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ABSTRACT 

 

Rainfall Variability and Change in Central and Southern Peruvian Andes  

by  

Haline Heidinger Abadía 

 Understanding the spatiotemporal variability of rainfall over mountainous regions such 

as the Andes is crucial for the maintenance of water resources and ecosystems. Rainfall 

variability and change in the Central and Southern Peruvian Andes (CSPA) and their 

relationship with large-scale atmospheric dynamics is not fully understood. This study 

examines observed intraseasonal-to-interannual variability and long-term rainfall changes in 

CSPA.  

 Chapter 1 describes the motivation, research questions, hypotheses and objectives of 

this study.   

 Chapter 2 explains observed regional rainfall features over CSPA during 1965-2010. 

A regionalization of stations was performed using principal component and clustering analyses 

of forty-seven daily gauged time-series. Four major homogeneous regions are identified: 

Amazon, Central Pacific, Southern Pacific and Titicaca. The total and extreme rainfall indices 

proposed by the Expert Team on Climate Change Detection and Indices (ETCCDI) were 

calculated for each station. Rainfall indices and geographic features are similar among stations 

of the same region. Furthermore, this chapter investigates the effect of El Niño Southern 

Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) on rainfall indices. ENSO and 

PDO influences on rainfall are regionally dependent. Most stations in CSPA exhibit positive 
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(negative) anomaly in total and extreme rainfall indices (consecutive dry days) during La Niña 

(El Niño) years of 1965-2010. Nevertheless, these rainfall patterns are decade-dependent. 

Positive (negative) PDO is associated with positive (negative) anomalies of annual total 

rainfall in Titicaca basin, and with positive (negative) anomalies of consecutive dry days in 

Amazon, Southern Pacific and Titicaca basins. 

Chapter 3 provides a comprehensive analysis of the signal, statistical significance and 

spatial pattern of rainfall trends from 1965 to 2010 in CSPA. Trends were examined with 

Mann-Kendall test and Sen’s slope estimator applied to yearly rainfall indices following the 

hydrologic calendar. Significant regional patterns of changes in rainfall extremes were 

investigated and compared with previous studies. The drying signal within the southern 

Peruvian Andes is more complex than pointed out in previous studies. Here, statistically 

significant trends observed in about 30% of stations in each CSPA region is described. The 

annual total rainfall has decreased in the Amazon basin, despite the increase in the number of 

rainy days and some extreme rainfall indices. Decrease in one-day and five-day yearly 

maximum rainfall is observed in Central Pacific, along with an increase in the number of wet 

days. Positive trends in indices related to the intensity of very strong daily rainfall are evident 

in Southern Pacific. Titicaca basin shows an increase in the intensity of rainfall extremes. The 

ENSO-PDO low-frequency conditions seem to influence the complex and mostly non-

statistically significant long-term trends in CSPA. 

 Chapter 4 examines the Madden-Julian Oscillation (MJO) and ENSO combined 

influence on rainfall during November-March 1979-2010 in CSPA. Positive standardized 

rainfall anomalies and a higher frequency of extreme rainfall events occurs during active MJO 

than during inactive MJO phases. This pattern is enhanced (suppressed) during La Niña (El 
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Niño). MJO-ENSO modulation of rainfall varies according to the location of the stations. 

During ENSO-neutral conditions, enhanced rainfall in the upper Amazon and Central Pacific 

basins is evident during MJO phases 4 and 5, whereas MJO phase 2 (phases 6, 7 and 8) 

enhances rainfall in Southern Pacific (Titicaca) basin. During La Niña, enhanced rainfall 

occurs during MJO phases 5, 6 and 8 in the Amazon and Central Pacific basins, whereas MJO 

phases 1, 3 and 6 (phases 2, 4, 7 and 8) enhance rainfall in Southern Pacific (Titicaca) basin. 

During El Niño, suppressed rainfall occurs during MJO phases 1, 2, 5 and 8 in the Amazon 

basin, during MJO phase 4 in the Central Pacific basin, during MJO phase 8 in the Southern 

Pacific basin, and during MJO phases 1, 3 and 5 in the Titicaca basin. Certain MJO-ENSO 

conditions related with positive and negative anomalies of rainfall show different spatially-

coherent statistically significant moisture flux anomalies in each CSPA region.  

  Chapter 5 presents the final conclusions of this study and proposes some 

recommendations for future research.   
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CHAPTER I: Introduction 

The Andes Cordillera divides Peru in three broad regions: The Pacific Coast to the 

west, the Highlands or Sierra in the middle and the Amazon forest to the east. The Andes 

orographic rainfall is considered the most important source of fresh water that sustains the 

population, and maintains hydropower and agriculture (ANA 2015). Most of the Peruvian 

population lives in the semiarid Pacific Coast, around Lake Titicaca, and in the Andean zones 

of the Amazon basin, where the availability of freshwater resources is scarce (Lavado et al., 

2012). The combination of a unique physiography, lithology, land use, steep slope and 

distinctive pattern of orographic rainfall result in great susceptibility of the Andean population 

to floods, landslides and droughts (MINAM 2011). Despite the importance of understanding 

rainfall variability and change in this mountainous region, there are few published scientific 

researches about these topics most likely due to the limited access to observational datasets. 

These antecedents motivated this study to further explore variability and changes of total and 

extreme rainfall over the Peruvian Andes based on gauged rainfall datasets recently made 

available by the Peruvian National Water Authority (Autoridad Nacional del Agua or ANA). 

This study focused on Central and Southern Peruvian Andes (CSPA) which extends 

from 9°-18°S and 68°- 78°W, and has elevations greater than 1500 m.a.s.l. CSPA covers three 

major basins delimited by ANA: Pacific, Amazon and Titicaca. The Pacific basin demands 

58% of the water for agriculture, 33% for energy generation and 8% for household purposes, 

while the Amazon basin demands 73% of water for energy production, 18% for agriculture 

and 2% for household purposes. The water demand for agriculture is even larger in the Titicaca 

basin (95%), where only 4% of the demand is for household purposes (ANA 2015). Thus, 
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agriculture is by far the most important activity requiring water in the Pacific and the Titicaca 

basins, the two basins that reported water scarcity problems in CSPA.  

CSPA is located in the tropics and rainfall variability is influenced by large-scale 

coupled modes on intraseasonal-to-decadal scales (e.g. ENSO, PDO and MJO). Locally, 

rainfall variability depends on the complex terrain, which significantly modify dynamical and 

thermodynamical conditions at local scales. This study investigates how common regional 

patterns of observed rainfall variability and long-term trends in total and extreme rainfall arise 

based common characteristics of basins or subregions within these basins. To improve our 

understanding about rainfall variability and trends in the CSPA, this study investigates the 

following fundamental questions: Are there regions with similar rainfall regimes and 

geographic characteristics in the CSPA? What are the main mechanisms modulating rainfall 

on intraseasonal-to-interannual time-scales in the CSPA? Are there long-term trends in total 

and extreme rainfall in the CSPA? Are the intraseasonal-to interannual rainfall variability and 

rainfall trends regionally dependent? To answer these general questions, the most complete 

gauged rainfall dataset was gathered for CSPA and the most appropriate methods were chosen 

to evaluate rainfall variability and trends, which is the general objective of this study. The 

specific objectives of this study are: (1) to describe regional patterns of total and extreme 

rainfall indices during different conditions of ENSO and PDO, (2) to assess long-term trends 

in total and extreme rainfall indices, and (3) to evaluate the effects of MJO-ENSO in rainfall 

anomalies and extremes and potentially explain them based on moisture flux dynamics. Each 

of these objectives were thoroughly examined and addressed in Chapters II, III and IV of this 

dissertation, respectively.   
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CHAPTER II: Regional Geographic and Rainfall Characteristics 

A. Background 

The spatiotemporal variability of rainfall in the Central and Southern Peruvian Andes 

results from the interactions of complex processes occurring on a broad range of temporal 

scales. For instance, the diurnal cycle of convective activity is characterized by enhanced 

convection during the afternoon at high elevations in CSPA (Giovannettone and Barros, 2009; 

Romatschke and Houze, 2010, 2013), whereas heavy rainfall occurs mainly at night over the 

Vilcanota cordillera, which is located in the southeastern Peruvian Andes (Perry et al., 2014).  

Most of the rainfall is concentrated during the austral summer (Garreaud, 2009) in 

association with the South American Monsoon System (SAMS). At upper levels, SAMS is 

characterized by an anticyclonic circulation located approximately at the Bolivian Altiplano, 

named Bolivian High and a trough over the tropical and sub-tropical southern Atlantic Ocean, 

also known as the “northeast trough”. At low-levels SAMS main features are a thermal low 

(known as the Chaco low) centered over northern Argentina, the South Atlantic Convergence 

Zone (SACZ) (Carvalho et al., 2004), and the South American Low-Level Jet (SALLJ) east of 

the Andes (Marengo et al., 2012; Vera et al., 2006).  

 SAMS exhibits variations on intraseasonal timescales characterized by long periods of 

enhanced convective activity (active phase) and periods of persistent suppression of convection 

(break phases). Carvalho et al. (2002) showed that active (break) phases of SAMS are 

associated with westerly (easterly) intraseasonal anomalies in the low-level winds dominating 

tropical South America. In CSPA, enhanced convection is observed during break phases of 

SAMS in association with the strengthening easterly winds (Carvalho et al., 2002). The 

Madden-Julian Oscillation (MJO) is considered the most important source of intraseasonal 
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variability affecting circulation and rainfall in South America (Liebmann and Mechoso, 2011). 

The extratropical response of the MJO and resulting propagation of wave-trains equatorward 

along eastern South America modulates convection and circulation from the subtropics to the 

tropics, influencing the position and convective activity in the SACZ (Carvalho et al., 2011b, 

2004) and in the Intertropical Convergence Zone (ITCZ) (Tomaziello et al., 2015).  

Other meteorological phenomenon affecting extreme rainfall in the Peruvian Andes is 

the east coast trough regime proposed by Romatschke and Houze (2010). This synoptic 

condition is characterized by the northward displacement of the SALLJ, accompanied by the 

displacement of the trough toward the east coast of South America and a build-up of surface 

high pressure over the La Plata Basin. These conditions promote moisture transport from the 

Amazon Basin to CSPA. Over this region, the maximum wide convective cores occur at night, 

the maximum rainfall is evident from midnight to noon, and the broad stratiform formations 

occur during the morning (Romatschke and Houze, 2010, 2013). 

The El Niño Southern Oscillation (ENSO) is the most important tropical coupled mode 

of variability that modulates rainfall in the Andes on interannual time-scales. The warm (cold) 

phase of ENSO is generally associated with below (above) average rainfall over tropical South 

America (Garreaud, 2009) and the Altiplano (Vuille et al., 2000). In general, easterly 

(westerly) upper level winds are related to enhanced (suppressed) rainfall on interannual time-

scales in the Altiplano resulting from the increased (reduced) moisture influx from east of the 

Andes (Garreaud and Aceituno, 2001; Vuille, 1999). Furthermore, there is spatially different 

responses in the central Peruvian Andes (Garreaud et al., 2003) and southern Peruvian Andes 

(Perry et al., 2014; Vuille and Keimig, 2004). Lagos et al. (2008) found weakly positive, 

neutral and moderately negative correlation coefficients between sea surface temperature 
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(SST) anomaly in the Niño 3.4 region (5°N-5°S, 120°-170°W) and rainfall in the northern, 

central and southern Peru, respectively. Lavado and Espinoza (2014) described the spatial 

variability of rainfall impacts of ENSO in Peru. They showed increased rainfall during strong 

El Niño in the northern Pacific basin, decreased (increased) rainfall during strong El Niño (La 

Niña) in the Southern Pacific basin and decreased rainfall during strong El Niño in the Titicaca 

basin. ENSO impacts on rainfall depend not only on location, but also on the period of analysis. 

Bourrel et al. (2014) evaluated the impacts of ENSO on rainfall during 1964-1975, 1977-1999, 

and 2001-2011 over the central and northern Peruvian Pacific coast. They found that, without 

considering the strong ENSO events of 1982/1983 and 1997/1998, the region experienced 

increased (decreased) rainfall during El Niño events of the period 1964-1999 (2000-2011).  

The Pacific Decadal Oscillation (PDO) is the leading mode of monthly sea surface 

temperature anomalies in the Pacific Ocean north of 20°N, that exhibits a decadal oscillation 

between warm (positive) and cold (negative) phases (Newman et al., 2016; Seiler et al., 2013). 

Previous studies have shown that the PDO affects the South American climate on decadal time-

scales (Mantua and Hare, 2002). Garreaud et al. (2009) showed negative (positive) correlations 

between rainfall anomalies and PDO in some parts of South America, mainly north (south) of 

~10°S. Total annual rainfall and number of extreme events in the Bolivian lowlands are higher 

during positive PDO phase (Seiler et al., 2013). Furthermore, some authors have related 

rainfall trends in South America with changes in PDO. Marengo et al. (2004) associated the 

shift from negative to positive rainfall anomalies over the southern Amazon of Brazil in the 

1970s with the switch of the PDO from cold to warm phase in 1976/77. Carvalho et al.  (2011a) 

showed that the amplitude of SAMS increased after the 1976/77 climate shift with impacts on 

rainfall. Seiler et al. (2013) showed that monthly and annual standardized rainfall anomalies 
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increased from ~1965 to 1984 and decreased from ~1985 to 2004, following the basic structure 

of the PDO index. They also found that up to 15% of the 68 stations analyzed in Bolivia have 

increased (decreased) total and extreme rainfall during 1965-84 (1985-2009). 

The climate setting of CSPA (described in the former paragraphs of this subsection) 

gives a general idea of the main atmospheric factors affecting the spatiotemporal variability of 

rainfall in the region. Nevertheless, a better understanding of this variability is expected to be 

aided by using observed data. In this chapter, long-term daily rainfall data gauged in CSPA is 

examined to describe regional rainfall and geographic patterns, and decadal-dependent rainfall 

responses to ENSO and PDO.   

B. Data  

1. Gauged stations  

This study relied on daily rainfall data from forty-seven rain-gauge stations located in 

CSPA (Figure 2.1) from 1965-2010 calendar years. Eight stations are in the Amazon Basin, 

eleven in the Titicaca Basin, and twenty-eight in the Pacific Basin. The dataset was provided 

by the Peruvian National Meteorological and Hydrological Service (SENAMHI or Servicio 

Nacional de Meteorología e Hidrología) through the National Water Authority (ANA or 

Autoridad Nacional del Agua) website (www.ana.gob.pe). Information about location, 

altitude, slope, aspect, and time-series completeness for each station is listed in Table 2.1. The 

location and altitude were provided by SENAMHI, while the slope and the aspect of each 

station were calculated based on the 90-meters resolution Shuttle Radar Topography Mission 

(SRTM) dataset (Farr et al., 2007). All stations have more than thirty valid years, where a valid 

year is considered as the one having less than fifteen days of missing values (as in Donat et al., 

2013).   
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Figure 2.1. Location of the forty-seven rainfall stations analyzed over Central and Southern 
Peruvian Andes. The delineation of major basins performed by the Peruvian National Water 

Authority is shown only for the Peruvian territory. 
 
A quality control procedure was performed for all stations investigated here. The 

software RHtest was used to identify inhomogeneities in the datasets at daily and monthly 

time-scales. This software runs a test based on the penalized maximal T test (Wang et al., 2007) 

and the penalized maximal F test (Wang 2008a), which are embedded in a recursive testing 

algorithm (Wang 2008b). Stations with non-climate related inhomogeneities were excluded 

from the analysis of trends. Additionally, a visual inspection was performed to identify climate-

related inhomogeneities (e.g. that may occur during very strong La Niña) to avoid discarding 

any station because of a natural inhomogeneity in the time-series. For instance, if an 

inhomogeneity was evident in one or more neighbor stations during a climate-related event 

such as ENSO, then the inhomogeneity identified was considered as climate-related and the 

station was maintained.   



 

8 

Table 2.1. Description of the stations analyzed in this study. The column Region refers to the 
regionalization of the stations. The Aspect is denoted as: North (N), Northeast (NE), East (E), 

Southeast (SE), South (S), Southwest (SW), West (W), and Northwest (NW). The column 
Years refers to the number of valid hydrologic years analyzed here, where a valid year is 

considered as the one having less than fifteen days of missing values. 
 

 

Region Station Latitude (°) Longitude (°) Altitude (m) Slope (°) Aspect Years
Marcapomacocha -11.4 -76.3 4479 3.6 SW 33
Tanta -12.1 -76.0 4323 29.4 E 39
Yantac -11.3 -76.4 4600 6.8 W 37
Huayao -12.0 -75.3 3308 1.0 SE 31
La Quinua -13.1 -74.1 3260 5.8 S 36
Lircay -13.0 -74.7 3150 15.1 N 40
Pilchaca -12.4 -75.1 3570 12.6 NE 37
Pisac -13.4 -71.8 2950 29.3 S 34
Urubamba -13.3 -72.1 2863 8.8 E 36
Huamantanga -11.5 -76.8 3392 7.1 SW 38
Paccho -11.0 -76.9 3250 26.6 N 39
Pariacancha -11.4 -76.5 3800 21.5 SW 40
Parquin -11.0 -76.7 3590 18.8 W 38
Pirca -11.2 -76.7 3255 24.1 SW 41
Santa Cruz -11.2 -76.6 3700 8.9 W 37
Antioquia -12.1 -76.5 1839 35.0 SW 43
Huangascar -12.9 -75.8 2533 14.1 N 39
Matucana -11.8 -76.4 2479 5.4 SE 32
San Juan De Castrovirreyna -13.2 -75.6 1810 9.4 NE 34
San Lazaro De Escomarca -12.2 -76.4 3600 16.0 N 42
Santiago De Tuna -12.0 -76.5 2921 26.5 NW 38
Cordova -14.0 -75.2 3240 15.3 SW 40
Puquio -14.7 -74.1 3215 1.1 E 36
Cabanaconde -15.6 -72.0 3379 5.9 W 36
Chivay -15.6 -71.6 3633 11.7 W 34
Cotahuasi -15.2 -72.9 2683 6.3 NW 31
Salamanca -15.5 -72.8 3203 35.2 S 45
Las Salinas -16.3 -71.2 4310 14.1 SE 41
Pillones -16.0 -71.2 4360 0.4 NE 41
Crucero Alto -15.8 -70.9 4470 3.2 N 39
Ichuna -16.1 -70.6 3800 11.2 SW 40
Cairani -17.3 -70.4 3443 14.8 W 38
Palca -17.8 -70.0 3100 16.2 S 33
Sitajara -17.4 -70.2 3166 11.2 SW 39
Susapaya -17.4 -70.1 3309 4.5 SE 36
Talabaya -17.6 -70.0 3409 7.4 N 40
Arapa -15.1 -70.1 3830 7.3 SE 41
Azangaro -14.9 -70.2 3863 0.5 N 32
Huancane -15.2 -69.8 3890 11.2 S 43
Munani -14.8 -70.0 3948 3.4 W 37
Progreso -14.7 -70.3 3980 0.1 NE 37
Taraco -15.3 -69.9 3820 0.5 N 43
Lampa -15.4 -70.4 3892 1.0 NE 41
Laraqueri -16.2 -70.1 3900 1.3 SE 37
Pampahuta -15.5 -70.7 4400 1.4 SE 39
Chilligua -16.4 -69.6 4100 3.1 SW 38
Mazo Cruz -16.7 -69.7 4003 0.6 NE 38

D-13

D-14

A-1

A-2

A-3

B-4

B-5

B-6

B-7

C-8

C-9

C-10

C-11

D-12
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  The mean annual cycle of rainfall calculated for forty-seven CSPA rainfall stations 

(Figure 2.2) shows that the hydrologic year of CSPA starts on September 1st and ends on 

August 31st (for most CSPA stations). Although few CSPA stations, mainly located in the 

Amazon and Titicaca basin, report rainfall as early as August 1st; this study adopted the 

hydrological year calculated from September to August as suggested by SENAMHI.    

 
Figure 2.2. Mean (cross) and standard deviation (error bar) of gauged 1965-2010 monthly 
rainfall of the forty-seven central and southern Peruvian Andean stations analyzed in this 

study. 

2. ENSO and PDO indices 

ENSO conditions were defined using the Oceanic Niño Index (ONI) provided by the 

Climate Prediction Center (CPC) / National Oceanic and Atmospheric Administration 

(NOAA). ONI is defined as the 3-month running mean of Extended Reconstructed Sea Surface 

Temperature (ERSST) anomalies in the Niño 3.4 region based on centered 30-year base 

periods updated every 5 years. Events are defined as 5 consecutive overlapping 3-month 

periods at or above the +0.5o anomaly for warm (El Niño) events and at or below the -0.5 

anomaly for cold (La Niña) events. Seventeen El Niño and fourteen La Niña years occurred 
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during 1965-2010 (Figure 2.3). Rainfall patterns during El Niño and La Niña conditions of the 

periods 1965-1976, 1977-1999 and 2000-2010 were evaluated (as in Bourrel et al. 2014).  

 
 

Figure 2.3. Pacific Decadal Oscillation (PDO) index and El Niño Southern Oscillation 
(ENSO) - El Niño (EN) and La Niña (LN) - conditions during 1965 - 2009. Vertical black 

lines represent PDO change periods. 
 

The PDO Index is defined as the leading principal component of North Pacific monthly 

sea surface temperature variability (Zhang et al., 1997), and it was obtained from 

http://research.jisao.-washington.edu/pdo/ . During the period evaluated in the present study, 

the PDO index exhibits positive (negative) phases during 1977-1997 and 2002-2006 (1965-

1976, 1998-2001 and 2007-2010), as seen in Figure 2.3. CSPA rainfall indices during the two 

positive and three negative PDO phases were evaluated. 

C. Methods 

1. Regionalization of stations 

To regionalize the stations a combination of principal component analysis (PCA) and 

cluster analysis was performed based on complete daily rainfall time-series from the forty-

seven CSPA quality-controlled stations. The PCA was performed using a correlation matrix 
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obtained from the forty-seven gauged daily rainfall time-series (after removing the mean 

annual cycle) to calculate the eigenvalues and eigenvectors that maximize rainfall variance (as 

in Comrie and Glenn 1998). Figure 2.4 shows the percentage of variability explained by the 

first four principal components (PCs). The first two PCs explained about 30%, while the first 

three PCs explained about 37% of the total rainfall variance. The separation of the PCs was 

evaluated by plotting the respective eigenvalues and eigenvalues errors (Figure 2.4, see the 

right vertical axis). The eigenvalue error was calculated by multiplying the eigenvalue by the 

squared root of 2/݊ᇱ (North et al., 1982), where ݊ᇱ is the number of independent events (݊ᇱ ൌ

݊ ∗ ଵି௥ଵ
ଵା௥ଵ

ሻ, ݊ is the total number of days in the time series (non-missing days) and 1ݎ	is the lag-

1 autocorrelation. According to this method, the first four principal components are separable 

because their eigenvalues and respective errors did not overlap. 

 

 
 

Figure 2.4. Principal component analysis of 1965-2010 daily rainfall of the central and 
southern Peruvian Andean stations; where the left vertical axis is, the variance explained by 

the principal components (PCs), and the right vertical axis represents the separability 
between PCs indicated by eigenvalues (dash) and respective eigenvalues error bars. 
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The regionalization of stations was finally performed by applying a nonhierarchical 

clustering method (K-mean) to the PCA loadings obtained based on the gauged daily time 

series. Many trials of clustering were carried out by using varying number of PCs loadings and 

increasing number of clusters. To decide on the appropriate number of regions, the Silhouette 

method was applied. Rousseeuw (1987) defined the Silhouette (s) as: 

ሺ݅ሻݏ ൌ 	

ە
ۖ
۔

ۖ
1ۓ െ

௔ሺ௜ሻ

௕ሺ௜ሻ
, ݂݅	ܽሺ݅ሻ ൏ ܾሺ݅ሻ

0,														݂݅	ܽሺ݅ሻ ൌ ܾሺ݅ሻ
௕ሺ௜ሻ

௔ሺ௜ሻ
െ 1, ݂݅	ܽሺ݅ሻ ൐ ܾሺ݅ሻ

ۙ
ۖ
ۘ

ۖ
ۗ

       (2.1) 

Where ݅ represents each element in a cluster; ܽሺ݅ሻ is the average dissimilarity of ݅ with 

respect to all other data within the same cluster; ܾሺ݅ሻ is the lowest average dissimilarity of ݅ in 

any other cluster of which ݅ is not a member satisfying the condition that െ1	 ൑ ሺ݅ሻݏ ൑ 1. The 

mean ݏሺ݅ሻ of the entire dataset is a measure of how appropriately the data has been clustered 

(Rousseeuw 1987), therefore the closer the value of the mean Silhouette is to one the better the 

clustering of elements.   

Figure 2.5 shows the mean Silhouette values calculated after performing the K-means 

clustering technique with two, three and four PCs loadings and different number of clusters 

(from two to sixteen). The maximum mean Silhouette is evident when using the two first 

principal components and four clusters. The second maximum mean Silhouette is found using 

the first two PCs and fourteen clusters. The resulting four and fourteen clusters of stations were 

considered the regionalization of CSPA stations on four major regions and fourteen subregions, 

respectively. The location and geographic features (latitude, longitude, altitude, slope and 

aspect) of these major regions and subregions are described in section D.  
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Figure 2.5. Cluster analysis mean Silhouette values after using different number of 

principal components (PC) loadings and increasing number of clusters. 
 

2. Rainfall indices 

The intensity and frequency of rainfall in CSPA were evaluated based on the twelve 

ETCCDI (Expert Team on Climate Change Detection and Indices) indices and three 

complementary annual rainfall statistics using quality-controlled daily gauged rainfall data. 

The ETCCDI indices were proposed by a joint project between the World Meteorological 

Organization Commission for Climatology (CCI) and the World Climate Research Program 

Climate Variability and Predictability (CLIVAR) program  (Haylock et al., 2006; Zhang et al., 

2011). These indices were developed to be non-region-specific and independent (Folland et al. 

1999; Nicholls and Murray 1999).  

The ETCCDI indices are: wet-days annual rainfall (PRCPTOT), simple daily rainfall 

intensity (SDII), consecutive dry days (CDD), consecutive wet days (CWD), number of heavy 

rainfall days (R10), number of very heavy rainfall days (R20), very wet day rainfall (R95p), 

extremely wet day rainfall (R99p), maximum 1-day rainfall (RX1day), maximum 5-day 

rainfall (RX5day), very wet day proportion (R95pTOT), and extremely wet day proportion 
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(R99pTOT). The complementary yearly rainfall statistics are: percentage of wet days (Wdays), 

twenty-fifth percentile of daily rainfall (p25th) and seventy-fifth percentile of daily rainfall 

(p75th). The calculation of each index is explained in Table 2.2. Only years with less than 15 

days of missing data were selected, and the indices were calculated using Western and 

hydrologic calendars.  

3. ENSO and PDO  

To evaluate the effect of ENSO on rainfall indices in CSPA, the anomalies of ETCCDI indices 

during El Niño and La Niña of the period 1965-2010 for each CSPA region of stations were 

calculated. Anomalies were calculated both including and excluding the strong El Niño’s of 

1982-1983 and 1997-1998. The significance of the anomalies was found based on a z test with 

95% level of confidence and seventeen (fourteen) independent El Niño (La Niña) events that 

occurred during 1965-2010. Furthermore, to assess if the relationship between ENSO and 

rainfall indices was persistent in time; the anomalies of rainfall indices during the periods 1965 

- 1976 (P1), 1977-1999 (P2), and 2000-2010 (P3) separately (excluding the strong El Niño’s 

of 1982-1983 and 1997-1998) were evaluated and the percentage of stations with different 

anomalies per each CSPA region were calculated. P1, P2 and P3 were the same periods 

evaluated in Bourrel et al. (2014). 

To evaluate the effect of PDO on rainfall indices in CSPA, the anomalies of ETCCDI 

indices during positive and negative PDO phases of the period 1965-2010 for each CSPA 

region of stations were calculated. The significance of the anomalies was found based on a z 

test with 95% level of confidence and two (three) positive (negative) independent PDO events 

that occurred during 1965-2010. Finally, the standardized anomalies of rainfall indices were 
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plotted along with the PDO index to potentially explain any relationship between these time-

series.  

Table 2.2. Definition of total and extreme rainfall indices proposed by the Expert Team 
on Climate Change Detection and Indices (ETCCDI). Wet (dry) day is defined when daily 
rainfall is greater or equal to (less than) 1 mm. The complementary statistics (Wdays, p25th 
and p75th) used in this study are also defined. 

 
Index Definition Units 

Wet-days annual rainfall (PRCPTOT) Annual total rainfall from wet days. mm 

Simple daily rainfall intensity (SDII) 
Annual total rainfall divided by the number of 
wet days in the year. 

mm/day 

Consecutive dry days (CDD) 
Annual maximum number of consecutive dry 
days.

days 

Consecutive wet days (CWD) 
Annual maximum number of consecutive wet 
days.

days 

Number of heavy rainfall days (R10) 
Annual count of days when daily rainfall is 
greater or equal than 10 mm. 

days 

Number of very heavy rainfall days 
(R20) 

Annual count of days when daily rainfall is 
greater or equal than 20 mm. 

days 

Very wet day rainfall (R95p) 
Annual total rainfall when daily rainfall is 
greater than the 95th percentile of the reference 
period (1971-2000). 

mm 

Extremely wet day rainfall (R99p) 
Annual total rainfall when daily rainfall is 
greater than the 99th percentile of the reference 
period (1971-2000). 

mm 

Maximum 1-day rainfall (RX1day) Annual maximum 1-day rainfall. mm 

Maximum 5-day rainfall (RX5day) Annual maximum consecutive 5-day rainfall. mm 

Very wet day proportion (R95pTOT) 
Percentage of annual total rainfall from days 
with daily rainfall greater than the 95th 
percentile of 1971-2000. 

% 

Extremely wet day proportion 
(R99pTOT) 

Percentage of annual total rainfall from days 
with daily rainfall greater than the 99th 
percentile of 1971-2000. 

% 

Percentage of wet days (Wdays) 
Annual number of wet days in the year divided 
by 365. 

% 

Twenty-fifth percentile (p25th)  Annual twenty-fifth percentile of daily rainfall. mm 

Seventy-fifth percentile (p75th) Annual seventy-fifth percentile of daily rainfall. mm 
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D. Results 

1. Regional geographic and rainfall features     

The regionalization of stations described in section C.1 generated four major regions 

(denoted by the letters A, B, C and D) and fourteen subregions (denoted by the numbers 1 to 

14) mapped in Figure 2.6. Fourteen subregions are embedded into the four major regions: 

subregions 1, 2 and 3 are embedded in region A; subregions 4, 5, 6 and 7, in region B; 

subregions 8, 9, 10 and 11, in region C; and subregion 12, 13 and 14, in region D. Regions A, 

B, C and D contain nine, fourteen, thirteen and eleven stations, respectively. Stations 

regionalized in region A are in the Andean-Amazon-Basin (Amazon Basin for simplification); 

region B and region C, in the Andean-Pacific-Basin boundary (Pacific Basin for 

simplification); and region D in the Titicaca Basin. The only exception is Tanta station which 

has been regionalized in region A (Amazon Basin), but it is located at a very high altitude in 

the Pacific Basin. That is, the regionalization process indicated that Tanta station shares 

common rainfall characteristics with the high-elevation stations Marcapomacocha and Yantac 

located in region A (which are influenced by the South American Monsoon), rather than with 

other stations influenced by climatic drivers affecting the Pacific Basin. Thus, in this 

regionalization process the proximity of stations is not necessarily the dominant factor to 

cluster stations; rather, stations are clustered according to common rainfall patterns 

independently of the location. Furthermore, altitude does play an important role in the shared 

rainfall characteristics among stations. Elevation also seems crucial in the regionalization of 

stations located over the entire Peruvian Pacific basin performed by Rau et al. (2016), who 

applied the K-means clustering followed by the Regional Vector Method (RVM) to gauged 

monthly rainfall during 1964-2011.     
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The mean annual rainfall cycle of the four regions and the fourteen subregions of CSPA 

rainfall stations are shown in Figure 2.7 and Figure 2.8, respectively. Regions A and D shows 

greater mean monthly rainfall during September to March than regions B and C. Among the 

stations located in region A (Amazon basin), subregion A-1 is the one with greater amounts of 

monthly rainfall than regions A-2 and A-3 which are located at lower altitudes. In region B 

(Central Pacific basin), the subregion B-5, which has the same latitude as A-1 but it is located 

at the western side of the Andes, showed greater monthly rainfall than the other subregions in 

region B. Similarly, in region C the subregion with greater mean monthly rainfall is the one 

with highest altitudes (C-10). Finally, subregions D-12 and D-13 had more rainfall than 

subregion D-14 during October and November, while subregions D-13 and D-14 showed more 

rainfall than subregion D-12 during January to March.     

 Here, each region was characterized regarding basic geographic features (latitude, 

longitude, altitude, slope, and aspect), and rainfall patterns (mean yearly total and extreme 

rainfall). Figure 2.9 shows the mean and the standard deviation of latitude, longitude, altitude, 

slope and aspect between stations in each of the four major regions. It is noticeable that the 

latitude and longitude of stations in region A (C) are similar to the ones in the region C (D). 

Nevertheless, the latitude and longitude of regions A and B greatly differ from that of regions 

C and D. The ranges of altitude, slope and aspect are similar among stations of the four groups; 

only region D (Titicaca) shows a slightly greater altitude and flatter conditions because of 

stations located over the High-Andean plateau or Altiplano. 
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Figure 2.6. Regionalization of stations based on principal component analysis and cluster 

analysis of gauged rainfall. The major regions are referred by letters (A, B, C or D), while the 
subregions are denoted by numbers (1 to 14). 

 

 
Figure 2.7. As in Figure 2.2, but for each region of the central and southern Peruvian Andean 

stations: A (Amazon basin), B (Central Pacific basin), C (Southern Pacific basin), and D 
(Titicaca basin). 
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(a) Region A     (b) Region B 

 
 (c) Region C     (d) Region D 

 
Figure 2.8. As in Figure 2.2, but for each subregion of the central and southern Peruvian 

Andean stations located in regions: (a) A (Amazon basin), (b) B (Central Pacific basin), (c) C 
(Southern Pacific basin), and (d) D (Titicaca basin). 
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(a) Latitude and longitude   (b) Altitude  

 
(c) Slope     (d) Aspect 

 
 

Figure 2.9. Mean (dash) and standard deviation (error bar) of (a) latitude and longitude, (b) 
altitude, (c) slope and, (d) aspect from all stations in each major Central and Southern 

Peruvian Andes region. The major regions are: A (Amazon Basin), B (Central Pacific Basin), 
C (Southern Pacific Basin), and D (Titicaca Basin). Note: The aspect corresponds to a 

surface facing North (0° - 22.5°), Northeast (22.5° - 67.5°), East (67.5° - 112.5°), Southeast 
(112.5° - 157.5°), South (157.5° - 202.5°), Southwest (202.5° - 247.5°), West (247.5° - 

292.5°), Northwest (292.5° - 337.5°), and North (337.5° - 360°). 
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Figure 2.10 shows the same characterization, but for the fourteen sub-regions. 

Although the regionalization method was based solely on rainfall data, it is worth noticing that 

the geographical characteristics of the regions and subregions (Figure 2.9 and Figure 2.10, 

respectively) indicate that location and altitude are the dominant factors for different rainfall 

regimes in the Andes and that the method can capture these differences. The fourteen 

subregions have different mean latitude, longitude and altitude and smaller standard deviation 

among stations (Figure 2.10) compared to the four major regions (Figure 2.9). Each of the 

fourteen subregions is characterized by a unique combination of latitude and longitude (Figure 

2.10 a), and altitude (Figure 2.10 b) ranges. Altitude varies greatly among subregions (Figure 

2.10 b). For instance, subregion 1 has the greatest altitude in region A; subregion 5, in region 

B; and subregion 10, in region C. The slope (Figure 2.10 c) is more variable mainly in 

subregions located over the Amazon Basin (1 to 3) and the Pacific Basin (4 to 11), 

comparatively to the subregions located in the Titicaca Basin (12 to 14). The aspect (Figure 

2.10 d) varies greatly among stations of the same subregion, except for the subregion 3 and 13 

(5 and 8) which have most stations facing east (west).   
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(a) Latitude and longitude    (b) Altitude  

 
(c) Slope      (d) Aspect 

 
 

Figure 2.10. As in Figure 2.9, but for the fourteen central and southern Peruvian 
Andean subregions. 
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Total and extreme rainfall indices calculated using the hydrologic calendar exhibited 

differences among subregions of stations. Figure 2.11 shows the mean and standard deviation 

of some rainfall indices such as the wet-days annual rainfall (PRCPTOT), percentage of wet 

days (Wdays), consecutive dry days (CDD), and very wet day rainfall (R95p). Greatest 

amounts of PRCPTOT are evident in the subregions 1, 5, 10 and 13, which expectedly also 

showed large Wdays and R95p but low CDD. Conversely, the smallest amounts of PRCTOT 

observed in subregions 6, 7, 8, 9 and 11 are also related to comparatively low Wdays and R95p, 

and great CDD.  

Interestingly, subregions with the highest altitudes (such as subregions 1, 5, 10, 12, 13, 

14) showed the greatest amounts of PRCPTOT, Wdays and R95p. These relationship between 

altitude and rainfall over CSPA differs from the patterns obtained in Lavado et al. (2012), who 

described a decrease of monthly rainfall with altitude in the Titicaca and the Amazon basins, 

and no evident changes in rainfall with altitude in the Pacific basin.  

Furthermore, stations facing east have greater amounts of rainfall as a result of the 

enhanced transport of moisture east of the Andes (Garreaud, 2009). This is evident in subregion 

13 whose stations face east and consequently exhibited the greatest PRCPTOT among all other 

subregions embedded in region D (Titicaca Basin). 
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(a) PRCPTOT     (b) Wdays 

 
(c) CDD     (d) R95p 

 
Figure 2.11. Mean (dash) and standard deviation (error bar) of (a) wet-days annual rainfall 
(PRCPTOT), (b) percentage of wet days (Wdays), (c) consecutive dry days (CDD), and (d) 

very wet day rainfall (R95p) of the fourteen central and southern Peruvian Andean 
subregions. 

2. Regional ENSO and PDO effects on rainfall 

While ENSO played a significant role in the interannual variability of some of the 

indices calculated for the CSPA, the magnitude of this effect depends on the region and on the 

period considered. Figure 2.12 shows PRCPTOT, Wdays, CDD, and R95p anomalies during 

El Niño and La Niña events of 1965-2009 (excluding the strong El Niño’s of 1982-1983 and 

1997-1998). During La Niña (El Niño) years, positive (negative) anomalies of PRCPTOT, 

Wdays, and R95p in all CSPA regions were evident, despite the large variability of R95p in 

regions A and B where the difference in mean anomalies were not statistically significant. 

Accordingly, positive (negative) anomalies of CDD occurred during El Niño (La Niña) years 
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in all CSPA regions. The rainfall indices anomalies calculated during 1965-2010 including the 

strong El Niño’s of 1982-1983 and 1997-1998 (not shown) were slightly greater in magnitude 

due to the enhanced rainfall signal during strong ENSO events.            

 Table 2.3 shows the percentage of stations in each CSPA region with positive 

anomalies of PRCPTOT, Wdays, CDD, and R95p during El Niño (EN) and La Niña (LN) 

years    during   the   periods   1965 -  1976 (P1), 1977 -  1999 (P2), and 2000 -  2010 (P3). It 

is noteworthy that the strong 1982-1983 and 1997-1998 El Niño events were not included in 

these statistics. Interestingly, the influence of ENSO on the calculated indices is not uniform 

throughout time. Greater (fewer) number of stations in regions A and D had PRCPTOT, Wdays 

and R95p (CDD) positive anomalies during EN events of the period P3 than those of P1 and 

P2. Greater number of stations in regions B and C had PRCPTOT, Wdays and R95p positive 

anomalies during LN events of the period P2 and P3 than those of P1. Our results for region B 

and D corroborates to some extent to the results in  Bourrel et al. (2014) and Vuille et al. 

(2000). Bourrel et al. (2014) described an increased rainfall pattern during EN of the period 

1964-1999 compared to 2000-2011, and our results shows that ~60 % (~40%) of the stations 

in region B had positive rainfall anomalies during EN of the period 1965-1976 (2000-2010). 

Vuille et al. (2000) found below average rainfall during 1965-1990 in southern Peruvian Andes 

during EN, while our results show that less than half the stations in region D had a positive 

rainfall anomalies during 1965-1999 and that this number of stations slightly increases in 2000-

2010. Notice that ENSO conditions are defined in this study using ONI and does not account 

for different ENSO regimes (as defined in Takahashi et al. 2011), which could eventually result 

in regional differences.      



 

26 

(a) PRCPTOT anomaly   (b) Wdays anomaly 

 
(c) CDD anomaly    (d) R95p anomaly 

 
 

 
Figure 2.12. Mean (cross) and standard deviation (error bar) of (a) wet-days annual rainfall 
(PRCPTOT), (b) percentage of wet days (Wdays), (c) consecutive dry days (CDD), and (d) 
very wet day rainfall (R95p) anomalies of the four central and southern Peruvian Andean 

regions (A, B, C and D) during El Niño (EN) and La Niña (LN) events of 1965-2009. 
Regions (letters) accompanied by an asterisk (*) represent statistically significant difference 
in the means of rainfall indices during EN compared to LN years, based on a z test with 95% 

level of confidence and independent number of events. 
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Table 2.3. Percentage of stations in Central and Southern Peruvian Andes regions (A, B, 
C and D) with positive anomalies of wet-days annual rainfall (PRCPTOT), percentage of wet 
days (Wdays), consecutive dry days (CDD), and very wet day rainfall (R95p) during El Niño 

(EN) and La Niña (LN) years of the periods: 1965 -1976 (P1), 1977-1999 (P2), and 2000-
2010 (P3). 

 
Index ENSO Period A B C D 

PRCPTOT 

EN 
P1 44 57 69 9 
P2 22 0 0 45 
P3 67 36 0 55 

LN 
P1 89 43 77 36 
P2 56 100 100 64 
P3 33 93 69 55 

Wdays 

EN 
P1 33 36 46 27 
P2 0 0 0 18 
P3 78 50 8 73 

LN 
P1 78 57 77 73 
P2 78 100 100 45 
P3 67 100 77 64 

CDD 

EN 
P1 67 50 92 64 
P2 78 86 92 100 
P3 56 71 62 64 

LN 
P1 33 50 38 55 
P2 44 21 31 18 
P3 22 50 38 36 

R95p 

EN 
P1 56 43 54 9 

P2 44 21 23 36 

P3 67 21 0 45 

LN 
P1 67 50 38 36 

P2 44 50 54 64 

P3 33 36 69 36 
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  PDO contrasting phases resulted in statistically significant differences in mean 

anomalies of PRCPTOT in region D, and CDD in regions A, C and D (Figure 2.13). The 

restrictive z test applied here only considered the 2 (3) independent events of positive 

(negative) PDO conditions during 1965-2009. Positive (negative) anomalies of PRCPTOT in 

regions D were evident during positive (negative) PDO. Positive (negative) anomalies in CDD 

were observed in regions A, C and D during positive (negative) PDO. The positive anomalies 

of total annual rainfall in region D (Titicaca basin or Altiplano) during positive PDO agrees 

with previous studies by Garreaud et al. (2009) and Seiler et al. (2013).  

 Similar results discussed in Figure 2.13 were found after removing the 1982-1983 and 

1997-1998 strong El Niño events (not shown). Without considering these years, CSPA stations 

showed non-statistically significant rainfall trends during 1965-1976 (negative PDO) and 

1977-1997 (positive PDO). During 1965-1976, 44 %, 50 %, 62 % and 73 % (44 %, 50 %, 31 

% and 27 %) of stations in regions A, B, C and D, respectively; had positive (negative) trends 

in PRCPTOT. During 1977-1997, 22 %, 36 %, 85 % and 9 % (78 %, 64 %, 15 % and 91 %) 

of stations in regions A, B, C and D, respectively exhibit positive (negative) trend in 

PRCPTOT. It is noticeable that the region that showed greater dependence on PDO phase is 

region D (Titicaca basin). Even though this region showed positive (negative) PRCPTOT 

anomalies during positive (negative) PDO (Figure 2.13) most stations experienced negative 

(positive) trend during the period 1977-1997 (1965-1976) which corresponds to a positive 

(negative) PDO phase. 

 Figure 2.14 show a 1965-2009 time-series of the PDO index and standardized 

anomalies of PRCPTOT and R95p in each CSPA region. In general, these rainfall indices were 

poorly correlated with the PDO index, except for the weak anti-correlation in the first two 
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decades of the period analyzed. Positive standardized anomalies of PRCPTOT in region A and 

C (region D) were predominant during negative (positive) PDO phase that occurred from 1965 

to 1976 (1977 to 1997). Similar patterns were observed using Wdays (not shown). The 

interannual variability largely dominated by ENSO events may have obscured  the real effect 

of  the PDO on rainfall, as in Seiler et al. (2013). Further studies are necessary to examine 

mechanisms connecting coupled modes of interannual-to-decadal timescales in the Pacific and 

Atlantic to variations in rainfall in the CSPA.   

 

(a) PRCPTOT anomaly   (b) Wdays anomaly 

 

(c) CDD anomaly     (d) R95p anomaly 

 
 

 
Figure 2.13. As in Figure 2.12, but for positive (PDO +) and negative (PDO -) PDO phases. 
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(a) Region A     (b) Region B  

  
(c) Region C     (d) Region D 

  
 

 
Figure 2.14. Standardized anomalies of wet-days annual rainfall (PRCPTOT) and very wet 
day rainfall (R95p) of each region of the central and southern Peruvian Andean stations: (a) 
A (Amazon basin), (b) B (Central Pacific basin), (c) C (Southern Pacific basin), and (d) D 

(Titicaca basin). The Pacific Decal Oscillation (PDO) index is shown in gray. 
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E. Conclusions 

Total and extreme yearly rainfall indices characterizing the intensity and frequency of 

rainfall were calculated using daily rainfall from forty-seven quality-controlled stations located 

in Central and Southern Peruvian Andes (CSPA). Given the influences of the complex terrain 

on the orographic rainfall, a new method to regionalize stations according to their rainfall 

characteristics was proposed. The regionalization of stations was based on principal 

component analysis and cluster analysis of the gauged time series that efficiently separated the 

stations into four major regions and fourteen subregions. The major regions of stations 

identified were region A (Amazon basin), region B (Central Pacific basin), region C (Southern 

Pacific basin) and region D (Titicaca basin). These regions showed consistent differences in 

latitude, longitude, altitude, and, in some cases, slope. These geographical features also 

affected the existence of common features in the total and extreme rainfall indices among 

stations of the same subregion. 

During 1965-2009 hydrologic years, the four CSPA regions showed consistent positive 

(negative) anomalies of total and extreme rainfall indices (consecutive dry days) during La 

Niña (El Niño) years. Positive (negative) anomalies of total annual rainfall were evident in 

region D during positive (negative) PDO. Positive (negative) anomalies of consecutive dry 

days were seen in regions A, C and D during positive (negative) PDO. These ENSO-PDO 

rainfall patterns showed variable behavior during the different decades evaluated.  
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CHAPTER III: Trends in Total and Extreme Rainfall 

A. Introduction 

Tropical South America has significantly warmed in recent decades (Carvalho and 

Jones, 2013) with impacts on rainfall that are difficult to assess, particularly in areas with 

complex terrain and a limited availability of gauge stations such as the Andes. Evaluating 

trends in rainfall and its extremes is crucial to identify areas that are more susceptible to the 

impacts of climate change. A few studies have examined trends in the Peruvian Andes but only 

with a limited number of gauge stations. A comprehensive analysis of rainfall trends -based on 

an adequate density of stations with long periods of observation- is essential to assess climate 

impacts, vulnerabilities and risks, and to provide the scientific basis for the formulation of 

adaptation policies for the population living in these regions (Huggel et al., 2015). 

A long-term negative rainfall trend in the central and southern Peruvian Andes has been 

documented using observed rainfall, paleoclimate data and global climate models (Neukom et 

al., 2015; Minvielle and Garreaud, 2011). These studies associated this trend with a 

strengthening of the upper-tropospheric westerly winds. Segura et al. (2016) found that the 

easterly (westerly) wind anomalies, which are related to enhanced (suppressed) rainfall over 

southern Peruvian Andes, are associated with variations in SST over central-western tropical 

Pacific SST on decadal-to-interdecadal time-scales. Some other potential causes of negative 

rainfall trends in the Andean-Amazon region have been related to the warming of the North 

Tropical Atlantic Ocean (Espinoza et al., 2011; Marengo et al., 2011; Yoon and Zeng, 2010) 

and shortening of the South American Monsoon in recent decades, according to some authors 

(Arias et al., 2015). However, it is worth mentioning that the length of the monsoon depends 

on the adopted metric, and there is no general consensus in the literature regarding the observed 
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changes in SAMS duration in recent decades (e.g. Carvalho and Cavalcanti, 2016; Carvalho et 

al., 2011a; Jones and Carvalho, 2013).   

The most appropriate way to detect changes in climate extremes is by using a set of 

indices that are statistically robust, cover a variety of climates, and minimize observation noise 

(Zhang et al., 2011). This chapter provides a comprehensive analysis of rainfall trends in the 

Peruvian Andes by examining temporal changes in the twelve ETCCDI indices and three 

complementary basic yearly rainfall statistics (defined in Table 2.2), based on the largest 

quality-controlled number of stations available in the region. These results are further 

compared with previous studies that used similar indices but shorter time series and/or fewer 

stations to examine trends in extreme rainfall in the region.    

Rainfall trends have been investigated in parts of the Peruvian Andes using point-wise 

(gauge stations) data and gridded data obtained by interpolating stations data. Studies that used 

gridded data to evaluate rainfall trends, including the Peruvian Andes, are described hereafter. 

Alexander et al. (2006) used available daily rainfall from stations worldwide to calculate ten 

yearly indices that were gridded at 3.75°x 2.5° longitude-latitude resolution. They showed a 

decrease in the number of heavy rainfall days (R10) but no trends in very wet day rainfall 

(R95p), consecutive dry days (CDD), simple daily rainfall intensity (SDII), and seasonal 

maximum 5-day rainfall (RX5day) in Central and Southern Peruvian Andes (CSPA) during 

1951-2003. Morin (2011) analyzed the 0.5-deg monthly dataset developed by Beck et al. 

(2005), the Variability Analyses of Surface Climate Observations (VASClimO), based on the 

Global Precipitation Climatology Centre (GPCC). He found a statistically significant negative 

trend in the total annual rainfall over CSPA during 1951-2000. Donat et al. (2013) compiled 

daily temperature and rainfall from many countries and generated global gridded monthly and 
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annual indices at a 3.75x2.5-deg resolution, named Hadley Centre Global Climate Extremes 

Index 2 (HadEX2). They found no trends in the number of heavy rainfall days (R10), very wet 

day proportion (R95pTOT), consecutive dry days (CDD) and simple daily rainfall intensity 

(SDII) over the Andes during 1951-2010. Lastly, Donat et al. (2014) performed an inter-

comparison of multiple global gridded observational and reanalysis datasets of rainfall 

extremes and showed a decrease in the HadEX2 observed maximum 5-day rainfall (RX5day) 

over central Peru during 1979-2008.   

Observed trends based on gauged station data can show in detail the spatial variability 

of local rainfall changes in regions with complex terrain such as the Peruvian Andes. Studies 

that used gauged data, at monthly and daily time-scales, to evaluate rainfall trends in the 

Peruvian Andes are described hereafter. Lavado et al. (2013) investigated monthly rainfall rain 

gauge data and reported spatially variable trends in fifty-eight Andean and Peruvian Amazon 

stations during 1965-2007 and a statistically significant decrease (increase) of monthly rainfall 

in only four (three) stations. At daily time-scales, four studies described trends in the ETCCDI 

total and extreme indices in some stations located in the Peruvian Andes. Vuille et al. (2003) 

focused on trends in the Peruvian and Bolivian Andes; and Haylock et al. (2006), Marengo et 

al. (2009), and Skansi et al. (2013), over the entire South America. Data and methods of these 

four studies are compared in Table 3.1. They used a variable number of gauge stations over 

CSPA, different periods of analysis, ETCCDI rainfall-indices calculated using Western 

calendar years only, and similar trend-analysis methods.   

Results from previous studies that used point-wise data at daily time-scales to calculate 

ETCCDI indices to ascertain rainfall trends over CSPA are summarized here chronologically. 

Vuille et al. (2003) found a significant increase of total annual rainfall at some stations in 
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central Andes and a non-significant decrease of total annual rainfall in the southern Peruvian 

Andes. Haylock et al. (2006) found a significant increase of consecutive dry days in the 

southern Andes and a non-significant decrease of total and extreme rainfall in the central and 

southern Andes. Marengo et al. (2009) found a non-significant trend in the number of days with 

rainfall greater than 10 mm over central and southern Andes and a significant increase of dry 

consecutive days in the southern Andes. Skansi et al. (2013) found (a) a non-significant 

negative trend of total annual rainfall over the central Andes, (b) non-significant mixed trends 

(positive and negative trends without a spatial coherence) in total annual rainfall in the southern 

Andes, (c) significant drier conditions and a non-significant increase of extreme rainfall over 

the southern Andes, and (d) a decrease of extreme rainfall in the central Andes. In conclusion, 

these studies found non-significant trends in the total annual rainfall and in the intensity of 

extremes, but a prominent increase of dry conditions over the southern Andes. 
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Table 3.1. Summary of data and methods used in previous studies to describe trends 
in total and extreme rainfall indices of gauged stations located over Central and Southern 

Peruvian Andes (CSPA). The Expert Team on Climate Change Detection and Indices 
(ETCCDI) rainfall indices are: wet-days annual rainfall (PRCPTOT), simple daily rainfall 
intensity (SDII), consecutive dry days (CDD), consecutive wet days (CWD), number of 

heavy rainfall days (R10), number of very heavy rainfall days (R20), very wet day rainfall 
(R95p), extremely wet day rainfall (R99p), maximum 1-day rainfall (RX1day), maximum 5-

day rainfall (RX5day), very wet day proportion (R95pTOT), and extremely wet day 
proportion (R99pTOT). 

  

Study 
Data Method 

Study 
region 

Stations 
in CSPA 

Calendar 
years 

Rainfall indices Trend analysis  

Vuille et al. 
2003 

Central 
Andes 

9 
1950–
1994 

Annual total 
rainfall (similar to 
PRCPTOT) 

Least squares 
regression trend 
considering the 
autocorrelation effect. 

Haylock et 
al. 2006 

South 
America 

2 
1960-
2000 

PRCPTOT, SDII, 
CDD, CWD, 
R10, R20, R95p, 
R99p, RX1day, 
RX5day, 
R95pTOT, 
R99pTOT 

Kendall's tau based 
slope estimation.  

Marengo et 
al. 2009 

South 
America 

2 
1960-
2000 

R10, CDD 

Kendall's tau based 
slope estimation 
considering the 
autocorrelation effect. 

Skansi et al. 
2013 

South 
America 

11 
1969-
2009 

PRCPTOT, SDII, 
CDD, CWD, 
R20, R95p, R99p, 
RX1day, RX5day 

Adaptation of Sen's 
slope considering the 
serial correlation 
effect. 
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  These previous studies suggested that the most consistent trend in rainfall is likely the 

intensification of dry conditions over the southern Andes. However, these previous studies also 

revealed a large degree of spatial and temporal variability of rainfall in the Peruvian Andes and 

how these results are subject to the number of stations, spatial resolution of the data, and 

method applied to identify trends. The present chapter revisits these previous studies and 

complements them in many ways. To better characterize rainfall changes over CSPA, a greater 

number of quality-controlled stations (forty-seven stations over the Peruvian Andes during 

1965-2009 water years) was used and a robust trend detection method that takes into 

consideration hydrologic years and serial correlation effects was applied. The focus was on 

trends in total and extreme rainfall indices. The importance of using the hydrologic year instead 

of the calendar year to define annual rainfall, and its effect on the calculation of rainfall indices 

and the estimation of trends were also investigated. Furthermore, rainfall indices and estimates 

of respective trends over homogeneous regions to assess the influence of geographic features 

on the observed trends were evaluated. 

B. Data and Methods  

Trends were examined using daily rainfall data from forty-seven rain-gauge stations 

located in CSPA (Figure 2.1) from 1965-2010, which consist on the same dataset used in 

Chapter 2. A combined Mann-Kendall test (Kendall, 1975; Mann, 1945) and Sen’ slope (Sen, 

1968) approach (e.g. Zilli et al., 2016) were applied to the fifteen yearly rainfall indices, using 

both calendars (Western and hydrologic). The Western calendar year started on January 1st of 

the year “y” and ended on December 31st of the year “y” and the hydrological year started on 

September 1st of the year “y” and ended on August 31st of the year “y+1” (which was defined 

based on the mean annual rainfall cycle shown in Figure 2.7).   
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The non-parametric Mann-Kendall test can be used with a time series without assuming 

any particular distribution. The null hypothesis for this test is that the data were independent 

and randomly ordered, instead of having any trend. The statistic ܵ  (Kendall, 1975; Mann, 1945) 

is defined as: 

ܵ ൌ 	෍ ෍ ௝ݔ൫݊݃ݏ െ	ݔ௜	൯																																																																																	ሺ3.1ሻ

௡

௝ୀ௜ାଵ

௡ିଵ

௜ୀଵ

 

Where ݔ௜ and ݔ௝ are the sequential data, ݊  is the total number of data in the time series 

and 

ሻݔ∆ሺ݊݃ݏ ൌ 	 ൝
	1, ݔ∆ ൐ 0
0, ݔ∆ ൌ 0
െ1, 	ݔ∆ ൏ 0

																																																																																							ሺ3.2ሻ 

A positive (negative) value of ܵ indicates a positive (negative) trend. For	݊ ൒ 8, the 

statistic ܵ is approximately normally distributed with a mean ܧሺܵሻ ൌ 0	 and variance (Wilks, 

2011): 

ሺܵሻݎܸܽ ൌ 	
݊ሺ݊ െ 1ሻሺ2݊ ൅ 5ሻ െ	∑ ௜ݐሺ	௜ݐ െ 1ሻሺ2ݐ௜ ൅ 5ሻ௠

௜ୀଵ

18
																												ሺ3.3ሻ 

Where n is the number of data points, m is the number of tied groups and ti denotes the 

number of ties of extent i. A tied group is a set of sample data having the same value. In cases 

where the sample size n >10, the standard normal test statistic Z is (Wilks, 2011): 

ܼ ൌ 	

ە
ۖ
۔

ۖ
ۓ

ܵ െ 1

ඥܸܽݎሺܵሻ
, ܵ ൐ 0

0,															ܵ ൌ 0
ܵ ൅ 1

ඥܸܽݎሺܵሻ
, ܵ	 ൏ 0

																																																																																											ሺ3.4ሻ 

At a significance level ∝, the null hypothesis of no trend is rejected if the absolute value 

of Z is greater than the theoretical value  ܼଵି∝ಽ/మ, which is obtained from the standard normal 
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distribution table. In this study, a significance level α = 0.05 was used. Thus, the null 

hypothesis of no trend was rejected if |Z|>1.96.  

The Mann-Kendall test is affected by serial correlation. Positive serial correlation in 

the time series leads to an underestimation of the sampling variance. As a consequence, the 

statistic Z (Equation 3.4) increases in absolute value, yielding a smaller p values and falsely 

rejecting the null hypothesis (Wilks, 2011). There are various approaches to adjust the test to 

avoid the first type error caused by autocorrelation effects: (a) pre-whitening, (b) trend-free 

pre-whitening, (c) variance correction and (d) block resampling techniques. In this study, the 

variance correction approach proposed by Hamed and Rao (1998) and Hamed and Rao (2004) 

was used. Therefore, the variance of this test statistic S was corrected by using an effective 

sample size. The modified variance of the Mann-Kendall test statistic is given by: 

ሺܵሻ∗ݎܸܽ ൌ ሺܵሻݎܸܽ	 ∗  ሺ3.5ሻ																																																																																									ܨܥ

Where Var(S) is the variance of the Mann-Kendall test statistic S for the original sample 

data and CF is a correction factor (Yue and Wang, 2004) calculated as: 

ܨܥ  ൌ 1 ൅ 2	∑ ௥ೖሺଵି௞ሻ

௡
௡ିଵ
௞ୀଵ 																																																																																							ሺ3.6ሻ 

Where rk is the lag-k serial correlation coefficient of data. In this study, it is assumed 

that the time series was adequately described by an autoregressive process of order one. Then, 

the corrected variance is: 

ሺܵሻ∗ݎܸܽ ൌ 	ሺܵሻݎܸܽ	
ሺ1 ൅ ଵሻݎ
ሺ1 െ ଵሻݎ

																																																																																		ሺ3.7ሻ 

Where r1 is the autocorrelation of the detrended time series (Wilks, 2011). The lag-1 

serial correlation coefficient (r1) was computed as:  



 

40 

ଵݎ ൌ 	

1
݊ െ 1	∑ ሺݔ௜ െ ௜ݔሺܧ

௡ିଵ
௜ୀଵ ሻሻሺݔ௜ାଵ െ ௜ሻሻݔሺܧ

݅
݊ ∑ ሺݔ௜ െ ௜ሻሻଶ௡ݔሺܧ

௜ୀଵ

																																																			ሺ3.8ሻ 

Where E(xi) is the mean of sample data and n is the sample size. To test the significance 

of the autocorrelation, a one-tailed test (alternative hypothesis is that true r1 is greater than 

zero) was used and the critical value of r1 for a 5% significance level was computed as: 

ଵݎ
ᇱ ൌ

െ1 ൅ 1.645	√݊ െ 2
݊ െ 1

																																																																																									ሺ3.9ሻ 

Once a statistically significant autocorrelation of the time series was found, Var*(S) 

was used instead of Var(S) in Equation 3.4 to estimate Z. By doing that, the influence of serial 

correlation in the test’s statistics was removed.  

Additionally, the trend slope was calculated using the method of Sen (1968). The 

magnitude of the slope of the trend was estimated as (Gocic and Trajkovic, 2013): 

ܳ௢	 ൌ 	
௝ݔ െ	ݔ௜
݆ െ ݅

݋	ݎ݋݂		 ൌ 1,… ,ܰ																																																																											ሺ3.10ሻ 

Where xi and xj are data at time i and j (j>i), respectively. If there are n values in the 

time series, then N=n(n-1)/2 slope estimates are possible. Then, the N values of Qo are ranked 

from smallest to largest and the median of slope or Sen’s slope estimator is: 

ܳ௠௘ௗ ൌ 	ቐ

ܳሾሺேାଵሻ/ଶሿ	, ݀݀݋	ݏ݅	ܰ	݂݅
ܳே/ଶ ൅	ܳቂேାଶଶ ቃ

	

2
, ݊݁ݒ݁	ݏ݅	ܰ	݂݅

																																																												ሺ3.11ሻ 

The Qmed sign reflects the data trend, while its value indicates the steepness of the trend. 

To determine whether the median slope is statistically different from zero, one should obtain 

the confidence interval of Qmed at a specific probability (Gilbert, 1987; Hollander and Wolfe, 

1973) as: 

∝ܥ ൌ 	ܼଵି∝/ଶඥܸܽݎሺܵሻ                                                                                   (3.12) 
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Where Var(S) is defined in Equation 3.3 or Var*(S) if the time series is statistically 

significant auto-correlated, and ܼଵି∝/ଶ is obtained from the standard normal distribution table. 

Then, M1=(N-ܥ∝)/2 and M2=(N+ܥ∝)/2 are computed. The lower and upper limits of 

confidence interval, Qmin and Qmax, are the M1
th largest and (M2+1)th largest of the N ordered 

slope estimates. The slope Qmed is statistically different than zero if the two limits (Qmin and 

Qmax) have similar sign. To conclude that a time-series has a statistically significant trend, both 

the MK test and the Qmed Sen’s slope have to be statistically significant; then the sign and slope 

of that trend is given by Sen’s slope calculations. 

C. Results 

To evaluate the effect of using a specific calendar on the trend analysis of rainfall 

indices, I calculated the percentage of stations that exhibited different trends (either the signal, 

the statistical significance or both) when the hydrologic year was used instead of the Western 

calendar (Table 3.2). The indices that were most sensitive to the use of hydrologic year 

calendar were the consecutive dry days (CDD) and the extremely wet day rainfall (R99p) as 

41.5% and 34% of stations exhibited different trends, respectively. The least sensitive index 

was the number of very heavy rainfall days (R20), the wet-day annual rainfall (PRCPTOT) 

and the annual percentage of wet days (Wdays), with only 9.4%, 15.1% and 11.3% of stations, 

respectively, exhibiting a different trend after using hydrologic years.   

 

Stations that showed statistically significant trends in rainfall indices analyzed here and 

separated according to the four major regions in CSPA are displayed in Table 3.3 (PRCPTOT, 

SDII, CDD, CWD, R10 and R20) and Table 3.4 (R95p, R99p, RX1day, RX5day, R95pTOT, 

R99pTOT, Wdays, p25th and p75th). In region A (the Amazon basin), approximately ~20-
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40% out of a total of nine stations exhibited negative trend in PRCPTOT, SDII, CWD, R10, 

RX1day, RX5day and Wdays; positive trends were observed for R95pTOT, R99pTOT and 

Wdays. In region B (the Central Pacific basin), about 30-40% out of fourteen stations indicated 

negative trends in SDII, CDD, RX1day and RX5day whereas ~20% of stations showed a 

positive trend in Wdays. In region C (the Southern Pacific basin), ~20% of the thirteen stations 

showed a negative trend in CDD and a positive  trend in RX1day. In region D (the Titicaca 

basin), ~30% of the eleven stations exhibited a positive trend in RX1day. In general, 

statistically significant trends in the indices are consistent among indices for most stations.   

  

Table 3.2. Percentage of stations over Central and Southern Peruvian Andes with 
different trends when using the hydrologic calendar rather than the Western calendar years 

for the calculation of rainfall indices during 1965-2009 hydrologic years.  
 

Index Stations (%) 
Wet-days annual rainfall (PRCPTOT) 15.1 
Simple daily rainfall intensity (SDII) 20.8 
Consecutive dry days (CDD) 41.5 
Consecutive wet days (CWD) 20.8 
Number of heavy rainfall days (R10) 20.8 
Number of very heavy rainfall days (R20) 9.4 
Very wet day rainfall (R95p) 32.1 
Extremely wet day rainfall (R99p) 34.0 
Maximum 1-day rainfall (RX1day) 24.5 
Maximum 5-day rainfall (RX5day) 17.0 
Very wet day proportion (R95pTOT) 26.4 
Extremely wet day proportion (R99pTOT) 24.5 
Percentage of wet days (Wdays) 11.3 
Twenty-fifth percentile (p25th) 15.1 
Seventy-fifth percentile (p75th) 20.8 
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The spatial variability of the signal along with the statistical significance of trends of 

eight rainfall indices are shown in Figure 3.1 (PRCPTOT, CDD, R95p and RX1day) and Figure 

3.2 (RX5day, Wdays, p25th and p75th). Trends exhibited a large degree of variability over the 

CSPA stations, and trends in most stations were not statistically significant. Notice that stations 

within the same major region or even within the same subregion may show different trends. 

Coherent spatial trends were only observed in certain subregions and for some indices as, for 

instance, a decrease in PRCPTOT over subregion 2, an increase of RX1day over subregion 4, 

and a decrease of RX5day over subregion 6. The possible reasons for these discrepancies could 

be related to the interaction of different atmospheric forcings with the complex orography of 

the study region, resulting in a large spatial variability of rainfall and rainfall trends. 

Nevertheless, the existence or not of statically significant trends should be interpreted with 

caution given the period of data availability. For instance, Morin (2011) found that annual 

rainfall trends over the tropics have a tendency to be undetectable because of high rainfall 

means and variability. In that study, the author investigated rainfall trends in central Peruvian 

Andes during 1951-2000 and showed that that trends in the eastern (western) side of the central 

Peruvian Andes were detected only where there was a change of about 20 to 40% (40 to 75%) 

of the annual rainfall with respect to the mean annual rainfall in the same period. These 

conditions are rarely observed for the stations evaluated over CSPA.  
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(a) PRCPTOT     (b) CDD 

 
(c) R95p     (d) RX1day 

 
 

Figure 3.1. Trends in total and extreme rainfall indices over Central and Southern Peruvian 
Andes during 1965-2009 water years: (a) wet-days annual rainfall (PRCPTOT), (b) 

consecutive dry days (CDD), (c) very wet day rainfall (R95p), and (d) maximum 1-day 
rainfall (RX1day).  
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(a) RX5day     (b) Wdays 

 
(c) 25th percentile    (d) 75th percentile 

 
 
Figure 3.2. As in Figure 3.1, but for: (a) maximum 5-day rainfall (RX5day), (b) annual 

percentage of wet days (Wdays), (c) 25th percentile, and (d) 75th percentile. 
 

A comparison between trends of six representative rainfall indices obtained by Haylock 

et al. (2006), Skansi et al. (2013) and this study at common stations located over CSPA is 

shown in Table 3.5. Regarding PRCPTOT, a statistically significant decrease in the Amazon 

basin stations was found in this study, while Haylock et al. (2006) and Skansi et al. (2013) 
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found a non-significant negative trend. Both Skansi et al. (2013) and this study showed non-

significant trends for Progreso station located in the Titicaca basin. With respect to extreme 

rainfall indices, there is a much larger discrepancy in trends among stations and studies. For 

instance, Huayao and Marcapomacocha stations in the Amazon basin exhibited statistically 

significant decrease of RX1day and RX5day in this study in contrast to Haylock et al. (2006) 

and Skansi et al. (2013) which found non-statistically significant trends. The possible reasons 

for these discrepancies are different lengths of time series, the adoption of different calendars 

to calculate the rainfall indices and the slightly different approaches used to assess trends.  

 

Table 3.5. Comparison between sign and statistical significance of trends obtained for 
some rainfall indices at common stations analyzed in Haylock et al. (2006), Skansi et al. 

(2013) and the present study over Central and Southern Peruvian Andes. The rainfall indices 
compared are: wet-days annual rainfall (PRCPTOT), consecutive dry days (CDD), very wet 
day rainfall (R95p), extremely wet day rainfall (R99p), maximum 1-day rainfall (RX1day) 

and maximum 5-day rainfall (RX5day). The sign and the statistical significance of trends are 
expressed as: NSNEG (non-statistically significant negative), SNEG (statistically significant 
negative), NSPOS (non- statistically significant positive), and SPOS (statistically significant 

positive). 
 

Station Study  PRCPTOT CDD R95p R99p RX1day RX5day 

Huayao 

Haylock et 
al., 2006 

NSNEG NSNEG NSNEG NSNEG NSNEG NSNEG 

Skansi et al., 
2013 

NSNEG NSNEG SNEG NSPOS NSNEG NSNEG 

Current study SNEG NSPOS SNEG SNEG SNEG SNEG 

Marcapo- 
macocha 

Skansi et al., 
2013 

NSNEG - NSNEG NSNEG - - 

Current study SNEG NSNEG NSNEG NSNEG SNEG SNEG 

Progreso 

Skansi et al., 
2013 

NSNEG NSNEG NSPOS NSPOS NSPOS NSPOS 

Current study NSPOS NSPOS NSPOS NSPOS NSPOS NSPOS 
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D. Conclusions 

The use of the hydrological calendar, which adequately characterizes the wet season, 

was shown to be important to evaluate trends in all forty-seven gauge stations located in 

Central and Southern Peruvian (CSPA) analyzed in this study, and more remarkably in coastal 

areas. To assess trends in rainfall indices, Mann-Kendall test and Sen’s slope with a correction 

for time-series autocorrelation were applied to over thirty hydrologic years (1965-2009) of 

observed rainfall. 

Trends in rainfall indices did not show a clear spatial pattern over most subregions of 

stations, except for a few areas and specific indices. Therefore, the main conclusions were 

based on statistically significant trends observed in around 30% of stations in each one of the 

four major regions in CSPA.  

Despite the increase in the frequency of wet days, approximately 30-44% of the stations 

located over the Amazon basin (region A) exhibited negative trends in the yearly rainfall 

intensity, the number of heavy rainfall days and the maximum 5-days rainfall during 1965-

2009. This means that although the number of rainy days has increased, this has not contributed 

to the increase in the total and mean rainfall indices for this region. Similar negative trends 

were also detected in the stations located in Central Pacific basin (region B); about 30-43% of 

the stations in this region showed a decrease in the yearly rainfall intensity, consecutive dry 

days, the maximum 1-day rainfall and the maximum 5-days rainfall. Despite the indication of 

consistent negative trends in some indices related to extreme rainfall in this region, about 20% 

of these stations also showed an increase in the frequency of wet days. In Southern Pacific 

basin (region C), about 20% of station had a decrease in consecutive dry days and an increase 

in maximum 1-day rainfall. Finally, one-third of the stations located over the Titicaca basin 
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(region D) showed an increase in the intensity of rainfall extremes (maximum 1-day rainfall), 

but these trends did not affect the total annual rainfall in the region. 

In summary, important new information on total and extreme rainfall trends in CSPA 

was generated, which in some cases differ from previous studies because a larger number of 

quality-controlled stations with longer periods, a more complete number of extreme rainfall 

indices calculated using hydrologic calendar, and a robust method of trend analysis were used 

in this study. 
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CHAPTER IV. MJO-ENSO Influence on Rainfall 

A. Introduction 

The Madden-Julian Oscillation (MJO) is a couple convective and atmospheric 

circulation pattern that  propagates eastward  along the tropics with typical time scales of 20-

100 days (Madden and Julian, 1971, 1972, Zhang, 2005, 2013). The typical large-scale pattern 

of enhanced and suppressed convection during the MJO life cycle shows enhanced convection 

originating over eastern Africa and suppressed convection over the maritime continent and 

western Pacific. This dipole of enhanced/suppressed convection slowly propagates eastward 

(phase speeds ~5 m/s) across the Indian Ocean and western Pacific. Due to the enhanced 

convective heating and teleconnections, the MJO influences weather variability along the 

tropical region as well as extratropics of both hemispheres (Jones and Carvalho, 2012; Valadão 

et al., 2016; Wheeler and Hendon, 2004).  

The MJO is recognized to be an important phenomenon bridging weather and climate 

and depending on its interactions with other  phenomena (e.g. El Niño Southern Oscillation, 

ENSO), the MJO may influence the occurrence of extreme weather events worldwide (Zhang, 

2013). On a global scale, around 40 % more extreme precipitation occurs during active MJO 

than during inactive MJO (Jones et al., 2004b). For instance, impacts of the MJO on rainfall 

anomalies and extremes are reported in China (Zhang et al., 2009), India (Pai et al., 2011), 

Australia (Wheeler et al., 2009), Africa (Pohl et al., 2007), United States (Jones and Carvalho, 

2012), Brazil (De Souza and Ambrizzi, 2006; Valadão et al., 2015) and Chile (Barrett et al., 

2012; Juliá et al., 2012).  

The influence of the MJO on rainfall variability in South America has been studied by 

Nogues-Paegle et al. (2000), Carvalho et al. (2002, 2004), Liebmann et al. (2004), De Souza 
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and Ambrizzi (2006), Muza et al. (2009), Mo et al. (2012), and Alvarez et al. (2016). However, 

statistically significant rainfall patterns related to MJO conditions over the Andes are difficult 

to detect as a result of the sparse density of rainfall gauges in this region (Alvarez et al., 2016). 

This chapter seeks to fill this gap in the current knowledge of intraseasonal variability of 

rainfall in the central Andes.  

It is important to note that ENSO is the dominant source of interannual climate 

variability with significant influences on rainfall variability in South America. Roundy et al. 

(2010) and Moon et al. (2011) observed enhanced (suppressed) convection over the Maritime 

Continent and the monsoonal region of South America during La Niña (El Niño). The warm 

(cold) phase of ENSO is generally associated with below (above) average rainfall over tropical 

South America (Garreaud, 2009) and the Altiplano (Vuille et al., 2000). In general, easterly 

(westerly) upper level winds are related to enhanced (suppressed) rainfall on interannual time-

scales in the Altiplano resulting from the increased (reduced) moisture influx from east of the 

Andes (Garreaud and Aceituno, 2001; Vuille, 1999). Furthermore, there is spatially different 

responses in the central Peruvian Andes (Garreaud et al., 2003) and southern Peruvian Andes 

(Perry et al., 2014; Vuille and Keimig, 2004). Lagos et al. (2008) found weakly positive, 

neutral and moderately negative correlation coefficients between sea surface temperature 

(SST) anomalies in the Niño 3.4 region and rainfall in the northern, central and southern Peru, 

respectively. Lavado and Espinoza (2014) also described the spatial variability of rainfall 

impacts of ENSO in Peru. During strong La Niña (El Niño) events, they found decreased 

(increased) rainfall in the Southern Pacific, Titicaca, and Amazon basins (northern Pacific 

basin).  
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In regards to the MJO, Zhang (2005; 2013) made a comprehensive review of MJO 

mechanisms, impacts and its relationship with ENSO. There is lack of consensus on the 

mechanism explaining the MJO-ENSO interaction (Hendon et al., 2007; Zavala-Garay, 2005). 

Slingo et al. (1999) and Hendon et al. (1999) showed MJO indices uncorrelated with ENSO. 

Kessler (2001), Jones et al. (2004a), Pohl and Matthews (2007) and Valadão et al. (2016) 

found no effects on the duration and frequency of MJO phases during different ENSO years. 

Whereas Deng et al. (2016) pointed out that the eastward-propagating MJO tends to strengthen 

(weaken) in the central equatorial Pacific during the warm (cold) SST episodes. Furthermore, 

major El Niño are shown to be preceded by strong episodes of the MJO (McPhaden, 2004, 

2008). ENSO warming in the eastern Pacific tends to be preceded by enhanced MJO activities 

(Zavala-Garay, 2005), initiated after persistent Kelvin waves (Zhang and Gottschalck, 2002) 

and associated with westerly wind bursts (Hendon et al., 2007; Seiki and Takayabu, 2007).  

Roundy et al. (2010), Moon et al. (2011) and Hoell et al. (2014) described different 

rainfall patterns related to MJO-ENSO conditions mainly over the northern hemisphere. 

Enhanced/suppressed rainfall during MJO-ENSO periods can be expected despite the similar 

number of days of MJO phases during different ENSO years. ENSO modifies the background 

state of moist deep convection, wind, and temperature through which the MJO propagates 

(Roundy et al., 2010). Roundy et al. (2010) investigated the modulation of global atmospheric 

circulation by the MJO and ENSO during 1974-2008 austral summer. They found MJO-ENSO 

teleconnections across the North Pacific Rim, North America, and North Atlantic.  

The interactions between MJO and ENSO and their joint influences on rainfall over the 

Central and Southern Peruvian Andes (CSPA) have not been investigated in detail. The 

objective of this chapter is to investigate the following questions: Does MJO-ENSO 
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significantly modulate rainfall in the Peruvian Andes? What are the large-scale circulation 

and moisture patterns during rainfall events over the CSPA associated with MJO-ENSO? Is 

the MJO-ENSO influence on CSPA rainfall homogeneous in space?  

The MJO influence on rainfall stations is difficult to detect, since large-scale 

atmospheric circulation related to the MJO is influenced by local topography (Matthews et al., 

2013; Valadão et al., 2015). Previous studies used various types of datasets as 20-90 day band-

pass filtered rainfall (Valadão et al., 2016), monthly rainfall (Bourrel et al., 2014), and Global 

Precipitation Climatology Project (GPCP) (Jones et al., 2004b); and applied a variety of 

methods including the calculation of rainfall anomaly (Valadão et al., 2016; Wheeler et al., 

2009) and standardized rainfall anomaly (Barrett et al., 2012), and the test of proportions of 

rainfall extremes (Jones et al., 2004b) to evaluate MJO effects on rainfall at local scales. Here, 

unfiltered daily rainfall data is used to characterize intraseasonal variability in stations. Also, 

an adaptation of the standardized anomaly and frequency of extremes used in Barrett et al. 

(2012) was devised. This adaptation (explained in section C.1) ensures that the statistical 

assumptions of the dataset are met, thus efficiently detecting MJO-ENSO influence on rainfall. 

This chapter examines the relationships between the MJO phases during different 

ENSO conditions and the occurrence of enhanced rainfall in CSPA. The MJO-ENSO rainfall 

effects are described for homogeneous regions of stations separately, and the potential 

relationship between large-scale dynamics generated by MJO-ENSO and local impacts on 

rainfall is also discussed.  
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B. Data  

1. Gauged stations 

November-March 1979-2010 daily rainfall of forty-seven quality-controlled stations 

located in CSPA. Figure 2.1 shows the location of these stations (same stations used in Chapter 

2 and 3) and the regions differentiated are: A (Amazon basin), B (Central Pacific basin), C 

(Southern Pacific basin), and D (Titicaca basin). It is important to study enhanced rainfall in 

CSPA, since the forty-seven stations show large contribution (44 to 100%) from rainfall 

exceeding the 75th percentile to the total Nov-Mar 1979-2010 rainfall.  

2. Gridded datasets 

To characterize changes in the atmospheric circulation associated with MJO-ENSO and 

their influence in the distribution of rainfall in Peru, 0.5-deg daily averages of lower (850-hPa, 

U850) and upper level (200-hPa, U200) winds from the Climate Forecast System Reanalysis 

(CFSR) were used (Saha et al., 2010). Daily averages of Outgoing Longwave Radiation (OLR) 

was used as a proxy for tropical convection (Liebmann and Smith 1996). All gridded datasets 

were obtained for Nov-Mar 1979-2010. Lastly, vertically integrated moisture flux was 

computed with CFSR data by integrating specific humidity, zonal and meridional winds from 

the surface up to 200-hPa.  

3. MJO index 

To identify periods of active and inactive MJO days, the methodology explained in 

Jones and Carvalho (2014) was followed. First, the daily climatology was removed from OLR, 

U850 and U200 and a band-pass filter (20-200 day) was applied. A combined Empirical 

Orthogonal Function (EOF) analysis was performed by averaging the resulting anomalies 

around the equator (15°S and 15°N). The EOF patterns and phase evolution of the MJO 
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computed this way is in close agreement with the convention used by Wheeler and Hendon 

(2004). The primary difference is that Jones and Carvalho (2014) use band-passed anomalies, 

whereas Wheeler and Hendon (2004) use anomalies from the seasonal cycle. The life cycle of 

the MJO starts with enhanced convection in the western Indian Ocean (phase 1) and 

progressively moves eastward to the central Pacific (phase 8). MJO events were defined here 

when: 1) the phase angle between the first two time coefficients (PC1 and PC2) systematically 

rotated counterclockwise, indicating eastward propagation at least to the Maritime Continent; 

2) the normalized amplitude (√ܲ1ܥଶ ൅	ܲ2ܥଶ) was always larger than 0.35; 3) the mean 

amplitude during the event was larger than 0.9; and 4) the entire duration of the event lasted 

between 30 and 90 days. When those conditions were not satisfied, the MJO was considered 

to be in a quiescent (inactive) phase. Figure 2 of Jones and Carvalho (2012) shows the 

characteristic dipole pattern of enhanced/suppressed convection during active MJO phases.   

According to ONI, eleven El Niño (EN), eight La Niña (LN) and thirteen ENSO-neutral 

(NT) years occurred during 1979-2010. Table 4.1 shows the percentage of MJO days during 

Nov-Mar 1979-2010 and the percentage of EN, LN and NT days for each MJO phase. MJO 

active days occurred during 62% of the period analyzed here (4689 days). The percentage of 

days during each MJO phase occurred almost equally distributed among ENSO conditions, as 

noted in Valadão et al. (2016).   

C. Methods 

1. Rainfall patterns 

The distribution of rainfall variance during Nov-Mar 1979-2010 was examined using 

power spectrum analysis. Forty CSPA stations, out of the forty-seven, were chosen to perform 

the power spectrum analysis since they had complete time-series. Before computing the power  
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Table 4.1. Percentage of MJO days from the entire period analyzed (Nov-Mar 1979-
2010, 4689 days) and percentage of El Niño (EN), La Niña (LN) and ENSO-neutral (NT) 
days for each MJO phase. MJO activity refers to inactive (INA) and active (MJO) MJO 

conditions. 

MJO 
activity 

MJO 
phase 

Days out of 
the entire 

period (%) 

EN days out 
of each MJO 

phase (%) 

LN days out 
of each MJO 

phase (%) 

NT days out 
of each MJO 

phase (%) 

INA 0 38 25 45 30 

MJO 

1 7 40 20 41 

2 9 42 23 35 

3 8 48 26 26 

4 7 43 23 34 

5 8 41 26 32 

6 8 33 26 41 

7 9 35 26 39 

8 6 38 27 35 

 
spectrum, the long-term mean, linear trend and semi-annual cycle were removed from the time-

series. The computation of the power spectrum followed the methodology described in 

Carvalho et al. (2012). For a given station, the power spectrum was first computed for each 

time series separately by applying 10% tapering at each end of the time series and raw spectral 

estimates computed with Fast Fourier Transform. The raw spectral estimates were then 

averaged using a moving average of length L=3. The smoothed spectra were normalized by 

the total variance and averaged together to obtain a 30-yr ensemble mean. The red-noise 

background spectrum was estimated with a first-order auto-regressive process. The 95% 

significance level of the ensemble spectrum was estimated with 2 distribution with the degrees 

of freedom adjusted by tapering.  

To evaluate variations of rainfall during MJO-ENSO conditions at each station, the 

standardized anomaly of rainfall (StAnom) and the frequency of extreme rainfall (FrqEx) 
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during twenty-seven conditions of MJO-ENSO were calculated. The MJO-ENSO conditions 

are a combination of eight MJO phases, inactive MJO, and three ENSO conditions (EN, LN 

and NT). An extreme rainfall event was considered when the daily rainfall exceeded the 75th 

percentile during Nov-Mar 1979-2010. StAnom and FrqEx were calculated only for the CSPA 

stations that showed statistically significant intraseasonal variability.  

StAnom was calculated based on the median rainfall during each MJO-ENSO condition 

 of rainfall during Nov-Mar (ܴܳܫ) and interquartile range (ܯ) and the median ,(ெ௃ைିாேௌைܯ)

1979-2010. StAnom was calculated as in Junker et al. (2008) and Barrett et al. (2012), but using 

median and interquartile range instead of mean and standard deviation, respectively, since the 

data did not follow a normal distribution. Therefore, StAnom = ሺܯெ௃ைିாேௌை െ   .	ܴܳܫ/ሻܯ

FrqEx was calculated based on the number of extreme rainfall events 

 per each MJO-ENSO (ெ௃ைିாேௌைݐ݋ܶ݉ݑܰ) and the total number of days (ெ௃ைିாேௌைݔܧ݉ݑܰ)

condition. FrqEx was calculated as Barrett et al. (2012), but here the threshold to define 

extreme rainfall was the 75th percentile instead of one standard deviation. FrqEx (in %) was 

calculated as ൫ܰݔܧ݉ݑெ௃ைିாேௌை൯ ∗    .	ெ௃ைିாேௌைݐ݋ܶ݉ݑܰ/100

2. Atmospheric circulation 

The climatology of vertically integrated moisture flux during Nov-Mar 1979-2010 was 

calculated to understand mean atmospheric circulation patterns. Composites of moisture flux 

anomalies (deviations from daily climatology) during MJO-ENSO conditions were used to 

evaluate atmospheric circulation patterns associated during those conditions. To assess the 

statistical significance of mean anomalies, the Student’s t-test was applied. The test statistic (t) 

was ݐ ൌ ሺܺ௔௡௢௠ ∗ 	√݊ᇱ െ 1ሻ/ܵ௔௡௢௠ (Wilks, 2011). Where the mean of the anomalies is ܺ ௔௡௢௠ 

s, ݊ᇱ is the number of MJO events, and ܵ௔௡௢௠ is the standard deviation of anomalies. The 
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composite was statistically significant if ݐ was greater-than, less-than or equal to the table 

critical value of two-tailed t-test with 95% confidence level and ݊ᇱ െ 1 degrees of freedom. 

Note that ݊ᇱ was the number of MJO events; this was a more restrictive (robust) approach to 

test the statistical significance of anomalies than using the total number of days during each 

MJO-ENSO. An MJO event is defined as the period of consecutive days from the start to the 

end of the event.   

D. Results 

1. Rainfall patterns 

Inspection of individual ensemble power spectrum of rainfall shows important 

intraseasonal variability in most CSPA stations. Thirty-three stations, out of the forty stations 

analyzed, showed statistically significant peaks between 20 to 100 days. To illustrate 

intraseasonal variability, Figure 4.1 shows the power spectrum over selected CSPA stations, 

while Figure 4.2 indicates the locations that exhibit intraseasonal and non-intraseasonal rainfall 

variability. From the forty CSPA stations analyzed, 75%, 83%, 92% and 75% of stations in 

regions A (Amazon basin), B (Central Pacific basin), C (Southern Pacific basin) and D 

(Titicaca basin), respectively, show intraseasonal rainfall variability. Despite the high altitude 

and complex terrain of CSPA stations, the four regions show significant intraseasonal 

variability. The stations located in the coastal Pacific basin (regions A and B), western side of 

the Andes, are the most sensitive; while the stations located in the eastern side of the Andes 

(Amazon basin or region C) and in the high-Andean plateau (Titicaca basin or region D) are 

slightly less sensitive. These results motivate further explanation of the effects of the MJO, the 

main source of intraseasonal rainfall variability in the tropics, on CSPA and its variations 

during different ENSO conditions.   
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MJO-ENSO rainfall patterns were studied using standardized anomaly (StAnom) and 

frequency of enhanced rainfall (FrqEx) during each MJO-ENSO condition. The location of 

stations and its geographic features determined if MJO-ENSO imprints an effect on rainfall at 

local scales. Suppressed rainfall (StAnom less than -0.5), enhanced rainfall (StAnom greater 

than 0.5) and the frequency of extreme rainfall (FrqEx) greater than 20% varied greatly 

depending on the location of CSPA region, the MJO phase and the ENSO condition.   

(a) Yantac station (Region A)   (b) Paccho station (Region B)  

  
(c) Chivay station (Region C)   (d) Pampahuta station (Region D

  
 

Figure 4.1. Power spectrum of some Central and Southern Peruvian Andes stations during 
Nov-Mar 1979-2010: (a) Yantac station (located in region A), (b) Paccho station (located in 

region B), (c) Chivay station (located in region C), and (d) Pampahuta station (located in 
region D). Continuous, dotted and dashed line represent power spectrum, background red-

noise spectrum and 95 % significance level, respectively. 
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Figure 4.2. Stations with intraseasonal or non-intraseasonal rainfall variability during Nov-
Mar 1979-2010. 

 

 The percentage of stations from each CSPA region that experienced suppressed rainfall 

during different MJO and ENSO phases is shown in Figure 4.3. 70-80% of stations in region 

A showed StAnom less than -0.5 during MJO1-EN, MJO2-EN, MJO5-EN, MJO8-EN and 

MJO2-LN (Figure 4.3 a). About 70% of the stations located in region B have suppressed 

rainfall during MJO4-EN (Figure 4.3 b). About 60% of the stations located in region C show 

suppressed rainfall during MJO8-EN and MJO4-LN (Figure 4.3 c). About 80% of stations in 

region D have suppressed rainfall during MJO1-EN, MJO3-EN, MJO5-EN and MJO2-NT 

(Figure 4.3 d). 
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(a) Region A          (b) Region B   

 
(c) Region C        (d) Region D 

 
 

Figure 4.3. Percentage of Central and Southern Peruvian Andes (CSPA) stations with 
suppressed rainfall (StAnom < -0.5) for different MJO-ENSO conditions during Nov-Mar 

1979-2010. CSPA regions of stations: (a) A (Amazon basin), (b) B (Central Pacific basin), 
(c) C (Southern Pacific basin) and (d) D (Titicaca basin). 

 

Figure 4.4 shows the percentage of stations from each CSPA region that experienced 

enhanced rainfall during different MJO-ENSO phases. 70-80% of the stations located in region 

A showed StAnom greater than 0.5 during MJO5-LN, MJO6-LN, MJO8-LN, MJO4-NT, 

MJO5-NT and MJO8-NT (Figure 4.4 a). 60-70% of stations in region B showed enhanced 

rainfall during MJO5-LN, MJO6-LN, MJO8-LN, MJO4-NT and MJO5-NT (Figure 4.4 b). 60-

70% of stations in region C had enhanced rainfall during MJO1-LN, MJO3-LN, MJO6-LN 

and MJO2-NT (Figure 4.4 c). 70-80% of stations in region D had enhanced rainfall during 
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MJO2-LN, MJO4-LN, MJO7-LN, MJO8-LN, MJO6-NT, MJO7-NT and MJO8-NT (Figure 

4.4 d).  

 The percentage of stations from each CSPA region that experienced frequencies of 

extreme rainfall (FrqEx) greater than 20% during different MJO-ENSO conditions is shown 

in Figure 4.5. This percentage of stations is about 70% only during MJO3-LN in region A 

(Figure 4.5 a) and C (Figure 4.5 c). The frequency of enhanced rainfall greater than 20% is not 

observed in more than half the stations in all regions during EN or NT conditions.  

(a) Region A         (b) Region B  

 
(c) Region C           (d) Region D 

 
 

 
Figure 4.4. As Figure 4.3, but for enhanced rainfall (StAnom > 0.5). 
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(a) Region A      (b) Region B   

 
(c) Region C         (d) Region D  

 
 

Figure 4.5. As Figure 4.4, but for frequencies of extreme rainfall events greater than 20% 
(FrqEx > 20%). 

 
 2. Atmospheric circulation 

 To relate the above-mentioned changes in gauged rainfall with moisture flux patterns, 

both the climatology and anomalies of moisture flux were calculated. The climatology of 

moisture flux over South America is presented in Figure 4.6. It shows the typical easterly 

moisture flux transport near the equator. On the eastern slopes of the Andes, moisture flux 

circulation progressively has a northerly component due to the topographic barrier. Moisture 

is then transported toward subtropical South America. The general features of integrated 

moisture transport obtained with CFSR reanalysis agrees with other studies that analyzed daily 

low-level winds from NCEP-NCAR reanalysis (e.g. Carvalho et al. (2002), Jones and Carvalho 
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(2002) and Marengo et al. (2012)). The low-level moisture transport is a key ingredient for the 

maintenance of strong convective activity over the Amazon basin and the associated upper-

level circulation characterized by the Bolivian High.  

 
Figure 4.6. Climatology of vertically integrated moisture flux over most of South America 

during Nov-Mar 1979-2010. Central and Southern Peruvian Andes regions are denoted as A 
(Amazon basin), B (Central Pacific basin), C (Southern Pacific basin), and D (Titicaca 

basin). 
 
The atmospheric circulation during MJO-ENSO conditions is described with 

composites of intraseasonal moisture flux anomalies, which are presented in Figure 4.7 (MJO 

phases 1 to 4) and Figure 4.8 (MJO phases 5 to 8) for EN conditions, in Figure 4.9 (MJO phases 

1 to 4) and Figure 4.10 (MJO phases 5 to 8) for LN conditions, and in Figure 4.11 (MJO phases 

1 to 4) and Figure 4.12 (MJO phases 5 to 8) for NT conditions. The predominant direction of 

statistically significant moisture flux anomalies during different MJO-ENSO conditions over 

each CSPA region is summarized in Table 4.2 based on Figures 4.7 to 4.12. During MJO phase 

1, moisture flux direction has easterly or southerly components in all CSPA regions during all 

ENSO conditions. During MJO phase 2, southerly moisture flux is seen in region C (A and B) 



 

 66

during EN (LN). During MJO phase 3, easterly or northeasterly directions are predominant in 

all CSPA regions during EN and NT, while southeasterly directions are seen in region B during 

LN. During MJO phase 4, northerly (easterly) moisture flux anomalies are evident in all (most) 

CSPA regions during EN (LN). During MJO phase 5, moisture flux direction has easterly or 

southeasterly components in all (most) CSPA regions during EN (LN and NT). During MJO 

phase 6, moisture flux has easterly components in most CSPA regions during NT. During MJO 

phase 7, westerly or northwesterly moisture flux anomalies are evident in all (most) CSPA 

regions during EN (NT). During MJO phase 8, westerly or northwesterly anomalies are seen 

in all CSPA regions (regions A and D) during EN (NT), and in region A and B during LN. 

Likewise, the predominant direction of statistically significant moisture flux anomalies 

during different MJO-ENSO conditions over two contrasting locations in South America 

(outside CSPA) is summarized in Table 4.3 based on Figures 4.7 to 4.12. These two locations 

which showed spatially consistent moisture flux anomalies are the western Amazon (centered 

approximately in 5°S and 65°W) and the east of the Andes region (centered between 12.5°S 

and 17.5°S, to the east of the Andes). Westerly (easterly) moisture flux anomalies are seen 

over western Amazon associated with southeasterly (northwesterly) anomalies over the east of 

the Andes region during certain MJO-ENSO. Statistically significant westerly (southeasterly) 

anomalies of moisture flux are seen over western Amazon (east of the Andes) during MJO1-

EN, MJO4-LN, MJO5-LN and MJO1-NT. Statistically significant easterly (northwesterly) 

anomalies of moisture flux are seen over western Amazon (east of the Andes) during MJO6-

EN, MJO8-EN, MJO5-NT, MJO7-NT and MJO8-NT. 
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(a) Phase 1     (b) Phase 2 

       
(c) Phase 3     (d) Phase 4 

       
Figure 4.7. Composites of 20-100 days filtered anomalies of vertically integrated moisture 

flux during El Niño years and different MJO phases of the period Nov-Mar 1979-2010; 
where the different MJO phases are (a) Phase 1, (b) Phase 2, (c) Phase 3, and (d) Phase 4. 

Central and Southern Peruvian Andes regions are denoted as A (Amazon basin), B (central 
Pacific basin), C (southern Pacific basin), and D (Titicaca basin). Only statistically 

significant mean filtered anomalies were mapped, based on a 2-tailed t-test with 95% level of 
confidence. 
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(a) Phase 5     (b) Phase 6 

       
(c) Phase 7     (d) Phase 8 

       
Figure 4.8. As Figure 4.7, but for MJO (a) Phase 5, (b) Phase 6, (c) Phase 7 and (d) Phase 8. 
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(a) Phase 1     (b) Phase 2 

       
(c) Phase 3     (d) Phase 4 

       
Figure 4.9. Composites of 20-100 days filtered anomalies of vertically integrated moisture 

flux during La Niña years and different MJO phases of the period Nov-Mar 1979-2010; 
where the different MJO phases are (a) Phase 1, (b) Phase 2, (c) Phase 3, and (d) Phase 4. 

Central and Southern Peruvian Andes regions are denoted as A (Amazon basin), B (central 
Pacific basin), C (southern Pacific basin), and D (Titicaca basin). Only statistically 

significant mean filtered anomalies were mapped, based on a 2-tailed t-test with 95% level of 
confidence. 
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(a) Phase 5     (b) Phase 6 

       
(c) Phase 7     (d) Phase 8 

       
Figure 4.10. As Figure 4.9, but for MJO (a) Phase 5, (b) Phase 6, (c) Phase 7 and (d) Phase 8.
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(a) Phase 1     (b) Phase 2 

       
(c) Phase 3     (d) Phase 4 

       
Figure 4.11. Composites of 20-100 days filtered anomalies of vertically integrated moisture 

flux during ENSO-neutral years and different MJO phases of the period Nov-Mar 1979-
2010; where the different MJO phases are (a) Phase 1, (b) Phase 2, (c) Phase 3, and (d) Phase 
4. Central and Southern Peruvian Andes regions are denoted as A (Amazon basin), B (central 

Pacific basin), C (southern Pacific basin), and D (Titicaca basin). Only statistically 
significant mean filtered anomalies were mapped, based on a 2-tailed t-test with 95% level of 

confidence. 
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(a) Phase 5     (b) Phase 6 

       
(c) Phase 7     (d) Phase 8 

       
Figure 4.12. As Figure 4.11, but for MJO (a) Phase 5, (b) Phase 6, (c) Phase 7 and (d) Phase 

8. 
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Table 4.2. Prevailing directions of statistically significant moisture flux anomalies during 
MJO active phases (1 to 8) and different ENSO conditions (EN, LN and NT) of the period 

Nov-Mar 1979-2010 over each Central and Southern Peruvian Andes (CSPA) region. CSPA 
regions are A (Amazon basin), B (Central Pacific basin), C (Southern Pacific basin) and D 
(Titicaca basin). The directions of anomalies are northerly (↓), easterly (←), southerly (↑), 

westerly (→), northeasterly (↙), northwesterly (↘) and southeasterly (↖). 
 

 

 

EN LN NT

A ↖ ↖ ↑

B ↖ ← ↑

C ← ← ↖

D ↖ ↖ ↖

A - ↑ -
B - ↑ -
C ↑ - -
D - - -
A ↙ - ←

B ↙ ↖ ←

C ← - ←

D ← - ←

A ↓ ↖ ↓

B ↓ - -
C ↓ ← -
D ↓ ← -
A ↖ ↖ -
B ← ↓ ←

C ← - ←

D ← ↖ ←

A ↘ - -
B - - ←

C - - ←

D - - ↖

A → ↓ ↘

B → - -
C ↘ - ↓

D ↘ - →

A ↘ → ↘

B → → -
C → - -
D → - ↘

2

3

MJO Region
ENSO

1

4

5

6

7

8
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Table 4.3. As Table 4.2, but over two contrasting locations in South America: western 
Amazon and east of the Andes. 

 

 

 
E. Discussion  

To describe the atmospheric patterns potentially related to the MJO-ENSO effects on 

rainfall over each CSPA region, we compared the outstanding features of suppressed rainfall, 

enhanced rainfall and enhanced frequency of extreme events (shown in Figures 4.3 to 4.5) with 

moisture flux anomalies (shown in Figures 4.7 to 4.12). This comparison is summarized in 

Table 4.4. More than 55% of stations in each CSPA region experience suppressed rainfall 

mainly during EN conditions and certain MJO phases, and this effect is associated with 

different directions of moisture flux anomalies. In region A, the suppressed rainfall that occurs 

during MJO1-EN, MJO5-EN, MJO8-EN and MJO2-LN is associated with statistically 

significant moisture flux anomalies with southeasterly, southeasterly, northwesterly and 

southerly  directions  in  region A,  respectively. In region B,  suppressed  rainfall  is  evident  

EN LN NT

Western Amazon → - →

East of the Andes ↖ ↖ ↖

Western Amazon - - -

East of the Andes - - -
Western Amazon - - ←

East of the Andes - - ↖

Western Amazon ← → ←

East of the Andes - ↖ -
Western Amazon ← → ←

East of the Andes ↖ ↖ ↘

Western Amazon ← - -
East of the Andes ↘ - -
Western Amazon - - ←

East of the Andes - - ↘

Western Amazon ← - ←

East of the Andes ↘ - ↘

7

8

MJO Location

1

2

3

4

5

6

ENSO
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Table 4.4. Summary of suppressed rainfall (SupR), enhanced rainfall (EnhR), enhanced 
frequencies of extreme rainfall events (FrqEx) and direction of statistically significant 

moisture flux anomalies (Mflux) during different MJO-ENSO conditions for each CSPA 
region. SupR, EnhR and FrqEx show an ‘X’ (‘-’) when more (less) than 55% of stations per 
each region reported suppressed rainfall, enhanced rainfall and enhanced rainfall extremes, 

respectively. Mflux shows the direction of spatially coherent moisture flux anomalies: 
northerly (↓), easterly (←), southerly (↑), westerly (→), northeasterly (↙), northwesterly (↘) 

and southeasterly (↖). ‘X’ is colored in red (blue) to highlight the MJO-ENSO conditions 
when rainfall is suppressed (enhanced) and a spatially coherent moisture flux in the region is 

present. 
 

 

EN LN NT EN LN NT EN LN NT EN LN NT

1 X - - - - - - - - ↖ ↖ ↑

2 X X - - - - - - - - ↑ -

3 - - - - - - - X - ↙ - ←

4 - - - - - X - - - ↓ ↖ ↓

5 X - - - X X - - - ↖ ↖ -

6 - - - - X - - - - ↘ - -

7 - - - - - - - - - → ↓ ↘

8 X - - - X X - - - ↘ → ↘

1 - - - - - - - - - ↖ ← ↑

2 - - - - - - - - - - ↑ -

3 - - - - - - - - - ↙ ↖ ←

4 X - - - - X - - - ↓ - -

5 - - - - X X - - - ← ↓ ←

6 - - - - X - - - - - - ←

7 - - - - - - - - - → - -

8 - - - - X - - - - → → -

1 - - - - X X - - - ← ← ↖

2 - - - - X X - - - ↑ - -

3 - - - - X - - X - ← - ←

4 X X - - - - - - - ↓ ← -

5 - X - - - X - - - ← - ←

6 - - - - X - - - - - - ←

7 - - - - - - - - - ↘ - ↓

8 X - - - - - - - - → - -

1 X - - - - - - - - ↖ ↖ ↖
2 - - X - X - - - - - - -

3 X - X - - - - - - ← - ←

4 - - - - X - - - - ↓ ← -

5 X - - - - - - - - ← ↖ ←

6 - - - - - X - - - - - ↖

7 - - - - X X - - - ↘ - →

8 X - - - X X - - - → - ↘

Mflux

B

C

D

SupR EnhR FrqEx
Region MJO

A
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during MJO4-EN; a condition that shows statistically significant northerly moisture flux 

anomalies in region B. In region C, suppressed rainfall occurs during MJO4-EN, MJO8-EN 

and MJO4-LN; these conditions show statistically significant northerly, westerly and easterly 

moisture flux anomalies in region C, respectively. In region D, suppressed rainfall is evident 

during MJO1-EN, MJO3-EN, MJO5-EN, MJO8-EN and MJO3-NT; conditions that are 

associated with statistically significant southeasterly, easterly, easterly, westerly and easterly 

moisture flux anomalies in region D, respectively.   

MJO-ENSO generated spatially-dependent enhanced rainfall associated with different 

atmospheric circulation patterns over CSPA (Table 4.4). In general, more than 55% of stations 

in each CSPA region experience enhanced rainfall mainly during LN and NT conditions and 

certain MJO phases. In region A, the enhanced rainfall that occurs during MJO5-LN, MJO8-

LN, MJO4-NT and MJO8-NT show statistically significant moisture flux anomalies with 

southerly, westerly, northerly and northwesterly directions, respectively. In region B, enhanced 

rainfall during MJO5-LN, MJO8-LN and MJO5-NT show statistically significant northerly, 

westerly and easterly moisture flux anomalies in region B, respectively. In region C, enhanced 

rainfall during MJO1-LN, MJO1-NT and MJO5-NT show easterly, southeasterly and easterly 

directions in region C, respectively. In region D, enhanced rainfall during MJO4-LN, MJO6-

NT, MJO7-NT and MJO8-LN show statistically significant moisture flux anomalies with 

easterly, southeasterly, westerly and northwesterly directions in region D, respectively. 

Finally, the percentage of FrqEx greater than 20% occurs in regions A and C during MJO3-

LN; a condition that shows non-statistically significant moisture flux anomaly over regions A 

and C. 
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The easterly (westerly) patterns found here (Table 4.3) over the western Amazon during 

certain MJO-ENSO conditions are consistent with the intraseasonal wind patterns shown in 

Carvalho et al. (2002) and Jones and Carvalho (2002) during break (active) phases of the South 

American Monsoon System or SAMS. They examined intraseasonal variations (10-70 days) 

in low-level wind circulation and OLR and found evidence of enhanced convection over 

southeast Brazil (centered in 15°S and 50°W), suppressed convection over the Altiplano 

(centered in 20°S and 65°W), and suppressed convection over northern South America 

(centered in 4°N and 65°W) during westerly regimes or active phase of SAMS; while opposite 

patterns occurred during easterly regimes or the break phase of SAMS.  

Lastly, the transport of moisture from the Amazon to the Andean region is a well-

known condition that generates rainfall over CSPA (Garreaud et al. 2009; Giovannettone and 

Barros 2009; Perry et al. 2014; among others). Here, this pattern (transport of moisture from 

the east) is seen during certain MJO-ENSO conditions and is related to enhanced rainfall in 

some CSPA regions; as during (a) MJO5-LN in region A, (b) MJO5-NT in region B, (c) MJO1-

LN, MJO1-NT and MJO5-NT in region C, and (d) MJO4-LN and MJO6-NT in region D. 

Nevertheless, rainfall modulation solely by MJO-ENSO conditions can be difficult to observe 

due to possible existence of complex terrain (Giovannettone and Barros, 2009) and local 

forcings (Gonzalez et al., 2008) acting simultaneously (and/or remotely) in the study region. 

Therefore, adding space-time variability to the moist atmospheric processes. Future analysis, 

most likely by using climate modeling approaches, would be needed to further explain the 

following complex processes simultaneously: MJO-ENSO modulation of rainfall, local forcing 

of mesoscale convective activity and topographic modulation of rainfall and moisture flux.      
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F. Conclusions 

Daily gauged rainfall during November-March 1979-2010 was used to evaluate the 

effects of MJO-ENSO in the Central and Southern Peruvian Andes (CSPA). The CSPA 

stations analyzed in this study are located in four main regions: A (Amazon basin), B (Central 

Pacific basin), C (Southern Pacific basin) and D (Titicaca basin). Most stations in each CSPA 

region are sensitive to intraseasonal rainfall variability since they exhibit statistically 

significant power spectrum peaks on 20-100 time-scales. Only these stations, with evident 

intraseasonal rainfall variability, were used to evaluate MJO-ENSO effects on rainfall. The 

MJO-ENSO effects on gauged rainfall are described for each CSPA region based on 

standardized rainfall anomalies and frequency of rainfall extremes.  

In general, none of the regions shows clear patterns of rainfall suppression or 

enhancement during inactive MJO for all ENSO conditions. During El Niño or EN (La Niña 

or LN and ENSO-neutral or NT), rainfall is suppressed (enhanced) in most CSPA stations 

depending on the MJO phase and the location of the stations. Suppressed rainfall is evident 

during MJO phases 1, 2, 5 and 8 with EN conditions in region A, during MJO phase 4 with 

EN conditions in region B, during MJO phase 4 with LN conditions or MJO phase 8 with EN 

conditions in region C, and during MJO phases 1, 3 and 5 with EN conditions or MJO phase 2 

with NT conditions in region D. 

Enhanced rainfall is experienced during MJO phases 4, 5 and 8 with NT conditions or 

MJO phases 5, 6 and 8 with LN conditions in region A, during MJO phases 4 and 5 with NT 

conditions or MJO phases 5, 6 and 8 with LN conditions in region B, during MJO phase 2 with 

NT conditions or MJO phases 1, 3 and 6 with LN conditions in region C, during MJO phases 

6, 7 and 8 with NT or during MJO phases 2, 4, 7 and 8 with LN conditions in region D. Lastly, 
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most stations in regions A and C show frequencies of extreme rainfall greater than 20% during 

MJO phase 3 with LN conditions.   

The MJO-ENSO conditions that generates positive or negative anomalies of CSPA 

rainfall are associated with different patterns of moisture flux anomalies in each CSPA region. 

The enhanced (suppressed) rainfall seen in region A during MJO5-LN, MJO8-LN, MJO4-NT 

and MJO8-NT (MJO1-EN, MJO5-EN, MJO8-EN and MJO2-LN) is associated with southerly, 

westerly, northerly and northwesterly (southeasterly, southeasterly, northwesterly and 

southerly) anomalies, respectively. In region B, the enhanced (suppressed) rainfall that occurs 

during MJO5-LN, MJO8-LN and MJO5-NT (MJO4-EN) is related to northerly, westerly and 

easterly (northerly) anomalies, respectively. In region C, the enhanced (suppressed) rainfall 

observed during MJO1-LN, MJO1-NT and MJO5-NT (MJO4-EN, MJO8-EN and MJO4-LN) 

is associated to easterly, southeasterly and easterly (northerly, westerly and easterly) 

anomalies, respectively. In region D, the enhanced (suppressed) rainfall seen during MJO4-

LN, MJO6-NT, MJO7-NT and MJO8-NT (MJO1-EN, MJO3-EN, MJO5-EN, MJO8-EN and 

MJO3-NT) is related to easterly, southeasterly, westerly and northwesterly (southeasterly, 

easterly, easterly, westerly and easterly) anomalies, respectively. 
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CHAPTER V. Final conclusions and recommendations 

 The regionalization of CSPA rainfall stations proposed in this study not only proved to 

be useful to describe trends over homogeneous regions, but also to better differentiate ENSO, 

PDO and MJO-ENSO location-dependent effects on rainfall. For each region, the mean and 

standard deviation of rainfall indices, geographic features and rainfall anomalies among 

stations were presented. In future studies, a greater number of stations with longer time-series 

should be used to test if the regionalization proposed here for CSPA is consistent over time. 

Moreover, this regionalization method could be applied in other mountainous regions.         

 ENSO and PDO effects in CSPA rainfall were described according to each region and 

subregion. All CSPA regions showed statistically significant positive (negative) anomalies of 

total and extreme rainfall indices (consecutive dry days) during La Niña (El Niño) years. 

Titicaca basin showed statistically significant positive (negative) anomalies of total annual 

rainfall during positive (negative) PDO. Except for the Central Pacific basin, all CSPA regions 

exhibited statistically significant positive (negative) anomalies of consecutive dry days during 

positive (negative) PDO. In addition to ENSO and PDO, other coupled climatic modes such 

as the North Atlantic Oscillation (NAO), the Atlantic Dipole (AD), and the Atlantic 

Multidecadal Oscillation (AMO), among others, may have played important role in rainfall 

patterns over the region. The independent influence of ENSO, PDO, NAO, AD, and AMO 

should be explored in future research, as long as the impacts of the diversity of ENSO (e.g 

strong, moderate, Central Pacific or Eastern Pacific El Niño) on regional rainfall.  

 Most CSPA stations showed non-statistically significant trends in rainfall indices 

during 1965-2009 hydrologic years. Stations with statistically significant trends at each CSPA 

region were identified and regions with at least one-third of their stations having statistically 
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significant trends were considered as exhibiting trends for a particular rainfall index. In the 

Amazon basin, the following trends were identified: decreased yearly rainfall intensity, number 

of heavy rainfall days and maximum 5-days rainfall, and increased number of rainy days. In 

the Central Pacific basin, the following trends were observed: decreased yearly rainfall 

intensity, consecutive dry days, maximum 1-day rainfall and maximum 5-days rainfall, and 

increased frequency of wet days. In the Southern Pacific basin, we observed decreased 

consecutive dry days and increased maximum 1-day rainfall. The Titicaca basin showed an 

increase in the intensity of rainfall extremes that did not affect the total annual rainfall.   

 The predominant absence of long term trends of rainfall indices over CSPA apparently 

resulted from the decade-dependent variability of the ENSO-rainfall relationship. 

Nevertheless, numerous factors may be important for the low-frequency variability in CSPA 

rainfall. Modeling studies could help to further investigate mechanisms causing rainfall 

variations and changes in CSPA and proxies could help to improve our understanding about 

low-frequency variability in the region. Upcoming modeling approaches should focus on 

evaluating the mesoscale-to-large atmospheric circulation and thermodynamics that could 

cause changes in the South American Monsoon System and orographic rainfall in CSPA.   

 This study demonstrated the impacts of MJO-ENSO (Nov-Mar 1979-2010) on rainfall 

over CSPA, and how the MJO influence varied according to the location of stations. During 

ENSO-neutral years, enhanced rainfall in stations located over upper Amazon and Central 

Pacific basins was evident during MJO phases 4 and 5, whereas MJO phase 2 (phases 6, 7 and 

8) modulated enhanced rainfall in stations located over Southern Pacific (Titicaca) basin. 

During La Niña years, enhanced rainfall was evident during MJO phases 5, 6 and 8 in the 

Amazon and Central Pacific basins, whereas MJO phases 1, 3 and 6 (phases 2, 4, 7 and 8) 
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generated enhanced rainfall in Southern Pacific (Titicaca) basin. During El Niño years, 

suppressed rainfall was evident in MJO phases 1, 2, 5 and 8 in the Amazon basin, in phase 4 

in the Central Pacific basin, in MJO phase 8 in the Southern Pacific basin, and in MJO phases 

1, 3 and 5 in the Titicaca basin. The following interesting questions arise from this study, and 

should be addressed in the future: Do MJO-ENSO effects on rainfall varies seasonally? Does 

the relationship between MJO-ENSO and rainfall depend on the evaluated decade? More 

importantly, what is the cause of MJO-ENSO impacts on rainfall? This last question is 

challenging and there is no consensus in the literature yet. Therefore, a holistic overview of 

the interactions between the MJO and ENSO and consequent effects on circulation and 

thermodynamics is necessary to improve our understanding about the combined effect of these 

modes on rainfall in the Peruvian Andes. 

 In this study, total and extreme rainfall trends and intraseasonal-to-interannual rainfall 

variability were evaluated using point-wise data, which provided details of the local rainfall 

conditions. Nevertheless, mapping the spatial patterns of rainfall variability could be improved 

by using gridded data such as the obtained from satellite or model estimations. Satellite-derived 

rainfall (Tropical Rainfall Measurement Mission 3B42 or TRMM) and modeled rainfall 

(Weather Research and Forecasting or WRF) time-series were compared with gauged stations 

during Nov-Mar 1998-2010 over CSPA. Mean and total rainfall variability were well captured 

by TRMM and WRF. Nevertheless, the detection of rainfall extremes was difficult for both 

gridded sources. TRMM captured well the intraseasonal variability when compared with 

gauged data, showing a statistically significant peak of rainfall variability at 37 days in most 

locations. Future studies would benefit from the spatial information given by TRMM (or by 

the current Global Precipitation Measurement, also known as GPM) and WRF after being 
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improved by applying a suitable correction technique (e.g. wavelet-based merging of gridded 

and gauged datasets) or a downscaling process.   

 People living in Peru largely rely on rain falling in the Andean region for water 

consumption, agriculture, industry, and hydropower generation. Understanding well the 

rainfall variability and change in CSPA will improve the sustainable management of water 

resources in the region. This study, generated invaluable information regarding interannual-to-

decadal variability and long-term rainfall changes based on observed data. Notwithstanding, 

two important questions remain to be answered in future studies: Is there any long-term trend 

in water resources, economic activities and weather-related disasters potentially correlated to 

rainfall changes in CSPA? Are ENSO, PDO and MJO-ENSO impacts on CSPA rainfall also 

translated into impacts on streamflow, runoff, erosion, crop productivity and the occurrence 

of droughts, floods and landslides? Finally, more crucial is to work on how to increase the 

preparedness and adaptation of local people to upcoming climate-related variability and 

change, as well as on how to improve the climate literacy of stakeholders so that they can 

achieve science-based strategies to cope with climate change in CSPA. 
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