
Matter-antimatter asymmetries at LHCb - development of a 3rd year
lab project

Jose Gutierrez 7618322

May 11, 2014

School of Physics and Astronomy

The University of Manchester

Mphys Report

Abstract

The goal is to set the foundations for a new third year lab experiment in particle physics data analysis.
To this end, B meson three-body decays B± → K±π+π−, B± → K±K+K− and B± → π±π+π− where
studied from data collected by LHCb to look for matter-antimatter asymmetries. In this context, charmless
decays were analysed, which offer interference patterns between two-body resonances in the Dalitz plots and
hence the study of CP violation. The global charge asymmetries of these modes are measured as −0.053±0.007
(B± → K±K+K− ), 0.066±0.023 (B± → π±π+π−) and −0.001±0.011 (B± → K±π+π−). The significance of
the asymmetry observed in B± → K±K+K− decay channel exceeds three standard deviations as an evidence
of CP asymmetry in charmless three-body B decays. In addition to the global CP asymmetries, larger and
significant asymmetries are observed in localized regions of phase space.
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1 Introduction
CP Violation is an important subject to the understanding of particle physics and the early universe. It is the
suggested main mechanism for the observed matter antimatter asymmetries in the universe. In the Standard
Model, CP Violation originates from the weak interactions of quarks and leptons, to date, this has only been
observed in the quark sector, such as the decays of charged B mesons. [1]

1.1 Theoretical Introduction
According to the Standard Model, quarks can interact strongly (mediated by gluons), they are never isolated in
nature but always bound in composite subatomic particles called hadrons (due to confinement by gluon fields).
In this category, mesons are formed by a quark and antiquark pair and have integer spin. Most relevant to this
report are B mesons, which are composed of a b quark and other lighter quarks, e.g. B−(bū) and B+(b̄u). An
essential part of the Stardard Model is the concept of symmetry. The laws of physics are invariant under simple
transformations of the coordinate system like a rotation. Violations of the expected symmetries of a theory play
a crucial role in the understanding of particle physics. Most relevant to this report is the combined violation of
the C and P symmetries. It turns out that B mesons are an excellent place to observe this phenomenon as the
SM predicts large effects with high accuracy. CP violation has cosmological significance as it plays a crucial role in
baryogenesis[1]. It is one of the Sakharov conditions[2]:

• Violation of the baryon number,

• C and CP violation,

• Interactions outside of thermal equilibrium, which set out the conditions necessary to produce an abundance
of matter in the universe.

1.1.1 Symmetries

Symmetry is an important concept in any theory that describes a physical system since it results in conserved
quantities, as stated by the Noether’s theorem. In the Standard Model (SM), three discrete transformations can be
defined:

• Parity (P): The parity operator reverses the spatial components of four-vectors, (t, x) → (t,−x). Changes
momenta of particles by negative sign keeping spin invariant. Parity is implemented by a unitary operator P
such that P 2 = 1 , which requires its eigenstates to be equal to ±1.

• Charge conjugation (C): Changes particles with their corresponding antiparticles. Both momentum and energy
components are unchanged.

• Time reversal (T): Time reversal inverts the time axis only (t, x) → (−t, x).

• Chiral Symmetry: A non-Abelian symmetry, which is an exact symmetry in the limit of massless fermions.
Left-handed and Right-handed parts of Dirac fields transform independently. The chiral symmetry trans-
formation can be divided into a component that treats the left-handed and the right-handed parts equally,
known as vector symmetry, and a component that actually treats them differently, known as axial symmetry.
The γ5 eigenvalue is called chirality. It is spontaneously broken as a dynamical effect of QCD interactions.

1.1.2 CP Violation in the Standard Model

In the Electroweak theory, SU(2)L × U(1), part of the Standar Model, only left handed chiral components of
fermionic fields interact weakly (and right handed anti-fermionic fields), the left handed chiral doublets are defined
as [3]: {

t3 = 1/2

t3 = −1/2
q̂Li =

(
ûLi
d̂Li

)
,Group SU(2)L ,

Where t3 is the weak isospin quantum number, qLi is the quark doublet in which the Li subscript goes from
1 to 3 indicating the quark generations. Since right hand chiral components do not interact weakly, it is assumed
that all R-components are singlets under weak isospin group. The Yukawa quark lagrangian:
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Lqφ = aij ¯̂qLiφ̂∗ûRj + bij ¯̂qLiφ̂d̂Rj + H.C. ,

Where aij and bij are 3 × 3 complex coupling matrices, ûRj and d̂Rj are the right handed quark singlets, φ̂ is
the Higgs field. After symmetry breaking, using the gauge:

φ̂ =

(
0

1√
2
(v + Ĥ)

)
,

Where v is the vaccum spectation value and Ĥ is the physical Higgs field, the lagrangian then becomes:

Lqφ = −

(
1 +

Ĥ

v

)
[¯̂uLim

u
ij ûRj +

¯̂
dLim

d
ij d̂Rj + H.C.] ,

In which mu
ij = − v√

2
aij and md

ij = − v√
2
bij are the ’mass matrices’ that can be made hermitian and diagonal

by making unitary transformations on the generation triplets ûLi and d̂Li by:

ûLα = (ÛuL)αi)ûLi ûRα = (ÛuR)αi)ûRi

d̂Lα = (ÛdL)αi)d̂Li d̂Rα = (ÛdR)αi)d̂Ri .

Now considering the SU(2)L × U(1) gauge invariant interaction part of the lagrangian (In this case, showing
just the charged current parts since they are related to the quark flavour change of quarks via charged W± bosons)
written out in terms of the weak interaction fields:

LqW = i(¯̂uLj ,
¯̂
dLj)γ

µ(· · ·+ igτ · Ŵµ/2 + . . . )

(
ûLj
d̂Lj

)
.

From the above lagrangian, the τ · Ŵµ/2 term can be written as 1√
2
(τ+Ŵµ + τ−Ŵ

∗
µ) + . . . , the operator Ŵµ

destroys W+ or creates W−, the τ± are the usual raising and lowering operators for the doublets. Hence the above
lagrangian can be written as (considering just the W+ current term for simplicity):

− g√
2

¯̂uLα[(Ûu†L )αj(Û
d
L)jβ ]γµd̂LβŴµ + H.C. ,

where

Vαβ ≡ [Ûu†L ÛdL]αβ ,

is the non diagonal unitary CKM matrix. If there were only 2 quark doublets formed from u, d, c and s quarks,
it would be possible to choose quark field phases such that a 2 × 2 matrix Vαβ becomes orthogonal with real
components. In such case, gauge interactions would conserve T and CP. For a 3 × 3 matrix transforming from
mass basis to weak basis for 3 quark generations, there are 18 real parameters, but there are also 3 real diagonal
conditions from unitarity and 3 complex off diagonal conditions, thus, leaving 9 real parameters. If the Vαβ is taken
to be real, that leaves an orthogonal rotation matrix parametrized by 3 Euler angles. Hence there are 6 phase
parameters in the general unitary Vαβ , but there are 6 quark fields with 5 adjustable phase differences, which leaves
just one irreducible phase degree of freedom after quark rephasing. This irreducible phase is responsible for CP
violation in the quark sector. The relation between mass and weak eigenstates with CKM matrix:d′s′

b
′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 (1)

Weak eigenstates = CKM matrix x Mass eigenstates. The CKM matrix is unitary, matrix elements are complex
constants not determined by the standard model, but from experiment.

There is no unique parametrization of the CKM matrix, a standard one:

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − s12c23s12e−iδ c12c23 − s12s23s13e−iδ s23c13
s12s23 − c12c23s13e−iδ −c12s23 − s12c23s13e−iδ c23c13
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Figure 1: Unitary triangle in complex plane.

Where cij and sij are cos θij and sin θij rewill bespectively, θij the Euler angles in orthogonal V and δ is the
irreducicle CP violating phase. To have a measure independent of quark rephasing, consider on off-diagonal unitarity
conditions:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

Since the best experimental measured factor is VcdV ∗cb, divinding last expression by this:

z2 + 1 + z1 = 0

Represented in Figure 1. Now considering the condition above, with s12 = λ, Vcb ' s12 = Aλ2, Vub = s13e
−iδ =

Aλ3(ρ− iη) and neglecting λ4 terms, the CKM matrix can be written as (called Wolfenstein parametrization and
λ as the Wolfenstein parameter):

V =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


This suggests that CP violation is much more visible in B meson physics, which is studied here as direct CP

violation in specific decay channels because of the coupling strengths involved in those decays (Aλ3(ρ− iη) term),
see Figure 2.

In Summary, CP violation in the Standard Model is described by irreducible complex phases in CKM matrices
(Cabibbo-Kobayashi-Maskawa quark-mixing matrix). Weak eigenstates are different from mass eigenstates and are
related by the CKM matrix.

There are 3 types of CP violation, indirect (mixing), direct (decays) and a third one as a combination of both.
In this analysis, direct CP violation is relevant because B± → K±π+π−, B± → K±K+K− and B± → π±π+π−

have common final states, see Figure 2 and 3. There are two types of phase in this process, weak phase due to weak
interaction and strong phase from intermediate states. The source of strong phase in these processes is not well
understood. Intermediate states are observed and studied in Dalitz plots (see appendix A), which are 2D histograms
of squared mass of specific resultant pair particles from three body decays. One of these intermediate states J/Ψ
contribution was removed to veto J/Ψ→ µ+µ− as well as D0 to remove charm contributions from 2 body invariant
masses in decay channels studied in the present analysis, see Discussion.

5



Figure 2: Tree and penguin SM diagrams for B± → K±π+π−(top) and B± → K±K+K− (bottom). Where fx
holds for any resonance decaying into two kaons in the final state. Reproduced from [4].

Figure 3: Tree and penguin SM diagrams for B± → π±π+π−(top) and B± → K±K+π− (bottom). As before, fx
holds for any resonance decaying into two kaons in the final state. Reproduced from [4].
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Figure 4: Schematic of the LHCb spectrometer. Sub-detectors are listed from interaction region (z = 0) towards the
upstream region: Vertex Locator (VELO), RICH1, dipole magnet, Tracking stations (T1-3), RICH2, Scintillating
Pad Detector (SPD), Calorimeter System (E/HCAL) and Muon System (M1-5), reproduced from [6].

1.2 The LHCb Experiment
The LHC is a proton-proton collider located at CERN with a designed centre-of-mass energy of 14 TeV and a
luminosity of 1034cm−2s−1. The accelerator is divided in eight octants and beams circulate in opposite directions
into two separate rings. Two separate rings, with opposite magnetic field, are required as the colliding particles
carry the same charge. All superconductive magnets are cooled down to a temperature of 1.9 K, using superfluid
helium, to operate them safely at magnetic fields up to 8.3T, depending on the energy of the beams. The high
luminosity of the LHC is delivered through intense bunches consisting of 1.1× 1011 protons each, separated by 50
ns intervals between each crossing.[5]

LHCb is an experiment dedicated to heavy flavour physics at the LHC. Its primary goal is to look for indirect
evidence of new physics in CP violation and rare decays of bottom and charm hadrons. With the large b̄b production
cross section of ∼ 500µb expected at an energy of 14 TeV. With a modest luminosity of 2×1032cm−2s−1 for LHCb,
1012 b̄b pairs would be produced in 107s. It is primarily composed of a forward single arm spectrometer with 2
RICH detectors for particle identification, a dipole magnet, a precision silicon vertex detector.[5]

A charged particle going through a magnetic field experiences a force in the direction perpendicular to its motion,
F = q(v × B). The radius, r, of the curvature is related to the strength of the magnetic field, B, and the particle
momentum, P, via the relation:

r =
P

qB
(2)

which comes from F = q(v ×B), assuming perpendicular B to the direction of motion.

From equation 2, it is possible to obtain charge and momentum of a particle by measuring the direction and
radius of the track curvature. The LHCb dipole magnet has an integrated magnetic field of

´
Bdl = 4(T.m) over

10m in the z-direction, see figure 4. An important feature of the dipole magnet is the ability to reverse the polarity
of the magnetic field.

The LHCb tracking system consists of a set of sub-detectors that are used to reconstruct the trajectories
of charged particles: a silicon-strip Vertex Locator (VELO) and a set of tracking stations. The VELO is used
to reconstruct the primary vertices. The tracking detectors must have excellent spatial resolution for efficient
reconstruction of particle trajectories. The tracking system comprises over 12m2 of silicon-strip detectors, see figure
5.
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Figure 5: Series of disc detectors separated by 6mm.

Figure 6: Schematic of the emission of Cherenkov radiation, reproduced from [1].

Bottom mesons have short lifetimes of approximately 1ps, which corresponds to typical flight distances from the
primary vertex of approximately 1cm. To measure the position of these vertices, the VELO is located around the
particle interaction region, 8mm from the beam and it consists of 88 silicon microstrip detectors.

Particle identification is needed to fully reconstruct decay channels. Typical particles that reach the PID
detectors without decaying are pions, kaons, protons, muons and electrons. These are efficiently identified using
the RICH detectors, the calorimeters and the muon system. Particles travelling in a material at a velocity faster
than the speed of light will emit photons in a process called Cherenkov radiation. The photons are emitted in a
cone centred on the particle trajectory.

cos θ =
1

nβ
(3)

Where θ is the angle at which radiation is produced (see figure 5), n is the refractive index of the material and
β is v/c.

Using equation 3 and the measured momentum from the tracking system, the mass of the particle can be
determined and it is particularly important to separate kaons and pions to reconstruct specific B-hadron decays.
Particles with momentum in the range 2−65GeV/c are identified using the RICH1 detector, see figure 4. Particles
with momentum up to approximately 100GeV/c are identified further downstream by the RICH2 detector.[5]
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Figure 7: Pre applied cuts in data set recieved for analysis. Reproduced from [4].

Variable Cut Value
PID Kaon PIDK < −5
PID Pion PIDK > 8
PID muon PIDmu < 5
B± candidate PT > 1.7GeV/c
B± Flight Distance χ2 > 700
PT of the highest-PT track > 1.5GeV/c
PT of the second highest-PT track > 0.9GeV/c
m(ππ) for J/ψ > 3.150, < 3.050GeV/c
m(ππ), m(Kπ), m(KK) for D0 > 1.894), < 1.834GeV/c

Table 1: Cuts made for the analysis

2 Data Analysis
From these detectors, data collected is arranged in Ntuples, which is a data structure containing events and relevant
variables per event, like PID (particle ID), momentum (Px, Py, Pz), Total energy, etc. These variables are used in
the present analysis; the most important of them in the selection of relevant events is PID.

2.1 Selection Cuts
The data received for this analysis had pre-applied cuts, these are shown in figure 7. After identifying premade
cuts, a plot of invariant mass of B meson was produced for each decay channel, B± → K±π+π−, B± → K±K+K−

and B± → π±π+π− using equation 4 and relevant momentum and energy variables for each resultant particle of B
meson decay.

M2 = (

n∑
i

Ei) + (

n∑
i

Pi) (4)

Significant cuts were made to get sensible mass plots. The most important one is PID (more than 90% reduced
events), since correct particle identification is essential to get relevant events for the analysis. Other variable cuts
considered are transverse momentum and flight distance χ2 of B meson since it has a short lifetime, also highest
and second highest transverse momentum. Mass cuts around ± 30 MeV of J/ψ resonance (in B± → K±π+π−,
specifically in pair mass composed of ππ to get rid of muonic contributions) and D0 mass to get rid of charm
contributions (in all decay channels, specifically in pair masses composed of ππ, Kπ and KK). All considered cuts
are summarized in table 1.
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Figure 8: Invariant mass spectra of B meson in B± → K±K+K− decay channel. The left panel shows the B−
mode, and the right panel in each shows the B+ modes. Mass peak is shown as dotted blue line, combinatorial
background as dotted magenta and partially reconstructed 4-body decays background as dotted green line.

Figure 9: Invariant mass spectra of B meson in B± → K±π+π− decay channel. The left panel shows the B− mode,
and the right panel in each shows the B+ modes. Mass peak is shown as dotted blue line, combinatorial background
as dotted magenta and partially reconstructed 4-body decays background as dotted green line.

2.2 Global Asymmetries
After cuts, fitting was done by using gaussian function to represent the main mass peak, another gaussian function for
the 4-body decay background (to the left of the mass peak) and a 1st degree polynomial to represent combinatorial
background (to the right of the mass peak). The resultant mass plots are shown in figure 8, 9 and 10 for each decay
channel.

From fitting results, global asymmetries were calculated using:

Asy =
N− −N+

N− +N+
(5)

where N is the number of signal events, taken from the integrated blue dotted line shown in figures 8, 9 and 10
using common standard gaussian integral,

ˆ ∞
−∞

ae−
(x−b)2

2c2 dx = ac
√

2π .

Errors were taken into account for the calculation of the integral and the asymmetry using the general error
formulae:
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Figure 10: Invariant mass spectra of B meson in B± → π±π+π− decay channel. The left panel shows the B−
mode, and the right panel in each shows the B+ modes. Mass peak is shown as dotted blue line, combinatorial
background as dotted magenta and partially reconstructed 4-body decays background as dotted green line.

Figure 11: Low mass(kk) pair, φ(1020) resonance very clear as well as some small differences between B+ and B-.
(Red triangle for B+ and blue triangle for B-).

σ2
total =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + . . .

The calculated global charge asymmetries obtained are −0.053±0.007 (B± → K±K+K− ), 0.066±0.023 (B± →
π±π+π−) and −0.001±0.011 (B± → K±π+π−).

2.3 Resonances
Invariant mass plots of intermediate states were also produced to identify resonances involved in each decay, in
the case of B± → K±K+K− and B± → π±π+π− decay channels, intermediate states were produced by making
separate plots for low mass and high mass pairs since all resultant particles are of the same type. These are shown
in figures 11 and 12. In the case of B± → K±π+π−, m(ππ) and m(πK) were considered, shown in figure 13.
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Figure 12: Low mass(ππ) pair, ρ(770) resonance is present, this plot is shown in different style and scale to apreciate
the differences between B+ and B-. (Red line for B+ and blue line for B-)

Figure 13: To the left m(ππ), where f0(980) and ρ(770) resonance peaks are clearly seen. To the right m(πK),
where K∗(892) resonance is shown.
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Figure 14: Daltiz Plots for B± → K±K+K− decay, significant diferences in the number of events can be seen
between 0-2.5 GeV in the X axis (where φ(1020) resonance is located) and below 12.5 GeV in the Y axis.

2.4 Regional Asymmetries
Since the global asymmetries were found to be very small, regional asymmetries will now be considered, to this end,
Dalitz plots were made from the square power of these pair masses (m2 of the defined intermediates states described
before) placed in each axis of a two dimensional histogram. Resonances appear as bands of events in the Dalitz
plot, position and size of bands depends on the mass of each resonance and exact pattern of events is determined
by interference between the various contributing states, for more details see Appendix A. Using high resolution
Dalitz plots (>50 bins in each axis) was useful to spot cuts made in pair masses (J/ψ and D0 contributions ) and
spot exact location of resonances involved, lower resolution (10 bins in each axis) for spotting differences between
changed B mesons.

Dalitz plots were produced using poisson errors (low statistics per bin, generally <300 events per bin), σ =
√
N ,

for each decay channel (mass spectra region between 5240-5320 MeV, using natural units c = 1 from now on) and
then background subtracted. This subtraction was done by choosing a region between 5400 and 5560 MeV (160 MeV
width) which corresponds to combinatorial background (see figures 9-11) because of the significant overlap in the
5240-5320 MeV region. 4-Body decay background was ignored since the overlap was negligible. Since combinatorial
background region has twice the width of original region for Dalitz plots, a normalization procedure was made
before subtraction, multiplication by 1/2, taking into account errors of subtraction. Dalitz plots after background
subtraction are shown in figures 14, 15 and 16, where the number of events and errors per bin are presented.

From the Dalitz plots, Asymmetry plots were made to look for regional asymmetries in phase space by using
equation 5 and treating errors as binomial for the division given the low statistics,

σ2 =

∣∣∣∣∣∣
(

1.− 2.n1

n2

)
e21 +

n2
1

n2
2
e22

n22

∣∣∣∣∣∣ ,

where the following mapping has been made to use the error formulae above, from equation 5:

Asy =
(N
−−N+

N−+N+ + 1)

2
→ N−

N− +N+
,

then N− corresponds to n1 and (N− + N+) to n2. Hence, to get the error from the mapping back to original
equation 5, it was multiplied by 2. The resultant asymmetry plots are shown in figures 17, 18 and 19, where the
number of events and errors per bin are presented.

To compute the value of real regional asymmetries (signal events), the circled regions in the asymmetry plots were
choosen to produce mass plots because of their overall statistical significance. In the case of B± → π±π+π−, a wider
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Figure 15: Daltiz Plots for B± → K±π+π− decay, significant diferences in the number of events can be seen
between 0-2.5 GeV (where f0(980) and ρ(770) resonances are located) in the X axis and 10-15 GeV in the Y axis.
Also K∗(892) interference pattern can be seen between 0-2.5 GeV in the Y axis.

Figure 16: Daltiz Plots for B± → π±π+π− decay, significant diferences in the number of events can be seen between
0-2.5 GeV (where ρ(770) is located) in the X axis and 5-10 GeV in the Y axis.
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Figure 17: Asymmetry plot for the B± → K±K+K− decay, the area circled has an asymmetry of 24% with a
significance of 7.7 sigma which is quite remarkable.

Figure 18: Asymmetry plot for the B± → K±π+π− decay, the area circled has an asymmetry of 22% and 24% with
a significance of 3.1 and 3.5 sigma respectively.

Figure 19: Asymmetry plot for the B± → π±π+π− decay, the lower region in the circled area has an asymmetry of
24% and 66% with a significance of 4.7 and 3.3 sigma respectively.
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Figure 20: Invariant mass spectra of B± → K±K+K− decays in the region 0-2.5m2(KK) low GeV 2/c4 and 7.5-10
m2(KK) high GeV 2/c4, significant asymmetry of −0.246±0.056.

Figure 21: Invariant mass spectra of B± → π±π+π− decays in the region 0-5 m2(ππ) low GeV 2/c4 and 10-15
m2(ππ) high GeV 2/c4, significant asymmetry of -0.355±0.088.

region was choosen given the scarce number of events. The same fitting procedure for the global asymmetry was
used (selection of functions to represent mass peak and background). The computed regional asymmetries are quite
large, −0.246±0.056 (B± → K±K+K−), -0.355±0.088 (B± → π±π+π−) and −0.446±0.118 (B± → K±π+π−).
and are shown in figures 20, 21 and 22.
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Figure 22: Invariant mass spectra of B± → K±π+π− decays in the region 0-2.5 m2(ππ) GeV 2/c4 and 5-10
m2(Kπ) GeV 2/c4, significant asymmetry of −0.246±0.056.

3 Laboratory experiment development
Some foundation material has been made for the future experiment to replace current particle physics experiment
that uses DØ data. Students will be provided with a simplified version of the data set used fot this report in terms
of variables and some additional pre-applied cuts. They will have to be able to produce results in 8 weeks time, just
as current experiments. Students will have to choose one of the decay channels studied above and produce similar
plots to get values of global and regional asymmetries and see for themselves evidence of CP violation.

• Lab Script Draft: This was produced using a very similar format that current lab scripts have. It has a
theoretical introduction, a general description of the LHCb experiment, a general description on how the data
analysis will be done and 2 appendices describing programming technicalities and information about Dalitz
Plots.

• Example Program: An example program has been developed that produces a histrogram of momentum in
X axis of one of the resultant particles after decay of B meson and saves it in a .root file. A similar program is
provided to current students working on those experiments. The given program will treat variables differently
since nTuples are saved in tree like structure, quite different from what they have now and they may not have
a montecarlo simulation of the events. They will use the program for the data analysis and they may use
macros for plotting and fitting histograms.

• Demonstrator support plots: Since the demonstrators are not necessarily experts in particle physics and
even less in the study of CP violation of B mesons. Many of the plots produced for this study will be handed
out to them. They may be used as a guide to check whether students are making sensible plots or progress
with their experiment.

4 Discussion
Decay channels analyzed for this project were originally 2, B± → K±π+π− and B± → K±K+K−. When sensible
CP asymmetry results were obtained for those channels, then other possible decay channels were also analyzed,
, B± → K±K+π− and B± → π±π+π−. These were studied in recently published papers, [7](published first)
and [9], their results were being reproduced in this project. Decays channels involving same particles gave the
best results since it was quite simple to make the analysis with the hypothesis that all resultant particles have
the same mass. This was balanced by the fact that intermediate states had to be ordered according to high-low
mass for the production of Dalitz Plots. The B± → K±π+π− and B± → K±K+π− decay channels were more
challenging because when making the hypothesis for different particle masses, events were not as abundant as the
other channels and the background signals were particularly more complex to represent as functions for fitting,
specially B± → K±K+π−.
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Figure 23: Invariant mass spectra of B± → K±K+π− decay channel. It was a very complex background. Repro-
duced from [9].

For the selection cuts, pre-applied cuts had to be identified first since it was noticed that some where applied
when a invariant mass plot of B meson was produced. These were identified by plotting some of the given variables
given in the nTuples as histograms to check were cuts were made, see figure 7. Then, PID cuts were identified as
the strongest one to be applied, giving >90% reduction in signal events and this will be the main task for students
doing the future experiment.

In the calculation of global asymmetries, fitting was crucial to get the number of signal events from the back-
ground. Simple functions were used since students will not have time to model more complex and appropiate
functions to represent background. The best agreement was found in the B± → K±K+K− decay with previous
studies, −0.053±0.007 obtained compared to −0.043±0.009 from paper . Decay channels involving pions have sig-
nificant 4-Body decay background. When B± → K±K+π− was being analyzed, it was clear that the background
was way too complex to be modelled (very significant overlap of 4-Body decays and combinatorial instead of just
being combinatorial as the other decays) and was dropped as a possible decay channel for students to study, see
figure 23. Then the project was centred in the remaining 3 decays.

When regional asymmetries were being analyzed in the Dalitz and Asymmetry plots, a plot of statistical signif-
icance, that is, asymmetry/error was very helpful for the selection of regions in phase space where CP asymmetry
is large and with low uncertainty. Hence, this will be part of students work in order to select those significant
phase space regions and produce invariant mass plots of B meson to spot these quite large asymmetries. They will
be suggested to work with low resolution histograms, that is, with bins per axis <25 to easily spot those regions.
In this project, 5, 7, 10 and 25 bins per axis were produced. Resonances were more easily spotted in 25x25 bins,
10x10 bins was the best for spotting asymmetries while looking also at the errors per bin. Lower resolution plots
increasingly washed out the asymmetries, although, B± → K±K+K− decay still had >5 sigma significance even
at 5x5 bins, see figure 24.

5 Conclusions
It was demonstrated that sensible results can be obtained for CP asymmetry in charmless B meson decays, hence it
is a viable as a 3rd Year Lab Experiment to be done by students in 8 weeks time. They will have to choose one decay
channel, is is suggested that they choose just B± → K±K+K− and B± → π±π+π− as general options and perhaps
leaving B± → K±π+π− as a possibility for enthusiastic and able students warning them of the difficulties and
considering compensation. The best result were obtained from B± → K±K+K− decay channel as discussed above.
Different student groups could be assigned different decay channels. Students will learn that global CP asymmetries
can be quite small, but when they study regional phase space regions, these asymmetries can become quite large for
their amazement. Given the short time they have to do the experiment, they may also be given functions to deal
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Figure 24: Left panel, asymmetry plot for the B± → K±K+K− decay, the area between 0-5 GeV in X axis and
5-10 GeV in Y axis has an asymmetry of 14% with significance of 7.7 sigma. Right panel, asymmetry plot for the
B± → K±π+π− decay, same area, with an asymmetry of 14% with significance of 3 sigma.

with binomial errors and productions of asymmetry plots, these were time consuming when working on the project.
The fitting of the mass plots is more complex than current experiment given the different sources of background, in
a programming context, but there are examples available in Root documentation, an example could be provided.
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A Dalitz Plots
Dalitz plots are representations of the phase space of 3-body decays involving mostly spin 0 particles and named
after Richard Dalitz (1925–2006). The main advantage of Dalitz plots is ability to exploit inference between
different resonances, see figure 23. They show intuitive connection between visualisation and kinematics which can
be completely described using two variables.

Consider a 3-body decay, treating the problem in centre of mass frame and calling the centre of mass energy
M, the mass of the parent particle, also calling p1, p2 and p3 the momenta and E1, E2 and E3 the energies of the
three child particles. The following constraints apply:

• momentum conservation, p1 + p2 + p3 = 0

• energy conservation, E1 + E2 + E3 = M .

The phase space volume for a three-body system, ignoring constant factors is [8]:

∝
ˆ
d3p1
E1

d3p2
E2

d3p3
E3

δ(E1 + E2 + E3 −M)δ3(p1 + p2 + p3)

Now integrating over p3 using the δ3 delta function,

∝
ˆ

1

E1E2E3
d3p1d

3p2δ(E1 + E2 + E3 −M)

Integration over solid angles of vectors p1 and p2 by fixing θ12 angle between those vectors and integrating over
θ1, φ1 and φ2 :

∝
ˆ

1

E1E2E3
4πp1dp12πp22dp2d cos (θ12)δ(E1 + E2 + E3 −M)

Using momentum conservation, p23 = p21+p22+2p1 ·p2 cos θ12 and differentiating it by keeping p1 and p2 constant
, 2p3dp3 = 2p1p2d cos θ12 and replacing in the integral above:

∝
ˆ
p1dp1p2dp2p3dp3

E1E2E3
δ(E1 + E2 + E3 −M)

Then by differentiating E2
i = p2i +m2

i → pidpi = EidEi and replacing back in the above integral and using the
remaining delta function for integration:

∝
ˆ
dE1dE2dE3δ(E1 + E2 + E3 −M) ∝

ˆ
dE1dE2 ∝

ˆ
dm2

23dm
2
13

Which shows that m2
23 and m2

13 fully defines the system, see Figure 7:
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Figure 25: Taking m2
12 = (E1 +E2)2− (p1 +p2)2 = (M −E3)2−p2

3 = M2 +m2
3− 2ME3, since all of the momenta

and energies are related, picking m2
12 and m2

23, fully defines the system. Reproduced from [8].
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