 CLS
LOCATE 12, 12
INPUT "DO YOU WANT TO RUN THE PROGRAM AGAIN WITH NEW DATA(Y/N)"; C$
IF C$ <> "N" THEN
      IF C$ = "Y" THEN
             CLEAR
             GOTO 5
      ELSE
             PRINT "PLEASE ANSWER WITH (Y) OR (N)"
             PRINT "": PRINT ""
             INPUT "***** PRESS ENTER TO CONTINUE*****"; C$
             GOTO 699
       END IF
END IF
CLS: LOCATE 12, 20: PRINT " THE END"
END
703 CLS: LOCATE 10, 6
PRINT "INSUFFICIENT LANDFILL FOR OPTIMAL SOLUTION"
PRINT: PRINT "DO YOU WANT TO INCREASE LANDFILL CAPACITY (TYPE Y),"
PRINT: INPUT " OR CONTINUE WITH LESS THAN OPTIMAL SOLUTION (TYPE N)", AS$
IF A$ <> "N" THEN
      IF A$ = "Y" THEN
                        .....
             CLEAR
             GOTO 130
       ELSE
             PRINT "PLEASE ANSWER WITH (Y) OR (N)"
             PRINT "": PRINT ""
             INPUT "***** PRESS ENTER TO CONTINUE*****"; C$
             GOTO 703
       END IF
END IF
C(I, J) = 90000!: INSUF = 1: GOTO 323
HANDLER:
SELECT CASE ERR
CASE 25
       CLS: LOCATE 12, 12
       PRINT "DEVICE FAULT, PLEASE CONNECT THE PRINTER"
       LOCATE 14, 12
       PRINT "PRESS ANY KEY TO CONTINUE"
       PAUSE$ = INPUT$(1)
       RESUME
```

```
CASE 27
      CLS: LOCATE 12, 12
      PRINT "PRINTER OUT OF PAPER, PLEASE FEED THE PRINTER"
      LOCATE 14, 12
      PRINT "PRESS ANY KEY TO CONTINUE"
      PAUSE$ = INPUT$(1)
      RESUME
CASE 53
      CLS: LOCATE 12, 12
      PRINT "FILE NOT FOUND, PLEASE ENTER DRIVE AND FILE NAME AGAIN"
      LOCATE 14, 12
      INPUT "FROM WICH DRIVE ex. B: "; DRIVE$
      LOCATE 16, 12
      INPUT "NAME OF THE INPUT FILE"; NIF$
      RESUME
CASE 54
      CLS: LOCATE 12, 12
      PRINT "BAD FILE MODE, PLEASE ENTER DRIVE AND FILE NAME AGAIN"
      LOCATE 14, 12
      INPUT "FROM WICH DRIVE ex. B: "; DRIVE$
      LOCATE 16, 12
      INPUT "NAME OF THE INPUT FILE"; NIF$
      RESUME
CASE 57
      CLS: LOCATE 12, 12
      PRINT "DEVICE I/O ERROR"
      LOCATE 14, 12
      PRINT "PRESS ANY KEY TO CONTINUE"
      PAUSE$ = INPUT$(1)
      RESUME
CASE 71
      CLS: LOCATE 12, 12
      PRINT "DISK NOT READY, PLEASE CHECK DISK DRIVE"
      LOCATE 14, 12
      PRINT "PRESS ANY KEY TO CONTINUE"
      PAUSE$ = INPUT$(1)
      RESUME
CASE 64
      CLS: LOCATE 12, 12
      PRINT "BAD FILE NAME PLEASE ENTER DRIVE AND FILE NAME AGAIN"
      LOCATE 14, 12
      INPUT "FROM WICH DRIVE ex. B: "; DRIVE$
      LOCATE 16, 12
      INPUT "NAME OF THE INPUT FILE"; NIF$
      RESUME
```

**END SELECT** 

# APPENDIX F: PROGRAM DISKETTE

