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Resumo

O Sistema da Corrente de Humboldt do norte (NHCS) é um dos mais produtivos ecossis-
temas em termos de peixes do mundo. Em particular, a anchova peruana (Engraulis ringens)
é a maior presa dos predadores superiores, como mamíferos, aves, peixes e pescadores. Nesse
contexto, é importante compreender a dinâmica da distribuição de anchova para preservá-la,
bem como para explorar sua capacidade econômica. Usando os dados recolhidos pelo “Insti-
tuto del Mar del Perú” (IMARPE), durante uma pesquisa científica em 2005, apresenta-se
uma análise estatística que tem como objetivos principais: (i) se adaptar às característi-
cas dos dados amostrados como: dependência espacial, altas proporções de zeros e grandes
tamanhos de amostras, (ii) fornecer informações importantes da dinâmica da população de
anchovas e propor um modelo para estimação e previsão da biomassa da anchova no NHCS
do Perú. Os dados são analisados em um contexto Bayesiano usando a metodologia Inte-
grated Nested Laplace Approximation (INLA). Finalmente, usa-se critérios de comparações
entre modelos para selecionar o modelo proposto de melhor ajuste. Também é feito um es-
tudo do poder preditivo de cada modelo. Além disso, é realizado um diagnóstico de influência
Bayesiana para o modelo preferido.

Palavras-chave: Inferência Bayesiana Aproximada ; Geoestatística; Integrated Nested Laplace
Approximation; Modelo Gaussiano Latente; Ecologia Marinha.
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Abstract

The Northern Humboldt Current System (NHCS) is the world most productive ecosys-
tem in terms of fish. In particular, Peruvian anchovy (Engraulis ringens) is the major prey
of the principal top predators, like mammals, seabirds, fish and fishers. In this context, it is
important to understand the dynamics of the anchovy distribution to preserve it as well as
to explore its economical capacities. Using the data collected by the “Instituto del Mar del
Perú” (IMARPE), during a scientific survey in 2005, we present a statistical analysis that
has as main goals: (i) adapt to the characteristics of the sampled data, such as spatial de-
pendence, high proportions of zeros and big samples size, (ii) provide important insights on
the dynamics of the anchovy population and propose a model for estimation and prediction
of anchovy biomass in the NHCS of Perú. These data are analyzed in a Bayesian framework
using the Integrated Nested Laplace Approximation (INLA) methodology. Finally, model
comparison is performed to select the best model and predictive checks to study the predic-
tive power of each model. Moreover, a Bayesian spatial influence diagnostic is performed for
the preferred model.

Keywords: Approximate Bayesian inference; Geostatistics; Integrated Nested Laplace Ap-
proximation; Latent Gaussian model; Marine Ecology.
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Resumo Estendido

O ecossistema pelágico peruano é dominado pela anchova peruana. Atualmente, a an-
chova é responsável pela maior pesca de peixes no mundo. Devido a sua importância econômica
e ecológica o “Instituto del Mar del Perú” (IMARPE) realiza pesquisas todos os anos sobre
o ecossistema para orientar as decisões de gestão do país. Assim, a bordo de um cruzeiro
de pesquisa científico-acústico obtem-se a massa da anchova por milha náutica que será
chamada de biomassa da anchova ao longo desse trabalho. A distribuição da anchova é car-
acterizada por estruturas de agregação, tal padrão é devido ao seu comportamento de defesa
para enfrentar a predação. Logo, os dados da biomassa da anchova caracterizam-se por uma
elevada proporção de valores zeros e dependência espacial.

A motivação desse trabalho é propor um modelo estatístico capaz de estimar a biomassa
de anchova, o qual deve considerar os valores zero e não zeros usando uma abordagem in-
tegrada como os modelos zero-inflacionados ou os modelos Hurdle. Nesse sentido, nos últimos
anos um grande esforço tem se dedicado a lidar com esse tipo de modelos. Porém, muitas
vezes esses desenvolvimentos têm sido focados principalmente na modelagem de dados dis-
cretos (Mullahy, 1986; Cameron and Trivedi, 1998; Agarwal et al., 2002). A ideia subjacente
nesse trabalho é estender a definição desses modelos para dados discretos à modelagem de
dados contínuos, e, ao mesmo tempo, acomodar a dependência espacial. Para isso, propomos
uma modelagem Hierárquica Bayesiana. Os modelos hierárquicos, diferentemente dos mod-
elos tradicionais baseados na modelagem multivariada da variável resposta, através de uma
estrutura de covariância permitem modelar de forma simplificada respostas discretas, con-
tínuas e/ou misturas, impondo à estrutura de auto-correlação espacial em um nível inferior
na hierarquia.

Geralmente, inferência Bayesiana de modelos complexos pode ser realizada utilizando
métodos tais como o Markov Chain Monte Carlo (MCMC). No entanto, sabe-se que para
modelos que incluem vários efeitos fixos e aleatórios com dependência espacial e/ou grandes
conjuntos de dados, obter as distribuições posteriores é um desafio, pois estas raramente
possuem solução analítica, tornando assim a inferência através de métodos MCMC com-
putacionalmente muito cara. Uma nova abordagem, chamada Intagrated Nested Laplace
Approximation (INLA), foi proposta por Rue et al. (2009) para executar de forma eficiente
inferência Bayesiana em modelos hierárquicos Gaussianos latentes. O método baseia-se em
aproximações precisas e determinísticas ao invés de simulações aleatórias, e portanto, não
precisa de diagnósticos de convergência necessários nos métodos MCMC.

iv



v

Esse trabalho está organizado da seguinte maneira: No Capítulo 1 falamos brevemente
da motivação do trabalho e definimos os objetivos e as contribuições do mesmo. No Capí-
tulo 2 é feita uma revisão da literatura utilizada nos próximos capítulos. Introduzimos os
conceitos de Modelos Gaussianos Latentes e a relação deles com os modelos Bayesianos hi-
erárquicos. Em seguida, apresentamos os Campos aleatórios Gaussianos e campos aleatórios
Markovianos Gaussianos (CAMG), assim como as vantagens em termos computacionais dos
CAMG. Logo, apresentamos a aproximação Gaussiana no caso univariado. Finalizamos o
capítulo apresentando o método de aproximação determinística INLA usado para a obtenção
das distribuições marginais a posteriori na inferência Bayesiana. No Capítulo 3 é apresen-
tada uma descrição detalhada dos dados que motivam a nossa modelagem. Nesse capítulo
é descrita de forma resumida como são obtidos os dados, em particular, a variável de in-
teresse, a biomassa da anchova. Além disso, descrevemos outras variáveis disponíveis que
podem contribuir para explicar à variabilidade da variável resposta. O Capítulo 4 descreve
a estrutura da modelagem para o ajuste e previsão da biomassa de anchova proposta pela
autora. Além disso, apresentamos como a inferência Bayesiana é realizada usando o INLA. O
capítulo termina apresentando uma variedade de critérios de seleção dos modelos, critérios
de previsão dos modelos, e finalizamos apresentando um possível diagnóstico de influência.
O Capítulo 5 apresenta à aplicação da modelagem proposta. Primeiramente, é apresentada
uma análise exploratória das covariáveis, e exploramos possíveis distribuições contínuas para
compor o modelo misto. Em seguida, apresentamos diversos modelos e os seus resultados
utilizando a metodologia descrita no capítulo anterior. Os resultados da seleção de modelos
mostram que a inclusão de efeitos espaciais estruturados nas duas componentes do modelo
Hurdle são realmente necessários para um melhor ajuste. Assim o modelo preferido incluindo
ambos efeitos espaciais é o de melhor ajuste para a biomassa da anchova e, é ainda, capaz
de explicar melhor a distribuição espacial dos dados. Além disso, o poder de previsão dos
modelos é estudado através de um estudo de simulação. Nesse estudo, separamos o banco
em treino e validação com diferentes porcentagens de corte e rodamos 100 iterações para
determinar o modelo com melhor previsão. Os resultados mostraram que o modelo com
melhor previsão é também o modelo selecionado como o de melhor ajuste. Finalizamos o
capítulo diagnosticando as regiões de influência através da divergência de Kullback-Liber
para o modelo selecionado. No Capítulo 6 apresentamos algumas discussões a respeito das
vantagens do modelo escolhido para estimar a biomassa da anchova. Finalmente, no Capí-
tulo 7 apresentamos ainda algumas possíveis extensões que podem ser feitas como trabalhos
futuros.
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Chapter 1

Introduction

1.1 Motivation
The Peruvian pelagic ecosystem (Northern HCS) is highly dominated by the Peruvian

anchovy. Anchovy is a small pelagic fish characterized by a fast growth, an early maturity
(1 year), a short life span (4 years), fast response to environmental variability, plasticity in
terms of the prey it consumes and foraging behaviour (Bertrand et al., 2008). At the present,
anchovy species sustain the largest single-species fishery in the world with average landings
over 6.5 millions tons per year during the last decade (Bertrand et al., 2008). Because of
its economic and ecological importance “Instituto del Mar del Perú” (IMARPE) conducts
research on the ecosystem and fisheries to guide management decisions. In Perú, annual
acoustic surveys of fish population distribution and abundance have been conducted since
1983 by IMARPE. In particular, acoustic data are collected onboard the research vessel
“José Olaya Balandra” from the IMARPE during a scientific acoustic survey “Pelagic 2005”.
Using these data it is obtained the mass of anchovy per nautical mile which will be called
anchovy biomass along the current paper.

Another relevant feature of anchovy involves its distribution which within suitable habitat
is characterized by nested aggregation structures (Fréon and Misund, 1999). Such pattern
results from its foraging behavior and defense behavior to face predation. For this reason,
anchovy biomass data are characterized by a high proportions of zero values and spatial
dependence.

Such characteristics have to be considered to develop an appropriate statistical model to
estimate anchovy biomass. The excessive zero observations is the main reason to assume that
anchovy distribution can not be modeled by only one distribution. In this context, Woillez
et al. (2009) developed an integrated model approach involving non-parametric transforma-
tion processes to investigate schooling fish estimates, while Boyd (2012) developed another
integrated model to simulate the spatial distribution of anchovy biomass for a small region
using likelihood-based Geostatistics approach (Diggle et al., 1998). Therefore, an appropriate
model needs to account for the zero and for the non-zero values as an integrated approach,
like zero-inflated models or Hurdle models. In particular, Hurdle models are attractive be-
cause they do not assume that zero values represent error measures, may be due to a poor
sample design, or are false zeros, in fact, here anchovy biomass is equally collected over
all studied area, and most important, anchovy absence is not unusual within unsuitable
habitat. Furthermore, to accommodate spatial dependence, we need to develop a modeling
framework that allow for spatial autocorrelation with excessive zeros in the observations.

1.2 Objetives
The main objectives of this study are: (i) Adapt to the characteristics of the sampled data

to predict anchovy biomass at unsampled locations, (ii) Provide important spatial insights

1



1.4 CONTRIBUTIONS 2

on the anchovy distribution and biomass. In order to achieve our objectives a Hurdle model
for continuous data is developed. In particular, we use a Bayesian Hierarchical Model which
is very flexible and powerful allowing for the model to have all characteristics presented.

1.3 Contributions
A fair amount of statistical effort has been devoted to dealing with zero-inflated data sets.

However, often these developments have been focused mainly on the modelling of discrete
data (Mullahy (1986), Agarwal et al. (2002)). The idea behind a Hurdle model for discrete
data is to separate the zero structure from the non zero structure with a finite mixture of a
point mass at zero with a truncated-at-zero distribution (Cameron and Trivedi, 1998), such
definition will be extended for continuous data.

Generally, Bayesian inference for complex models can be performed using simulation
methods such as Markov Chain Monte Carlo Method (MCMC). However, it is known that
for models which include several fixed and random effects with spatial dependence and/or
large datasets, like in our framework, obtain posterior distributions is seldom analitically
available, making inference using MCMC methods computationally expensive. A new ap-
proach, called integrated nested Laplace approximation (INLA), was proposed by Rue et al.
(2009) to perform fast Bayesian inference. The method relies on accurate and determinis-
tic approximations instead of sthocastic simulations and thus, it does not require conver-
gence diagnostics. Recently, Muñoz et al. (2013) studied the presence/absence of Trachurus
mediterraneus in the Western Mediterrian under the context of Bayesian Hierarchical Model
using the R-INLA software.

1.4 Organization of manuscript
The dissertation is organized as follows: Chapter 2 presents some literature review needed

for next sections. Chapter 3 presents some description of data. Chapter 4 describes the
proposed model structure to fit and to predict anchovy biomass. Also, it is presented a
summary of how Bayesian inference is achieved using INLA. The chapter ends presenting
a variety of model assesment criteria. Chapter 5 presents the application of the proposed
model and the results obtained. Chapter 6 discusses meaningful results and finally Chapter 7
discusses future works.



Chapter 2

Literature Review

Integrated Nested Laplace Approximation (INLA) is a relatively new approach to imple-
ment fast Bayesian inference for Latent Gaussian Models (LGM). Many well known models
like Geostatistical models, spatial and spatio-temporal models, among many others, are
LGM’s. These models are usually complex because they usually include several fixed and
random effects. As a result their posterior distributions are rarely analitically available and
inference becomes very difficult. In these cases model fitting is usually based on simulation
methods like Markov Chain Monte Carlo (MCMC), which are very accurate if the conver-
gence is achieved, but on the other hand in term of computational time are very expensive.
In that sense, INLA with accurate, deterministic approximations to posterior marginal dis-
tributions is an attractive alternative to MCMC simulations.
In the next sections LGM’s and their main features are described, then some definitions
about Gaussian Fields and Gaussian Random Markov Fields are given, then it is discussed
the relationship between those ones and the computational advantages of GRMF over Gaus-
sian Fields; and finally Gaussian approximations used to introduce the INLA approach are
defined.

2.1 Latent Models and Hierarchical models
Latent Models are a subclass of structured additive models which can also be seen as a

representation of a Hierarchical model. First of all, let us assume that for i = 1, ..., n we have
n observed (or response) variables yi with a distribution usually but not necessarily from the
exponential family. The latent variable ηi defined by Equation (2.1) is a linear predictor which
enters the likelihood through some link function g(.) = ηi. Thus, ηi is modeled additively on
different effects of various covariates,

ηi = β0 +

ηf∑
j=1

wijf
(k)(uij) +

ηβk∑
k=1

βkzki + εi. (2.1)

Here, β′ks are coefficients for linear effects on a vector of covariates z, which capture the
variability in data caused by explanatory variables; f (k)’s represent unknown functions on
a set of covariates u, useful to incorporate dependence between observations which can be
of various kind like spatial, temporal or spatiotemporal; wij are known as weights; and ε
represents unstructured random effects.
The latent field x is composed by a vector: x = {{ηi}, {β0}, {βk}, {f (k)}}. If the distribution
of latent field is set as Gaussian such model becomes a Latent Gaussian Model (LGM). If,
in addition, this latent field is Gaussian and admits conditional independence properties it
is called Gaussian Random Markov Field.

Hierarchical Models are a generalization of Linear and Generalized Linear Models. They are

3



2.2 GAUSSIAN FIELDS AND GAUSSIAN MARKOV RANDOM FIELDS 4

specified by several stages of observations and parameters. A typical Hierarchical model is
defined by: a first stage, where a distributional assumption is formulated for the observations
which depend on the latent field. Here, we assume observations conditionally independent
given the latent field. A second stage, is a latent field which might follow a Multivariate
Gaussian distribution with mean µ and covariance matrix Σ(θ). And a third stage com-
posed by all the unknown parameters called hyperparameters, here a prior model is assigned
for these unknown parameters.

Thus, a LGM can be defined like a Hierarchical model with the following structure:
(i) A likelihood model for the response variable assumed to be independent given the latent
parameters x :

y|x, θ ∼
∏
i∈I

π(yi|xi, θ)

(ii) A latent Gaussian field:
x|θ ∼ N(µ,Σ(θ))

(iii) And hyperparameters θ:
θ ∼ π(θ).

In many LGM’s and Hierarchical models the latent Gaussian field is also a Gaussian Markov
Random Field (GRMF), or can be approximated by GRMF’s, an overview of this topic is
presented in the following section.

2.2 Gaussian Fields and Gaussian Markov Random Fields
2.2.1 Gaussian Fields

Informally a random field, also called as spatial process in spatial statistics, is a collection
of random variables that exist exclusively in the d-dimensional space domain D and these
variables are indexed by some set D ⊂ <d containing spatial coordinates s1, s2, ..., sk ∈ D.
Furthermore, if all these random variables follow a jointly Gaussian distribution the random
field is called ”Gaussian random field”.

In geostatistics, it is usually used a spatial random field which is assumed to be normally
distributed and is known as “Gaussian field” (GF). A large reference about Gaussian fields
can be found for example in Cressie (1993) or Diggle et al. (1998).

Definition 1. Let {z(s), s ∈ D} be a stochastic process where D ⊂ <d and s ∈ D represents
the location. The process {z(s), s ∈ D} is a Gaussian Field (GF) if for any k ≥1 and for any
location s1, s2, . . . , sk ∈ D, {(z(s1), ...z(sk))}t follows a multivariate Gaussian distribuion.
The mean function and covariance function of z are:

µ(s) = E(z(s)); s = (s1, s2, . . . , sk)
t,

C(si, sj) = cov(z(si), z(sj)) = σ2ρ(si, sj); i, j = 1, . . . , k,

which are assumed to exist for all si and sj.
The Gaussian field is Weakly stationary if µ(s) = µ for all s ∈ D and if the covariance
function only depends on si − sj. The Gaussian field is called isotropic if the correlation
function (ρ(si, sj)), and thus the covariance function, only depends on the Euclidean distance
h between si and sj, i.e., ρ(si, sj) = ρ(h) with h = ‖ si − sj ‖.

Thus, the covariance matrix of the Gaussian field z(s) is defined to be the k × k matrix
with ij element C(si, sj), then the covariance structure reflects the strengths of relationship
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between random variables z(si) and z(sj).

One of the most used correlation functions is the Matérn correlation function defined as
follows

ρ(h) =
(sνh)νKν(svh)

Γ(ν)2ν−1
.

where Kν is the modified Bessel function of order ν > 0, this last one is a shape parameter
and determines the smoothness of the process and sv is a scale parameter. Such correlation

function can be re-defined depending on the range (r =

√
(8ν)

sν
) by

ρ(h) =
1

Γ(ν)2ν−1
(

√
(8ν)h

r
)

ν

Kν(

√
(8ν)h

r
),

This last useful parameter introduced in the correlation function called range (r) is inter-
preted as the minimum distance for which two locations are not more correlated. It means
that if two locations are separated for more than r distance, these locations are nearly
independent.

2.2.2 Gaussian Markov Random Fields

Previously to define a Gaussian Markov Random Field (GMRF) will be introduced some
basic theory about graphs.

Definition 2. A graph G = (V, E) is defined by a group of V vertices, usually called nodes,
joined between them by a group of lines called edges E. If two nodes i, j ∈ V are joined by
an edge, they are said to be neighbors (i ∼ j).

If all edges have no direction this graph is called undirected graph. Furthermore, from
this definition it is implicity that i ∼ j ⇔ j ∼ i. This definition of graph is very general, in
fact many “things” can be seen like graphs, for example in the spatial context, a regular or
irregular lattice can represent a graph.

Theorem. Let a random vector x = (x1, x2, . . . , xn)t be normal distributed with mean µ and
precision matrix Q > 0. Then for i6=j,

xi ⊥ xj|x−ij ⇐⇒ Qij = 0.

In other words, this theorem says that we are able to know if two nodes are conditionally
independent “reading off” the precision matrix Q, where Q determines the graph G by its
non-zero values. Now follows a formal definition of GMRF.

Definition 3. A random vector x (∈ Rn) is a Gaussian Markov Random Field (GRMF)
with respect to a graph G=(V,E) with mean µ and precision matrix Q >0 (positive definite),
if and only if, a joint distribution of x is given by

fX(x) = (2π)(−n/2)|Q1/2|exp(−1

2
(x− µ)TQ(x− µ))

where
Qij 6= 0⇐⇒ i, j ∈ E,∀i 6= j.

Here the vertex set V corresponds to the nodes (indices) {1, . . . , n} and the edge set E
specifies the dependencies between the random variables x1, x2, . . . , xn. Furthermore, if Q is
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Figure 2.1: Simulation of a GRMF using sparse Precision matrix.

a symmetric and positive definite matrix n x n, then Qij is equal to zero if and only if, the
nodes i and j are not connected by an edge. Then, for i 6=j,

xi ⊥ xj|x−ij ⇐⇒ Qij = 0,

which implies that xi and xj are conditionally independent and it means that the conditional
distribution of observed variable at some node only depends on its neighbors. In addition,
any multivariate normal distribution with symmetric positive definite precision matrix which
admits conditional independence properties it is also a Gaussian Markov Random Field.
Then, any “Gaussian Field” which admits conditional independence properties it is also a
GRMF with respect to some neighboor graph.
Another important feature about GMRF’s it is that due to their preserved Markov properties
the precision matrix Q is sparse i.e., it will have a few non-null elements. Therefore, working
with a sparse precision matrix instead of a dense covariance matrix allow us to obtain much
quicker inference. Thus, the benefit of using a GMRF it is purely computational and lies in
the sparness of the precision matrix, because there are many numerical methods which use
this feature for fast computing.

In order to understand better the idea behind a GRMF let us simulate the GRMF
x ∼ N(0, Q−1), where Q is a sparse precision matrix. Specifically, let the (i,j)-th element of
Q to be 0 if and only if (i, j) 6∈ E, to be equal to −0.25 if (i, j) ∈ E and i 6= j, and to be
1 if i = j. A consequence of this construction it is that the conditional distribution of each
random variable xi given all other random variables is equal to the conditional distribution
of xi given only its neighbors. The algorithm to simulate a GRMF from Q is very simple (see
Rue and Held, 2005). Given that Q is sparse, its Cholesky decomposition Q = LLt, where L
is a lower triangular matrix, can be computed very efficiently. Then, it is easy to show that
x = µ + L−tz is a sample from the GMRF x ∼ N(µ,Q−1), where z ∼ N(0, I). Figure 2.1
shows the simulation for this GRMF.

It is important to notice that Gaussian fields can be well “approximated” by GMRFs.
Figure 2.2 shows the approximated correlation function provided by GMRFs (red line) and
compare it with the true Matérn correlation function (blue line). For further details on
how to perform such approximations see Rue and Tjelmeland (2002); Rue and Held (2005);
Lindgren et al. (2011).

Definition 4. Let Λ be a regular lattice of size nr x nc (for a two dimensional lattice) and
xij denote the value of x at site ij. Then a Gaussian field on Λ is a GMRF if it satisfies the
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Figure 2.2: Correlation function for the fitted GMRF (red line) and the Matern CF (blue line)
with range 15 and 5× 5 neighbourhood.

Markov property
π(xij|xkl ∈ Λ\(i, j)) = π(xij|xkl, (k, l) ∈ ∂ij)

where ∂ij is the neighbourhood of (i,j)

This neigbourhood ∂ij(i, j) ∈ Λ implies the Markov property. Then the precision matrix
Q associated to this regular lattice will have many zeros because there is a finite number of
neighbors for each cell and consequently Q will be an sparse matrix. Again the benefit of
using a GMRF instead of GF it is purely computational.

2.3 Gaussian approximation
Let π(x|y) be a posterior density distribution of the form

π(x|y) ∝ π(x)π(y|x) = exp(f(x)),

such function f(x) can be approximated using a quadratic Taylor expansion around the value
x0. That is,

f(x) ≈ f(x0) + f (1)(x0)(x− x0) +
1

2
f (2)(x0)(x− x0)2

= a+ bx− 1

2
cx2,

where b = f (1)(x0) − f (2)(x0)x and c = −f (2)(x0). Thus, the Gaussian approximation of
π(x|y) is given by

π̃G(x|y) ∝ exp

(
−1

2
cx2 + bx

)
,

then π̃G(x|y) is normally distributed with mean b/c and variance 1/c. In order to illustrate
this approximation suppose that y follows a Poisson distribution with mean λ and the prior of
x follows a normal distribution with mean µ=0 and variance equal to k−1, define x = log(λ).
Then,

π(x|y) ∝ π(x)π(y|x) = exp

(
−k

2

2
(x− µ)2 + yx− exp(x)

)
, and
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Figure 2.3: Original posterior density (continuous black line) and Gaussian approximation of
posterior density (dashed grey line) for each x0=0,0.5,1,1.5. The value of x0 is represented by the
small dot point in each plot.

π̃G(x|y) ∝ exp

(
−1

2
cx2 + bx

)
,

where b = −k2x0 + k2µ+ y− exp(x0) + cx0 and c = −k2− exp(x0). Figure 2.3 shows π(x|y)
and π̃G(x|y) for different values of x0=0,0.5,1,1.5; y=3, µ=0 and k=0.001. Note that the
normal approximation for the density π(x|y) improves when x0 is closer to the mode of
π(x|y). The Gaussian approximation from this univariate case can easily be generalized to
the multivariate case (Rue and Held, 2005).

2.4 Integrated Nested Laplace Approach
Although inference for LGM’s is usually performed through MCMC methods, it is also

known that such methods are computational expensive, specially when we are dealing with
complex models. The main reasons are that the components of the latent field x are strongly
dependent on each other and that θ and x are strongly dependent, specially when n is large.
On the other hand INLA (Rue et al., 2009) works out with LGM’s that satisfy two properties:
(i) The latent field x admits conditional independence properties, as a result the latent field
is a GMRF; (ii) The number of hyparameters m is small (m≤15). And these properties make
it possible to obtain fast Bayesian inference.
The join posterior of LGM can be calculated using the likelihood distribution, latent Gaus-
sian distribution and the distribution of hyperparameters,

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
i∈I

π(yi|xi, θ).

Let
x|θ ∼ N(0,Σ(θ))
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here Q−1 = Σ(θ) is the precision matrix, then

π(x, θ|y) ∝ π(θ)|Q1/2| exp

(
−1

2
xTQx+

∑
i∈I

log{π(yi|xi, θ)}

)
.

The posterior marginals of the latent variables π(xi|y) and the posterior marginal of hyper-
parameters π(θj|y) are defined by:

π(xi|y) =

∫
π(xi|θ, y)π(θ|y)dθ

π(θj|y) =

∫
π(θ|y)dθ−j.

These posterior marginals are not easy to calculate, and that is the main aim of INLA. Thus,
approximations to the posterior marginals of the latent variables and hyperparameters are
given by Equation (2.2) and Equation (2.3), which are both very accurate and extremely
fast to compute,

π̃(xi|y) =

∫
π̃(xi|θ, y)π̃(θ|y)dθ (2.2)

π̃(θj|y) =

∫
π̃(θ|y)dθ−j, (2.3)

where π̃ denotes an approximation to a probability density function (pdf).

In summary the main idea of INLA is divided into the next tasks:

• First, it provides an approximation of π̃(θ|y) to the join posterior of hyperparameters
given the data π(θ|y),

• Second, it provides an approximation of π̃(xi|θ,y) to the marginals of the conditional
distribution of the latent field given the data and the hyperparameters π(xi|θ,y),

• And third, it explores π̃(θ|y) on a grid and use it to integrate out θ in Equation (2.2)
and θ−j in Equation (2.3).

2.4.1 Approximating π(θ|y)

In the first case, the denominator π(x|θ, y) is not available in closed form but it can be
approximated using a Gaussian approximation, that is:

π(θ|y) =
π(x, θ|y)

π(x|θ, y)
∝ π(x, θ, y)

π(x|θ, y)

which is approximated by:

π̃(θ|y) ∝ π(x, θ, y)

π̃G(x|θ, y)
|x=x∗(θ) (2.4)

where π̃G denotes a Gaussian approximation to the full conditional density of x. In particular,
the Gaussian approximation was contructed by matching the mode and the curvature at the
mode to ensure a good approximation of the true marginal density (Section 2.3). Here
x∗(θ) is the mode of the full conditional for x for a given θ, and it is obtained by using some
optimization method like Newton-Raphson. In additon, Equation (2.4) is also called Laplace
approximation.
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Figure 2.4: Location of the integration points in a two dimensional θ-space using the (a) grid and
the (b) CCD strategy.

2.4.2 Approximating π(xi|θ, y)

In order to approximate π(xi|θ, y), three options are available. The first option, is to use
the marginals of the Gaussian approximation πG(x|θ, y). The extra cost to obtain πG(xi|θ, y)
is to compute the marginal variances from the sparse precision matrix (matrix with many null
elements) of πG(x|θ, y). The second and third options solve the fact that even if the Gaussian
approximation often gives aceptable results, there still can be errors in the location and/or
errors due to the lack of skewness (see Rue and martino, 2007). Then, the second option is
to do again a Laplace approximation, this approximation is more accurate and it is denoted
by π̃LA(xi|θ, y):

π̃LA(xi|θ, y) ∝ π(x, θ, y)

π̃GG(x−i|xi, θ, y)
|x−i=x∗−i(xi,θ), (2.5)

where π̃GG is the Gaussian approximation to π(x−i|xi, θ, y) and x∗−i(xi, θ) is the mode.
The third option is the simplified Laplace approximation πSLA(xij|θ, y), which is obtained
by doing a Taylor expansion on the numerator and denominator of Equation (2.5). It thus
correct the Gaussian approximation for location and skewness with a moderate extra cost
when compared to the Laplace approximation.

2.4.3 Approximating π(θj|y)

It can be calculated from π̃(θ|y), however, this solution has a high computational cost.
Then, an easier approach is to select good evaluation points for the numerical solution of
π̃(θj|y). To find these points, two approaches are proposed: the GRID and the central com-
posit design (CCD) strategies (Rue et al., 2009).
(i) The GRID strategy is more accurate but also time consuming, it defines a grid of points
covering the area where most of the mass of π̃(θ|y) is located . (ii) On the other hand, the
CCD strategy consists in laying out a small amount of points in a m-dimensional space in
order to estimate the curvature of π̃(θ|y) (Figure 2.4). For this reason this last one requires
much less computational power compared to the GRID strategy.

Then using approximations π̃(xi|θ, y) and π̃(θj|y) the posterior marginal for latent vari-
ables π̃(xi|y) can be computed via numerical integration:

π̃(xi|y) =

∫
π̃(xi|θ, y)π̃(θ|y)dθ
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π̃(xi|y) =
∑
j

π̃(xi|θj, y)π̃(θj|y)4θj.

Finally to conclude this section, we have to add that when the model is too complex it is
recommended to use the Simplified Laplace approximation and the Central composit design
(CCD) strategy; both options are used by default via the R-INLA-package.



Chapter 3

Description of Data

The data used in this study were collected onboard the research vessel “José Olaya Ba-
landra” from the “Instituto del Mar del Perú” (IMARPE) during a scientific acoustic survey
“Pelagic 2005”, between February 20 and April 4, 2005. The idea behind acoustic surveys
performed by marine researchers, it is to do sea “travels” at some area of interest onboard
a research vessel which has an echosounder. An echosounder has a transducer that emits
sound waves which are spreaded at sea and when they find any “target” (fish, zooplank-
ton, bottom, etc.) a sound is reflected, so a certain energy is returned to the transducer,
this back scattered energy (echo) is detected again by the transducer and converted into
electrical signal. After a while the transducer emits again a pulse and repeats this process
(for more details see Simmonds and MacLennan (2005)). Finally the sounds measured in
decibels (dB) are known as back-scattered strength (Sv). This technology allows to study
the composition of the sea, spatial distributions of marine populations and their change over
time, among others. How it is designed the trajectory of survey (survey tracks) depends on
areas of study, but commomnly parallel cross-shore transects are performed, as was done
in this study. Another feature in acoustic surveys is that the data can be collected in dif-
ferent frequencies depending on the echosounders used, this is important because for each
frequency the Sv of marine organisms are different depending on their size, volume, among
other features. Thus, using the catches from associated fishing trawls and frequencies it is
possible to classify better those organisms. In this study, acoustic data were collected using
a scientific echo-sounder EK500 working at frequencies 38 and 120 kHz. Selection and clas-
sification (including anchovy data) of acoustic data were carried out by IMARPE.
The variables used in this study are: (i) Biomass of anchovy (NASC in m2/nm2), back-
scattered strength (Sv) of anchovy are recorded along survey tracks in each geo-referenced
elementary sampling distance unit (ESDU), in this case, equal to one nautical mile. Then
each Sv is trasnformed into the Nautical area scattering coefficient (NASC in m2/nm2,
MacLennan et al. (2002) for acoustic units), NASC = 4π(1852)2Sv. This variable is an in-
dicator of fish biomass. In particular, the mass of anchovy in each ESDU. (ii) Distance to
the coast (km), is computed as the minimum orthodromic distance to the Peruvian coast
(km). The orthodromic distance is the shortest distance between two points on the surface
of a sphere. Let Φs and Λs be some position (longitude, latitude) at the shoreline and let
Φij and Λij be some position (longitude, latitude) in the sea, then the orthodromic distance
(od) between them is computed as follows, od(s, ij) = 60 × 1.852 × 180×arccos(A+B)

π
where,

A = sin(Λsπ
180

) sin(
Λij
180

) and B = cos(Λsπ
180

) cos(
Λij
180

) cos(Φsπ
180
− Φij

180
). (iii) Depth (meters < 0), the

gridded bathymetric data sets for Peruvian’s ocean are provided by the General Bathymet-
ric Chart of the Oceans (GEBCO, http://www.gebco.net/). (iv) Latitude (degrees < 0) and
Longitude (degrees < 0) are also used to incorporate the spatial effect.

An appropriate model structure to estimate anchovy biomass depends on the under-
standing of the processes that structure their distribution. In fact, (Figure 3.1) shows that

12
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Figure 3.1: Left: The observed data, where the trajectory of survey tracks is represented by parallel
cross-shore transects (red and gray dots). Furthermore, the size of red dots correspond to the biomass
of anchovy (higher than zero) and gray dots correspond to the biomass of anchovy equal to zero.
Right: Exploratory analysis. Histogram for all anchovy biomass observations and Histogram for
non-zero anchovy biomass observations.

anchovy presence was fairly broadly distributed from near shore to the shelfbreak, with some
medium random aggregations over this area. One of the reasons for this spatial distribution
of anchovy may be attributable to the aggregative behaviors of anchovy within suitable habi-
tat. Furthermore, the distribution of anchovy biomass was characterized by high proportions
of zero values, in particular offshore, reaching approximately 57% of the 8308 observations.
This may suggests that a trend surface term in the model might be appropriate and also
could be necessary to lead with these zero and non-zero values (absence/presence). In ad-
dition, the left-hand histogram in Figure 3.1 shows a high frequency of zero values for all
anchovy biomass while the right-hand histogram also shows a strongly right-skewed distri-
bution for non-zero anchovy biomass. Those last results confirm that an appropriate model
structure would model zero and non-zero values as an integrated process.



Chapter 4

Model Structure

Let us first define a regular lattice composed by n grid points, with n = nrow × ncol,
i = 1, . . . , nrow; j = 1, . . . , ncol. Then, let Yij be the observational (response) variable and
yij be the observed values computed as the mean of anchovy biomass at each sample location
that belong to the discrete n set of sampling grids. Note that this is a lattice approximation of
the observed anchovy biomass. This approximation can be as good as the lattice resolution,
where there is a trade off between better resolution and computational time.

As presented in Chapter 1 the idea behind a Hurdle model is to separate the zero struc-
ture from the non zero structure. Generally such Hurdle model is defined as a finite mixture
of a point mass at zero with a truncated-at-zero distribution. However, in our case yij’s
are positive values (≥ 0), then our Hurdle model has to be defined as a finite mixture of
a a degenerate distribution with point mass at zero and a distribution with support on
<+. Bayesian approaches of this kind of mixture have been developed mainly for longitudi-
nal data in biomedical applications using for instance logarithmic transformations of data
(Ghosh and Albert, 2009) or a Log-Normal distribution (Neelon et al., 2011). In the spatial
context, recently Dreassi et al. (2014) adopted a mixture with a Gamma distribution to get
small area estimates of grape wine production. Hence, we proposed to use the next con-
tinuous distributions with support on <+: Gamma, the Log-Normal and the Log-Logistic
distributions, well-known distributions used quite effectively in analyzing skewed positive
data. The Gamma has more of a tail on the left, and less of a tail on the right; while the far
right tail of the Log-Normal is heavier and its left tail lighter. Moreover, the Log-Logistic is
similar in shape to the Log-normal distribution but it has heavier tails.

Let’s suppose that anchovy absence ocurrs with probability pij. Therefore, presence
ocurrs with probability 1 − pij. Define h as a probability density function (pdf) for some
parametric unknown distribution with support on <+, thus, the associated distribution for
Yij has the following mixture density

π(yij|pij, µij, ψ) = pijδ0 + (1− pij)h(yij|µij, ψ)I[yij>0]

where δ0 is the Dirac measure at zero, µij and ψ parameters corresponding to the distri-
bution with pdf h. That is, Yij might assume a zero value with probability pij while with
probability 1−pij, Yij > 0 follows an unkonwn distribution with pdf h. Such notation can be
a bit confusing, to avoid missunderstanding and understand how this model is obtained, we
introduce a “latent” indicator variable Tij, that marginally follows a Bernoulli distribution
with success probability pij, while conditionally on Y is defined by

Tij =

{
1 if yij = 0,
0 if yij > 0.

In particular, π(yij|tij = 1, µij, ψ) = δ0 if yij = 0, while π(yij|tij = 0, µij, ψ) = h(yij|µij, ψ) if

14
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yij > 0. Then, we have that

π(yij|tij, µij, ψ) = tijδ0 + (1− tij)h(yij|µij, ψ); tij = 0, 1. (4.1)

Another important result is the relation between the mean posterior probability of success
and the posterior predictive probability of success,

P (Tij = 1|Y = y) =

∫
P (Tij|pij, Y = y)p(pij|Y = y)dpij,

=

∫
pijp(pij|Y = y)dpij,

= E[pij|Y = y].

This result is intuitive and it says that the future probability to have anchovy absence con-
ditioned to the observed data is the mean posterior probability of success. A consequent and
trivial result is that P (Tij = 0|Y = y) = 1− E[pij|Y = y].

Using the fact that Tij follows a Bernoulli distribution with succes probability pij,
π(yij|tij, µij, ψ) = π(yij|tij, pij, µij, ψ), then the marginal density of Yij can be calculated
as follows

π(yij|pij, µij, ψ) =
∑
tij

π(yij|tij, pij, µij, ψ)π(tij|pij),

=
∑
tij

π(yij|tij, pij, µij, ψ)p
tij
ij (1− pij)1−tij .

and using Equation (4.1),

π(yij|pij, µij, ψ) =
∑
tij

[tijδ0 + (1− tij)h(yij|µij, ψ)] p
tij
ij (1− pij)1−tij , tij = 0, 1.

Finally, the marginal density of Yij is defined by the next Hurdle model,

π(yij|x, θ) = pijδ0 + (1− pij)h(yij|µij, ψ)I[yij>0], (4.2)

where pij and µij are components of the Latent Gaussian process x, and ψ is a component
of the hyperparameters θ.
The marginal likelihood function is given by

L(y|x, θ) =
n∏
ij

{pijδ0 + (1− pij)h(yij|µij, ψ)I[yij>0]}, (4.3)

where Yij’s given a Latent Gaussian process x and the hyperparameters θ are conditionally
independent.

In order to accommodate the spatial dependence and covariates we can use Equation (4.2)
to define our hierarchical model as:

π(yij|x, θ) = pijδ0 + (1− pij)h(yij|µij, ψ)I[yij>0],

logit(pij) = η
(1)
ij = Z(1)β(1) + fs(sij)

(1),

g(µij) = η
(2)
ij = Z(2)β(2) + fs(sij)

(2), (4.4)
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where logit is a cannonical link function connecting the linear predictor η(1)
ij with the prob-

ability of zeros pij and g is an appropriate link function which connects the linear predictor
η

(2)
ij to the parameter µij, and it could be an identity link, a log-link, among others, depend-
ing on the unknown distribution pdf h. For each linear predictor we have that Z(k) is the
covariate matrix, β(k) are the fixed effects and fs(sij)

(k) are the structured random effects
for k = 1, 2. Here, Z(1) and Z(2) may share some common covariates but they do not need
to be the same.

On the other hand, to account for the spatial random dependence we represent fs(sij)(k)

with a Gaussian field. More specifically, with a Gaussian field with a Matérn covariance

function defined by 1
τs
ρ(h), where ρ(h) = 1

Γ(ν)2ν−1 (

√
(8ν)h

r
)
ν

Kν(

√
(8ν)h

r
) is a Matérn correlation

function, Kν the modified Bessel function of fixed order ν > 0, ν is a shape parameter and
determines the smoothness of the process, h is the Euclidean distance between two locations,
and the last parameter introduced called range (r) is interpreted as the minimum distance
for which two locations are nearly independent. Rue and Tjelmeland (2002) showed that for
a regular lattice, the Matérn correlation function can be well approximated by a Gaussian
Markov random field (GMRF) (Rue and Held, 2005) which joined with analytical results given
in Lindgren et al. (2011) can improved computational perfomance dramatically. Finally, it
would be worth to mention that if pij and µij are not related, it is reasonable to assume
that fs(sij)(1) and fs(sij)(2) are also independent of each other but if they are related one of
them may depend from the other one.

4.1 Bayesian Inference
The posterior estimates of parameters and hyperparameters are computed using Inte-

grated Nested Laplace Approximation (INLA) (Rue et al., 2009). INLA works out with
Latent Gaussian Models (LGM’s), a subclass of structured additive models which can be
seen as a representation of hierarchical models. In order for INLA to work properly it is
necessary that the LGM’s satisfy: (i) The latent field x admits conditional independence
properties, thus the latent field is a GMRF; (ii) The number of hyparameters is small. In
our model proposed (Equation 4.4), the spatial Gaussian fields can not be exactly GMRF’s
but they can be approximated to GMRF’s (Rue and Held, 2005; Lindgren et al., 2011), and
the number of hyperparameters which we might include is reasonable small (dim(θ) ≤ 5).
These properties make it possible to obtain fast Bayesian inference.

The join posterior of LGM can be computed using the likelihood distribution of Y (Equa-
tion (4.3)), the latent Gaussian field x and the distribution of hyperparameters θ,

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
ij∈I

{pijδ0 + (1− pij)h(yij|µij, ψ)I[yij>0]}.

From Equation (4.4), pij and µij are connected to the likelihood through the two linear
predictors defined into the latent field x. Let x|θ ∼ N(U,Q(θ)−1), then

π(x, θ|Y ) ∝ π(θ)|Q1/2| exp

(
−1

2
(x− U)tQ(x− U) +

∑
ij∈I

log{π(yij|xij, θ)}

)
,

where U is a mean vector which dependes on Z(1)β(1) and Z(2)β(2) and Q is a precision
matrix which depend on hyperparameters (τ

(1)
ε , τ

(k)
s , r

(k)
s , ψ), k = 1, 2 . Furthermore, the

fixed effects β(k) have independent Gaussian priors and the priors for the hyperparameters
model are chosen accordingly.

The posterior marginals of the latent variables π(xij|y) and the posterior marginal of
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hyperparameters π(θp|Y ) are defined by:

π(xij|y) =

∫
π(xij|θ, y)π(θ|y)dθ

π(θp|y) =

∫
π(θ|y)dθ−p.

These posterior marginals are not easy to compute, and that is the main aim of INLA, provid-
ing approximations to the posterior marginals of the latent variables and hyperparameters,
given by Equation (4.5) and Equation (4.6),

π̃(xij|y) =

∫
π̃(xij|θ, y)π̃(θ|y)dθ, (4.5)

π̃(θp|y) =

∫
π̃(θ|y)dθ−p, (4.6)

which are both very accurate and extremely fast to compute. Here π̃ denotes an approxima-
tion to a probability density function (pdf). In summary the main idea of INLA is divided
into the following tasks: First, it provides a Gaussian approximation of π̃(θ|y) to the join
posterior of hyperparameters given the data π(θ|y). Then, it provides an approximation of
π̃(xij|θ, y) to the marginals of the conditional distribution of the latent field given the data
and the hyperparameters π(xij|θ, y). And finally, it explores π̃(θ|y) on a grid and use it to
integrate out θ and θ−p in Equation (4.5) and Equation (4.6) respectively. For more details
on INLA calculations we refer to Rue et al. (2009).

4.2 Model Assessment
4.2.1 Model Comparison

In order to study the goodness of fit of the studied models we use the Deviance Informa-
tion Criterion (DIC), the logarithm of the Pseudo Marginal Likelihood (LPML), accuracy
rate and the mean squared estimation error (MSEE).

The DIC (Spiegelhalter et al., 2002) is a common Bayesian criterion also computed by
INLA as the posterior mean of the deviance Ex,θ(D(θ, x)) plus the effective number of
parameters pD. For the model proposed the deviance is given by,

D(θ, x) = −2
N∑
k=1

log(π(yk|x, θ)) = −2
N∑
k=1

log(pkδ0 + (1− pk)h(yk|·)I[yk>0]),

where N is the number of observations (total number of grids with yij ≥ 0). Then using
INLA approximations, the posterior mean of the deviance is computed by

Ex,θ(D(θ, x)) =

∫
θ,x

D(θ, x)π(θ|y)π(x|θ, y)∂θ∂x.

And finally the effective number of parameters is approximated by

pD ≈ Nx − trace{Q(θme)Q?(θme)−1},

where Nx is the dimension of x, θme denotes the posterior median, Q denotes the prior preci-
sion matrix and Q? denotes the posterior covariance matrix of the Gaussian approximation
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π̃(θ|y) (Rue et al., 2009).

Another alternative Bayesian model choice criterion is the conditional predictive or-
dinate (Geisser and Eddy, 1979; Gelfand et al., 1992) defined as CPOk = π(yk|y−k) =

1/
∫ π(xk|y)

π(y−k|xk)
dxk, where y−k is given by y without the k-th component. Although INLA can

also compute CPOk values, it was not providing the correct values for our Hurdle model.
Therefore, we decided to compute them explicitly. The Monte Carlo estimation for the CPOk

(Dey et al., 1997; Held et al., 2010) is defined as the harmonic mean of the conditional density
π(yk|xw, θ),

ĈPOk =

{
1

W

W∑
w=1

1

π(yk|xw, θ)

}−1

; k = 1, ..., N ;

evaluated at samples x1, ..., xW from π(xk|y). Furthermore, since the CPOk is a goodness
of fit measure for each observation, it can be summarized for all the data via a single value
called the Logarithm of the Pseudo Marginal Likelihood (LPML), so comparison between
models can be made using, LPML =

∑N
k=1 log π(yk|y−k) ≈

∑N
k log(ĈPOk), that is, the

higher value of LPML better the model.

On the other hand, we also calculate the accuracy rate, that is, which observations are
estimated as presence when actually they are presence, and which observations are estimated
as absence when actually they are absence.

Finally, to assess the closeness between the mean posterior estimation of anchovy biomass
and the observed anchovy biomass it is computed the root of mean squared estimation error
(RMSEE). Here, the mean posterior estimation of anchovy biomass is computed using the
mean posterior estimated parameters which are computed using all observations. The root
of mean squared estimation error (RMSEE) is computed as follows

MSEE =

√√√√ 1

N

N∑
k

d2
k; dk = yk − E(Yk|x, θ).

4.2.2 Model Predictive checks

In this section, to evaluate the predictive power of the proposed models is performed
further comparison. In particular, we define three different scenarios in which each one of
them follows the next four steps:

1. First it is selected a random validation sample y∗V whose size is V ∗% of the total
observed values (yij ≥ 0), and these values are not considered in the model fitting.

2. Then we fit all proposed models with the training values (data with the validation
sample removed).

3. Then using the mean posterior estimated parameters by each fitted model the root of
the mean squared prediction error (RMSPE) is computed using the validation random
sample y∗V ,

RMSPE =

√√√√ 1

V

V∑
v
d2v; dv = y∗v − E(Yv|Y−v); v = 1, · · · ,V;V = N× V∗%
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4. Then steps 1-3 are repeated M times, where M is the number of simulations. Finally,
the mean RMSPE is computed for each model, MRMSPE=Mean(RMSPEm,(model)),
where m = 1, . . . ,M .

The three scenarios are created selecting V ∗ to be 5, 10 and 20, repectively.

4.2.3 Influence Diagnostics

In order to locate any globally influential observations, we use Bayesian influence diag-
nostics. A common measure to assess the influence from one observation into the posterior
estimations is the Kullback-Leibler(KL) divergence measure. The KL is defined by

KL(π(x|y(−k)), π(x|y)) = Ex|Y

[
− log

(
π(x|y(−k))

π(x|y)

)]
.

A simplified expression of KL for general Bayesian models is derived in Lachos et al. (2013),
and after some algebra, as shown in Appendix A the KL for a Latent Gaussian model is

KL(π(x|y(−k)), π(x|y)) = − log(CPOk) + Ex|Y [log(π(yk|x, θ))], (4.7)

where Ex|Y [.] denotes the expectation with respect to the posterior distribution π(x|y).
Therefore, a Monte Carlo estimation for KL measure, is given by

KL(π(x|y(−k)), π(x|y)) = − log(ĈPOk) +
1

W

W∑
w=1

log[π(yk|xw, θ)]. (4.8)

Note that the KL measure does not directly define when some observation is influential
or not. In order to define an inlfluential observation it is necessary to define a cutoff
point. McCulloch (1989) proposes a calibration method to determine which observations
are influential. The calibration is done by comparing the density of unbiased coin π1 with
the density of a biased coin π2. The divergence of these densities can be calculated as a
function of the KL measure. The measure is zero only when qk = 0.5 and it is increas-
ing when |qk − 0.5| increases. Therefore, this calibration can be done by solving for qk
such that KL(π(x|y(−k)), π(x|y)) = KL(Ber(0.5);Ber(qk)) = − log[4qk(1 − qk)]/2, where
Ber(qk) denotes the Bernoulli distribution with success probability qk. This implies that,
qk = 0.5[1 +

√
1− exp(−2KL(π(x|y(−k)), π(x|y)))] and the ith observation is called influen-

tial if qk � 0.5.

Finally, to end this chapter it would be worth to mention the importance of Monte Carlo
methods to estimate the conditional predictive ordinate and the KL measure. Because even
when INLA is used, such methods are helpful when we are dealing with complex models
where these kind of measures have to be computed explicitly.



Chapter 5

Application

The shape of the coast of Perú is a bit northwest diagonal, using this fact we define a
regular lattice for the spatial domain of interest as a diagonal regular lattice. This strategy
reduces significatly computational time requirements, in particular for Bayesian inference.
Although diagonal regular lattices can not be directly treated as matrices into their origi-
nal space, applying suitable translations and rotations to the coordinates it is possible to
work with the diagonal regular lattice as a matrix into another space. Thus, original grid
coordinates (Lonij, Latij) are translated to the origin (0,0) and rotated α radians, that is,

L̂onij = (Lonij + a)cos(α) + (Latij + b)sin(α),

L̂atij = −(Lonij + a)sin(α) + (Latij + b)cos(α),

where a = max(Lonij) and b = min(Latij).
The translated and rotated regular lattice is composed by 6400 (n=6400) grid dots (Fig-
ure 5.1).

It should also be noted that although the model structure is implemented using this
translated and rotated regular lattice, our final results are re-transformed into the original
spatial coordinates, to avoid misleading interpretations.

5.1 Exploratory Analysis
The relationship between anchovy presence and biomass against covariates may involve

the existence of spatial trends which need to be included in the model. In Figure 3.1 it is
shown that the higher region of anchovy presence ranged from latitudes between 6◦ and 12◦S,
while anchovy biomass is dispersed all over the coast. Furthermore, a higher distance to the
coast seems to involve higher anchovy absence and higher anchovy biomass when it is present
(Figure 5.2, left panel) . Also bigger depth seems to involve higher anchovy absence while
anchovy biomass seems to be concentrated within depths less than 500 meters (Figure 5.2,
right panel). Until this moment, the model proposed has not been defined completely, it is
necessary to specify the pdf h of the mixture. In order to find out which distribution better
adjust to the positive biomass observations (y?ij = yij ≥ 0) we fit a simple generalized linear
regression model of the form

g(µij) = Zijβ,

where g is the appropriate link function for the unknown distribution, and Zij is the covariate
matrix defined by an intercept, distance to the coast, latitude, latitude2 and depth.

Finally, the three models are adjusted with different distribution choices: Gamma, Log-
Logistic and Log-Normal. Table 5.1 shows that the DIC and LPML statistics agreed that
the Gamma distribution is the preferred model. From now on the paper we set the unknown

20



5.1 EXPLORATORY ANALYSIS 21

−20 −15 −10 −5 0

−
5

0
5

1
0

1
5

Longitude

L
a
ti
tu

d
e

Figure 5.1: The black grids dots represent the translated regular lattice, here red grid dots are
samples of anchovy biomass traslated too. And green grids dots represent the rotated Regular lattice,
here blue grid dots are samples of anchovy biomass rotated too.
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Figure 5.2: Left: Regular lattice for distance to the coast. Right: Regular lattice for ocean depth.

Table 5.1: Selection criteria for the different positive Distributions

DIC LPML

Gamma 8923.844 -4458.199
Log-Logistic 8991.108 -4492.816
Log-Normal 9020.682 -4507.793
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distribution to be a Gamma(φ, φ/µ) having the following density

h(y?ij) =
1

Γ(φ)

(
(φ)

µij

)(φ)

(y?ij)
φ−1 exp

(
−(φ)

y?ij
µij

)
then E(Y ?

ij) = µij and Var(Y ?
ij) = µ2

ij/(φ), where µij is the mean and φ is the precision
parameter. And the linear predictor η(2)

ij is linked to the mean µij using a log-link function,
then µij = exp(η

(2)
ij ).

Thus, the model proposed in Equation (4.2) is defined by

π(yij|x, θ) = pijδ0 + (1− pij)h(yij|µij, ψ)I[yij>0],

logit(pij) = η
(1)
ij = Z(1)β(1) + fs(sij)

(1),

log(µij) = η
(2)
ij = Z(2)β(2) + fs(sij)

(2).

Furthermore, only the distance to the coast and the depth result significant covariates.
Then, all explanatory variables will be included in Z(1) but only the distance to the coast
and the depth will be included in Z(2).

It would be worth to mention that this criteria to choose the unknown distribution might
not be the best choice because it does not assure that if we run the proposed models (Ta-
ble 5.2) including the structured spatial terms for the three distributions the distribution
chosen would not be changed. But it is a reasonable criteria in order to reduce the compu-
tational time requirements.

5.2 Data Analysis
After selecting the distribution for positive anchovy biomass as Gamma and in order to

verify the necessity of the full model presented in Equation (4.4), we introduce a variety of
submodels that will be used for model comparison. All submodels are presented in Table 5.2.
The “full model”, model I, is the model with all possible components. Model II have a
shared spatial component instead of two separate spatial components, this model incorporate
another hyperparameter called δ, an unknown scale parameter that explain the degree of
relation from the structured spatial term fs(sij)

(1) to the linear predictor η(2)
ij . Models III

and IV have only one spatial component in the linear predictor of the anchovy biomass or in
the linear predictor of the probability of zero, respectively. Finally, Model V has no spatial
effect.

Table 5.3 presents the selection criteria of the fitted models with different choices of the
smooth parameter ν = 1, 2, 3 as presented in Section 4.2.1. Overall model I is the prefered
one among all criteria and all scenarios. Specifically, the best accuracy rate of classification
(anchovy absence/presence) is for model I and model IV (97.61%) with ν = 1. Although
model IV classifies fairly good anchovy presence, the RMSEE for the anchovy biomass is
not good for this model due to the lack of a spatial effect to specifically predict anchovy
biomass. For this reason DIC and LPML values indicate that model I with ν = 1, 2 and
3 have a better goodness of fit than the rest of models. On the other hand, RMSEE is by
far in favour of model I for all choices of ν, being better for ν = 1. We can conclude, if
the model classifies correctly anchovy presence/absence, the global estimation of anchovy
biomass would be better too. This means that it is really necessary first to classify anchovy
presence and then estimate anchovy biomass, using the knownledge that anchovy is present
with high probability, like model I does. Furthermore, models with ν = 1 have a better
perfomance than its similar with other choices of ν.
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Table 5.2: Linear predictors and hyperparameters for each proposed model

Models Linear predictor Hyperparameters
Model I η

(1)
ij = Z(1)β(1) + fs(sij)

(1) τ
(1)
s , r(1)

s

η
(2)
ij = Z(2)β(2) + fs(sij)

(2) φ, τ
(2)
s , r(2)

s

Model II η
(1)
ij = Z(1)β(1) + fs(sij)

(1) τ
(1)
s , r(1)

s

η
(2)
ij = Z(2)β(2) + δfs(sij)

(1) φ, δ

Model III η
(1)
ij = Z(1)β(1)

η
(2)
ij = Z(2)β(2) + fs(sij)

(2) φ, τ
(2)
s , r(2)

s

Model IV η
(1)
ij = Z(1)β(1) + fs(sij)

(1) τ
(1)
s , r(1)

s

η
(2)
ij = Z(2)β(2) φ

Model V η
(1)
ij = Z(1)β(1)

η
(2)
ij = Z(2)β(2) φ

The last column of Table 5.3 presents the total running time for each model. From the
computational time presented, we can see that even the full model runs in a resonable time.
Recall, that the grid has 6400 sites and model I has fixed effects and two different latents
spatial fields. This observation allows to emphasize the computational adavantage of using
INLA methodology when comparing to traditional MCMC methods for spatial data analysis.

Since ν = 1 provides the best overall fit for all models, we now focus on ν = 1 to
investigate the models with best predictive performance (section 4.2.2). To do so, we used
a hundred validation random samples (M = 100) of size 57 (V = 5%), 113 (V = 10%) and
226 (V = 20%) for each model. From results reported in Table 5.4, the lower mean RMSPE
values (MRMSPE) for each case are again in favour of model I. This means that model I
with ν = 1 not only have the better goodness of fit, it is also better for predicting anchovy
biomass among all models.

After selecting model I as the preferred one for both fitting and predicting, we investi-
gate its posterior parameters estimates. The posterior parameters estimates are reported in
Table 5.5. From Table 5.5 we can see that the mean posterior fixed effect for the distance to
the coast in the absence/presence probability part (0.053) indicates that the higher distance
to the coast higher the probability of anchovy absence. The contribution of this parame-
ter to the probability anchovy absence/presence (when all other parameters are kept fixed)
increases really fast as distance to the coast increases. Bertrand et al. (2011) argues that
there is a permanent pattern of reduction in anchovy presence with an increasing distance
to the coast, where the slope of this reduction depends on the environmental conditions. On
the other hand, the mean posterior of the distance to the coast effect in the positive an-
chovy biomass (0.015) indicates that a higher distance to the coast implies a higher anchovy
biomass. When the distance to the coast increases the model estimates that the anchovy
biomass increases too. These two considerations may appear a contradiction at a first sight.
However, based on the posterior effect we can see that the anchovy biomass increases much
slower than the probability of anchovy absence increases. For instance, by each 1km incre-
mented of distance to the coast, the probability of anchovy absence is increased 50% while
anchovy biomass is increased 15%. Thus, for large distances to the coast the model classifies
the observation as an anchovy absence, as it was observed in the real data.

The mean posterior fixed effect for the latitude and latitude squared in the probability
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Table 5.3: The selection criteria for the models proposed with different linear predictors

LPML DIC Accurate rate RMSEE Total run time (min)
ν = 1

Model I -3209.41 7114.95 97.61% 165.94 16.05
Model II -3390.66 7283.56 89.46% 1069.71 7.94
Model III -3384.17 7244.60 86.71% 499.55 3.22
Model IV -4632.66 9523.28 97.61% 1507.39 4.41
Model V -4843.13 9696.66 86.71% 1539.13 0.13
ν = 2

Model I -3236.78 7073.40 96.46% 251.83 22.70
Model II -3378.76 7224.86 89.01% 1052.14 12.23
Model III -3405.80 7253.58 86.71% 499.42 5.70
Model IV -4647.40 9517.15 96.46% 1509.88 5.62
Model V -4843.13 9696.66 86.71% 1539.88 0.13
ν = 3

Model I -3254.41 7114.28 96.10% 262.04 31.20
Model II -4686.77 9526.58 94.06% 1528.39 132.81
Model III -3388.50 7273.37 86.71% 499.32 7.73
Model IV -4653.28 9515.72 96.10% 1510.47 7.89
Model V -4843.13 9696.66 86.71% 1539.88 0.13

Table 5.4: Predictive model checks. Mean of RMSPE (MRMSPE) out 100 validation samples.

MRMSPE
ν = 1 5% 10% 20%

Model I 1341 1515 1786
Model II 1541 1886 2355
Model III 1387 1581 1827
Model IV 1863 2386 3147
Model V 2106 2745 3568
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Table 5.5: Summary statistics (point, standard deviation and 95% credible interval (CI)) for Fixed
effects and Hyperparameters estimation.

Mean sd 95% CI
Probability of anchovy absence/presence

Intercept 16.530 7.215 (4.641,33.138)
Distance to the coast 0.053 0.022 (0.019,0.104)

Latitude 4.384 1.608 (1.819,8.127)
Latitude2 0.184 0.069 (0.072,0.346)
Depth -0.002 0.001 (-0.003,-0.001)
τ

(1)
s 0.056 0.027 (0.019,0.124)
r(1)
s 7.089 1.291 (4.853,9.903)

Positive anchovy biomass
Intercept 5.056 0.208 (4.650,5.467)

Distance to the coast 0.015 0.007 (0.015,0.015)
Depth 0.001 0.000 (0.000,0.001)
φ 148.601 111.494 (25.170,438.440)
τ

(2)
s 0.214 0.015 (0.186,0.245)
r(2)
s 1.370 0.159 (1.085,1.708)

anchovy absence/presence (4.384 and 0.184, respectively) are evidence that there is a higher
probability of anchovy absence when latitudes are near to the extremes. When looking at the
mean posterior fixed effect for the depth in the absence/presence probability part (-0.002)
there is an indication that for deeper ocean parts there is a higher probability of anchovy
absence. On the other hand, the fixed effect for the depth in the positive anchovy biomass
(0.001) suggests that a lower ocean depth size implies a higher anchovy biomass.

The mean posterior range r(1)
s for the structured spatial effect of the probability of an-

chovy absence/presence is approximately 7.089 “units”, where units here means number of
cells. Here the lattice have cells of size aproximately 14x14km (width x height). Thus, the
model states that the probability of absence of anchovy for some site are depedent of neigh-
bors observations until a distance of 100 km. The mean posterior range r(2)

s for the structured
spatial effect of the positive biomass is approximately 1.37 “units”. Therefore, by model I an-
chovy biomass (when anchovy is present) depends on neighbors observations until a distance
of 20 km.

Finally we can see that the spatial dependence is captured by the random spatial effect
f(1)
s , thus, we can conclude that the spatial model is capable of accomodating the variability
in the anchovy distribution. On the otherhand, the variability of positive anchovy biomass
not explained by the structured spatial term f(2)

s depends on µij and /φ, that is, if φ� µ2
ij

then there is very little unexplained variability in the positive anchovy biomass, otherwise,
there is high variability of anchovy biomass not explained by the covariates and/or the
structured spatial effect.

The mean posterior probability of anchovy absence/presence (Figure 5.3, right panel) is
computed using the posterior mean linear predictor η(1)

ij . On the left panel we can see the
original anchovy absence/presence values. Comparing both sides we can see that the right
panel classifies very closely to the observed absence/presence of anchovy in the left side,
supporting the good classification performance under model I.
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Figure 5.3: Results. Left: Observed anchovy absence/presence. Right: Mean posterior probability
of anchovy absence under model I.

Then the estimated mean posterior anchovy biomass is computed using the above result
and the model proposed in Equation (5.1). Thus, for each grid point it is defined the following
prediction rule: If the mean posterior of anchovy absence probability is higher than 0.5 the
site is classified like anchovy absence, while if the mean posterior anchovy absence probability
is lower than 0.5 the site is defined like anchovy presence (anchovy biomass(> 0)) with
estimation computed using the mean posterior linear predictor exp(η

(2)
ij ).

The posterior mean estimated anchovy biomass map is presented in Figure 5.4. On the
left panel we can see the original observation values, while on the right panel the estimated
pattern is presented (both cases on the logarithmic scale for anchovy biomass). Comparing
both sides we can see that the right panel agrees very closely to the observed values in the
left side. This is an indication of good model fitting, and thus, model I is used for prediction
on the unobserved sites.

Furthermore, probabilities qi from section 4.2.3 are computed using Kullback-Leibler(KL)
measure presented in Equation( 4.8). Then a threshold of 0.9 is set for qi. After detecting the
influential observations we define an influential region at those sites i where qi > 0.9 and at
least five neighboor(from eight) have qj > 0.9 for site j neighboor from site i. Thus, if a grid
point have more than one neighboor with qj > 0.90, we call it an influential region. Figure 5.5
shows the probability qi value and mean posterior biomass anchovy for all influential regions.
Such regions probably represent shoal clusters with higher anchovy biomass values.
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Figure 5.4: Results. Left: Observed anchovy biomass (on the logarithmic scale). Right: Mean pos-
terior anchovy biomass under model I (on the logarithmic scale).
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Figure 5.5: Results. Left: Probability qi of influence regions. Right: Mean posterior of anchovy
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Chapter 6

Discussion

The Peruvian anchovy is a dominant fish at the Peruvian pelagic ecosystem. For this
reason, understanding the anchovy biomass distribution is very important for either an
economic perspective as well as an ecological perspective. Because of the nature of anchovy
biomass there is a need for a spatial model that can accommodate its main characteristics.
The anchovy biomass has three main characteristics: (1) high proportions of zero, (2) strong
spatial dependence and (3) very right skewed distribution. In this study we proposed a
Bayesian Hurdle type model which showed its capability of adapting to the characteristics
of the anchovy biomass in the coast of Perú. In fact, including a component to capture
the excess of zeros was necessary and it was an indication that the source of overdispersion
present in the data might comes essentially from the excess of zeros. The Gamma distribution
for fitting anchovy positive biomass data was very effectively for analyzing our skewed non-
negative data.

The main advantage of the Bayesian formulation, in particular using INLA, is com-
putational. The complex model chosen including two spatial components runs in slightly
over sixteen minutes. Moreover, Bayesian inference and model comparison suggest that such
model provides a plausible description of the anchovy biomass, being capable of successfully
address the data challenging characteristics. The effectiveness of such model for identifying
the absence/presence of anchovy is fairly good. And the mean posterior estimations verify
that this model has potential not only to identify absence/presence of anchovy but also to
estimate anchovy biomass given that anchovy is present.

In addition, we verify the prediction performance of the proposed models. The dataset
were separated into two parts: a validation part and a fitting part. This procedure was
repeated one hundred times and the prediction power of the models were estimated. It is
worth noting that again the computational cost to run all this simulations using INLA was
very low. From the results we conclude that the full model has the best performance in
both fitting and predicting, being the one selected from the majority of the model assesment
measures.

From our results we observe that anchovy absence is higher when distance to the coast
increases, that is, in offshore waters (>150km from the coast) where ocean depth is also
deeper. And anchovy presence is higher in the central region, such area is characterized by
lower oxygen, cold and fresh water in coastal surface layers which is an ideal habitat for an-
chovy (Bertrand et al., 2011). Furthermore, anchovy biomass slightly increases when distance
to the coast increases within 150 km from the coast, reflecting the existence of dense schools
not too near to the coast but where ocean depth is not too deeper. Moreover, we showed
that anchovy absence/presence at some location is not independent of absence/presence at
neighboring locations, as well as biomass anchovy at some location is not independent of
biomass anchovy at nearest neighboring locations, supporting the inclusion of spatial ef-
fects. Bayesian influence diagnostic also suggests that classifying absence/presence suffers
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less influence than correctly estimating the current anchovy positive biomass.
Finally, the current model is based on data from only one year, but it can be extended

in several ways. The most inmediate one, is to a spatio-temporal model including data from
more years, seasons, among others.

All code implementing our data analysis are available, please contact to the authors for
providing them.



Chapter 7

Future works

7.1 Introduction
In this study the GRMF was a discretely indexed Gaussian field, thus our approach was

restricted to graphs like regular lattices (Rue and Held, 2005). The problem of doing this is
the necessity to approximate the position of the locations. Thus a lot of effort going into
collecting locations data with a high degree of precision is lost. Clearly, the finer the lattice,
better estimations, in particular, better predictions at unsampled locations. Therefore the
quality of our estimations primarily depends on the size of the grid. As a result, we are
required to compute on a much finer grid than it is necessary for better results, then lattice
based approaches might be computationally expensive.

Throughout the next section, it is discussed a recent work of Lindgren et al. (2011) that
has broken down the barrier between GMRFs and spatially continuous Gaussian random
field models. They suggest a link between Gaussian Random fields and Gaussian Markov
Random Fields (GRMF) through the stochastic partial differential Equations (SPDE) for a
Gaussian field with Matérn covariance function. In particular, for irregular grids they use
the finite element method (FEM) to discretize complex geometries, even irregular geometric
areas, and at the same time they get an approximation to the solution of the SPDE using
basis functions. That allows us to hold on to the continuous interpretation of space, while
the computational algorithms only see discrete structures with Markov properties. A great
variety of applications using SPDE approach for geostatistical data can be found in Bolin
(2012), Simpson et al. (2012), Blangiardo et al. (2013) and Cameletti et al. (2013).

7.2 The Stochastic Partial Differential equation (SPDE) approach
A differential equation can be defined informally as any equation which contains deriva-

tives. In particular, a differential which has differential derivatives is called partial differen-
tial. Generally, a Stochastic Partial Differential equation (SPDE) is a equation which allows
randomness in the coefficients of the differential equation, i.e., involves one or more stochastic
processes. Then any solution of a stochastic differential equation must involve some random-
ness, that is, we are only able to say something about the probability distribution of the
solutions.

In this context, a Gaussian field Z(s) with the Matérn Covariance is a solution to the
linear fractional stochastic partial differential equation (SPDE)

(κ2 −4)α/2Z(s) = W (s), s ∈ Rn, α = ν + d/2, (7.1)

where (κ2−4)α/2 is the pseudo - differential operator of Laplace and W is spatial Gaussian
White noise. This explicit formulation is the strong version of the SPDE specification, an
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Figure 7.1: Representation of piewise-linear approximationof a function in two dimensions over a
triangulated mesh.

alternative is the weak formulation given by

[< φj, (κ
2 −4)α/2Z >Ω]

d−→ [< φj,W >Ω]; j = 1, ...,m (7.2)

where φj is an arbitrary well-behaved function, < f, g > is the inner product of functions f
and g , and d−→ denotes convergence in distribution. This definition implies that a process is
said to achieve weakly convergence if the first and second moments exist.

If the spatial locations are on some irregular grid Lindgren et al. (2011) proposed to con-
struct a representation of the finite element as solution to the SPDE, thus using the finite
element method (FEM) observations are interpolated to the nearest grid point. In order to
do this, suppose that <2 is subdivided into a set of non-intersecting triangles, where any two
triangles meet in at most a common edge. The suggestion is to start with the locations of the
observed points and add some triangles with some restriction to maximize the allowed length
edge and to minimize the desired angles (Figure 7.1). Therefore, this approach need to con-
struct a finite dimensional representation of solutions to the Equation (7.1), for some chosen
basis functions ψk, weights wk normally distributed and n vertices in the triangulation. This
approximation is of the form,

Z(s) =
n∑
k=1

ψk(s)wk. (7.3)

In particular, the basic functions ψk used by Lindgren et al. (2011) are piecewise linear in each
triangle, where ψk is 1 at vertex k and 0 at all other vertices. Therefore, the weights determine
the field values at the vertices, and the values inside the triangles are calculated by linear
interpolation. Hence , the finite dimensional solution is obtained by finding the distribution
of weights wk in Equation (7.3) that fulfils the weak SPDE specification (Equation (7.2))
for a specific set of functions φk and for m = n. Then wk ∼ N(0, Q−1

α ) and the finite
dimensional representation of solutions to the Equation (7.1) has precision matrix Qα defined
as a function of κ2 e α. Functions φk and precision matrices Qα for each α are defined in
Table 7.1. Here C, G and K are matrices defined by,

Ci,j = 〈ψi, ψj〉, Gi,j = 〈∇ψi,∇ψj〉, (Kκ2)i,j = κ2Ci,j +Gi,j (7.4)
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Table 7.1: Summary of functions φk and precision matrices Qα for each α

α φk Qα

1 (κ2 −4)1/2ψk Kκ2

2 ψk Kκ2C
−1Kκ2

3,4,. . . recursive Garleky formulation Kκ2C−1Qα−2,κ2C−1Kκ2

In particular, these matrices are calculated by using triangulation and geometry of any arbi-
trary triangle defined by their vertices, edges and angles (Lindgren and Rue, 2007; Lindgren
et al., 2011). Finally, the fact that C−1 is a dense matrix implies that the precision matrix
will also be dense, for this reason C is approximated by a diagonal sparse matrix C̃, thus
we get the precision matrix of a GRMF.

Then we are able to re-write the linear predictor of interest using such GRMF, for example:

η(s) = β0 +

ηβk∑
k=1

βkxk(s) + Z(s) + ε(s),

where Z is a Gaussian field, can be re-written as

η(s) = β0 +

ηβk∑
k=1

βkxk(s) + Z̃(s) + ε(s),

where the Z̃(s) is a GRMF with precision matrix Qα.

Coming back to our data analysis, as future work is feasible to extend our study using
irregular grids to hold on the natural continuous interpretation of space. Thus, we might
extend the model structure defined in Chapter 4 but instead of using a regular lattice and
compute the observed response as the mean of anchovy biomass we could use a irregular
grid and construct a mesh using Constrained Refined Delaunay Triangulation. Thus, each
sample location of anchovy biomass can be defined at each vertice or if we want to reduce
computational requirements we might interpolate sample locations given some maximum
triangle edge length. Although this step is easy to implement using the R-INLA package,
the mesh size influences computational time needed to fit the model. More nodes on the
mesh need more computational time. Moreover, spatial dependence is also influenced by
scales. Thus, when using irregular grids the size of triangles has to be carefully thought out.
Figure 7.2 displays examples of meshs constructed for anchovy biomass data. Then making
use of the link between Gaussian fields and GRMF through SPDE, the proposed model
defined in Equation (4.4) can be re-defined. Then we are able to focus on estimation and
prediction procedures.

Finally, although this work was focus on a particular hierarchical spatial Hurdle-model,
the SPDE approach can also be extended to spatio-temporal models. For instance, Cameletti
et al. (2013) consider a spatio-temporal model with separable covariance function and use
also INLA for fast Bayesian inference. Furthermore, it is feasible to consider models with
more complex structures like non-separable covariance functions. With this modeling would
be plausible to interpret changes on especies behavior due to changes on environmental
conditions, and develop efficient and realistic simulation tools enabling to anticipate better
the efficacy of different management strategies and conservation of peruvian anchovy.



THE STOCHASTIC PARTIAL DIFFERENTIAL EQUATION (SPDE) APPROACH 33

Figure 7.2: Meshs constructed using Constrained refined Delaunay triangulation. Red grid dots are
samples of anchovy biomass samples. The region defined by the sky-blue line is the edge boundary
which defines the priority area for estimation. Outside this region the boundary effects are higher.
Right: Mesh have less resolution than left plots. Top: Mesh for all data. Down: Mesh for northern
region of top panel.



Appendix A

Proof of result 4.7

Proof of Kullback-Leibler (KL) divergence measure:

KL(π(x|Y−k), π(x|Y )) = Ex|Y

[
− log

π(x|Y−k)
π(x|Y )

]
= Ex|Y

[
log

π(x|Y )

π(x|Y−k)

]
,

by definition of expectation,

KL(π(x|Y−k), π(x|Y )) =

∫
π(x|Y ) log

[
π(x|Y )

π(x|Y−k)

]
dx,

by Bayes Theorem

KL(π(x|Y−k), π(x|Y )) =

∫
π(x|Y ) log

[
π(Y |x)π(x)

π(Y )

π(Y−k)

π(Y−k|x)π(x)

]
dx

=

∫
π(x|Y ) log

[
π(Y |x)

π(Y−k|x)

π(Y−k)

π(Y )

]
dx

=

∫
π(x|Y ) log

[
π(Y |x)

π(Y−k|x)

]
dx+

∫
π(x|Y ) log

[
π(Y−k)

π(Y )

]
dx

=

∫
π(x|Y ) log

[
π(Y |x)π(x|θ)
π(Y−k|x)π(x|θ)

]
dx+

∫
π(x|Y )dx log

[
π(Y−k)

π(Y )

]
π(x|Y ) is a density, then

KL(π(x|Y−k), π(x|Y )) =

∫
π(x|Y ) log

[
π(Y |x)π(x|θ)
π(Y−k|x)π(x|θ)

]
dx+ 1× log

[
π(Y−k)

π(Y )

]
by conditional probability

KL(π(x|Y−k), π(x|Y )) =

∫
π(x|Y ) log

[
π(Y |x, θ)
π(Y−k|x, θ)

]
dx+ log

[
π(Y−k)

π(Y )

]
=

∫
π(x|Y ) log

[
π(Y |x, θ)
π(Y−k|x, θ)

]
dx− log

[
π(Y )

π(Y−k)

]
=

∫
π(x|Y ) log

[
π(Y |x, θ)
π(Y−k|x, θ)

]
dx− log

[
π(Yk, Y−k)

π(Y−k)

]
=

∫
π(x|Y ) log

[
π(Y |x, θ)
π(Y−k|x, θ)

]
dx− log[π(Yk|Y−k)]

Y ’s are independent given x, θ, then

KL(π(x|Y−k), π(x|Y )) =

∫
π(x|Y ) log [π(Yk|x, θ)] dx− log[π(Yk|Y−k)]

KL(π(x|Y−k), π(x|Y )) = Ex|Y [log[π(Yk|x, θ)]− log[CPOk].
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