Media proximal y regularización
Tomás Alberto Núñez Lay
30-oct-2015
Universidad Nacional Mayor de San Marcos
En muchas situaciones reales se trata de utilizar determinados recursos en una cantidad limitada pero de la mejor manera, es decir que su uso cause el mayor provecho. La programación lineal estudia la optimización de una función lineal que satisface un conjunto de restricciones lineales de igualdad o desigualdad. La programación lineal es un modelo matemático que fue planteado por primera vez por George B. Dantzing en1947 cuando era consejero matemático de la fuerza aérea de los Estados Unidos. Sabemos además que en1939 Leonid V. Kantorovich ya había planteado y resuelto problemas de este tipo. En aplicaciones de la optimización a la economía, teoría de control, problemas inversos etc, surgen problemas donde la función objetivo no siempre es diferenciable o casos en los cuales el problema no está bien puesto. Para resolver problemas como estos se utilizan técnicas en el contexto del análisis convexo, como los métodos de regularización para funciones convexas así como los métodos de punto proximal y lagrangeano aumentado ente otros. Recientemente, en el año 2009, los profesores Bauschke, Lucet y Triens propusieron la media proximal, una novedosa técnica que tiene la propiedad de ser autodual respecto a la conjugada de Fenchel, que puede trabajar incluso con funciones de dominio disjunto, veremos que esta técnica puede ser aprovechada para manipular la envoltura de Goebel y probar su autodualidad respecto a la conjugada de Fenchel, además de tratar la optimización de varias funciones objetivo en el caso convexo o inclusive en el caso de ciertas funciones no necesariamente convexas aun cuando los dominios de estas funciones sean disjuntos.
Tesis



IMPORTANTE
La información contenida en este registro es de entera responsabilidad de la universidad, institución o escuela de educación superior que administra el repositorio académico digital donde se encuentra el trabajo de investigación y/o proyecto, los cuales son conducentes a optar títulos profesionales y grados académicos. SUNEDU no se hace responsable por los contenidos accesibles a través del Registro Nacional de Trabajos de Investigación – RENATI.