

ON-CHIP SOFTWARE TOOLS FOR HARDWARE MULTITASKING
ON PARTIALLY RECONFIGURABLE FPGAS

By

AURELIO FEDERICO MORALES VILLANUEVA

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2015

© 2015 Aurelio Federico Morales Villanueva

To my mother Lida, I wish you were here with us, and to my father Elfren

4

ACKNOWLEDGMENTS

This work was supported by the Unidad Coordinadora del Programa de Ciencia y

Tecnología (FINCyT), Perú, under contract N° 121-2009-FINCyT-BDE and in part by

the I/UCRC Program of the National Science Foundation, under grants EEC-0642422

and IIP-1161022. The author gratefully acknowledges the support of Universidad

Nacional de Ingeniería – Lima, Perú, the Presidencia del Consejo de Ministros in Perú,

through FINCyT, and the tools provided by Xilinx.

Special thanks to Dr. Alan George, director of the NSF Center for High-

Performance Reconfigurable Computing (CHREC), who gave me the chance to be part

of this prestigious center as a research volunteer. And finally, I would like to thank my

Ph.D. advisor, Dr. Ann Gordon-Ross, for all of her guidance and support throughout the

last several years.

5

TABLE OF CONTENTS

 page

ACKNOWLEDGMENTS .. 4

LIST OF TABLES .. 7

LIST OF FIGURES .. 9

ABSTRACT ... 11

CHAPTER

1 INTRODUCTION .. 13

2 BACKGROUND AND RELATED RESEARCH ... 19

2.1 Previous Work ... 19

2.2 Virtex-5 FPGA architecture ... 23
 2.2.1 Device Layout and Resources .. 24
 2.2.2 Device Configuration ... 25

 2.2.3 Cost Model for Partial Bitstream Size .. 29

3 ON-CHIP CONTEXT SAVE AND RESTORE, AND HARDWARE TASK
RELOCATION SOFTWARE ... 33

3.1 CSR and HTR Overview ... 34

3.2 Context Save (CS) of Hardware Tasks ... 35
3.3 Merge of Initial Bitstream and Saved Context ... 37
3.4 Saved Context Relocation of Hardware Tasks (HTR) 38

3.5 Context Restore (CR) of Hardware Tasks ... 40
3.6 CSR and HTR Portability across FPGA Device Families 41

3.7 Summary ... 45

4 ON-CHIP DISTRIBUTED DYNAMIC RESOURCE MANAGEMENT SOFTWARE . 49

4.1 DDRM Concepts and Definitions ... 50

4.2 DDRM Overview ... 56
4.3 DDRM Operations ... 58
4.4 Summary ... 68

5 EXPERIMENTAL RESULTS ... 75

5.1 Experimental setup ... 75
5.2 CSR Experimental Results .. 81
5.3 HTR Experimental Results .. 84
5.4 DDRM Experimental Results ... 88

6

6 CONCLUSIONS ... 106

REFERENCES .. 109

BIOGRAPHICAL SKETCH .. 114

7

LIST OF TABLES

Table page

2-1 Parameters used in the partial bitstream size cost model 31

2-2 Specific values from Table 2-1 for Virtex-4/5/6 FPGA device families 32

3-1 Truth table for the CSR merge process .. 46

4-1 Global table for local and remote PRM relocation for node consistency in
DDRM with two nodes .. 70

4-2 Local table for node consistency in DDRM showing the currently assigned
PRMs in node "1" from Table 4-1 ... 70

5-1 CS bitstream and partial bitstream sizes (in KB) used in the CSR, HTR, and
DDRM experiments .. 93

5-2 Execution times (ms) for Treconfig_prr ... 93

5-3 Execution times (ms) for CS (Tcs) in CSR ... 94

5-4 Execution times (ms) for the merge process (Tmerge) in CSR 94

5-5 Execution times (ms) for CR (Tcr) in CSR ... 94

5-6 Execution times (ms) for CS (Tcs), context relocation (Trelocate), and CR (Tcr)
for small-to-large PRR HTR .. 95

5-7 Execution times (ms) for CS (Tcs), context relocation (Trelocate), and CR (Tcr)
for large-to-small PRR HTR .. 95

5-8 DDRM execution times (ms) for Texe1 with respect to the number of PRM flip-
flops. ... 95

5-9 DDRM execution times (ms) for Tres1 with respect to the number of PRM flip-
flops. ... 96

5-10 DDRM execution times (ms) for Texe2 with respect to the number of PRM flip-
flops (part 1 of 2) .. 96

5-11 DDRM execution times (ms) for Texe2 with respect to the number of PRM flip-
flops (part 2 of 2) .. 96

5-12 DDRM execution times (ms) for Tres3 with respect to the number of PRM flip-
flops (part 1 of 2) .. 97

8

5-13 DDRM execution times (ms) for Tres3 with respect to the number of PRM flip-
flops (part 2 of 2) .. 97

5-14 DDRM execution times (ms) for Texe4 with respect to the number of PRM flip-
flops (part 1 of 2) .. 97

5-15 DDRM execution times (ms) for Texe4 with respect to the number of PRM flip-
flops (part 2 of 2) .. 98

5-16 DDRM execution times (ms) for Texeres2 with respect to the number of PRM
flip-flops (part 1 of 2) ... 98

5-17 DDRM execution times (ms) for Texeres2 with respect to the number of PRM
flip-flops (part 2 of 2) ... 98

9

LIST OF FIGURES

Figure page

2-1 Virtex-5 LX110T FPGA fabric layout with four sample PRRs 32

2-2 Partial bitstream structure for Virtex-5 FPGAs .. 32

3-1 On-chip context save and restore (CSR) and hardware task relocation (HTR)
flows ... 47

3-2 Multiple flip-flop updates for CSR merge process... 47

3-3 Single flip-flop update for context relocation (HTR) process 47

3-4 Multiple flip-flop updates in a word boundary for context relocation (HTR)
process ... 48

4-1 Portion of the distributed dynamic resource management (DDRM) flow
showing the first time execution (or resumption) of a PRM prmijq in a
predefined PRR prrij .. 71

4-2 Details of the DDRM flow for the steps performed in the boxes with vertical
lines in Figure 4-1 for the first time execution (or resumption) of prmijq in
predefined prrij. ... 72

4-3 DDRM flow continued, showing the first time execution (or resumption) of a
locally relocated prmijq in a local candidate prrit as prmitq 72

4-4 Detailed steps of the DDRM flow showing the steps performed in the boxes
with horizontal and vertical lines from Figure 4-3 for the first time execution
(or resumption) of a locally relocated prmijq in a local candidate prrit as prmitq.... 73

4-5 DDRM flow continued, showing the execution of the remote relocation of
prmijq to a remote candidate PRR n in a node m (prrmn) as prmmnq. 73

4-6 DRRM flow continued, showing the steps performed in the dark gray box in
Figure 4-5 for execution of the remote relocation of prmijq to a remote
candidate PRR n in node m (prrmn) as prmmnq. ... 74

5-1 Execution times (ms) for Treconfig_prr with respect to the number of PRM flip-
flops .. 99

5-2 Execution times (ms) for CS (Tcs) in CSR with respect to the number of PRM
flip-flops .. 99

5-3 Execution times (ms) for the merge process (Tmerge) in CSR with respect to
the number of PRM flip-flops .. 100

10

5-4 Execution times (ms) for CR (Tcr) in CSR with respect to the number of PRM
flip-flops .. 100

5-5 Execution times (ms) for CS (Tcs) in HTR with respect to the number of PRM
flip-flops .. 101

5-6 Execution times (ms) for context relocation (Trelocate) in HTR with respect to
the number of PRM flip-flops .. 101

5-7 Execution times (ms) for CR (Tcr) in HTR with respect to the number of PRM
flip-flops .. 102

5-8 DDRM execution times (ms) for Texe1 with respect to the number of PRM flip-
flops .. 102

5-9 DDRM execution times (ms) for Tres1 with respect to the number of PRM flip-
flops .. 103

5-10 DDRM execution times (ms) for Texe2 with respect to the number of PRM flip-
flops .. 103

5-11 DDRM execution times (ms) for Tres3 with respect to the number of PRM flip-
flops .. 104

5-12 DDRM execution times (ms) for Texe4 with respect to the number of PRM flip-
flops .. 104

5-13 DDRM execution times (ms) for Texeres2 with respect to the number of PRM
flip-flops .. 105

11

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

ON-CHIP SOFTWARE TOOLS FOR HARDWARE MULTITASKING

ON PARTIALLY RECONFIGURABLE FPGAS

By

Aurelio Federico Morales Villanueva

August 2015

Chair: Ann Gordon-Ross
Major: Electrical and Computer Engineering

Partially reconfigurable (PR) field-programmable gate arrays (FPGAs) partition

the FPGA into one static region and multiple PR regions (PRRs). This partitioning

affords faster reconfiguration time, as compared to configuring the entire FPGA since

the PRRs are reconfigured using smaller partial bitstreams. PR FPGAs also afford

isolated reconfiguration since only the reconfigured PRR halts execution while the

remainder of the FPGA continues to operate. Faster and isolated reconfiguration enable

flexible hardware task multiplexing in the PRRs, and, to fully exploit this PRR time

multiplexing, higher priority tasks should be able to preempt lower priority tasks, and the

preempted tasks should be able to resume execution in any PRR with sufficient

resources. This preemption/resumption requires saving/restoring the preempted task

execution context and relocating the task to another PRR.

Some prior works address the involved challenges, but these works only provide

partial solutions and impose limitations and/or overheads that prevent portability of

these works across different FPGA device families. The research presented here

presents a set of methods and software tools for hardware multitasking on PR FPGAs

to address prior works' limitations.

12

First, we present on-chip context save and restore (CSR) software to enable task

preemption/resumption in the same PRR, preserving the execution state of preempted

hardware tasks, without disrupting operations in the static region and other PRRs in the

FPGA. Second, we introduce on-chip hardware task relocation (HTR) software to

enable a task execution state to be saved, and relocated to and restored in any PRR in

the FPGA with sufficient resources. Finally, using our on-chip HTR software, we present

on-chip distributed dynamic resource management (DDRM) for PR FPGAs to enable

context relocation of hardware tasks between different physical FPGAs on an

interconnected network. Experimental results evaluate CSR, HTR, and DDRM

execution times, enabling designers to tradeoff task/PRR granularity and

CSR/HTR/DDRM execution times based on application requirements.

13

CHAPTER 1
INTRODUCTION

Partially reconfigurable (PR) field programmable gate arrays (FPGAs) partition

the FPGA fabric into one static region and one or more PR regions (PRRs). This

partitioning enables PRRs to time multiplex hardware tasks, where incoming tasks can

be scheduled to any candidate PRR, which is any free/idle PRR (not currently executing

another task) with sufficient resources. This resource time multiplexing reduces the total

FPGA area requirements and power consumption, since smaller FPGA devices can be

used. Also, this partitioning can improve overall PR system performance compared to

not using PRRs or using non-PR FPGAs.

PRRs are reconfigured using small partial bitstreams, which affords faster

reconfiguration times as compared to using full bitstreams that are used to configure the

entire FPGA. Reconfiguring a PRR is isolated, where only the scheduled PRR halts

operation during the reconfiguration, while the static region and the other PRRs

continue executing. This isolated PRR reconfiguration enables maximum flexibility and

adherence to task priority requirements using task preemption and resumption, where

higher priority tasks can preempt lower priority tasks on scheduled PRRs.

Task preemption/resumption pauses/resumes task execution by saving/restoring

the task's execution state (i.e., context). Resumed tasks can be scheduled to any

candidate PRR, wherein a candidate PRR now includes any PRR with sufficient

resources that is currently executing a lower priority task, which will be preempted. Task

preemption requires a context save (CS) operation, which reads the task's execution

state from the FPGA and saves this context off-chip in a CS bitstream.

14

Task resumption requires a context restore (CR) operation using the previously

saved CS bitstream to restore the task's execution state on the scheduled PRR. To

effectively restore the task’s execution state, the CS bitstream is merged with the task’s

initial partial bitstream (created at synthesis), where the merged bitstream is created

using bitstream manipulations using bit-level and 32-bit word-level bit masking.

There exist some prior works on CS and CR—collectively referred to as context

save and restore (CSR)—to the same PRR [14][22][23][24][26][35]. However, requiring

that CR only be to the same PRR is too restrictive, and hardware tasks should be able

to resume execution in any candidate PRR. Hardware task relocation (HTR) alleviates

this restriction by relocating and resuming task execution in any candidate PRR, which

affords improved performance/task throughput, and maximizes resource usage,

especially for application domains such as dynamic load balancing of hardware tasks

and task migration across different network-connected FPGAs (e.g., local wired

network, wireless network, etc.).

HTR is more challenging than CSR because the relocation and resumption of a

preempted task is a complex process. HTR is relatively easy when relocating tasks

between homogenous PRRs (same size, shape, and resource distribution, but different

fabric location), since the bitstream manipulation is relatively simple [26][29]. However,

relocating tasks between only homogeneous PRRs impose many restrictions [2][3][11]

that prevent portability across different FPGA device families. HTR for task relocation

between different-sized heterogeneous PRRs (different shape, resource distribution,

and fabric location) is significantly more challenging.

15

Prior works addressed some of the HTR challenges, such as bitstream relocation

(BR) between homogeneous PRRs [4][7][8][9][10][16][30][36][39][41][42] or between

same-sized heterogeneous PRRs [1][2]. However, BR does not save/restore the task's

current execution state, and as a consequence, the task must be restarted when the

task is relocated and resumed in another PRR, which introduces performance-

degrading re-execution overhead that may involve seconds/minutes to re-generate

data. We note that these prior works on HTR/BR do not address task relocation

between different-sized heterogeneous PRRs.

Prior works on HTR evaluated off-chip and on-chip implementations. In off-chip

HTR between homogeneous PRRs [26][29], the FPGA is attached to a host CPU that

executes software-based HTR, imposing a dedicated communication bus between the

host CPU and the FPGA, which introduces reconfiguration time overhead due to this

communication. Additionally, this host CPU-FPGA dedicated communication bus

prevents autonomous HTR implementation (i.e., the FPGA must have an attached CPU,

and cannot execute autonomously in remote environments).

To enable autonomous HTR and eliminate this CPU-FPGA communication

overhead, on-chip HTR can be implemented entirely on the FPGA either using custom

hardware [3][17][18] or software running on a soft-core processor in the static region, or

a combination of these two solutions [19][20]. Custom hardware on the FPGA generates

area overhead, imposes device-specific constraints that limits portability across different

FPGA device families, and reduces the task’s maximum operating frequency.

Alternatively, on-chip software-based HTR enables system portability across different

FPGA device families, does not generate area overhead, does not impose device-

16

specific constraints, and does not reduce the task’s maximum operating frequency. We

note that, to the best of our knowledge, there is no prior work on autonomous HTR that

is portable across different FPGA device families that supports CR of hardware tasks

between different-sized heterogeneous PRRs.

This research addresses prior CSR/BR/HTR works’ limitations (e.g., area

overhead due to using custom and non-portable on-chip hardware, host CPU-FPGA

communication overhead, relocated task re-execution, etc.).

In the first phase of this research, we introduce on-chip CSR software for any

heterogeneous PRR, where we leverage PR FPGAs’ features for hardware multitasking

on the same PRR, preserving the execution state of preempted hardware tasks, without

disrupting operations in the static region and other PRRs, and where the on-chip CSR

software executes on a soft-core processor in the FPGA’s static region.

In the second phase of this research, we extend our on-chip CSR software to

enable hardware multitasking between different PRRs in the same FPGA, and present

on-chip HTR software for relocating hardware tasks’ contexts between different-sized

heterogeneous PRRs in order to maximize shared resources (PRRs) utilization, and

maximize tasks throughputs.

In the third phase of this research, we further extend our HTR to function across

multiple networked-interconnected FPGAs to enable dynamic CR of hardware tasks

between physically-distributed devices. This extension provides additional

improvements in task throughput due to more candidate PRRs, improvements in

resource usage per FPGA, and vastly increases the application-domain applicability. To

the best of our knowledge, no prior work proposes such a flexible HTR implementation.

17

We leverage our HTR for multiple interconnected FPGAs and present distributed

dynamic resource management (DDRM), where each FPGA in the network is an

autonomous system. DDRM can be used for application domains, such as dynamic load

balancing of hardware tasks between FPGAs, distributed fault tolerant systems, and

distributed, concurrent, and parallel processing of hardware tasks in a network of

FPGAs.

We present a detailed description of the on-chip CSR/HTR/DDRM operations

and present implementation results for a Virtex-5 LX110T with a MicroBlaze soft-core

processor (used as the reconfiguration controller) running embedded Linux. Even

though we show results for a specific FPGA device, since our CSR/HTR/DDRM uses

the FPGA’s internal configuration access port (ICAP), our CSR/HTR/DDRM software is

portable (with minimum changes) to newer Xilinx device families, such as the Virtex-6, 7

series, and Zynq-7000.

Our on-chip CSR/HTR/DDRM executes on autonomous FPGA systems, which

does not incur host CPU-FPGA communication overhead, does not introduce device

overhead, does not impact the tasks’ maximum operating frequencies, and is portable

across different FPGA device families with minimum changes. Also, our

CSR/HTR/DDRM maximizes PRR usage per FPGA, enabling the execution,

preemption, and resumption of hardware tasks between different-sized heterogeneous

PRRs without losing the preempted task’s execution state, which eliminates

seconds/minutes of re-execution time and reduces the task’s waiting time by relocating

the task to any candidate PRR on the same or a different FPGA. Additionally, our

18

analyses enable system designers to trade off CSR/HTR/DDRM execution times and

task granularity (i.e., the task’s PRR size) based on application requirements.

The organization of the remainder of this document is as follows. Background of

the Virtex-5 FPGA architecture and device configuration, and related research

pertaining to CSR, BR, and HTR is summarized in Chapter 2. Chapter 3 describes our

on-chip CSR and HTR software, covering the major steps involved in CSR and HTR,

and the portability of CSR/HTR across FPGA device families. Next, Chapter 4

discusses the details of how to extend our on-chip HTR software for multiple networked-

interconnected FPGAs and presents the on-chip DDRM software. Chapter 5 then

presents the experimental results of our on-chip CSR, HTR and DDRM software.

Finally, Chapter 6 presents the conclusions of this research and outlines directions for

possible future research.

19

CHAPTER 2
BACKGROUND AND RELATED RESEARCH

The background and related research in this chapter is divided into two sections.

Section 2.1 discusses prior works in the areas of CSR, BR and HTR, and Section 2.2

provides a background of Virtex-5 FPGA architecture, covering the device layout and

resources, device configuration, and a cost model for partial bitstream size, which

enable system designers to understand the fundamentals of our proposed on-chip

software-based tools for hardware multitasking on PR FPGAs.

2.1 Previous Work

There exists some prior works in CSR and of these works, few leverage PR

FPGAs. Landaker et al. [31] and Simmler et al. [40] presented off-chip CSR methods

where all CSR operations executed in software running on an attached host CPU. Since

these works did not leverage PR FPGAs, CSR reconfigured the entire FPGA.

Landaker’s work reported 407 ms, 465 ms, and 365 ms for CS, bitstream manipulations,

and CR execution times, respectively, for a Xilinx Virtex XCV1000 device, while

Simmler’s work reported 14.4 ms, 83.7 ms, and 12.4 ms for the same execution times

on a Xilinx Virtex XCV400 device.

Joswik et al. [24] presented off-chip CSR methods for PRRs, as opposed to the

entire FPGA, and reduced CSR times using direct memory access (DMA) for the ICAP.

The results showed CS and CR execution times on the order of hundreds of

microseconds, and bitstream manipulation execution times on the order of a few

milliseconds for a Xilinx Virtex-4 XC4VFX60 device. Additionally, Kalte and Porrmann

[26] and Koester et al. [29] extended off-chip CSR between homogeneous PRRs by

incorporating an on-chip custom hardware relocator (REPLICA and REPLICA2Pro, for

20

Kalte’s and Koester’s works, respectively). Results showed CS execution times ranging

from 33 µs to 1.2 ms, CR execution times ranging from 190 µs to 7.0 ms, and relocation

times ranging from 0.4 ms to 15.0 ms. However, both works were implemented for older

Xilinx PR-capable FPGAs (Virtex-E XCV2000E and Virtex-II XC2V4000 devices, for

REPLICA and REPLICA2Pro, respectively) that only supported one-dimensional (1-D)

PRRs, and thus are not applicable to newer Xilinx devices that support two-dimensional

(2-D) PRRs.

To eliminate the communication overhead between the FPGA and the host CPU,

Koch et al. [28], Garcia et al. [14], and Jovanovic et al. [22] presented on-chip CSR

hardware solutions (for non-PR FPGAs in Koch’s work, and for PR FPGAs in Garcia’s

and Jovanovic’s works). All these works reduced CS and CR times to the order of

microseconds using different versions of scan-path chains of flip-flops, a technique used

in design for testability (DFT) for very large scale integrated (VLSI) circuits. Additionally,

Jozwik et al. [23] presented a task-specific access structure (TSAS) method to perform

CSR, which inserted custom logic for each flip-flop and the FPGA’s internal memory

elements for each task to perform CS and CR, achieving CS and CR execution times

from hundreds of microseconds to a few milliseconds. However, even though these

methods eliminated communication with a host CPU, these methods incurred significant

hardware overhead, lacked portability, reduced the system’s maximum operating

frequency, and required changes in the design tool flow. In prior work [35], we

presented on-chip software CSR, which alleviated these drawbacks, but did not relocate

the task to a different PRR.

21

BR enables task relocation, but prior works did not relocate the task’s context to

a different PRR. Horta and Lockwood [16], Blodget et al. [4], and Krasteva et al. [30]

presented off-chip BR software, and Kalte et al. [25][27] presented on-chip BR hardware

support for off-chip BR software. All of these prior works were intended for BR between

homogeneous PRRs, however, these methods still incurred the same drawbacks as off-

and on-chip CSR. Horta’s work presented PARBIT to enable BR on Xilinx Virtex-E

devices, Blodget’s work introduced XPART to enable BR on Xilinx Virtex-II and Virtex-II

Pro devices, and Krasteva’s work presented BITPOS to enable BR on Xilinx Virtex-II

devices. Krasteva’s and Horta’s works reported BR execution times of approximately

500 ms, while Blodget’s works did not report BR execution times. Kalte’s works used

REPLICA and REPLICA2Pro, establishing a custom on-chip communication bus to

enable all hardware tasks to communicate to each other, and obtained BR execution

times on the order of milliseconds.

Becker et al. [1][2] and Carver et al. [7] presented on-chip BR software for same-

sized heterogeneous PRRs and homogeneous PRRs, respectively, however, these

methods constrained the static region’s logic routing from passing through the PRRs, in

addition to other constraints. Whereas these constraints reduced the number of partial

bitstreams to one per task, the constraints introduced area and performance overheads

[7][13]. Becker’s and Carver’s works reported BR throughputs of up to 4.7 MB/s and 9.5

MB/s, respectively, for Xilinx Virtex-4 devices. The partial bitstreams where stored in

external flash memory and in the FPGA’s internal random access memory blocks

(BRAMs) for Becker’s and Carver’s work, respectively. Both authors used the on-chip

MicroBlaze soft-core processor to execute the BR software.

22

Corbetta et al. [8][9], Morandi et al. [36], Sudarsanam et al. [42], Dasu and

Kallam [10], and Sreeramareddy et al. [41] presented custom on-chip BR hardware for

homogeneous PRRs, which was orchestrated using an on-chip soft-core processor.

Corbetta’s and Morandi’s works used 1-D BiRF (for Virtex-II Pro devices) and 2-D BiRF

(for Virtex-4/5 devices), and achieved BR throughputs of 5.9 MB/s and 7.3 MB/s for 1-D

and 2-D BiRF, respectively. Sudarsanam’s, Dasu’s, and Sreeramareddy’s works used

ARC for Virtex-4 devices, and used BRAMs to reduce the BR execution times.

Sudarsanam’s and Sreeramareddy’s works achieved BR throughputs of up to 65.6

MB/s and 86.3 MB/s, respectively. All these prior works used the on-chip MicroBlaze

soft-core processor to orchestrate the on-chip BR hardware implementations. Even

though Santambrogio et al. [39] used the 2-D BiRF for Xilinx Virtex-4 devices, that work

did not use an on-chip processor to perform BR, and resulted in an average BR

throughput of 740 MB/s.

There are a few prior works that focus on on-chip HTR. Iturbe et al. [17]

proposed a custom hardware communication interface (CIF) that was attached to each

hardware task to enable on-chip HTR between arbitrary heterogeneous PRRs for

Virtex-4 devices. Also, Iturbe et al. [18] proposed Snake, a novel technique for hardware

task allocation to enable inter-task communication between hardware tasks. Iturbe et al.

[19][20] leveraged their prior work with CIF and Snake to propose a reliable

reconfigurable real-time operating system (R3TOS) using one MicroBlaze and three

PicoBlaze on-chip soft-core processors, where inter-task communication between

hardware tasks was implemented with custom hardware data relocation task (DRT)

blocks. However, Iturbe’s CIFs used BRAMs (which are limited in number, and location-

23

specific FPGA storage resources) as buffers to hold input and output values in

hardware tasks, and PRRs needed to be placed close to each other and to the DRTs on

the FPGA fabric, imposing area overhead and specific constraints, which prevented

portability of Iturbe’s on-chip HTR solution across FPGA device families.

In order to address the drawbacks of prior off- and on-chip CSR, BR, and HTR

methods (e.g., high communication overhead and device resource overhead, lack of

system portability, and reduced maximum operating frequency, respectively) and to

improve system performance and flexibility via task preemption/resumption/relocation,

we propose in this document on-chip CSR software for CS and CR on any arbitrary 2-D

PRR, and on-chip HTR software for 2-D different-sized heterogeneous PRRs. The CSR

and HTR software executes on a soft-core processor in the FPGA’s static region and

uses the ICAP for reconfiguration. As compared to similar prior works, our CSR and

HTR do not incur off-chip communication overhead, do not introduce hardware/device

overhead, do not impact the tasks’ maximum operating frequency, has no special

constraints on the PRRs and static region (e.g., as in [1][2][7][11][18][19]), and do not

require tool flow changes.

2.2 Virtex-5 FPGA architecture

Since both CSR and HTR are complex processes that require detailed device

knowledge, in this section we review the Xilinx Virtex-5 FPGA architecture, which will

assist designers in incorporating HTR into their systems. We refer the reader to [50] and

[51] for complete information on Virtex-5 device configuration and architecture,

respectively.

24

2.2.1 Device Layout and Resources

The Virtex-5 devices support 2-D PRRs, which allows PRRs to occupy a

rectangular fabric area. Prior Virtex families (Virtex, Virtex-E, Virtex-II, and Virtex-II Pro)

only supported 1-D PRRs, which required PRRs to span the fabric’s entire height. 2-D

PRRs offers finer reconfiguration granularity and therefore, increases design flexibility

and resource utilization. Virtex-5’s can be configured using external interfaces, such as

JTAG (serial), SelectMAP (parallel), or the internal ICAP interface (parallel).

Figure 2-1 depicts the Virtex-5 LX110T device’s fabric layout, the device used in

our experiments, with four sample PRRs and the following resources [51]: configurable

logic blocks (CLBs), which implement combinational and sequential logic and each CLB

contains eight flip-flops; random access memory blocks (BRAMs) for internal storage;

input/output blocks (IOBs), which are mainly used to provide external connections

between the FPGA and other devices; digital signal processing blocks (DSPs)

implement complex arithmetic functions that cannot be efficiently implemented using

CLBs [52]; and clock resources (CLK) provide clock signals to all resources. Each CLB

contains one slice pair. Each slice contains four logic-function generators (look-up

tables or LUTs), four flip-flops, multiplexers, and carry logic. Slices denoted as

SLICEMs support storing data using distributed RAM (or LUTRAM) and shifting data

with 32-bit registers, and SLICELs do not support these functions. Across the entire

device fabric, 50% of the CLB columns contain one SLICEM and one SLICEL, and the

other 50% of the CLB columns contain two SLICELs.

As exemplified in Figure 2-1, the resources are distributed in the device fabric in

a row/column organization. The device is logically divided into two halves—the top and

bottom—and each half contains four rows and each row contains the same number of

25

columns. Each column contains a group of frames and the number of frames per

column depends on the resource type (CLB, BRAM, etc.). A frame is the minimum unit

of information used to write/read to/from the device. For Virtex-5 devices, a frame

contains 41 32-bit words.

With respect to HTR, partial regions PRR1 and PRR2 are homogeneous since

these PRRs have the same size (same number of columns and rows) and the same

resources (CLBs), even though the PRRs’ locations in the device fabric are different.

Alternatively, partial regions PRR3 and PRR4 are heterogeneous since these PRRs

have different sizes, resources, and device fabric locations. A special case of

homogeneous PRRs would be if two PRRs have the same resources (CLBs, BRAMs,

DSP, etc.), both PRRs begin at the same column and finish at the same column, have

the same number of rows, but have different vertical positions. The minimum PRR size

on the Virtex-5 is one row and one column.

2.2.2 Device Configuration

A Xilinx PR FPGA can be configured using full or partial bitstreams, which are

used to configure the entire device or only a single PRR, respectively. The bitstream’s

configuration information is organized in configuration frames and is stored in the

FPGA’s internal configuration memory. A configuration frame establishes the

configuration of the resources of a specific column and the routing information to access

the resources. For the Virtex-5 device family, CLB, BRAM, DSP, IOB, and CLK columns

have 36, 30, 28, 54, and 4 configuration frames, respectively [50]. Additionally, each

BRAM column requires 128 data frames for initialization.

Full configuration of the device requires sequential execution of three phases: the

setup phase, the bitstream loading phase, and the startup sequence phase [50]. While

26

the configuration frames are downloading, the device continuously calculates the cyclic

redundancy check (CRC) value. After downloading all of the configuration frames, the

device verifies the CRC by comparing the calculated CRC with the bitstream’s expected

CRC, which is included as part of the bitstream. If the CRCs match, the startup

sequence phase begins, which initializes the device’s flip-flops and BRAMs, and the

device enters the user mode by asserting the internal end of startup (EOS) signal and

the external DONE pin.

Once the device is in user mode, partial reconfiguration of a PRR can be

performed using the ICAP. PRR reconfiguration starts from the bitstream loading phase,

and the startup sequence phase is not executed since the device is already in user

mode, and the reconfigured PRR’s flip-flops and BRAMs are reconfigured provided that

CRC verification was successful. Since PRRs may contain flip-flops, BRAMs, and

DSPs, dedicated clock gating (using buffer BUFGCE) is used for each PRR to enable

changes in these resources for each clock transition. Since the FPGA has only one

ICAP, it is not possible to perform more than one ICAP operation (read or write) at a

time.

Future re-initialization of flip-flops and BRAMs can be forced by toggling the

internal global set reset (GSR) signal using the Xilinx user primitive

STARTUP_VIRTEX5 in order to execute the startup sequence phase if the CRC

verification is skipped [34]. However, since toggling the GSR would re-initialize the

entire device with the flip-flops’ and BRAMs’ initial values as defined in the full

bitstream, a protection/unprotection mechanism for the static region and PRRs must be

27

provided [34]. This mechanism avoids/allows future re-initialization of flip-flops and

BRAMs when the GSR is toggled.

Since CSR/HTR leverages the ICAP, all partial bitstreams need to be 32-bit word

aligned. Figure 2-2 depicts the initial partial bitstream structure used in CSR/HTR for the

Virtex-5. This partial bitstream is the same as the bitstream that is generated by the

Xilinx tools, with the exception that the initial comments, which include the name of the

native circuit description file (*.ncd) that was used to generate the bitstream and the

bitstream’s creation date, are extracted, resulting in a 32-bit word aligned file to be used

with the ICAP. The initial partial bitstream consists of a sequence of initial words,

including the bus width words (0x000000BB and 0x11220044), the synchronization

word (0xAA995566), a sequence of initial register writes that includes the RCRC (reset

CRC), IDCODE (0x02AD6093), WCFG, FAR (frame address register), and FDRI (frame

data register input, which specifies the number of 32-bit configuration words to write into

the device) [50], followed by the configuration words (number of which is specified by

the FDRI), and ending with the final words, that includes the final register writes (MASK,

CTL1, LFRM), the CRC, and DESYNCH (which releases the ICAP and allows other

PRRs to be reconfigured) [50].

If the PRR consists of only one row with no BRAM columns, there is only one

pair of FAR/FDRI values, which is followed by the configuration words. For a PRR with

multiple rows with no BRAM columns, the partial bitstream uses as many pairs of

FAR/FDRI values as number of rows in the PRR, which are followed by the

configuration words for each row. If the PRR includes BRAM columns, additional pairs

of FAR/FDRI are used for the BRAM initialization words, which follow the last row’s

28

configuration words for the rows that contain BRAM columns. Figure 2-2 depicts a

sample partial bitstream structure for a PRR with two rows that contain CLBs, DSPs,

and BRAMs.

In order to read a task’s context (i.e., CS), the command GCAPTURE [50] is sent

to the device via the ICAP to capture the flip-flops’ values on a single edge transition of

the main clock. Reading the flip-flops’ values from the device is defined by Xilinx as the

readback capture process, denoted as capture for CSR/HTR purposes, which is

different from the readback verify process (defined by Xilinx), where the flip-flops’ initial

values are read. After capturing the PRR’s flip-flops’ values, the command RCAP (reset

capture) is sent via the ICAP to enable future CSs on the same or different PRR. We

note that a protected PRR does not allow the task to capture the task's flip-flops and

BRAMs values.

Restoring a task’s context (i.e., CR) to a PRR requires initializing the PRR’s flip-

flops’ values with the saved flip-flops’ values (i.e., the task’s context) without interrupting

the static region or the other PRRs’ executions. In order to initialize a PRR with new flip-

flop values, the GSR signal must be toggled, however, since toggling this signal would

re-initialize the entire device with the initial values defined in the full bitstream, a

protection/unprotection mechanism must be provided.

A PRR/FPGA can be protected using the block type ‘010’ and a special frame,

sent to all PRR/FPGA columns, that has all 41 32-bit words set to 0x00000000 except

word 21, which has bit 12 and 13 set to ‘1’, which correspond to the internal GWE

(global write enable) and GRESTORE signals, respectively. Unprotecting a PRR/FPGA

is similar, except that all 41 32-bit words are set to 0x00000000. Protecting the entire

29

FPGA only needs to be done once, while unprotection/protection of the PRRs is

required for each CS and CR.

For newer devices (e.g., the Virtex-6 and -7 series, and the Zynq-7000) and tools

(e.g., starting from the Xilinx PlanAhead 14.3 tool [53]) the RESET_AFTER_RECONFIG

= TRUE (RaR) constraint may be applied to PRRs in order to avoid the manual

unprotection/protection of PRRs and manual protection of the static region after full

configuration. The partial bitstream generated with this constraint contains the ICAP

command sequence to protect the entire FPGA, unprotect/protect the PRR, and the

GRESTORE and START commands [50] to force the startup sequence. However, for

the purposes of CSR/HTR, the user requires generation of the CRC with custom

hardware, which incurs hardware overhead (1,218 FFs and 5 BRAMs for the Virtex-4)

[24], unless the CRC verification is skipped. Since partial bitstreams using the RaR

constraint contain the ICAP commands to protect the entire FPGA, these partial

bitstreams are extremely large in size as compared to partial bitstreams without using

the RaR constraint, which increases the PRR reconfiguration time.

Additionally, for the purposes of physical implementation of CSR/HTR, the user

would not have manual control of re-initialization of the PRR's flip-flops and BRAMs

after downloading the partial bitstream if the RaR constraint is used, causing the task

that is executing in that PRR to terminate. Thus, all of the fundamentals explained in

this work for the Virtex-5 are still valid for the newer devices.

2.2.3 Cost Model for Partial Bitstream Size

From the initial partial bitstream structure depicted in Figure 2-2, the partial

bitstream size can be calculated using a simple cost model, which is used for the CSR,

HTR, and DDRM experiments. Table 2-1 depicts the parameters for partial bitstream

30

size derivation where IW, FW, FAR_FDRI, CFCLB, CFDSP, CFBRAM, DFBRAM, and FRsize

are device family dependent. We note that for Virtex-4/5/6 and Series 7 devices, words

are 32-bit, however, in other devices, such as Spartan-3/6 devices, words are 16-bit,

therefore, Bytesword must be adjusted according to the device family. In Table 2-1, the

FAR_FDRI specifies the number of words for setting the FAR and the FDRI registers

[50]. The FAR specifies the first frame address in terms of a row and column on the

device fabric for configuration words (or initialization words for BRAM columns, if

BRAMs are used) in a given PRR row, and the FDRI specifies the number of

configuration words (or initialization words for BRAM columns) for the given PRR row.

Table 2-2 summarizes the specific values from Table 2-1 for Virtex-4/5/6 device

families.

The size of the partial bitstream (Sbitstream) for a PRR with H rows that contains

CLBs, DSPs, and BRAMs is:

 Sbitstream = {IW + H x (NCWrow + NDWBRAM) + FW} x Bytesword (2-1)

where IW and FW in (2-1) denote the number of initial and final words in the partial

bitstream, respectively. The number of configuration words in a PRR row (denoted as

NCWrow) in (2-1) is expressed as:

 NCWrow = FAR_FDRI + (NCFCLB + NCFDSP + NCFBRAM + 1) × FRsize (2-2)

where FRsize in (2-2) denotes the frame size in words. The total number of configuration

frames per CLB, DSP, and BRAM columns in a single row of a PRR (denoted as

NCFCLB, NCFDSP, and NCFBRAM, respectively) are:

 NCFCLB = WCLB x CFCLB (2-3)

 NCFDSP = WDSP x CFDSP (2-4)

31

 NCFBRAM = WBRAM x CFBRAM (2-5)

where WCLB, WDSP, and WBRAM included in (2-3), (2-4), and (2-5) are the number of CLB,

DSP, and BRAM columns in the PRR, respectively. Also, CFCLB, CFDSP, and CFBRAM in

(2-3), (2-4), and (2-5) are the number of configuration frames per single CLB, DSP, and

BRAM column, respectively.

Finally, the number of BRAM initialization words in a PRR row (denoted as

NDWBRAM) in (2-1) is:

 NDWBRAM = FAR_FDRI + (WBRAM × DFBRAM + 1) × FRsize (2-6)

where DFBRAM included in (2-6) are the number of data initialization frames per single

BRAM column.

Table 2-1. Parameters used in the partial bitstream size cost model

Parameter Description

IW Number of initial words in the partial bitstream
FW Number of final words in the partial bitstream
FAR_FDRI FAR/FDRI initialization words per row
NCWrow Number of configuration words in a PRR row
NDWBRAM Number of BRAM initialization words in a PRR row
NCFCLB Number of CLB configuration frames in a PRR row
NCFDSP Number of DSP configuration frames in a PRR row
NCFBRAM Number of BRAM configuration frames in a PRR row
CFCLB Number of configuration frames per CLB column
CFDSP Number of configuration frames per DSP column
CFBRAM Number of configuration frames per BRAM column
DFBRAM Number of data initialization frames per BRAM column
FRsize Frame size in words
Bytesword Number of bytes per word
H Number of rows in the PRR
Sbitstream Size of partial bitstream in bytes

32

Table 2-2. Specific values from Table 2-1 for Virtex-4/5/6 FPGA device families

Parameter Virtex-4 Virtex-5 Virtex-6

CFCLB 22 36 36
CFDSP 21 28 28
CFBRAM 20 30 28
DFBRAM 64 128 128
FRsize 41 41 81
IW 12 16 20
FW 108 114 113
FAR_FDRI 5 5 5
Bytesword 4 4 4

Figure 2-1. Virtex-5 LX110T FPGA fabric layout with four sample PRRs

Figure 2-2. Partial bitstream structure for Virtex-5 FPGAs

33

CHAPTER 3
ON-CHIP CONTEXT SAVE AND RESTORE, AND HARDWARE TASK RELOCATION

SOFTWARE

In this chapter, we give a detailed description of the on-chip CSR and HTR

software, which correspond to the first and second phases of this research, in order to

enable hardware multitasking on the same and different PRRs, respectively, for PR

FPGAs.

Our on-chip CSR/HTR for heterogeneous PRRs executes in software on a soft-

core processor in the FPGA’s static region. We assume that prior to CSR/HTR

execution, the applications have already been synthesized and partitioned into multiple

hardware tasks, the PRRs [47][48] and soft-core processor have been created, the

system contains a scheduler that maps and schedules incoming tasks to PRRs, and all

full and initial partial bitstreams and necessary files have been generated. We refer to a

hardware task that is executing in a PRR as a partially reconfigurable module (PRM),

and we note that since a PRM may be executed in more than one heterogeneous PRR

at different times, all PRM’s initial partial bitstreams for candidate PRRs must be

generated prior to system execution. Even though a PRR may contain a mixture of

resources (CLBs, BRAMs, DSPs, IOBs), in this chapter, we detail CSR/HTR for PRMs

that use CLB, distributed RAM (LUTRAM) for CLBs, and BRAM resources only,

however, our technique is equally applicable to heterogeneous PRRs that contain DSPs

and/or IOBs that are not used by the PRM.

The remainder of this chapter is organized as follows. Section 3.1 presents an

overview of CSR and HTR. Section 3.2 describes how to perform CS of hardware tasks

to produce a CS bitstream, which is the first major step in CSR and HTR. Section 3.3

then describes the merge process, in order to generate a new partial bitstream based

34

on the CS bitstream, which is the second major step in CSR. Next, Section 3.4

describes how to perform the saved context relocation between different PRRs based

on the CS bitstream, which is the second major step in HTR. Section 3.5 then describes

how to perform CR of hardware tasks, which is the third major step in CSR and HTR.

Next, Section 3.6 discusses the portability of our on-chip CSR and HTR across FPGA

device families. Finally, conclusions from the first two phases of this research are

summarized in Section 3.7.

3.1 CSR and HTR Overview

We explain CSR and HTR using a system with two heterogeneous PRRs. PRR1

is a candidate PRR for PRM1 and PRM2, and PRR2 is a candidate PRR for PRM2 and

PRM3. Even though this is a small example, this system is sufficient for explaining CSR

and HTR. Figure 3-1 depicts the CSR and HTR flows for this example. Even though not

shown in Figure 3-1, we assume that PRM2 has already executed in PRR1, PRM2 was

preempted and PRM2’s context was saved, PRM3 is currently executing in PRR2, and

PRR1 is ready to execute in PRM1. Tx denotes each step’s execution time.

Initialization reconfigures PRR1 with PRM1 by transferring PRM1’s initial partial

bitstream for PRR1 from external storage to the device via the ICAP and enables FPGA

protection to prevent re-initialization of flip-flops and BRAMs in the static region and

PRRs on successive executions of the startup phase (Section 2.2.2). Treconfig_prr and

Tprotect_fpga denote the execution times for these steps, respectively, and these times

depend on the number of rows and columns in the PRR and FPGA, respectively.

PRM2 can either be resumed in PRR1 or relocated to PRR2. Since CSR requires

less execution time than HTR, PRM2 will first attempt to resume execution in PRR1. For

example, if PRR1 is free, or is executing a lower priority task and can thus be

35

preempted by PRM2 (i.e., PRM1 is lower priority than PRM2 in this case), CSR will

resume PRM2 in PRR1 by: 1) CS of PRM1; 2) PRM2’s saved context (CS bitstream) is

merged with PRM2’s initial partial bitstream to create the merged partial bitstream for

PRR1; and 3) CR of PRM2 on PRR1. If PRR1 is not free or is executing a higher priority

task (i.e., PRM1 is higher priority than PRM2 in this case), and PRR2 is available or

executing a lower priority task (i.e., PRM3 is of lower priority in this case), HTR will

relocate PRM2 to PRR2 by: 1) CS of PRM3; 2) relocate PRM2’s saved context to

PRR2; and 3) CR of PRM2 on PRR2.

In the following sections we elaborate the sequential major steps in CSR and

HTR. The major steps in CSR are CS, merge of initial bitstream with CS bitstream, and

CR, while the main steps in HTR are CS, saved context relocation, and CR.

3.2 Context Save (CS) of Hardware Tasks

CS is the first major step in both CSR and HTR. Before reading a PRM’s flip-

flops’ values, the PRR’s clock must be stopped to avoid potential setup/hold violations.

Next, a sequence of commands (including GCAPTURE) is sent via the ICAP to initiate

the capture process and subsequently unprotect the PRR. Tpre_cs and Tunprotect_prr_cs

denote the execution time for these steps, respectively, where Tunprotect_prr_cs depends on

the number of rows and columns of the PRR. The PRR must be unprotected prior to

capturing the flip-flops’ and BRAMs’ values since performing a capture over a protected

PRR captures the flip-flops’ and BRAMs’ initial values and not the current values at the

moment of stopping the PRR’s clock. However, performing a capture over DSP columns

will always give the DSPs’ flip-flops’ initial values because the DSP columns do not

have specific configuration frames (of all 28) to read the current values of the DSPs’ flip-

36

flops, which is also confirmed in Jozwik’s work [23]. We note that IOBs are not captured

since the current version of the Xilinx tools no longer support IOBs in PRRs.

After the capture process is initiated and the PRR is unprotected, a sequence of

commands executed in a program loop on the soft-core processor read and save the

PRM’s CLB LUTRAMs and CLB flip-flops’ values into a temporary file on a frame-by-

frame basis. This software capture process’s execution time depends on the number of

frames containing PRM flip-flops, LUTRAMs, and BRAMs. Reading from Xilinx devices

using the ICAP generates an extra dummy frame and one dummy word that must be

read [50], but are later discarded. We read and save the PRM’s BRAM values in a

different temporary file, but not on a frame-by-frame basis since reading each BRAM

column’s contents (128 data frames) would greatly increase the CS execution time by

reading an extra dummy frame and word for each valid frame. Instead, we read (23 + 1)

data frames and one word for five iterations, and the sixth iteration we read (13 + 1)

data frames and one word. The BRAMs’ values must be captured in this way due to

limitations imposed by the Linux driver for the HWICAP, which limits the data to a

maximum of 4K bytes per readback [55]. Tcs_prr denotes the execution time to read the

PRM’s BRAMs, CLB LUTRAMs, and CLBs flip-flops’ values, including the dummy

frames and words and the time to save these values in the temporary files.

After completing the capture process, another sequence of commands (CMD

RCAP) is sent to the device prior to re-protecting the PRR, which resets the internal

CAPTURE signal to enable future CSs on the same or different PRR. Tpost_cs denotes

the execution time for these commands. Then, the PRR is re-protected to prevent future

execution of the startup sequence phase in another PRR from re-initializing the current

37

PRR’s flip-flops’ and BRAMs’ values. Tprotect_prr_cs denotes the execution time of this

step. Next, a sequence of commands frees the ICAP for subsequent use by the current

PRR or another PRR. Tdesynch denotes the execution time for these commands.

Finally, another program loop executed on the soft-core processor discards the

dummy frames and words from the temporary files and saves the PRM’s context in a file

(CS bitstream). The size of the CS bitstream in 32-bit words is denoted as 1+N+N*41,

where N is the number of frames read and that contain the PRM’s flip-flops’, LUTRAMs’,

and BRAMs’ values. The first word in the CS bitstream specifies N’s value, the following

N words specify the N different frame address values that contain the flip-flops’,

LUTRAMs’, and BRAMs’ values, and the final N*41 words are the contents of the N

frames. Tcs_bitstream denotes the execution time to generate the CS bitstream.

Thus, the total execution time for CS (denoted as Tcs) is:

Tcs = Tpre_cs + Tunprotect_prr_cs + Tcs_prr + Tpost_cs + Tprotect_prr_cs +

 Tdesynch + Tcs_bitstream (3-1)

3.3 Merge of Initial Bitstream and Saved Context

The merge process is the second major step in CSR. The merge process in CSR

updates a PRM flip-flop/LUTRAM/BRAM bit in the scheduled PRR with the PRM flip-

flop/LUTRAM/BRAM bit from the CS bitstream. Figure 3-2 depicts these bitstream

manipulations, which merge the CS and initial bitstreams at the 32-bit word level

updating multiple flip-flop/LUTRAM/BRAM bits, and only on those words within a frame

where context bits are involved. The example in Figure 3-2 has been reduced to eight

bits for clarity.

To understand the bitstream manipulations in CSR, we use Table 3-1, that shows

the truth table for CSR’s merge process, expressed as f = (cap ʌ msk) v (ini ʌ /msk),

38

where cap is the captured value, ini is the flip-flop/LUTRAM/BRAM bit value in the initial

partial bitstream, and msk denotes if the bit is part of the saved context where msk = 1

updates ini with cap and msk = 0 retains ini’s value.

For the example in Figure 3-2, only the bit positions with msk = 1 will be updated

with the value of cap in the same bit positions. Therefore, bits 7, 5, 3, and 1 will be

updated producing a final f word (in binary) equal to 00111100.

The merge is executed as a program loop in the soft-core processor, where the

loop’s execution time is dictated by the number of words that contains the task’s context

in the CS bitstream. After the merge, the merged partial bitstream is saved to a file.

Tmerge denotes the execution time for the merge process, including the time to save the

file.

3.4 Saved Context Relocation of Hardware Tasks (HTR)

The saved context relocation is the second major step in HTR. The bitstream

manipulations required for relocating the saved context (i.e., HTR) is similar to the

merge process in CSR [35]. HTR updates a PRM flip-flop bit in the scheduled PRR with

the PRM flip-flop bit from the CS bitstream. Figure 3-3 and Figure 3-4 depict these

bitstream manipulations, which merge the CS and initial bitstreams at the 32-bit word

level based on two cases: update a single flip-flop or multiple flip-flops. Figure 3-3

shows the update of a single flip-flop value for HTR, and Figure 3-4 shows multiple

updates of flip-flop values for HTR. All examples have been reduced to five bits for

clarity.

HTR cannot use the expression f used in CSR (Section 3.3) for context

relocation. HTR requires two msk’s, one for the saved context and the other for the

initial partial bitstream in the scheduled PRR. In HTR, the context relocation for flip-flops

39

is expressed as g = (cap ʌ ms) v (inid ʌ /md), where cap is the flip-flop’s captured value,

ms denotes if the flip-flop is part of the saved context, inid is the flip-flop’s value in the

initial partial bitstream for the scheduled PRR, and md denotes if the flip-flop in the

merged bitstream needs to be updated. md = 1 updates inid with cap, provided that ms

= 1, and md = 0 retains inid’s value. In Figure 3-3 and Figure 3-4, bitms and bitmd

denote the bit position of ms and md and the expression bitms - bitmd denotes the

distance between these bits’ positions in a 32-bit word. If bitms - bitmd ≥ 0, (cap ʌ ms) is

right-shifted bitms - bitmd bit positions using shr(cap ʌ ms), else, (cap ʌ ms) is left-

shifted bitmd - bitms bit positions using shl(cap ʌ ms). Updating multiple flip-flops in a

word boundary in the merged bitstream (Figure 3-4) is done sequentially, and each

update does not necessarily have the same cap and ms words as shown.

Context relocation for LUTRAMs and BRAMs follows the same procedure as the

merge process in CSR (Section 3.3), but using the expression g, updating multiple bits

in a word boundary and only on those words within a frame where context bits are

involved without performing the shifting of (cap ʌ ms). Since the LUTRAM and BRAM

bits for the PRMs being relocated to different PRRs have the same bit positions within

the words, there is no need to calculate the distance between the bit’s positions or shift

(cap ʌ ms) as is required for flip-flops. Also, the words’ positions within a frame that

include LUTRAM and BRAM bits are grouped consecutively, and the LUTRAMs and

BRAMs’ bits are saved in consecutive frames. This layout allows us to reduce the

relocation time when LUTRAMs and BRAMs are included in a PRR, since alternatively

performing context relocation for LUTRAMs and BRAMs using the expression g, but

40

updating bit-by-bit (as done with flip-flops) would incur prohibitively high context

relocation execution times (on the order of seconds).

The context relocation is executed as a program loop in the soft-core processor,

where the loop’s execution time is dictated by the number of PRM flip-flops in the CS

bitstream. After the relocation, the merged partial bitstream is saved to a file. Trelocate

denotes the execution time for the context relocation (HTR), including the time to save

the file.

3.5 Context Restore (CR) of Hardware Tasks

CR is the last major step in both CSR and HTR. Before CR, the scheduled PRR

must be unprotected to allow initialization of the PRR’s flip-flops with the new values in

the merged partial bitstream, but the remainder of the FPGA must remain protected.

Tpre_cr denotes the execution time of the sequence of commands sent via the ICAP

before unprotecting the scheduled PRR and Tunprotect_prr_cr denotes the execution time to

unprotect the scheduled PRR. Next, the scheduled PRR is reconfigured via the ICAP by

sending the merged partial bitstream, which has the same structure as the initial partial

bitstream as shown in Figure 2-2, with the exception that no CRC is generated, and is

replaced by the RCRC command. Tupdate_prr denotes the execution time to transfer this

new partial bitstream to the scheduled PRR.

Even though omitting the CRC introduces the possibility of reconfiguration errors,

it is a valid solution for small partial bitstreams and when the FPGA is not exposed to a

harsh environment, such as high radiation levels. Toggling GSR is more time efficient

than generating the CRC on the fly in software, and generating the CRC with custom

hardware incurs hardware overhead (1,218 flip-flops and 5 BRAMs for the Virtex-4 [24]),

which may decrease the system’s maximum operating frequency. Since there is no

41

CRC in the final words (Figure 2-2), the only way to initialize the PRR’s flip-flops’ and

BRAMs’ values with the PRM’s saved context is to force the execution of the startup

sequence phase by toggling the GSR signal (Section 2.2.2). Tstartup denotes the

execution time of the startup sequence phase, which includes the time to toggle GSR

and the elapsed time until the signal EOS is asserted. After the startup sequence

phase, the scheduled PRR is reconfigured with the PRM’s relocated context and is

ready for execution.

Finally, it is necessary to protect the scheduled PRR to prevent future startup

sequence phases to other PRRs from re-initializing the scheduled PRR’s LUTRAMs,

BRAMs, and flip-flops’ values. Tprotect_prr_cr denotes the execution time for this step.

Thus, the total execution time for CR (denoted as Tcr) is:

 Tcr = Tpre_cr + Tunprotect_prr_cr + Tupdate_prr + Tstartup + Tprotect_prr_cr (3-2)

3.6 CSR and HTR Portability across FPGA Device Families

No prior work addressed CSR/HTR portability across different FPGA device

families, especially for 2-D different-sized heterogeneous PRRs, since prior works on

on-chip BR/HTR and off-chip HTR have limitations or impose constraints that prevent

implementation of HTR that can be easily ported to other FPGA device families with

minimum changes.

Prior BR works [9][10][25][36][39][41][42] using on-chip custom hardware for 2-D

homogeneous PRRs are complex and not portable because using custom hardware

requires special constraints. These constraints require specific physical positions of

inputs and outputs with respect to PRRs, no signals from static region must be routed

through PRRs, and a communication bus between the custom hardware and all PRRs.

Additionally, using custom hardware for on-chip BR works only for custom PRR sizes

42

and PRR resource organizations, and is not applicable to arbitrary PRR size/resource

organization.

Prior off-chip HTR works [26][29] are not portable across FPGA device families,

because off-chip HTR requires the FPGA to be attached to a host CPU with a dedicated

host CPU-FPGA communication bus. Even though some FPGAs provide high speed

communication bus signals to reduce the host CPU-FPGA communication overhead,

this solution is expensive, requiring additional hardware (e.g., small form-factor

pluggable (SFP) transceivers), and the high speed communication bus are not available

in all FPGA device families. Also, using a dedicated host CPU-FPGA communication

bus requires a special driver for the host CPU-FPGA communication, which in turn limits

the implementation of HTR in an autonomous system on FPGAs. Additionally, using a

bare-metal solution (no operating system on FPGA, and attached to a host CPU) limits

HTR portability across different FPGA device families, because using a bare-metal

solution would not be able to accomplish the bitstream manipulations (Section 3.3 and

Section 3.4) efficiently, limiting the implementation of CSR and HTR.

Prior on-chip HTR works from Iturbe et al. [17][18][19] for 2-D heterogeneous

PRRs also are not portable across FPGA device families. Iturbe’s works used BRAMs

(which are location-specific in the FPGA’s fabric and limited in number) as buffers to

hold input and output values for each hardware task, and PRRs must to be placed near

to each other in the FPGA’s fabric in order to copy the output values (from the output

buffer) from one task to another task, using a custom hardware DRT block.

We note that a fixed on-chip custom hardware-based HTR between 2-D

heterogeneous PRRs is extremely complex, because a large variety of PRR resource

43

distribution combinations in the PRR columns prevents the implementation of a fixed

on-chip hardware-based HTR. A custom hardware implementation for establishing the

mapping of flip-flops’, LUTRAM bits’, and BRAM bits’ positions (for CR purposes,

Section 3.4) between 2-D heterogeneous PRRs would be extremely difficult to

implement (if not, impossible) with fixed hardware, resulting in excess area overhead

and affecting the tasks’ maximum operating frequencies. Also, the on-chip custom

hardware for HTR may not be portable across same/different FPGA device families.

We note that our HTR approach for 2-D heterogeneous PRRs is a simpler, but

not necessarily more efficient with respect to execution time, and more complete than

prior works [17][18][19]. These works copy only the results computed by a hardware

task (saved in an output buffer implemented with BRAMs), using a DRT block [19], to

the input buffer (implemented with BRAMs) of the relocated task, while our approach

relocates the entire task’s context (i.e., the saved flip-flop, LUTRAM, and BRAM values

required by the saved hardware task (Sections 3.2 to 3.5).

Our on-chip software-based CSR/HTR on 2-D heterogeneous PRRs is also

portable across FPGA device families. We enable CSR/HTR portability by having a

design specification that does not use special constraints (i.e., there is no special

communication bus between the reconfiguration controller and the PRRs, there is no

host CPU-FPGA communication bus, and there are no limitations with respect to PRR

size/location/resource organization). Also, CSR/HTR portability is ensured by using a

portable language for the CSR/HTR software application to be used with different FPGA

device families. For our CSR/HTR application, we use the standard C language, and we

44

use configuration files selected for a device’s specific architecture, where these

configuration files are selected at compilation time.

The configuration files (*.far) used in our CSR/HTR application specify the FAR

addresses for each resource column (CLB, DSP, etc.) per row in the specific FPGA

device. The bram.far, clb.far, clk.far, dsp.far, and iob.far used in our HTR software

specify the FAR addresses for all of the BRAM, CLB, CLK, DSP, and IOB columns in

the FPGA, respectively. For example, the Xilinx Virtex-5 LX110T (Figure 2-1) has eight

rows and 5, 54, 1, 1, and 3 BRAM, CLB, CLK, DSP, and IOB columns per row,

respectively, generating 40, 432, 8, 8, and 24 32-bit words for the bram.far, clb.far,

clk.far, dsp.far, and iob.far files, respectively.

Also, we use a C header file (htr.h) to define all of the ICAP commands and the

commands’ codings using the #define directive for the Virtex-5 FPGA device family. The

htr.h file also includes the sequence of ICAP commands used in CSR and HTR for

FPGA/PRR protection and PRR unprotection, CS, and CR, where all of these

sequences are organized as arrays, and the definition of the number of configuration

frames per each resource type (CLB, DSP, etc.) for the Virtex-5 FPGA device family.

For HTR compatibility across FPGA device families, changes to htr.h are needed to

include the definition of the ICAP commands and the commands’ codings, the sequence

of ICAP commands for CSR/HTR, and the number of configuration frames for each type

of resource for different FPGA device families. Then, at compilation time, these

definitions will be selected for the FPGA device family where CSR/HTR will be

executed.

45

Additionally, before CSR/HTR begins execution, pre-processing extracts the

information for each PRM/PRR mapping using the *.far files, the partial bitstreams, and

the logic location file (*.ll) generated when the partial bitstreams are created. Each line

in the plain text logic location file generated by the Xilinx tools contain the frame

addresses, the LUTRAM bits’, BRAM bits’ and flip-flops’ positions in the frames, and the

LUTRAMs’, BRAMs’, and flip-flops’ net names for the entire project, and the lines in the

*.ll file were ordered by frame (Xilinx’s default). Then, the pre-processing obtains the

size and position of the PRRs, the column type (CLB, etc.) order inside PRRs, all FAR

addresses involved in the PRRs, and the position of all of the flip-flop, LUTRAM, and

BRAM bits inside the partial bitstreams for each PRM.

3.7 Summary

In this chapter, we have presented on-chip CSR and HTR software, which

correspond to the first and second phase of this research, respectively. CSR enables

hardware multitasking in the same 2-D heterogeneous PRR, and is able to preserve the

context of preempted hardware tasks upon tasks resumption, without disrupting

operations in the static region and other PRRs. HTR leverages CSR and enables the

relocation of hardware tasks’ contexts between different-sized 2-D heterogeneous

PRRs in order to maximize PRRs utilization in the same FPGA and maximize tasks

throughputs by providing more candidate PRRs for hardware tasks to resume

operations.

Our on-chip software-based CSR/HTR for 2-D heterogeneous PRRs executes in

an FPGA as an autonomous system (i.e., not using a host CPU-FPGA communication

bus), using the MicroBlaze soft-core processor as a reconfiguration controller.

46

Our on-chip CSR/HTR is portable across FPGA device families with minimum

changes (to file htr.h), by not using specific constraints in the design specification, not

using a dedicated communication bus between the static region and PRRs or between

PRRs, using a portable language (standard C), using the *.far files for the selected

FPGA device at compilation time, and using the *.ll file and partial bitstreams generated

by the Xilinx tools in order to obtain all PRMs/PRRs mapping information, such as the

positions of PRRs in the FPGA fabric, size of all PRRs, column type order inside each

PRR, and position of all PRMs’ flip-flop, LUTRAM, and BRAM bits inside the partial

bitstreams, which is all the information a system designer needs for CSR/HTR.

Next, Chapter 4 continues on by extending our CSR/HTR software in order to

enable tasks’ context relocation across multiple physically-distributed FPGAs which are

networked-interconnected, providing additional improvements in resource usage per

FPGA and task throughput due to more candidate PRRs per task.

Table 3-1. Truth table for the CSR merge process

ini cap msk f

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

47

Figure 3-1. On-chip context save and restore (CSR) and hardware task relocation

(HTR) flows

Figure 3-2. Multiple flip-flop updates for CSR merge process

Figure 3-3. Single flip-flop update for context relocation (HTR) process

48

Figure 3-4. Multiple flip-flop updates in a word boundary for context relocation (HTR)

process

49

CHAPTER 4
ON-CHIP DISTRIBUTED DYNAMIC RESOURCE MANAGEMENT SOFTWARE

In this chapter we give a detailed description of how to extend our on-chip HTR

software for 2-D heterogeneous PRRs to enable dynamic context relocation of

hardware tasks across FPGAs interconnected in a network (local wired, wireless

network, etc.), in order to improve task throughput, reduce task idle times while waiting

for a candidate PRR, and maximize the resource usage per FPGA. To accomplish CR

across networked FPGAs, we present on-chip distributed dynamic resource

management (DDRM) software, which is the third phase of this research.

Our on-chip DDRM leverages our HTR for 2-D heterogeneous PRRs, and

executes in software on a soft-core processor in the FPGA’s static region in each of the

FPGAs in the network. For DDRM execution on each FPGA, we can assume that prior

to DDRM execution, the applications have already been synthesized and partitioned

into multiple hardware tasks (PRMs), each PRM has been assigned a priority execution

level, and the PRRs and soft-core processors for all of the FPGAs have been created.

Also, each autonomous system (each FPGA’s soft-core processor and PRRs) contains

a scheduler that maps and schedules incoming PRMs to PRRs, the mapping of local (to

the same FPGA) or remote (to a different FPGA) CR (lHTR and rHTR, respectively)

have been defined for all PRMs, and all full and initial partial bitstreams and necessary

files have been generated for all FPGAs in the network.

Even though the network of FPGAs may contain a mixture of different types of

FPGA devices, we describe DDRM for a network with identical FPGAs. However our

DDRM is equally applicable to any network of different FPGA devices, and using the

information from Section 3.6, we show how DDRM works with different types of FPGAs.

50

Additionally, in this section we assume that all FPGAs are interconnected over a local

wired Ethernet network, but any interconnection network could be used.

The remainder of this chapter is organized as follows. Section 4.1 introduces the

necessary definitions and concepts for understanding context relocation of hardware

tasks between networked FPGAs using DDRM. Section 4.2 then gives an overview of

DDRM. Next, Section 4.3 describes in detail the integration of CSR and HTR into the

DDRM operations. Finally, conclusions from the third phase of this research are

summarized in Section 4.4.

4.1 DDRM Concepts and Definitions

Before detailing DDRM operation, this section introduces the necessary

foundational definitions and concepts used in DDRM, including the following terms:

node, PRM status, PRM priority execution level, PRR availability, free PRR, busy PRR,

PRR lock, and node consistency.

A node is an autonomous FPGA system that executes HTR/DDRM. PRM status

defines the execution status of a PRM, where the PRM can be in only one of the

following states: executing (currently running in a PRR), preempted (paused and the CS

bitstream has been generated), completed (finished execution in a PRR), scheduled

(assigned to a PRR to start execution), and not assigned (not scheduled). We use the

following numerical coding to represent the PRM status: executing = 0, preempted = 1,

completed = 2, scheduled = 3, and not assigned = 4.

The PRM’s priority execution level defines the execution priority of the PRM. For

DDRM, we consider four priority execution levels (0 to 3), where “3” is the highest

priority execution level and “0” is the lowest priority execution level (we note that using

four levels serves as only an example, and the number of distinct priority levels is

51

arbitrary). PRR availability defines if either a PRR is free (coded as ‘1’) or busy (coded

as ‘0’). A PRR is busy if there is a PRM currently executing in the PRR. A PRR is free if

no PRM is currently executing in the PRR or a PRM was already preempted or

completed execution in the PRR. PRR lock flags if HTR/DDRM is currently operating in

a PRR that affects the PRM status. A PRR can be locked (coded as ‘1’) or unlocked

(coded as ‘0’). A locked PRR temporarily prevents higher-priority PRMs from being

scheduled to that PRR while there is an operation in process (such as CS or CR). An

unlocked PRR enables a PRM to be scheduled to that PRR, if the PRR is free or if the

PRR is executing a lower priority PRM.

Due to DDRM’s distributed nature, inconsistencies in the network of DDRM

nodes must be avoided. These inconsistencies include: executing lHTR in a local

candidate PRR in a node, and later another node executes rHTR for a lower priority

execution level PRM to the same PRR and node without being notified that the PRR

was already busy; executing CS in a PRR without locking the PRR, and another PRM

tries to start execution in the same PRR without being notified that the PRR is already

locked; preempting a PRM in a PRR and later another node cannot execute rHTR to

that PRR because the node was not notified that the remote PRR is free; etc.

To avoid these inconsistencies, node consistency is ensured by replicating data

across the network’s nodes. DDRM broadcasts all PRM and PRR status changes to all

of the nodes every time there is a change in a node, such as when a PRM starts

execution, a PRM is preempted, lHTR or rHTR is executed, etc. Thus, all nodes have

the same information regarding the mapping of all PRMs to nodes and PRRs, all PRMs’

status, and which nodes/PRRs the PRMs are currently assigned to.

52

Each node in the network uses two table data structures to maintain node

consistency. The first table—the global table—is common across all nodes and

specifies the local and remote PRM-to-PRR mappings on all nodes in the network. The

global table also specifies the priority execution level and status of each PRM, and if a

PRM can be locally/remotely relocated (lHTR/rHTR) to the same/different node if the

local/remote PRR has sufficient resources. The global table in all nodes is dynamically

updated every time there is change in a node (e.g., preemption and CS of a PRM, lHTR

or rHTR execution, etc.). The second table—the local table—is specific to each node

and specifies the node’s current PRM-to-PRR mappings. The local table also specifies

the local PRRs’ statuses, including PRR lock and PRR availability, which PRM is

currently assigned to a PRR, and the PRM’s priority execution levels. This local table is

dynamically updated in each node every time a new task is executing, when CS is

currently in progress for a preempted task, etc.

Table 4-1 shows an example of the global table for a small network of two nodes,

where each node has two PRRs, and three PRMs are mapped to each PRR. The

table’s fields’ values are assigned by the system designer after the applications in all

nodes have been synthesized and partitioned into multiple PRMs, and include: fpga,

which specifies the node number (each node has a unique identification number); prr,

which specifies the PRR number in the node (each PRR has a unique identification

number per node); prmx, which specifies an index (ranging from 0 to the maximum

number of PRMs mapped to a PRR); prm, which specifies the unique PRM number in

the network; pri, which specifies the PRM’s priority execution level; stat, which specifies

the PRM’s status; rloc, which specifies if the PRM can be locally relocated (yes = ‘1’, no

53

= ‘0’) within the same node; rrem, which specifies if the PRM can be remotely relocated

(yes = ‘1’, no = ‘0’) to another node; rlprr, which specifies the PRR number for local

relocation, if rloc = ‘1’; rlprmx, which specifies the index (ranging from 0 to the maximum

number of PRMs mapped to a PRR) for local relocation; rlprm, which specifies the new

PRM number if the PRM is being locally relocated; rrnode, which specifies the node

number for remote PRM relocation, if rrem = ‘1’; rrprr, which specifies the PRR number

of the remote node when a PRM is remotely relocated; rrprmx, which specifies the index

(ranging from 0 to the maximum number of PRMs mapped to a PRR) for the remote

PRR; and rrprm, which specifies the new PRM number for remote relocation. The “X”

values in the table represent “don’t cares” (e.g., if field rloc = ‘0’, then fields rlprr, rlprmx,

and rlprm are don’t care, or if field rrem = ‘0’, then fields rrnode, rrprr, rrprmx, and rrprm

are don’t care).

Since the global table (Table 4-1) establishes all of the possible PRM-to-PRR

mappings on all of the nodes in the network, which are fixed, the only field in Table 4-1

that is dynamically updated and broadcasted to the other nodes due to changes in

PRMs in the network (e.g., a PRM starts execution, a PRM is preempted, etc.) is stat.

To show the purpose and functioning of this table, we discuss examples of

remote and local relocations using Table 4-1. For remote relocation, consider PRM “0”

(item 1 in Table 4-1, mapped to node “0”, PRR “0”, index “0”, and priority execution level

“1”), which can be remotely relocated to node “1”, PRR “1”, index “0” as PRM “100”

(item 10 in Table 4-1). Also, PRM “100” in node “1” can be remotely relocated as PRM

“0” in node “0”. For local relocation, consider PRM “4” (item 2 in Table 4-1, mapped to

node “0”, PRR “0”, PRM index “1”, and priority execution level “2”), which can be locally

54

relocated to node “0”, PRR “1”, PRM index “1” as PRM “14” (item 5 in Table 4-1). Also,

PRM “14” in node “0” can be locally relocated as PRM “4” in the same node. Once a

PRM is locally/remotely relocated, the status (field stat in Table 4-1) of the old PRM

changes to “4” (not assigned), and the relocated PRM’s status changes to “0”

(executing), and these changes are broadcasted to all of the other nodes.

Table 4-2 shows an example of the local table used for node “1” from Table 4-1,

which updates dynamically the PRR availability, PRR lock, PRM assignment to PRR,

and PRM’s execution priority. The fields in this data structure are: node_id, which

specifies the node number; prr_id, which specifies the PRR number; prmx_id, which

specifies the index (ranging from 0 to the maximum number of PRMs mapped to prr_id);

avail_id, which specifies the PRR availability; lock_id, which specifies the PRR lock;

prm_id, which specifies the PRM number currently executing in the PRR; and pri_id,

which specifies the PRM’s execution priority.

Since the local table (Table 4-2) establishes the local PRM-to-PRR mappings in

a node, the node and PRR numbers (fields node_id and prr_id, respectively) are fixed,

and the only fields that are updated in the local table (due to a change in the node, such

as execution of CS, lHTR, rHTR, start execution of a PRM, etc.) are prmx_id, avail_id,

lock_id, prm_id, and pri_id, however these fields’ values are not broadcasted to the

other nodes in the network. Broadcasting these fields’ values may involve node

inconsistencies, especially for rHTR. A node may use the broadcasted copy of these

fields to decide whether or not to perform rHTR, and when attempting to perform rHTR,

the remote PRR may become locked, or busy with a higher execution level PRM, and

the rHTR will fail. Alternatively, these fields will be checked (by the local or remote

55

node) before any change is attempted in the node, and these fields will be updated after

the change has been made, then these fields will always have the latest values.

In order to perform the context relocation of PRMs across nodes (using the

information from Table 4-1 and Table 4-2 in all nodes), DDRM uses the client/server

model for remote procedure call (RPC). RPC [21][43] is a widely-used model for

communication in distributed systems and using RPC in DDRM enables programs in

one local node to remotely execute code in a remote node. RPC uses the following

terms: client, server, client stub, and server stub. A client is a procedure call on a node

requesting a procedure to be executed on a server (local or remote), the server is the

procedure in the local/remote node accepting the code execution request from the

client, the client stub is the portion of code in the procedure call that packs/unpacks

parameters (e.g., node number, PRR number/PRR lock, PRR availability, etc.) to be

sent/received to/from client/server, and the server stub is the portion of code in the

procedure that unpacks/packs parameters (e.g., node number, PRR number/PRR lock,

PRR availability, respectively, etc.) to be received/sent from/to client/server. Each node

in DDRM includes the client, server and stubs (client and server stubs).

RPC performs the following sequentially executed steps between the local and

remote nodes for remote code execution [43]: a) the client procedure calls the client

stub; b) the client stub builds a message with parameters (e.g., node number, PRR

number, etc.) and calls the local operating system (OS) to send the message to the

remote node; c) the client’s OS sends a message with the parameters to the remote

node’s OS; d) the remote node’s OS relays the message to the server stub; e) the

server stub unpacks the parameters from the message and calls the server; f) the

56

server executes the procedure and returns the procedure’s result(s) (e.g., PRR lock,

PRR availability, etc.) to the server stub; g) the server stub packs the result(s) into a

message and calls the server’s OS to send the message to the client; h) the server’s

OS sends the message to the client’s OS; i) the client’s OS relays the message to the

client stub; and j) the client stub unpacks the result(s) and returns to the client.

DDRM performs these RPC steps each time a client in a node executes a

request to a server (in a local or remote node), such as checking for PRR availability,

obtaining priority execution levels of PRMs, checking for a PRR lock, locking/unlocking

PRRs, updating PRM status, broadcasting PRM status to other nodes, etc. The

parameters in the transmitted messages from the client to the server include the node

number, PRR number, etc., where all these parameters are packed in a single

message. The parameters in the transmitted messages from the server to the client

include the PRR lock value, PRM status value, PRR availability value, etc., where only

one single parameter is packed in the message.

Packing/unpacking parameters in RPC messages and sending messages

between nodes generate delays. Also, every client’s RPC request to a server causes

the client to wait until a message (with the results) from the server is received, which

introduces more delays. However, RPC has better performance compared to other

methods used in distributed systems, such as message passing interface (MPI) and

Java remote machine invocation (RMI) [38].

4.2 DDRM Overview

We explain DDRM using a network of N nodes, where i represents the node

number (0 ≤ i < N), node i contains Pi PRRs, where prrij denotes PRR j on node i (0 ≤ j <

Pi), and prrij can time multiplex up to M PRMs where prmijk denotes PRM with index k for

57

PRR j in node i (0 ≤ k < M). In DDRM, each prmijk can be executed in any local

candidate PRR in node i (using lHTR) or remote candidate PRR in other nodes (using

rHTR), where the PRRs must have sufficient resources to execute the PRM. For an

initial version of DDRM, we assume that each prmijk can be executed in at most two

PRRs in node i (a predefined prrij, and one local candidate PRR for local relocation),

and at most one remote candidate node’s PRR, but this assumption can be extended to

support more local and remote candidate PRRs by modifying the data structure in Table

4-1.

We denote the PRR availability of prrij using the function avail(prrij), where

avail(prrij) = 0 means prrij is busy and avail(prrij) = 1 means prrij is free. avail(prrij) reads

the value from field avail_id in Table 4-2 for prrij. A given PRR prrij with avail(prrij) = 1 on

node i may receive any prmijk, and when prmijk starts execution, DDRM changes

avail(prrij) to 0 (busy).

We denote the priority execution level lijk of prmijk as lijk = prio(prmijk), where 0 ≤ lijk

< L and L is the maximum number of priority execution levels. prio(prmijk) reads the

value from field pri in Table 4-1 for prmijk and copies this value to field pri_id for prmijk in

Table 4-2. A given prmijk with priority execution level lijk that executes on PRR prrij in

node i can be preempted by any prmijq with priority execution level lijq, if and only if lijk <

lijq.

We denote the PRR lock of prrij as lock(prrij), where lock(prrij) = 1 locks prrij, and

lock(prrij) = 0 unclocks prrij. lock(prrij) writes the value to the field lock_id for prrij in Table

4-2. Before performing an operation on prrij (e.g., CS or CR for prmijk, downloading a

58

partial bitstream to prrij, etc.), DDRM locks prrij which prevents requests from the same

node or other node for prrij, and after the operation is completed, DDRM unlocks prrij.

When prmijk is scheduled to start/resume execution, DDRM checks if the

predefined PRR for prrij is locked. If prrij is unlocked, DDRM checks for prrij availability,

and if prrij is available (free), prmijk starts/resumes execution in prrij. If prrij is unavailable

(busy), DDRM checks if prrij is executing a lower priority execution level PRM, and if the

PRM is lower priority, DDRM preempts the lower priority PRM, generates the PRM’s

corresponding CS bitstream, and starts/resumes execution of prmijk. If prrij is locked or

executing a higher priority execution level task, DDRM checks if prmijk can be locally

relocated in a local candidate PPR in node i, checking the candidate PRR’s lock, the

availability, and if the candidate PRR is executing a lower priority execution level task. If

these checks successfully pass, DDRM performs lHTR and starts/resumes execution of

prmijk in the local candidate PRR. If any of these checks fail, the local relocation of prmijk

is not possible, and DDRM checks if prmijk can be remotely relocated to other node’s

PRR using a RPC. If this check is successful, DDRM performs rHTR and

starts/resumes execution of prmijk in the remote node. If this check also fails, prmijk must

wait to be scheduled.

4.3 DDRM Operations

To understand the interaction between clients and servers in DDRM, we explain

how DDRM works using an example system with the following specifications: two

nodes, a local node i and a remote node m; node i has two PRRs prrij and prrit; node m

has one PRR prrmn; node i has three PRMs prmijk, prmijq, and prmitu; and node m has

one PRM prmmnp. Since DDRM uses RPC’s client/server, a portion of the DDRM code

executes exclusively on the client side in local node i, a portion of the DDRM code is

59

initiated (called from) the client side of node i and is executed on the server side of node

i, and a portion of the DDRM code is initiated (called from) the client side of node i and

is executed on the server side of remote node m.

Figure 4-1 through Figure 4-6 depict DDRM’s flow of operation. Since the entire

flow is too large to be displayed in a single figure, each figure shows a portion of the

entire flow with references showing the transitions to/from other figures. Figure 4-2

shows additional details from Figure 4-1, and Figure 4-4 shows additional details from

Figure 4-3. Unshaded rectangular and decision boxes are exclusively executed on the

client side of local node i. Rectangular and decision boxes with horizontal lines are

initiated (called from) the client side of node i and executed on the server side of node i.

Light gray rectangular and decision boxes are initiated (called from) the client side of

node i and executed on the server side of remote node m. Boxes with cross lines are

initiated (called from) the client side of node i and executed sequentially (nodes 0, 1, …

, N-1) on the server side of the remote nodes. Boxes with vertical lines are for when a

PRM starts execution for the first time or resumes execution in the predefined PRR j on

node i (prrij). Boxes with horizontal and vertical lines are for when a PRM starts

execution for the first time or resumes execution in a locally-relocated PRR. Dark gray

boxes are for remote relocation of a task. Since all RPC steps are initiated from the

client side of a node i (e.g., checking for PRR availability, obtaining priority execution

levels of PRMs, checking for a PRR lock, updating PRM status, etc.), all execution

times Tx included in the figures are measured from the client side of node i.

Figure 4-1 shows the DDRM flow for executing prmijq for the first time (or

resuming) in the predefined prrij, where the boxes with vertical lines contain the

60

necessary CSR for these operations. First, DDRM checks if prrij is unlocked. If prrij is

unlocked, DDRM checks if prrij is available (free), and if prrij is free, DDRM locks prrij,

starts executing (or resumes) prmijq in prrij, changes prrij availability to ‘0’ (busy), and

unlocks prrij. If prrij is busy executing a lower priority prmijk with priority execution level lijk

< lijq, DDRM locks prrij, preempts prmijk and executes CS for prmijk, broadcasts the

status of the preempted prmijk to all nodes, starts executing (or resumes) prmijq, and

unlocks prrij.

Figure 4-2 shows the CSR details of Figure 4-1’s boxes with vertical lines for

executing prmijq for the first time (or resuming) in the predefined prrij. If there is no CS

bitstream generated for prmijq, prmijq is executed for the first time in prrij by downloading

the initial partial bitstream for prmijq to prrij. If prmijq was previously preempted, prmijq has

a CS bitstream, and the merge process generates a new merged partial bitstream

(using the CS and initial bitstreams) for prmijq to execute CR, and prmijq resumes

execution in prrij. After prmijq starts/resumes execution, DDRM updates the stat field in

the global table (Table 4-1), and the prmx_id, prm_id, and pri_id fields in the local table

(Table 4-2) for prmijq in node i. Finally, DDRM broadcasts the new status of prmijq to all

nodes.

Using the Tx from Figure 4-1 and Figure 4-2, the total execution time for a PRM

to start execution for the first time in a free and unlocked predefined PRR (denoted as

Texe1) is:

Texe1 = Tchk_lprr_lock + Tlprr_lock + Tlaunch_pend_task + Tupdate_node + Tprop_act_task +

 Tlprr_busy + Tlprr_unlock (4-1)

61

where Tchk_lprr_lock, Tlprr_lock, Tlaunch_pend_task, Tupdate_node, Tprop_act_task, Tlprr_busy, and Tlprr_unlock

denote the execution times to check if the predefined PRR is locked, lock predefined

PRR, download the initial partial bitstream and enable the execution of the PRM, update

the table structures in the node for the PRM, broadcast the status of the PRM to all

nodes, change the PRR availability to busy, and unlock the predefined PRR,

respectively.

Similar to Texe1, the total execution time for a PRM to resume execution in a free

and unlocked predefined PRR (denoted as Tres1) is:

Tres1 = Tchk_lprr_lock + Tlprr_lock + Tresume_pend_task + Tupdate_node + Tprop_act_task +

 Tlprr_busy + Tlprr_unlock (4-2)

where Tresume_pend_task denotes the execution time for resuming the preempted task

(merge and CR steps involved), and all other terms in (4-2) are the same as in Texe1.

Similar to Texe1, the total execution time for a PRM to start execution for the first

time in a busy and unlocked predefined PRR that is executing a lower priority execution

level PRM (denoted as Texe2) is:

Texe2 = Tchk_lprr_lock + Tchk_lprm_prr + Tlprr_lock + Tcs_preempted_task + Tprop_preempted_task +

 Tlaunch_pend_task + Tupdate_node + Tprop_act_task + Tlprr_unlock (4-3)

where Tchk_lprm_prr, Tcs_preempted_task, and Tprop_preempted_task denote the execution times for

checking the priority execution level of the PRM currently executing in the PRR,

preempting and executing CS for the preempted PRM, and broadcasting the status of

the preempted PRM to all nodes, respectively, and all other terms in (4-3) are the same

as in Texe1.

62

Similar to Texe2, the total execution time for a PRM to resume execution in a busy

and unlocked predefined PRR that is executing a lower priority execution level PRM

(denoted as Tres2) is:

Tres2 = Tchk_lprr_lock + Tchk_lprm_prr + Tlprr_lock + Tcs_preempted_task + Tprop_preempted_task +

 Tresume_pend_task + Tupdate_node + Tprop_act_task + Tlprr_unlock (4-4)

where all terms in (4-4) have previously been defined.

In Figure 4-1, if prmijq cannot start/resume execution in the predefined prrij

because either prrij is locked or executing a higher priority execution level PRM, DRRM

checks if prmijq is mapped to a local candidate PRR by checking if the rloc field in the

global table (Table 4-1) is a ‘1’ value. If prmijq is mapped to a local candidate PRR,

DDRM will try to execute lHTR (Figure 4-3). If prmijq is not mapped to a local candidate

PRR, DDRM will try to execute rHTR (Figure 4-5).

Figure 4-3 shows the DDRM flow to execute lHTR of prmijq (first time execution

or resumption) to a local candidate prrit, where the boxes with horizontal and vertical

lines in Figure 4-3 contain the HTR steps for starting execution of (or resuming) prmijq

as locally relocated prmitq. First, DDRM checks if the local candidate prrit is unlocked. If

prrit is unlocked, then DDRM checks if prrit is free. If prrit is free, prrit can execute prmijq

as prmitq. To start/resume execution of prmijq in the free and unlocked local prrit, DDRM

locks prrit, executes lHTR for prmijq in prrit (Figure 4-4), changes the availability of prrit to

‘0’ (busy), and unlocks prrit.

In Figure 4-3, if prrit is busy, DDRM checks the priority execution level of prmitu

executing in prrit. If the priority execution level of prmitu is lower than the priority

execution level of prmijq (litu < lijq), DDRM locks prrit, preempts prmitu, performs CS for

63

prmitu (Section 3.2), and broadcasts the status of the preempted task prmitu to all nodes.

Then, DDRM execute lHTR of prmijq in prrit (Figure 4-4), and finally DDRM unlocks prrit.

Figure 4-4 shows the details of Figure 4-3’s boxes with horizontal and vertical

lines for the execution of lHTR when prmijq executes for first time (or resumes) as prmitq

in the local candidate prrit. For first time execution of prmijq as prmitq, DDRM downloads

the initial bitstream of prmitq in to prrit. Alternatively, if prmijq resumes execution, a CS

bitstream for prmijq already exists, DDRM performs HTR by merging the initial partial

bitstream of prmitq with the CS bitstream of prmijq (Section 3.4) to generate a new

merged partial bitstream for prmitq, and then executes CR for prmitq (Section 3.5). After

prmijq starts/resumes execution as prmitq, DDRM updates the stat field in the global table

(Table 4-1), and the prmx_id, prm_id, and pri_id fields in the local table (Table 4-2) for

prmitq in node i. Finally, DDRM broadcasts the new status of prmitq (executing) to all

nodes.

Using the Tx from Figure 4-1, Figure 4-3, and Figure 4-4, the total execution time

for a locally relocated PRM to start execution for the first time in a free and unlocked

local candidate PRR (denoted as Texe3) is:

Texe3 = Tchk_lprr_lock + Tchk_lprm_prr + Tchk_lrprr_lock + Tlrprr_lock + Tlaunch_pend_rtask +

 Tupdate_node + Tprop_act_task + Tlrprr_busy + Tlrprr_unlock (4-5)

where Tchk_lrprr_lock denotes the execution time for checking if the local candidate PRR is

unlocked and available. Tlrprr_lock, Tlaunch_pend_rtask, Tlrprr_busy, and Tlrprr_unlock have similar

definitions as Tlprr_lock, Tlaunch_pend_task, Tlprr_busy, and Tlprr_unlock, respectively, but are

applied to the local candidate PRR where lHTR is executed.

64

Similar to Texe3, the total execution time for a locally relocated PRM to resume

execution in a free and unlocked local candidate PRR (denoted as Tres3) is:

Tres3 = Tchk_lprr_lock + Tchk_lprm_prr + Tchk_lrprr_lock + Tlrprr_lock + Tresume_pend_rtask +

 Tupdate_node + Tprop_act_task + Tlrprr_busy + Tlrprr_unlock (4-6)

where Tresume_pend_rtask has similar definition as Tresume_pend_task, but applied to the local

candidate PRR where lHTR is executed, and all other terms in (4-6) have previously

been defined.

Similar to Texe3, the total execution time for a locally relocated PRM to start

execution for the first time in a busy and unlocked local candidate PRR that is executing

a lower priority execution level PRM (denoted as Texe4) is:

Texe4 = Tchk_lprr_lock + Tchk_lprm_prr + Tchk_lrprr_lock + Tchk_lrprm_lrprr + Tlrprr_lock +

Tcs_preempted_task + Tprop_preempted_task + Tlaunch_pend_rtask + Tupdate_node +

 Tprop_act_task + Tlrprr_unlock (4-7)

where Tchk_lrprm_lrprr has similar definition as Tchk_lprm_prr, but applied to checking the

priority execution level of the PRM currently executing in the local candidate PRR, and

all other terms in (4-7) have previously been defined.

Similar to Texe4, the total execution time for a locally relocated PRM to resume

execution in a busy and unlocked local candidate PRR that is executing a lower priority

execution level PRM (denoted as Tres4) is:

Tres4 = Tchk_lprr_lock + Tchk_lprm_prr + Tchk_lrprr_lock + Tchk_lrprm_lrprr + Tlrprr_lock +

Tcs_preempted_task + Tprop_preempted_task + Tresume_pend_rtask + Tupdate_node +

 Tprop_act_task + Tlrprr_unlock (4-8)

where all terms in (4-8) have previously been defined.

65

In Figure 4-3, if the local candidate PRR is locked or executing a higher priority

execution level PRM, DDRM will attempt to perform a remote relocation (rHTR) of prmijq

to a remote candidate PRR in a remote node (Figure 4-5).

Figure 4-5 shows the DDRM flow to execute rHTR of prmijq (first time execution

or resumption) in the remote candidate prrmn of the remote node m, where the dark gray

box in Figure 4-5 contains the HTR steps for executing for the first time (or resuming)

prmijq as remotely relocated prmmnq.

In Figure 4-5, DDRM first checks the global table (Table 4-1) to determine if

prmijq is mapped to remote node m for remote execution. If prmijq can be remotely

executed in remote candidate PRR prrmn on node m, DDRM checks if prrmn is unlocked

and available. If prrmn is unlocked and available, DDRM checks if prmijq was previously

preempted (the CS bitstream for prmijq exists). If CS bitstream for prmijq exists, DDRM

transfers the CS bitstream for prmijq to the remote node m using the file transfer protocol

(FTP). After transferring the CS bitstream for prmijq to node m, DDRM executes rHTR

for prmijq in the remote prrmn of node m, and broadcasts the status of prmmnq to all

nodes.

If the remote candidate prrmn is unlocked but not available, DDRM checks if prrmn

is executing a lower priority execution level prmmnp. If the priority execution level of

prmmnp is lower than the priority execution level of prmijq (lmnp < lijq), DDRM locks prrmn

and preempts prmmnp to generate the CS bitstream for prmmnp. Then, DDRM broadcasts

the status of the preempted prmmnp to all nodes and checks if a CS bitstream for prmijq

exists. If there is a CS bitstream, DDRM transfers the CS bitstream for prmijq to node m,

66

executes rHTR for prmijq and broadcasts the status of the remotely relocated PRM to all

nodes.

The HTR steps for rHTR in Figure 4-5 (dark gray box) are shown in Figure 4-6.

For first time rHTR execution of prmijq, DDRM downloads the initial bitstream of prmmnq

to prrmn to start execution of prmmnq. Alternatively, for resumption of prmijq in remote

node m, there is a CS bitstream for prmijq, which was already transferred from node i to

node m via FTP. DDRM executes rHTR by merging the initial bitstream of prmmnq with

the CS bitstream for prmijq to produce a new merged partial bitstream for prmmnq

(Section 3.4). Finally, DDRM executes CR (Section 3.5) for prmmnq to start execution of

the relocated PRM.

After prmijq (now as prmmnq) starts/resumes execution in the remote candidate

prrmn of node m, DDRM updates the stat field in the global table (Table 4-1) and the

prmx_id, prm_id, and pri_id fields in the local table (Table 4-2) for prmmnq in node m,

changes the prrmn availability to ‘0’ (busy), and unlocks the prrmn.

Using the Tx from Figure 4-1, Figure 4-3, and Figure 4-5, the largest total

execution time for a remotely relocated PRM to start execution for the first time (or

resume execution) in a free and unlocked remote candidate PRR (denoted as Texeres1)

occurs when the scheduled task cannot preempt a currently executing higher priority

execution level PRM in the predefined and local candidate PRRs, and is expressed as:

Texeres1 = Tchk_lprr_lock + Tchk_lprm_prr + Tchk_lrprr_lock + Tchk_lrprm_lrprr + Tchk_rrprr_lock +

 Trrprr_lock + Tftp_csbitstream + Tremote_htr + Tprop_rhtr_status (4-9)

where Tchk_rrprr_lock and Trrprr_lock have similar definitions as Tchk_lrprr_lock and Tlrprr_lock,,

respectively, but applied to the remote candidate PRR where rHTR is executed.

67

Tftp_csbitstream, Tremote_htr, and Tprop_rhtr_status denote the execution times for transferring the

CS bitstream from the local node to the remote node, executing rHTR, and broadcasting

the status of the relocated task to all nodes, respectively. All other terms in (4-9) have

previously been defined.

Similar to Texeres1, the largest total execution time for a remotely relocated PRM to

start execution for the first time (or resume execution) in a busy and unlocked remote

candidate PRR executing a lower priority execution level task (denoted as Texeres2)

occurs when the scheduled task cannot preempt a currently executing higher priority

execution level PRM in the predefined and local candidate PRRs, and is expressed as:

Texeres2 = Tchk_lprr_lock + Tchk_lprm_prr + Tchk_lrprr_lock + Tchk_lrprm_lrprr + Tchk_rrprr_lock +

Tchk_rprm_rprr + Trrprr_lock + Tcs_preempted_rprm + Tprop_preempted_rtask + Tftp_csbitstream +

 Tremote_htr + Tprop_rhtr_status (4-10)

where Tchk_rprm_prr, Tcs_preempted_rprm, and Tprop_preempted_rtask denote the execution times for

checking if the remote candidate PRR is executing a lower priority execution level PRM,

preempting and executing CS on that preempted PRM, and broadcasting the status of

preempted PRM to all nodes, respectively, and all other terms in (4-10) have previously

been defined.

Tremote_htr in (4-9) and (4-10) for first time execution of the remotely relocated

PRM in remote node is expressed as:

 Tremote_htr = Tlaunch_pend_rrtask + Tupdate_rnode + Trrprr_busy + Trrprr_unlock (4-11)

while Tremote_htr in (4-9) and (4-10) for resumption of the remotely relocated PRM in

remote node is expressed as:

 Tremote_htr = Tresume_pend_rrtask + Tupdate_rnode + Trrprr_busy + Trrprr_unlock (4-12)

68

From (4-11) and (4-12), Tlaunch_pend_rrtask, Tresume_pend_rrtask, Tupdate_rnode, Trrprr_busy,

and Trrprr_unlcock denote the execution times to download the initial bitstream of the

relocated PRM to the remote candidate PRR, resume the relocated PRM in the remote

candidate PRR (rHTR and CR are executed), update the status of the remotely

relocated PRM in the remote candidate PRR, change the availability of remote

candidate PRR to busy, and to unlock the remote candidate PRR, respectively.

Since all Tx included in Figure 4-1 to Figure 4-5 are measured from the point in

time when a client in the local node initiates a request for starting/resuming execution of

a PRM, the Tx in (4-11) and (4-12) cannot be individually measured because all steps in

the dark gray box (Figure 4-6) are remotely executed in the remote node. Thus, we can

only measure Tremote_htr as a whole in (4-11) and (4-12) and use Tremote_htr in (4-9) and

(4-10), respectively.

4.4 Summary

In this chapter, we have presented on-chip DDRM software, which correspond to

the third phase of this research. DDRM extends our HTR software to function across

multiple networked-interconnected PR FPGAs, in order to enable context relocation of

hardware tasks (i.e., PRMs) across multiple FPGAs. Each FPGA (i.e., node) in the

network (local wired, wireless network, etc.) is an autonomous system that executes

DDRM on a soft-core processor in the FPGA’s static region.

Since our DDRM leverages on-chip HTR, DDRM is able to preserve the context

of preempted PRMs upon PRMs resumption in different nodes in the DDRM network,

maximizing PRMs throughputs and maximizing the shared resources (i.e., PRRs) usage

per node by providing more candidate PRRs for PRMs to resume operations.

69

Due to DDRM’s distributed nature, inconsistencies in the DDRM network, due to

changes in the nodes (e.g., preemption of PRMs, relocation of PRMs, etc.), must be

avoided, and these changes are handled in DDRM by executing the node consistency,

thus each node in the network has the same information about all of the other nodes.

Node consistency in DDRM is ensured by broadcasting data across the

network’s nodes every time there is a change in a node, due to a change in the status of

the PRMs (e.g., executing, preempted, etc.). Each node in the DDRM network uses two

tables (global and local) for node consistency, where the global table, which is common

across all nodes, specifies all the local and remote PRM-to-PRR mappings on all nodes

in the network; and the local table, which is specific to each node, and specifies the

node’s current PRM-to-PRR mapping. While the local tables are dynamically updated in

each node without broadcasting the changes, changes in the global tables are

broadcasted to all nodes.

In order to perform the node consistency and context relocation of PRMs across

nodes (using the global and local tables in all nodes), DDRM uses the client/server

model of RPC, which enables programs in a node to remotely execute code in another

node, and in this chapter we have given a detailed explanation of the DDRM flow using

RPC to accomplish node consistency and PRMs’ context relocation across nodes.

Also, in this chapter we have shown the integration of our on-chip CSR and HTR

software to our DDRM, and the DDRM operation, giving a detailed description of the

execution times in DDRM for several cases of starting/resuming execution of PRMs,

considering local relocation (lHTR) of PRMs’ contexts in the same node, or remote

relocation (rHTR) of PRMs’ contexts in different nodes.

70

Next, Chapter 5 continues on by presenting and analyzing the experimental

results for our on-chip CSR, HTR, and DDRM software for varying PRR sizes and

organizations. We evaluate the execution times for the major steps in CSR and HTR,

and the execution times in DDRM for several cases of starting or resuming execution of

PRMs under different conditions on each node in the DDRM network, which may

involve lHTR or rHTR.

Table 4-1. Global table for local and remote PRM relocation for node consistency in
DDRM with two nodes

item fpga prr prmx prm pri stat rloc rrem rlprr rlprmx rlprm rrnode rrprr rrprmx rrprm

1 0 0 0 0 1 3 0 1 X X X 1 1 0 100
2 0 0 1 4 2 0 1 0 1 1 14 X X X X
3 0 0 2 9 3 4 0 1 X X X 1 1 2 109
4 0 1 0 1 2 0 0 1 X X X 1 0 0 101
5 0 1 1 14 2 4 1 0 0 1 4 X X X X
6 0 1 2 105 1 4 0 1 X X X 1 0 2 5
7 1 0 0 101 2 4 0 1 X X X 0 1 0 1
8 1 0 1 16 2 4 1 0 1 1 6 X X X X
9 1 0 2 5 1 0 0 1 X X X 0 1 2 105

10 1 1 0 100 1 4 0 1 X X X 0 0 0 0
11 1 1 1 6 2 1 1 0 0 1 16 X X X X
12 1 1 2 109 3 0 0 1 X X X 0 0 2 9

Table 4-2. Local table for node consistency in DDRM showing the currently assigned

PRMs in node "1" from Table 4-1

node_id prr_id prmx_id avail_id lock_id prm_id pri_id

1 0 2 0 0 5 1
1 1 2 0 0 109 3

71

Figure 4-1. Portion of the distributed dynamic resource management (DDRM) flow

showing the first time execution (or resumption) of a PRM prmijq in a
predefined PRR prrij. Figure 4-2 depicts the details of the boxes with vertical
lines.

72

Figure 4-2. Details of the DDRM flow for the steps performed in the boxes with vertical

lines in Figure 4-1 for the first time execution (or resumption) of prmijq in
predefined prrij.

Figure 4-3. DDRM flow continued, showing the first time execution (or resumption) of a

locally relocated prmijq in a local candidate prrit as prmitq. Figure 4-4 shows the
details for the boxes with horizontal and vertical lines.

73

Figure 4-4. Detailed steps of the DDRM flow showing the steps performed in the boxes

with horizontal and vertical lines from Figure 4-3 for the first time execution (or
resumption) of a locally relocated prmijq in a local candidate prrit as prmitq.

Figure 4-5. DDRM flow continued, showing the execution of the remote relocation of

prmijq to a remote candidate PRR n in a node m (prrmn) as prmmnq.

74

Figure 4-6. DRRM flow continued, showing the steps performed in the dark gray box in

Figure 4-5 for execution of the remote relocation of prmijq to a remote
candidate PRR n in node m (prrmn) as prmmnq.

75

CHAPTER 5
EXPERIMENTAL RESULTS

In this chapter we present the results of the implementation of our on-chip

software-based CSR, HTR, and DDRM for 2-D heterogeneous PRRs on PR FPGAs.

First, Section 5.1 presents our experimental setup used to measure the CSR, HTR, and

DDRM execution times. Next, Section 5.2 and Section 5.3 evaluate the execution times

for the major steps involved in CSR and HTR, respectively, for varying PRR sizes and

organizations. Finally, Section 5.4 evaluates the DDRM execution times for several

cases of starting/resuming PRM execution for locally (lHTR) and remotely (rHTR)

relocated PRMs to the same or different FPGA, respectively, for varying PRR sizes and

organizations. Even though our CSR/HTR/DDRM execution times evaluate trends for a

particular FPGA device, these trends are not device specific and are indicative of

general trends that can be expected on any PR FPGA that uses the ICAP and a soft-

core processor as a reconfiguration controller.

5.1 Experimental setup

For our experiments, we used the Xilinx Virtex-5 XUPV5-LX110T board [56] and

the Xilinx ISE 12.4, XPS 12.4 and PlanAhead 12.4 [47] tools. We partitioned the fabric

into two heterogeneous PRRs and the static region executed a 100 MHz MicroBlaze

[46] soft-core processor running a Linux-like OS 2.6.37 [55] based on BusyBox [6]. The

executable binaries for the MicroBlaze were generated using GNU tools [54]. A XPS

HWICAP interfaced the MicroBlaze and the ICAP, and SDRAM provided external

storage for the bitstreams, binaries, and the CSR/HTR/DDRM files. The XPS timer was

used to measure the Tx execution times for CSR, HTR, and DDRM, and we averaged

the execution times over five experimental executions. Two XPS GPIOs provided

76

parallel interfaces between the MicroBlaze and the two PRRs (one XPS GPIO per

PRR).

We note that the MicroBlaze’s configuration [46] (e.g., instruction and data cache

parameters), the XPS HWICAP’s configuration [45], the Linux driver limitations for the

HWICAP (maximum of 4 KB per readback), and the memory controller used to access

files in the SDRAM introduce overheads that affect the results, however, these

components’ configurations do not impact the trends and analysis of our presented

results, and in our discussions we note the impacts of different component

configurations and hardware overheads. The MicroBlaze’s instruction and data caches

were direct-mapped, 16 KB caches, with eight and four 32-bit words per cache line,

respectively. The data cache used a write-through policy, which affects multiple writes

to contiguous data memory elements in the SDRAM. The XPS HWICAP was configured

for 32-bit word data transfers with two first-in first-out (FIFO) registers, one for the read

operations and the other for the write operations, each with a depth of 256 words) and

operated at 100 MHz. This configuration limits CSR/HTR’s performance during

reconfiguration, especially for large data transfers, and when reading/writing, especially

to random addresses, to large files in the SDRAM.

There are several prior works that we can compare to for ascertaining our

CSR/HTR execution time improvements. Liu et al. [32] studied and enhanced the XPS

HWICAP by adding DMA and BRAM to reduce PR times when the bitstreams were read

from SDRAM, and reported a maximum reconfiguration throughput of 371.4 MB/s.

Papadimitriou et al. [37] evaluated the effects of the XPS HWICAP and DDR SDRAM

on PR and developed a cost model for PR reconfiguration time in terms of bitstream

77

size, and HWICAP and DDR bandwidths, reporting a maximum reconfiguration

throughput of 924 KB/s. Vipin and Fahmy [44] proposed a custom ICAP controller for

the Virtex-6 using two FIFOs and a DMA controller, achieving a 400 MB/s

reconfiguration throughput, however no readback capability was considered. Duhem et

al. [12] introduced FaRM (fast reconfiguration manager) for the Virtex-5, which used a

DMA controller and two FIFOs for read and write access. FaRM achieved a

reconfiguration throughput of 800 MB/s by overclocking the ICAP to 200 MHz and pre-

loading the partial bitstream in a FIFO, while the readback reached 128 MB/s. Bonamy

et al. [5] proposed UPaRC (ultra-fast power-aware reconfiguration controller) for the

Virtex-5, which used a 256 KB BRAM for storing partial bitstreams and a custom

reconfiguration controller with a DMA. UPaRC achieved a reconfiguration throughput of

1433 MB/s by overclocking the ICAP to 362.5 MHz using the dynamic reconfiguration

port (DRP) feature in the Virtex-5, however, no readback capability was considered.

Hansen et al. [15] presented an enhanced ICAP hard macro (ICAP_64) for the Virtex-5

using a 64 KB FIFO for storing partial bitstreams, a digital clock manager (DCM), and a

phase locked loop (PLL). ICAP_64 achieved a reconfiguration throughput of 2200 MB/s

by overclocking the ICAP to 550 MHz, however the readback was performed with a 100

MHz ICAP clock.

Even though we did not leverage some of the methods used in prior work (e.g.,

using BRAMs (which are limited in number), using a custom DMA controller,

overclocking the ICAP, etc.), these methods could be incorporated into our CSR/HTR to

improve CSR/HTR’s performance with some tradeoff with respect to hardware

overhead. We did not include these methods since our primary goal was to implement a

78

CSR/HTR solution that was portable across different Xilinx PR FPGA architectures

without including custom hardware. This custom hardware could hinder portability, even

across devices of the same family but with different speed grades, or could impose

custom, non-portable placement and routing [15][44].

We verified CSR/HTR’s correct operation using two interfaces per PRR, one

connected to the MicroBlaze and one within the PRM, for transferring the PRM’s

LUTRAMs, BRAMs, and flip-flops’ values to the MicroBlaze. For testing purposes,

PRM1, PRM2, and PRM3 implemented a 32-bit up counter, down counter, and

pipelined adder/accumulator, respectively. The counters and accumulator provided

memory addresses to one LUTRAM (RAM32M) and one BRAM (RAMB36) [49]. All

PRMs included a frequency divider using a 32-bit up counter and a finite state machine

to transfer the LUTRAMs’, BRAMs’, and registers’ values to the MicroBlaze. We tested

the CSR operations using the flow in Figure 3-1, verifying that the values of each

register, LUTRAM, and BRAM in PRM2 were successfully saved after the CS was

executed, and later restored with the execution of the merge process and CR, in the

same PRR. We also tested the HTR operations using the flow in Figure 3-1, verifying

that the first value of each register, LUTRAM, and BRAM in PRM2 after CR on a

different PRR (i.e., the task was relocated) corresponded to the last value of each

register, LUTRAM, and BRAM in PRM2 prior to CS.

In order to generate thorough HTR results for many different PRR sizes in a

timely manner (manual creation and testing for our experiments would have required an

exorbitant amount of time) we used the following process, which did not affect the

validity of our results. We created a project with two small heterogeneous PRRs

79

containing CLB flip-flops, one LUTRAM (RAM32M), and one BRAM (RAMB36), and

selected two empty areas (areas with no CLB/DSP/IOB/BRAM columns and routing

resources already in use) on the device fabric. In these empty areas, we created

pseudo PRRs, pseudo initial partial bitstreams, and pseudo logic location files (*.ll) for

pseudo PRMs. For HTR we copied and pasted the lines in the *.ll file that corresponded

to the PRRs into several new *.ll files (one file per PRM-PRR pair) and we ordered the

lines in these new files by net name for the CLB flip-flops, followed by the LUTRAM and

BRAM bits ordered by frame by default (Section 3.4). For CSR, there is no need to

perform any re-ordering in the generated *.ll files.

For thorough results with the pseudo PRRs, the entries in the pseudo logic

location files were randomly ordered for the CLB flip-flops, simulating the effect of

having the lines in the logic location files ordered by net name, followed by one pseudo

LUTRAM (RAM32M) for each pseudo CLB column that contained a SLICEM [51], and

followed by one pseudo BRAM (RAMB36). The pseudo PRRs sizes contained one row,

one BRAM column, and multiple CLB columns ranging from one to twelve, which is the

largest number of contiguous CLB columns on the Virtex-5 LX110T. The pseudo initial

partial bitstreams initialized the pseudo PRR’s flip-flops, LUTRAMs, and BRAMs to 0.

Table 5-1 shows the pseudo partial bitstream sizes (using our cost model for

partial bitstream size, Section 2.2.3) and pseudo CS bitstream sizes (Section 3.2) used

in the CSR, HTR, and DDRM experiments, for single-row pseudo PRRs containing a

varying number of pseudo CLB columns, where all pseudo PRRs include one pseudo

BRAM column.

80

Our HTR experiments evaluated context relocation from a small PRR to a large

PRR (small-to-large PRR HTR) and from a large PRR to a small PRR (large-to-small

PRR HTR). We denoted the pseudo PRR with the PRM’s context as the source PRR

and the pseudo PRR with the relocated context as the destination PRR. Since the

number of experimental combinations given our pseudo PRR sizes is 144, we subset

the results to show the 12 combinations where the small pseudo PRR has half the

number of columns as the large pseudo PRR, which is sufficient to show the execution

times’ trends. In the large pseudo PRRs, we evenly distributed the PRM’s flip-flops

across the CLB columns, which simulated the effects of the Xilinx tool’s flip-flops

distribution done during placement and provided realistic execution times. For example,

if the small pseudo PRR has two CLB columns and uses 320 flip-flops, the large pseudo

PRR has four columns and the 320 flip-flops are distributed across all four columns (80

flip-flops per column).

We verified DDRM's correct operation using four Xilinx XUPV5-LX110T boards

interconnected in a FastEthernet network, where each FPGA in the network had the

same setup (static region and PRRs, and PRMs/PRRs mapping) and Linux-like OS as

for the HTR setup. We created the global and local tables (Table 4-1 and Table 4-2,

respectively) in each FPGA in the network for DDRM node consistency, defined priority

execution levels for each PRM for lHTR (same FPGA) or rHTR (between FPGAs) CR,

and verified the DDRM flow (Figure 4-1 to Figure 4-6).

Our DDRM experiments evaluated PRMs starting execution for the first time and

resuming a preempted PRM under several conditions (e.g., starting/resuming the PRM

execution in a free predefined PRR, starting/resuming the PRM execution in a busy

81

predefined PRR currently executing a lower/higher priority execution level PRM,

starting/resuming the PRM execution in a remote node, etc.) in order to verify lHTR,

rHTR, broadcasting of the tasks’ statuses to all nodes for node consistency, etc. We

followed the same procedure as for our HTR experiments, using pseudo PRRs, pseudo

initial partial bitstreams, and pseudo logic location files (*.ll) for pseudo PRMs, however,

we restrict lHTR and rHTR experiments for small-to-large PRR lHTR and rHTR in order

to show the worst case scenario impact of lHTR and rHTR in DDRM execution times.

All DDRM execution times (Section 5.4) consider one predefined PRR, one local

candidate PRR, and one remote candidate PRR for local or remote context relocation of

PRMs (lHTR or rHTR, respectively), as defined in the global table (Table 4-1) for each

node in the network. Adding more local or remote candidate PRRs for context relocation

enhances the flexibility for context relocation, and maximizes PRR usage, however

adding more local or remote PRR candidates will negatively impact DDRM execution

times. Therefore, at design time, a system designer needs to make appropriate

tradeoffs between PRR granularity, lHTR or rHTR or no HTR for each PRM, and

HTR/DDRM execution times when partitioning the application into PRMs based on the

application’s requirements.

5.2 CSR Experimental Results

Table 5-2 through Table 5-5 show the execution times in milliseconds for the

significant CSR steps for heterogeneous PRRs that contain one BRAM column and

multiple CLB columns. Figure 5-1 through Figure 5-4 plot the results from Table 5-2

through Table 5-5.

Table 5-2 and Figure 5-1 summarize Treconfig_prr, which depends on the number of

PRR frames (36 configuration frames per CLB column, and 30 configuration frames and

82

128 data frames per BRAM column) in the partial bitstream. Treconfig_prr shows a linear

behavior up to 1,600 PRM flip-flops. However, for PRRs using more than 1,600 PRM

flip-flops, high data cache miss rates, and SDRAM overheads when accessing large

bitstreams introduce a small non-linear increase in the growth rate of Treconfig_prr.

The execution time for Tprotect_fpga (Figure 3-1) is constant and depends on the

number of rows and columns in the device, which is 67.72 ms for the Virtex-5 LX110T.

Table 5-3 and Figure 5-2 summarize the execution times for Tcs. Tunprotect_prr_cs

and Tprotect_prr_cs depend on the number of rows and columns of the PRR to

unprotect/protect, respectively, and show a linear increase in the growth rate. Tcs_bitstream

depends on the number of PRM frames where flip-flop, LUTRAM, and BRAM bits are

part of the saved context, and shows a linear increase in the growth rate. Since every

other CLB column in the PRRs contains LUTRAMs, the behavior of Tcs_prr affects Tcs,

and shows a nearly linear increase.

Table 5-4 and Figure 5-3 summarize the execution times for Tmerge. Tmerge

depends on the number of PRM frames where flip-flop, LUTRAM, and BRAM bits are

part of the saved context, and shows a linear increase.

Table 5-5 and Figure 5-4 summarize the execution times for Tcr. Tunprotect_prr_cr and

Tprotect_prr_cr depend on the number of rows and columns of the PRR to unprotect/protect,

respectively, and show a linear increase in the growth rate. Tstartup is the execution time

to re-initialize the PRM flip-flops, LUTRAMs and BRAMs, and is independent of the

PRR size. Tupdate_prr depends on the number of PRR frames in the merged bitstream

affecting the behavior of Tcr, and shows a linear increase.

83

With the experimental setup explained in Section 5.1, and from the experimental

results given in Table 5-2 through Table 5-5, we can derive the execution times in

milliseconds for Treconfig_prr, Tcs, Tmerge, and Tcr for PRRs with H rows, one BRAM and

WCLB CLB columns for Virtex-5 devices, using a linear polynomial curve fitting [33],

under the assumption that the PRR sizes do not affect the PR system’s maximum

operating frequency, which in our case is 100 MHz. This assumption does not

necessarily hold true for large PRRs, because large PRRs impose longer routing delays

and cause a reduction in the system’s maximum operating frequency, and as a

consequence cause an increase in the CSR execution times, but this formulation keeps

the CSR execution times’ trends and gives a lower bound of the execution times a

system designer expects when implementing a PR system for hardware multitasking

using a soft-core processor.

Then, assuming that the PRR sizes do not affect the PR system’s maximum

operating frequency, Treconfig_prr, Tcs, Tmerge, and Tcr (in milliseconds) for PRRs with H

rows, one BRAM and WCLB CLB columns, are expressed as follows:

 Treconfig_prr = H x {0.75 x WCLB + 2.71} (5-1)

 Tcs = H x {1.65 x WCLB + 16.76} + 2.28 (5-2)

 Tmerge = H x {1.44 x WCLB + 21.95} (5-3)

 Tcr = H x {WCLB + 4.71} + 0.33 (5-4)

where WCLB = 1 means one PRM’s CLB column that uses a total of one to 160 CLB flip-

flops, WCLB = 2 means two PRM’s CLB columns that use a total of 161 to 320 CLB flip-

flops, etc.

84

In the case of the Virtex-5 LX110T used in our experiments, and under the

assumption that large PRRs do not affect the system’s maximum operating frequency,

(5-1) through (5-4) would be valid for PRRs with one to 8 rows, and one to 22 CLB

columns, which is the maximum number of CLB columns a PRR may have with only

one BRAM column.

5.3 HTR Experimental Results

Table 5-6 and Table 5-7 show the execution times in milliseconds for the

significant HTR steps for heterogeneous PRRs that contain one BRAM column and

multiple CLB columns. Figure 5-5 through Figure 5-7 plot the results from Table 5-6

through Table 5-7, where each point is identified by a box with the number of rows,

columns, and PRR or PRM frames, which depends on the graph’s reported execution

time.

Table 5-6 and Table 5-7 summarize the execution times for Tcs, Trelocate and Tcr

(for small-to-large PRR HTR and for large-to-small PRR HTR, respectively). Figure 5-5

depicts the Tcs results from Table 5-6 and Table 5-7. For brevity, we omit the detailed

breakdown of Tcs, which depends on the number of PRM frames (where PRM flip-flops,

LUTRAMs, and BRAMs are used) in the source pseudo PRR. Capturing and saving the

context in a small PRR shows a nearly linear behavior in Tcs.

Figure 5-6 depicts the Trelocate results from Table 5-6 and Table 5-7. Trelocate

depends on the number of PRM flip-flop, LUTRAM, and BRAM bits used in the PRM’s

context to be relocated. Accesses to the CS and merged bitstreams are random for CLB

flip-flops since the logic location files for the PRM’s CLBs’ flip-flops in the source and

destination PRRs are ordered by net name and not in ascending order by frame.

Alternatively, accesses to LUTRAM and BRAM bits are sequential (by frame) in the CS

85

and the merged bitstreams. Random accesses to the CS and merged bitstreams for

CLB flip-flops produces high data cache miss rates and overheads in SDRAM

accesses, which affect Trelocate’s non-linear behavior.

Figure 5-7 depicts the Tcr results from Table 5-6 and Table 5-7. For brevity, we

omit the detailed breakdown of Tcr, which depends on the number of PRR frames in the

destination PRR. Since the destination PRR is unprotected and then re-protected

(before and after CR, respectively), the execution times for Tcr are larger than Treconfig_prr

for the same number of PRM flip-flops and PRR frames in Figure 5-1.

Based on the results depicted in Figure 5-5 through Figure 5-7, it is more efficient

to relocate a task from a large to a small PRR since Trelocate and Tcr are faster than

relocating from a small to a large PRR. Even though Tcs is longer for relocating a task

from a large to a small PRR as compared to relocating from a small to a large PRR,

Trelocate is much longer than Tcs and Tcr.

We note that the execution times reported here for Trelocate are improved as

compared to our prior work [34] due to an additional pre-processing step that extracts

information from the *.ll files. This pre-processing generates smaller binary files to

operate on instead of directly using the *.ll files, which may be excessively large when

using BRAMs. Each BRAM (RAMB36) requires 36K entries in the *.ll file and accessing

a large *.ll file from SDRAM severely impacts Trelocate.

The resources required by the static region, including the MicroBlaze, XPS

HWICAP and GPIOs, and SDRAM controller are 12,898, 44, and 4 flip-flops, BRAMs,

and DSPs, respectively, which represent 19%, 30%, and 6%, respectively, of the test

86

device. We note that this area overhead is reduced for devices with a dedicated on-chip

hardcore processor.

Increasing the number of rows in the PRRs and reducing the number of columns

while maintaining the same number of PRM flip-flops would reveal similar results as

shown in Table 5-2, and Table 5-6 through Table 5-7, and in Figure 5-1, and Figure 5-5

through Figure 5-7. However, for PRRs using more than 1,600 PRM flip-flops, high data

cache miss rates, SDRAM overheads when accessing the large bitstreams, and the

configuration of the XPS HWICAP introduces a non-linear increase in the growth rate of

the HTR execution times. All HTR execution times may be improved by adding a

custom DMA and enlarging the XPS HWICAP’s internal storage, saving the CS and

initial partial bitstreams in BRAMs, overclocking the ICAP, or increasing/modifying the

MicroBlaze’s data cache size/configuration. However, BRAMs are limited in number and

size, and these options incur hardware overhead that may affect the performance of the

system, and some of these modifications would not be portable across other systems

[15][44]. Therefore, at design time, a system designer can consider these factors and

make appropriate tradeoffs between PRR granularity, hardware overhead, and HTR

execution times when partitioning the application into tasks based on the application’s

requirements.

Similarly to the CSR experimental results (Section 5.2), and from the

experimental results in HTR given in Table 5-6 and Table 5-7, we can derive the

execution times in milliseconds for Tcs, Trelocate and Tcr for small-to-large and large-to-

small PRR HTR cases and for PRRs with H rows, one BRAM and WCLB CLB columns

for Virtex-5 devices, using a linear, quadratic, or exponential polynomial curve fitting [33]

87

(depending on the HTR execution times’ trends), and under the assumption that the

PRR sizes do not affect the PR system’s maximum operating frequency. This

assumption does not necessarily hold true for large PRRs, and especially for Trelocate,

since the access to CLB flip-flops in the CS and initial partial bitstreams (for the source

and destination PRRs, respectively) is random, and large PRRs would negatively

impact the access time to those flip-flops when HTR generates the merged bitstream for

the destination PRR. However, the system designer would get a lower bound estimation

of the HTR execution times for a PR system given the experimental setup in Section

5.1.

Then, assuming that the PRR sizes do not affect the PR system’s maximum

operating frequency, Tcs_small-to-large, Trelocate_small-to-large, and Tcr_small-to-large (in milliseconds)

denote the HTR execution times for Tcs, Trelocate, and Tcr, respectively, for small-to-large

PRR HTR, and are expressed as follows:

 Tcs_small-to-large = H x {1.6 x WCLB + 17.71} + 3.09 (5-5)

 Trelocate_small-to-large = H x {6.27 x (WCLB)2 + 6.32 x WCLB + 35.68} (5-6)

 Tcr_small-to-large = H x {1.55 x WCLB + 7} + 0.83 (5-7)

Since our HTR experiments considered that in the small-to-large PRR HTR the

small PRR (i.e., the source PRR) has half the number of CLB columns as the large PRR

(i.e., the destination PRR), WCLB will only change from one to 11 CLB columns (for the

source PRR) in (5-5) to (5-7). Also, as explained in Section 5.1, the CLB flip-flops in the

large PRR are evenly distributed across all the PRR’s CLB columns.

Also, assuming that the PRR sizes do not affect the PR system’s maximum

operating frequency, Tcs_large-to-small, Trelocate_large-to-small, and Tcr_large-to-small (in milliseconds)

88

denote the HTR execution times for Tcs, Trelocate, and Tcr, respectively, for large-to-small

PRR HTR, and are expressed as follows:

 Tcs_large-to-small = H x {2.21 x WCLB + 18.47} + 3.09 (5-8)

 Trelocate_large-to-small = 35.8 x e (0.3 x W
CLB

) (5-9)

 Tcr_large-to-small = H x {0.84 x WCLB + 6.34} + 0.83 (5-10)

Since our HTR experiments considered that in the large-to-small PRR HTR the

large PRR (i.e., the source PRR) has double the number of CLB columns as the small

PRR (i.e., the destination PRR), WCLB will change from one to 11 CLB columns (for the

destination PRR) in (5-8) to (5-10). Also, as in small-to-large PRR HTR, the CLB flip-

flops in the large PRR are evenly distributed across all the PRR’s CLB columns.

5.4 DDRM Experimental Results

Table 5-8 through Table 5-17 show execution times for Texe1, Tres1, Texe2, Tres3,

Texe4, and Texeres2 (Section 4.3) in milliseconds for the significant DDRM steps for 2-D

heterogeneous PRRs that contain one BRAM column and multiple CLB columns. Figure

5-8 through Figure 5-13 plot the results from Table 5-8 through Table 5-17, respectively.

For the execution times that involve lHTR (Tres3 and Texe4) and rHTR (Texeres2), the

destination PRRs have double the number of CLB columns as compared to the source

PRRs, which reveals the worst case scenario impact of lHTR and rHTR on DDRM

execution times, having similar trend results as the execution times produced for small-

to-large PRR HTR experiments (Section 5.3).

All DDRM execution times are measured from the point in time when a client in

the local node initiates a request for starting/resuming execution of a PRM. We note that

the DDRM execution times are affected when remote nodes are involved (e.g.,

broadcasting the status of PRMs, transferring the CS bitstream to a remote node,

89

checking PRR availability on remote nodes, executing rHTR, etc.) due to delays in

accessing the remote nodes. These delays depend on the physical medium and

maximum transfer rate of the network used to interconnect the nodes for DDRM. For

our initial version of DDRM, these delays are related to accessing remote nodes in a

FastEthernet network.

Table 5-8 and Figure 5-8 summarize the execution times for Texe1 (starting

execution of a PRM for the first time in a predefined local available PRR). Texe1 shows a

linear behavior that depends on Tlaunch_pend_task, which depends on Treconfig_prr. All other

execution times in Table 5-8 are nearly constant. We note that the execution time for

broadcasting the status of the executing PRM to all four nodes (Tprop_act_task) in the

FastEthernet network contributes an average of 44 ms to Texe1. We note that 60% of

Tprop_act_task represents overhead, which is dictated by the delays in accessing the

remote nodes using a FastEthernet network.

Table 5-9 and Figure 5-9 summarize the execution times for Tres1 (PRM

resumption in a predefined local available PRR). Tres1 depends on the behavior of

Tresume_pend_task, which depends on Tmerge and Tcr. All other execution times in Table 5-9

are nearly constant. Tmerge depends on the number of BRAM, LUTRAM, and flip-flop bits

contained in the CS bitstream and Tcr depends on the size of the merged bitstream.

Since every other CLB column in the PRRs contains LUTRAMs, the behavior of Tmerge

affects Tres1, and shows a nearly linear increase. Similarly to Texe1, Tprop_act_task

contributes to Tres1 with an average of 44 ms.

Table 5-10, Table 5-11, and Figure 5-10 summarize the execution times for Texe2

(starting execution of a PRM for the first time in a predefined local busy PRR that is

90

executing a lower priority execution level PRM). Texe2 depends on the behavior of

Tcs_preempted_task and Tlaunch_pend_task, and all other execution times in Table 5-10 and Table

5-11 are nearly constant. Tcs_preempted_task depends on the number of frames that contain

LUTRAMs, BRAMs and flip-flops and are part of the PRM’s context, which in turn

affects Tcs. Since every other CLB column in the PRRs contains LUTRAMs,

Tcs_preempted_task shows a nearly linear behavior. Similarly to Texe1, Tlaunch_pend_task depends

on the behavior of Treconfig_prr. The combination of Tcs_preempted_task and Tlaunch_pend_task

affects Texe2, and shows a nearly linear behavior. Broadcasting the status of the

preempted PRM (Tprop_preempted_task) and the status of the resumed for execution PRM

(Tprop_act_task) are both on average 44 ms.

Table 5-12, Table 5-13, and Figure 5-11 summarize the execution times for Tres3

(PRM resumption using lHTR in a free and unlocked local candidate PRR). Tres3

depends on the behavior of Tresume_pend_rtask, which depends on Trelocate and Tcr. All other

execution times in Table 5-12 and Table 5-13 are nearly constant. Since we are

executing lHTR and the destination PRR has twice as many CLB columns as compared

to the source PRR, Tres3 shows similar non-linear behavior as the small-to-large PRR

HTR (Figure 5-6).

Table 5-14, Table 5-15, and Figure 5-12 summarize the execution times for Texe4

(starting execution of a PRM for the first time in busy local candidate PRR that is

executing a lower priority execution level PRM). Texe4 depends on the behavior of

Tcs_preempted_task and Tlaunch_pend_rtask. All other execution times in Table 5-14 and Table 5-

15 are nearly constant. The combination of Tcs_preempted_task and Tlaunch_pend_rtask affects

Texe4, and shows a nearly linear behavior, similar to Texe2.

91

Table 5-16, Table 5-17, and Figure 5-13 summarize the execution times for

Texeres2 (the largest execution time for PRM resumption using rHTR in a remote

candidate PRR that is executing a lower priority execution level PRM). Texeres2 depends

on the behavior of Tcs_preempted_rprm and Tremote_htr. All other execution times in Table 5-16

and Table 5-17 are nearly constant. Tcs_preempted_rprm depends on the number of frames

that contain LUTRAMs, BRAMs, and flip-flops and are part of the remote PRM’s

context, and shows a nearly linear behavior. Since we are executing rHTR and the

destination PRR (in the remote node) has twice as many CLB columns as compared to

the source PRR (in the local node), Tremote_htr shows a similar non-linear behavior as the

small-to-large PRR HTR (Section 5.3, Figure 5-6), which affects Texeres2 and shows a

non-linear behavior.

From Table 5-17 and Figure 5-13 we note that Tremote_htr updates the status

(executing) of the remotely relocated PRM in the remote node (Tupdate_rnode in Figure 4-

6), and the broadcasting of this status to the rest of nodes in the FastEthernet network

is Tprop_rhtr_status with an average of 27.4 ms, where 52% of this time corresponds to

overhead due to accessing to the rest of nodes.

Also, from Table 5-17 we note that the execution time to transfer the CS

bitstream from local node to remote node (Tftp_csbitstream) is 412 ms in average, which is

independent of the CS bitstream size. This result cannot be taken as a general rule, and

may be due to the small range variation in the CS bitstream size (from 22.0 KB to 28.9

KB, Table 5-1), the physical medium and maximum transfer rate in the FastEthernet

network used for our initial version of DDRM. We note that 99% of Tftp_cbitstream

represents overheads, including accessing the CS bitstream in external SDRAM in the

92

local node, establishing FTP connection to the remote node, transferring the CS

bitstream using a FastEthernet network, and saving the transferred CS bitstream in

external SDRAM in the remote node.

Similarly to the HTR experimental results (Section 5.3), and from the DDRM

experimental results given in Table 5-8 through Table 5-17, we can derive the execution

times in milliseconds for Texe1, Tres1, Texe2, Tres3, Texe4, and Texeres2 for PRRs with H rows,

one BRAM and WCLB CLB columns for identical Virtex-5 FPGA devices in the DDRM

network, using a linear, or quadratic polynomial curve fitting [33] (depending on the

DDRM execution times’ trends), under the assumption that the PRR sizes do not affect

the node’s maximum operating frequency. As in Section 5.2 and Section 5.3, this

assumption does not necessarily hold true for large PRRs, and especially for Tres3 and

Texeres2, where small-to-large PRR lHTR and rHTR are involved, respectively, due to

random accesses to CLB flip-flops in the CS and initial partial bitstreams (in the source

and destination PRRs, respectively) in order to generate the merged bitstream in the

destination PRR. However, the system designer would get a lower bound estimation of

the DDRM execution times given the experimental setup in Section 5.1.

With this assumption, Texe1, Tres1, Texe2, Tres3, Texe4, and Texeres2 (in milliseconds)

for PRRs with H rows, one BRAM and WCLB CLB columns, are expressed as follows:

 Texe1 = H x {0.82 x WCLB + 6.95} + 73.56 (5-11)

 Tres1 = H x {2.86 x WCLB + 29.7} + 74.44 (5-12)

 Texe2 = H x {2.38 x WCLB + 26.56} + 129.32 (5-13)

 Tres3 = H x {6.17 x (WCLB)2 + 9.14 x WCLB + 41.91} + 96.55 (5-14)

 Texe4 = H x {4.24 x WCLB + 26.06} + 152.37 (5-15)

93

 Texeres2 = H x {6.4 x (WCLB)2 + 10.24 x WCLB + 89.87} + 573.77 (5-16)

Since Tres3 and Texeres2 in our DDRM experiments considered the small-to-large

PRR lHTR and rHTR, respectively, the small PRR (i.e., the source PRR) has half the

number of CLB columns as the large PRR (i.e., the destination PRR), then, for the

Virtex-5 LX110T device used in our experiments, WCLB will only change from one to 11

CLB columns (source PRR) in (5-11) to (5-16).

Table 5-1. CS bitstream and partial bitstream sizes (in KB) used in the CSR, HTR, and
DDRM experiments

CLB
columns

Flip-flops
frames in
CS

LUTRAM
frames in
CS

BRAM
frames in
CS

Total
frames
in CS

CS
bitstream
size (KB)

Partial
bitstream
size (KB)

1 2 4 128 134 22.0 31.9
2 4 4 128 136 22.3 37.7
3 6 8 128 142 23.3 43.5
4 8 8 128 144 23.6 49.2
5 10 12 128 150 24.6 55.0
6 12 12 128 152 24.9 60.8
7 14 16 128 158 25.9 66.5
8 16 16 128 160 26.2 72.3
9 18 20 128 166 27.2 78.1

10 20 20 128 168 27.6 83.8
11 22 24 128 174 28.5 89.6
12 24 24 128 176 28.9 95.4

Note: All partial bitstreams include one BRAM column, and all PRRs have one row.

Table 5-2. Execution times (ms) for Treconfig_prr

CLB
columns

CLB
frames in
PRR

BRAM
configuration
frames in PRR

BRAM data
frames in
PRR

Total
frames in
PRR

PRM flip-
flops in
the PRR

Treconfig_prr

1 36 30 128 194 160 3.44
2 72 30 128 230 320 4.26
3 108 30 128 266 480 5.00
4 144 30 128 302 640 5.79
5 180 30 128 338 800 6.45
6 216 30 128 374 960 7.27
7 252 30 128 410 1120 7.95
8 288 30 128 446 1280 8.76
9 324 30 128 482 1440 9.45

10 360 30 128 518 1600 10.27
11 396 30 128 554 1760 11.10
12 432 30 128 590 1920 11.81

Note: All PRRs have one row and include one BRAM column.

94

Table 5-3. Execution times (ms) for CS (Tcs) in CSR
CLB
columns

PRM flip-
flops

Tpre_cs Tunprotect_prr_cs Tcs_prr Tpost_cs Tprotect_prr_cs Tdesynch Tcs_bitstream Tcs

1 160 0.31 1.12 8.75 0.20 1.24 1.76 7.36 20.74
2 320 0.31 1.26 9.29 0.20 1.36 1.76 7.52 21.70
3 480 0.31 1.38 11.10 0.20 1.51 1.76 8.06 24.32
4 640 0.31 1.54 11.56 0.20 1.68 1.76 8.33 25.38
5 800 0.31 1.70 13.40 0.20 1.79 1.76 8.84 28.00
6 960 0.31 1.76 14.08 0.20 1.93 1.76 9.08 29.12
7 1120 0.31 1.92 15.09 0.20 2.05 1.76 9.40 30.73
8 1280 0.31 2.07 15.65 0.20 2.17 1.76 9.55 31.71
9 1440 0.31 2.19 17.43 0.20 2.29 1.76 10.02 34.20

10 1600 0.31 2.33 18.02 0.20 2.44 1.76 10.24 35.30
11 1760 0.31 2.46 19.16 0.20 2.63 1.76 10.68 37.20
12 1920 0.31 2.59 20.31 0.20 2.73 1.76 11.05 38.95

Note: All PRRs have one row and include one BRAM column.

Table 5-4. Execution times (ms) for the merge process (Tmerge) in CSR

CLB columns PRM frames PRM flip-flops Tmerge

1 134 160 23.22
2 136 320 24.71
3 142 480 26.40
4 144 640 27.80
5 150 800 29.16
6 152 960 30.60
7 158 1120 32.18
8 160 1280 33.40
9 166 1440 35.02

10 168 1600 36.21
11 174 1760 37.60
12 176 1920 39.06

Note: All PRRs have one row and include one BRAM column.

Table 5-5. Execution times (ms) for CR (Tcr) in CSR

CLB columns PRM flip-flops Tpre_cr Tunprotect_prr_cr Tupdate_prr Tstartup Tprotect_prr_cr Tcr

1 160 0.30 1.23 3.25 0.03 1.31 6.12
2 320 0.30 1.40 3.85 0.03 1.46 7.04
3 480 0.30 1.52 4.52 0.03 1.58 7.95
4 640 0.30 1.65 5.36 0.03 1.81 9.15
5 800 0.30 1.77 6.04 0.03 1.86 10.00
6 960 0.30 1.87 6.73 0.03 1.95 10.88
7 1120 0.30 1.99 7.46 0.03 2.29 12.07
8 1280 0.30 2.13 8.11 0.03 2.45 13.02
9 1440 0.30 2.25 8.78 0.03 2.63 13.99

10 1600 0.30 2.37 9.44 0.03 2.84 14.98
11 1760 0.30 2.53 10.21 0.03 3.07 16.14
12 1920 0.30 2.63 10.96 0.03 3.18 17.10

Note: All PRRs have one row and include one BRAM column.

95

Table 5-6. Execution times (ms) for CS (Tcs), context relocation (Trelocate), and CR (Tcr)

for small-to-large PRR HTR
Source
PRR CLB
columns

Source
PRR PRM
frames

Destination
PRR CLB
columns

Destination
PRR PRM
frames

PRM
flip-flops

Tcs

Trelocate

Tcr

1 134 2 136 160 22.29 47.93 9.31
2 136 4 140 320 23.91 74.28 10.98
3 142 6 148 480 26.07 110.35 12.56
4 144 8 152 640 27.06 161.35 14.10
5 150 10 160 800 29.28 223.98 15.58
6 152 12 164 960 30.20 299.30 17.13

Note: The source and destination PRRs have one row, and all PRRs include one BRAM
column.

Table 5-7. Execution times (ms) for CS (Tcs), context relocation (Trelocate), and CR (Tcr)

for large-to-small PRR HTR
Source
PRR CLB
columns

Source
PRR PRM
frames

Destination
PRR CLB
columns

Destination
PRR PRM
frames

PRM
flip-flops

Tcs

Trelocate

Tcr

2 136 1 134 160 23.70 45.52 7.99
4 140 2 136 320 25.68 62.15 8.82
6 148 3 142 480 28.49 88.37 9.72
8 152 4 144 640 30.24 121.36 10.55

10 160 5 150 800 33.02 169.49 11.39
12 164 6 152 960 34.30 214.24 12.15

Note: The source and destination PRRs have one row, and all PRRs include one BRAM
column.

Table 5-8. DDRM execution times (ms) for Texe1 with respect to the number of PRM flip-

flops. All PRRs have one row and include one BRAM column.
PRM
flip-flops

Tchk_lprr_lock Tlprr_lock Tlaunch_pend_task Tupdate_node Tprop_act_task Tlprr_busy Tlprr_unlock Texe1

160 6.0 6.1 7.9 5.9 44.1 5.9 5.7 81.6
320 6.0 6.1 8.5 5.9 44.0 5.9 5.8 82.2
480 6.0 6.1 9.4 5.8 44.0 5.9 5.8 83.0
640 5.9 6.1 10.1 5.8 43.6 5.8 5.7 83.0
800 5.9 6.1 11.0 5.7 43.8 5.7 5.8 84.0
960 6.0 6.1 11.8 5.8 44.0 5.8 5.9 85.4

1120 6.1 6.2 12.7 5.8 44.1 5.8 5.9 86.6
1280 6.0 6.1 13.3 5.7 44.2 5.7 5.9 86.9
1440 6.0 6.1 14.5 5.8 44.0 5.8 5.8 88.0
1600 5.9 6.1 15.3 5.8 43.7 5.8 5.7 88.3
1760 6.0 6.1 15.8 5.8 44.3 5.8 5.7 89.5
1920 6.0 6.2 16.6 5.9 43.5 5.9 5.8 89.9

96

Table 5-9. DDRM execution times (ms) for Tres1 with respect to the number of PRM flip-
flops. All PRRs have one row and include one BRAM column.

PRM
flip-flops

Tchk_lprr_lock Tlprr_lock Tresume_pend_task Tupdate_node Tprop_act_task Tlprr_busy Tlprr_unlock Tres1

160 6.0 6.1 34.4 5.8 43.9 5.8 5.8 107.8
320 5.9 6.0 34.5 5.8 46.3 5.7 5.8 110.0
480 5.9 6.1 38.3 5.9 45.2 5.8 5.7 112.9
640 5.9 6.1 41.3 5.8 43.9 5.8 5.8 114.6
800 5.9 6.0 43.2 5.7 43.7 5.8 5.8 116.1
960 6.0 6.2 45.2 5.9 45.1 5.9 5.8 120.1

1120 6.1 6.2 49.6 5.9 44.2 5.8 5.9 123.7
1280 6.0 6.1 53.5 5.8 43.9 5.8 5.8 126.9
1440 6.0 6.1 55.9 5.9 44.0 5.9 5.7 129.5
1600 5.9 6.1 57.9 5.8 43.8 5.8 5.7 131.0
1760 6.0 6.1 61.2 5.7 44.0 5.7 5.8 134.5
1920 6.0 6.2 64.5 5.9 44.1 5.9 5.8 138.4

Table 5-10. DDRM execution times (ms) for Texe2 with respect to the number of PRM

flip-flops (part 1 of 2). All PRRs have one row and include one BRAM column.
PRM flip-flops Tchk_lprr_lock Tchk_lprm_prr Tlprr_lock Tcs_preempted_task Tprop_preempted_task

160 6.0 17.8 5.8 21.4 44.2
320 5.9 17.6 5.7 22.2 43.9
480 6.0 17.8 5.8 24.8 44.3
640 5.9 17.5 5.7 25.3 45.1
800 6.0 17.7 5.8 28.0 44.1
960 6.0 17.7 5.8 28.5 44.2

1120 6.1 17.8 5.8 31.0 44.2
1280 6.0 17.6 5.7 32.0 44.0
1440 6.0 17.6 5.8 34.5 44.0
1600 5.9 18.0 5.7 35.4 44.0
1760 6.0 17.6 5.7 36.3 44.1
1920 6.0 17.7 5.8 38.4 44.2

Table 5-11. DDRM execution times (ms) for Texe2 with respect to the number of PRM

flip-flops (part 2 of 2). All PRRs have one row and include one BRAM column.
PRM flip-flops Tlaunch_pend_task Tupdate_node Tprop_act_task Tlprr_unlock Texe2

160 7.9 5.8 44.0 5.8 158.7
320 8.5 5.7 43.8 5.7 159.0
480 9.5 5.9 44.1 5.9 164.1
640 10.0 5.8 43.9 5.8 165.0
800 11.2 5.8 44.0 5.8 168.4
960 11.7 5.8 44.0 5.8 169.5

1120 12.8 5.9 44.1 5.9 173.6
1280 13.3 5.8 43.9 5.8 174.1
1440 14.3 5.8 43.9 5.8 177.7
1600 15.1 5.7 43.9 5.7 179.4
1760 16.0 5.8 43.9 5.7 181.1
1920 16.9 5.9 44.0 5.9 184.8

97

Table 5-12. DDRM execution times (ms) for Tres3 with respect to the number of PRM
flip-flops (part 1 of 2). All PRRs have one row and include one BRAM column.
PRM flip-flops Tchk_lprr_lock Tchk_lprm_prr Tchk_lrprr_lock Tlrprr_lock Tresume_pend_rtask

160 6.0 17.7 5.8 5.8 57.6
320 5.9 17.5 5.7 5.7 84.8
480 6.0 17.8 5.8 5.8 124.3
640 6.0 17.5 5.7 5.7 175.7
800 6.0 17.8 5.8 5.8 245.2
960 6.0 17.8 5.8 5.8 317.6

1120 5.9 17.6 5.7 5.7 408.4
1280 6.0 17.7 5.7 5.7 510.2
1440 6.0 17.7 5.7 5.7 624.3
1600 6.0 17.6 5.7 5.8 750.7
1760 5.9 17.7 5.7 5.8 889.5
1920 6.0 17.7 5.7 5.8 1,040.7

Table 5-13. DDRM execution times (ms) for Tres3 with respect to the number of PRM

flip-flops (part 2 of 2). All PRRs have one row and include one BRAM column.
PRM flip-flops Tupdate_node Tprop_act_task Tlrprr_busy Tlrprr_unlock Tres3

160 5.9 44.0 5.9 5.8 154.5
320 5.7 44.0 5.7 5.8 180.8
480 5.9 44.3 5.8 5.9 221.6
640 5.8 43.9 5.7 5.7 271.7
800 5.9 44.3 5.8 5.8 342.4
960 5.9 44.3 5.8 5.8 414.8

1120 5.8 44.1 5.8 5.7 504.7
1280 5.8 44.2 5.8 5.8 606.9
1440 5.8 44.1 5.8 5.8 720.9
1600 5.9 44.1 5.8 5.8 847.4
1760 5.8 44.1 5.8 5.8 986.1
1920 5.8 44.2 5.8 5.8 1,137.5

Table 5-14. DDRM execution times (ms) for Texe4 with respect to the number of PRM

flip-flops (part 1 of 2). All PRRs have one row and include one BRAM column.
PRM flip-flops Tchk_lprr_lock Tchk_lprm_prr Tchk_lrprr_lock Tchk_lrprm_lrprr Tlrprr_lock Tcs_preempted_task

160 6.0 17.8 5.7 17.4 5.7 22.1
320 5.9 17.5 5.7 17.0 5.8 23.7
480 6.0 17.8 5.8 17.5 5.8 27.4
640 5.9 17.5 5.7 17.2 5.7 28.9
800 6.0 17.8 5.8 17.5 5.7 32.6
960 6.0 17.7 5.8 17.4 5.8 33.9

1120 5.9 17.7 5.7 17.3 5.7 37.9
1280 6.0 17.6 5.7 17.4 5.8 39.0
1440 6.0 17.7 5.7 17.3 5.8 43.2
1600 6.0 17.7 5.7 17.4 5.7 44.1
1760 6.0 17.6 5.7 17.3 5.8 48.4
1920 6.0 17.7 5.7 17.3 5.8 49.2

98

Table 5-15. DDRM execution times (ms) for Texe4 with respect to the number of PRM
flip-flops (part 2 of 2). All PRRs have one row and include one BRAM column.

PRM flip-flops Tprop_preempted_task Tlaunch_pend_rtask Tupdate_node Tprop_act_task Tlrprr_unlock Texe4

160 44.2 8.6 5.7 44.5 5.8 183.5
320 43.9 10.1 5.7 43.9 5.7 184.9
480 44.3 11.8 5.8 44.4 5.8 192.4
640 44.0 13.4 5.7 43.8 5.7 193.5
800 44.3 15.2 5.9 44.2 5.9 200.9
960 44.2 16.9 5.8 44.0 5.8 203.3

1120 44.2 18.5 5.8 44.0 5.8 208.6
1280 44.2 20.2 5.7 44.0 5.7 211.3
1440 44.1 21.9 5.8 44.4 5.8 217.7
1600 44.2 23.6 5.8 44.0 5.8 220.0
1760 44.1 25.2 5.8 44.2 5.8 225.9
1920 44.2 27.0 5.8 44.1 5.8 228.6

Table 5-16. DDRM execution times (ms) for Texeres2 with respect to the number of PRM

flip-flops (part 1 of 2). All PRRs have one row and include one BRAM column.
PRM flip-flops Tchk_lprr_lock Tchk_lprm_prr Tchk_lrprr_lock Tchk_lrprm_lrprr Tchk_rrprr_lock Tchk_rprm_rprr Trrprr_lock

160 6.1 17.9 5.7 17.3 16.4 32.8 7.3
320 6.0 17.6 5.7 17.4 16.4 32.8 7.4
480 6.1 17.9 5.8 17.4 16.4 32.8 7.4
640 6.0 17.6 5.7 17.4 16.4 32.7 7.3
800 6.0 17.8 5.7 17.3 16.4 32.8 7.3
960 6.0 17.7 5.8 17.4 16.4 32.9 7.3

1120 6.0 17.8 5.7 17.4 16.5 32.8 7.3
1280 6.0 17.8 5.7 17.3 16.4 32.8 7.3
1440 6.0 17.7 5.7 17.4 16.4 32.8 7.4
1600 6.1 17.7 5.7 17.4 16.4 32.8 7.3
1760 6.0 17.7 5.7 17.4 16.4 32.8 7.3
1920 6.0 17.7 5.8 17.4 16.4 32.8 7.3

Table 5-17. DDRM execution times (ms) for Texeres2 with respect to the number of PRM

flip-flops (part 2 of 2). All PRRs have one row and include one BRAM column.
PRM flip-flops Tcs_preempted_rprm Tprop_preempted_rtask Tftp_csbitstream Tremote_htr Tprop_rhtr_status Texeres2

160 31.6 29.1 416.2 75.2 27.5 683.1
320 33.4 28.7 412.7 102.6 27.3 708.0
480 36.5 28.7 408.8 141.6 27.5 746.9
640 38.0 27.4 407.7 193.5 27.3 797.0
800 41.9 28.8 414.4 261.5 27.5 877.4
960 43.5 27.5 414.0 337.3 27.6 953.4

1120 47.0 27.5 414.4 428.9 27.4 1,048.7
1280 48.3 30.3 406.2 532.7 27.4 1,148.2
1440 52.1 28.8 414.7 649.2 27.4 1,275.6
1600 53.3 28.6 411.7 778.5 27.4 1,402.9
1760 57.3 27.5 412.6 920.7 27.4 1,548.8
1920 58.3 28.6 411.9 1,075.7 27.4 1,705.3

99

Figure 5-1. Execution times (ms) for Treconfig_prr with respect to the number of PRM flip-

flops. The adjacent rectangles indicate the number of PRR rows, CLB
columns, and PRR frames. All PRRs include one BRAM column.

Figure 5-2. Execution times (ms) for CS (Tcs) in CSR with respect to the number of

PRM flip-flops. All PRRs include one BRAM column.

100

Figure 5-3. Execution times (ms) for the merge process (Tmerge) in CSR with respect to

the number of PRM flip-flops. The adjacent rectangles indicate the number of
PRR rows, CLB columns, and PRM frames. All PRRs include one BRAM
column.

Figure 5-4. Execution times (ms) for CR (Tcr) in CSR with respect to the number of

PRM flip-flops. All PRRs include one BRAM column.

101

Figure 5-5. Execution times (ms) for CS (Tcs) in HTR with respect to the number of

PRM flip-flops. The adjacent rectangles indicate the number of PRR rows,
CLB columns, and PRM frames in the source PRR. All PRRs include one
BRAM column.

Figure 5-6. Execution times (ms) for context relocation (Trelocate) in HTR with respect to

the number of PRM flip-flops. The adjacent rectangles indicate the number of
PRR rows, CLB columns, and PRM frames of the source (src) and destination
(dst) PRRs. All PRRs include one BRAM column.

102

Figure 5-7. Execution times (ms) for CR (Tcr) in HTR with respect to the number of

PRM flip-flops. The adjacent rectangles indicate the number of PRR rows,
CLB columns, and PRR frames in the destination PRR. All PRRs include one
BRAM column.

Figure 5-8. DDRM execution times (ms) for Texe1 with respect to the number of PRM

flip-flops. All PRRs include one BRAM column.

103

Figure 5-9. DDRM execution times (ms) for Tres1 with respect to the number of PRM

flip-flops. All PRRs include one BRAM column.

Figure 5-10. DDRM execution times (ms) for Texe2 with respect to the number of PRM

flip-flops. All PRRs include one BRAM column.

104

Figure 5-11. DDRM execution times (ms) for Tres3 with respect to the number of PRM

flip-flops. All PRRs include one BRAM column.

Figure 5-12. DDRM execution times (ms) for Texe4 with respect to the number of PRM

flip-flops. All PRRs include one BRAM column.

105

Figure 5-13. DDRM execution times (ms) for Texeres2 with respect to the number of PRM

flip-flops. All PRRs include one BRAM column.

106

CHAPTER 6
CONCLUSIONS

In this research we have developed on-chip software tools for hardware

multitasking in partially reconfigurable (PR) field-programmable gate arrays (FPGAs).

PR FPGAs are partitioned into one static region and multiple PR regions (PRRs), where

PRRs are reconfigured with partial bitstreams which affords faster reconfiguration times.

This partitioning enables hardware multitasking, where hardware tasks should be able

to execute in PRRs, be preempted, replaced by higher priority hardware tasks, and later

resume execution in the same or different PRR (i.e., candidate PRR) with sufficient

resources in the same FPGA, or even in different physical FPGAs on an interconnected

network, as if the tasks were not previously preempted. The ability of hardware tasks to

be able to resume execution in the same or different FPGAs is addressed by the three

research phases presented in this document.

In Phase 1, we leverage PR FPGAs for hardware multitasking on the same PRR,

and introduce on-chip context save and restore (CSR) software for any heterogeneous

PRR (i.e., a PRR with different resource types in the FPGA fabric). CSR is able to

preempt and save the task’s execution state (i.e., context), replace the preempted task

with another task, and later resume the preempted task in the same PRR. The CSR

software executes on a soft-core processor in the FPGA’s static region without

disrupting operations of the static region and other tasks executing in other PRRs in the

FPGA.

In Phase 2, we extend our CSR software and introduce on-chip hardware task

relocation (HTR) software to enable context relocation of hardware tasks between

different-sized heterogeneous PRRs (i.e., PRRs with different locations in the FPGA

107

fabric, different shape, and different resource type distribution inside the PRRs). With

our HTR, preempted hardware tasks should be able to resume operations in any

heterogeneous candidate PRR with sufficient resources. As in CSR, The HTR software

executes on a soft-core processor in the FPGA’s static region without disrupting

operations of the static region and other tasks executing in other PRRs in the FPGA.

The contributions of Phase 1 and Phase 2 are summarized as follows. Our

CSR/HTR maximizes the use of PRRs, enabling the execution, preemption, and

resumption of hardware tasks between heterogeneous PRRs without losing previous

task’s execution state, which eliminates seconds/minutes of re-execution time and may

reduce the pending time of scheduled tasks to be resumed. Our CSR/HTR executes on

autonomous FPGA systems, which does not incur off-chip communication overhead,

does not introduce device overhead, does not impact the tasks’ maximum operating

frequencies, has no special constraints on the PRRs, is application independent, is

portable across different systems (with minimum changes, Section 3.6), and does not

require tool flow changes. The CSR/HTR fundamentals are applicable to newer Xilinx

device families, such as the Virtex-6, the 7 series, and the Zynq-7000. Additionally, to

the best of our knowledge, our HTR is the first solution that enables context relocation

of hardware tasks between different-sized heterogeneous PRRs, which was not

addressed in prior works.

In Phase 3, we extend our HTR software to work with multiple FPGAs in a

network to enable a dynamic context relocation of hardware tasks between different

FPGAs and introduce on-chip distributed dynamic resource management (DDRM)

108

software. Our DDRM executes on each autonomous FPGA system that is part of the

DDRM network, which can be any local wired or wireless network.

The contributions of Phase 3 are summarized as follows. DDRM enables the

execution, preemption, and resumption of hardware tasks across FPGAs in a network,

without losing previous task’s execution state, no matter where (which PRR of an FPGA

in the network) the task last executed. DDRM provides additional task throughput

improvements, reduces task idle time while waiting for execution, and improves shared

resource usage per FPGA, by having more candidate PRRs per task, which enables

application domains such as dynamic load balancing of hardware tasks across FPGAs,

distributed fault tolerant systems, etc. To the best of our knowledge, no prior work

proposes such a flexible solution for context relocation of hardware tasks in a distributed

FPGA network.

Our results show the growth rate of CSR, HTR, and DDRM execution times as

the PRR size increases, revealing that CSR/HTR/DDRM is most attractive for smaller

PRRs, allowing the system designer to determine the application partitioning granularity

(number of tasks/modules) and the task-to-PRR mappings (considering PRR sizes and

CSR/HTR/DDRM times), according to the application requirements.

Our future work will focus on reducing CSR/HTR execution times, extending HTR

and DDRM to support different FPGA architectures and incorporating HTR/DDRM with

a run-time reconfiguration scheduler for hardware multitasking on multiple PR FPGAs

interconnected in a network.

109

REFERENCES

[1] T. Becker, M. Koester, and W. Luk, "Automated Placement of Reconfigurable
Regions for Relocatable Modules," Proc. IEEE Int'l Symp. Circuits and Systems
(ISCAS), pp. 3341-3344, 2010.

[2] T. Becker, W. Luk, and P. Y.K. Cheung, "Enhancing Relocatability of Partial
Bitstreams for Run-Time Reconfiguration," Proc. 15th Ann. IEEE Int'l Symp.
Field-Programmable Custom Computing Machines (FCCM), pp. 35-44, 2007.

[3] C. Beckhoff, D. Koch, and J. Torresen, "Portable Module Relocation and
Bitstream Compresion for Xilinx FPGAs," Proc. 24th Int'l Conf. Field
Programmable Logic and Applications (FPL), pp. 1-8, 2014.

[4] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and P. Sundararajan, "A
Self-Reconfiguring Platform," Proc. 13th Int'l Conf. Field Programmable Logic
and Application (FPL), pp. 565-574, 2003.

[5] R. Bonamy, H. Pham, S. Pillement, and D. Chillet, "UPaRC - Ultra-Fast Power-
aware Reconfiguration Controller," Proc. Design, Automation and Test in Europe
Conf. and Exhibition (DATE), pp. 1373-1378, 2012.

[6] BusyBox, http://www.busybox.net/, 2015.

[7] J. Carver, N. Pittman, and A. Forin, "Relocation and Automatic Floor-planning of
FPGA Partial Configuration Bit-Streams," Technical Report MSR-TR-2008-111.
Microsoft Research, Redmond, WA, 2008.

[8] S. Corbetta, F. Ferrandi, M. Morandi, M. Novati, M.D. Santambrogio, and D.
Sciuto, "Two Novel Approaches to Online Partial Bitstream Relocation in a
Dynamically Reconfigurable System," Proc. IEEE Computer Society Annual
Symp. on VLSI (ISVLSI), pp. 457-458, 2007.

[9] S. Corbetta, M. Morandi, M. Novati, M.D. Santambrogio, D. Sciuto, and P.
Spoletini, "Internal and External Bitstream Relocation for Partial Dynamic
Reconfiguration," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol.
17, no. 11, pp. 1650-1654, Nov. 2009.

[10] A. Dasu and R. Kallam, "Accelerated Relocation Circuit," United States Patent
20110082994, Apr. 7, 2011.

[11] T. Drahonovsky, M. Rozkovec, and O. Novak, "A Highly Flexible Reconfigurable
System on a Xilinx FPGA," Proc. Int'l Conf. on Reconfigurable Computing and
FPGAs (ReConFig), pp. 1-6, 2014.

[12] F. Duhem, F. Muller, and P. Lorenzini, "FaRM: Fast Reconfiguration Manager for
Reducing Reconfiguration Time Overhead on FPGA," Proc. 7th Int'l Symp.
Applied Reconfigurable Computing (ARC), pp. 253-260, 2011.

http://www.busybox.net/

110

[13] A. Flynn, A. Gordon-Ross, and A.D. George, "Bitstream Relocation with Local
Clock Domains for Partially Reconfigurable FPGAs," Proc. Design, Automation
and Test in Europe Conf. and Exhibition (DATE), pp. 300-303, 2009.

[14] S. Garcia, B. Granado, and J.C. Prevotet, "Hardware Task Context Management
for Fine Grained Dynamically Reconfigurable Architecture," Proc. Workshop on
Design and Architectures for Signal and Image Processing, 2007.

[15] S.G. Hansen, D. Koch, and J. Torresen, "High Speed Partial Run-Time
Reconfiguration Using Enhanced ICAP Hard Macro," Proc. 25th IEEE Int'l Symp.
Parallel and Distributed Processing Workshop and PhD Forum (IPDPSW), pp.
174-180, 2011.

[16] E.L. Horta and J.W. Lockwood, "PARBIT: A Tool to Transform Bitfiles to
Implement Partial Reconfiguration of Field Programmable Gate Arrays (FPGAs),"
Technical Report WUCS-01-13. Washington University, Saint Louis, MO, 2001.

[17] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez, "Methods and
Mechanisms for Hardware Multitasking: Executing and Synchronizing Fully
Relocatable Hardware Tasks in Xilinx FPGAs," Proc. 21st Int'l Conf. Field
Programmable Logic and Applications (FPL), pp. 295-300, 2011.

[18] X. Iturbe, K. Benkrid, A. Ebrahim, C. Hong, T. Arslan, and I. Martinez, "Snake: An
Efficient Strategy for the Reuse of Circuitry and Partial Computation Results in
High-Performance Reconfigurable Computing," Proc. Int'l Conf. Reconfigurable
Computing and FPGAs (ReConFig), pp. 182-189, 2011.

[19] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and T. Arslan,
"Microkernel Architecture and Hardware Abstraction Layer of a Reliable
Reconfigurable Real-Time Operating System (R3TOS)," ACM Trans.
Reconfigurable Technology and Systems (TRETS), vol. 8, no. 1, pp. 5:1-5:35,
Feb. 2015.

[20] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, I. Martinez, T. Arslan,
and J. Perez, "R3TOS: A Novel Reliable Reconfigurable Real-Time Operating
System for Highly Adaptive, Efficient, and Dependable Computing on FPGAs,"
IEEE Trans. Computers, vol. 62, no. 8, pp. 1542-1556, Aug. 2013.

[21] W. Jia and W. Zhou, Distributed Network Systems: From Concepts to
Implementations. Boston, MA: Springer Science and Business Media, Inc., 2005.

[22] S. Jovanovic, C. Tanougast, and S. Weber, "A Hardware Preemptive Multitasking
Mechanism Based on Scan-path Register Structure for FPGA-based
Reconfigurable Systems," Proc. 2nd NASA/ESA Conf. Adaptive Hardware and
Systems (AHS), pp. 358-364, 2007.

111

[23] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, and H. Takada, "Comparison of
Preemption Schemes for Partially Reconfigurable FPGAs," IEEE Embedded
Systems Letters, vol. 4, no. 2, pp. 45-48, Jun. 2012.

[24] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada, "A Novel Mechanism for
Effective Hardware Task Preemption in Dynamically Reconfigurable Systems,"
Proc. 20th Int'l Conf. Field Programmable Logic and Applications (FPL), pp. 352-
255, 2010.

[25] H. Kalte, G. Lee, M. Porrmann, and U. Rückert, "REPLICA: A Bitstream
Manipulation Filter for Module Relocation in Partial Reconfigurable Systems,"
Proc. 19th IEEE Int'l Symp. Parallel and Distributed Processing (IPDPS), 2005.

[26] H. Kalte and M. Porrmann, "Context Saving and Restoring for Multitasking in
Reconfigurable Systems," Proc. 15th Int'l Conf. Field Programmable Logic and
Applications (FPL), pp. 223-228, 2005.

[27] H. Kalte and M. Porrmann, "REPLICA2Pro: Task Relocation by Bitstream
Manipulation in Virtex-II/Pro FPGAs," Proc. 3rd Conf. Computing Frontiers (CF),
pp. 403-412, 2006.

[28] D. Koch, C. Haubelt, and J. Teich, "Efficient Hardware Checkpointing: Concepts,
Overhead Analysis, and Implementation," Proc. ACM/SIGDA 15th Int'l Symp.
Field Programmable Gate Arrays (FPGA), pp. 188-196, 2007.

[29] M. Koester, M. Porrmann, and H. Kalte, "Relocation and Defragmentation for
Heterogeneous Reconfigurable Systems," Proc. Int'l Conf. Engineering of
Reconfigurable Systems and Algorithms (ERSA), pp. 70-76, 2006.

[30] Y.E. Krasteva, A.B. Jimeno, E. de la Torre, and T. Riesgo, "Straight Method for
Reallocation of Complex Cores by Dynamic Reconfiguration in Virtex II FPGAs,"
Proc. 16th IEEE Int'l Workshop on Rapid System Prototyping (RSP), pp. 77-83,
2005.

[31] W.J. Landaker, M.J. Wirthlin, and B.L. Hutchings, "Multitasking Hardware on the
SLAAC1-V Reconfigurable Computing System," Proc. of 12th Int'l Conf. Field
Programmable Logic and Applications (FPL), pp. 806-815, 2002.

[32] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, "Run-time Partial Reconfiguration
Speed Investigation and Architectural Design Space Exploration," Proc. 19th Int'l
Conf. Field Programmable Logic an Applications (FPL), pp. 498-502, 2009.

[33] MathWorks, MATLAB Curve Fitting Toolbox User's Guide (Release R2015a),
http://www.mathworks.com/help/releases/R2015a/pdf_doc/curvefit/curvefit.pdf,
2015.

http://www.mathworks.com/help/releases/R2015a/pdf_doc/curvefit/curvefit.pdf

112

[34] A. Morales-Villanueva and A. Gordon-Ross, "HTR: On-Chip Hardware Task
Relocation for Partially Reconfigurable FPGAs," Proc. 9th Int'l Symp. Applied
Reconfigurable Computing (ARC), pp. 185-196, 2013.

[35] A. Morales-Villanueva and A. Gordon-Ross, "On-Chip Context Save and Restore
of Hardware Tasks on Partially Reconfigurable FPGAs," Proc. 21st Ann. IEEE
Int'l Symp. Field-Programmable Custom Computing Machines (FCCM), pp. 61-
64, 2013.

[36] M. Morandi, M. Novati, M.D. Santambrogio, and D. Sciuto, "Core Allocation and
Relocation Management for a Self Dynamically Reconfigurable Architecture,"
Proc. IEEE Computer Society Annual Symp. on VLSI (ISVLSI), pp. 286-291,
2008.

[37] K. Papadimitriou, A. Dollas, and S. Hauck, "Performance of Partial
Reconfiguration in FPGA Systems: A Survey and a Cost Model," ACM Trans.
Reconfigurable Technology and Systems (TRETS), vol. 4, no. 4, pp. 36:1-36:24,
Dec. 2011.

[38] K. Qureshi and H. Rashid, "A Performance Evaluation of RPC, Java RMI, MPI
and PVM," Malaysian J. Computer Science, vol. 18, no. 2, pp. 38-44, Dec. 2005.

[39] M.D. Santambrogio, F. Cancare, R. Cattaneo, S. Bhandari, and D. Sciuto, "An
Enhanced Relocation Manager to Speedup Core Allocation in FPGA-based
Reconfigurable Systems," Proc. 26th IEEE Int'l Symp. Parallel and Distributed
Processing Workshop and PhD Forum (IPDPSW), pp. 336-343, 2012.

[40] H. Simmler, L. Levinson, and R. Männer, "Multitasking on FPGA Coprocessors,"
Proc. 10th Int'l Conf. Field Programmable Logic and Applications (FPL), pp. 121-
130, 2000.

[41] A. Sreeramareddy, R. Kallam, A.R. Dasu, and A. Akoglu, "Self-configurable
Architecture for Reusable Systems with Accelerated Relocation Circuits
(SCARS-ARC)," Proc. 24th IEEE Int'l Symp. Parallel and Distributed Processing
Workshop and PhD Forum (IPDPSW), pp. 1-4, 2010.

[42] A. Sudarsanam, R. Kallam, and A. Dasu, "PRR-PRR Dynamic Relocation," IEEE
Computer Architecture Letters, vol. 8, no. 2, pp. 44-47, Dec. 2009.

[43] A.S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and
Paradigms, 2nd ed. Upper Saddle River, NJ: Pearson Education Inc., 2007.

[44] K. Vipin and S.A. Fahmy, "A High Speed Open Source Controller for FPGA
Partial Reconfiguration," Proc. Int'l Conf. Field-Programmable Technology (FPT),
pp. 61-66, 2012.

[45] Xilinx, LogiCORE IP XPS HWICAP Product Specification (DS586 v5.00a), 2010.

113

[46] Xilinx, MicroBlaze Processor Reference Guide - Embedded Development Kit
EDK 12.3 (UG081 v11.2), 2010.

[47] Xilinx, Partial Reconfiguration User Guide (UG702 v12.3), 2010.

[48] Xilinx, PlanAhead Software Tutorial - Overview of the Partial Reconfiguration
Flow (UG743 v12.3), 2010.

[49] Xilinx, Virtex-5 Libraries Guide for HDL Designs (UG621 v12.4), 2010.

[50] Xilinx, Virtex-5 FPGA Configuration User Guide (UG191 v3.10), 2011.

[51] Xilinx, Virtex-5 FPGA User Guide (UG190 v5.4), 2012.

[52] Xilinx, Virtex-5 FPGA XtremeDSP Design Considerations User Guide (UG193
v3.5), 2012.

[53] Xilinx, Partial Reconfiguration User Guide (UG702 v14.3), 2012.

[54] Xilinx, Microblaze GNU Tools - Xilinx Open Source Wiki,
http://xilinx.wikidot.com/mb-gnu-tools, 2015.

[55] Xilinx, MicroBlaze Linux (General) - Xilinx Open Source Wiki,
http://xilinx.wikidot.com/microblaze-linux, 2015.

[56] Xilinx, Xilinx University Program XUPV5-LX110T Development System,
http://www.xilinx.com/univ/xupv5-lx110t.htm, 2015.

http://xilinx.wikidot.com/mb-gnu-tools
http://xilinx.wikidot.com/microblaze-linux
http://www.xilinx.com/univ/xupv5-lx110t.htm

114

BIOGRAPHICAL SKETCH

Aurelio Morales was born in Lima, Perú in 1961. He received his Bachelor of

Science degree and the Master of Science degree in electronics engineering from the

Universidad Nacional de Ingeniería (UNI) in Lima, in 1985, and 1991, respectively. He

received a Fulbright Fellowship in 1992 and enrolled in a M.S. program at State

University of New York, Buffalo, and earned the M.S. degree in electrical engineering in

1994. Back to Perú, he joined UNI as a part time associate professor while working at

Telefónica del Perú.

Aurelio enrolled in the Ph.D. program in the Department of Electrical and

Computer Engineering at the University of Florida in the fall of 2009, as a recipient of

the Unidad Coordinadora del Programa de Ciencia y Tecnología (FINCyT) Fellowship,

and went on a leave of absence at UNI. While pursuing his degree, Aurelio participated

as a research volunteer in the NSF Center for High-Performance Reconfigurable

Computing (CHREC).

He received his Ph.D. from the University of Florida in the summer of 2015 and

went back to Perú, where he is currently a tenure-track full time professor of the Faculty

of Electrical and Electronics Engineering at UNI. His current research interests include

FPGA dynamic partial reconfiguration, computer architecture, reconfigurable computing,

and embedded systems.

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND RELATED RESEARCH
	2.1 Previous Work
	2.2 Virtex-5 FPGA architecture
	2.2.1 Device Layout and Resources
	2.2.2 Device Configuration
	2.2.3 Cost Model for Partial Bitstream Size

	ON-CHIP CONTEXT SAVE AND RESTORE, AND HARDWARE TASK RELOCATION SOFTWARE
	3.1 CSR and HTR Overview
	3.2 Context Save (CS) of Hardware Tasks
	3.3 Merge of Initial Bitstream and Saved Context
	3.4 Saved Context Relocation of Hardware Tasks (HTR)
	3.5 Context Restore (CR) of Hardware Tasks
	3.6 CSR and HTR Portability across FPGA Device Families
	3.7 Summary

	ON-CHIP DISTRIBUTED DYNAMIC RESOURCE MANAGEMENT SOFTWARE
	4.1 DDRM Concepts and Definitions
	4.2 DDRM Overview
	4.3 DDRM Operations
	4.4 Summary

	EXPERIMENTAL RESULTS
	5.1 Experimental setup
	5.2 CSR Experimental Results
	5.3 HTR Experimental Results
	5.4 DDRM Experimental Results

	CONCLUSIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

