

A CEA Practical Implementation: Activity Box

Project submitted in partial fulfillment of the requirements for the

Degree of

Master of Engineering in Technology Innovation Management

By: Daniel Cardenas

For: Professor Steven Muegge

Carleton University, Ottawa, Ontario, Canada

December 2009

 i

Abstract

This report examines the implementation of Communication-Enabled-

Applications (CEA) features within an existing commercial application called Activity

Box, using the assets provided by the Coral CEA sandbox. Activity Box is an online

system that manages the reservation of recreational activities, and it has been in

operation since December 2008. The project evaluates the implementation within

Activity Box of two CEA capabilities named Call-A-Customer and Call-An-Operator,

both features associated with particular events in the application. To effectively

communicate with Coral CEA modules without negatively affecting Activity Box, we

have created a Windows service that acts like an agent whose job is to buffer all

interactions between the Activity Box and Coral CEA platform. This agent is offered as

a contribution to the Coral CEA ecosystem so other members can take advantage of it.

 ii

Table of Contents

1. Introduction ..1

1.1. The Company...1

1.2. Business Model ...1

1.3. Activity Box ..3

1.4. Coral CEA ...5

1.5. Organization of this Report ..6

2. Project Definition and Scope7

2.1. Objective ...7

2.2. Deliverables ..7

2.3. Relevance...9

2.3.1. Relevance to Coral CEA..9

2.3.2. Relevance to Rezact ...9

2.4. Contributions... 10

2.4.1. For Rezact ... 10

2.4.2. For Coral CEA ... 11

2.5. Scope and Platform Definitions ... 12

3. Literature Review... 16

3.1. Business Ecosystems and Platforms... 16

3.2. Lead Users Theory... 18

4. Project Design ... 20

4.1. Coral CEA APIs ... 20

4.2. Coral CEA services... 21

4.2.1. Multi-language Text-To-Speech .. 21

4.2.2. Synchronous calls... 23

4.2.3. Call confirmations.. 23

4.2.4. Concurrent calls .. 23

4.2.5. Additional services ... 24

4.3. Coral CEA Client Agent ... 24

 iii

5. Project Implementation.. 27

5.1. Coral CEA Service Wrapper .. 27

5.2. Coral CEAQueue Table.. 29

5.3. Coral CEA Agent ... 32

5.4. Activity Box .. 34

6. Recommendations and Conclusions 37

6.1. Recommendations ... 37

6.1.1. For Coral CEA ... 37

6.1.2. For Client applications... 40

6.2. Conclusions... 41

7. References.. 42

8. Appendix Section.. 43

8.1. Coral CEA Agent Source Code.. 43

8.2. Coral CEA Agent Database Procedures ... 47

8.3. Audio Messages .. 49

8.4. Useful Links .. 50

 iv

List of Figures

Figure 1. Rezact Business Model...3

Figure 2. Activity Box Extended Model ...5

Figure 3. General Design of the Agent.. 26

Figure 4. Modifications made to Activity Box.. 36

List of Tables

Table 1. Structure of CEAQueue Table ... 32

Table 2. Custom settings for Coral CEA Agent... 34

Table 3. Audio Messages .. 49

A CEA Practical Implementation: Activity Box

 - 1 -

1. Introduction

1.1. The Company

Rezact Inc. is a small company located in Mont-Tremblant, Quebec, a city

famous for being one of the biggest ski resorts in the east of North America.

Relatively new, Rezact started its operations in 2006 with the purpose of designing

and implementing a new reservation system that could allow its main client, The

Activity Center, to manage the reservation of different types of recreational activities

offered in the region. Rezact currently employs three people.

1.2. Business Model

The business model on which Rezact, and consequently Activity Box, operate,

is rather simple, and involves three entities. On one side, there are customers staying

in the resort for a brief period of time, usually a week or less. These customers are

mostly composed of families wishing to do something more during their stay in the

resort besides skiing. On the other hand, there are small companies (called

Operators), usually family-operated, that provide recreational activities to these

customers. The operators are spread throughout a relatively wide geographical area

around the resort, and have historically faced the challenge of reaching potential

customers and attracting them to their businesses. The activities they provide can be

as diverse as spa and massage packages, dog sledding, horseback ridings, helicopter

tours, etc., but the common factor among them is their dependency on resources

with limited capacity, like a dog sled that can accommodate up to three people, or a

A CEA Practical Implementation: Activity Box

 - 2 -

massage experience that requires a certified massage therapist. The total capacity of

all resources is what determines the availability of a certain activity at any given date

and time.

To provide a better experience to their customers, a few years ago the resort created

a company called The Activity Center whose mission it is to centralize on a single

point all tasks related to the reservation of activities. The Activity Center behaves as

a reseller, selling activities to customers on behalf of the operators while charging

them a commission for the service. Under this model, operators that would otherwise

struggle to attract customers can reach a lucrative segment for a small commission,

and the resort can keep its customers satisfied. The model is shown in figure 1.

Until December 2008, the reservation of activities was a manual process: it involved

the reseller communicating with each and every one of the operators by phone every

time a customer was interested on reserving a particular activity, only to verify that

the operator had enough availability to serve the number of participants required by

the customer. Once the availability had been established, the reseller continued the

negotiation with the customer until final payment was processed. Then, a

confirmation was manually sent by fax to the operator of the chosen activity

indicating the details of the new reservation. This was a tedious and slow procedure

that negatively affected sales, especially during high season periods when customer

demand increases exponentially compared to regular seasons. Activity Box was

created to provide a common platform, shared by both the reseller and the operators

A CEA Practical Implementation: Activity Box

 - 3 -

that could control resource availability and increase revenues by allowing more

reservations to be placed in the network.

Operator 1 Operator 2 Operator N

ActivityBox

Customers

…

Resources Resources Resources

Mont-Tremblant Region

Figure 1. Rezact Business Model

1.3. Activity Box

Activity Box is an online reservation system that is currently being used in the

Mont-Tremblant area in Quebec. Activity Box manages reservations for various types

of recreational activities, including events with a venue capacity (e.g. concerts,

races), activities requiring pieces of equipment (e.g. dog sledding, horseback riding),

activities requiring people such as guides or instructors (e.g. rock climbing, guided

tours), and activities requiring both people and equipment (e.g. spa services that

require a massage therapist and a room). The activities are managed by local

operators, most of them small companies that have the know-how and the resources

to operate a particular activity. Activity Box helps them to control the inventory of

A CEA Practical Implementation: Activity Box

 - 4 -

resources allocated to all of their activities defined within the system. It currently

serves more than 33 operators managing over 300 activities that are sold by a network

of 30 resellers. Since Activity Box was launched in December 2008, it has processed

more than 15,000 reservations representing over 3 million dollars.

The system has been developed following the Software-as-a-Service paradigm, which

means that Activity Box is offered as service rather than a product, and charges its

users a commission for its utilization. Under this approach, the system can support an

unlimited number of regions, operators and resellers regardless of their physical

location. In consequence, the application can be used not only in the Tremblant area,

but in every tourist destination (like Vancouver or Florida) where activities are

provided. The extended model is shown in figure 2.

Activity Box currently consists of a reseller module that allows reservation agents to

book activities on behalf of the customers. This same module is used by operators to

check their reservations, make reservations for themselves and some other

administrative tasks. Future plans include online reservation kiosks that will be

deployed in a particular area that will allow customers to reserve their own activities

as well as a public online portal to enable customers to reserve activities from any

place even before they arrive at their destinations1.

1
 It should be mentioned that a commercial deployment of Activity Box utilizing Coral CEA assets is already

planned. However, this implementation is currently (as of December 2009) beyond the scope of the project itself

A CEA Practical Implementation: Activity Box

 - 5 -

Operator 1 Operator 2 Operator N

ActivityBox

Customers

…

Resources Resources Resources

Operator 1 Operator 2 Operator N

ActivityBox

Customers

…

Resources Resources Resources

Operator 1 Operator 2 Operator N

ActivityBox

Customers

…

Resources Resources Resources

Region 1

Region 2

Region N

…

…

Regi
ons

Regi
on

s

Figure 2. Activity Box Extended Model

1.4. Coral CEA

Coral CEA is a not-for-profit organization that assists companies with the

implementation and commercialization of Communications-Enabled Applications

(CEA). Coral CEA is part of a business ecosystem anchored around CEA functionalities

that are offered as building blocks, out-of-the-box components that link the

capabilities and intelligence of networks platforms with the power of current

applications to provide a new set of features and functionalities. Coral CEA counts

amongst its founding members companies with extensive technology expertise, like

IBM, Nortel and Eclipse, and organizations like Carleton University and the

Information Technology Association of Canada (ITAC).

A CEA Practical Implementation: Activity Box

 - 6 -

1.5. Organization of this Report

This report is organized in six major sections:

• Section 2: Project Definition and Scope presents the goal and expected

outcomes of the project, as well as its relevance to the parties involved. It also

details the rationale behind each of the decisions taken while defining the

scope of the project and the development platform

• Section 3: The Literature review presented on this report is constrained by only

those subjects directly related to the project. In this section we present a brief

analysis of business ecosystems and how small companies can leverage its value

• Section 4: This section presents a high level design of the project. We describe

the limitations found in the Coral CEA platform and how we solved them for

the purposes of the demo. One of the key elements of the solution, the Coral

CEA Agent, is also presented in this section

• Section 5: Project Implementation describes in great detail how each one of

the elements that comprise the solution was implemented. This section shows

how to create a proxy class based on Coral CEA service definitions, the

implementation details of the agent used to handle the communication with

Coral CEA services, and the structure of the table that links client applications

with the agent

• Section 6: This final section presents our conclusions and the recommendations

based on our findings during the project, for both the sponsor company and

Coral CEA platform

A CEA Practical Implementation: Activity Box

 - 7 -

2. Project Definition and Scope

This section presents the key elements that define the project and its scope.

We describe in detail what the deliverables are, why are they important to both

Rezact and Coral CEA and how the project can contribute to these stakeholders.

Finally, we analyze the different alternatives we considered when we defined the

scope and platform of the project, which we believe could be valuable for future

implementers of Coral CEA features.

2.1. Objective

The main objective of the project is to analyze the implications and the

technical and business-related steps required to implement CEA capabilities to an

existing commercial application called Activity Box using Coral CEA assets.

2.2. Deliverables

This project has three clearly defined deliverables:

1. A demo application that will consist of a limited version of Activity Box

implementing the following two CEA functionalities on a testing environment:

� Call-A-Customer: Sometimes reservations get cancelled because of

unforeseen reasons, like poor weather or a broken piece of equipment.

When this event happens, the customer needs to be immediately notified so

they can decide whether to rebook for another date or to receive a refund

for the value of the cancelled activity. Customer satisfaction relies on the

A CEA Practical Implementation: Activity Box

 - 8 -

effectiveness and promptness of these communications, so we propose an

automatic notification to customers that a reservation has been cancelled

� Call-An-Operator: This is the reverse of the previous scenario. Here, a

customer cancels a reservation and the operator needs to be notified. This

particular case is especially important when cancellations are done at the

last moment in high season, where the operator is most likely operating at

the edge of its capacity. If they are promptly notified of the event, they can

react accordingly and allocate the newly freed resource for newly arriving

customers

2. The current implementation of Coral CEA methods has certain limitations that

could negatively affect a client application. To overcome them, we have developed a

software agent that will act as a buffer between any client application and Coral CEA

platform. This agent takes the form of a Microsoft Windows service, and its function is

to periodically look for new call requests from the application and, when found, to

forward them to the corresponding Coral CEA APIs. It will also update back to the

application the status of any requested call

3. This report actually constitutes the third deliverable of the project. Here we will

detail not only the steps, problems and solutions found during the implementation

phase of the project, but also the rationale behind the decisions on each phase. More

technical notes will also be included in the appendixes

A CEA Practical Implementation: Activity Box

 - 9 -

2.3. Relevance

2.3.1. Relevance to Coral CEA

� Instead of creating a demo starting from the Coral CEA platform, this project

follows the opposite approach. We take an existing, commercial application

and we create a demo based on that. This allows us to put into practice CEA

concepts and benefits using Coral CEA assets on a real application

� The reservation of recreational activities is the forgotten area in the tourism

industry that represents a huge market in terms of revenue. We hope that by

showing a practical implementation of Coral CEA assets, more members will

see the benefit and become themselves members of the ecosystem, thus

increasing the value of the Coral CEA platform

2.3.2. Relevance to Rezact

� By eventually implementing the CEA features described before in the

production environment, we could greatly improve the quality of the service

Activity Box provides to its users, both customers and operators. Rezact will

benefit from having the testing phase of this project carried out before even

attempting to do it for real

� Placing a link to a demo version of Activity Box on Coral CEA portal, we are

increasing the exposure of the application, which in turn could bring more

clients to start doing business with Rezact

A CEA Practical Implementation: Activity Box

 - 10 -

� Rezact is a small company, and as such, it would have had great difficulty

having access to the specialized set of assets that Coral CEA offers. The

opportunity to work hands-on with this new technology certainly places Rezact

as a company one step beyond its competition

2.4. Contributions

2.4.1. For Rezact

This project demonstrates new product capabilities that will be greatly valued by

Rezact’s users, and develops knowledge and expertise to enable rapid commercial

deployment. Implementing communication-enabled features could increase the

efficiency of the entire reservation process by providing convenience and new

capabilities to customers and activity operators. No competitor currently offers this

advantage. In summary, we think that Rezact can benefit from this project in the

following ways:

� Rezact will gain from the opportunity to test Coral CEA features embedded into

Activity Box for future deployment in production. As we will see later, this

testing will enable the company to evaluate the decision whether or not to

implement Coral CEA features in the future

� At the present stage, Rezact can greatly benefit from having a new set of

“tangible” features. By showing how customer service can be improved if CEA

capabilities were enabled, Rezact could increment its perceived value to

potential investors

A CEA Practical Implementation: Activity Box

 - 11 -

� As part of this project, Rezact will receive the equivalent of an implementation

plan that will facilitate any eventual migration from the demo to the

production environment

2.4.2. For Coral CEA

By the time this project is finished, Rezact and Activity Box will be amongst the first

external users of Coral CEA building blocks. Having lead users that can pave the way

for other members to follow is a sign of a healthy ecosystem. We believe that we can

contribute to Coral CEA ecosystem health in the following ways:

� A practical attempt to implement Coral CEA features from “top-to-bottom”,

that is to say, utilizing an existing commercial application as the starting point

to create a demo, will give us a deep understanding of the complete set of

procedures needed for any company to successfully implement CEA

capabilities. Moreover, it will enable us to provide to Coral CEA with some

recommendations or suggestions about functionalities that would be good to

have in order to increase the value of its services

� The client agent that is part of our deliverables is designed in such a way that

it can be easily implemented by any other company trying to interact with

Coral CEA APIs. Additionally, this tool could also serve as a general framework

for Coral CEA itself to implement the agent’s buffer mechanism as part of its

own service should it desire to do so

A CEA Practical Implementation: Activity Box

 - 12 -

2.5. Scope and Platform Definitions

 In this section, we will describe the rationale behind some of the decisions

taken when defining the scope of the project, whose main deliverable was a demo

application that needed to satisfy two basic requirements:

1) To show how a company could solve real problems with the utilization of

CEA capabilities exposed by the Coral CEA sandbox

2) To show other potential Coral CEA members the value of using CEA assets

within their organizations.

Furthermore, the demo needed to be small enough so that a non-trained user could

easily navigate his way through the system, but at the same time complete enough so

that the user could appreciate the benefits obtained by using CEA capabilities.

Considering these two factors, a decision was made to replicate a reduced version of

the current system in a testing environment. The demo of the system will have

reduced functionality in order to facilitate user interaction, but it will be using all the

internal components that are used by the real application. This approach had the

advantage of requiring a simple reduction of user interface elements by keeping the

internal elements that would eventually be migrated to a production environment.

The demo would show the following two CEA features implemented into the system:

Call-A-Customer and Call-A-Operator, already explained in section 2.2. A third CEA

feature involving video conferencing, which was intended to be used by online kiosks,

A CEA Practical Implementation: Activity Box

 - 13 -

was discarded because there is currently no real system that could take advantage of

such a feature2.

For the implementation of the demo, the platform in which Activity Box had been

developed had to be considered. Activity Box is an online web application that was

developed using Asp.Net and a MS-SQL 2005 database. The majority of the application

logic resides on the database, so it was paramount to be able to reutilize the

database layer. This approach had the following advantages:

a) Reduces the implementation time since all the availability and reservation

routines are already coded

b) It easy modification of any information (operators, start times, activities,

etc) using the existing setup interface pointing to the demo database

c) There is no need to acquire a new license if the database is installed on

Carleton or Coral CEA servers. A free reduced version of MS-SQL server (called

Express Edition) is available for download

The main disadvantage of this approach is that a windows-based computer would be

needed to host the database, which could be a scare resource.

For the demo application itself, the following options were considered:

1) To use a completely different programming language, like Ruby. The

application could be then hosted on the cloud. Learning a new programming

2
 Online kiosks that allow customers to book their own activities are planned to be developed and deployed in 2010

A CEA Practical Implementation: Activity Box

 - 14 -

language was considered to be a benefit. A disadvantage was the reduced

portability of the demo to the production environment of the real system

2) To use Asp.Net platform to be hosted on Carleton servers. This would

require a windows-based computer externally accessible where IIS could be

installed

3) Deploy the demo on Rezact's server using a public URL based on the current

system (coraldemo.activitybox.ca). This approach had the main advantage of

letting us test the feasibility of using Coral APIs in the real system and

facilitating the migration of programmed CEA features from the demo to the

production environment.

Ian Bothwell, Application Architect and Lead Technician at Coral CEA, was asked

about the alternatives outlined above. His answers and suggestions are summarized

below:

1) Coral CEA does not have servers available to host applications developed by

members

2) Continue to use the current language platform (Asp.Net) to minimize the

work in porting a prototype to production

3) Create a virtual host (coraldemo.activitybox.ca) in Rezact's production

server

4) If utilizing Rezact's server is not an option, there is the possibility of

deploying the .Net application using Mod Mono on Apache (http://mono-

project.com). This would allow us to use any Linux box with Apache

A CEA Practical Implementation: Activity Box

 - 15 -

Following Ian's suggestions, and in view of the evident advantages, it was decided to

use Rezact server to host the demo application (coraldemo.activitybox.ca), and the

demo would be a reduced version of the real system with limited capabilities in order

to facilitate its utilization by non-trained users. The platform would be kept the

same, that is to say, Asp.net using a MS-SQL database.

A CEA Practical Implementation: Activity Box

 - 16 -

3. Literature Review

In this section, we will explore how the academic literature could help us solve

two questions: a) Why Rezact and Activity Box should use Coral CEA platform to

extend its services, and b) How Coral CEA and other member companies could benefit

from having Rezact as contributing user? The first question will be answered by

analyzing how business ecosystems are formed and the relationship between keystone

companies and niche players. The latter will be framed around lead-users theories

and the benefits provided to the ecosystem when innovations are driven by lead

users.

3.1. Business Ecosystems and Platforms

 The basic concepts of business ecosystems are provided by Moore (1993), who

compares a network of companies working in collaborative ways as that of a natural

ecosystem. Moore asserts that innovative business cannot live in a vacuum: they must

attract capital, partners, suppliers and customers to create self-sustainable business

communities where member companies co-evolve capabilities around a new

innovation and help the ecosystem to improve because the ecosystem’s success is

attached to the company own success.

This view is extended by Iansiti & Levien in their book “The Keystone Advantage”

(2004). According to the authors, in every ecosystem coexist “keystone species” and

“niche players”. Keystone companies deploy strategies that actively shape and

A CEA Practical Implementation: Activity Box

 - 17 -

regulate the health of a business ecosystem by providing stable and predictable

platforms over which other members can develop and flourish. At the same time, the

authors consider that the majority of business ecosystems are formed by small

companies or niche players that, when analyzed individually, seem to have little or no

influence in the ecosystem, but whose performance and effectiveness affect the

entire network because they provide essential product and services to the ecosystem.

Niche players are usually located at the edges of the ecosystem, where new services

are offered and new markets are explored, providing a healthy diversity to the

ecosystem.

The same authors, in their article “Strategy as Ecology” (2004), argue that the success

of a company depends on the collective health of the ecosystem that influence the

creation and the delivery of innovations. Each member of a business ecosystem shares

the fate of the community as a whole and to increase an ecosystem’s overall health,

keystone organizations should create platforms that allow other members –niche

players- of the same ecosystem to share the revenues and increase their own

performance.

It is under this light that Coral CEA can be seen as a keystone entity, providing the

platform and infrastructure needed by the ecosystem to grow in a healthy way.

Rezact, with its product Activity Box, acts as a niche player that offers to the tourism

industry a new set of services – CEA capabilities – that no other competitor can

currently offer without incurring in prohibiting developing and implementation costs.

A CEA Practical Implementation: Activity Box

 - 18 -

The answer to the question of why Activity Box should extend its services based on

Coral CEA platform can be found by reviewing Cusumano and Gawer (2002). Their

main conclusion is that the combined efforts of platform leaders – as Coral CEA - and

complementary innovators – as Rezact – can increase the potential market size for

everyone. Rezact, working in isolation, would not be able to extend its range of

services to include CEA capabilities –and subsequently increase its potential market

size- without the platform support provided by Coral CEA. While the benefits of being

part of a much larger ecosystem as that of Coral CEA are evident for Rezact, it might

not be so for Coral CEA itself. Rezact needs to show proof of its individual value to

the platform leader. We will explore how Rezact is valuable for Coral CEA in the next

section.

3.2. Lead Users Theory

According to Von Hippel (1986 & 2005), empirical studies have shown that between 10

and 40 percent of users develop and modify products for their own use. These lead

users have two predominant characteristics. First, they are ahead in the market in the

sense that they have needs that will be later experienced by the majority of “regular”

users, and as such, they realize solutions that most users will need in the future.

Second, lead users expect to have important profits from the solutions they find to

these needs. If a solution is perceived to be valuable enough to increase profit levels,

the lead user will be eager to start the development process of the innovation.

A CEA Practical Implementation: Activity Box

 - 19 -

The author defines innovation attractiveness as the combined value of the novelty of

the innovation itself and the probability that this innovation becomes the de-facto

standard of a particular market area. He found that innovations developed by lead

users usually have higher innovation attractiveness indexes, in other words, lead-user

innovations are more commercially attractive than manufactures innovations.

Cusumano and Gawer (2002) suggest that the trick to being a successful niche player

is to always have “peanuts to offer the elephant”, that is to say, to create products or

services that continually enhance the value of the platform. We believe that a

deliverable like that of the agent proposed in this project can certainly constitute a

valuable “peanut” that could make Rezact more attractive to Coral CEA.

Rezact, by being one of the first users of the technology and services offered by Coral

CEA sandbox, stands in a perfect position to realize the needs of future users of the

platform, thus providing a valuable input to the platform leader and, subsequently, to

the entire ecosystem. Furthermore, the reservation of recreational activities

constitutes a new market segment for Coral CEA that is being explored by Rezact

acting as a niche player, an exploration that could also led to further growth to the

Coral CEA ecosystem.

A CEA Practical Implementation: Activity Box

 - 20 -

4. Project Design

 The following section covers the main aspects related with the high-level

design of the project. We include here a detailed analysis of the limitations found in

the current implementation of Coral CEA methods, limitations that forced us to devise

a solution in the form of an agent that would handle all interactions with the Coral

CEA sandbox. The design of this agent is also covered in this section.

4.1. Coral CEA APIs

Coral CEA’s services are provided as web services using SOAP as the

communication and implementation protocol. The platform provides several services,

but for this project we are only interested in the communication entry points

provided by the Third Party Call Control V3 (TPCv3) API, which allows the creation of

communication links between one or multiple endpoints. The second Coral CEA

service of interest for this project is the Audio Call service, which allows an

application to play a pre-recorded message to participants on an existing call, and to

monitor the status of the audio message requested.

In the case of ActivityBox, the existing functionality requires the application to

separately “call” a customer or an operator and inform them about an event on the

system. There is currently no requirement to connect these two parties together

(although nothing prevents Rezact from implementing this particular feature in the

future). For this reason, we have not included Coral CEA’s Third Party Call Control V2

(TPCv2) API, which allows for calls to be created between two parties, first one

A CEA Practical Implementation: Activity Box

 - 21 -

named the “originator” that places the call that is going to be answered by the

“terminating” party.

4.2. Coral CEA services

 An initial review of Coral CEA technical documentation showed to us that

certain complementary services were not currently provided by the platform, or they

were provided in a limited way. This section details these findings as they were

discussed with Ian Bothwell, Application Architect and Lead Technician at Coral CEA,

as well as the decisions taken to overcome these issues.

4.2.1. Multi-language Text-To-Speech. Functionalities like Call-A-Customer and Call-

An-Operator require that the message transmitted to the intended party contains

certain basic information, including, but not limited to, the name of the activity, the

reservation number and the start date and time of the activity. Activity Box currently

manages over two hundred and fifty activities for both winter and summer seasons, so

if only recorded audio messages could be used, it becomes impractical to create

hundreds of audio messages for each activity in the system, not to mention the need

to create a new audio track every time a new activity is added to the system.

Additionally, any communication to either the customer or the operator needs to be

provided in the receiver's language, which in Activity Box domain is either English or

French.

A CEA Practical Implementation: Activity Box

 - 22 -

The ability to convert text-to-speech (TTS) is an important feature needed by Activity

Box. Moreover, we strongly believe that for any TTS functionality in the Cora CEA

platform to be usable for commercial purposes, it needs to support both official

languages in Canada, English and French. Unfortunately, such a component is not yet

ready on the current Coral CEA sandbox. Ian Bothwell estimates that an English-based

TTS feature could be implemented within six months, with a French-based version

considered as a possibility.

Although the lack of TTS support on the Coral CEA platform places a real restriction

for its applicability in the production environment of Activity Box, we implemented a

workaround for the demo. We considered two alternatives:

a) To drastically reduce the number of operators and activities to be shown on

the demo (to just 4 activities in total), which would allow us to still include the

required information in the call without having to record hundreds of audio

messages

b) To create a general recorded message that would only notify that a certain

event has occurred, like a cancellation, without any reference to the activity

or the date

We selected the first alternative because we think that having detailed messages

being delivered to customers and operators represents a closer scenario to the one we

would have in production.

A CEA Practical Implementation: Activity Box

 - 23 -

4.2.2. Synchronous calls. Coral CEA APIs are synchronous, which means that the

client application needs to wait to receive some form of response from Coral CEA

APIs. We believe that this approach could adversely affect the application by creating

contention on Activity Box web server and reducing the future scalability of the

system if it is to be implemented within the normal activity reservation process. Calls

to Coral CEA APIs thus need to be decoupled from the web application itself so the

performance and the user interaction are not affected in any way.

4.2.3. Call confirmations. Each call attempt originated from Activity Box needs to be

logged for auditing purposes, so resellers can verify if a customer or an operator has

been notified about a particular event, like a cancellation. Coral CEA APIs implement

a series of response codes that can be provided on demand to client components like

Activity Box. To obtain the current and final status of a call, the client application

needs to periodically poll Coral CEA servers to obtain the status of each requested

call. Furthermore, the status of the call, which plays a recorded audio track, is kept

on Coral CEA servers for only ten minutes. Ian Bothwell mentioned that there are

plans to create a "push" mechanism by which the client becomes a server listening for

status updates sent by Coral CEA. However, there is no yet a clear time frame for this

functionality to be implemented.

4.2.4. Concurrent calls. The current limit on the number of concurrent calls in the

Coral CEA sandbox is estimated to be eight. Future limits for commercial applications

will depend on the underlying infrastructure deployed. Although a detailed analysis of

A CEA Practical Implementation: Activity Box

 - 24 -

physical implementations in terms of communication capabilities is beyond the scope

of this project, we need to provide a buffer mechanism that could manage a very

limited number of phone lines (whether traditional or VoIP lines) to operate. Since

Coral CEA APIs do not provide any queue mechanism to handle this type of situations,

any commercial solution, including Activity Box should consider this limitation within

its design.

4.2.5. Additional services. Some other complementary services like the ability to

send faxes, to schedule calls to be executed at a particular time and date, to send

text messages to cell phones or to allow interaction between the party called and the

platform (like requesting the message to be repeated) are currently not provided

within the Coral CEA sandbox. Ian Bothwell commented that some of the features

mentioned above could be considered if there are an important number of Coral CEA

members requesting those functionalities.

4.3. Coral CEA Client Agent

For time-sensitive applications, like Activity Box reservation system where the

response time is a crucial factor, waiting for a third-party to answer requests could

have negative effects. The synchronous method offered by Coral CEA could generate

contention and scalability issues on Activity Box. Moreover, the polling system

provided by Coral CEA platform to obtain the status of any requested communication

falls outside a traditional web-driven architecture. Finally, limitations on the number

of concurrent calls that can be put through the platform at any given time would

A CEA Practical Implementation: Activity Box

 - 25 -

force additional validations and control-like procedures on the end-user layer. For

these reasons we have decided to separate as much as possible any Coral CEA

implementation from the application itself to keep Activity Box isolated from any

operational problem.

One way we suggest is to create an agent that serves as an intermediary between

Activity Box and Coral CEA APIs. The concept proposed follows this strategy: every

time an event that requires CEA capabilities is detected, Activity Box would save into

a common database table called CEAQueue the request for an outgoing call,

including, for demo purposes, the name of the audio file associated with the event

(e.g. a cancellation). The agent, implemented as a Windows service, would be

continuously querying this table to detect any new request. When a new request is

found, the agent will submit the request to Coral CEA APIs, and it will keep polling

Coral CEA server to obtain an updated status of the request. Each status change is

updated back into the CEAQueue table so the client application can be kept informed

of the status of any call. The general model of this design is shown in figure 3.

By decoupling Activity Box from Coral CEA interactions, we are not only providing a

safety net in case something goes wrong, but also mitigating the modifications

involved on the client application since they will most likely involve just an extra SQL-

like instruction on the database level needed to insert the request into the CEAQueue

table, keeping the user and business layers mostly untouched. To provide updated

A CEA Practical Implementation: Activity Box

 - 26 -

calling status information to the users, Activity Box would only need to query this new

local table without having to make continuous remote calls to Coral CEA APIs.

ActivityBox

CEAQUEUECEAQUEUE

SOAPCoralAgent Coral CEA

Sandbox

Figure 3. General Design of the Agent

Moreover, by having this design, we could easily provide Coral CEA functionalities to

other applications as long as they are hosted on the same machine. The current

limitation by which Coral CEA only stores call information for a limited amount of

time, ranging from 30 seconds to 10 minutes, will also be solved by storing call status

locally. We also believe that this approach (a windows-based service) could be,

eventually, offered to other Coral CEA clients that face the same challenges, or even

be used by Coral CEA itself as a general framework to implement its own buffer

mechanism.

A CEA Practical Implementation: Activity Box

 - 27 -

5. Project Implementation

 The details of the implementation of the project are described in this section.

Here, we outline the steps needed to create a proxy class around Coral CEA web

services and describe the structure of the common table that is used to interact with

Coral CEA Agent. Finally, we explain how the configuration settings could make the

agent a customizable tool useful to other Coral CEA members in similar scenarios.

5.1. Coral CEA Service Wrapper

Coral CEA services are provided as web services in WSDL format. WSDL stands

for Web Services Description Language and is an XML-based language that provides a

model for describing Web services. Under the .Net framework used on this project,

there are two ways to consume a web service. The first one is to directly reference

the resource, usually as a web reference in Microsoft terminology, and the other

alternative is to use the “wsdl.exe” utility that is shipped with Microsoft Visual Studio

to create a class wrapper around the web service, which can later be referenced by

the client application. We believe that the second approach, that is to say, the class

wrapper, is a much cleaner way to interact with a web service because it isolates the

client application from any changes on the web service itself. It also permits the

reutilization of the wrapper class among several clients.

In order to create a class wrapper, we need first to obtain the service definition from

Coral CEA. They are provided in xml format, and the list of files that are required for

A CEA Practical Implementation: Activity Box

 - 28 -

each service is detailed on Coral CEA documentation. For our demo, we required the

definitions for “Third Party Call Control V3.0” and “Audio Call” services. Once the

files are downloaded to a local directory, we need to remove the “xml” extension.

Then, using a Visual Studio command prompt, navigate to where the files are located,

and execute the wsdl tool by using the following command:

wsdl.exe /l:VB /n:WSCoralCEA_Call /out:TPCCv3_CallSession.vb

parlayx_third_party_call_service_3_4.wsdl parlayx_third_party_call_interface_3_4.wsdl

parlayx_common_faults_3_0.wsdl parlayx_common_types_3_1.xsd

where:

/l:VB: Specifies the language to use for the generated proxy class. You can specify CS

(C#; default), VB (Visual Basic), JS (JScript) or VJS (Visual J#) as the language

argument.

/n:WSCoralCEA_Call: Specifies the namespace for the generated proxy class.

/out:TPCCv3_CallSession.vb: Specifies the file (or directory) in which to save the

generated proxy code. If omitted, the tool will use the web service name for the file

name.

The remaining parameters just indicate to the tool the additional files that need to be

included in the proxy class. After executing the command, the following result should

appear:

Microsoft (R) Web Services Description Language Utility

[Microsoft (R) .NET Framework, Version 2.0.50727.42]

Copyright (C) Microsoft Corporation. All rights reserved.

Writing file 'TPCCv3_CallSession.vb'.

A CEA Practical Implementation: Activity Box

 - 29 -

Then repeat a similar process for the Audio service with this command:

wsdl.exe /l:VB /n:WSCoralCEA_Audio /out:TPCCv3_Audio.vb

parlayx_audio_call_play_media_service_3_2.wsdl parlayx_audio_call_play_media_interface_3_2.wsdl

parlayx_audio_call_types_3_2.xsd parlayx_common_faults_3_0.wsdl parlayx_common_types_3_1.xsd

Next, create a class library in Visual Studio, which will generate a dll file. We named

ours “WSCoral”. Then copy the files generated by the wsdl tool to the working

directory of the WSCoral class and include them in the project. Make sure the library

has the following references specified:

System

System.Data

System.Web

System.Web.Services

System.XML

Finally, build the library, which will result in a file called “WSCoral.dll”. We will later

use this wrapper class within the Coral CEA Agent.

5.2. Coral CEAQueue Table

 The purpose of this table is to serve as a point of contact between any client

application and the agent or service that will directly interact with Coral CEA

methods. Since Activity Box uses a MS-SQL database, we defined the table using that

MS-SQL data types, but it could be easily converted to any other data provider.

The design of this table allows us to request calls to the agent, which in turn will

request them to Coral CEA. Currently, we only support one participant at a time, but

A CEA Practical Implementation: Activity Box

 - 30 -

the design can be extended to support multiple participants per call. One of the

additional features added to the basic Coral CEA service when using this table in

conjunction with the agent is the ability to specify the priority in which we want the

calls to be requested. This option is useful in scenarios where there are few lines

available and we need to ensure that the most important notifications or messages

are requested first. In the Activity Box case, we use the priority feature to place

cancellation calls at the top of the list, followed by confirmations of new

reservations.

The CEAQueue table is also used to indicate to the agent which audio file we want to

be played once the call is connected. The audio files are associated with the different

activities on the system, as well as for each of the events that we are controlling. Our

design also contemplates the capability to try a call two or more times if the initial

attempt was unsuccessful for a number of reasons other than the participant hanging

up the call. We are also providing a set of User-Defined-Fields, or UDFs, which allow

client applications to attach useful information to each call that can be later used to

retrieve particular calls. In Activity Box, for example, we have used two of these

fields to indicate the reservation number and the name of the recipient of the call.

The structure of the table follows the terminology of Coral CEA properties, but we

have simplified its design and added a few extra fields to achieve the behavior

described earlier. The general structure is shown on the next page (Table 1).

A CEA Practical Implementation: Activity Box

 - 31 -

Field Description

CallSessionIdentifier

varchar(50) NOT NULL

Unique identifier (returned by the makeCallSession operation) that

identifies the call session

CallParticipantStatus

int NOT NULL DEFAULT 99

Status of the call participant. Possible values are:

99:Call Pending

0:callParticipantInitial (call is in progress to the participant)

1:callParticipantConnected (participant is active in the call)

2:callParticipantTerminated (call to the participant has ended)

CallParticipantStartTime

varchar(50) NULL

The date and time when the call participant was added to the call.

This parameter is only returned if the call to the participant was

established successfully (that is, if call participant status is not

callParticipantInitial)

CallParticipantDuration

int NULL DEFAULT 0

The duration (in seconds) of the participant’s involvement in the

call. This parameter is only relevant if the participant is no longer

on the call (that is, if call participant status is

callParticipantTerminated)

CallParticipantTerminationCause

int NULL

The cause of the termination of the call. This parameter is only

relevant if callStatus = callTerminated. Possible values are:

0:CallingPartyNoAnswer

1:CalledPartyNoAnswer

2:CallingPartyBusy

3:CalledPartyBusy

4:CallingPartyNotReachable

5:CalledPartyNotReachable

6:CallHangUp

7:CallAborted

LastCallFaultCode

varchar(500) NULL

Contains the last call error message from Coral CEA

CallParticipant

varchar(50) NULL

Address of the participant to be included in the call

AudioURL

varchar(500) NULL

Name of the audio content file to be played

AudioIdentifier

varchar(50)

Unique identifier for the play message request (returned by the

playAudioMessage operation)

AudioStatus Status of the audio message for the participant. Possible values

A CEA Practical Implementation: Activity Box

 - 32 -

int NULL are:0:Played,1:Playing,2:Pending,3:Error

Attempts

int 0

Number of call attempts that the agent have already made to

Coral CEA

NextAttemptUTC

datetime GETUTCDATE()

Indicates when the next attempt should be made to place the call,

in UTC format

CallPriority

int NOT NULL DEFAULT 1

Indicates the priority in which calls should be requested. The

higher the value, the higher the priority

Table 1. Structure of CEAQueue Table

5.3. Coral CEA Agent

 One of the main components of the solution is the agent used to handle all

communications with Coral CEA platform. The main concept is to have this agent

continuously running and periodically querying the CEAQueue table on the database

looking for new calls to make. Once a call request is found, it places the request to

Coral CEA and keeps polling the Coral CEA web service for the status of the call, while

at the same time updates such status back into the CEAQueue table so the client

application can have the latest information. When the call is completed, the agent

updates the termination status back to the CEAQueue table, and places the next call

in the list, if any. The pseudo code of agent is shown below:

List = GetList(CEAQueue)

For Each Call on List

 Request Call to CoralCEA

Update(CEAQueue)

 If CallStatus = Initializing Then

 Update(CEAQueue)

 Do while ParticipantStatus <> Terminated

 If ParticipantStatus = Connected

 Request Audio to CoralCEA

A CEA Practical Implementation: Activity Box

 - 33 -

 Update(CEAQueue)

 End If

 Get ParticipantStatus

 End Do

 Update(CEAQueue)

 End If

Next Call on List

Amongst its functionalities, the agent is able to try a call several times if the

communication did not go through due to technical reasons other than the customer

hanging up, and can be configured to place calls only between certain times of the

day to prevent the application from calling customers at disturbing times in the night.

This agent also encapsulates some of the internal mechanisms needed to interact with

Coral CEA and exposes them as configurable parameters that can be changed on the

configuration file. The list of settings that can be used is shown in table 2.

Parameter Default Value Description

DBPollInterval 30 Indicates the interval in seconds in which the

agent should query the CEAQueue table in the

database searching for new requests

ACEServerURL Determined by Coral CEA Coral CEA service endpoint

ACEAudioServerURL Determined by Coral CEA Coral CEA service endpoint for playing pre-

recorded messages

ACEUser Determined by Coral CEA Network credentials to communicate with Coral

CEA

ACEPassword Determined by Coral CEA Network credentials to communicate with Coral

CEA

ACETimeout 20 Time in seconds before an attempt to

communicate to Coral CEA expires

CallAttempts 4 Maximum number of attempts the agent should

try to place a call through Coral CEA

A CEA Practical Implementation: Activity Box

 - 34 -

LogEntries 1 Indicates whether or not to log entries in the

event log of the server (0:NO, 1:YES)

StartHour 8 Starting time in which the agent should start

placing calls through Coral CEA

EndHour 20 Ending time in which the agent should stop

placing calls through Coral CEA

ParticipantPrefix Sip:9 Any string that needs to be placed before a

regular phone number

ParticipantSuffix @134.117.254.226 Any string that needs to be placed after a

regular phone number

AudioURLPrefix play= Any string that needs to be placed before the

audio file name

AudioURLSuffix ;early=no;locale=en_us Any string that needs to be placed after the

audio file name

Table 2. Custom settings for Coral CEA Agent

The agent has been implemented as a Windows service developed in Visual Studio. It

also needs a reference to the Coral CEA Service Wrapper “WSCoral” described earlier

in section 5.1. The CoralCEAAgent windows service requires an installation program

that is also included with the project. The source code for the agent and the database

routines needed for its operation are included in the appendix section.

5.4. Activity Box

To properly implement a demo version of Activity Box, we had to consider the

following factors:

• Activity Box is a complex application, with a considerable amount of

functionalities that are needed to properly manage every type of reservation.

However, since it requires certain training to be used in its full capacity, we

A CEA Practical Implementation: Activity Box

 - 35 -

decided to reduce the number of functionalities to the minimum in order to

facilitate user navigation

• Non-trained users of the demo version of Activity Box should be able to easily

make a reservation as well as cancel any existing one in order to trigger the

events that would cause Activity Box to generate calls using Coral CEA services

• Due to the lack of TTS support on the current Coral CEA platform, we decided

to reduce the number of operators to two, and the total number of activities

managed by the demo to four. By limiting the number of activities, we also

reduced the number of audio files that needed to be created for demo

purposes. Given that we send call requests when creating a new reservation to

both the customer and/or the operator, as well as when cancelling a

reservation, that brings the total number of audio files created for the demo to

sixteen. The scripted text of each type of audio message is shown in appendix

8.3

• Sensitive information like customer names, credit card information, etc. has

been removed or restricted from the demo to avoid privacy issues

Since all the complexities of communicating with Coral CEA are handled by the agent,

the modifications required to Activity Box were reduced to a minimum. First, we

needed to modify the database routines that process the creation of a new

reservation and the cancellation of an existing reservation to insert the required

values into the CEAQueue table described in section 5.2. The information inserted

includes the type of event (New booking, Cancellation), the name and phone number

A CEA Practical Implementation: Activity Box

 - 36 -

of the receiver of the call, the reservation number associated with the call and its

priority. The second modification was done to provide a way to the user to verify how

the call went through. For this effect, we added visible buttons and links in the

application that will display the results of those calls, as shown in figure 4.

Figure 4. Modifications made to Activity Box

The remaining changes applied in the system were more related to the fact that it

was a demo application, so data entry points were added to certain pages to allow

users to easily change the phone numbers of the operator or the customer. We also

created a default customer to simplify the navigation process of the demo. Besides

those points, the actual implementation of Coral CEA feature within Activity Box was

considered a very straight forward process.

A CEA Practical Implementation: Activity Box

 - 37 -

6. Recommendations and Conclusions

 This final section is further divided in two. First, based on our experience

implementing Coral CEA services, we will offer a set of recommendations for Coral

CEA and for members of its ecosystem. Finally, we will present the conclusions and

the lessons learned from this project.

6.1. Recommendations

6.1.1. For Coral CEA

As a result of our analysis of the current Coral CEA capabilities, we believe that it

is completely possible for a commercial application to implement certain basic CEA

features. We have found, however, certain limitations that could reduce Coral CEA

effectiveness. We believe that the following recommendations based on our

experience can mitigate such effects:

• A Text-To-Speech bilingual service is a really important functionality that

should be implemented as part of Coral CEA services. We know that Nortel has

already offered this service in its Media Processing Server (MPS) platform3, so

Coral CEA can leverage this experience in its own platform. Additionally, we

strongly recommend that any TTS implementation should consider at least the

two official languages in Canada, English and French

• We also suggest to increase the period for which the status of a call or an audio

message is kept in Coral CEA servers to at least one day. This would allow

3
 See http://www.nortel.com/products/04/ivr/collateral/nn103943.pdf

A CEA Practical Implementation: Activity Box

 - 38 -

automatic batch procedures on the part of the client to be executed outside

peak hours (e.g. at midnight) to query and locally update the status of any

requested call

• Coral CEA interfaces could be implemented, at least on the Windows

environment, as a Dynamic Link Library or DLL which can be easily referenced

by any .Net language. The current method depicted in this report, using the

wsdl command, is prone to errors and does not add any value to the service

• The ability to make scheduled calls can be fairly easily provided embedded

within the Coral CEA platform with a buffer mechanism like the one we

proposed in this project. This would also have the advantage of eliminating the

need from client applications to continuously polling Coral CEA servers to find

out about the status of any call request. A buffer mechanism would allow client

applications to set scheduled updates outside of high demand periods,

consequently reducing the load on Coral CEA platform

• Some client applications would not necessarily require a TTS service like

Activity Box does, but rely more heavily on audio messages played to their

users. Currently, there is no automatic mechanism in place within the Coral

CEA sandbox to easily upload audio files to Coral CEA media server. Moreover,

the audio files require having an especial format4 which certainly makes things

more complicated for client developers. A web service could be offered by

Coral CEA to allow client applications to upload files to the media server,

4
 Linear PCM, 8 bit little-endian unsigned integer, 1 channels, 8000 Hz

A CEA Practical Implementation: Activity Box

 - 39 -

encapsulating any format conversion needed to comply with Coral CEA

requirements

• Current or potential limitations of the platform, like the number of calls that

can be placed simultaneously, or the characteristics of audio files (format,

duration) should be clearly indicated on Coral CEA development guides

• Asynchronous method calls for Coral CEA APIs would be of great benefit for

clients that have time-sensitive applications. This would allow them to request

calls to the platform without having to wait for a response, enabling them to

continue with the business process the triggered the request

• During our interviews with Rezact’s management team, we identified that the

ability to send text messages to cell phones is a much desired feature, because

it is perceived as a less intrusive way of communicating information to users

with the additional advantage that they can opt to review their messages at a

later time. Coal CEA currently does not offer this feature

• Finally, we recommend adding basic user interaction capabilities to the current

Coral CEA platform that would allow called parties to provide some useful

information back to the platform. A feature of such sort could be the ability of

the user to request, by pressing a certain key on the phone, that the message

be repeated. A similar mechanism could also be used by clients to reject calls

that would indicate to Coral CEA that the user is not the actual intended

receiver of the call, as when a wrong phone number is entered in the client

application

A CEA Practical Implementation: Activity Box

 - 40 -

6.1.2. For Client applications

Based on our particular experience implementing CEA features within Activity Box,

we can list the following recommendations for client applications:

• Any interaction with Coral CEA API's should be treated independently and

outside of the regular process or event that triggers the call, to prevent

scenarios where there is a limited number of available lines or when the

application needs to wait for a response. One way to accomplish this would be

the utilization of an agent or a Windows service that could perform call

requests and also periodically poll Coral CEA servers to update the status of a

call or an audio message

• We believe based on our experience that any project pretending to implement

Coral CEA features like the ones described on this report should roughly

estimate one month of development time, an estimation that obviously

depends on the size of the application

• We have found that, once the key elements to communicate with Coral CEA

APIs are in place and the buffer mechanism is used, the remaining effort is

solely determined by the interactions between the client application and the

common table, which is used to place call requests as well as to inquire about

the status of a previous request

• Client applications planning to utilize Coral CEA assets should carefully

estimate the expected number of events during a period of time that could

trigger request for calls, since the number of calls that can be put through by

Coral CEA depends largely on the capacity of the deployed infrastructure

A CEA Practical Implementation: Activity Box

 - 41 -

6.2. Conclusions

• Coral CEA platform has key technological elements needed to create a

successful business ecosystem. We believe that Coral CEA value proposition can

be greatly increased by offering complementary services, like the Text-To-

Speech service

• It is relatively easy for commercial applications to implement CEA features

using Coral CEA APIs. Certain limitations at the deployment level can be

overcome with some development effort until they can be resolved by the

platform itself

• A key factor for a successful implementation of Coral CEA services is to keep

the client application as isolated as possible from any interaction with Coral

CEA APIs. This can be done by using the agent proposed in this project, but

other mechanisms could be found according to particular needs and scenarios

• Coral CEA, as a keystone entity and a platform leader, provides a set of

services that the entire ecosystem, including Rezact, can take advantage of. It

is by leveraging Coral CEA platform expertise that Rezact could increase its

market size and consequently Activity Box perceived value

• Rezact, acting as a niche player, could explore new market segments, face

problems that are currently not evident for other members of the community,

and, in the process of solving those issues, it can create innovative solutions

that can benefit the entire ecosystem. The agent proposed in this project, as

well as the recommendations listed earlier are clear examples of such a

successful symbiotic relationship

A CEA Practical Implementation: Activity Box

 - 42 -

7. References

• Cusumano, M., Gawer A. 2002. The Elements of Platform Leadership. MIT Sloan

Management Review, Spring: 51-58

• Iansiti, M. & Levien, R. 2004. Strategy as Ecology. Harvard Business Review,

March: 68-78

• Iansiti, M. & Levien, R. 2004. The Keystone Advantage. Harvard Business School

Press

• Luthje, C & Herstatt, C. 2004. The Lead User Method: An Outline of Empirical

Findings and Issues for Future Research. R&D Management, 34(5): 553-68

• Moore, J.F. 1993. Predators and Prey: A New Ecology of Competition. Harvard

Business Review, May/June: 75-86

• Von Hippel, E. 1986. Lead Users: A Source of Novel Product Concepts.

Management Science, 32 (7): 791-806

• Von Hippel, E. 2005. Democratizing Innovation. Cambridge, MA. MIT Press

A CEA Practical Implementation: Activity Box

 - 43 -

8. Appendix Section

8.1. Coral CEA Agent Source Code

The code below is a sample of the main routine performed by the Coral CEA Agent we

have implemented on this project. The remaining routines are included as part of this

project as an attachment.

 Private Sub LocalQueryEvent(ByVal state As Object)
 Try
 If Date.Now.Hour >= intStartHour

And Date.Now.Hour < intEndHour And blnStillExecuting = False Then
 Dim db As Database = DatabaseFactory.CreateDatabase()
 Dim dbPendingCallList As DbCommand = db.GetStoredProcCommand("cea_CallsToMake_list")
 Dim dbUpdateCallInfo As DbCommand = db.GetStoredProcCommand("cea_CallInfo_upd")

 Dim dtCallsToMake As DataTable

 db.AddInParameter(dbUpdateCallInfo, "RowId", DbType.Int32)
 db.AddInParameter(dbUpdateCallInfo, "Attempts", DbType.Int32)
 db.AddInParameter(dbUpdateCallInfo, "CallSessionIdentifier", DbType.String)
 db.AddInParameter(dbUpdateCallInfo, "CallParticipantStatus", DbType.Int32)
 db.AddInParameter(dbUpdateCallInfo, "LastCallFaultCode", DbType.String)
 db.AddInParameter(dbUpdateCallInfo, "AudioStatus", DbType.Int32)
 db.AddInParameter(dbUpdateCallInfo, "AudioIdentifier", DbType.String)
 db.AddInParameter(dbUpdateCallInfo, "CallParticipantTerminationCause", DbType.Int32)
 db.AddInParameter(dbUpdateCallInfo, "CallParticipantStartTime", DbType.String)
 db.AddInParameter(dbUpdateCallInfo, "CallParticipantDuration", DbType.Int32)

 ' We indicate the maximum nmber of attemps we want to filter
 db.AddInParameter(dbPendingCallList, "Attempts", DbType.Int32, intAttempts)

 dtCallsToMake = db.ExecuteDataSet(dbPendingCallList).Tables(0)
 ' Note: connection was closed by ExecuteDataSet method call

 If dtCallsToMake.Rows.Count > 0 Then
 blnStillExecuting = True
 Dim strParticipants(1) As String

 For i As Integer = 0 To dtCallsToMake.Rows.Count - 1
 Dim makeCallArguments As makeCallSession = New makeCallSession()
 strParticipants(0) = encodeURLSafe(strParticipantPrefix &

 dtCallsToMake.Rows(i)("CallParticipant") & strParticipantSuffix)
 makeCallArguments.callParticipants = strParticipants

 db.SetParameterValue(dbUpdateCallInfo, "RowId", dtCallsToMake.Rows(i)("RowId"))
 db.SetParameterValue(dbUpdateCallInfo, "Attempts",
 dtCallsToMake.Rows(i)("Attempts") + 1)

A CEA Practical Implementation: Activity Box

 - 44 -

 Dim objCallResponse As New makeCallSessionResponse
 Try
 ' Initialize the call status to prevent being requested again
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStatus",
 CallParticipantStatus.CallParticipantInitial)
 db.ExecuteNonQuery(dbUpdateCallInfo)

 ' Make the call
 objCallResponse = getThirdPartyCallService.makeCallSession(makeCallArguments)

 ' Obtain the call session identifier from CoralCEA
 db.SetParameterValue(dbUpdateCallInfo, "CallSessionIdentifier",
 objCallResponse.result)

 Dim getCallInformationArguments As New getCallParticipantInformation()
 getCallInformationArguments.callSessionIdentifier = objCallResponse.result
 getCallInformationArguments.callParticipant = strParticipants(0)

 Dim objCallInfo As New getCallParticipantInformationResponse
 ' Request the status of the call
 objCallInfo =
 getThirdPartyCallService().getCallParticipantInformation(getCallInformationArguments)

 ' Update the participant status
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStatus",
 objCallInfo.result.callParticipantStatus)
 db.ExecuteNonQuery(dbUpdateCallInfo)

 db.SetParameterValue(dbUpdateCallInfo, "Attempts", System.DBNull.Value)

 Dim blnRequestNotSent As Boolean = True
 Dim strAudioCorrelator As String = ""
 Do While objCallInfo.result.callParticipantStatus <>
 CallParticipantStatus.CallParticipantTerminated
 If blnRequestNotSent And objCallInfo.result.callParticipantStatus =
 CallParticipantStatus.CallParticipantConnected Then
 Dim objAudioResponse As New playAudioMessageResponse
 Dim objAudioMessage As New playAudioMessage()
 objAudioMessage.callSessionIdentifier = objCallResponse.result
 objAudioMessage.audioUrl = strAudioURLPrefix &
 dtCallsToMake.Rows(i)("AudioURL") & strAudioURLSuffix
 Try
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStatus",
 objCallInfo.result.callParticipantStatus)
 db.ExecuteNonQuery(dbUpdateCallInfo)

 objAudioResponse =

AudioCallPlayMediaService.playAudioMessage(objAudioMessage)
 db.SetParameterValue(dbUpdateCallInfo, "AudioIdentifier",

objAudioResponse.result)
 strAudioCorrelator = objAudioResponse.result
 If blnCreateLog Then
 myLog.WriteEntry("LocalQueryEvent. Audio Request:" & strAudioURLPrefix

& dtCallsToMake.Rows(i)("AudioURL") &
strAudioURLSuffix,

A CEA Practical Implementation: Activity Box

 - 45 -

EventLogEntryType.Information)
 End If
 Catch ex As Exception
 myLog.WriteEntry("LocalQueryEvent: At

AudioCallPlayMediaService.playAudioMessage(objAudiMessage).
Message:" & ex.Message
& ". Stack Trace:" & ex.StackTrace, EventLogEntryType.Error)

 Finally
 blnRequestNotSent = False
 End Try
 End If
 objCallInfo =
 getThirdPartyCallService().getCallParticipantInformation(getCallInformationArguments)
 Loop

 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantTerminationCause",

 objCallInfo.result.callParticipantTerminationCause)
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStartTime",

objCallInfo.result.callParticipantStartTime.ToString)
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantDuration",

 objCallInfo.result.callParticipantDuration)
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStatus",
 objCallInfo.result.callParticipantStatus)
 db.ExecuteNonQuery(dbUpdateCallInfo)

 If strAudioCorrelator <> "" Then
 Dim objAudioMessageStatus As New getMessageStatus()
 Dim objAudioInfo() As MediaMessageStatus
 objAudioMessageStatus.correlator = strAudioCorrelator 'Audio Correlator
 objAudioInfo =
 AudioCallPlayMediaService.getMessageStatus(objAudioMessageStatus)
 db.SetParameterValue(dbUpdateCallInfo, "AudioStatus", objAudioInfo(0).status)
 ' Update the status of the audio
 db.ExecuteNonQuery(dbUpdateCallInfo)
 End If

 Catch ex As Exception
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStatus",
 CallParticipantStatus.CallParticipantTerminated)
 db.SetParameterValue(dbUpdateCallInfo, "LastCallFaultCode", Left(ex.Message, 50))
 db.ExecuteNonQuery(dbUpdateCallInfo)
 myLog.WriteEntry("LocalQueryEvent: " & ex.Message & ". Stack Trace:" &

ex.StackTrace, EventLogEntryType.Error)
 End Try

 'Clears all query parameters
 db.SetParameterValue(dbUpdateCallInfo, "RowId", System.DBNull.Value)
 db.SetParameterValue(dbUpdateCallInfo, "Attempts", System.DBNull.Value)
 db.SetParameterValue(dbUpdateCallInfo, "CallSessionIdentifier", System.DBNull.Value)
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStatus", System.DBNull.Value)
 db.SetParameterValue(dbUpdateCallInfo, "LastCallFaultCode", System.DBNull.Value)
 db.SetParameterValue(dbUpdateCallInfo, "AudioStatus", System.DBNull.Value)
 db.SetParameterValue(dbUpdateCallInfo, "AudioIdentifier", System.DBNull.Value)
 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantTerminationCause",

 System.DBNull.Value)

A CEA Practical Implementation: Activity Box

 - 46 -

 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantStartTime",
 System.DBNull.Value)

 db.SetParameterValue(dbUpdateCallInfo, "CallParticipantDuration",
 System.DBNull.Value)

 Next
 End If
 dtCallsToMake = Nothing
 blnStillExecuting = False
 End If

 Catch ex As Exception
 blnStillExecuting = False
 myLog.WriteEntry("LocalQueryEvent: " & ex.Message & ". Stack Trace:" & ex.StackTrace,

 EventLogEntryType.Error)
 End Try
 End Sub

A CEA Practical Implementation: Activity Box

 - 47 -

8.2. Coral CEA Agent Database Procedures

The two procedures listed below are used to obtain the list of calls request that are

still pending and to update the status of an existing call.

CREATE PROCEDURE dbo.cea_CallsToMake_list (
 @Attempts int = -1
)
AS
SET NOCOUNT ON

SELECT CEAQueue.RowId,
 CEAQueue.Attempts,
 CEAQueue.CallParticipant,
 CEAQueue.AudioURL
FROM CEAQueue
WHERE (@Attempts = -1 OR CEAQueue.Attempts < @Attempts)
 AND (CEAQueue.CallParticipantStatus = 99 OR -- Pending to call
 (CEAQueue.CallParticipantStatus = 2 -- Call Terminated
 -- If caller or called party could not be reached for some reason, let’s try again
 AND CEAQueue.CallParticipantTerminationCause <> 3)
)
 -- Filter only requests for which certain period of time has elapsed (15 minutes by default)
 AND CEAQueue.NextAttemptUTC < GETUTCDATE()
ORDER BY CEAQueue.CallPriority DESC

CREATE PROCEDURE dbo.cea_CallInfo_upd (
 @RowId int,
 @CallSessionIdentifier varchar(50) = NULL,
 @CallParticipantStatus int = NULL,
 @Attempts int = NULL,
 @LastCallFaultCode varchar(50) = NULL,
 @CallParticipantTerminationCause int = NULL,
 @AudioIdentifier varchar(50) = NULL,
 @AudioStatus int = NULL,
 @CallParticipantStartTime varchar(100) = NULL,
 @CallParticipantDuration int = -1
)
AS
SET NOCOUNT ON

UPDATE CEAQueue
SET CEAQueue.CallSessionIdentifier = CASE WHEN @CallSessionIdentifier IS NULL THEN

CEAQueue.CallSessionIdentifier ELSE @CallSessionIdentifier
END,

 CEAQueue.CallParticipantStatus = CASE WHEN @CallParticipantStatus IS NULL THEN
CEAQueue.CallParticipantStatus ELSE @CallParticipantStatus
END,

A CEA Practical Implementation: Activity Box

 - 48 -

 CEAQueue.Attempts = CASE WHEN @Attempts IS NULL THEN
CEAQueue.Attempts ELSE @Attempts
END,

 CEAQueue.LastCallFaultCode = CASE WHEN @LastCallFaultCode IS NULL THEN
CEAQueue.LastCallFaultCode ELSE @LastCallFaultCode
END,

 CEAQueue.CallParticipantTerminationCause = CASE WHEN @CallParticipantTerminationCause IS
NULL THEN

CEAQueue.CallParticipantTerminationCause ELSE
@CallParticipantTerminationCause
END,

 CEAQueue.AudioIdentifier = CASE WHEN @AudioIdentifier IS NULL THEN
CEAQueue.AudioIdentifier ELSE @AudioIdentifier
END,

 CEAQueue.AudioStatus = CASE WHEN @AudioStatus IS NULL THEN
CEAQueue.AudioStatus ELSE @AudioStatus
END,

 CEAQueue.CallParticipantStartTime = CASE WHEN @CallParticipantStartTime IS NULL THEN
CEAQueue.CallParticipantStartTime ELSE

@CallParticipantStartTime
END,

 CEAQueue.CallParticipantDuration = CASE WHEN @CallParticipantDuration IS NULL OR
@CallParticipantDuration = -1 THEN

CEAQueue.CallParticipantDuration ELSE 0
END

FROM CEAQueue
WHERE CEAQueue.RowId = @RowId

A CEA Practical Implementation: Activity Box

 - 49 -

8.3. Audio Messages

 For demo purposes, we created 4 different types of audio messages, whose

text is shown in the table below.

Event Type Receiver Message

New Booking Customer Hi. This is an automated message from the Activity Box

reservation system and Coral CEA. Your [ActivityName]

activity has been successfully reserved and is now confirmed.

We hope you have a great time. Thanks for your booking.

New Booking Operator Hi. This is an automated message from the Activity Box

reservation system and Coral CEA. You have received a new

booking for the [ActivityName] activity. Check your e-mail or

fax for the booking confirmation and further details and refer

to your arrivals report in Activity Box

Cancellation Customer Hi. This is an automated message from the Activity Box

reservation system and Coral CEA. Your [ActivityName]

activity has unfortunately been cancelled by the Operator.

Please contact your original booking agent to reschedule or

obtain a refund. You will find their contact details on your

original booking confirmation. We are sorry for any

inconvenience

Cancellation Operator Hi. This is an automated message from the Activity Box

reservation system and Coral CEA. A booking for the

[ActivityName] activity has been just cancelled by the

customer. Check your e-mail or fax for the cancellation

confirmation and further details

 Table 3. Audio Messages

A CEA Practical Implementation: Activity Box

 - 50 -

8.4. Useful Links

This section lists some web resources that were useful during the development

phase of this project. These links are up to date as of December 2009.

• ActivityBox Demo

o Demo portal

http://coraldemo.activitybox.ca

o Professional voice talent provided by Angelique Papadopoulos

http://www.greatbritishvoice.com

• Text-To-Speech (TTS)

o Media Processing Server (MPS) TTS Integration

http://www.nortel.com/products/04/ivr/collateral/nn103943.pdf

o AT&T Labs Natural Voices® Text-to-Speech Demo

http://www2.research.att.com/~ttsweb/tts/demo.php

• Windows Services in .NET

o Creating a Windows Service in .NET

http://www.developer.com/article.php/2173801

o Creating a .NET Windows Service: Three Different Approaches

http://en.csharp-online.net/Creating_a_.NET_Windows_Service

o Creating an Extensible Windows Service

http://www.15seconds.com/issue/021007.htm

• Web Services:

o Web Services Description Language Tool (Wsdl.exe)

http://msdn.microsoft.com/en-us/library/7h3ystb6(VS.80).aspx

o Web References

http://msdn.microsoft.com/en-us/library/tydxdyw9(VS.80).aspx

o How to: Call a Web Service

http://msdn.microsoft.com/en-us/library/6h0yh8f9(VS.80).aspx

A CEA Practical Implementation: Activity Box

 - 51 -

• Database:

o MSSQL notifications (to avoid periodic queries to the database):

http://msdn.microsoft.com/en-us/library/a52dhwx7%28VS.80%29.aspx

o Enterprise Library 3.1 - May 2007

http://msdn.microsoft.com/en-us/library/aa480453.aspx

