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Abstract
Experiments have shown that a semiflexible polyelectrolyte, such as a DNA,

can be condensed by multivalent counterions and the preferred form is toroid. By

using molecular dynamics simulations, a single DNA molecule is condensed into

a compact toroid-like structure. DNA is treated as a bead-spring chain, using

parameters of dsDNA. The influence of the counterion size and DNA monomer

size on the DNA structure is studied. We found that for a DNA monomer size

of σ and counterion size of 0.5σ, the complex (DNA plus condensed counterions)

forms a well-defined toroidal structure. The dependence of the structure of the

condensed DNA on the initial configuration is investigated. We observed that the

final conformation does not depend on the initial state. The condensed DNA toroid

is then stretched by pulling one end of the chain at various constant velocities to

investigate the effects of the pulling velocity on the force-extension curve (FEC).

We found that the pulling velocity influences the force profile and the internal

structure of the condensed DNA molecule. Moreover, the responses at both DNA

ends are different if the pulling velocity is larger than the reference Rouse velocity,

Vo. For velocities larger than Vo, the FEC’s dependence over the pulling velocity

is linear at the DNA end which is moving at constant velocity; nevertheless, these

FECs oscillate around a constant force (≈ 2.5KBT/σ) at the other end. We

found that a pulling velocity equals to 5× 10−4σ/τ does not perturb the complex.

Moreover, the influence of the pulling velocity on the bond length is linear. We

observed that the entropic behavior of the DNA molecule is strongly affected by

the condensed counterions. The FEC shows a series of “stick-release patterns”.

It gradually increases with increasing extension and then abruptly decreases; this

behavior appears repeatedly and becomes stronger and stronger as the condensed

DNA molecule is losing its turns. We showed that these ”stick-release patterns”

are a consequence of turn-by-turn unfolding of the condensed DNA toroid. The



extensible worm-like chain (EWLC) model is found able to describe qualitatively

the behavior of the DNA molecule when its extention is close to the overall contour

length. We presented a clear evidence and described the mechanism of why the

condensed DNA molecule forms a “stick-release patterns”. Our results provide

new microscopic information about the internal structure of a single condensed

DNA toroid being stretched and are in qualitative agreement with experiments.

Keywords : Condensed DNA toroid; reentrant condensation; force-

extension curve (FEC); extensible worm-like chain

(WLC) model; “stick-release patterns”; entropic elastic-

ity; molecular dynamics simulation; non-viral gene ther-

apy; and bioengineering.
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Chapter 1

Introduction

Perhaps the long history of DNA began with its discovery in 1869 by Friedrich

Miescher [1]. He found in the cell nucleus a mixture of compounds that he called

nuclein. The term “nuclein” was used because these molecules were found in the

nucleus of a living cell. The major component of nuclein is deoxyribonucleic acid

(DNA). More than 80 years later, Crick and Watson reported to discover the DNA

structure by proposing a double helix as a model [2]. Although the structure of

the double helix is already known for a such long time, many of its phenomena are

not well understood. Indeed, the molecule of life exhibits intriguing phenomena

because of its dual character as a highly charged chain and as a semiflexible chain.

Most of these intriguing phenomena are strongly dependent on electrostatic inter-

actions between the negative charges on the DNA molecule and the surrounding

positively charged counterions, which interact through long range Coulomb forces.

The combination of this Coulomb interaction and the specific chemical interactions

(stiffness, rigidity, etc.) leads to a diversity of phenomena which are difficult to

handle by analytical methods such as mean-field approximations and variational

methods.
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1.1 Motivation

The main interest for understanding DNA condensation, DNA decondensation,

and the process involves between these two transitions is its biological implica-

tions in non-viral gene therapy [3, 4] and the benefits that this carries with it.

Gene therapy is aimed to treat human diseases ranging from inherited genetic dis-

orders to cancer. Polyamide such as a spermidine and spermine are abundant in

living cells and are believed to aid in the DNA condensation, which is a prerequi-

site for transport of the gene vectors in living cells. DNA condensation should be

fast, effective, easily reversible without damaging the DNA molecule. Moreover,

if one can control the process of DNA condensation, one is able to pack, deliver,

release and insert a “normal” gene from vehicle to a target cell, and then this

“normal” gene can replace an “abnormal” gene which causes the disease. In spite

of a lot of information in the DNA condensation process, there are still many un-

solved questions about the DNA condensation in the range of these two transitions

(condensation/decondensation).

In order to understand the behavior of a single DNA in the condensed state

and quantify the energy needed to condense it, Baumann et al. [5] and Murayama

et al. [6, 7] have investigated the elastic properties of a condensed DNA molecule.

They have used an optical tweezer to stretch a single condensed DNA. They ob-

served three different responses of a single condensed DNA when it is stretched,

see Figure 1-1. Surprisingly, these different behaviors are related to the condensa-

tion/decondensation threshold, Cc, Cd, (These quantities are defined in the section

1.2) and they are strongly dependent on the counterion concentration, as well. At

very low counterion concentration, DNA is in a coil state and its elastic response

can be described by worm-like-chain (WLC) model (See Figure 1-1 (a)), and for a

review of WLC model, see appendix A. At intermediate counterion concentration,

the measured force-extension curve (FEC) has a “plateau force”, (See Figure 1-1

16



Figure 1-1: Schematic plots of the three typical behaviors of the elastic responses of a
single condensed DNA for different values of counterion concentration, C. (a) C < Cc.
In this regime the DNA molecule behaves as a “worm-like chain”. (b) Cc ∼ C. The DNA
molecule shows a “plateau force” in a wide rage of its extension. (c) Cc << C < Cd.
The periodic curve appears, which is known as a “stick-release” behavior. Cc and Cd

are the condensed and decondensed concentration of the DNA molecules, respectively.

(b)), which is significantly larger than the force described in the WLC model, and

remains unchanged in a wide range of the DNA extension. If the counterion con-

centration is increased to a high concentration, DNA shows a repeatedly elastic

response described by a WLC model at large extension, which is specifically called

a “stick-release pattern”, (See Figure 1-1 (c)).

In spite of experimental evidences, current theory can not explain what hap-

pened in these experiments, and as a consequence, there is a big gap between theory

and experiments. To explain the different FECs, “plateau force” and “stick-release

pattern”, researchers have proposed two theories to describe the internal structure

of a single condensed DNA molecule when it is stretched. In the first theory, Wada

et al. [8] elaborated a numerical model for “plateau force” and “stick-release pat-

tern”. They claimed that “plateau force” can be understood by using the WLC

equation. In this equation, the force would be constant, if the ratio of extension, x,

to the effective contour length, Leff , are constant. It means that before the DNA

molecule becomes elongated (about 86%), the evolution of the fraction extension,

17



x/Leff , is roughly constant (See Figure 1-2 (a)) and after that, DNA molecule

returns to be in a coil state and starts behaving as a WLC model. For the “stick-

release pattern”, they based their model on a fluorescence microscopy image of a

long DNA [9], which was partially stretched by externally applied electric field.

The image shows a group of object loops connected by a line. They argued that the

formation of this gripping phenomenon is because the large amount of counterions

induce tight condensation of the DNA molecule which forms a united structure,

and the “stick-release behavior” appears as a response to abrupt release of con-

densed objects from the united structure. The condensed objects are a group of

“crystallized” globular objects connected with short chain coils (See Figure 1-2

(b)). Moreover, each of these condensed objects has basically a toroidal form. The

WLC results from stretching the short chain coils between condensed objects. The

periodicity of this “stick-release behavior” was found to be 300 nm [7], which cor-

responds approximately to the length of the periphery of a toroid, ≈ 2πR, where

R ≈ 50nm is the radius of the toroid. Wada et al. [11] suggested later a new point

of view for the formation of “stick-release pattern”, based on experimental and

theoretical results [7, 12], which is different form their former formulation. This is

the second theory. They argued that ‘stick-release” behavior can be attributed to

turn-by-turn unfolding of the condensed DNA toroid. However, there is no clear

evidence to support neither of these models.

Although there is a lot of experimental information about the manipulation on

single condensed DNA molecule, there exists only a few theoretical and numerical

studies about this combined problem. Our understanding on how condensation of

a DNA affects its mechanical properties is still far from satisfactory. The main

propose of this research is to study the internal structure of a single condensed

DNA and its elastic responses in the stretching process. We measure the FEC to

characterize these phenomena. We employ a simple coarse-grained model which

18



Figure 1-2: (a) The dependence of the effective contour length on the extension in
stretching and releasing processes, for the “plateau force” case. (b) Schematic illustration
of the intramolecular phase segregated chain for the “stick-release” case. These figures
are taken from reference [8]
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can reproduce the DNA’s behavior. First, we will construct the physical picture for

this phenomenon, which is searched for many researchers. Then, we will explain

the overall process that can lead to a better understanding when the condensed

DNA molecule is stretched.

1.2 Reentrant condensation of DNA molecule

It was understood that for a long DNA, when the concentration of the added con-

densing agents reaches a critical value, Cc, DNA condensation occurs suddenly. If

the concentration of the condensing agent goes far again to another critical values,

Cd (Cc << Cd), DNA molecule dissolves back to the solution (See figure 1-3).

This phenomenon is called reentrant condensation [13, 14, 15]. Nguyen et al. [14]

proposed an analytical description of the phenomenon. They explained that con-

densation can only happen in the range, Cc ≤ C ≤ Cd because of strong counterion

correlations on the surface of the DNA. In this range, the condensed counterions on

the chain almost neutralize the chain bare charge, and consequently, the correla-

tion induces a short-range attraction that dominates long-range repulsion, leading

to precipitation. Moreover, the optimal condition of this region is in the middle,

where the chain charge is effectively neutralized (C ≈ Co). At high counterion

concentration, (Cd < C), the repulsion makes difficult chain condensation, and

therefore, the DNA molecules redissolve back to the solution (See Figure 1-3).

This phenomenon is characterize by

ε

KBT
=

1

4Z2ξ

ln2(Co/C)

ln(1 + r(C)/rDNA)
(1.1)

where ξ = λ/b is the manning’s parameter, r(C) is the screening length, rDNA

is the radius of the DNA, and C is the counterion concentration in the bulk.

Setting C = Cc and C = Cd in Eq. 1.1 would give two equations. Solving these

20



Figure 1-3: Percentage of DNA in solution vs polyamide concentration. The solid and
dotted curve show the processes of condensation, (C ≈ Cc), and decondensation, (C ≈
Cd), for the spermine and spermidine, respectively. The point, C = Co, corresponds to
the neutralizing point. At this point the DNA molecule is effectively neutralized. The
figure is taken from reference [10]

two equations simultaneously would give one solution for the condensed energy

per base pair, ε, and the neutralizing concentration, Co, under the assumption

that the condensed energy is the same at the condensation and decondensation

threshold. Although, This theory presents a good qualitative description about

the phenomenon, the predictions, which they gave, are not completely coherent

with the experiments [5, 6, 7].
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1.3 Morphology of a condensed DNA molecule

In gene therapy, a DNA molecule should be condensed to a stable, effectively

charge-neutralized structure, otherwise the negative cell membrane would repel

the DNA molecule that is injected into the cell for the purpose of gene delivery.

If one were to take one DNA molecule from a human cell and stretch it out to its

full length, it would be approximately two meters long. It is incredible that such

an enormously long molecule can be easily packed into the nucleus. Since DNA

molecule has a high density of negative charge, packing DNA requires overcoming

an enormous Coulomb repulsion. We define DNA condensation as the union of

DNA molecule and multivalent counterions, often with elimination of water from

the helix, which form a newly more complex compound, and the consequence is the

decrease in the volume of the extended DNA molecule [16]. DNA condensation

is very important because it confronts the statistical-mechanical challenge of ac-

counting how a DNA can be confined in a dimension comparable to its persistence

length and yet hundreds of times smaller than its overall contour length. It has

been shown that cations with valence larger than two are generally required to in-

duce highly packing of DNA in an aqueous solution at room temperature [17]. To

explain the stable morphology of a condensed DNA molecule, various competing

models have been proposed in which the DNA molecule is organized in concen-

tric rings as a spool [18], in parallel segments joined at sharp kinks [19], or as

a toroid [20]. Single polyelectrolytes can collapse from a random coil to a dense

conformation. The surface energy plays a significant role in determining the stable

structure of a folded compact single polyelectrolyte. For a flexible chain the mini-

mal surface energy is approximately a spherical globule, but for semiflexible chain

is a toroid [21]. Indeed, DNA usually forms beautiful nanotoroids(See Figure 1-4)

after adding condensing agents to the solution [80, 23], and these nanotoroids are

surprisingly monodisperse, having almost alike size, basically independent of the
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Figure 1-4: Transmission electron microscopic photographs of spermidine-collapsed T4
DNA, giant toroid with 6 mM spermidine, observed At 100 kV. Scale bar is 100 nm.
The picture is taken from reference [39]

counterion valence [24, 25]. Researchers studied toroid formation with the help

of methods such as light-scattering [27], fluorescence spectroscopy [26], electron

microscopy [28] or sedimentation methods [29], and they often used counterions

such as spermidine (SPD3+) [30, 31] , spermine (SP 4+) [26, 27], and hexaam-

minecobalt complex (Co(NH3)
3+
6 ) [80] to condense a DNA. They have reported

that toroidal DNA has typically an outside diameter of ≈ 100 nm with a 30 nm

hole [28, 30, 32, 33, 34, 35, 36]. The toroidal form has been shown to be the

morphology of DNA packaged within some bacterial phages in prokaryotic and

eukaryotic cells [37]. Nowadays, toroid is believed to be the packing shape of a

condensed DNA. Owing to a lot of experimental and simulation studies, polyelec-

trolyte theory has been improved and it has explained that DNA condensation is

originated from the correlated fluctuation of condensed counterions on the DNA

at close range, which forms a strongly correlated liquid on its surface.
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1.4 Present research

Over the past decade, there is a strong interest to understand DNA condensation

with multivalent counterions. This is because its logical relation between gene

therapy and the need of developing specialized disease-fighting treatments. Any

human gene therapy product for sale has not been approved yet by the Food and

Drug Administration [38]. The current gene therapy is in the experimental stage

and not proved to be very successful in clinical trials [38]. In order to develop a

successful and effective way of gene therapy, it is necessary to completely under-

stand the DNA behavior in salt solution, its condensation and packed process, its

stable condensed morphology, its elastic behavior under multivalent counterions,

and its release process. Electrolyte solutions can be well described by the linearized

Poisson-Boltzmann (PB) or the so called Debye-Hückel equation, however this ap-

proximation is no longer valid for polyelectrolytes such as DNA molecules [40].

Theoretical approaches, including the Poisson-Boltzmann (PB) theory [41] and

the counterion condensation theory of Manning [42, 43], deal with solutions of

monovalent ions and primitive model of the DNA. In these theories, the ions are

treated as charged spheres and the DNA is treated as a hard uniformly charged

cylinder, embedded in a continuum dielectric. Computer simulations have shown

that the PB equation provides a more solid basis for studying polyelectrolytes than

approaches based on Manning condensation theory [44, 40]. Moreover, the results

of simulations have shown that the Poisson-Boltzmann equation generally satis-

factorily describes the properties of the DNA in monovalent ionic environment.

However for multivalent ions, it noticeably underestimates the ion density close to

the surface of DNA molecule. It was demonstrated in simulations that bead-spring

chains can reproduce the behavior of polyelectrolytes [45, 46, 47, 48, 49]. Simula-

tions of flexible polyelectrolytes in the absence of salt [50, 51] and in the presence

of different condensing agents [52, 53, 54, 55] have been performed focusing on
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different properties of polyelectrolytes. It was shown that a polyelectrolyte can be

condensed into a toroid-like structure [56, 57] upon addition of trivalent or tetrava-

lent counterions. The stiffness and the length of a polyelectrolyte is important for

the toroidal formation. If the stiffness is high and the chain length is long, the

polyelectrolyte would condense into toroid, otherwise, it would form a different

structure such such as a rod or sphere [56, 21]. The morphology of a single con-

densed DNA has been studied [21, 28, 58, 59], the stable structure is determined

by the surface energy and it was found to be a toroid under poor solvent condi-

tions. The elastic properties of a condensed DNA molecule have been investigated

by many research groups using single-molecule techniques. The methods include

magnetic tweezers [60] (range 0.01 to 10 pN), optical tweezers [61] (range 0.1 to

100 pN), AFM [62] (range 10 to 10,000 pN), etc. The advantage of using single-

molecule techniques is, for example, that the force required to collapse the DNA

molecule can be directly quantified from the measurements. The elastic behavior

of DNA molecule is entropic in origin [63] and the worm-like chain (WLC) model

basically can explain this entropic behavior. Comparisons of the predictions of the

entropic theory are limited only to the low-force regime [64], where this theory

is most applicable. A simulation was performed to stretched a polyelectrolyte in

monovalent salt solution [65], in which the electrostatic properties and the scaling

laws were studied. New features of a single condensed DNA molecule was found by

using single-molecule techniques [5, 6, 7]. The FECs showed a “plateau force” and

“stick-release pattern” behavior, which are different from the WLC model. To ex-

plain the “force-plateau”, an analytical calculation was done by Zhang et al.[66].

They proposed a formula which can estimate the force needed to decondensate

a DNA molecule, this approximation was based on the reentrant condensation

theory proposed by Nguyen et al. [14]. In order to explain the different FECs

found in the experiments [5, 6, 7], Wada et al. [8] presented a phenomenological

25



model which describes these elastic responses of a collapsed DNA, their theory is

based on the WLC model. Furthermore, Wada et al. [11] performed a Brownian

dynamics of stretching a single condensed polyelectrolyte to investigate in detail

this process. They found that the counterions in the “force-plateau” case behave

differently from the counterions in the “stick release” case. For a “force-plateau”

case, the condensed counterions are in a fluid phase with moderate correlations;

however in the “stick release” case, the complex (DNA and its condensed coun-

terions) possesses a short-range ionic crystal-like order with strong correlations.

In addition, They found that the pulling velocity has a strong effect on the FEC,

the higher the pulling velocity, the more perturbed the FECs are. Very recently,

Ritort et al. [67] have experimentally investigated the transition of a condensed

DNA molecule, when it is stretched. They have used polyaminoamide dendrimers

to condense the DNA molecule and optical tweezers to stretch it out. They found

that the complex (DNA-dendrimers) shows some similarities to chromatin in fold-

ing and refolding and the compaction ratios are basically the same. Although their

results provide new informations about the DNA complexation, their study is only

in the “plateau force” range. In spite of all the information about DNA conden-

sation and its stretching process, it is not well understood yet what is the internal

structure of the condensed DNA molecule, when the FEC shows the “plateau

force” and “stick-release pattern”, and how its elastic behaviors is affected by the

condensed counterions. It is worth mentioning that there is relatively few numeri-

cal works performed in the issue of stretching a condensed polyelectrolyte, because

this problem is a nonlinear process which involves combined effects coming from

the long-range Coulomb and nonequilibrium effects of the pulling velocity.
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Chapter 2

Simulation Method and Setup

To simulate a long DNA is very complicated, if all the degrees of freedom of this

long molecule and the interactions of its chemically realistic united atoms are

taken into account. DNA molecule is a dense polyelectrolyte chain; therefore, it is

required to construct a model similar to, but smaller in degrees of freedom than

the real one, in order to reduce the complexity to make the simulation a tractable

approach. The reduction of the degrees of freedom is called coarse graining. The

coarse-graining approach is used to map larger units of the real DNA molecule onto

one unit of a new chain. The interactions between the new units should reflect and

mimic those of the chemically realistic chain. In this chapter, we will briefly review

the DNA structure. A coarse-grained model of DNA will be explained. The atom

sizes and which atoms take part in one new unit will be described. And finally,

the molecular dynamic methodology will be introduced.

2.1 DNA structure

DNA is a long polyelectrolyte chain of small compounds called nucleotides which

bear a charge of −e. These nucleotides are the basic building blocks of DNA, each
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of which contains a sugar, a base and a phosphate group. The chain is formed by

linking the sugars to one another through their phosphate group and it can be long

as several cm. Watson and Crick [2] formulated a series of rules in order to explain

how the building blocks form the DNA molecule (see figure 2-1). They based their

assumptions on the information found in X-ray crystallography of DNA (Rosalind

Franklin [68]) and the Chargaff rules [69, 70, 71, 72, 73, 74], which states that

in any DNA, the concentrations of adenine equals thymine and guanine equals

cytosine. Watson and Crick rules are summarized as follow

1. Two sets of base pairs are arranged in a double helix.

2. Phosphates and the sugar deoxyribose are arranged as a backbone with the

carbon of one sugar linked through a phosphodiester to the carbon of the

next sugar.

3. The bases are like rungs of a ladder, with adenine hydrogen bonded to

thymine and guanine to cytosine.

4. The monomer spacing is 0.34 nm and the helical spacing is 3.4 nm per turn.

Thus, one turn has 10 base pairs.

5. The two DNA strands, which make the double helix, are antiparallel.

Another feature of the double helix is that the strands are held together only by

hydrogen bonds and by hydrophobic interactions between the bases. As a result,

if these weak interactions are disrupted by heat, acidic or basic conditions, or

chaotropic agents, the DNA strands can be separated. This separation is referred

to as DNA melting or denaturation. The denaturation conditions are dependent

on the proportion of AT and GC base pairs, and on the sequence of the bases. In

general, DNA containing a higher proportion of GC bp is more stable, and DNA

sequence with the repeated sequence “AT” is the least stable. The most important
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Figure 2-1: DNA structure illustrated by a right handed double helix, with about 10
nucleotide pairs per helical turn. Each spiral strand, composed of a sugar phosphate
backbone and attached bases, is connected to a complementary strand by hydrogen
bonding between paired bases, adenine (A) with thymine (T) and guanine (G) with
cytosine (C). This structure was first described by James Watson and Francis Crick in
1953.
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feature of the double helix regarding its function is that all the information in it is

redundant. For example if one base is lost, the complementary base on the opposite

strand still contains the information. This is the basis of one strand DNA repair.

In this process, a damaged or missing base is replaced using the information on

the opposite strand.

2.2 Coarse-grained model

In this study, the DNA model of Stevens [56] is employed. The most important

characteristic of his model is that it has the same linear density of a DNA molecule,

−2e/3.4Å. He mapped the highly repetitive double-stranded DNA molecule into a

single chain, where the chain is constructed by joining, one by one, DNA monomers

with springs of average length of b. Each DNA monomer represents a phosphate

group, a base and a sugar (see Figure 2-2). The coarse-graining process of DNA

molecule is shown in the Figure 2-2. The coarse-grained model of DNA molecule

contains NDNA monomers, each of which carries a negative unit charge, −e, and

the radius of monomers is rDNA. In order to condense the DNA chain, it is required

to add condensing agents to the system, as it is done in experiments. Spermine

(SP) is chosen as condensing agent in this simulation. Spermidine is a small flexible

polycation with a charge of +4e and a length of 20Å. In this study, spermine is

mapped into one sphere bead, which has a radius rSP and charge of ZSP . The

coarse-graining process of spermine is shown in the Figure 2-2. The Figure 2-3

shows a short DNA molecule and its counterpart the coarse grained model of the

short DNA molecule.
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Figure 2-2: How to coarse grain a DNA molecule and its counterion. In our model, one
DNA monomer represents one nucleotide (a phosphate with −e, a sugar and a sugar).
Spermine is represented with one sphere.

Figure 2-3: DNA molecule and its coarse grained model. a)A short DNA molecule
represented with an atomistic model. Here all atoms are included. b) A coarse grained
model of the DNA molecule. The red chain represents a dsDNA and the white spheres
are meant to be its counterions
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2.3 Molecular dynamics

Molecular dynamics simulation is performed and the temperature, T , is controlled

by velocity Langevin thermostat. Molecular dynamics with the Langevin thermo-

stat becomes a stochastic differential equation in which two additional force terms

are being added to the equation of motion. The effects of solvent molecules are ap-

proximated by these two terms. The first term represents a frictional force which

takes into account the frictional drag on the solute and the second one corresponds

to random kicks associated with the thermal motions of the solvent molecules, ~ηi.

It is assumed that friction force is proportional to the particle’s velocity and op-

posite to the direction of the particle motion. The equation of motion is therefore

written as

mi
d2~ri

dt2
= −miζ

d~ri

dt
− ∂U

∂~ri

+ ~ηi (2.1)

where ζ is the damping constant, U is the total potential energy, and ~ηi is the

vectorial random force acting on the particle i, which satisfies the fluctuation-

dissipation theorem

〈~ηi〉 = ~0

〈~ηi · ~ηj〉 = 6kBTζδijδ(t− t′)
(2.2)

where δij and δ(t−t′) are the Kronecker delta and Dirac delta function, respectively.

The total energy for the system is the summation of the following terms

U = ULJ + Uee + Ur + Uθ (2.3)

where ULJ is the Lennard-Jones potential, Uee is the Coulomb potential, Ur is

the harmonic potential and Uθ is the bond-angle potential. These potentials are

explained in the following sections.
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2.4 Force fields

The force fields refer to the interactions that one particle exerts on another particle

or a collection of other particles. Generally speaking, the force field can be divided

in two categories, a bonded and non-bonded interaction. In this study, bonded

interactions act between particles which have a common bond or bond-angle, and

they are divided into bond potential and bond-angle potential. They are calculated

on the basis of a fixed list. Non-bonded interactions act between atoms in the same

molecule and those outside the molecule. In this study, non-bonded interactions

are separated into Coulomb interaction and excluded-volume interaction. They

are computed on the basis of a neighbor list.

2.4.1 Non-bonded interactions

Excluded-volume potential

The excluded volumes of particles, including the monomers and the counterions,

are described by Lennard-Jones (LJ) potential, which is represented by an at-

tractive and a repulsive term. The attractive term represents the van der Waals

interaction due to induced dipole-dipole interaction. The repulsive term arises

from the nonbonded overlap between electron clouds and has an arbitrary form.

The LJ potential repels at close range, then attracts, and at longe range vanishes.

It is defined by

U ij
LJ(rij) = 4εLJ




(
σij

rij

)12

−
(

σij

rij

)6

 (2.4)

where rij is the separation distance between particle i and j, εLJ is the strength

of LJ interaction, which describes the hardness of explicit particles, and σij is the

collision diameter. The Lorentz- Berthelot mixing rule is applied for the interaction

between different kinds of particle, σij = (σii+σjj)/2. Since water is a good solvent
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for DNA molecule, the LJ interaction is cutoff at rc = 6
√

2σij in this study and

shifted to −U ij
LJ(rc), which yields a purely repulsive shifted-truncated LJ potential.

The modified Eq. 2.4 can be written as

U ij
LJ(rij) =





4εLJ

[(
σij

rij

)12 −
(

σij

rij

)6
]

+ εLJ for rij ≤ rc,

0 for rij > rc

(2.5)

Coulomb potential

The particles also interact with each other via electrostatic interaction. The elec-

trostatic interaction is defined by the Coulomb’s law, which states that the mag-

nitude of the electrostatic force between two point charges is directly proportional

to the magnitudes of each charge and inversely proportional to the square of the

distance between the charges. The Coulomb potential is thus written as

U ij
ee(rij) = kBTλB

ZiZj

rij

(2.6)

Here Zi, Zj are the valances of particles i and j, respectively, kB is the Boltz-

mann constant, and λB is the Bjerrum length defined as the distance at which

the Coulomb potential of two unit charges e is equal to the thermal energy kBT .

λB can be expressed as e2/(4πεoε)kBT where ε is the dielectric constant of the

continuum and εo is the vacuum permittivity.

Particle-particle particle-mesh (PPPM) algorithm is used to calculate the long-

range Coulomb interaction, in which interactions with periodic images are taken

into account. The PPPM method, which is an alternative approach to the Ewald

sum and was proposed by Hockney and Eastwood [75], is an accurate and com-

putationally efficient method for calculating interactions in molecular simulations.

The PPPM method is based on separating the long-range inter-particle force into

the sum of rapidly-varying short-range interactions and slowly-varying long-range
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interactions. The PPPM method is computed by two steps, first, by a PP method,

and then by a PM method. The PP method is used to find the total short-range

contribution to the force on each particle and is only computed by direct particle-

particle summation within some cutoff radius. Then, the PM method is used

to compute the total slowly-varying long-range interaction contributions which is

calculated in the reciprocal space, approximated on a grid.

2.4.2 Bonded interactions

Harmonic potential

Neighboring DNA monomers on the chain are connected by a spring, described

by a harmonic potential. The harmonic potential, associated with small bond

stretches about the equilibrium bond length, can be approximated by a parabolic

equation, and it is defined by

U ij
r (rij) = k(rij − bo)

2 (2.7)

where k is the spring constant that gives the stiffness of the bond and bo is the

equilibrium distance.

Bond-angle potential

The DNA chain is given an intrinsic stiffness by including a bond-angle potential.

It is modeled by a three-body potential acting among adjacent bead triplets on

the chain, and it is defined by

U ijk
θ (θijk) = k1(θijk − θo)

2 + k2(θijk − θo)
4 (2.8)
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where θijk is the bond angle between three consecutive beads, (i, j, k = i−1, i, i+1),

and θo is the equilibrium angle, whose value is π rad. k1 and k2 are spring constants.

2.5 Integration algorithm

In this study, the velocity-Verlet algorithm is used to integrate the equation of

motion. There are various versions of Verlet algorithm and even new numerical

integration schemes. However, the velocity-Verlet algorithm is, at the same time,

simple, accurate and stable. The velocity-Verlet algorithm generates a phase-

space trajectory which is a sequence of “snapshots” for the particle coordinates

and velocities at time t, by the following procedure

~r(t + dτ) = ~r(t) + ~v(t)dτ + 1
2
dτ 2 ~f(t)

m

~v(t + dτ) = ~v(t) +
~f(t)+~f(t+dτ)

2m
dτ,

(2.9)

where dτ is a small time increment and ~f(t) is the total force acting on a particle

at time t. If the initial conditions ~r(0) and ~v(0) are given, it is possible to compute

~v(t) and ~r(t), sequentially by applying Equations 2.9.

2.6 Simulation setup

In the present work, the morphology of a condensed DNA molecule and its stretch-

ing process are studied by molecular dynamics simulation. In a real system, where

a single DNA molecule is stretched, is composed of a DNA molecule, which contains

NDNA negatively charged monomers of valence ZDNA = −1, NDNA monovalent

counterions dissociated from the DNA, Nc multivalent (Zc : 1) salts, which disso-

ciate into Nc multivalent counterions of valence Zc and ZcNc monovalent coions,

and Nm monovalent (1:1) salts, which dissociate into Nm monovalent counterions
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and Nm monovalent coions. To simplify the real system and make our simulation

a tractable approach, we consider that our system is composed of one DNA, which

contains NDNA negatively charged monomers, we neglect the dissociated counte-

rions coming from the DNA and multivalent salts because their influence is not

too strong to modify the elastic behavior of the DNA [64]. Moreover, we reduce

the number of particles coming from the monovalent salts by assuming that they

dissociate only into Nm negatively charge particles, when the total charge of the

multivalent counterions is larger than the DNA charge, or Nm positively charge

particles, when the DNA charge is larger than the total charge of the multiva-

lent counterion, and their amount is equal to the number of required particles

which keep the overall system neutral. Our system is placed in an aqueous so-

lution at room temperature. The temperature, T = 1.2εLJ/KB, is controlled by

using the Langevin thermostat with damping constant ζ and time step dt equal

to 1/τ and 0.015τ , respectively, where τ is the LJ time unit, τ = σ
√

m/εLJ . The

simulation box is rectangular whose volume is V . Periodic boundary conditions

are applied in all the directions of this simulation box. The radius of the DNA

chain, rDNA, and the counterion, rc, are varied in this simulation. It is assumed

that the mass of the particles, including DNA monomers and all kind of ions,

have the same value m. The DNA concentration is fixed at 2.8210−5σ−3. The

solvent is treated at the primitive level and the Bjerrum length, which describes

the strength of Coulomb interaction, is set to λB = 4.73σ ≈ 7.1 nm. This value

mimics an aqueous environment at room temperature. The non-bonded interac-

tions are neglected for atoms sharing a common bond or bond angle, as well as

up to the 1-4 interactions. The particle-particle particle-mesh (PPPM) algorithm

is used to calculate the long-range Coulomb interaction. the strength of LJ inter-

action, εLJ is set to be 1.2kBT . The parameters of the bond potential are chosen

as k = 100KBT/σ and b0 = 1.1σ. The parameters of the bond-angle potential are
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set to be k1 = 5KBT/rad2, k2 = 20KBT/rad2 and θo = π rad. The velocity-Verlet

algorithm is applied to integrate the equation of motion (Eq. 2.1). Similar work

has been performed by Stevens [56] and the results showed that DNA is highly

organized in the presence of multivalent counterions. Following his work, a spi-

ral structure is chosen as the initial configuration of our DNA chain. Then, the

DNA chain is collapsed into a toroid-like structure after reaching equilibrium state

by the condensed tetravalent counterions. In this process, each simulation takes

around 107 time steps to reach the equilibrium state, then the system is required

to equilibrate for 5× 107 time steps in which data are collected every 1000 steps.

In addition, the properties of the system are computed by using standard statistic

method. To stretch the DNA molecule, one configuration of the condensed DNA

toroid in the equilibrium state is chosen as an initial configuration for the stretch-

ing process. Then, the single condensed DNA molecule is stretched by fixing the

position of one end and pulling the other end at a constant velocity. Because the

pulling velocity is relatively high, the force profile contains both force data and

noise. A low-pass filter is used to separate the force data and the noise. “The

Nyquist-Shannon sampling theorem” [76] is employed to filter the data to avoid

unphysical results. This theorem states that exact reconstruction of a continuous-

time baseband signal from its samples is possible if the signal is band limited and

the sampling frequency is greater than twice the signal bandwidth, which means

that if it is known that a signal has a certain highest frequency, fB, then the

theorem gives a lower bound on the sampling frequency, fs, to allow perfect re-

construction of the sampled signal. This lower bound to the sampling frequency

is equal to 2fB and called the Nyquist rate. Therefore, this theorem is written as

2fB < fs (2.10)
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Chapter 3

Results and Discussions

In this chapter, we show and discuss our results. This chapter is divided into

two parts. First, we discuss the static properties of the condensed DNA molecule,

(shape, size, etc.). Then, we discuss the response of the system to an external

applied force and show how the contribution of the condensed counterions affects

the behavior of the DNA molecule.

3.1 Toroidal structure of a single condensed DNA

molecule

Experiments and simulations confirmed that a DNA molecule can be condensed

into a toroidal structure [28, 30, 32, 33, 34, 35, 36, 56, 57] and the toroid has a

characteristic size, which is in the order of its persistence length. In this section,

the size and shape of a condensed DNA molecule are characterized.

If the condensed DNA molecule displays a toroidal shape, a major radius, R,

and a minor radius, ro, can be defined as shown in Figure 3-1(a). The position of

each particle, which forms the toroid (DNA plus condensed counterions), can be
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described by the following toroidal coordinates

rx = [R + ro cos v] cos u, ry = [R + ro cos v] sin u, rz = ro sin v (3.1)

where the major radius, R, is the distance from the center of the tube to the center

of the torus, the minor radius, ro, is the radius of the tube, and u, v are angles in

the interval [0, 2π) (See Figure 3-1(b)). The volume of this toroid can be expressed

as a function of R and ro, and is equal to

V =
(
πr2

o

)
(2πR) = 2π2Rr2

o (3.2)

Figure 3-1: Characteristic parameters of a toroid (a) in 2D projection and (b) in 3D.
The major radius, R, and the minor radius, ro, are shown in (a) and (b). Figure (b)
shows also the angles u and v for Eq. 3.1.
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3.1.1 Gyration tensor

A fundamental way to study the shape of a polymer is to investigate the gyra-

tion tensor of the polymer, which describes the second moments of position of a

collection of particles, and can be defined as

Tαβ =
∫

V
dr3n(r)

V
rαrβ (3.3)

where n(r) is the number of particles at position ~r in the frame of the center of

mass. α, β = x, y, z denote the three Cartesian components. It is possible to

calculate the principal moments of Tαβ as a function of the major and minor radii

of the toroid. That can be done by replacing Eq. 3.1 and Eq. 3.2 in Eq. 3.3 and

integrate it. Consider that λ1, λ2 and λ3 are the three principal moments of Tαβ.

Then, λ1, λ2 and λ3 can be shown to read as

λ1 =
r2
o

4
, λ2 =

(4R2 + 3ro
2)

8
, λ3 =

(4R2 + 3ro
2)

8
, (3.4)

Two of these moments are equal (λ2 = λ3) and their values are larger than the

third value (λ1). This is always true for a perfect toroid.

3.1.2 Asphericity

Asphericity is a quantity that is used to quantify the shape of a macromolecule.

This quantity measures the deformation from a spherical geometry and it takes a

value between 0 (sphere) and 1 (rod) and is defined as

As =
1

2

〈
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2

(λ1 + λ2 + λ3)2

〉
(3.5)
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Replacing Eq. 3.4 in Eq. 3.5 gives the asphericity for a perfect toroid as

As =
1

64


1 +

3[
1 +

(
ro

R

)2
]




2

(3.6)

In Eq. 3.6, we see that the asphericity depends on the ratio of ro/R. For ro/R ≈ 0,

the value of As goes to 0.25, which corresponds to the asphericity of a ring. It is

important to be aware that for a toroid, the value of ro/R is not zero; however

this ratio is small.

In a real case, DNA does not form a perfect toroid. The values of λ2 and λ3 are

a little bit different in their values but very close to each other, (λ3 ≈ λ2 > λ1).

Assume that ro is a constant and the difference between λ2 and λ3 are mainly

due to the variation in R, which means that λ2 and λ3 have a specific R1 and R2,

respectively. It modifies Eq. 3.4 to

λ1 =
r2
0

4
, λ2 =

(4R1
2 + 3r0

2)

8
, λ3 =

(4R2
2 + 3r0

2)

8
, (3.7)

First, the principle moments of the condensed DNA molecule are calculated by

using Eq 3.8, and then R1, R2 and ro are estimated by applying the approximation

given in Eq 3.7. In Eq. 3.6, R is assumed to be (R1 + R2)/2. These analytical

results, Eq. 3.6 and Eq. 3.7, will be used in the following sections to analyze the

results obtained from our simulations.

3.2 Counterion size

It is known that spermine is protonated to interact with the negative charges

along DNA and it can help DNA molecule to pack nicely. In Chapter 2, a coarse

grained model for DNA and its counterions was introduced. Here, this coarse
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Table 3.1: DNA monomer and counterion diameter.

Case I II III IV V VI VII
DNA σ 2σ 2σ 2σ 2.6σ 3σ 3.5σ
SP σ 2σ σ 0.5σ 0.6σ σ 0.5σ

grained model is employed to perform the simulation. It has been shown that the

counterion size is an important factor to determine the behavior and the properties

of a polyelectrolyte [54]. Therefore, instead of arbitrarily choosing a diameter for

our DNA monomer and its counterion, simulations are performed to study the

influence of the counterion size and DNA monomer size on the final conformation

of DNA molecule. The asphericity, which is 0.25 for a ring, is used as a criterion to

judge whether or not the system has formed a toroidal structure in which it should

be close to 0.25 for small ro/R. It is known that the ionic sizes of particles are

usually in the range 1Å to 3Å [77, 78, 79]. Thus, the ionic size of the counterion and

DNA monomer are systematically varied in this range, as shown in the table 3.1.

In our study, σ corresponds to 1.5Å. The initial configuration of the system is

given as a spiral structure [56]. In this part of study, the system is composed of

one DNA of chain length NDNA = 256 and 64 tetravalent counterions (NSP = 64).

The asphericity is calculated by using Eq. 3.5 and the results are plotted in

the figure 3-2. Because the asphericity curves carry high frequency noise that

makes difficult to analyze it, a low-pass filter is applied to reduce the noise and

smooth the curves which are shown in Figure 3-3. Figure 3-3 shows that the

asphericity in sets I,III,IV,V are more stable than set II and VI because their

amplitude fluctuations are small and they oscillate around a fixed value. This

fluctuation can be understood by noticing that if the ratio (ro/R) in Eq. 3.6 is

not kept constant through the time, the asphericity would oscillate. In set II
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Figure 3-2: Asphericity plotted for each case in the table 3.1 before filtering the noise.

and VI, DNA chains form an unstable toroid because the ratio (ro/R) changes

faster than the others cases mention above. On the other hand, set I,III,IV and

V are stable because this ratio is almost constant, which means that the DNA,

most of the time, maintains a toroid-like structure. A ring would be formed if
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the ratio (ro/R) is equal to 0, in this condition the asphericity will be 0.25. It is

observed in the same figure that the relation between asphericity for these cases

are As(I) > As(III) > As(V ) > As(IV ). Furthermore, the set I and III are

closer to the value of 0.25 which means that the ratio (ro/R) is very small. In

set VII, DNA chain can not form a toroid because its asphericity is much smaller

than 0.25. It is known that the electrostatic interaction between the DNA and the

polyamine is via the oxygen, which belongs to the phosphate group on the DNA

backbone, and the nitrogen, which is the protonated particle in the polyamine.

The effective ionic radius for oxygen is larger than that for nitrogen. Thus, the set

III is adopted as the size of our system through this study because this set gives a

larger ionic radius for the DNA monomer and a smaller radius for the counterion,

which mimics the real system, and produces a stable toroid as well.

3.3 Size and shape of a condensed DNA molecule

In the preview section a DNA chain was condensed into a toroid-like structure

in the presence of tetravalent counterions. In this section, the initial configura-

tion dependence of the DNA chain over its final conformation (ro, R1, R2, As) is

analyzed.

3.3.1 Gyration tensor

In the previous section the gyration tensor’s equation was introduced in the con-

tinuum space. Here, this equation is modified to a discrete space since our systems

is made of discrete spherical particles. The discretization of Eq. 3.3 can be written

as

Tαβ =
1

N

N∑

i=1

(~r (i)
α − ~rcm)(~r

(i)
β − ~rcm) (3.8)
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Figure 3-3: Asphericity illustrated for the cases in the table 3.1

where ~r (i) is the position vector of the ith particle. α, β = 1, 2, 3 denote the

three Cartesian components and ~rcm is the position of the center of mass of the

polyelectrolyte. The simulations are started with different initial spiral radii to

see whether the radii can have influence in the final conformation or not. For

example, different radius could produce different toroid size, or even, different

condensed structure. The system is composed of one DNA chain (NDNA = 256)

and tetravalent counterions (NSP = 64). The principle moments of the complex

are calculated by applying Eq 3.8. Then, R1, R2 and ro are estimated by using the
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approximation given in Eq 3.7. It is found that the condensed DNA toroid has

different values of R1 and R2 (as mentioned in subsection 3.1.2); however, they

are very close in their values to each other, (R1/R2 ≈ 1.115), see Figure 3-4. This

is because the complex (DNA molecule plus condensed counterions) is in dynamic

equilibrium, and the tetravalent counterions are not bound on a fixed position of

the DNA chain, instead they are in a dynamic motion trapped in a condensate

tube. The motion of the condensed DNA toroid and the motion of the counterions

inside the tube perturb the complex and therefore do not allow them to form

a perfect toroid. In the same figure, it is observed that ro is almost constant.

Therefore, after the system reaches the equilibrium state, the final conformation is

not dependent of the initial configuration, as shown in Figure 3-4. Moreover, the

final conformation is basically identical although the spiral radius of each initial

configuration are different. It can be seen that their asphericities are close to

0.25, as shown in Figure 3-6, which means that the DNA maintains a toroid-like

structure after reaching the equilibrium state (See Figure 3-5).
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Figure 3-4: Final values of R1, R2 and r0 as a function of the initial spiral radius.
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Figure 3-5: (a) Snapshot of a DNA in the equilibrium state (parameters of case III,
table 3.1). The red chain represents the dsDNA and the small white spheres represent
the tetravalent counterions. (b) Schematic illustration of a toroid. For a perfect toroid,
the radii R1 and R2 are equal. ro represents the minor radius. One can observe that
these two Snapshot are identical.

3.3.2 The winding number

The winding number, W (u), determines how many times a toroidal DNA winds

around a specific axis. It is calculated by

W (u) =
1

2π

∮

S
dθ =

1

2π

∫ u=L

u=0
θ(u)du (3.9)

where θ(u) is a positive counterclockwise angle along the DNA chain. In our

simulation, the winding number is calculated by defining the principal axis which

passes through the center of the toroid and is perpendicular to the plane formed by

the other two principal axes such as axis z in Figure 3-1. The angles, which forms

the consecutive particles on the chain with the axis, are summed starting from the

first DNA monomer and ending in the last DNA monomer. The winding number

is then calculated by dividing this angle over 2π. In Figure 3-6, it is shown how

W (u) varies with initial spiral radius. It is observed that W (u) does not depend

significantly on the initial configuration. The winding number is a key quantity to

48



0 5 10 15 20 25 30 35 40 45
3.5

3.6

3.7

3.8

3.9

4.0

 W
 As

Initial Spiral Radius ( )

W
in

di
ng

 N
um

be
r (
W

)

0.242

0.244

0.246

0.248

0.250

A
sphericity (A

s)
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Asphericity is close to 0.25. This clearly shows that the DNA is toroid-like.

understand the evolution of the extension of the condensed DNA molecule during

a stretching process.

3.4 Stretching process and pulling velocity

This section is to study the stretching process of a single condensed DNA molecule.

In most experiments [5, 6, 7, 67] a single DNA molecule in dilute solution, where the

DNA concentration and monovalent salt concentration were fixed, was condensed

by increasing gradually the multivalent counterion concentration. After conden-

sation, the condensed DNA molecule was stretched by using optical tweezer at

different multivalent counterion concentration. The FEC were measured in this

process by trapping one bead using a fixed laser beam and the other with a mov-

able beam (These two beads were tethered to the free DNA ends). The extension

of the single DNA molecule was determined by subtracting the bead’s radii from

the distance between the 2 bead centers and the force acting on the single DNA
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Figure 3-7: (a) Evolution of a DNA molecule during the simulation. The tetravalent
counterions (white sphere) tend to condense on the DNA in order to decrease the Man-
ning constant [42]. (b) Condensed DNA toroid after reaching the equilibrium state. It
can be seen that the DNA molecule forms a well-defined toroid-like structure. The two
neutral chains are not shown for the clarity of the pictures.

molecule was determined from the displacement of the bead from the fixed beam

spot. These experiments showed that the elastic response of a single condensed

DNA molecule is different from the response of a single DNA molecule in the coil

state. WLC behavior for C < Cc (See appendix A), force plateaus for C ∼ Cc in

which the FEC displayed a constant force in a wide range of the DNA’s extention

and its value depends strongly on the counterion concentration, and stick-release

patterns for Cc ¿ C < Cd in which the FEC shows a repeatedly elastic response

during stretching that can be described by a WLC at large extension. WLC re-
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Table 3.2: Parameters of the condensed DNA toroid calculated at the equilibrium
state. For NDNA = 512 and NSP = 128

Parameters
< ro > 3.84σ
< R1 > 10.77σ
< R2 > 11.74σ
< b > 1.0822σ

< As > 0.2177
< W > 7.5

curs for C > Cd, which suggests a reentrant condensation of the DNA at the single

molecule level.

3.4.1 Stretching process

In our simulation, a DNA molecule of chain length NDNA = 512 is collapsed into

a toroid-like structure in the presence of NSP = 128 tetravalent counterions. In

order to avoid that our DNA chain forms knots in the condensation process, a

small neutral chain, which is composed of 100 neutral atoms, is connected to each

one of the free DNA ends. These neutral atoms have the same characteristic of the

DNA monomers, and they are connected to each other and to the free DNA ends

by a harmonic potential ( with spring constant, k = 100kBT/σ, and equilibrium

distance bo = 1.1σ). The new two ends of the system (DNA plus neutral chains)

are put apart and kept fixed in position. Therefore, the DNA can not form a

knot while it condenses into a toroidal structure. The system is then required to

equilibrate for 5× 107 times steps, see Figure 3-7. After the DNA condenses into

toroid-like structure, its size and shape are measured as explained in the Section

3.3. Its parameters in the equilibrium state are as shown in the Table 3.2. It is

worth to mention that this DNA is twice longer than DNA studied in the Section
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3.3; however they have the same average of major radius. It agrees with the

experimental result of Widom et al. [80] which argued that the dimension and

morphology of a condensed DNA particles are largely independent of the length

of the DNA. To stretch the condensed DNA molecule, one configuration of the

condensed DNA toroid in the equilibrium state is chosen as an initial configuration

for the stretching process. Starting from this configuration, the two small neutral

chains are removed and two neutral faked atoms (blue sphere in Figure 3-8), which

have the same characteristics as the DNA monomers, are connected to the two

free DNA ends by springs described by a harmonic potential (k = 100kBT/σ and

bo = 1.1σ). MD simulation is performed to emulate the stretching process and

measure the elastic response. Moreover, the chosen initial configuration is rotated

in order that these two faked atoms lie on the x-axis of the simulation box, where

x-axis is the pulling direction. One faked atom is kept fixed while the another is

pulled at constant velocity. The pulling velocity is along the x-axis direction and

its value is varied as shown in the table 3.3. The stretching force in this process is

calculated by

Fx = −∂Ur

∂x
= −2k

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 − bo√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
(xi − xj) (3.10)

where i is the atom located at one DNA end and j is the faked atom joined to

this DNA end. x, y, z represent the coordinate position of these atoms measured

in the frame of the simulation box.

3.4.2 Pulling velocity

In the previous sections, we have prepared our DNA sample for the stretching

process. However, there is still an important consideration that must be taken

into account before going on stretching a DNA molecule. This is the pulling
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Table 3.3: The pulling velocity expressed in σ/τ units.

Velocity σ/τ
V (I) 5× 10−4

V (II) 1× 10−3

V (III) 5× 10−3

V (IV ) 1× 10−2

V (V I) 5× 10−2

V (V I) 1× 10−1

Figure 3-8: Snapshot of a single condensed DNA toroid being stretched. One end is
fixed when the other is pulled at constant velocity. It is observed that the DNA is
stretched one turn by one turn. Here, the size of the faked atoms (blues sphere) are
enlarged to make a difference between the DNA monomers and the two faked atoms.

velocity. Here the effects of the pulling velocity on the FEC are studied. It is

known that stretching a condensed polyelectrolyte is a non-equilibrium problem;

therefore, the pulling velocity needs to be small enough to maintain the system in

a “quasi-equilibrium” state. We assume that our polyelectrolyte has a relaxation

time, τR, which can be described by the Rouse model. The Rouse relaxation time

is the time required for the polymer’s center of mass to diffuse a distance, Rs,

comparable to the size of the polymer (Rs ≈ R + ro). The Rouse model predicts

the relaxation time as

τR =
γb2N2

3π2kBT
(3.11)
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where γ is the friction constant (γ = mζ), b is the bond length, and N is the

number of monomers on the polymer. The average velocity for the polymer to

diffuse a distance Rs is equal to

Vo =
Rs

τR

= Rs
3π2kBT

γb2N2
(3.12)

In our case Vo is ∼ 1.68×10−3σ/τ which corresponds to ∼ 3×105µm/s for a DNA

in real units. This is a reference velocity because at velocities larger than this value

the polyelectrolyte will not have time to relax. Moreover, this reference velocity

is roughly 5 orders of magnitude larger than those applied in most experiments in

which a DNA is pulled at much lower velocities whose values range from 0.15µm/s

to 2.12µm/s [81]. However, we choose pulling velocities close to the reference value

(see Table 3.3) which are several orders of magnitude larger than most experiments

because with a pulling velocity in the same order of those experiments a typical

simulation would take several months to stretch a small DNA chain. In order to

study the influence of the pulling velocity over the FEC, the velocities are chosen

smaller and larger than the reference value, Vo. In Table 3.3, we can see that the

velocities (I) and (II) are smaller than the reference velocity but the velocity (III),

(IV), (V), (VI) are larger than it. Due to the high pulling velocity, the force pro-

file contains both wanted information, force data, and unwanted information, noise

(See Figure 3-9). A low-pass filter is used to get rid of this noise. We mention that

the noise in the force profile is dominant when the pulling velocity is high. All the

curves in the following part of this section are plotted after the filter is applied. We

calculate the force applied on the DNA molecule in both DNA ends. If the DNA is

stretched in an “quasi-equilibrium” state, both force profiles should have the same

response. Figure 3-10 is the response of the DNA monomer which is connected

to the fake atom whose velocity is constant. We observe that the force curves
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Figure 3-9: Force-extension curve (raw data) plotted with pulling velocity equals to
V (I) = 5× 10−4.

obtained with different pulling velocities V (I), V (II), V (III), V (IV ), V (V ), and

V (V I) have different elastic responses. In the curves V (I), V (II), V (III), and

V (IV ), the oscillation becomes stronger as the pulling velocity is increased, which

means that the complex has less time to relax when the velocity is risen to a high

value. In curve V (V ) and V (V I), the pulling velocity is so high that the condensed

DNA chain experiences a rapidly transition between being condensed and becom-

ing extended. In this process, the complex is forced to follow the direction of the

pulling velocity and its natural behavior is changed. We find that as the pulling

velocity increases, the force required to stretch the chain increases and the depen-

dence of FEC over the pulling velocity is linear. Moreover, the higher the pulling
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Figure 3-10: Filtered Force-extension curves plotted with different pulling velocities
at V (I) = 5 × 10−4, V (II) = 1 × 10−3, V (III) = 5 × 10−3, V (IV ) = 1 × 10−2,
V (V ) = 5× 10−2, and V (V I) = 1× 10−1. These FECs are calculated at the DNA end
which is connected to the fake atom 2 which is moving a constant velocity.

velocity, the bigger the FEC’s slope. This behavior has been found in a theoretical-

simulation study [82]. In this study, a small uncharged semiflexible polymer was

employed and it was found that the pulling velocity changes the FEC linearly. The

authors argued that this linear behavior comes from the entropic elasticity. Fig-

ure 3-11 is the response of the DNA monomer which is connected to the fake atom

which is fixed in the space. In the figure, only the responses at pulling velocities

0.005σ/τ , 0.001σ/τ , 0.01σ/τ , 0.1σ/τ are plotted for the clarity of the picture. We

observe that these curves oscillates around a constant value (≈ 2.5kBT/σ) and the

oscillation becomes stronger as the pulling velocity is higher. However, the linear
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Figure 3-11: Filtered Force-extension curves plotted with different pulling velocities at
V (I) = 5×10−4, V (II) = 1×10−3, V (IV ) = 1×10−2, and V (V I) = 1×10−1. The other
velocities are not plotted here for the clarity of the picture. These FECs are calculated
at the DNA end which is connected to the fake atom 1 which is fixed in a position.

behavior found at the other end is not found at this end. We observe that the

responses of the DNA molecule at velocities 0.005σ/τ and 0.001σ/τ are, at both

ends, almost the same. This indicates that the DNA is being stretched in a “quasi-

equilibrium” state and it is not perturbed by these velocities. It is important to

mention when a polyelectrolyte is being stretched, it should have at least a time

to relax in the order of the Rouse relaxation time. In Figure 3-12, we show that

the influence of the pulling velocity on the bond length is linear. This means that

the total contour length of the DNA grows linearly with the extension. The curves

V (I) and V (II) basically have the same behavior. However, the curves V (III),
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V (IV ) starts growing faster with a higher slope than the others cases. The curves

V (V ) and V (V I) show that the dynamics of the complex is strongly influenced

for the high pulling velocity which changes its internal structure. We find that

the magnitude of the pulling velocity influences the force profile (the nature of the

elastic response) and the internal structure of the complex (bond length). Further-

more, it is very important to choose an adequate pulling velocity, which does not

perturb the system and allow the complex to relax and follow its natural behavior

when it is stretched. As depicted in Figure 3-10 and 3-11, the V (I) = 5×10−4σ/τ

does not perturb the complex at the two ends. Moreover, when the velocity is

much smaller than the reference value, Vo, the responses of both DNA ends are

basically identical; the complex is being stretched in an “quasi-equilibrium” state

and this velocity does not change the natural behavior of the condensed DNA

molecule. The value of V (I) = 5× 10−4σ/τ is hence set as the pulling velocity in

the following simulations.

3.5 Force-extension curve (FEC)

We analyze the FEC in this section. Figure 3-11 shows the FEC of the DNA which

was stretched at different velocity including V (I) = 5 × 10−4. This figure clearly

shows that the elastic response of the condensed DNA molecule differs from the

WLC model. Experiments [5, 6, 7] have described that “plateau force” should

appear for C ∼ Cc and “stick-release behavior” for Cc < C ∼ Co. We recall that

Cc is the condensation threshold, Cd is the decondensation threshold and Co is

defined as the concentration in which the DNA molecule is totally neutralized. In

experiments, Co is much larger than the minimum number of particles required to

neutralize a specific DNA molecule. This is because the presence of the monovalent

salt in the solution whose concentration in biological conditions is in the same order

58



Figure 3-12: Bond length curves plotted with different pulling velocities at V (I) =
5× 10−4, V (II) = 1× 10−3, V (III) = 5× 10−3, V (IV ) = 1× 10−2, V (V ) = 5× 10−2,
and V (V I) = 1× 10−1 as a function of the DNA extension.

of Cd (Cd/Cc ∼ 103 to 104) [14]. Furthermore, Cc grows linearly with increasing

the monovalent salt concentration, which shifts Co to a higher value; however Cd

is almost independent on the monovalent salt concentration [83]. For our case, the

neutralizing point can be estimated as NDNA/ZSP = 128 which corresponds to a

concentration of Co ≈ 5×10−5σ−3. Indeed, we observe in our simulations that the

DNA molecule is totally neutralized at this concentration.

3.5.1 NL and NR

When the DNA is being stretching, there is still a delicate issue to consider. At the

beginning of this process all the DNA monomers form a toroid (See Figure 3-6);

59



the complex then starts forming a rod-toroid-rod structure as shown in Figure 3-

8. Here, we divide the stretched DNA molecule into three parts, rod (part I),

toroid (part II) and rod (part III). During a stretching process, the DNA form

a rod-like structure from the first DNA monomer to N th
L DNA monomer (this is

the part I); then from the N th
L DNA monomer to N th

R DNA monomer, it forms a

toroid-like structure (this is the part II); and finally from the N th
R DNA monomer

to the last DNA monomer, it forms a rod-like structure again (this is the part

III). This brings up an interesting question of how we split these three parts and

determine NL and NR (See Figure 3-17). We propose the following algorithm

(refer to Figure 3-13 as an example). First, we project the DNA’s bond vector

in the stretching direction (x-axis). If this projection changes its sign, it means

that the DNA made a half turn (semi-circumference) at this point. Thus, each

time the DNA forms a loop, the x-component of the bond vector has to change

its sign twice. This behavior persists until the DNA has formed the last loop as

shown in Figure 3-13. In Figure 3-13 the projection of bond vector is plotted

with its smoothing and discrete curve. The smoothing curve, SBL, was obtained

by using an Adjacent Averaging algorithm which takes the average of a specific

number of data points around each point in the data and replaces that point with

the new average value. The discrete curve, SBL, was obtained by setting each

positive value of SBL to 1 and each negative value of SBL to -1. This is done

here to calculate how many times the DNA wraps around to a specific axis. Then,

we estimate how many turns the toroidal part of the DNA has by counting the

number of changes over 2 in the discrete curve, DBL; this is also called “the

winding number”. However, we cannot calculate NL and NR yet because when

the projection of the bond vector changes its sign for the first time or for the last

time the DNA has already formed or not completely formed a half loop. In order to

solve this problem, we make the following approximation. By knowing the position
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of DNA monomers where the projection of the bond vector changes its sign for first

and for last time, we calculate the maximum and the minimum of the x-component

between all the DNA monomers in the toroid-like structure region. The minimum

x-component corresponds to N th
L DNA monomer going from the first monomer

and the maximum x-component corresponds to N th
R DNA monomer coming back

form the last DNA monomer. The position of NL and NR are determined in this

manner. The position of DNA monomers, NL and NR, are shown in Figure 3-

14 during the whole stretching process. The figure shows that the toroidal DNA

prefers to stay close to the first monomer (the center of mass of the toroidal part

is close to it). The number of monomers inside the toroidal DNA decreases almost

linearly (See Figure 3-15). In Figure 3-16, we show the winding number calculated

by the two methods: the Eq. 3.9 and the approximation described lines above. We

see that the two techniques give consistent results. Both of them show that the

DNA loses one loop each time at the same position. The difference of the results

obtained by the two methods comes from that our approximation of counting how

many times the x-component of the bond vector changes only gives integer because

when the last half loop is formed it will not produce a change of sign; however the

Eq. 3.9 gives the exact number of turns.

3.5.2 Stick-release behavior

In Figure 3-9, we have seen that the calculated force at both DNA ends are very

sensitive to the bond length vibration. After applying the filter, we observed that

the figure shows a plateau with peaks occurring frequently; however we cannot

guaranty that these peaks are a natural response of the condensed DNA molecule

or some artificial effect coming from the filter. Therefore, we analyze our system

in another way in order to find an equivalent method to calculate the force applied

on the DNA molecule reducing effectively the noise generated by the bond length
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Figure 3-13: Projection of Bond vector in the direction of the pulling velocity as a func-
tion of the DNA monomer. The projection of Bond length is plotted with its smoothing
curve, SBL, and discrete curve, DBL. Each curve has the extension and the winding
number.
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Figure 3-15: Number of monomers in each part of the DNA molecule as a function of
DNA extension
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Figure 3-16: Winding number calculated by two methods. W1 calculated by Eq. 3.9
and W2 calculated by the algorithm proposed in the Subsection 3.5.1.

vibration at the same time. We consider the rod-like parts of our system as a

line of beads which join each other by springs. The system moves only in the

direction of the pulling velocity and is stretched in the equilibrium state at very

low velocity, as shown in Figure 3-17. In these conditions, the acceleration of each

DNA monomer would be very small or even zero. Thus, the force applied at one

DNA end would be equal to the force applied on the springs connecting the DNA

monomers and the total force on each monomer would be zero.

Figure 3-18 shows that the bond length in the part II of the DNA remains

almost constant until the DNA is fully stretched. It suggests that when the DNA

condenses into a toroid-like structure the equilibrium bond length shrinks in to a

value of 1.0823σ and is nearly not perturbed in the whole stretching process. This

value , b = 1.0823σ (in the part II), is a little bit smaller than the bond length

in our initial setup, bo = 1.1σ due to the condensation of tetravalent counterion
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Figure 3-17: Condensed DNA molecule and its simplified model of the stretching pro-
cess. The pulling velocity is Vo ≈ 0 so that the complex is stretched in an equilibrium
state. The figure also shows the index of DNA monomers, NL and NR, where the DNA
molecule forms a toroidal structure.
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on the chain; however in the rod-like parts (part I and part III), the average bond

lengths oscillate around 1.1σ. We observe that the bond length in the part I and

part III has the same behavior, which implies that the force in part I and part II

are the same. This supports our simplified model. Moreover, the bond length of

the part I and part III shows a stick-release pattern when every time the DNA

loses one turn. Keeping this on mind, we change Eq. 3.10 to

< Fx >= −2k
< d > −bo

< d >
< dx > (3.13)

where bo is set to the value of the equilibrium bond length in the condensed state,

bo = 1.083, < d > is the average distance between monomers and < dx > is its

projection in the stretching direction (x-axis). < d > and < dx > are calculated

by

< d >=
N−1∑

i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2

N − 1
; (3.14)

and

< dx >=
N−1∑

i=1

(xi+1 − xi)

N − 1
(3.15)

We recalculate the force by using Eq. 3.13 and plot it together with the force

obtained by the Eq. 3.10 (at vo = 5× 10−4 connected to the fake atom which was

fixed in the space) and the results are shown in Figure 3-19. In the figure, we clearly

see that both curves match well in the whole range of the DNA extension. The

four last peaks in each curve happens at the same position and they roughly have

the same amplitude. These mean that the DNA molecule experiences a tension

drops when every time it loses a turn. Moreover, these peaks represent the natural

response of the DNA molecule. This is the “stick-release pattern” observed in

experiments. Both of the two curves show a plateau force until x ≈ 300σ, right

after that the force gradually increased with increasing extension, then abruptly

66



100 200 300 400 500

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

0

2

4

6

8

B
L

 [
σ

]

Extension [σ]

 BL
I

 BL
II

 BL
III

 

 W

Figure 3-18: Bond length, BL, and Winding number, W , as a function of the DNA’s
extension. This figure clearly shows that the bond length has similar behavior as force-
extension profile.

decreased during stretching, and this behavior appears repeatedly and becomes

stronger and stronger after the DNA loses its third loop. In the range of x = 0

to x = 526σ the entropic behavior of the DNA molecule is strongly affected by

the condensed counterions. Moreover, each peak has a duration of one turn which

can be seen either from bond length curve in Figure 3-18 or from force curve in

Figure 3-19. This suggests that these ”stick-release patterns” are a consequence of

turn-by-turn unfolding of the condensed DNA toroid. Right after x ≈ 526σ, the

elastic response of the DNA molecule can be described by the Extensible Worm-

Like Chain (EWLC) model [64].

FP

kBT
=
〈x〉
L

+
1

4 (1− 〈x〉/L + F/Ko)
2 −

1

4
− F

Ko

(3.16)

We observe that DNA molecule starts following the EWLC model when it

completely loses all its turns and it is in the extended-coli state. The FEC is
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Figure 3-19: Response of single condensed dsDNA molecule to an applied force. The
FECs were calculated by using the two techniques. The EWLC model can only describe
the stretching process when the extension of the DNA is close to the overall contour
length.

fitted to the EWLC equation 3.16 in the range of x = 526σ to x = 587σ by

using a Levenberg-Marquardt algorithm (LMA). This algorithm gives L = 559.7σ,

P = 25.2σ and K = 230.2kBT/σ as results. The contour length, L, obtained by

fitting the curve is very close to the initial contour length of our DNA molecule,

Lo = (NDNA − 1)bo = 562.1σ and the elastic modulus is Ko = 2kbo = 220KBT/σ

which is also close to fitting value, K. For a polyelectrolyte chain, the persistence

length, P , is the sum of two components, one is the bare persistence length, Po,

coming from the intrinsic chain stiffness, and the other one is the electrostatic

persistence length, Pe, due to electrostatic interaction. The intrinsic persistence

length can be defined as the length of the chain segments which forms an arc

of 1rad with a bond bending energy equals to kBT/2. For a quartic bond-angle

potential, the intrinsic persistence length can be obtained by solving the following
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equation

(
Po

bo

)4

− 2
k1

kBT

(
Po

bo

)3

+ 2
k1

kBT

(
Po

bo

)2

− 2
k2

kBT

(
Po

bo

)
+ 2

k2

kBT
= 0 (3.17)

The intrinsic persistence length is Po = 11.78σ. In our simulation, the persistence

length of the condensed DNA is Pc = 11.25σ, estimated from the average radius

of the DNA toroid. These two values, Po and Pc are consistent because the DNA

is neutralized by the condensed tetravalent counterions and as a consequence only

the intrinsic chain stiffness plays an important role in determining the size of the

condensed DNA. Moreover, we recall that the simulation in the Section 3.3.1 in

which a short DNA chain, NDNA = 256, was condensed at its neutralizing point,

NSP = 64, and the results also show that the average radius of the condensed DNA

is R ≈ 11σ. These imply that the persistence length of the condensed DNA should

be the same to the intrinsic persistence length at the neutralizing point, indepen-

dent of chain length (Po ≈ Pc). Furthermore, we can estimate the electrostatic

persistence length from the value of P = 25.21σ which is the persistence length of

the DNA molecule in the coil-extended state. The electrostatic persistence length

is Pe = P − Pc ≈ 13.43σ. Figure 3-20 shows the FEC and its fitting curve. We

see that these curves match well in the fitting range of x = 526σ to x = 587σ with

the goodness-of-fit parameter equals to R2 = 0.98413.

However, it is still unclear about why the DNA loses its first turn late, for

example in our case it is close to x ≈ 300σ, and why it does not happen earlier;

moreover, why is the extension of each turn roughly the same (≈ 35σ ) after the

first turn is lost, as suggested by Murayama et al. [7]?. Murayama et al. stated

that the collapse DNA has a structure with characteristic length of 0.3µm because

the peak-peak distance measured from the stick release pattern was roughly 0.3±
0.05µm. In the following Sections, these questions will be discussed.
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Figure 3-20: FEC fitted with the EWLC in the range of x = 526σ to x = 587σ. R2 is
very close to one which corresponds to a perfect fit.

3.5.3 Asphericity

In the preview section, the study of the winding number suggests that the DNA

unfolds turn by turn. Here, we discuss how the asphericity of the DNA molecule,

As, in the stretching process changes with the winding number. We recall that

our DNA molecule was divided into 3 parts: part I (rod), part II (toroid) and part

III (rod). We monitor the As in this three parts. We know that the asphericities

are 1 and 0.25 for a perfect rod and a ring, respectively. Figure 3-21 shows the

As for the three cases. The asphericity for the part I and part III are close to

one, AsI ≈ AsIII ≈ 1, as it was expected because during the simulation they have

a rod-like structure. The asphericity for the part II shows a periodicity which is

related to the winding number (plotted in the same figure). In the previous sections

we have seen that each time the DNA loses one turn, the force decreases its value;

however the asphericity shows opposite trend, it abruptly increases when one turn

is lost. The asphericity for the part II is calculated here by two different ways.
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Figure 3-21: Asphericities plotted for the three parts: part I (rod), part II (toroid) and
part III (rod).
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Figure 3-22: Asphericity in the toroid-like structure (part II), calculated by two meth-
ods. AsII calculated by Eq. 3.5 and Asformula calculated by Eq. 3.6
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AsII is determined by using Eq. 3.5 and Asformula is calculated by Eq. 3.6 which

comes from the assumption that the DNA forms a perfect toroid (R is replaced by

(R1 + R2)/2 in Eq. 3.6). The results are plotted together in Figure 3-22. This is

done to understand the behavior of DNA molecule in the region of part II. We see

that these two curves are almost the same which means that our approximation for

Eq. 3.5 works well. For a DNA forming a toroid, it is reasonable to think that ro

will not be larger than R. The largest ro can be roughly R/2. It means that ro/R

is in the range of [0, 1/2]. In Eq. 3.6, if the ratio of ro/R is zero, AsII becomes

0.25 (ring) and if the ratio, ro/R, is 1/2, AsII becomes 0.09. These are the bounds

for being a toroid. However, when the first loop is lost the asphericity is a little

bit smaller than our lower bound. We observe from the movie that the DNA has

a solenoid-like structure, where ro is the height and is almost equal to R in this

region (x = 305σ to x = 325σ). After that, the DNA attains a toroidal shape in

the part II as shown in Figure 3-22. We observe that AsII starts decreasing from

its equilibrium value < As >≈ 0.2177, then increases abruptly when one loop is

lost. This behavior is repetitive during the stretching process. AsII finally reaches

a value very close to 0.25 before the toroidal part disappears. This is because the

DNA is loosing one turn by one turn that becomes similar to ring for the last turn.

3.5.4 Minor radius, ro, and major radius, R

In this section, we study the internal structure of the DNA in the part II (toroid).

We measure the size of the minor radius, ro, and the major radius, R (R1 and R2).

In Figure 3-23, we clearly see that the condensed DNA molecule first decreases

its size linearly with a constant rate; however the minor radius is kept fixed until

the major radius meets the minor radius (R ≈ ro), which is the minimum size.

At this point, the complex is not stable (as also shown in Figure 3-22) and as a

consequence the complex needs to lose one turn to become stable. The size of R

72



100 200 300 400 500

0

1

2

3

4

5

6

7

8

9

10

11

0

2

4

6

8

r o
  

R
1

  R
2
  

[σ
 ]

Extension [σ ]

  r
o

  R
1

  R
2

 W

Figure 3-23: Internal parameters of a DNA during the stretching process. The minor
radius (ro) and the major radius (R1 and R2) plotted together with the winding number
(W )

then increases rapidly and it starts decreasing linearly with the same speed to the

its minimum size again; however ro decreases in a stepwise fashion. This behavior

is permanently until there is no loop in the part II. This minimum size might

depend on the monovalent or multivalent salt concentration. The complex, in this

part, always displays a toroid-like structure. It is important to mention that our

methodology of computing the eigenvalues and then estimating the value of R,

calculates the average radius of all the toroid. The average radius also includes

the size of the turn which is being reduced. It suggests that the DNA loses its

first turn late because the DNA first needs to reduce its size to an a minimum

value (Rmin ≈ 6σ) at the beginning, then keeps this size and starts decreasing

only the size of one turn until the turn disappears. In this case, the extension of

the periphery of each turn should be roughly the same, Length = 2πRmin ≈ 37σ,

because each turn starts reducing its size from the minimum radius. This confirms
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the Murayama’s suggestion [7] and shows that the condensed DNA after reducing

its size has a characteristic size. It is logic to think that ro only deceases when

one turn is lost because the thickness of the toroidal part depends on the number

of turn. All of these demonstrate that the DNA unfolds turn by turn for the

“stick-release patterns”.

3.5.5 Effective fractional extension, x/Leff

Wada et al. [8] proposed a model for the plateaus force. They formulated that

as long as the fractional extension (x/L) would not change in equation A.5, the

force (F ) would remain constant. Here we see what happen to the “stick-release

pattern”. In Figure 3-24, we observe that the dependence of the effective contour

length over extension is almost linear, which would suggests that our FEC should

be a constant force because x/Leff ≈ const. However, care should be taken in

this study. While using equation A.5, we realize that a small change in x/Leff

would produce a big change on the force. In order to know this, we plot the

effective fractional extension, x/Leff , over extension in Figure 3-25. We observe

that every time the DNA loses a turn there is a sharp decrease in the ratio x/Leff

and this effect becomes strong specially in the last three turns. We know that x

decreases linearly so Leff has to increase abruptly to reduce this ratio, x/Leff ,

which corresponds to the moment that one turn is lost. This suggests that the

general WLC model can be used to understand this phenomenon because as we

mentioned before a small change in x/Leff would produce a big change on the

force, specially when this ratio is very close to 1.
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Figure 3-24: Effective contour length plotted for the three parts: part I (rod), part II
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Figure 3-25: The effective fractional extension plotted together with the winding num-
ber. The inset shows the variation of the effective fractional extension in all the extension
range.
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3.6 How do our results depend on different ini-

tial configuration?

Our previous simulations were done using only a specific initial configuration.

Here we choose five different configurations of the condensed DNA toroid in the

equilibrium state in order to verify the dependence of the initial configuration over

the DNA behavior in the stretching process. The results are plotted in Figure 3-

26. We see that the initial configuration does not influence the whole stretching

process. Moreover, the DNA molecule loses each turn roughly at the same position

which implies that DNA basically reduce its size to a minimum value then starts

loosing one by one loop. These results indicates that the position where each

turn is lost might depend on the monovalent or multivalent salt concentration as

mention in the subsection 3.5.4.
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Figure 3-26: Winding numbers plotted together with different initial configurations.

76



3.7 Snapshots of our condensed DNA toroid dur-

ing the stretching process

In this Section, we show the snapshots of our condensed DNA molecule being

stretched. We recall that our simulation mimics the experiments [5, 6, 7] in which

a condensed DNA molecule was stretched by using optical tweezer. We measure

the FEC in the stretching process by trapping one faked atom and pulling the

other faked atom at constant velocity (These two faked atoms are tethered to the

free DNA ends). The extension was determined from the distance between the two

faked atoms centers and the force acting on our DNA molecule was determined

from the displacement of the DNA end from the fixed faked atom. However, we

showed that for a velocity smaller than the reference Rouse velocity, Vo, the profiles

at both ends should have the same behavior. The condensed DNA toroid presents

a series of “stick-release pattern” because it unfolds turn-by-turn as shown in

Figure 3-27.
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Figure 3-27: Snapshots of a single condensed DNA toroid during a stretching process.
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Chapter 4

Conclusion

DNA condensation and its stretching process was studied by means of molecular

dynamics simulation. A coarse-grained model was employed to model the dou-

ble helix DNA molecule and the spermine (tetravalent counterions). The relation

between the counterion size and DNA monomer size was studied by varying sys-

tematically their diameter. We found that for rDNA = σ and rSP = 0.5σ, the

complex formed a well-defined toroidal structure. Then, the morphology of a

condensed DNA was investigated. We found that the initial configuration of the

DNA does not influence the final conformation. The two major radii, (R1, R2),

and minor radius, ro, of the condensed DNA toroid were measured. We found

that R1 and R2 are basically the same, independent of the chain length or coun-

terion concentration,which means that the toroid grows to a characteristic size at

the neutralizing point(Co). Moreover, if the initial spiral radius is far from the

characteristic radius of the toroid, the simulation takes more time to reach the

equilibrium state. The decondensation transition of a condensed DNA molecule

was investigated by stretching the condensed DNA out. MD simulation was per-

formed at different stretching velocities to study the effects of the pulling velocity

on the FEC. We found that the pulling velocity influences the force profile (the
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nature of the elastic response) and the internal structure of the complex (bond

length). If the pulling velocity is high, the condensed DNA chain experiences a

rapidly transition between being condensed and becoming extended where its dy-

namics are drastically changed by a high pulling velocity. Moreover, we found that

the responses at both DNA ends are different if the pulling velocity is larger than

the reference Rouse velocity, Vo = 1.68 × 10−3σ/τ . For the velocities larger than

Vo, the FEC’s dependence over the pulling velocity is linear at the DNA end which

is moving at constant velocity. It means that the higher the pulling velocity, the

bigger the FEC’s slope. At the another DNA end (fixed in the space), the linear

behavior is not found; nevertheless these FECs oscillate around a constant force

(≈ 2.5KBT/σ) and the oscillation becomes stronger and stronger as the pulling

velocity is much larger than Vo. For velocities much smaller than Vo, the responses

at both ends are basically the same. We found that a pulling velocity equals to

5× 10−4σ/τ does not perturb the complex, which indicates that the DNA is being

stretched in a “quasi-equilibrium” state. It is worth to notice that when a poly-

electrolyte is being stretched, it should have at least a time to relax in the order of

the Rouse relaxation time. We found that the influence of the pulling velocity on

the bond length is linear for all the velocities. The bond length’s slope increases

as long as the pulling velocity is risen to a high value. We found that the entropic

behavior of the DNA molecule is strongly affected by the condensed counterions

in the range of x = 0 to x = 526σ. We observed that our FEC presents a plateau

force until x ≈ 300σ; the force gradually increased with increasing extension, and

then abruptly decreased during stretching and this behavior appears repeatedly

and becomes stronger and stronger as soon as the DNA molecule is losing its

turns. This behavior was observed in experiments and was called “stick-release

patterns”; however there was no a direct evidence about why the DNA shows this

kind of FEC. We showed that these “stick-release patterns” are a consequence
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of turn-by-turn unfolding of the condensed DNA toroid. When the DNA’s last

loop disappears, the FEC starts following the EWLC model. This FEC was fit-

ted to the EWLC equation in the range of x = 526σ to x = 587σ by using a

Levenberg-Marquardt algorithm (LMA). the results are L = 559.7σ, P = 25.2σ

and K = 230.2kBT/σ. We found that the values of L and K, obtained by fitting,

quite agree with the theoretical values, the initial contour length, Lo = 562.1σ

and the elastic modulus, Ko = 220kBT/σ. We found that the intrinsic persistence

length, Po, and the persistence length of the condensed DNA, Pc, are almost the

same at the neutralizing point because counterions are condensed that they reduce

effectively the charge on the DNA which starts behaving as a neutral chain and

only the intrinsic chain stiffness plays an important role in determining the size of

the DNA molecule. We divided our DNA molecule into 3 parts: part I (rod), part

II (toroid) and part III (rod). We found that the asphericities in each part I (AsI)

and III (AsIII) are very close to 1 which means that these parts always have a

rod-like structure. We found that the asphericity in part II starts decreasing from

its equilibrium value < As >≈ 0.2177, then increases abruptly and this behavior

is repetitive each turn is lost. AsII then finally reaches a value very close to 0.25

before the toroidal part disappears which means that the DNA is loosing one turn

by one turn and becomes a perfect ring. The internal structure of the condensed

DNA molecule(R,ro,x/Leff ) was investigated during the whole stretching process.

We found that the condensed DNA molecule first decreases its major radius, R,

linearly with a constant speed to a minimum size (This minimum size might de-

pend on the monovalent or multivalent salt concentration). Then, the condensed

DNA molecule (part II) keeps this minimum size and starts decreasing only the

size of one turn until it disappears. It then continues with the other turns in the

same manner; however the size of minor radius is kept constant until the major

radius meets it, and then it starts decreasing in a stepwise fashion. We found that
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every time the DNA loses a turn there is a sharp decrease in the ratio x/Leff .

Finally, we verified that our results are independent on the initial configuration.

Five independents simulation with different initial configuration were stretched

and the results show that the DNA molecules lose their turns almost at the same

position.

We also explain the mechanism of the “stick-release patterns” formation in the

FEC. Moreover, our results provide new information about the internal structure

of a single condensed DNA toroid being stretched. Our results are in qualitative

agreement with experiments. To understand the elastic properties of dsDNA is

an important challenge for both experimentalists and theorists. Present research

offers a route to understand DNA physics via the pathway of molecular dynamics

simulation.
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Appendix A

The Worm-Like Chain

A variety of biological macromolecules such as DNA, RNA, and polypeptides are

aimed to be described by the worm-like chain (WLC) model, proposed by Kratky

and Porod [84]. Moreover, Bustamante et al. [63] have shown in their widely cited

work that the WLC model can reproduce the force-extension curve (FEC) of a

single λ-DNA molecule. The WLC model is a continuously elastic rod, used to

represent the “isotropic behavior” of semiflexible polymers. The advantage of this

model is that the chain length and the chain stiffness can be varied independently

which allows more freedom in the treatment of Gaussian and non-Gaussian chain

statistics. At the same time, it also avoids the use of the concept of statistical

segments, where the division of a polymer into segments can be arbitrary and

most of the time unrealistic. However, the WLC model does not consider the

enthalpic elasticity contribution that is observed in most experiments.

A.1 Theory

To start modeling a polymer, it is needed to know the scale in which the polymer

can be consider as rigid rod. It is natural to think that the DNA is a continuous
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line with finite resistance to bending. This is the essence of the WLC model whose

formulation treats the polymer as a continuum elastic rod with a fixed contour

length (inextensible chain). To form the polymer, N +1 identical backbone atoms

are connected by N bond vectors, bi where i = 1, 2, ...N , under the assumption that

b → 0 and L →∞. Furthermore, the chain is subjected to an equilibrium force ,

F , acting on the end-to-end distance vector, and its configuration is represented

by the vector position, ~r(s), which is a function of the contour length S. The local

tangent vector, ~t(s), and curvature vectors, ~w(s), are given by

~t(s) =
d~r(s)

ds
, ~w(s) =

d~t(s)

ds
(A.1)

the inextensibility condition of the chain is imposed with the constraint, |~t(s)| = 1.

The energy, E, in the WLC model, for a stretched DNA molecule is a line integral

along the DNA, and it comes from the contribution of two important terms A.2 .

The first term is the resistance of the chain to be bended. The second term is given

by the opposition to be stretched and it is a result of applied force. Combining

these contribution, the energy can be expressed as

EWLC =
∫ L

0
ds

(
kBTP

2
| d~t(s)

ds
|2 −F cos(θ(s))

)
(A.2)

where θ(s) is the angle between ~t(s) and the end-to-end distance vector of the

polymer, and P is the persistence length of the chain, which is the characteris-

tic length scale associated with the decay of tangent-tangent correlations at zero

stretching force by

〈~t(0)~t(s)〉 ∼ exp(
− | s |

P
) (A.3)
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the partition function is given by the path integral

Z(L, F,~t(0),~t(L)) =
∫

D(t) exp(
−EWLC

kBT
) (A.4)

where D(t) is the integration measure functional space of the paths drawn on the

unit sphere starting at the point ~t(s = 0) and ending ~t(s = L). The FEC relation

for the WLC model was obtain from equations A.2 and A.4 by using numerical

techniques [63, 85], because, an analytic solution for WLC model is not currently

known. The interpolation formula is most commonly written today as

FP

kBT
=
〈x〉
L

+
1

4
(
1− 〈x〉

L

)2 −
1

4
(A.5)

The equation A.5 is an interpolation formula to the numerical solution. This

formula is a nonlinear equation. At low extension, the force grows linearly in x

with a slope 3kBT
2PL

and at high extension, the forces diverges as kBT
4P

(
1− 〈x〉

L

)−2
.

For given extension, This interpolation formula approaches the exact solution at

lower and intermediate forces; however it fails to describe forces between these two

regimes. At low force, it displays the Hooke’s law behavior as

〈x〉
L

=
2FP

3kBT
(A.6)

A.2 Experimental results and their models

According the experimental results, The fit of equation A.5 at intermediate forces

is good up to 5pN , above which the model keeps increasing quicker than the

experimental data. Further modifications to the WLC model have introduced

an enthalpic correction for higher forces [see table A.1]. This addition makes

the model valid up to approximately 60 pN, at which point DNA undergoes a
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Table A.1: DNA elasticity models

WLC Model Interpolation Formula

Marko-Siggia [85] FP
kBT

= 〈x〉
L

+ 1
4(1−〈x〉/L)2

− 1
4

Odijk [86] FP
kBT

= 1
4(1−〈x〉/L+F/Ko)2

Modified Marko-Siggia [64] FP
kBT

= 〈x〉
L

+ 1
4(1−〈x〉/L+F/Ko)2

− 1
4
− F

Ko

Bouchiat et al. [87] FP
kBT

= 〈x〉
L

+ 1
4(1−〈x〉/L+F/Ko)2

− 1
4
− F

Ko
+

7∑

i=2

αi

(〈x〉
L
− F

Ko

)i

structural phase transition and the force-extension relation changes quite rapidly

back to a more Hookean form, extending up to 1.6 times its normal contour length

before displaying further non-linearities. No one is sure what the structure of

DNA is after undergoing this structural phase transition, or how exactly it is able

to stretch so significantly, though it has been proposed that the bases flip out

away from the phosphate backbone, there is still a lot of work to do on the elastic

properties of DNA.

The elasticity of DNA can be parameterized by 3 quantities, its initial contour

length, L, its persistence length, P , and its elastic modulus, Ko. The persistence

length measures the tendency to point in the same direction for a polymer. More-

over, the entropic behavior is dominant when the length of the polymer is much

greater than its persistence length. The elastic modulus measures the intrinsic

resistance of the polymer to longitudinal strain and it reflects enthalpic contribu-

tions. The table A.1 summarizes theoretical models for a polymer treated as WLC

in which analytical expressions have been derived.

Marko-Siggia model is a purely entropic formula, and is valid for the lower

range of forces, (F < 5pN), and differs from exact solution by up to ∼ 10% near

F ≈ 0.1pN . Odijk model represents a combined entropic-enthalpic theory, appli-

cable at large relative extensions, |x−Lo|/Lo << 1 for a force between the range,
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2pN < F < 15pN . Modified Marko-Siggia WLC, also called Extensible Worm-

Like Chain (EWLC), is entropic-enthalpic model of a polymer and incorporates

enthalpic stretching. However it is limitedly similar to Marko-Siggia model near

F ≈ 0.1pN , and gives a good approximation up to F < 20pN . Bouchiat et al.

WLC, which was obtained by using the rules of quantum mechanics and numer-

ical methods, is claimed to have an accuracy better than 0.01% over the useful

extension range, 0.06 ≤ 〈z〉/Lo ≤ 0.97.
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