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ABSTRACT

The need for economical, high precision methods to produce time-lapse images of
pollution movement in a rock or soil mass has led rather naturally to investigation of
cross-borehole electromagnetic (EM) remote sensing approaches. Success of medical
tomography (CAT scans) using X-rays, has encouraged investigators to apply this same
approach to cross-borehole EM measurements in the earth. The success of applying these
techniques to measurements in the earth relies on careful calculation of the EM wave field
in the receiver borehole and skill in inverting the equations describing the scattering of EM
waves.

This thesis presents a preliminary test of the efficacy of genetic algorithms to solve
the general least-square inversion of wave diffusion geotomography.

Results of this work provide a "proof of principle" that genetic algorithms can be
used to invert simple geotomography problems using synthetic data, and sets the stage for
more thorough investigations later.

An important secondary outcome of this work is the discovery that for this type of
inversion to converge, it is necessary to have only four receivers and one transmitter for
each row of patches in the interrogation region, an outcome that may aid future field

survey design.



CHAPTER 1
INTRODUCTION

Inversion methods have been widely used in geophysics. These techniques are
useful in the field of electrical soundings, and necessary for geotomography.

Sheriff (1989) defines tomography as the reconstruction of an object from its set of
projections. In geology and geophysics, tomography, also known as geotomography,
usually involves the reconstruction of a geological cross section from cross-borehole

seismic or electrical data (see Figure 1).

1.1 General Overview of Inversion Methods

The main purpose of geophysical interpretation is to use measurements of some
anomalous field to determine the location, shape, dimensions and physical properties of
subsurface bodies. This process of interpretation is often called an inverse problem,
because it is necessary to determine what distribution of physical properties in the earth is
responsible for the measured anomalous field.

Given a distribution of physical properties (electrical conductivity within a set of
subsurface patches, for example), it is relatively straightforward to compute the resulting
anomalous field. A general equation to do this is given below,

Ax =y, (1-1)
where x is a vector containing the physical property of interest for each patch, yisa

vector of anomalous field measurements and A is a transformation matrix which
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transforms the physical property into an anomalous field. Inversion involves solving

equation 1-1 for now unknown physical properties, x, by finding an inverse for matrix 4.

1.1.1. Singular Value Decomposition (SVD)

Conventional inversion approaches include techniques such as Gaussian
elimination, projections (ART, SIRT, etc.) and singular value decomposition. Glass
(1990) used singular value decomposition successfully for inverting the volume-current
wave diffusion geotomography of Howard et. al., (1983) and Howard and Kretzschmar
(1986). This thesis presents an application of genetic algorithms (GA's) to invert the wave

diffusion geotomography data.

1.1.2. Genetic Algorithms

Over the last few years, there has been an increasing number of science fields that
have successfuly used genetic algorithms as a computer search method. Goldberg (1989)
defined genetic algorithms as search methods based on the mechanics of natural selection
and natural genetics. They have proved useful in fields that range from medicine to
political science.

The popularity of GA's is mainly due to their simple mathematical construction as
well as their robusteness, which is a great advantage over conventional methods such as
singular value decompositions. They are also relatively simple to implement in a computer
program, and their robustness allows them to search for parameters in large, noisy and
complex spaces in a short time. Thus genetic algorithms are also cost-efficient based on

computer time.
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Figure 1-1b.  Inter-Borehole Anomaly Geomtetry. (o, and &, are the

conductivity and permittivity at medium n, respectively).

Figure 1-1. Inter-Borehole Tomographic Geometry



1.2. Scope of Study

The material presented in the following chapters discuss the construction,
implementation and results of using a genetic algorithm for wave diffusion
geotomographic reconstructions.

The genetic algorithm implemented here uses techniques similar to those presented
by Goldberg (1989). Only two of the software routines from Goldberg (1989), however,
were used in this research. These two software routines include the selection routine and
the fitness scaling routine. These routines were translated from Pascal into Fortran 77,

corresponding with the geotomography software.
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CHAPTER 2
WAVE DIFFUSION GEOTOMOGRAPHY

2.1 Backeround

The need for economical, high precision methods to produce time-lapse images of
pollution movement in a rock or soil mass has led to investigation of cross-borehole
electromagnetic (EM) remote sensing approaches. Success of medical tomography (CAT
scans) using X-rays, has encouraged investigators to apply this same approach to cross-
borehole EM measurements in the earth. The following integral equation describes the
general scattering problem in a simple lossy earth (see Howard et. al., 1983 and Howard

and Kretzchmar, 1986 for derivation details):
() = 4,(x)- T, [ VO g (x)dx @-1)
A

In equation 2-1, g(x;x") is the Green's function for the outward cylindrical wave solution

to:
(V*+ /,(l2 )&= _§:(£_£)‘
where 4 is the background complex wavenumber, § is the Dirac delta function and gis

defined as

é\’({v.‘:) — —?;.—H‘{'U(k|]€) (2'2),

where K = \/( ¥=x')’ +(y-»') and HY is the zero order Hankel function of the first

kind. Also, in equation 2-1. ¢.(x') is the scattered electric field from the anomaly surface
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at location x', and the objective function ()(x') provides in our case the electrical contrast
(ki — k) at the scattering location.

Equation 2-1 provides the general departure point for the different approaches to
geotomography presented in the literature. Depending, for example, on the choice for
((x'), one could apply the equation to the scattering of seismic or EM waves. Hence, it
is the approximation one chooses for the integral, and the terms therein, that determines
the solution strategy. If one assumes an EM object function O(x'), and lets
#,(x')= ¢, (x'), or ap,(x")/3p, (x') be small (an aerosol anomaly), the problem reduces to
that of diffraction geotomography (see several publications by Devaney; A.J. Devaney,
1982, 1984 and 1985 are three). If one further assumes that the integral of equation 2-1
can be approximated using a line integral (along a ray path, for example), the approach
reduces to the ray-optics formulation developed by Lager and Lytle (see, for example,

Lager and Lytle, 1977; Dines and Lytle, 1979; Ramirez, 1986: and others).

2.2. _The Wave Diffusion Approach

To avoid the restrictive a priori assumptions on the anomaly characteristics or the
interrogation wavefield, Howard et. al., 1983 proposed to solve equation 2-1 using a wave
diffusion approach, which involves solving the integral analytically. If one selects circular
patches to replace square patches (see Figure 2-1) such that the diameter of the new

patch, a, is equal to A/\/; where A is the patch width, equation 2-1 becomes

b (0) = 4,(0)+ Y (k3 k) (£) T AED) povy gy 03

2. ka

where J is a Bessel function of the first kind.
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The goal of wave diffusion geotomography is to solve equation 2-3 for the

unknown wave number £,,,. then from k,, compute the electrical properties o and €.

There are two complicating problems. First, &,, is complex so the wavefield amplitude

and phase must be measured at the receiver borehole. Second, the scattered field at patch

En due to scattering by patch &; V i, (dg(Ep)), is also unknown.

2.3. Invertine Equation 2-3

The inverse solution to equation 2-3 can be stated in the following way, "find the
distribution of anomalous eddy currents in the interborehole region that produces the
measured field in the borehole.”

Equation 2-3 can be simplified to yield

L= (2-4)

»
== jur "M

where

._421
= (f(k ))(¢ (x,)- & (x,)),

A =HIER 3 R, =

= m m

X, = (hie =B VAL .

e
m _Ej” and

Glass (1980) demostrated that the unknown electrical properties can be calculated by
finding the pseudo inverse of Ajm in equation 2-4 using an iterative method (Pan and Reif,
1985). Since then (Glass, 1990) the inversion has been accomplished using a singular
value decomposition technique. The solution for the electrical properties of the

interborehole rock mass proceeds as follows. Since x, = (k,ém ks (&), then from

the relationship for the wavenumber k. one obtains

o il & g s W (2-5)
D flEn, )% @, O & e T -
P 1) Fai 0] P (Em)
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Equating real and imaginary parts of equation 2-5 yields

&g, = _Re(
ki g (uf )

), and (2-6a)

Oy, = Oy +(Wp,)”" Im(ﬁ;). (2-6b)

In equation 2-6a and 2-6b, k, = /u,¢, is the free space wave number, and [

1s given by

gole. )= Zf_,,,,,_,, . (2-7)

n=|

The G matrix in equation 2-7 is a patch interaction matrix, which describes the

influence of patches on one another: it is given by

fﬂIl:J,(k,(l)*]
T L
. 2Nkd =

4 k
where [ = k—i[l W ——H"(k,a)], along the diagonal (single interaction), and

‘-

T2 J (ka)
ka

I~

H,"(kR,,), for off diagonal elements (a nearby patch

interaction), and

R, =&, = &,| with n cycling through all patches,

Equation 2-7, then, can be written as
Ps(9) = P (DG, —ki)=0.

Letting (k;, — &) be represented by VV, we have

g(:) =~V GY. (2-8)
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This completes the inverse solution for the unknown electrical properties &,,, and
O,.,. Anidea of the reconstruction error can be obtained by substituting the completed
values for € and o into equation 2-4 and comparing the computed borehole measurement
V" with the actual measurement y.

The GA approach to reconstructing the interborehole electrical properties is
attractive, because the electrical properties can be easily constrained, it is iterative, thus
conserves memory, and the matrix inversion (at least the inversion of the ill conditioned

matrix A) is eliminated.

2.3 1. Singular Value Decomposition Approach

Equation 2-4 may be inverted with a singular value decomposition. The
independent variables to be found are the wave numbers kin in vector xpy,; to compute this
vector, we start by transforming equation 2-4 into its following equivalent:

X, =p[d T (2-9)

—j = m
The A matrix and the y vector contain values that are known or can be computed.
Therefore, all we need is to invert matrix A. First, matrix A needs to be decomposed into

the following matrices:

= rT
IO

and J°] can be computed with the following equations:

where ﬂ_’-

A4 ~KT=0, (2-10a)
A4" =AJY =1, and (2-10b)

o [=AF =0 (2-10c)
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In equations 2-10, / is the identity matrix and A is a diagonal matrix where the diagonal

terms are called singular values; the off-diagonal elements are zero, while the eigenvalues

may be either zero or non-zero values.

The generalized inverse of matrix A now be computed as follows:

A'=V,AUT. (2-11)

This procedure has been widely used in various scientific fields for many years

now. Before new tools such as genetic algorithms were explored and tested, singular

value decomposition was the main inversion technique used in science.
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CHAPTER 3
GENETIC ALGORITHMS AND GENETIC TOMOGRAPHY

3.1. Genetic Algorithms

Genetic algorithms describe a broad class of optimization algorithms loosely based
on the principle of natural selection. In all optimization problems, including
geotomography, one is presented with a single function f(call it a fitness function), which
depends on one, or a number of, independent variables. The objective is to search for
values for those independent variables that result in an extremum for the fitness function.
Although there are several standard approaches for satisfying this search, the most
common is to randomly choose a point on f (select specific, though random, values for the
independent variables). then move up or down gradient until the gradient in the
neighborhood of the test point is zero (an extremum).

Two new approaches to optimization, simulated annealing and genetic algorithms,
differ from standard approaches in two fundamental ways. First, a large number of points
are chosen randomly so that the fitness function is thoroughly sampled. Second, new
points are sought, in a massively parallel search both up and down gradient, that
incrementally optimize /£ Of these two new approaches, genetic algorithms are more
flexible for geotomography, because their use does not require a rigid, discrete system
configuration (values for rock mass electrical properties, for example, are not constrained
to discrete values but may vary continuosly between logical limits).

In a nutshell, genetic algorithms proceed in the following manner:
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Randomly select a large number of possible values for the independent variables. Each
unique combination, or set, of independent variables constitutes one population. So
there may be several hundred, or several thousand populations needed to fully sample
the richness of the fitness function.

Encode each population into a string of binary units. The genetic analogue to these
strings are chromosomes, and to the independent variables constituting the strings is
genes, although the complexity of chromosomes and genes relative to our simple
strings significantly trivializes the analogy. In addition, although we have encoded the
strings as binary, this is not a rigid requirement.

Each string has associated with it a firness, obtained by substituting the randomly
selected values for the independent variables into the fitness function. In anticipation
of discussing some problems related to the geotomography fitness function, to be
presented a bit later, it is fair to state here that it is advantageous if the fitness function
Is sensitive to meaningful perturbations of the independent variables.

Natural selection preserves the traits of those individuals who mate the most. We
ensure that, on average, we move efficiently toward an extremum by allowing only our
most fit strings to mate the most. This is usually accomplished using a weighted
roulette wheel selection. The weighting favors the most fit strings, but occasionally, as
luck would have it, a low fitness string enters the mating pool. In this way, genetic
algorithms permit movement throughout the surface of the fitness function and avoid
local extrema.

Mating proceeds through crossover and mutation of the independent variables in each
mating pair, producing two offspring having traits different from the parents. At this
stage, the offspring are returned to step 3 and the process repeated until the desired

fitness is achieved, at which time the optimization problem is considered solved.
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3.1.1. Preceding Research on Genetic Algorithms in Geophysics

There have been a few successful applications of genetic algorithms in geophysical
exploration. Only a handful of papers were found, though. These papers are all
applications of GA's in seismic inversions. Sambridge and Drijkoningen (1991), as well as
three papers by Sen and Stoffa (1991), have successfully inverted seismograms, and thus
obtained accurate velocity models. In these papers, the GA converged more accurately
than other methods used such as Simulated Annealing and the Monte Carlo search, and
Sen and Stoffa (1992) improved the GA performance further by "stretching" the fitness
function using an annealing temperature. Berg (1990 and 1991) presents successful
inversions of multiparameter data as well. Kennett and Sambridge (1992) used GA's to
invert ' earthquake epicenters successfully.  Finally, Wilson and Vasudevan (1991)
presented a paper on the use of GA's as an optimizing method to compute residual statics
in seismic data processing.

All of these authors found genetic algorithms to be a faster and more accurate way
of doing a variety of seismic inversions, but all examples dealt with simple geometries, and
they did not show how exactly their programs differ from standard genetic algorithms such
as the one proposed by Goldberg (1989). No previous research was found on genetic

geotomography.

3.2. Genetic Tomography

In our application of genetic algorithms, we wish to solve equation 2-4 for the
unknown rock mass electrical properties ¢ and €. This goal turned out to present several
non-trivial challenges to GA's. First, the complex nature of the measurements challenged

our ability to form binary encoding. Second, solution of equation 2-4, requires a matrix

inversion (the [/ -}V G] matrix of equation 2-8). If we need to use SVD to invert a
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matrix anyway (even if it is a square matrix), why use GA's?. Third, in the wave diffusion
algorithm, the computed electrical field at each receiver vector yj* in equation 2-4, is a
function of the scattered field from all of the interborehole patches (see Figure 2-1, and
equations 2-4). Hence, a meaningful perturbation in the electrical properties of a single
patch does not necessarily produce an unequivocal perturbation in the fitness function
(here chosen as || Y= yj* ).

The following presents our approach.

3.2.1. Random Initial Guesses

Genetic algorithms require an initial population of genetic strings. Each string
comprises NPATCH pairs of electrical properties (where NPATCH is the number of
patches constituting the interborehole rock mass). Each pair of electrical properties
comprises a random selection of conductivity and permitivity between some
predetermined maximum and minimum values (reasonable values are 1<e<80, and 0<o).
These values are generated in subroutine RANGEN, which generates an initial population
of 50 (variable NPOP) strings. RANGEN starts by selecting the patch in the input grid
having the most significant influence on the fitness function. This is achieved by

sequentially setting each path in a test string to one of the following pairs at a time:

( Omax> €max )
( Smin» €min )»
( Smax: €min )

( Smin> €max )

while all the other patches are set to the background ¢ and € values. The fitness of the test
strings is computed for each trial. Function ONEFIT returns this fitness. If subroutine

RANGEN obtains a fitness of four times the fitness of the background (FITpackground =
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1.000) for any of the trials, that patch is assumed to be anomalous. Four times the
background fitness was chosen (variable INC=4) empirically by observing the behavior of
RANGEN with various grids, and was found to be correct for the case of only one
anomalous patch in the grid.

The purpose for this rather unusual procedure relates to the third "excuse"
mentioned above. During experimentation with the GA's, we discovered a lack of patch-
specific sensitivity in the fitness function and mating process. For example, Figure 3-1
shows a simple pair of genetic strings for nine patches, but considering only € as the

independent variable.

[3[13]3]14|3|3]3|3|3]: Fitness=41.2
[3213(3/3(3]3/3|3|3]: Fitness=35.7

Figure 3-1. Example of a Simple Nine Patch Mating Pair, Each Having a
Respectable Fitness.

Note in Figure 3-1 that both strings have a different anomalous patch, but high
fitness. When they mate, as we shall see in a moment, both anomalous patches will mate
with background patches, thus diluting the mating pool and lowering the fitness of both.
Convergence always occurs, but to background electrical values and low fitnesses. To
avoid this, we need to search for the most promising anomalous patch first.

Once the anomalous (most promising) patches have been determined, RANGEN

populates these patches with random conductivities and permitivities between the
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predetermined ranges, while the non-anomalous patches are left with background
conductivity and permitivity values for their entire population.
Using this approach, RANGEN generates populations that are more representative

of our problem (Figure 3-2).

3.2.2. Main Genetic Loop

The main genetic loop starts by calculating the fitnesses for the individual genetic
strings, followed by the scaling procedures, and concluding with the mating of the strings.
Each of these individual processes is explained below. The genetic loop will stop if the

inverse of the maximum fitness does not exceed the stoping criterion.

3.2.2.1. The Fitness Function

The fitness function (object function) is given by equation 3-1, which states that

the scattered field measured in a receiver borehole can be found as follows:

0.0)= 4,0 = L0k, =k (). 22 ED oy 3

where ¢p(x) is the total horizontal electric field measured in the receiver borehole,
¢1(x) is the calculated incident field at the receiver borehole for a wave
traveling in the background medium (vector F1 in the program),
(92(x) - d1(x)) is the scattered field at the receiver borehole,
ko p is the anomalous wave number for patch n,
k1 is the background wave number,
En is the coordinate at the center of patch n,
a is the diameter of a circular patch having the same area as the square patch

(see Figure 2-1),
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Figure 3-2. Plots of Some Initial Models Generated with Subroutine
RANGEN for a 3 by 3 Patch Grid.
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J1 is a Bessel function of the first kind,

Ho(l) is a Hankel function of type 1 and order O (matrix A in the
program),

Ry, is the distance from patch n to each individual receiver, and

$2(Ep) is the scattered field due to patch &,

The geometry for this method is shown in figure 1-1b.

The wave numbers (kg) can be estimated as follows:
. io
kgz =~ wﬂo(rg +?g) (3'2)

where g equals one (background wave number) or two (anomalous wave number),
@ is the circular frequency in radians per second,
Mo is the magnetic permeability of vacuum (47*10-7 Henries/meter),

Tg is the electric permitivity in Farads per meter, and

Og is the conductivity in mhos per meter.

The wave numbers are computed in subroutine VSETUP and returned in variable

VV as follows:
W=k -k)  (3-3)

An estimate of the scattered field vector ¢o(&,) is computed using equation 2-8

and assuming that -V Gl, ¥ iFH 5 [L=FE G, ¥ i Hence

[[—Vl_f’g],;' ~ 1.0/[[—[/;[&] , ¥V 1=]. The efficacy of the estimation was assessed by

i
comparing GA convergence using the the estimation and using SVD inversion. Howard
and Kretzschmar (1986) proposed the following linear systems of equations for computing

the scattered field Y in the receiver borehole:
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M
y, =2 A%,  (3-4)
m=1

where M is the total number of non-overlapping subregions that compose the
complete anomalous subsurface region A,
A, =H"(kR,), (3-5)
R, =|t,-8], (3-6)
where &y, is a vector to patch m, and

Sj is a vector to receiver j.

ka
J,(ka)

X, = (k;, —k})@.(£,) (3-8).

This last set of equations are used in our fitness subroutine as well. The fitness

)#:(S,)-¢.(S,))  (3-7), and

* _'21‘
Hg = F(

function is then the average error || y-y A |, where y is the receiver vector measured in the

borehole during a geotomography study. It will be shown in chapter 4 that this algorithm

proved to be an adequate fitness function for our genetic algorithm.

3.2.2.2 Conductivity and Permittivity Scaling

32221 Z-Scaling

Genetic algorithms seem to pay attention to the absolute magnitude and variability
of the independent variables. Permittivity ranges from 0 to 80, whereas conductivity may
range over several orders of magnitude. To accomodate these disparities in magnitude
and variability, we scaled the independent variables' z scores, rather than the variables
themselves. The z score is the number of standard deviations above or below the mean for

each independent variable.
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Z-scaling allows the (o.g) pairs to change during mating at proportional rates to
their scaling. This method consists of scaling parameters according to their mean and
standard deviation. The mean and standard deviation for conductivities and permittivities
are computed in the main program, and the actual Z-scaling and descaling is achieved in
subroutine UMATEM. To Z-scale the conductivity and permittivity values, the following

operations are performed:

(Uj _E)
o ot

scaled —

(3-13), and

std

_(3,—;')

scaled —

(3-14).

std

Once mating is complete, descaling is performed. This is done as follows:

1

. =
led Usrd x O-)

(3-15), and

Jdescaied =

(o

sca

8descaied = (En:aied . gsrd T 8) (3-16)

Z-scaling proved useful in the inversions tried.

3.2.2.2.2 Range Scaling

Genetic algorithms perform selection, crossover and mutations on strings. This
program achieves crossover and mutation using binary strings. Hence, the conductivities
and permittivities are scaled from 20 to 2", where n is the maximum number of bits on the
string. Since o and € have different ranges, their strings will have a different number of
bits. Therefore, the program finds appropiate scaling parameters for the strings in each

generation.
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The number of bits necessary to construct the strings (variables MEGABIT1 and
MEGABIT2, corresponding to € and ¢ respectively), are set to 6.
In order to linearly scale all the conductivities and permitivities, the slope (A) and

the intercept (B) of the linear transformation need to be found. This is done as follows,
(Mbit )
el
B =A% Pmin (3-10).

For more convenient scaling, resistivities are used in place of conductivities. These
parameters are calculated in subroutine SCALE, and are used to scale the selected mates
before crossover in subroutine UMATEM by calling function SCALIT, which performs
the following operation:

ScaledMate = Mate*A +B (3-11).
Once crossover has been completed, the new strings are de-scaled in function

DSCALIT, which operates as follows:

DescaledMate = (ScaledMate-B)/A  (3-12).

3.2.2.2.3. Fitness Scaling

Goldberg (1989) proposed a fitness scaling algorithm. The purpose of this
algorithm is twofold. First, to ensure that an exceptionally fit string will not overwhelm
most of the crossovers on early generations. Second, to ensure that negative fitnesses are
scaled to zero. After a few tests, it was concluded that this algorithm (subroutine
FITSCALE) was not necessary for this application. The call to this subroutine was

commented out.
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3.2.2.3. String Selection

In order to select the most fit populations for mating, another random process is
followed. This is known as a weighted "Roulette-Wheel" selection, as described by
Goldberg (1989). A graphical representation of the method is presented for 6 fitnesses in
figure 3-3.

This procedure is done in function SELECT. To start the procedure, a random
number between 0 and 1 is selected (function RANDOM), and multiplied by the sum of all
the fitnesses (variable SUMFITNESS, which is equivalent to the circumference length of
the roulette); this value is stored in variable RAND. This places a "pointer" anywhere on
the roulette. Following this, variable PARTSUM is introduced with an initial value of
zero, and each of the fitnesses are added to PARTSUM one at a time. When PARTSUM
equals or exceeds variable RAND, the last fitness added corresponds to the (o,€) pair
that will be selected for mating.

Two (o,¢) pairs need to be selected for mating, so function SELECT is called
twice in subroutine UMATEM. This process is repeated until a new population of strings

is obtained.

3.2.2.4. String Encoding and Decoding

In order to perform crossover and mutations on the genetic strings, the
conductivities and permitivities are converted to binary strings before, and converted back
to their equivalent values in base 10, after these processes.

Subroutine ENCODE returns a binary string equivalent to the value sent to it.

This 1s done with the following formulation,

1-]
Vv ___2&:(‘, l{Mbit*l\\
¥ =Nt J"‘zm,_” ) (3-17)
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where V is the value sent to the subroutine, and

X[ is the bit to be found.

The bits in the string are found in the following order: x|, X3, X3, .... , XMbit.
represented by 2Mbit oMbit-1 21 respectively.

After crossover and mutation of the mates, function DECODE transforms the
binary string to its equivalent in base 10. The decoded value is then returned in the

variable DECODE, which is computed as follows:
Mbit

Decode =3 (x,. 2-1) (3-18).

I=1

3.2.2.5. Mate Crossover

Once the mate strings have been encoded into their binary equivalents, they are
ready to be crossed. A random number between 1 and the length of the string (Mbit, set
to 6 as a fixed value for both € and o) is selected separately for conductivity and
permitivity in subroutine UMATEM. These values are stored in variables IICROSS and
IRCROSS for conductivity and permitivity, respectively. Subroutine CROSSOVR then

mates the strings. The mating process can be illustrated with the following diagram:

Parent Strings Child Strings
[10100(011] [10100]101]
[00011[101] [00011]011]

The double lines represent the cross over points (IICROSS or IRCROSS) for a pair of

mates. The offspring will contain the same bits as the parents except for the positions to



Sumfitness = 0

Figure 3-3. Roulette
Proposed by Goldbe

W RAND

Wheel Selection Method as
rg (1989).
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CHAPTER 4
RESULTS AND CONCLUSIONS

4.1 Results
The genetic algorithm successfully inverted simple synthetic tomographic sections.
Convergence was achieved after only a few generations of the genetic algorithm for most

inversions. This chapter will show some inversions and their resulting tomographic

sections.

4.1.1 Inversions of Various Grids with One Anomalous Patch.

This section will show eleven cases of synthetic data that were inverted using GA's
to invert equation 2.4. The synthetic sections used to compute the forward models were
chosen randomly, and they all produced satisfactory results. For all of these grids, a
frequency of 100 MHz and the following values for conductivities and permittivities were
used:

Sbackground = 1*10-3 mhos,
Canomaly = 1*1 0-2 mhos,
€background = 3 Farads/meter, and
€anomaly = 10 Farads/meter.
All of these cases were under determined problems, since the genetic algorithm inverted
more unknowns (c-g pairs for each patch) than available data points (number of

receivers). In all of these cases. there were more unknowns than equations.
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An important outcome of this work is the discovery that for this type of inversion
to converge, it is necessary to have only four receivers and one transmitter for each row of
patches in the interrogation region. This will ensure that the receivers will measure the
effects of every single patch, and the patch detection algorithm in subroutine RANGEN

will work properly. This outcome also has ramifications for field survey design.

4.1.1.1. The Nine Patch Grid

Figure 4-1 presents the geometry of the three inversions for this case. The
sections were inverted in the first few generations and the results were almost identical to
the desired values. For this problem, 12 receivers and 3 transmitters were used, so there
were 24 known data values (amplitude and phase measured in receiver borehole) and 18

unknowns (9 conductivities and 9 permittivities) Table 4-1 shows the converged values.

FIRST GRID [SECOND GRID [THIRD GRI
BACKGROUND CONDUCTIVITY 1.00E-03 1.00E-03 1.00E-03
ANOMALOUS CONDUCTIVITY 9.65E-03 9.65E-03 9.65E
BACKGROUND PERMITTIVITY 3 3 3
ANOMALQUS PERMITTIVITY 10 10 1

Table 4-1. Converged Values for Nine Patch Inversions.

The convergence process through various generations is shown in figure 4-2.
Here, it is obvious that the average and maximum fitnesses have a substancial increase
throughout the generations, while the minimum fitness increases, but not significantly for
the different grids. This is a typical behavior for a genetic algorithm, as Goldberg (1989)
described. The convergence criterion in program GEOTOM uses the maximum fitness,
and stops the program when this exceeds a value of 220. This value was determined

empirically.
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First Grid: Second Grid:

Third Grid:

Figure 4-1. Geometry of the Nine Patch Cases. (The shaded patches

represent the anomalous patch, whereas the rest are the background patches.)



Figure 4-2a. Maxinum Fitness Inprovement Plot of 3X2 Grids
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Figure 4-2. Improvement Charts for the Nine Patch Inversions.
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4.1.1.2. The Sixteen Patch Grid

The inversions for the 16-patch case converged quickly and accurately. For this
case, 16 receivers and 4 transmitters were used.

Three different patch grids were inverted. The geometry and location of these
grids is shown in figure 4-3, where the anomalous patches are shown as shaded.

The conductivity and permittivity values to which convergence was achieved are
shown in table 4-2. They are very satisfactory.

Improvement of the average and maximum fitnesses through the generations was
substantial, while the minimum fitness improvement was acceptable (see Figure 4-4). The

16 patch case caused the same behavior as the nine patch case in the genetic algorithm.

FIRST GRID |SECOND GRID THIRD GRT
BACKGROUND CONDUCTIVITIES 1.01E-03 1.01E-03 1.00E-03
ANOMALQUS CONDUCTIVITIES 9.77e-03 9.56E-03 9.65E-03
BACKGROUND PERMITTIVITIES 3 3 3
ANOMALQOUS PERMITTIVITIES 10 10.11 9.989

Table 4-2. Convergence Values for the Sixteen Patch Cases.

4.1.1.3. The Twenty Five Patch Case

Running inversions with program GEOTOM for a 25 patch grid proved no more
difficult than the previous cases. The patch detection algorithm in subroutine RANGEN
worked perfectly for all the cases. On the fifth grid, the program started with good
average and maximum fitnesses. but never converged. For this case, the program was able
to invert the grid when the initial seed for the random number generator (function
RANDOM) was changed from 100003 to 100013 (see section 4.1.2.). For all other seeds

the convergence was rapid.



First Grid: Second Grid:
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Third Grid:

Figure 4-3. Geometry of the 16 Patch Inversions.
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Figure 4-4a. Maximum Fitness Improverent Plot of 4X4 Grids
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First Grid: Second Grid:
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Figure 4-5. Geometry of the 25 Patch Grids.



Figure 4-6a. Maximum Fitness Improvement Plot of 5X5 Grids
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Figure 4-6. Improvement Charts for the 25 Patch Cases.
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For these grids, 20 receivers and 5 transmitters were used. Figure 4-5 shows the
geometry of the grids and the location of the anomalous patches in each grid.
The results of the inversions were once again successful. Table 4-3 lists the

converged values.

s FIFTH GRID
[BACKGROUND CONDUCTVITIES | T.00E-03
ANOMALOUS CONDUCTTATIES | 39203
[BACKGROUND PERMITTIVITIES |

[ANOMALOUS PERMITTTATIES 10.09 10.33 T0.05 f 53713

Table 4-3. Convergence values for the 25 patch cases.

Figure 4-6 shows the improvement rates for the average, maximum and minimum
fitnesses. They reveal similar patterns of convergence as the previous cases. They

converge to similar conductivity and permittivity values and usually in less than 10

iterations.

4.1.2. The Random Number Generator

The random number generator included in the Fortran 77 compiler for the Sun
Sparc 1 stations has been known to be problematic. This brought up the dilemma that the
trouble with the initial seed of the random number generator for the fifth grid on the 25
patch case (see section 4.1.1.3) was due to a problem with this function.

To try to answer this question, function RANDOM was replaced with the first
random number generator routine (function RAN1) for Fortran as described by Press,
Flannery, Teukolsky and Vetterling (1987). Please refer to Appendix B under the name of
FUNCTION RANDOM for a program listing of RAN1. Five initial seeds were used and

the results are shown on table 4-4
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f X i b - )
0 S -ret e iy ey e A A S W P A A AR AN
M m oW s OO0 N D TSRO OOONDO-9NOD
e .C-'..E'.-'wf":mﬁmmqvvwmmmﬁwwur\nnmmwmmmo
-
Generation Number
Figure 4-7b. Plotof Average Fimess Improvement for Multiple Seeds
200 |
180 . [
160 ) j‘ —+— Seed=10 |
140 . ‘ws i !
| —0— Seed=100 |
1203 ; | !
V60 o o | —+— Seed=1000 |
80 fay : ‘
To /1 v | —o— Seed=10000 |
60 4 f» 3 I i
j T
40 %)‘?' Ju . | —s— Seed=100000 |
5 ]
20 flur ———
o o O A R PSRN el YD B RN ..'-".'{'.'f’.";,'.“.-_-.xh:'—ww.w,.w.f.m;-
v-vrxommmmmmr-wrxcmwmmmmrvhomwmmmmrvno
-r.--anmmmwvwvmmmwwwa\nr\r\mmmmmmo
-
Generation Number
Figure 4-7c. Minimum Fitness Improvement for Various Random Seeds
200 .
180 4§ !
—
160 : —#— Seed=10 ,‘
140 . i
i —0— Seed =100 |
120 , | '
100 | —+— Seed=1000 ;
B8O . | i
g : | —— Seed=10000 ‘
0 4 1
40 . fiob 1 | —+— Seed=100000 |
2005 wl gl - :

45



46

ABSOLUTE DIFFERENCES SEED=10 SEED =100 SEED =1000 SEED =10000 SEED=-100000
[BACKGROUND CONDUCTTATY 287E 04 0.00E 00 5.00F 05 2Z03ED2 13X

AL X B R [ T 0.00E 00 JBEDI B OOEDB|
[BACRKGROUND PERMITTTATY U.00F 30, T.00F ¥0| U.00E 00, — 5.38EOT1 T.00E
ANOMALOUS PERMITTIVTY 20E 01 0.00F 00 T.00E-O1 5 O0E 01 T.00E 0T
[# OF GENERATIONS TO CONVER GENCE ¥ 3 T 100

Table 4-4. Errors on the Inversion of the Fifth Grid on the 25 Patch Case
Using Subroutine RAN1 as the Random Number Generator with Various

Initial Seeds.

Table 4-4 shows that different seeds provide different convergence speeds and
accuracy. The results were good for all but the fourth seed used (seed=-10000). This
indicates that different initial seeds should provide good inversions for most cases. It
would be advisable for the user of our inversion program GEOTOM that if one initial seed
does not function properly, the seed should be changed. This also proves that the random
number generator provided with our Fortran compiler proved to be effective in our
inversions. Figure 4-7 shows the improvement rates for the fitnesses using the different
seeds stated in table 4-4. This figure shows that the fourth seed may be doing a poor job
in choosing the random numbers for selection, crossover and mutation. To test this, the
stopping criterion was reduced from 220 to 190. Now, the GA converged on generation
9 with the following values: €background= 3, €anomalous= 10, Obackground= 1.029*10"
3, and Ganomalous= 0.9987*10-2. This proves that convergence in this case is not a
function of the seed in the random number generator, but the stopping criterion. A similar
fitness function stretching approach to the one of Sen and Stoffa (1992) was attempted

with subroutine FITSCALE (refer to Appendix B), but with no success.

4.1.3. The Multiple Anomalous Patches Case

When there is more than one anomalous patch, the problem becomes more

complicated. The fitness function is not sensitive to each patch, but to a whole set of
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patches in each grid. Here, the anomaly detection algorithm does not detect any
anomalous patches, so the genetic algorithm does not converge.

It was thought at first that this may be due to the approximation of [{-¥¥ G ] as
the inverse of the diagonal elements, so subroutine ONEFIT was modified, so that it
would actually invert this matrix, to try to get the anomalous patch detection algorithm to
be sensitive to multiple anomalous patches. The results were the same as with the
approximation of the inverse of the matrix: non-convergence since no anomalous patches
were detected, and all patches were set to background values of € and 5. It is likely that
an initial search strategy that includes a systematic evaluation of patch combinations rather
than solely individuals, or a stepped inversion approach using sequentially higher
resolution patch geometries may be more successful for multiple patch anomalies. This is

a subject for future study.

4.2. Conclusions

¢  The genetic algorithms proved to be a new powerful tool to invert simple wave
diffusion geotomography models. The models converged quickly and accurately.
The models contained only one anomalous patch, since the multiple anomaly patch

cases would not reach convergence.

*  Approximating [/ -1V G]™' as the inverse of the diagonal elements was acceptable,
thus avoiding the need to invert the matrix [L-VV G]. This approximation seems to
be quite accurate as well.

o It is necessary in the wave diffusion geotomography case to mate populations of
strings where only the probable anomalous patches contain a wide range of values
for the search parameters. If this is not achieved, the mating pool is diluted, and the

fitnesses show no improvement throughout the generations.
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Synthetic data indicates that there is potential for the genetic algorithm approach to
wave diffusion geotomography. Even though the cases tried were simple, they show
that this approach may be a useful tool in the future for this type of tomographic
inversions.

The stage is now set to use genetic algorithm tomography on laboratory tank data

during the next phase of research.
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CHAPTER 5
FOLLOW-UP RESEARCH

Follow-up research should address the following;

1.

A better method for detecting anomalous patches is needed. It is possible that
considering combinations of patches instead of solely individuals in the anomalous
patch recognition subroutine will be more successful for multiple anomalous patches
Push the GA to higher density patch networks. So far, the patch density used is
relatively small.

Test the algorithm on tank and field data.



APPENDIX A
PROGRAM FLOWCHART AND LISTING
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A_l. Initial Values

Subroutine INITIAL resets all the values for all the matrices and vectors to zero
before the genetic algorithm proceeds with its computations.
Some constants need to be established for the program to use. This is done in
subroutine CONST. These constants represent the following:
* SA - diameter of the circular patch equivalent to a square patch,
» OMEGA - circular frequency,
* RMU (or pp) - magnetic permeability of vacuum.
* EPO (or gq) - electric permittivity of the medium,
e ZERO - complex value (0.0,0.0),
e ZONE - complex value (1.0,0.0),
* ZI - complex value (0.0,1.0),
« ZK1 - background wave number, and

* ZWT - is defined with the following equation:

=2 . Kk

IWT = — ,
ma” J (ka)

Subroutine INPUT reads necessary variables from the input files. These are the
following:
» FMHZ - probing frequency in megahertz,
e SIGI - background conductivity of the medium,
» EPI - background permitivity of the medium,
» NPATCH - number of patches in the interrogated section to be reconstructed,
» NREC - number of receivers,

» NTRA - number of transmitters,
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DELTA - patch dimension,

IR, IP - dimensions of the A matrix,

IA, JA - row and column position in A to be read,

ZA - A matrix value to be placed in position (IA,JA),

IP1, IP2 - dimensions of the G matrix,

IG, JG - row and column position in G to be read,

ZG - G matrix value to be placed in positions (IG,JG) and (JG,1G),

IP, IF1 - dimensions of the incident field matrix Fl.

ZF1 - FI matrix value to be placed at position (IP.IF1)

NPOP - number of strings in the mating pool.

SIG2ZMAX, SIG2MIN - maximum and minimum allowable values for conductivities,
EP2MAX, EP2MIN - maximum and minimum allowable values for permittivities,
NGEN - maximum number of generations on the genetic algorithm, and

STOPIT - stopping criterion for the genetic algorithm.
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A.2 Program Listing

C....Program GEOTOM V.3.0

INTEGER MAXP.MAXR.MAXBIT.MAXPOP
PARAMETER (MAXP=225)

PARAMETER (MAXR=223)

PARAMETER (MAXBIT=20)

PARAMETER (MAXPOP=225)

COMPLEX ZERO.ZONE.ZI.ZK1.ZWT

COMPLEX A(MAXR.MAXP).G(MAXP MAXP).FI(MAXP)

COMPLEX Y(MAXR).X(MAXPOP.MAXP).YSTAR(MAXR)

COMPLEX V(MAXP).F2(MAXP)

REAL EMAG(MAXP).EPHASE(MAXP).SIGMA(MAXPOP MAXP) MAXFIT
REAL EPSILON(MAXPOP.MAXP).SUMFITNESS.MINFIT . FITIMAXPOP)
REAL SIG2(MAXPOP MAXP).EPS2(MAXPOP . MAXP),ER.SMEAN,EMEAN
REAL AVG.SR.S.E.S2.E2. SSDEV.ESDEV .EN

INTEGER CODERI(MAXBIT).CODER2(MAXBIT).CODEII(MAXBIT)
INTEGER CODEI2(MAXBIT).END.START.CHANGE(225)

INTEGER*4 NSEED

C---OPEN FILES

(3]

L)

4

CALL TIMEIT(BEGIN)

OPEN(11.FILE='GEO.DAT' .STATUS='OLD'.FORM="FORMATTED')
OPEN(I.FILE='REC.DAT'STATUS='OLD'.FORM=FORMATTED' ERR=2)
OPEN(10.FILE='AGF DAT.STATUS='0LD' FORM="UNFORMATTED' ERR=3)
OPEN(Y.FILE='REC.OUT".STATUS='NEW' FORM="FORMATTED')
OPEN(12.FILE='SIGMA.OUT'.STATUS='NEW' FORM="FORMATTED)
OPEN(13.FILE='EPSILON.OUT .STATUS=NEW' FORM="FORMATTED")
OPEN(14.FILE='GEO.INP'STATUS='OLD".FORM='FORMATTED')

GO TO 4

WRITE(*.*) 'ERROR - FILE "REC.DAT" NOT FOUND'
STOP

WRITE(*.*) 'ERROR - FILE "AGF . DAT" NOT FOUND'
STOP

CONTINUE

C---INITIALIZE MATRICES

CALL INITAL(A.G.FLY X.FIT.V.F2MAXR.MAXP.ZERO.MAXPOP,YSTAR,
CODERI.CODEII.CODER2.CODEI2.MAXBIT)

54
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C---INPUT DATA FROM FILE AGF.DAT

CALL INPUT(FMHZ.SIG1 EPI . DELTA.NPATCH NREC.A .G, FI MAXP.MAXR,
] NPOP.SIG2MAX SIG2MIN.EP2MAX_ EP2MIN NGEN,STOPIT)

C---ESTABLISH SOME NEEDED CONSTANTS

CALL CONST(DELTA.FMHZ.SIG1.EP1.SA .PI.OMEGA RMU.EPO.
| ZERO.ZONE.ZL.ZK1.ZWT)

C---READ AND MODIFY THE RECEIVER DATA
WRITE(*.*) '(1).. READ RECEIVER DATA'
WRITE(9.*) '(1)...READ RECEIVER DATA'
CALL YDAT(Y.MAXR.NREC.ZWT)

C---CONSTRAIN THE SOLUTION AND ESTABLISH THE INITIAL BOUNDS ON THE
C---POPULATION. ALSO COMPUTE THE INITIAL X MATRIX.

C---SET THE INITIAL SEED FOR THE RANDOM NUMBER FUNCTION
NSEED=100003

C---RANDOMLY GENERATE INITIAL POPULATION FOR CONDUCTIVITIES AND
C---PERMITIVITIES.

CALL RANGEN(SlG2MAX.EP2MAX.SlGZMIN.EP2MTN,NPATCH,NPOP,
| MAXPOP.NSEED.SIGMA.EPSILON.SIG! . EP1. MAXP.
2 MAXR.X.A.ZERO.Y.YSTAR F1.G.OMEGA.ZI.RMU,
3 NREC.EP0.CHANGE)
C---BEGIN MAIN GENETIC LOOP

MUTATIONS=0
DO 900. IGEN=1 NGEN

C---COMPUTE FITNESSES OF EXISTING SIGMAS AND EPSILONS
CALL F[TNESS(X.FIT_NPOP.MAXPOP.NREC,NPATCH.A,ZERO.MAXP,MAXKY,
] YSTAR.SIGMA EPSILON.F1.G.EP0.SIG] .EP1.OMEGA.
2 Z1.RMU.IGEN)

C---COMPUTE THE SUM, MINIMUM AND MAXIMUM VALUES OF FITNESSES

SUMFITNESS=0.0



MINFIT=FIT(1)

MAXFIT=FIT(1)

DO §98. KK=1 ,NPOP
SUMFITNESS=SUMFITNESS+FIT(KK)
MINFIT=AMIN I(FIT(KK).MINFIT)
MAXFIT=AMAX I(FIT(KK).MAXFIT)

898 CONTINUE

AVG=SUMFITNESS/FLOAT(NPOP)

C---BEGIN FITNESS SCALING

 G— CALL FITSCALE(FIT MAXFIT MINFIT.AVG,NPOP_SUMFITNESS)

WRITE(*.*) 'GENERATION = "IGEN
WRITE(9.*) 'GENERATION = "IGEN
WRITE(*.*) 'AVERAGE FITNESS ="' AVG
WRITE(*.*) 'MOST FIT STRING ="' MAXFIT
WRITE(*.*) 'LEAST FIT STRING ="' MINFIT
WRITE(Y.*) 'AVERAGE FITNESS ='AVG
WRITE(Y.*) 'MOST FIT STRING ="'.MAXFIT
WRITE(9.*) 'LEAST FIT STRING ="'.MINFIT

(Cone COMPUTE THE MEAN AND STANDARD DEVIATIONS FOR CONDUCTIVITY
G AND PERMITTIVITY FOR Z-SCALING.
EN=0.0
SMEAN=0(.0
EMEAN=0.0
DO 237, I=1.NPOP
DO 237, J=1. NPATCH
SR=1.0/SIGMA(L.))
SMEAN=SMEAN+SR
ER=EPSILON(1.J)
EMEAN=EMEAN+ER
EN=EN+1.0
CONTINUE
SMEAN=SMEAN/EN
EMEAN=EMEAN/EN
SSDEV=0.0
ESDEV=(.0
DO 238. I=1.NPOP
DO 23K. J=1 NPATCH
SR=1.0/SIGMA(L)
ER=EPSILON(1.))
S=SR-SMEAN
E=ER-EMEAN
S§2=8*§

8o
(5]
~J
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E2=E*E
SSDEV=SSDEV+S2
ESDEV=ESDEV+E2
238 CONTINUE
SSDEV=SQRT(SSDEV/(EN-1.0))
ESDEV=SQRT(ESDEV/(EN-1.0))

C---FIND THE LIMITS FOR SCALING -> USE RESISTIVITY FOR MORE
C---CONVENIENT SCALING.

SMAX = ((1.0/SIGMA(1.1))-SMEAN)/SSDEV

EMAX = (EPSILON(]1.1)-EMEAN)/ESDEV

SMIN = SMAX

EMIN = EMAX

DO 100 1= [.NPOP

DO 100 J = | NPATCH
SR = ((1.0/SIGMA(1.J))-SMEAN)/SSDEV
ER = (EPSILON(I1.J)-EMEAN)/ESDEV
SMAX = AMAX I(SR.SMAX)
EMAX = AMAXI(ER.EMAX)
EMIN = AMIN [(ER.EMIN)
SMIN = AMINI(SR.SMIN)
100 CONTINUE

C---COMPUTE SCALING CONSTANTS TO SCALE SIGMA AND EPSILON
C---FROM 0 -> 2**MEGABIT.

DIFF1 = EMAX - EMIN
DIFF2 = SMAX - SMIN
ANUMI = ALOGI0(DIFF1)
ANUM2 = ALOGI0(DIFF2)
DENOM = ALOG10(2.0)
BIT1 = ANUMI/DENOM
BIT2 = ANUM2/DENOM
MEGABITI =6
MEGABIT2 =6
ALIMI = 2.0*MEGABIT]
ALIM2 = 2.0**MEGABIT?2
CALL SCALE(AS.BS.SMAX.SMIN.ALIM?2)
CALL SCALE(AE.BE.EMAX.EMIN ALIM1)

C---CHECK FITNESS AGAINST STOPPING CRITERION

IF((MAXFIT).GE (220)) GO TO 950
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C---MATE THE MOST FIT STRINGS.

CALL UMATEM(NPOP.NPATCH.MAXPOP MAXP MEGABITI.MEGABIT2,
AS BS.AE.BE.CODERI.CODEII.CODER2,CODEI2.R,NSEED,
SIGMA _EPSILON.SUMFITNESS NREC.ZERO.MAXR_FIT,
SIG2.EPS2 MUTATIONS.SMEAN . EMEAN,.SSDEV_ ESDEV,
CHANGE.SIG1.EPI)

B LN —

900  CONTINUE
950  CONTINUE
C---COMPUTE FITNESSES FOR LAST GENERATION
CALL FITNESS(X.FITNPOP.MAXPOP NREC NPATCH,A.ZERO.MAXP,MAXR,Y,
1 YSTAR.SIGMA.EPSILON.F1.G.EP0.SIG1.EP1.OMEGA,
2 ZI.RMU)
WRITE (9.*) MUTATIONS. ' MUTATIONS OCCURED"'
C---SORT SIGMA AND EPSILON ACCORDING TO FITNESSES FROM BIT TO SMALL
CALL SORTEM(X.SIGMA_EPSILON.FIT,NPOP,NPATCH.MAXPOP MAXP)
C---COMPUTE THE F2 VECTOR

CALL TIMEIT(START)

WRITE(*.*) '(4) COMPUTE F2'
WRITE(9.%) '(4) COMPUTE F2'

CALL F2COMP(F1.G.X.MAXP.NPATCH.F2.MAXPOP)

CALL TIMEIT(END)

SPAN = END - START

WRITE(*.*) 'TIME TO COMPUTE F2 ='SPAN,' SECONDS'

WRITE(9.*) 'TIME TO COMPUTE F2 ="' SPAN.' SECONDS'
C---COMPUTE THE CONDUCTIVITY AND DIELECTRIC CONSTANT

WRITE(*.*) '(3)...COMPUTE ELECTRICAL PARAMETERS'
WRITE(9.*) '(3)...COMPUTE ELECTRICAL PARAMETERS'

CALL PARCOMP(X.FI.F2. MAXP.NPATCH.OMEGA .RMU.EP0.EP1.SIGI,
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| EMAG.EPHASE.SIGMA .EPSILON.MAXPOP.NPOP)

STOP
END

SUBROUTINE SORTEM(X.SIGMA .EPSILON.FIT,NPOP,
1 NPATCH.MAXPOP MAXP)

COMPLEX X(MAXPOP MAXP). TEMPC
REAL FIT(1 ).SIGMA(MAXPOP.MAXP).EPSlLON(MAXPOP.MAXP)

C---THIS SUBROUTINE SORTS ARRAY X FROM LARGEST FITNESS TO SMALLEST.
LIM = NPOP - |
C---INITIALIZE INT TO | IN THE EVENT ALL FIT(I) ARE IN ORDER.

l INT = |
DO 200 1= I.LIM
IF(FIT(1+1).LE.FIT(I)) GO TO 200
TEMP = FIT(I+1)
DO 100 J = [ NPATCH
TEMPC = X(1+1.))
X(I+1.0) = X(1.)
X(LJ) = TEMPC
TEMPS = SIGMA(I+1.J)
SIGMA(I+1.J) = SIGMA())
SIGMA(LJ) = TEMPS
TEMPE = EPSILON(I+1.J)
EPSILON(I+1.J) = EPSILON(1.J)
EPSILON(L.J) = TEMPE
100 CONTINUE
FIT(I+1) = FIT(I)
FIT(I) = TEMP
INT =1
200 CONTINUE

C---INT GIVES THE POSITION OF THE LAST INTERCHANGE.
IF(INT.EQ.1) GO TO 300

LIM =INT - |
GOTO I



300

CONTINUE

RETURN
END

SUBROUTINE TIMEIT(RTVAL)
INTEGER*4 ARRAY(3)
CALL ITIME(ARRAY)

RTVAL = 3600*ARRAY(1) + 60*ARRAY(2) + ARRAY(3)

RETURN
END

SUBROUTINE INITAL(A.G.F! Y. XFIT.V.F2 MAXR MAXP_ZERO.MAXPOP,
YSTAR.CODERI1.CODEII.CODER2.CODEI2.
MAXBIT)

COMPLEX A(MAXR.MAXP).G(MAXP.MAXP)_FI(MAXPLX(MAXPOP,MAXP)
COMPLEX Y(MAXR).ZERO.YSTAR(MAXR)

COMPLEX V(MAXP).F2(MAXP)

REAL FITIMAXPOP)

INTEGER CODER I(MAXBIT).CODEI I(MAXBIT).CODER2(MAXBIT)
INTEGER CODEI2(MAXBIT)

C---SET INITIAL VALUES OF ARRAYS AND MATRICES TO ZERO

100

ZERO = CMPLX(0.0.0.0)

DO 100 1= 1.MAXR
Y(l) = ZERO
YSTAR(I) = ZERO
DO 100 J = |. MAXP

A(lJ) =ZERO

DO 1101=|.MAXP
FI(I)=ZERO
V(l) = ZERO
F2(l) = ZERO

60



110

200

300

DO 110J=1.MAXP
G(1.J) = ZERO
CONTINUE

DO 2001 = 1. MAXPOP
FIT(I)=0.0
DO 200 J = | MAXP
X(L.)) = ZERO
CONTINUE

DO 300 1= 1.MAXBIT
CODERI(l)=0
CODEII() =0
CODER2(I)=0
CODEI2(1) =0

CONTINUE

RETURN
END

SUBROUTINE INPUT(FMHZ.SIG ] .EP| DELTANPATCHNREC,A,G.F1,
MAXP.MAXR.NPOP.SIG2ZMAX.SIG2MIN.EP2MAX_.EP2MIN,
NGEN.STOPIT)

IMPLICIT DOUBLE PRECISION (A-H.0-Z)
COMPLEX A(MAXR.MAXP).G(MAXP.MAXP).FI(MAXP)
COMPLEX ZA.ZG.ZF|

C---READ IN ALL NECESSARY INFORMATION FOR THE GA

WRITE(*.*) 'PROGRAM VECTORGA (VER. 2. 5/93) C. GLASS & J. ARCE'
WRITE(*.*) '

WRITE(*.*) 'RUN INFORMATION'

WRITE(*#) 'mreemees '

WRITE(*.*)

WRITE(9.*) 'PROGRAM VECTORGA (VER. 2. 5/93) C. GLASS & J. ARCE'
WRITE(9.*) '-- '

WRITE(9.*) 'RUN INFORMATION'

W RI TR A e !

READ(10) FMHZ
WRITE(Y.*) 'PROBING FREQUENCY ='FMHZ
WRITE(*.*) 'PROBING FREQUENCY ='FMHZ

6l
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READ(10) SIGI1.EPI

WRITE(Y.*) ' BACKGROUND CONDUCTIVITY ="'SIGI
WRITE(*.*) 'BACKGROUND CONDUCTIVITY = 'SIGI
WRITE(9.*) 'BACKGROUND PERMITTIVITY ="EPI
WRITE(*.*) ' BACKGROUND PERMITTIVITY ="EPI

READ(10) NPATCH.NREC.NTRA
WRITE(9.*) 'NUMBER OF INTERROGATED PATCHES =''NPATCH
WRITE(*.*) 'NUMBER OF INTERROGATED PATCHES ='NPATCH

WRITE(Y.*) 'NUMBER OF RECEIVERS ='NREC
WRITE(*.*) 'NUMBER OF RECEIVERS ='NREC
WRITE(Y.*) 'NUMBER OF TRANSMITTERS ='NTRA
WRITE(*.*) NUMBER OF TRANSMITTERS ='NTRA

IF(NPATCH.GT MAXP) THEN

WRITE(*.*) 'ERROR - THERE ARE TOO MANY PATCHES (NPATCH > MAXP)'
STOP

ENDIF

IF(NREC.GT.MAXR) THEN

WRITE(*.*) 'ERROR - THERE ARE TOO MANY RECEIVERS (NREC > MAXR)'
STOP

ENDIF

READ(10) DELTA
WRITE(9.*) THE PATCH DIMENSION ='DELTA
WRITE(*.*) THE PATCH DIMENSION ='.DELTA

WRITE(9.*) 'READING THE A MATRIX'

WRITE(*.*) 'READING THE A MATRIX'

READ(10) IR.IP

IF(IR.NE.NREC) THEN

WRITE(*.*) 'ERROR - THE NUMBER OF RECEIVERS DOES NOT EQUAL NREC'
STOP

ENDIF

IF(IP.NE.NPATCH) THEN

WRITE(*.*) 'ERROR - THE NUMBER OF PATCHES DOES NOT EQUAL NPATCH'
STOP

ENDIF

WRITE(9.*) 'THE DIMENSION OF THE A MATRIX IS "IR.' BY 'IP

WRITE(*.*) THE DIMENSION OF THE A MATRIX IS 'IR. BY "IP

DO 100 1= 1 NREC

DO 100 J = 1.NPATCH

READ(10) IAJA.ZA

IF(IANNE.1.OR.JA NE.J) THEN

WRITE(*.*) 'ERROR - ELEMENTS OF THE A MATRIX ARE OUT OF ORDER!
STOP

ENDIF
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200

300

A(l))y=ZA

CONTINUE

WRITE(9.*) 'READING THE G MATRIX'

WRITE(*.*) 'READING THE G MATRIX'

READ(10) IP1.1IP2

IF(IP1.NE.NPATCH) THEN

WRITE(*.*) 'ERROR - IP1 DOES NOT EQUAL NPATCH'

STOP

ENDIF

IF(IP2. NENPATCH) THEN

WRITE(*.*) 'ERROR - IP2 DOES NOT EQUAL NPATCH'

STOP

ENDIF

WRITE(9.*) 'THE DIMENSION OF THE G MATRIX IS '.IP1,' BY “IP2
WRITE(*.*) ' THE DIMENSION OF THE G MATRIX IS "IP1,' BY "IP2
DO 200 1= I.NPATCH

DO 200 J = LNPATCH

READ(10) 1G.JG.ZG

IF(IGNE.1.OR.JG.NE.J) THEN

WRITE(*.*) 'ERROR - ELEMENTS OF THE G MATRIX ARE OUT OF ORDER'
STOP

ENDIF

G(l.J)=2ZG

G(.h)=2G

CONTINUE

WRITE(Y.*) 'READING THE INCIDENT FIELD MATRIX. FI'
WRITE(*.*) 'READING THE INCIDENT FIELD MATRIX, FI'
READ(10) IP.IFI

IF(IP.NE.NPATCH) THEN

WRITE(*.*) 'ERROR - IP DOES NOT EQUAL NPATCH'

STOP

ENDIF

IF(IF1.NE.1) THEN

WRITE(*.*) 'ERROR - IFI DOES NOT EQUAL I'

STOP

ENDIF

WRITE(Y.*) 'THE DIMENSION OF THE FI MATRIX IS 'IP.' BY ',IF 1
WRITE(*.*) 'THE DIMENSION OF THE FI MATRIX IS "IP.' BY "IF1
DO 300 1= I|.NPATCH

READ(10) IFJF.ZF1

IF(IF.NE.I.LOR.JF.NE.1) THEN

WRITE(*.*) 'ERROR - ELEMENTS OF THE FI MATRIX ARE OUT OF ORDER'
STGE

ENDIF

Fi(l)=ZFI

CONTINUE
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READ(10) INCLUD
DO 500 1= 1. INCLUD
READ(10) LANLOC
CONTINUE
READ(10) NPOP.SIG2ZMAX.SIG2MIN.EP2MAX.EP2MIN,NGEN.STOPIT

NGEN=100

WRITE(Y.*) 'TOTAL MATING POPULATION ='NPOP
WRITE(9.*) 'RANGE FOR SIGMA ='SIG2MIN,' TO 'SIG2ZMAX
WRITE(9.¥) 'RANGE FOR EPSILON ="EP2MIN.' TO ' EP2MAX
WRITE(9.*) ' NUMBER OF MATING GENERATIONS ="'NGEN
WRITE(9.*) 'MINIMUM ERROR ="'STOPIT

WRITE(*.*) TOTAL MATING POPULATION ="'NPQOP
WRITE(*.*) 'RANGE FOR SIGMA ="'SIG2MIN.' TO ' SIG2ZMAX
WRITE(*.*) 'RANGE FOR EPSILON ="'EP2MIN.' TO ' EP2MAX
WRITE(*.*) ' NUMBER OF MATING GENERATIONS ="' NGEN
WRITE(*.*) 'MINIMUM ERROR ="'STOPIT

RETURN
END

SUBROUTINE CONST(DELTA . FMHZ.SIG1.EP1.SA . P1.OMEGA RMU,EPO,
ZERO.ZONEZI.ZK1.ZWT)

COMPLEX ZERO.ZONE.ZI.ZK1.ZARG.ZH0.ZH1.Z]0.Z)1 . ZWT

C---DECLARE SOME NECESSARY CONSTANTS

SA = (.5641895836*DELTA
Pl =4.0*ATAN(1.0)
OMEGA = 2 0E+6*PI*FMHZ
RMU = 4 0E-7*PI

EPO = 8 854 1853E-12

ZERO = CMPLX(0.0.0.0)
ZONE = CMPLX(1.0.0.0)
ZI = CMPLX(0.0.1.0)

ZK1 = CSQRT(OMEGA*OMEGA*RMU*(EPO*EP1 + ZI*SIGI/OMEGA))
ZARG = ZK1*SA

CALL BSJH(ZARG.ZJ0.ZJ1.ZH0.ZH1.0)

ZWT = -2 0*ZI*ZARG/(PI*SA*SA*Z] )

XLAM = 2.0*PI/REAL(ZK])

WRITE(Y.*) ' BACKGROUND WAVELENGTH ="' XLAM



RETURN
END

SUBROUTINE YDAT(Y MAXR.NREC.ZWT)
COMPLEX ZWT.Y(MAXR)
C---READ RECEIVER VECTOR

READ(1.*) NR

IF(INR.NE.NREC) THEN

WRITE(*.*) 'ERROR - NR DOES NOT EQUAL NREC'
STOP

ENDIF

DO 99 [ = 1.NREC
99 READ(1.*) Y(I)

C---COMPUTE EFFECTIVE Y
DO 100 I = 1.NREC
Y() =Y(*ZWT

100 CONTINUE

RETURN
END

SUBROUTINE F2COMP(F1.G.X.MAXP.NPATCH.F2. MAXPOP)

COMPLEX FI(MAXP).G(MAXP.MAXP).F2(MAXP). X(MAXPOP.MAXP)
COMPLEX ZSUM

C---COMPUTE F2 VECTOR

DO 200 1= 1.NPATCH
ZSUM = F ()
DO 220 J = | NPATCH
ZSUM = ZSUM + G(L.1)*X(1.))
220 CONTINUE
F2(1)= ZSUM
200 CONTINUE
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RETURN
END

1

SUBROUTINE PARCOMP(X.F1 F2. MAXP.NPATCH.OMEGA RMU,EP0.EP1 SIGI,
EMAG.EPHASE.SIGMA_EPSILON.MAXPOP NPOP)

C---COMPUTE EDDY CURRENT PHASE AND MAGNITUDE, CONDUCTIVITIES, AND
C---PERMITIVITY PARAMETERS

300

1010

COMPLEX X(MAXPOP.MAXP).F2(MAXP).DUM.FI(MAXP)
REAL EMAG(MAXP). EPHASE(MAXP).SIGMA(MAXPOP MAXP)
REAL EPSILON(MAXPOP MAXP)

READ(11.*) IPATCH

READ(11.*) DUMMY

READ(14.*) NROW.NCOL

WRITE(* ¥) "#Fsekshkshaohh s d ko k Rk RRREERRKKAEEA KA KA

WRITE(*.*)

WRITE(Y.*)

WRITE(Y.1010)

WRITE(Y.*)" EDDY CURRENT MAGNITUDE'
DO 300 1= 1.NPATCH

WRITE(Y.*) X(1.1)
DUM = CLOG(X(1.I))
DI = AIMAG(DUM)
DR = REAL(DUM)
EMAG(I) = EXP(DR)
EPHASE(I) = 57.29577951*DlI
READ(11.*) IPATCH.XX.YY
WRITE(12.*) XX.YY.EMAG(I)
WRITE(13.*) XX.YY.EPHASE(I)
CONTINUE
REWIND(I11)
READ(11.*) IPATCH
READ(11.*) DUMMY

PRINT OUT EDDY CURRENT MAGNITUDE

FORMAT(IHI)

DO 320 1= I.NROW
INDEX = (I - )*NCOL + |
IEND = I*NCOL
WRITE(9.1020)
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1020 FORMAT(///1])

WRITE(9.1030) (EMAG(J).J = INDEX.IEND)
1030 FORMAT(10(E12.4.2X))
320 CONTINUE

€ PRINT OUT EDDY CURRENT PHASE

WRITE(9.1010)
WRITE(9.%)' EDDY CURRENT PHASE'
DO 330 I = . NROW

INDEX = (I - D*NCOL + |

IEND = I*NCOL

WRITE(9.1020)

WRITE(9.1030) (EPHASE(J). J = INDEX.IEND)

330 CONTINUE

T PRINT OUT CONDUCTIVITY DISTRIBUTION

WRITE(9.1010)
WRITE(9.*) ' PATCH CONDUCTIVITY USING F2'
DO 3791= | .NPATCH
EPSILON(2.1) = REAL(X(1.1)/F2(1))/(OMEGA*OMEGA*RMU*EP0)+EP|
SIGMA(2.1) = AIMAG(X(L.1)/F2(1))/(OMEGA*RMU) + SIG1
WRITE(*.*) ' PATCH # "1." :SIG = '.SIGMA(L.])

1 " EPSILON =", EPSILON(L.I)
READ(11.¥) IPATCH.XX.YY
WRITE(12.*) XX.YY.SIGMA(1.1).SIGMA(2.I)
WRITE(13.%) XX.YY.EPSILON(1.1).EPSILON(2.1)

379 CONTINUE
WRITE(*.*)
WRITE(* %) "% %% 5K 50k K 0k 348 5K K KA KA KKK A A KT
DO 380 1= 1. NROW
INDEX = (1 - )*NCOL + |
IEND = [*NCOL
WRITE(9.1020)
WRITE(9.1030) (SIGMA(2.J).J = INDEX.IEND)
380 CONTINUE
WRITE(.1010)

K PRINT OUT THE PERMITTIVITY DISTRIBUTION

WRITE(9.*)' PERMITTIVITY USING F2'
DO 3851 = | NROW

INDEX =(I1- 1)*NCOL + |

IEND = I*NCOL
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395

400

WRITE(9.1020)

WRITE(9.1030) (EPSILON(2.J).J = INDEX.IEND)
CONTINUE
REWIND(11)
READ(I1.*) IPATCH
READ(I1.*) DUMMY
WRITE(9.1010)
WRITE(9.*)' PATCH CONDUCTIVITY USING FI'
DO 390 1 = 1. NPATCH
EPSILON(2.1) = REAL(X(L.I)/F I(1))/(OMEGA*OMEGA*RMU*EP0) + EP1
SIGMA(2,1) = AIMAG(X(1.I)/F1(1))/(OMEGA*RMU) + SIG1
READ(11.*) IPATCH.XX.YY
WRITE(12.*) XX.YY.SIGMA(2.1)
WRITE(13.*) XX.YY.EPSILON(2.I)
CONTINUE
DO 395 1= .NROW

INDEX = (I - 1)*NCOL + |

IEND = *NCOL

WRITE(Y.1020)

WRITE(9.1030) (SIGMA(2.J).J = INDEX.IEND)
CONTINUE
WRITE(9.1010)

PRINT OUT THE PERMITTIVITY DISTRIBUTION USING FI'

WRITE(9.%)" PERMITTIVITY USING FI'
DO 400 [ = | NROW
INDEX =(I- 1)*NCOL + |
IEND = [*NCOL
WRITE(9.1020)
WRITE(9.1030) (EPSILON(2.J).) = INDEX_IEND)
CONTINUE
WRITE(Y.1020)

RETURN
END

SUBROUTINE VSETUP(VV.EP0.SIG1.EP1.OMEGA.ZI.RMU SIG.EPS)
COMPLEX ZLVV

VR = EPO*(EPS-EP1)

VI = (SIG-SIG1)/OMEGA

VV = CMPLX(VR.VI)

VV = VV*OMEGA*OMEGA*RMU
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RETURN
END

SUBROUTINE UMATEM(NPOP.NPATCH.MAXPOP MAXP MEGABITI,
MEGABIT2.AS.BS.AE.BE.CODERI,CODEI1.CODER2.CODEI2,R NSEED,
SIGMA_EPSILON.SUMFITNESS. NREC.ZERO.MAXR_FIT,
SIG2.EPS2.MUTATIONS.SMEAN.EMEAN.SSDEV_ ESDEV,
CHANGE.SIG1.EPI)

L RO —

C---THIS SUBROUTINE MATES THE STRINGS.

INTEGER CODERI(1).CODER2(1).CODEII(1).CODEI2(l)

INTEGER MATEI MATE2. SELECT.CHANGE(1),POS

INTEGER*4 NSEED

REAL SIGMA(MAXPOP.MAXP).EPSILON(MAXPOP MAXP)

REAL SUMFITNESS.SIG2(MAXPOP.MAXP) EPS2(MAXPOP . MAXP)
REAL E1.E2.S1.S2.RANDOM

C---START MATING OF ANOMALOUS PATCHES.
DO 400. J=1.NPOP, 2

C---SELECT TWO MATES

MATE I=SELECT(NPOP.SUMFITNESS.FIT,NSEED)
MATE2=SELECT(NPOP.SUMFITNESS.FIT.NSEED)

DO 460.1=1 . NPATCH
C---CONVERT TO RESISTIVITIES. SCALE ANOMALOUS SIGMA AND EPSILON.

S1=((1.0/SIGMA(MATEI.1))-SMEAN)/SSDEV
S1=SCALIT(S1.AS.BS)
S2=((1.0/SIGMA(MATE2.1))-SMEAN)/SSDEV
S2=SCALIT(S2.AS.BS)
El1=(EPSILON(MATEI.I)-EMEANYESDEV
E1=SCALIT(E|.AE.BE)
E2=(EPSILON(MATE2.1)-EMEAN)YESDEV
E2=SCALIT(E2.AE.BE)

C---ENCODE EACH SIGMA AND EPSILON INTO BINARY STRINGS.
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CALL ENCODE(EI.MEGABIT1.CODERI)
CALL ENCODE(SI.MEGABIT2.CODEII)
CALL ENCODE(E2.MEGABIT1.CODER2)
CALL ENCODE(S2.MEGABIT2.CODEI2)

C---FIND CROSS-OVER POINTS FOR STRINGS

BITI=FLOAT(MEGABITI)
BIT2=FLOAT(MEGABIT2)
IICROSS=RANDOM(BIT2.1.0.NSEED)
IRCROSS=RANDOM(BITI.1.0.NSEED)

C---CROSS THE STRINGS AND CHECK FOR MUTATION.

CALL CROSOVR(CODERI.CODER2.CODEI1.CODEI2 MEGABIT1,MEGABIT?2,
1 IICROSS.IRCROSS.NSEED.MUTATIONS)

C---DECODE THE NEW STRING INTO REAL AND IMAGINARY VALUES

S1 =DECODE(CODEII.MEGABIT2)
S2 = DECODE(CODEI2.MEGABIT?2)
El = DECODE(CODERI.MEGABITI)
E2 = DECODE(CODER2.MEGABITI)

C---WRITE CHILD STRINGS IN SIG2 AND EPS2'S ANOMALOQUS PATCHES AND
C---SET ALL OTHER PATCHES TO BACKGROUND.

SIG2(J.1)=DSCALIT(S1.AS.BS)
EPS2().1)=DSCALIT(E|.AE.BE)
SIG2(J+1.1)=DSCALIT(S2.AS.BS)
EPS2(J+1.1)=DSCALIT(E2.AE.BE)
460 CONTINUE
400 CONTINUE

C---STORE NEW POPULATION BACK IN OUR ORIGINAL ARRAYS.

DO 500 I=1.NPATCH
DO 500 J=1.NPOP
SIGMA(L.D=1.0/(S1IG2(J.H)*SSDEV+SMEAN)

EPSILON(J.)=EPS2(J.1)*ESDEV+EMEAN
500 CONTINUE

RETURN
END



T s
SUBROUTINE SCALE(A.B.BIG.SMALL.ALIM)

C---THIS SUBROUTINE SCALES A VECTOR RANGING FROM BIG TO SMALL TO
C---THE RANGE 2**MEGABIT TO 0 (A MEGABIT BIT VALUE).

DELTA=BIG-SMALL
A=ALIM/DELTA
B=-A*SMALL

RETURN
END

FUNCTION SCALIT(VALUE.A.B)
C---SCALE VALUE TO CALCULATED RANGE
SCALIT = VALUE*A + B

RETURN
END

FUNCTION DSCALIT(VALUE.A.B}
C---DESCALES VALUE FROM CALCULATED RANGE TO ORIGINAL RANGE
DSCALIT = (VALUE - B)/A

RETURN
END

T S i

SUBROUTINE E\'CODE(,\'X.MEGABIT.ICODE)
INTEGER ICODE(])
C---THIS SUBROUTINE CODES A VARIABLE INTO ITS BINARY STRING.

SUB=0.0
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DO 100, I = 1.MEGABIT
JBIT = MEGABIT - |
ID = 2**]BIT
IBIT = (XX - SUB)/FLOAT(ID)
ICODE(I) = INT(IBIT)
SUB = SUB + FLOAT(ICODE(I)*ID)

100 CONTINUE
RETURN
END
¢ -

C---THIS SUBROUTINE DECODES A BINARY STRING INTO REAL VALUES.

100

REAL FUNCTION DECODE(AA MEGABIT)

INTEGER AA(1)

DECODE = 0.0
DO 100. I = | MEGABIT

J = MEGABIT - 1

DECODE = DECODE + REAL(AA(1)*(2**]))
CONTINUE

RETURN
END

SUBROUTINE CROSOVR(CRI.CR2.CI11 .CI2MEGABIT1 MEGABIT2,
I.JNSEED.MUTATIONS)

INTEGER CRI(1).CR2(1).CLI(D):CI2(1).C
INTEGER*4 NSEED

C---THIS SUBROUTINE CROSSES THE GENES OF THE MATING STRINGS.

100

DO 100. K = | MEGABITI
IF(K.GE.J) THEN

C=CRI(K)

CRI(K) = CR2(K)

CR2(K)=C
ENDIF

CALL UMUTATE(CR I(K).CR2(K).NSEED.MUTATIONS)
CONTINUE
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DO 200. K=1. MEGABIT2
IF(K.GE.T) THEN

C =CII(K)
CINK) = CI2Z(K)
CI2(K)=C
ENDIF
CALL UMUTATE(CII(K).CI2(K).NSEED.MUTATIONS)
200 CONTINUE
RETURN
END
C

SUBROUTINE UMUTATE(IA.IBINSEED.MUTATIONS)

INTEGER*4 NSEED
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(C---THIS SUBROUTINE PERFORMS A GENE MUTATION AT A PROBABILITY OF 0.001

P

TEST = RANDOM(10000.0.0.0. NSEED)

ITEST = INT(TEST)

IRITESTECQ.1) THEN
MUTATIONS=MUTATIONS+1
TEST = RANDOM(1000.0.0.0.NSEED)
IF(TEST.GE.500.0) THEN

IA=ABS(A-1)
ELSE
IB=ABS(IB- 1)
ENDIF
ENDIF

RETURN
END

L) B

SUBROUTINE RANGEN(SMAX.EMAX.SMIN_EMIN NPATCH NPOP,MAXPOP,

NSEED.SIGMA.EPSILON.SIGI.EP1. MAXP.MAXR,
X.AZERO.Y.YSTAR.F1.G.OMEGA.ZI. RMU.
NREC.EP0O.CHANGE)

COMPLEX A(MAXR.MAXP).ZERO.FI(1).X(MAXPOP MAXP)
COMPLEX G(IMAXP.MAXP).ZLY(1).YSTAR(])

REAL SIGMA(MAXPOP.MAXP).EPSILON(MAXPOP MAXP)
REAL SMAX.EMAX.SMIN.EMIN.SIGI.EP1.ONEFIT



74

REAL BACKFIT.NEWFIT.SVAL.EVAL RANDOM
INTEGER CHANGE(I)

C---THIS SUBROUTINE POPULATES THE SIGMA AND EPSILON MATRICES WITH
C---RANDOM VALUES BETWEEN (SMAX.EMAX) AND (SMIN.EMIN).

C---POPULATE ALL STRINGS WITH BACKGROUND SIGMA AND EPSILON
DO 100.I = I.NPOP
DO 50J = | NPATCH
SIGMA(L]) = SIGI
EPSILON(1.)) = EPI
50 CONTINUE
100 CONTINUE
INC=4
DO 300.1=1 . NPATCH
WRITE (9.*) 'PATCH = "1
CHANGE()=0
BACKFIT=ONEFIT(X.MAXPOP.NREC.NPATCH.A.ZERO,MAXP,
| MAXR.Y.YSTAR.SIGMA_EPSILON_F1.G.EP0,
SIGI.LEP1.OMEGA.ZI.RMU)
WRITE (9.*) 'BACKFIT="INC*BACKFIT
SIGMA(L.)=SMAX
EPSILON(1.HD=EMAX
NEWFIT=ONEFIT(X.MAXPOP NREC.NPATCH.A.ZERO MAXP,
] MAXR.Y.YSTAR.SIGMA EPSILON.F1.G.EP0.
2 SIGLLEP1.OMEGA.Z1.RMU)
WRITE (9.%) 'NEW='NEWFIT
IF (NEWFIT.GT (INC*BACKFIT)) CHANGE(I)=1
SIGMA(1.1)=SMIN
EPSILON(I.H=EMIN
NEWFIT=ONEFIT(X.MAXPOP.NREC NPATCH.A.ZERO.MAXP,
| MAXR.Y.YSTAR.SIGMA EPSILON.F1.G.EPO,
SIGI.LEP1.OMEGA.ZI RMU)
WRITE (9.*) 'NEW='NEWFIT
IF (NEWFIT.GT (INC*BACKFIT)) CHANGE(I)=1
SIGMA(1.)=SMAX
EPSILON(I.I)=EMIN
NEWFIT=ONEFIT(X.MAXPOP.NREC.NPATCH.A.ZERO,MAXP,
| MAXR.Y.YSTAR.SIGMA EPSILON.F1,G.EPO,
2 SIG1.EP1.OMEGA.ZI.RMU)
WRITE (9.*) 'NEW="NEWFIT
IF (NEWFIT.GT (INC*BACKFIT)) CHANGE(l)=1
SIGMA(L.)=SMIN
EPSILON(1.1)=EMAX
NEWFIT=ONEFIT(X.MAXPOP.NREC.NPATCH.A. ZERO MAXP.,
I MAXR.Y.YSTAR.SIGMA EPSILON.F|.G.EPO.

[§9]

[p]
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]

SIGI.EP1.OMEGA.ZI.RMU)
WRITE (9.%) 'NEW='"NEWFIT
IF (NEWFIT.GT.(INC*BACKFIT)) CHANGE(I)=1
SIGMA(1.1)=SIGI
EPSILON(1.I)=EP|I
300  CONTINUE

C-----PATCH CONSTRUCTION BASED ON RESULTS

DO 400J=1.NPOP
SVAL=RANDOM(SMAX.SMIN.NSEED)
EVAL=RANDOM(EMAX_EMIN NSEED)
DO 400.1=1 NPATCH
IF (CHANGE(D).EQ.1) THEN

SIGMA(J.1)=SVAL
EPSILON(J.)=EVAL
ENDIF
400 CONTINUE

WRITE (9.*) 'ANOMALY DETECTION PATTERN'
DO 450. I=1.NPATCH
IF (CHANGE(]).EQ.1) THEN
WRITE (9.*) 'PATCH#' |
ENDIF
450 CONTINUE

RETURN
END

SUBROUTINE FITNESS(X.FITNPOP.MAXPOP NREC NPATCH.A, ZERO,MAXP,
| MAXR.Y.YSTAR.SIGMA EPSILON.F1.G.EPO,
2 SIG1.EPI.OMEGA.ZI.RMU.IGEN)

COMPLEX A(MAXR.MAXP).ZERO.Y(1).YSTAR(1).SUMP X(MAXPOP,MAXP)
COMPLEX G(MAXP.MAXP).ZONE.FI(1).VV.ZI.DIAG,ZINV.ZF2

REAL FIT(1).SIGMA(MAXPOP.MAXP).EPSILON(MAXPOP.MAXP)

REAL SUMY.B.SUMZ

C---THIS SUBROUTINE COMPUTES THE FITNESS FOR EACH GENETIC STRING
C---AND PLACES IT IN ARRAY FIT(NPOP).

ZONE = CMPLX(1.0.0.0)
RECEIVER = FLOAT(NREC)
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DO 300 I = 1,NPOP
SUMY =00
SUMZ =0.0
B=0.0
DO 200 J = I.NREC
SUMP = ZERO
DO 100 K = I.NPATCH

C---FOR EACH SIGMA AND EPSILON. COMPUTE A V VALUE.

CALL VSETUP(VV.EP0.SIGI.EP1 OMEGA.ZI.RMU,
1 SIGMA(LK).EPSILON(L.K))

C---COMPUTE AN ESTIMATE OF F2 BY APROXIMATING THE (I-GV) INVERSE
C---AS A DIAGONAL MATRIX COMPRISING 1/(1-GV) TERMS ON THE DIAGONAL.

DIAG = ZONE - G(K.K)*VV
ZINV = ZONE/DIAG
ZF2 = FI(K)*ZINV
X(L.LK) = VV*ZF2
SUMP = SUMP + X(L.LK)*A(J.K)
100 CONTINUE
YSTAR(J) = SUMP
YDIF=CABS(Y(J)-YSTAR(J))
YY=CABS(Y(J))
DUMMY=YY/YDIF
B=AMAXI|(DUMMY B)
SUMZ=SUMZ+DUMMY
200 CONTINUE
SUMY=SUMZ/RECEIVER
FIT(I) = SUMY
300 CONTINUE

RETURN
END

REAL FUNCTION ONEFIT(X.MAXPOP.NREC.NPATCH.A ZERO,MAXP,
] MAXR.Y.YSTAR.SIGMA EPSILON.F1.G.EPO,
4 SIG1.EP1.OMEGA.ZI.RMU)

COMPLEX A(MAXR.MAXP).ZERO.Y(I ).YSTAR(1).SUMP X(MAXPOP MAXP)
COMPLEX G(MAXP.MAXP).ZONE.FI(1).VV.ZL.DIAG.ZINV.ZF2
REAL SIGMA(MAXPOP.MAXP).EPSILON(MAXPOP.MAXP)
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REAL SUMY.B.SUMZ

C---THIS SUBROUTINE COMPUTES THE FITNESS FOR EACH GENETIC STRING
C---AND PLACES IT IN ARRAY FIT(NPOP).

ZONE = CMPLX(1.0.0.0)
RECEIVER = FLOAT(NREC)
SUMY = 0.0
SUMZ = 0.0
B=0.0
DO 200 J = 1.NREC
SUMP =ZERO
DO 100 K = [.NPATCH

C---FOR EACH SIGMA AND EPSILON. COMPUTE A V VALUE.

CALL VSETUP(VV.EP0.SIGI.EP1,OMEGA.ZI. RMU,
1 SIGMA(1.K).EPSILON(1.K))

C---COMPUTE AN ESTIMATE OF F2 BY APROXIMATING THE (I-GV) INVERSE
C---AS A DIAGONAL MATRIX COMPRISING 1/(I-GV) TERMS ON THE DIAGONAL.

DIAG = ZONE - G(K.K)*VV
ZINV = ZONE/DIAG
ZF2 = FI(K)*ZINV
X(1.K) = VV*ZF2
SUMP = SUMP + X(1.K)*A(J.K)
100 CONTINUE
YSTAR(J) = SUMP
YDIF=CABS(Y(J)-YSTAR(]))
YY=CABS(Y(J))
DUMMY=YY/YDIF
B=AMAXI|(DUMMY B)
SUMZ=SUMZ+DUMMY
200 CONTINUE
SUMY=SUMZ/RECEIVER
ONEFIT = SUMY

RETURN
END

FUNCTION SELECT(NPOP.SUMFITNESS.FIT.NSEED)

REAL RAND.PARTSUM.FIT(1).SUMFITNESS.RANDOM
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30

50
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INTEGER J.NPOP
INTEGER*4 NSEED.SELECT

THIS SUBROUTINE SELECTS A MATE FOR CROSSOVER

PARTSUM = 0.0
J=0
RAND=RANDOM(!.0.0.0.NSEED)*SUMFITNESS
IF (RAND.EQ.0.0) GO TO 10
DO 30.J=1.NPOP

PARTSUM=PARTSUM+FIT(J)

IF (PARTSUM.GE.RAND) GO TO 30
CONTINUE

SELECT =

RETURN
END

REAL FUNCTION RANDOM(RMAX_RMIN.NSEED)

REAL DIFF.RMAX.RMIN.RAN|
INTEGER*4 NSEED

C---THIS SUBROUTINE GENERATES A RANDOM NUMBER BETWEEN RMAX AND

RMIN

NSEED=NSEED+10
DIFF=RMAX-RMIN
RANI=RAN(NSEED)
RANDOM=RMIN+RAN | *DIFF

RETURN
END




APPENDIX B

OPTIONAL PROGRAM SUBROUTINES AND FUNCTIONS
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REAL FUNCTION RANDOM(RMAX .RMIN.IDUM)

REAL DIFF.RMAX.RMIN.RAN|
INTEGER*4 IDUM

DIMENSION R(97)

PARAMETER (M1=259200.1A1=7141.1C1=54773.RM1=1./M1)
PARAMETER (M2=1344561A2=8121.1C2=28411.RM2=1/M2)
PARAMETER (M3=243000.1A3=4561.1C3=51349)

DATA IFF /0/

C---THIS SUBROUTINE GENERATES A RANDOM NUMBER BETWEEN RMAX AND

RMIN

11

DIFF=RMAX-RMIN

IF (IDUM.LT.0.OR.IFF.EQ.0) THEN
IFF=]
IX1=MOD(ICI-IDUM.M1)
IXI=MOD(IAI*IXI+IC]1.MI)
IX2=MOD(IX1.M2)
IX1=MOD(IAI*IX1+IC1.M1)
IX3=MOD(IX1.M53)
DO Ll. J=1.97
IX1=MOD(A I*IX1+ICI1.M1)
IX2=MOD(IA2*1X2+I1C2.M2)
RUJ)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM 1
CONTINUE
IDUM=]
ENDIF
IXI=MOD(AI*IX1+IC1.MI)
IX2=MOD(IA2*IX2+IC2.M2)
IX3=MOD(IA3*IX3+IC3.M3)
J=1+(97*IX3)/M3
IF J.GT.97.0R.J.LT.I) PAUSE
RANI=R(J)
RANDOM=RMIN+RANI[*DIFF
R(J)=(FLOAT(IXI)+FLOAT(IX2)*RM2)*RM |

RETURN
END



SUBROUTINE FITSCALE(FIT MAXFIT MINFIT.AVG.NPOP . SUMFITNESS)

REAL FIT(1).MAXFIT.MINFIT.AVG.SUMFITNESS . FM, XMAX XMIN
REAL DELTA.CA.CB
INTEGER NPOP

C---THIS SUBROUTINE SCALES THE FITNESSES ACCORDING TO
C---GOLDBERG'S ALGORITHM

ot

(FSRRS |

i =N

‘o

IF (MAXFIT.GE.(2.0¥*AVG)) GO TO 235

FM=2.0

XMAX=FLOAT(MAXFIT)

XMIN=FLOAT(MINFIT)

TEST=(FM*AVG-XMAX)/(FM-1.0)

IF (XMIN.GT.TEST) THEN
DELTA=XMAX-AVG
CA=(FM-1.0)*AVG/DELTA
CB=AVG*(XMAX-FM*AVG)/DELTA

EESE
DELTA=AVG-XMIN
CA=AVG/DELTA
CB=-XMIN*AVG/DELTA

ENDIF
SUMFITNESS=0.0
DO 234.1lI=1. NPOP

FIT(IH=CA*FIT(IH+CB
SUMFITNESS=SUMFITNESS+FIT(II)
CONTINUE
CONTINUE

RETURN
END
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