## Essays on Child Labor

A Dissertation<br>submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of<br>Doctor of Philosophy<br>in Economics

## By

Luis Javier García, M.A.

## Washington, DC

March $27^{\text {th }}, 2006$

Copyright 2006 by Luis Javier Garcia All Rights Reserved

# Essays on Child Labor 

Luis Javier García, M.A.<br>Thesis Advisors: James Albrecht, Ph.D. and Susan Vroman, Ph.D.


#### Abstract

This research studies the time allocation of all family members, including the children, where it is assumed that parents distribute their time between market work and household work, and the children may work in the labor market, do the household chores or study. In this framework, the labor supply of family members, the household work and the hours of education are determined simultaneously. The main hypothesis is that wages play an important role in the time allocation of family members. For example, a drop in the child wage could cause the child to spend more hours at home work (cleaning, taking care of the siblings, cooking, etc.) and/or studying, and less time working. The substitution and income effects on household work and market labor of changes in wages are derived formally. I also carry out the analysis when the family faces a subsistence level restriction (the minimum level of consumption for survival). The theoretical model is estimated by econometric methods, using data from the Peruvian Living Standard Measurement Survey from the years 1997 and 2000. Unlike other papers on child labor, this research estimates the child's labor supply and household work while taking into account the child's wage and the wages of other family


members. The main result of this research is that wages are relevant when it comes to assigning chores at home and determining the hours that the child works in the labor market. The parameters of the home production function and some parameters of the family utility function are also estimated. Finally, the effect of child labor and household work on school attainment is analyzed econometrically. School attainment is measured by two indicators: the Schooling-Age ratio and the probability of studying in high level education (college, technical school). Results show that in general, household work does not have a clear effect on school attainment. On the other hand, child labor has a clear negative and significant effect on those indicators.

## ACKNOWLEDGEMENT

This dissertation could not have been written without the help of my advisors, Professors James Albrecht and Susan Vroman, who not only served as guides throughout this three-year research, but also encouraged me to do my best. Their astute comments were always very useful and notably improved the quality of the research. Definitely, I could not have been able to reach this high level by working on my own.

I also want to thank Professor Carol Ann Rogers, who was involved in the project from the beginning. She not only attended the regular meetings with my advisors, but also was a careful reader of the several drafts of this dissertation, providing very good comments. Let me also say thanks to the faculty and graduate students who attended the "Micrometrics Seminar" given by the Economics Department at Georgetown University in February 2005. Your comments were very helpful and made me feel that I was doing a good job.

I would also like to say thank-you to the following people: Wei-Kai Chang, my former roommate during my first year at Georgetown University.

Pramod Khadka, my next roommate, was also a very important support and good friend (thanks, Pramod!). Fernando Borraz showed me how Georgetown University and D.C. work, and gave me several pieces of advice throughout my first two years in Washington D.C. (thanks Fernando, you are great!) Thanks also to Professors Daniel Westbrook, Roger Lagunoff and the faculty members who had confidence in me and awarded me a scholarship and stipend from the Graduate School. Finally, thanks go to Emma Nicholson and Adam Warren who proofread two of the chapters of this work.

Last, but not least, I thank my family: my wife Hildegardi, who was very patient during the time we lived in D.C. and gave me that part of her life. Her support was huge during the long hours of work in front of the computer. She also was very helpful in working with the data I used in this project (a tremendous work). My little daughter, Sara, who arrived in our lives and became an indispensable part of it, was a huge inspiration for this work. Sara, you were in my mind with every single word of this work. I also thank my mother, Alicia, who always trusted me and taught me how to live. Thanks also go to my father, Manuel, my brothers Manuel and Oscar, my sister Doris, my aunt Isabel García, and to my uncles, Alberto Candela and Alberto Patiño.

To Sara
To Hildegardi
To My Mother

## TABLE OF CONTENTS

INTRODUCTION ..... 1
CHILD LABOR, HOME PRODUCTION AND THE FAMILY LABOR SUPPLY ..... 6
OVERVIEW OF LITERATURE ..... 11
The Model ..... 17
Solution to the Model in the Interior Case ..... 23
CORNER SOLUTIONS AND SHADOW PRICES ..... 32
THE CHILD LABOR SUPPLY AT THE SUBSISTENCE LEVEL $C=C^{*}$ AND $Z=Z^{*}$. ..... 37
An Example ..... 40
CONCLUSIONS TO CHAPTER 1 ..... 45
ESTIMATION OF A HOUSEHOLD PRODUCTION FUNCTION AND THE CHILD LABOR
SUPPLY ..... 47
RELATED LITERATURE ..... 48
The Empirical Model ..... 53
Econometric Specification of the Home Labor Functions ..... 56
Econometric Specification of the Child Labor Supply ..... 62
THE DATA ..... 65
RESULTS ..... 69
Participation in the labor market ..... 69
Structural Parameters ..... 72
CONCLUSIONS TO CHAPTER 2 ..... 85
REVIEW OF LITERATURE ..... 90
Hypothesis and Methodology ..... 94
Definition of Dependent Variables ..... 95
Data and Definition of Groups ..... 97
The Econometric Specification ..... 99
RESULTS ..... 103
Estimation of the Effect of Child Labor and Household Work on SAGE ..... 105
Estimation of the Effect of Household Work and Child Labor on the Probability of Studying
in Higher Education. ..... 116
CONCLUSIONS ..... 120
WORKS CITED ..... 121

## LIST OF FIGURES

Figure 1. Regions defined by spouse's shadow wages ..... 34
Figure 2. Existence of child labor in the plane (Y, $W_{1}$ ) ..... 44
Figure 3.Existence of child Labor in the plane ( $\mathrm{Y}, w_{2}$ ) ..... 45

## LIST OF TABLES

Table 1. Probit Estimation of Participation in Labor Market ..... 70
Table 2. Estimation of the Simultaneous Regression Model ..... 73
Table 3. Parameters of the Production Function ..... 77
TABLE 4. Estimation of $\mathrm{B}_{1}$ AND $\mathrm{B}_{2}$ ..... 78
Table 5. Determinants of the Child's Wage ..... 80
Table 6. Estimation of Parameters of the Utility Function ..... 83
Table 7. Slope of the Child Labor Supply and the Wage Elasticity ..... 85
Table 8. Descriptive Statistics of the Sample ..... 104
TABLE 9. REGRESSION OF SAGE RATIO: GROUP I ..... 110
Table 10. Regression of SAGE ratio: Group II ..... 114
Table 11. Regression of Probability of Higher Education: Group III ..... 117

## INTRODUCTION

In recent years, the economics of child labor has become a very popular topic in empirical research. Several authors have written on this subject in an attempt to understand the economic causalities behind the problem and to propose policies that may lead to less child labor.

Child labor is a big issue in the less developed world. According to statistics from UNICEF, around 250 million children around the world work and 170 million of them work in risky jobs ${ }^{1}$. More refined statistics -like those from the International Labor Office- show different figures ${ }^{2}$. According to them, 211 million children of ages 5 to 14 around the world are engaged in some sort of economic activity. Of these, 206 million live in less developed countries and 186 million work in jobs that represent a serious risk for their lives and integrity. In the case of youngsters of ages 15 to 17,141 million work around the world, 59 million of them in dangerous jobs.

[^0]The participation rate of children in the less developed world is also remarkably high: $26 \%$ in Sub-Saharan Africa, 15\% in Arab world, 16\% in Latin America and $19 \%$ in Asia in 2000. In Peru, the country to be analyzed in this study, that percentage is close to $26 \%$, which means that one of every four children of ages 6 to 17 works. This percentage represents 2 million individuals of that age group, in a country with 27 million inhabitants.

In addition to these well-known types of child labor, this study includes the analysis of another kind of child labor: the household work performed by children. Household work is important to child development for many reasons. One of them is that it is a good training for children (especially girls) who will be housewives in the future. It also teaches some basic skills and promotes maturation. However, it also consumes time and energy, and, without adult supervision, it could be a dangerous activity to children.

This research considers not only the labor performed by children outside their household (usually, paid work), but also household work, which is an activity performed at home whose output is consumed inside the household (not
for sale in the market) ${ }^{3}$. In Peru, according to our calculations using data from the Living Standard Measurement Surveys, three of every four children are engaged in some kind of housework. I argue that this activity is also very important to human capital formation basically because it consumes time. The study shows that the children who work more hours at home doing housework are less likely to achieve higher levels of education.

This study is divided into three chapters. Each of them can be read independently from the others and they are complete essays by themselves. However, they have been organized in a logical sequence. Chapter 1 presents a theoretical model of allocation of time, where child labor, household work, hours of education and the labor supply of the parents are determined simultaneously. A key idea of the model is that labor supply functions are connected through the wages of the family members and through the time of household work. Since household work can be carry out by any of the family members, changes in wages may mean that some members can work more hours at home, giving extra time to the others to work in the market. The theoretical results in the interior case show that the effect of wages on the hours dedicated to child labor can be decomposed in the standard income and substitution effect, plus a new effect, the "household

[^1]work effect". This latter effect shows the substitution between child labor and household work when the child wage increases. In the analysis of corner solutions, I find the conditions under which the child would participate in the labor market and/or in household work. Essentially, it depends on the comparison of the marginal returns of alternative activities (the "reservation wage"). Finally, I repeat the analysis when the family faces a subsistence level restriction (the minimum level of consumption for survival), a common fact in less developed countries.

In Chapter 2 the model presented in Chapter 1 is estimated by econometric techniques using Peruvian data. Unlike other papers on child labor time allocation, this chapter estimates the child's labor supply and household work while taking into account the child's wage and the wages of other family members. This requires estimation technique to deal with sample selection with double selectivity since most of the equations include child and mother's wage, which are observed only when they participate and work in the labor market. The main result of this chapter is that wages are relevant when it comes to assigning chores at home and determining the hours that the child works in the labor market. The parameters of the home production function and some of the family utility function were also estimated. All data was taken from the Peruvian Living Standard Measurement Survey of years 1997 and 2000.

In Chapter 3, I go one step forward and analyze the consequences of child labor and household work on school attainment, which is measured by the Years of Schooling-Age ratio and the probability of attaining a high level of education. TO do this, I estimate a model of distributed lags where the current outcomes depend on present and past values of hours of child labor and household work. The econometric estimation shows that, for the younger group of individuals, neither household nor past child labor affect significantly school attainment. For the other age groups, household work has limited effect on the outcomes, but child labor has a clear negative and significant effect on school attainment, in the short and/or the long run.

## CHAPTER I

# CHILD LABOR, HOME PRODUCTION AND THE FAMILY LABOR 

## SUPPLY


#### Abstract

Recent literature on child labor has developed models that explain the determinants of child labor and their effects on the labor market. Many of them relate child labor with poverty, and have given explanations like those that claim child labor occurs because it is a "strategy of survival," because children are exploited by parents, or because credit constraints prevent the children from attending school. In the case of poor peasant economies, child labor is understood as a cost reduction strategy of small family businesses.


However, there is an aspect that has not been dealt in depth in the literature: there is a time consuming activity, "household work," which may not only affect the labor supply of family members but also create links among them. Surveys show that individuals spend many hours at home doing chores ${ }^{4}$. Since this task can be performed by any of the household members, if one individual

[^2]works more hours doing chores, then the others may have extra time to distribute among their activities, including work in the labor market. For example, if household work is carried out by the children of the home, this offers additional hours to the adults to work in the labor market, increasing the aggregate family income.

Household chores consume the time of adults and children. There must be some kind of rule to decide who does the chores, who works in the labor market, how many hours children study, etc. Usually, adults engage in three activities: work in the labor market, work at home doing chores and leisure activities. On the other hand, children may engage in four activities: studying, working in the labor market, working at home and enjoying free time from duties. The wages each individual may earn working in the labor market have an important role in the intra-household allocation of time. This finding relies on two key assumptions: (a) a family planner decides how to allocate the time of each member among their different activities, and (b) the allocation of time depends on the marginal returns of the activities.

In this context, higher wages would imply an increase in the labor supply (provided that the substitution effect is grater than the income effect), and a decrease in the hours spent in other activities. Moreover, the decision of how
many hours a child should dedicate to study, work in the labor market, work at home and do leisure activities depend not only on the salary he or she can receive in the labor market but also on the salaries of the parents ${ }^{5}$. The analysis is complex because an increase in parents' wages may mean a reduction in parents' household work and an increase in child's household work. Thus, we would observe a reduction in child's labor supply and a reduction in hours of study. Nevertheless, this effect could be offset by an income effect if parents' wages increase enough to hire housekeeping services in the labor market, which would give the child more time to study.

In summary, there exist many intra-household decisions that determine simultaneously not only the supply of child labor, but also the hours dedicated to education, the labor supply of the parents and the hours that the members dedicate to household work. The great majority of studies on this theme have ignored the role of household work and its important role in the labor supply decisions of the parents and children.

This chapter presents a model of family labor supply that includes child labor and production of household work. The main objective is to study the effect of household work on the labor supply, and the determinants of those two

[^3]activities. The questions this research addresses are: how does household work affect the child labor supply and the parents' labor supply, how do changes in child's and parents' wages affect household work, the labor supplies and the hours spent in child's education? The approach I use here is the theory of allocation of time and the family labor supply, which permits to study carefully intra-family decisions that family members take when the labor supply and home production are determined. Carefully using the family labor supply approach can shed light on some of the facts that earlier models cannot, for the most part, explain. The same analysis is repeated when the family income is so low that it reaches the subsistence level.

The model of family labor supply that would be the base for this research is the standard model in the literature as presented by Richard Blundell and Thomas MaCurdy with some new features. Nevertheless, my model is, in some sense, an extension and application to child labor of the models presented by Reuben Gronau and Mark Rosenzweig. The former shows the determination of leisure, home production and work in the market for a single individual that faces time constraints. The latter present a model where a couple (husband and wife) allocate time between home production (in a small family business) and work in the market. This chapter also shares ideas with the work of Nancy Birdsall and her
joint work with Susan E. Cochrane, who introduced the idea of the schooling model and the effect of parents' wages on schooling ${ }^{6}$.

The chapter is organized as follows: the first section presents a literature review on child labor, family labor supply and home production; the second section presents a theoretical model of family labor supply with home production. The model is solved using the Kuhn-Tucker method, paying special attention to the possible corner solutions of the variables. The third section presents comparative static results. The substitution and income effects on household work and market labor of changes in wages and unearned income are shown and explained in the interior solution case. In the fourth section, a complete analysis of corner solutions and the appropriate opportunity costs (shadow prices) of the activities are presented. In the fifth section, the implications of the model are compared to the situation in which the family is at subsistence level (the minimum level of consumption for survival) and I find the "slope" of the child labor supply

[^4]at the subsistence level, a discussion point in child labor literature. The sixth section shows an example of the model, using a particular specification of the functions. The last section presents the main conclusions of the chapter.

## Overview of Literature

As I mentioned in the introduction, the model I present in this paper is based on models of family labor supply and the theory of allocation of time. In terms of the allocation of time, Reuben Gronau formalized the trichotomy of work in the market, work at home, and leisure for a single individual. In his model, the distribution of time depends on the wage, and changes in the exogenous income do not affect household work except when the individual does not work at all in the market. An increase in the wage reduces household work, but the effect on leisure time and work in the market depends on a substitution and income effect ${ }^{7}$.

Mark Rosenzweig presents a model of family labor supply of a husband and a wife where they also work in a family business. In his model, the work in the family business has an effect on the labor supply functions of the family members. His model has no applications to child labor. On the other hand, Nancy

[^5]Birdsall and Susan Cochrane develop a model of time allocation that explains the determinants of schooling. In her model, schooling and child labor are decisions taken by the family, and they depend on the wages of each individual in the household. In a more general framework, Deborah Levison is concerned with the multiple activities of children in a developing country, including schooling. She analyzes the effects of changes in children's and mother's wages on what she calls "total home production time of a specific child," which includes time spend on child care, home maintenance and education ${ }^{8}$. Unlike my research, her paper does not separate education from home production.

Many papers have analyzed different aspects of the family labor supply approach. Ashenfelter and Heckman focus on the estimation of the substitution and income effect in the family labor supply model. The peasant family labor supply has been analyzed in papers like that of Hanan Jacoby. The relationship between child labor, fertility and schooling in peasant economies is studied by Mark Rosenzweig and Robert Evenson. A model with labor supply and multiple activities of the family members is analyzed, applied and estimated to rural areas by John L. Newman and Paul Gertler ${ }^{9}$.

[^6]Many works have been written on child labor around the world ${ }^{10}$.
However, the family labor supply approach has been applied to child labor by not many authors, and then usually in empirical papers. For example, Sonia Bhalotra's paper focuses its attention on the wage elasticities of child labor supply. Using a family labor supply model with child labor but without home production, she states that child labor supply depends on his/her wage, parents wage, exogenous income and household characteristics. Then she finds that when the level of consumption falls to the subsistence level, the wage elasticity of child labor supply is negative because the income effect is stronger than the substitution effect, which forces the child to work more in order to provide more income for his or her family. Unlike her paper, I will include household work and will recalculate the substitution and income effect, and the wage elasticities ${ }^{11}$.

[^7]Drusilla Brown, Alan Deardorff and Robert Stern present a model with child labor and household labor. Their model is based on the idea of comparative advantage and it analyzes the specialization of the family members on market work, home work and leisure. However, their model is very restrictive since it uses ricardian production functions, and the results depend on the comparison of constant marginal productivities at home to the market wages. Their model does not present child labor supply functions nor analyzes the determinants of child's household work ${ }^{12}$.

Several empirical papers estimate the determinants of child labor, schooling and household work. E. Skoufias estimates the determinants of market work, work at home (which includes domestic work and farm work), and schooling in agricultural households in India. Deborah DeGraff, Richard Bilsborrow and Alejandro Herrin, using ideas from the standard time allocation model, points out that time allocation decisions of all household members are interrelated and thus must be viewed as endogenous. Nonetheless, in their empirical model they focus on the time allocation of children at school age only. In a posterior work, Deborah DeGraff and Richard Bilsborrow estimate the same model using the same exogenous variables, but in this case they use the Tobit

[^8]method instead of Probit in the estimation of the determinants of market work and household work. Deborah Levison and Karine Moe analyze household work as a deterrent to schooling. In addition to market work, they propose that household work may present a more significant barrier to schooling for girls than boys. Based on the theoretical framework of home production models and the allocation of time, they estimate the reduced form of the determinants of hours spent on household work and studying ${ }^{13}$.

Several authors study other aspects of the problem. Melissa Binder and David Scrogin use the time allocation framework to estimate the determinants of child work for Mexico. In particular, they focus their attention on the effect of parent and child wages on their decisions. Hideo Akabayashi and George Psacharopoulos investigate the degree to which there is a trade-off between child labor and human capital formation using data of children from Tanzania. These authors analyze the effect of hours of work in the market, work at home and school attendance on the development of reading and mathematical skills, but they treat the allocation of time as endogenous. Ranjan Ray, in an empirical study of

[^9]child labor in Pakistan and Peru, finds that there is a positive relationship between female wages and child labor in Pakistan. In the Peruvian case, the effect of an increase in parents' wages on child labor is not clear for boys but reduces girl's labor ${ }^{14}$.

In an empirical work, Marcel Kerkhofs and Peter Kooreman identify and estimate a household production model. Based on Gronau's model, they estimate the parameters of a quadratic household production function. They argue that they cannot include in the sample individuals that have a paid job because the sampling rule depends on the labor market status, which is endogenous, and therefore, this would bias the result of the home production estimation. This occurs because individuals with low productivity will be most likely to have a paid job. They do not solve the complete household optimization problem because to do so would require a simultaneous model for the participation and home production decisions, and according to them this analysis would require a specification of the utility function ${ }^{15}$.

[^10]Other analyses of child labor have been written in past years. Most of them provide explanations about the causes of child labor and its effects on labor markets. The papers of Christiaan Grootaert and Ravi Kambur, and Kaushik Basu initiated a discussion of the economic perspective of child labor. Kaushik Basu and Pham Hoang Van presented an equilibrium analysis of a labor market with child labor. Priya Ranjan, Jean-Marie Baland and James Robinson, and Carol A. Rogers and Kenneth Swinnerton focus their attention on capital market restrictions as a main cause of child labor. Sylvain Dessy and Stephane Pallage explain the persistence of child labor (chronic child labor) as a non-desired equilibrium in labor markets ${ }^{16}$.

## The Model

[^11]The model presented in this section adds home production and child labor to a family labor supply model. Suppose that the family has three members: the husband (head of household), the wife (or spouse) and a child. It is assumed that in this family all decisions are made in a dictatorial way (no negotiation among agents).

The family consumes three goods: the aggregated consumption good $(c)$, a good called "household chores" $(Z)$ and the hours of education of the child $(E)$. It is assumed that the family preferences are strictly quasiconcave, and can be represented by a continuous twice-differentiable utility function $U(c, Z, E)$, where $U_{\mathrm{C}}>0, U_{\mathrm{Z}}>0$, and $U_{\mathrm{E}}>0$. Education has been included in the family utility function following altruistic reasons.

The consumption good is bought in the market; in contrast, the "household chores" can be produced at home using wife and child work ( $z_{1}$ and $z_{2}$ respectively), or can be bought in the market in an amount $f_{0}$ at a price P . Then,

$$
Z=f\left(z_{1}, z_{2}\right)+f_{0}
$$

where the function $f($.$) is the home production function. It is assumed that f($.$) is$ strictly concave and twice differentiable.

The husband's labor supply is determined in an earlier step, and I assume he works a fixed number of hours a day (his labor supply is perfect inelastic). Therefore, the husband's income $(Y)$ is constant and exogenous. In this context, the family must decide how much to consume of both goods, how many hours the mother and the child should be employed in the production of the good $Z$, and how many hours the wife and the child will offer to the labor market in order to maximize the family utility.

This family faces some restrictions: the time and budget constraints. The total time allotted to each individual has been normalized to unity. The mother has one unit of time a day that can be employed working at home $\left(z_{1}\right)$, or working in the labor market $\left(H_{1}\right)$ receiving a wage $w_{1}$. The child employs her time in working at home $\left(z_{2}\right)$, studying $(E)$ or working in the labor market $\left(H_{2}\right)$.

The budget constraint for this family is: $c+P \cdot f_{0}=Y+H_{1} \cdot w_{1}+H_{2} \cdot w_{2}$. Finally, let us assume that there are minimum levels of consumption of the two goods, called $c^{*}$ and $Z^{*}$. This means that the family consumption of these goods cannot be below those levels in order to survive.

A summary of the variables in the model is the following:
$c=$ family aggregated consumption
$Y=$ Husband total income (exogenous in this model)
$f_{0}=$ total domestic services bought in the market
$z_{1}=$ hours that wife expends on domestic work
$z_{2}=$ hours that child expends on domestic work
$H_{l}=$ hours of labor supply
$H_{2}=$ hours of child labor
$w_{1}=$ wife's wage
$w_{2}=$ child's wage
$P=$ price of home services
$E=$ Hours of education

In order to simplify the model, I assume that there is only one single period; the family spends all its income in that period, and there is no leisure. The problem that the head of household (the "planner") solves is the following:

$$
\operatorname{Max} \quad U(c, Z, E)
$$

$$
\begin{aligned}
& c, f_{0}, z_{1}, z_{2}, E, H_{1}, H_{2} \\
& \text { s.t. } \\
& \qquad \begin{array}{c}
c+P \cdot f_{0}=Y+H_{1} \cdot w_{1}+H_{2} \cdot w_{2} \\
Z=f\left(z_{1}, z_{2}\right)+f_{0} \\
1=z_{1}+H_{1}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
1=z_{2}+H_{2}+E \\
c \geq c^{*} \\
Z \geq Z^{*} \\
f_{0} \geq 0, z_{1} \geq 0, z_{2} \geq 0, E \geq 0, H_{1} \geq 0, H_{2} \geq 0
\end{gathered}
$$

Notice that the wife and the child are not symmetric since the latter has one more alternative activity: education ${ }^{17}$. Another point to note is that it has been assumed that education is costless.

This problem can be rewritten as

## Max

$$
U\left(c, f\left(z_{1}, z_{2}\right)+f_{0}, E\right)
$$

c, $f_{0,}, z_{1}, z_{2}, E$
s.t.

$$
\begin{gathered}
c+P_{0}=Y+\left(1-z_{1}\right) w_{1}+\left(1-z_{2}-E\right) w_{2} \\
1-z_{1} \geq 0 \\
1-z_{2}-E \geq 0 \\
c \geq c^{*} \\
f\left(z_{1}, z_{2}\right)+f_{0} \geq Z^{*} \\
f_{0} \geq 0, z_{1} \geq 0, z_{2} \geq 0, E \geq 0
\end{gathered}
$$

[^12]The lagrangean to this problem is:

$$
\begin{aligned}
& \mathcal{L}=U(\cdot)+\lambda_{1}\left(Y+\left(1-z_{1}\right) w_{1}+\left(1-z_{2}-E\right) w_{2}-c-P f_{0}\right)+\lambda_{2}\left(c-c^{*}\right)+ \\
& \lambda_{3}\left(f\left(z_{1}, z_{2}\right)+f_{0}-Z^{*}\right)+\lambda_{4}\left(1-z_{1}\right)+\lambda_{5}\left(1-z_{2}-E\right)
\end{aligned}
$$

The first order conditions are:

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}}{\partial c}=U_{C}-\lambda_{1}+\lambda_{2} \leq 0, & c \geq 0 \\
\frac{\partial \mathcal{L}}{\partial f_{0}}=U_{Z}-\lambda_{1} \cdot P+\lambda_{3} \leq 0, & f_{0} \geq 0 \\
\frac{\partial \mathcal{L}}{\partial z_{1}}=U_{Z} f_{1}-\lambda_{1} \cdot w_{1}+\lambda_{3} f_{1}-\lambda_{4} \leq 0, & \mathrm{z}_{1} \geq 0 \\
\frac{\partial \mathcal{L}}{\partial z_{2}}=U_{Z} f_{2}-\lambda_{1} \cdot w_{2}+\lambda_{3} f_{2}-\lambda_{5} \leq 0, & \mathrm{z}_{2} \geq 0 \\
\frac{\partial \mathcal{L}}{\partial E}=U_{E}-\lambda_{1} \cdot w_{2}-\lambda_{5} \leq 0, & \mathrm{E} \geq 0,
\end{array}
$$

and the complementary slackness conditions:

$$
\begin{aligned}
& c \cdot\left(U_{C}-\lambda_{1}+\lambda_{2}\right)=0 \\
& f_{0} \cdot\left(U_{Z}-\lambda_{1} \cdot P+\lambda_{3}\right)=0 \\
& z_{1} \cdot\left(U_{Z} f_{1}-\lambda_{1} \cdot w_{1}+\lambda_{3} f_{1}-\lambda_{4}\right)=0 \\
& z_{2} \cdot\left(U_{Z} f_{2}-\lambda_{1} \cdot w_{2}+\lambda_{3} f_{2}-\lambda_{5}\right)=0
\end{aligned}
$$

$$
E \cdot\left(U_{E}-\lambda_{1} \cdot w_{2}-\lambda_{5}\right)=0
$$

When consumption levels are above the subsistence level, $\lambda_{2}$ and $\lambda_{3}$ equal zero.

## Solution to the Model in the Interior Case

In this section, I solve the model and find the effect of the exogenous variables $Y, w_{1}, w_{2}$ and $P$ on the endogenous variables. In order to do this, I impose and discuss assumptions on the utility function and the home production function.

Let us look at the case in which the restrictions of poverty are not binding $\left(c>c^{*}, Z>Z^{*}\right)$, and assume that all the variables are strictly positive (i.e. the "interior case"), and then $\lambda_{2}, \lambda_{3}, \lambda_{4}$ and $\lambda_{5}$ equal zero. From the first order conditions presented in the previous sub-section and the restrictions of the model we have a system of nine equations and nine unknowns. The equations are the following.

$$
\begin{equation*}
U_{C}=\lambda_{1} \tag{1.1}
\end{equation*}
$$

$$
\begin{gather*}
U_{Z}=\lambda_{1} \cdot P  \tag{1.2}\\
U_{Z} f_{1}=\lambda_{1} w_{1}  \tag{1.3}\\
U_{Z} f_{2}=\lambda_{1} w_{2}  \tag{1.4}\\
U_{E}=\lambda_{1} w_{2}  \tag{1.5}\\
c+P \cdot f_{0}=Y+H_{1} \cdot w_{1}+H_{2} \cdot w_{2}  \tag{1.6}\\
Z=f\left(z_{1}, z_{2}\right)+z_{0}  \tag{1.7}\\
1=z_{1}+H_{1}  \tag{1.8}\\
1=z_{2}+H_{2}+E \tag{1.9}
\end{gather*}
$$

The unknowns are: $f_{0}, z_{1}, z_{2}, Z, H_{1}, H_{2}, c, E$ and $\lambda_{1}$. The lagrange multiplier $\lambda_{1}$ is the marginal utility of income. The first order conditions (1.1) - (1.5) can be rewritten as the following expression:

$$
\begin{equation*}
\lambda_{1}=U_{C}=\frac{U_{Z} f_{1}}{w_{1}}=\frac{U_{Z} f_{2}}{w_{2}}=\frac{U_{E}}{w_{2}}=\frac{U_{Z}}{P} \tag{1.10}
\end{equation*}
$$

Equations (1.10) tell us that in equilibrium the marginal utility of each of the components (in dollars) must be equal to the marginal utility of income.

Solving the model I obtain five important functions: the household work functions $z_{1} \equiv z_{1}\left(w_{1}, w_{2}, Y, P\right)$ and $z_{2} \equiv z_{2}\left(w_{1}, w_{2}, Y, P\right)$, the spouse's labor
supply function $H_{1} \equiv H_{1}\left(w_{1}, w_{2}, Y, P\right)$, the child labor supply function $H_{2} \equiv H_{2}\left(w_{1}, w_{2}, Y, P\right)$ and the education function $E \equiv E\left(w_{1}, w_{2}, Y, P\right)^{18}$.

Taking differentials to equations (1.1) - (1.5), and rearranging in matrix form I have

$$
\left[\begin{array}{cccccc}
U_{C C} & U_{C Z} & U_{C E} & -1 & U_{C Z} f_{1} & U_{C Z} f_{2}  \tag{1.11}\\
U_{C Z} & U_{Z Z} & U_{Z E} & -P & U_{Z Z} f_{1} & U_{Z Z} f_{2} \\
U_{C E} & U_{Z E} & U_{E E} & -w_{2} & U_{E Z} f_{1} & U_{E Z} f_{2} \\
-1 & -P & -w_{2} & 0 & -w_{1} & -w_{2} \\
U_{C Z} f_{1} & U_{Z Z} f_{1} & U_{E Z} f_{1} & -w_{1} & U_{Z Z} f_{1}^{2}+U_{Z} f_{11} & U_{Z Z} f_{1} f_{2}+U_{Z} f_{12} \\
U_{C Z} f_{2} & U_{Z Z} f_{2} & U_{E Z} f_{2} & -w_{2} & U_{Z Z} f_{1} f_{2}+U_{Z} f_{12} & U_{Z Z} f_{2}^{2}+U_{Z} f_{22}
\end{array}\right]\left[\begin{array}{c}
d c \\
d f_{0} \\
d E \\
d \lambda \\
d z_{1} \\
d z_{2}
\end{array}\right]=
$$

$$
\left[\begin{array}{c}
0 \\
\lambda_{1} d P \\
\lambda_{1} d w_{2} \\
-d Y-\left(1-z_{1}\right) d w_{1}-\left(1-z_{2}-E\right) d w_{2}-f_{0} d P \\
\lambda_{1} d w_{1} \\
\lambda_{1} d w_{2}
\end{array}\right]
$$

The comparative static can be performed using Cramer's Rule. After few manipulations I get the expression:
${ }^{18}$ There are two more functions that are not important at this moment: the consumption function $c=c\left(w_{1}, w_{2}, Y, P\right)$ and the demand for housekeeping services $f_{0}=f_{0}\left(w_{1}, w_{2}, Y, P\right)$.

$$
\left[\begin{array}{cccccc}
U_{C C} & U_{C Z} & U_{C E} & -1 & 0 & 0  \tag{1.12}\\
U_{C Z} & U_{Z Z} & U_{Z E} & -P & 0 & 0 \\
U_{C E} & U_{Z E} & U_{E E} & -w_{2} & 0 & 0 \\
-1 & -P & -w_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & U_{Z} f_{11} & U_{Z} f_{12} \\
0 & 0 & 0 & 0 & U_{Z} f_{12} & U_{Z} f_{22}
\end{array}\right]\left[\begin{array}{c}
d c \\
d f_{0} \\
d E \\
d \lambda \\
d z_{1} \\
d z_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 \\
-f_{0} & -H_{1} & -H_{2} & -1 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{1} & 0
\end{array}\right]\left[\begin{array}{c}
d P \\
d w_{1} \\
d w_{2} \\
d Y
\end{array}\right]
$$

which is easier to solve and explain.

The $6 \times 6$ matrix on the left hand side is the Bordered Hessian which must be negative definite in order to have a maximum. Given the assumptions of strict quasiconcavity of $U$ and strict concavity of $f$, the determinant of the $6 \times 6$ matrix is negative, and it is equal to $|\Theta| \cdot \Delta \cdot U_{Z}^{2}$, where $|\Theta|<0$ is the determinant of the upper-left $4 \times 4$ matrix, and $\Delta=f_{11} \cdot f_{22}-f_{12}^{2}>0$.

The system suggests that the variables $z_{1}$ and $z_{2}$ can be solved separately from the other variables ${ }^{19}$. The derivatives are:

$$
\frac{\partial z_{1}}{\partial w_{1}}=\frac{f_{22}}{P} \cdot \frac{1}{\Delta}<0
$$

$$
\frac{\partial z_{2}}{\partial w_{1}}=-\frac{f_{21}}{P} \cdot \frac{1}{\Delta} \geq o r \leq 0
$$

[^13]\[

$$
\begin{array}{ll}
\frac{\partial z_{1}}{\partial w_{2}}=-\frac{f_{12}}{P} \cdot \frac{1}{\Delta} \geq o r \leq 0 & \frac{\partial z_{2}}{\partial w_{2}}=\frac{f_{11}}{P} \cdot \frac{1}{\Delta}<0 \\
\frac{\partial z_{1}}{\partial Y}=0 & \frac{\partial z_{2}}{\partial Y}=0 \\
\frac{\partial z_{1}}{\partial P}=\frac{\left(f_{1} f_{21}-f_{2} f_{11}\right)}{P} \cdot \frac{1}{\Delta}>0 & \frac{\partial z_{2}}{\partial P}=\frac{\left(f_{2} f_{12}-f_{1} f_{22}\right)}{P} \cdot \frac{1}{\Delta}>0
\end{array}
$$
\]

The derivatives have those signs provided that the $f$ function is strictly concave, $f_{11}<0, f_{22}<0$, and the cross derivatives $f_{12}, f_{21}$ have the same sign and magnitude (positive, negative or zero).

These assumptions mean that the marginal product is decreasing for both inputs and the production function exhibits decreasing returns to scale. Notice that neither $z_{1}$ nor $z_{2}$ depends on the husband's exogenous income $Y^{20}$. It is more difficult to explain the sign of the derivatives $\partial z_{1} / \partial w_{2}$ and $\partial z_{2} / \partial w_{1}$. Both depend on the cross derivative $f_{i j}$, which could be positive, negative or zero ${ }^{21}$. This means that the marginal product of one factor could increase, decrease or not change when more units of the other factor are used. For example, if the cross derivative is positive (the two factors are "complements"), an increase in $w_{1}$ (wife's wage)

[^14]will cause less demand of $z_{1}$ and then a reduction in the marginal product of the child's household work $z_{2}$. Consequently, less child's household work will be demanded by the household. We would observe the opposite effect if the cross derivative $f_{i j}$ were negative (factor are "substitutes").

At this point, it is easy to get the derivatives of the wife labor supply function $H_{1} \equiv H_{1}\left(w_{1}, w_{2}, Y, P\right)$ since they are the opposite to the derivatives of $z_{1}$ (see equation 1.8), then:

$$
\frac{\partial H_{1}}{\partial w_{1}}>0 \quad \frac{\partial H_{1}}{\partial w_{2}} \geq o r \leq 0 \quad \frac{\partial H_{1}}{\partial Y}=0 \quad \frac{\partial H_{1}}{\partial P}<0
$$

The woman labor supply curve is increasing in $w_{1}$ as usual, and it does not depend on the exogenous income $Y$. What is new is that this labor supply may depend on the child wage.

Now let's calculate the derivatives for the other endogenous variables. Using Cramer's Rule and after few manipulations, the derivatives of the education variable are:

$$
\frac{\partial E}{\partial Y}=\frac{1}{|\Theta|}\left|\begin{array}{lll}
U_{C C} & U_{C Z} & -1  \tag{1.13}\\
U_{C Z} & U_{Z Z} & -P \\
U_{E C} & U_{E Z} & -w_{2}
\end{array}\right|
$$

$$
\begin{gather*}
\frac{\partial E}{\partial w_{1}}=H_{1} \frac{\partial E}{\partial Y}  \tag{1.14}\\
\frac{\partial E}{\partial w_{2}}=\left(\frac{\partial E}{\partial w_{2}}\right)_{U=\bar{U}}+H_{2} \frac{\partial E}{\partial Y}
\end{gather*}
$$

Equation (1.13) shows the effect on the hours of study of a change in the exogenous income. The sign of that effect is ambiguous unless additional restrictions are imposed ${ }^{22}$. If that derivative is positive, education will be a normal good; otherwise, it will be inferior.

Equation (1.14) shows that the effect of a change in mother's wage is proportional to the hours she works, and the sign depends on whether education is a normal good or an inferior good. Equation (1.15) shows the effects of changes in child wage on the hours of education. I have decomposed those effects in the income and substitution effect. It can be shown that the substitution effect is

$$
\left(\frac{\partial E}{\partial w_{2}}\right)_{U=\bar{U}}=\frac{\lambda_{1}}{|\Theta|} \cdot\left[2 P U_{C Z}-U_{Z Z}-P^{2} U_{C C}\right]<0
$$

This derivative is negative given the assumption of strict quasiconcavity of the utility function and the fulfillment of the second order condition. This means

[^15]that, holding the utility constant, an increase in child wage will reduce the hours of education.

On the other hand, the sign of the income effect depends on whether education is a normal or inferior good, and its size depends on the magnitude of $H_{2}$ (child labor). Common sense tells us that it is likely that it is a normal good. Therefore, the two effects go in opposite directions and then the sign of the derivative is ambiguous. An increase on child wage will increase education because the family income is higher and it is able to buy more units of this good (income effect). However, the opportunity cost of education is higher and the child should work more hours in the labor market. Consequently, the child should study fewer hours (substitution effect).

Now I am able to present the derivatives of the child labor supply function $H_{2} \equiv H_{2}\left(w_{1}, w_{2}, Y, P\right)$. From equation (1.9) I obtain $\partial H_{2} / \partial w_{j}=-\partial E / \partial w_{j}-\partial z_{2} / \partial w_{j}, j=1,2$, and $\partial H_{2} / \partial Y=-\partial E / \partial Y$, therefore

$$
\begin{gather*}
\frac{\partial H_{2}}{\partial w_{1}}=\underbrace{-\frac{\partial z_{2}}{\partial w_{1}}}_{H W E}+\underbrace{\frac{\partial H_{2}}{\partial Y} H_{1}}_{I E<0}  \tag{1.16}\\
\frac{\partial H_{2}}{\partial w_{2}}=-\underbrace{\frac{\partial z_{2}}{\partial w_{2}}}_{H W E>0}-\underbrace{\left(\frac{\partial E}{\partial w_{2}}\right)_{U=\bar{U}}}_{S E>0}+\underbrace{\frac{\partial H_{2}}{\partial Y} H_{2}}_{I E<0} \tag{1.17}
\end{gather*}
$$

The first element in the right hand side of equation (1.16) is the "household work effect" $(H W E)$ because it is the effect due to a change in the demand for child's household work. Its sign depends on the sign of the cross derivative $f_{21}$. The second element is the standard income effect (IE), which is negative under the assumption of normality of the education. There is no substitution effect in this equation.

Equation (1.17) says that the slope of the child labor supply curve could be positive or negative. The first element in the right hand side is the "household work effect", which is positive. A raise in $w_{2}$ will reduce child's household work and increase child market labor. The second element is the substitution effect $(S E)$. The sign is positive since a higher wage represents fewer hours dedicated to study and more hours dedicated to market work. The third element is the income effect, which is negative under the assumption of normality of education. An increase in child wage also increases the family total income and the demand for education will increase too. This reduces the supply of child's market labor ${ }^{23}$.

[^16]
## Corner Solutions and Shadow Prices

The previous analysis applies to the interior case. Nevertheless, in the real world it is very frequent to observe corner solutions in the variables $z_{1}, z_{2}, H_{1}, H_{2}$ and $E$. In that case, some of those variables can take the value zero (or one) and equation (1.10) does not hold anymore. The decision of to work or not to work is analyzed in the literature by comparing the "reservation wages" and the market wages. Indeed, equation (1.10) holds if I replace the observed wages and prices with the "shadow prices". In this model, the analysis is a bit complex since there are several possibilities of corner solutions. As before, I will do the analysis in the non-poverty case, which is $\left(c>c^{*}, Z>Z^{*}\right)$ and which implies that $\lambda_{2}$ and $\lambda_{3}$ are zero.

When both the wife and the child work in the job market $\left(H_{1}>0, H_{2}>0\right)$ receiving wages $w_{1}$ and $w_{2}$ per hour, and the child studies a positive number of hours, the opportunity cost of one hour employed in the production of the good $Z$ is just the market salary. In that case, the wife works some hours at home if the marginal return of the wife's household work at $z_{1}=0$ is greater than the market wage. Let me define that marginal return or "shadow price" as $\left.w_{1}^{Z} \equiv \frac{U_{Z} \cdot f_{1}}{\lambda}\right|_{z_{1}=0}$ where $U_{\mathrm{Z}}$ is the marginal utility of household chores, $f_{1}$ is the
marginal product of wife's household work, and $\lambda$ is the marginal utility of income ${ }^{24}$. Thus,

$$
\begin{align*}
z_{1} & =z_{1}\left(w_{1}, w_{2}, Y, P\right) & & \text { if } w_{1}<w_{1}^{Z}  \tag{1.18}\\
& =0 & & \text { Otherwise }
\end{align*}
$$

Now, let's see what determines the participation of wives in the labor market. Define the "reservation wage" as $\left.w_{1}^{H} \equiv \frac{U_{Z} \cdot f_{1}}{\lambda}\right|_{H_{1}=0}$. Following the KuhnTucker conditions, the wife's labor supply function is:

$$
\begin{align*}
H_{1} & =H_{1}\left(w_{1}, w_{2}, Y, P\right) & & \text { if } w_{1}>w_{1}^{H}  \tag{1.19}\\
& =0 & & \text { Otherwise }
\end{align*}
$$

Notice that $w_{1}^{Z}>w_{1}^{H}$ because the marginal product is decreasing and $\lambda$ is constant. Therefore, for any wage below $w_{1}^{H}$ we observe $H_{1}=0$ and $z_{1}>0$; for any wage in between $w_{1}^{H}$ and $w_{1}^{Z}$ we observe $H_{1}>0$ and $z_{1}>0$; and for any wage above $w_{1}^{Z}$ we observe $H_{1}>0$ and $z_{1}=0$. Figure 1 shows three regions defined by these thresholds along the line.

[^17]

Figure 1. Regions defined by spouse's shadow wages

On the other hand, the child can perform three activities: $H_{2}, z_{2}$ and $E$. In the interior solution, the return of each activity must be equal to the others. From equation (1.10), the marginal return of child labor $\left(w_{2}\right)$ equals the marginal return of child's household work $\frac{U_{Z} \cdot f_{2}}{\lambda}$, and equals the marginal return of education $\frac{U_{E}}{\lambda}$.

$$
\begin{equation*}
w_{2}=\frac{U_{Z} \cdot f_{2}}{\lambda}=\frac{U_{E}}{\lambda} \tag{1.20}
\end{equation*}
$$

The second and third expressions are decreasing in $z_{2}$ and $E$ respectively, and then an interior solution is possible ${ }^{25}$. However, when we have inequality signs in (1.20) and the variables $\left(H_{2}, z_{2}, E\right)$ reach their minimum values, we observe corner solutions on one or more of these variables.

[^18]In general terms, we will observe that one of those variables reaches the value zero if at least one of the other variables always has a higher marginal return.

I define the shadow price or opportunity cost of the first hour of child's household work as $w_{2}^{Z} \equiv \max \left\{\left.w_{2}\right|_{z_{2}=0},\left.\frac{U_{E}}{\lambda}\right|_{z_{2}=0}\right\}$, and then:

$$
\begin{align*}
z_{2} & =z_{2}\left(w_{1}, w_{2}, Y, P\right) & & \text { if }\left.\frac{U_{Z} \cdot f_{2}}{\lambda}\right|_{z_{2}=0} \geq w_{2}^{Z}  \tag{1.21}\\
& =0 & & \text { Otherwise }
\end{align*}
$$

Likewise, in the case of the child labor supply $H_{2}$, I define the reservation wage as $w_{2}^{H} \equiv \max \left\{\left.\frac{U_{Z} \cdot f_{2}}{\lambda}\right|_{H_{2}=0},\left.\frac{U_{E}}{\lambda}\right|_{H_{2}=0}\right\}$. Hence, the child works in the labor market when $w_{2} \geq w_{2}^{H}$. I redefine the child labor supply function as follows:

$$
\begin{align*}
H_{2} & =H_{2}\left(w_{1}, w_{2}, Y, P\right) & & \text { if } w_{2} \geq w_{2}^{H}  \tag{1.22}\\
& =0 & & \text { Otherwise }
\end{align*}
$$

The level of education is also censored. This variable takes the value zero
when $\left.\frac{U_{E}}{\lambda}\right|_{E=0} \leq \max \left\{w_{2}, \frac{U_{Z} \cdot f_{2}}{\lambda}\right\}$.

Finally, let me present an additional interpretation for the corner solutions of $z_{1}$ and $z_{2}$. As we know, the first two variables solved in the model are $z_{1}$ and $z_{2}$. In the interior case (as it was mentioned before), I get the tangency condition:

$$
\begin{equation*}
\frac{f_{1}}{f_{2}}=\frac{w_{1}}{w_{2}} \tag{1.23}
\end{equation*}
$$

where $f_{i}$ is the Marginal Product of $z_{i}$. In the case of corner solutions, it is not difficult to show that

$$
\begin{array}{lll}
z_{1}=0, z_{2}>0 \text { if } & \frac{f_{1}}{f_{2}} \leq \frac{w_{1}}{w_{2}^{Z}} \\
z_{1}>0, z_{2}=0 \text { if } & \frac{f_{1}}{f_{2}} \geq \frac{w_{1}}{w_{2}^{Z}}
\end{array}
$$

where $w_{2}^{Z}$ was defined above. As a result, the existence of positive hours of child's household work depends on the parameter $w_{1}$, the marginal productivities and the opportunity cost of household work ${ }^{26}$.

The child labor supply at the subsistence level $c=c^{*}$ and $Z=Z^{*}$

It is interesting to analyze these effects when a family reaches the subsistence level restriction. In Bhalotra's paper, the slope of the child labor supply function is calculated at the subsistence level. In this section, I do the same and compare the results with hers. Given that the family is constrained to these levels, the internal allocation of resources could be different with respect to the previous case.

The mathematical problem is similar to that presented in the previous section, but in this case $c=c^{*}$ and $Z=Z^{*}$. The Kuhn-Tucker conditions in the interior case are:

$$
\begin{equation*}
U_{C}+\lambda_{2}=\lambda_{1} \tag{1.24}
\end{equation*}
$$

[^19]\[

$$
\begin{align*}
& U_{Z}+\lambda_{3}=\lambda_{1} \cdot P  \tag{1.25}\\
& \left(U_{Z}+\lambda_{3}\right) f_{1}=\lambda_{1} w_{1} \\
& \left(U_{Z}+\lambda_{3}\right) f_{2}=\lambda_{1} w_{2} \\
& U_{E}=\lambda_{1} w_{2}
\end{align*}
$$
\]

And the constraints:

$$
\begin{align*}
& c+P \cdot f_{0}=Y+H_{1} \cdot w_{1}+H_{2} \cdot w_{2}  \tag{1.29}\\
& c=c^{*} \tag{1.30}
\end{align*}
$$

$$
\begin{align*}
& f\left(z_{1}, z_{2}\right)+f_{0}=Z^{*}  \tag{1.31}\\
& 1=z_{1}+H_{1}  \tag{1.32}\\
& 1=z_{2}+H_{2}+E \tag{1.33}
\end{align*}
$$

Taking differentials to equations (1.24) to (1.31), and using Cramer's Rule, the derivatives of the household work functions are exactly the same expressions as those in the non-subsistence level case ${ }^{27}$. The derivatives of the education function are:

$$
\begin{align*}
& \frac{\partial E}{\partial Y}=\frac{1}{w_{2}}>0  \tag{1.34}\\
& \frac{\partial E}{\partial w_{1}}=H_{1} \frac{\partial E}{\partial Y}
\end{align*}
$$

[^20]\[

$$
\begin{equation*}
\frac{\partial E}{\partial w_{2}}=H_{2} \frac{\partial E}{\partial Y} \tag{1.36}
\end{equation*}
$$

\]

Notice that unlike equation (1.13), in this case the sign of (1.34) is positive for sure. Consequently, education is a normal good at this level.

Given equations (1.32) and (1.33), the derivatives of the child labor supply are:

$$
\begin{array}{r}
\frac{\partial H_{2}}{\partial Y}=-\frac{1}{w_{2}}<0  \tag{1.37}\\
\frac{\partial H_{2}}{\partial w_{1}}=\underbrace{-\frac{\partial z_{2}}{\partial w_{1}}}_{H W E}+\underbrace{\frac{\partial H_{2}}{\partial Y} H_{1}}_{I E<0} \\
\frac{\partial H_{2}}{\partial w_{2}}=\underbrace{-\frac{\partial z_{2}}{\partial w_{2}}}_{H W E>0}+\underbrace{\frac{\partial H_{2}}{\partial Y} H_{2}}_{I E<0}
\end{array}
$$

The sign of the derivatives in equations (1.38) and (1.39) is ambiguous. In (1.38), an increase in mother's wage may reduce child market labor $H_{2}$. It depends on the sign and the magnitude of the cross derivative $\partial z_{2} / \partial w_{1}$. In equation (1.39), the net effect would depend on the magnitude of the derivatives that correspond to the household work effect $(H W E)$ and the income effect (IE). If the child's wage increases, more time would be spent in the market and less time at home ( $H W E$ ). In addition, since a rise in child's wage raises the family income, we will observe
more education and less child labor according to the income effect (IE). Comparing (1.39) to (1.17), the only difference is the substitution effect which does not exist at the subsistence level. This means that the family would not give up more hours of child labor in order to have more education.

In Bhalotra's paper the derivative in equation (1.39) is negative at the subsistence level because her model does not include home production. Her explanation that the slope of the child labor supply is negative at the subsistence level because the family has a target income applies for the second term on the right hand side of equation (1.39). A drop in child wage will cause a drop in the hours of education and consequently an increase in the child labor supply, in order to reach the target income. However, in our model there is a positive effect given by the effect on child's household work. That drop in the child's wage reduces the opportunity cost of child's household work, and increases the demand for child's household work $z_{2}$, reducing the supply of child labor $H_{2}$.

## An Example

In this section I solve the model using a particular utility function and production function. The utility function is:

$$
U(c, Z, E)=\alpha_{C} \ln (c)+\alpha_{Z} \ln (Z)+\alpha_{E} \ln (E)
$$

where $\alpha_{C}+\alpha_{Z}+\alpha_{E}=1$. The home production function is:

$$
f\left(z_{1}, z_{2}\right)=z_{1}^{1 / 2}+\gamma z_{2}^{1 / 2}
$$

which exhibits decreasing returns to scale. The parameter $0<\gamma<1$ shows that the marginal product of child labor is smaller than the mother marginal product. Both marginal products are decreasing, but the cross derivative is zero.

I solved the model for the interior case, when all the variables are positive. Again, I assume that the subsistence level restrictions are not binding. The explicit solutions for the variables are the following:
$z_{1}=\left(\frac{P}{2 w_{1}}\right)^{2} \quad$ Wife household work
$z_{2}=\left(\frac{P \gamma}{2 w_{2}}\right)^{2} \quad$ Child household work
$H_{1}=1-\left(\frac{P}{2 w_{1}}\right)^{2} \quad$ Wife labor supply
$H_{2}=1-\left(1+\alpha_{E}\right)\left(\frac{P \gamma}{2 w_{2}}\right)^{2}-\frac{\alpha_{E}}{w_{2}}\left(Y+w_{1}+w_{2}\right)-\frac{\alpha_{E}}{w_{2}} \cdot \frac{P^{2}}{4 w_{1}} \quad$ Child labor supply

$$
\begin{array}{ll}
Z=\frac{\alpha_{Z}}{P} \cdot\left(Y+w_{1}+w_{2}+\frac{P^{2}}{4 w_{1}}+\frac{P^{2} \gamma^{2}}{4 w_{2}}\right) & \text { Total demand for household chores } \\
c=\alpha_{C} \cdot\left(Y+w_{1}+w_{2}+\frac{P^{2}}{4 w_{1}}+\frac{P^{2} \gamma^{2}}{4 w_{2}}\right) & \text { Household consumption } \\
E=\frac{\alpha_{E}}{w_{2}} \cdot\left(Y+w_{1}+w_{2}+\frac{P^{2}}{4 w_{1}}+\frac{P^{2} \gamma^{2}}{4 w_{2}}\right) & \text { Child's education }
\end{array}
$$

Notice that $f_{12}=f_{21}=0$, then the demand for child's household work does not depend on wages of other family members. Here the income effect can be seen clearly because some of the variables depend on the full income $\left(Y+w_{1}\right.$ $+w_{2}$.

Using these results for this particular example, I can discuss under what values of the exogenous variables we would observe child market labor. To do this, first, let us draw the combinations of $\left(Y, w_{1}\right)$ such that $H_{2}=0, c=c^{*}$ and $Z=Z^{*}$. In this particular example, $f_{21}=0$ then the three curves have the same slope. They are downward sloping and concave to the origin ${ }^{28}$.

Figure 1 shows the level curve $H_{2}=0$ : all the combinations of father's income and mother wage that produce exactly zero hours of child labor. Points to

[^21]the left of $\mathrm{H}_{2}=0$ represent positive child labor (indeed, there exist several level curves with $\mathrm{H}_{2}>0$ ). Points to the right of $\mathrm{H}_{2}=0$ also represent zero hours of child labor because labor cannot be negative. Positive changes in child wage ( $w_{2}$ ) shift the curve to the right, and negative changes to the left.

Likewise, the level curves $c=c^{*}$ and $Z=Z^{*}$ show the combinations of mother's wage and husband's income such that the family consumption reaches the minimum levels. To avoid unnecessary complications, let me assume that both curves lay one over the other, and that occurs if $c^{*} / \alpha_{C}=P \cdot Z^{*} / \alpha_{Z}$. Points to the left represent levels of consumption below the subsistence level, and so, they are ruled out. Points to the right represent levels of consumption above the subsistence level. In figure 2 , the shaded area represents combinations of $\left(Y, w_{1}\right)$ where child labor exists.

Likewise, I can find the same curves in the plane ( $Y, w_{2}$ ) given $w_{1}$. Following our example, the subsistence level curves are still parallel and downward sloping and the slope of the $H_{2}=0$ curve is positive. Figure 3 is similar to figure 2 in the sense that it presents the regions where child labor is observed. What this figure says is that child labor will be observed only if $w_{2}$ is
higher than a certain critical level $w_{2}^{* *}$, given a value of $w_{1}$. This critical value is exactly the child's wage $w_{2}$ that makes curve $H_{2}=0$ lay over curve $\mathrm{c}=\mathrm{c}^{*}, \mathrm{Z}=\mathrm{Z}^{*}$ in figure 2. In addition to this, an increase in mother's wage $w_{1}$ shifts both curves downward, but $w_{2}^{* *}$ does not change. This value depends on the preference parameters, the price $P$ and the subsistence values $\mathrm{c}^{*}$ and $\mathrm{Z}^{*}$.


Figure 2. Existence of child labor in the plane (Y, $w_{1}$ )


Figure 3.Existence of child labor in the plane (Y, w $w_{2}$ )

## Conclusions to Chapter 1

The model presented here shows that the phenomenon of child labor is not restricted to families in the subsistence level, as the Basu and Van model states ${ }^{29}$. We can observe child labor in families that do not operate in the subsistence level.

[^22]The determinants of the child's household work and wife's household work have been found. Household work functions depend on the wages of the family members and the price of substitutes in the market but not on the exogenous income. The model also shows that the variables related to home production are solved prior to the determination of the labor supply functions, which is consistent with Rosenzweig's work and by Brown, Deardorff and Stern's work ${ }^{30}$.

As I expected, the introduction of household work affects the labor supply of the wife and the child. In addition to the standard income and substitution effects, a third effect related to household work may affect the derivatives of the labor supply functions and the education function. That effect shows how changes in wages of individual members may reallocate the time dedicated to household chores.

In the analysis of the slope of the child labor supply at the subsistence level, I show that the Bhalotra finding may overstate the value of that slope (and consequently overestimate the value of the corresponding elasticity). This happens because the omission of home production in her model yields a negative slope, but in our model that derivative has a negative and a positive component.

[^23]
## CHAPTER II

## ESTIMATION OF A HOUSEHOLD PRODUCTION FUNCTION AND THE CHILD LABOR SUPPLY

The goal of this chapter is to estimate a model of time allocation of family members including children, when it is assumed that parents allocate their time between market work and household work and the children allocate their time between market work, household work and study. Household work is understood as work performed at home involving the production of output for direct family consumption, but not for market sale. The economic model is a standard static model of family labor supply with home production where the labor supply of family members, household work and hours of education are solved for simultaneously. The main hypothesis is that those functions are connected through the wages of the family members and through the time family members spend on household work. Since this activity can be carried out by adults and children, changes in wages may cause some members to work more (or fewer) hours at home, and spending more (or fewer) hours working in the market. Therefore, this research attempts to answer the following question: Is it true that wages play an important role in allocation of time, and to what extent do wages affect household
work and child labor supply? To answer these questions, I use Peruvian data and econometric techniques.

## Related Literature

The economic model estimated in this paper is related to standard models of family labor supply and the theory of allocation of time ${ }^{31}$. The family labor supply and time allocation approach has been recently applied to the child labor literature from a theoretical and empirical point of view. In Bhalotra's work, a theoretical model of child labor is presented, but it does not include household work ${ }^{32}$. Brown, Deardorff and Stern present a theoretical model of child labor with household work, but under restrictive assumptions about the production function ${ }^{33}$.

Several empirical papers estimate the determinants of child labor, schooling and household work using Probit or Tobit methods, while others use

[^24]simultaneous equations methods. In what follows, I review some of those empirical papers stressing two aspects: the econometric method used to estimate the time allocation model, and the way they include wages in their estimations ${ }^{34}$.

Deborah DeGraff, Richard E. Bilsborrow and A. Herrin estimate an econometric model of simultaneous determination of school attendance, market work and household work, using data from the Philippines. They note that time allocation decisions of all household members are interrelated and thus must be viewed as endogenous. However, in their empirical model they focus on the time allocation of school-aged children. They define four mutually exclusive and exhaustive categories: school attendance, market work, household work and leisure. They also define a simultaneous equations model where the endogenous variables are hours allocated to schooling, market work and home work, and each one depends on the other two variables and a set of exogenous covariates related to household and community characteristics. In their regressions they use binary versions of the endogenous variables and estimate the reduced form by Probit. After that, the estimates are used to estimate the structural equations. These authors include in the regressions the logarithm of child wage, which is defined as

[^25]the logarithm of the average community agriculture and service wage for children ${ }^{35}$.

In a posterior work, D. DeGraff and R. E. Bilsborrow ${ }^{36}$ estimate the same model for the same country using the same exogenous variables but this time by the Tobit method instead of Probit in the estimation of the determinants of market work and household work. Probit is still the preferred method in the estimation of the determinant of schooling since the data provides only the enrollment decision but not the hours of work. In the case of hours of household work and market work, the reduced form of the functions is estimated by standard Tobit. Unlike DeGraff, Bilsborrow and Herrin's work, the structural equations are not estimated.

Deborah Levison and Karine Moe ${ }^{37}$ analyze household work as a deterrent to schooling in Peru. In addition to market work, they propose that household work may present a more significant barrier to schooling for girls than boys. Based on the theoretical framework of home production models and the allocation of time, they estimate the reduced form of the determinants of hours worked in household chores and hours spent in school. To do this, they use the Generalized Tobit (sample selection) method. Focusing on unmarried adolescent girls ages 10

[^26]to 19 , first they estimate the determinants of the probability that a girl will participate in schooling or household work. Then, the standard Heckman selection correction method is applied in the estimation of hours worked at home and spent in school the week before the survey. Wages are not included in the regressions.

Melissa Binder and David Scrogin ${ }^{38}$ use the time allocation framework to estimate the determinants of child work in Mexico. In particular, they focus their attention on the effect of parents' wages and child's wages on their labor decisions. Since wages are not observed when an individual does not work, they impute wages of individuals who do not report earnings. The father's wage is predicted by ordinary least squares (OLS); and for the mother and children, they estimate a wage equation and correct the selection bias using the Heckman procedure. They also use proxies of wages (like age) instead of wages. In their estimation, using Probit models, they evaluate the time-allocation model's effectiveness in predicting whether a child works in the market or at home. Then, when imputed wages are included, they estimate by OLS and two stage least squares (2SLS) the determinants of hours spent in work activities (labor force, housework and child care), human capital activities and leisure. In the estimation, observations with zero hours were excluded from the analysis of work activities.

[^27]Martin Ravallion and Quentin Woodon ${ }^{39}$ analyze to what extent child labor can displace schooling, using data from Bangladesh. They study how a change in the price of schooling (through a subsidy) affects both child labor and school attendance. They found that the reduction in the price increased school attendance but the effect on child labor was small. They argue that the common belief that child labor comes largely at the expense of schooling has to be reviewed.

Hideo Akabayashi and George Psacharopoulos ${ }^{40}$ investigate the degree to which there is a trade-off between child labor and human capital formation using data on children from Tanzania. These authors analyze the effect of hours of work in the market, work at home and school attendance on the development of reading and mathematical skills, but treat time allocation as endogenous. In their first step, they perform a Probit estimation of children's school attendance and a Tobit estimation of hours of work and study. In the second step, they use the predicted hours of work and the predicted probability of school attendance to estimate the effects of those activities on the cognitive skills. Wages are not included in any of the regressions.

[^28]In a different work, Marcel Kerkhofs and Peter Kooreman ${ }^{41}$ identify and estimate a household production model. Based on Gronau's model, they estimate the parameters of a quadratic household production function. They argue that they cannot include individuals who have a paid job in the sample because the sampling rule depends on the labor market status, which is endogenous, and therefore, this would bias the result of the home production estimation. This occurs because individuals with low productivity at home will be most likely to have a paid job. They do not solve the complete household optimization problem because this would lead to a simultaneous model for the participation and home production decisions, and according to them this analysis would require a specification of the utility function. They take into account the process of selection extending their structural model ${ }^{42}$ with the inclusion of a bivariate Probit model describing the individuals' employment status (to participate or not in the job market).

## The Empirical Model

In this section, I briefly review the model presented in Chapter 1 and derive the econometric specification. The model is a standard model of time

[^29]allocation where household work has been included as a single activity that the children and one of the parents can perform. The time spent on this activity produces a certain level of output which represents how clean or neat the house is. To simplify the model, it is assumed that there are two parents and only one child who may spend her time studying, working at home doing the chores or working in the labor market. The spouse spends her time in household work or market work. The head of household is the family planner who allocates the time of the spouse and the child to maximize the aggregated family utility $U(c, Z, E)$ where $c$ is the total aggregated consumption, $Z$ the total level of house chores, and $E$ represents the hours the child studies. The planner works full time so his income is constant. Household chores can be produced at home or bought in the market. The home production function $f\left(z_{1}, z_{2}\right)$ is a strictly concave function whose inputs are the hours that the spouse and the child spend at home doing chores. In addition, the family faces a budget constraint, where the income is the sum of the labor income of the parents and the child. The family consumes a composite good and a housekeeping service (if not produced at home). Family members also face time constraints $z_{1}+H_{1}=T$ and $z_{2}+H_{2}+E=T$, which generate trade-offs between the time they spend among activities.

The solution of the model involves four important functions. The first two are the demands for child and spouse's household work $z_{1} \equiv z_{1}\left(w_{1}, w_{2}, P\right)$ and $z_{2} \equiv z_{2}\left(w_{1}, w_{2}, P\right)$, where $z_{1}$ and $z_{2}$ represents the time the spouse and child spend doing the chores respectively, $w_{1}$ and $w_{2}$ are their market wages and $P$ is the market price of housekeeping services. Mathematically, it can be shown that these functions do not depend on the planner's income (Y). The other two important functions are the labor supply functions $H_{1} \equiv H_{1}\left(w_{1}, w_{2}, Y, P\right)$ and $H_{2} \equiv H_{2}\left(w_{1}, w_{2}, Y, P\right)$ of the spouse and the child.

The strategy to estimate the structural parameters of the model is to obtain information from the first order conditions. According to the solution of the theoretical model and assuming the interior solution, the first order conditions yield:

$$
\begin{align*}
& f_{1}=\frac{w_{1}}{P}  \tag{2.1}\\
& f_{2}=\frac{w_{2}}{P}  \tag{2.2}\\
& U_{E}=U_{C} \cdot w_{2}  \tag{2.3}\\
& U_{Z}=U_{C} \cdot P \tag{2.4}
\end{align*}
$$

where $f_{i}$ is the marginal product with respect to input $i$, and $U_{j}$ is the marginal utility with respect to the variable $j$. Equations (2.1) and (2.2) determine the optimal values of the household work variables $z_{1}$ and $z_{2}$ while (2.3) and (2.4) determine the child labor supply and the demand for housekeeping services.

## Econometric Specification of the Home Labor Functions

The first order conditions (2.1) and (2.2) say that the marginal product of inputs must equal the ratio of wages with respect to the price of housekeeping services (the opportunity cost of home labor).

Usually the total output produced at home is not observed; we only observe the time employed in that activity. However, working with the first order conditions we can recover the structural parameters of the production function.

The first step is to define a parametric functional form for the production function. In the theoretical model we assumed the home production function is a
strictly concave function. For empirical purposes it is convenient to assume a quadratic function ${ }^{43}$

$$
\begin{equation*}
f(z)=b^{\prime} z+\left(\frac{1}{2}\right) z^{\prime} \Omega z \tag{2.5}
\end{equation*}
$$

where $z=\left[\begin{array}{ll}z_{1} & z_{2}\end{array}\right], b^{\prime}=\left[\begin{array}{ll}b_{1} & b_{2}\end{array}\right]$, and $\Omega$ is a $2 \times 2$ symmetric negative definite matrix. The first order conditions are:

$$
\begin{align*}
& b_{1}+\omega_{11} z_{1}+\omega_{12} z_{2}=\frac{w_{1}}{P}  \tag{2.6}\\
& b_{2}+\omega_{12} z_{1}+\omega_{22} z_{2}=\frac{w_{2}}{P} \tag{2.7}
\end{align*}
$$

I assume that the parameters $b_{1}$ and $b_{2}$ are a linear combination of individual and household characteristics and an error term.

$$
\begin{equation*}
b_{i}=x_{i}^{\prime} \theta_{i}+\mu_{i} \quad i=1,2 \tag{2.8}
\end{equation*}
$$

where $\mu_{1}, \mu_{2} \sim \mathrm{~N}(0, \Sigma)$.

These equations are a system of structural equations that determine
simultaneously the values of $\mathrm{z}_{1}$ and $\mathrm{z}_{2}$.

[^30]The goal is to estimate the home labor functions derived from equations (2.6) and (2.7) as well as the structural parameters of the production function. Since this is a simultaneous equation problem, one might try to use one of the standard methods in the econometric literature, like the 2SLS method. However, problems arise in the attempt to use this method. There is a significant problem of missing data since wages can be observed only when individuals participate in the labor market. In the reduced form of the system, hours worked at home depend on the wages of both the spouse and the child, and as a consequence, we can use only those observations where both the spouse and the child work in the labor market. This creates a sample selection problem which may bias the parameters estimated by 2 SLS. I would namely use only information of individuals that work in the market, who may be less productive in housework than individuals who stay at home doing chores. Estimation by standard 2SLS gives inconsistent estimates of the parameters due to the sample selection bias.

It is helpful to express equations (2.6)-(2.7) in the standard simultaneous equations notation.

$$
\begin{align*}
& z_{1}=\gamma_{2} z_{2}+\beta_{0}+\beta_{1}\left(\frac{w_{1}}{P}\right)+\boldsymbol{\beta}^{\prime} \boldsymbol{x}_{\mathbf{1}}+u_{1}  \tag{2.9}\\
& z_{2}=\gamma_{1} z_{1}+\alpha_{0}+\alpha_{1}\left(\frac{w_{2}}{P}\right)+\boldsymbol{\alpha}^{\prime} \boldsymbol{x}_{2}+u_{2} \tag{2.10}
\end{align*}
$$

where vectors $\boldsymbol{x}_{\mathbf{1}}$ and $\boldsymbol{x}_{\mathbf{2}}$ may contain common explanatory variables as well as some specific variables, and the error terms $u_{1}$ and $u_{2}$ are normal variables with zero mean and variance-covariance matrix $\Sigma_{u u}$.

The reduced form of system (2.9)-(2.10) is:

$$
\begin{align*}
& z_{1}=\boldsymbol{x}^{\prime} \pi_{1}+v_{1}  \tag{2.11}\\
& z_{2}=\boldsymbol{x}^{\prime} \pi_{2}+v_{2} \tag{2.12}
\end{align*}
$$

where $\boldsymbol{x}$ includes a constant term, $w_{1} / P, w_{2} / P, \boldsymbol{x}_{1}$ and $\boldsymbol{x}_{2}$. The error terms $v_{1}$ and $v_{2}$ are linear combinations of $u_{1}$ and $u_{2}$, and are also normally distributed with zero mean and covariance matrix $\Sigma_{v v}=\left(\Gamma^{-1}\right)^{\prime} \Sigma_{u u} \Gamma^{-1}$, where $\Gamma=\left[\begin{array}{cc}1 & -\gamma_{1} \\ -\gamma_{2} & 1\end{array}\right]$. We can estimate equations (2.11) and (2.12) only when we observe $w_{1}$ and $w_{2}$ at the same time.

To correct for selection bias, we include two more equations representing the decision whether the individuals (spouse and child) participate in the labor market or not.

$$
\begin{align*}
& I_{1}^{*}=A_{1}^{\prime} \psi_{1}+\varepsilon_{1}  \tag{2.13}\\
& I_{2}^{*}=A_{2}^{\prime} \psi_{2}+\varepsilon_{2} \tag{2.14}
\end{align*}
$$

where $I_{1}^{*}$ and $I_{2}^{*}$ are latent variables that determine the participation in the labor market. We observe that, for example, the spouse participates in the labor market if and only if $I_{1}^{*}>0$. The error terms are assumed to have a normal distribution with zero mean, $\operatorname{var}\left(\varepsilon_{1}\right)=\operatorname{var}\left(\varepsilon_{2}\right)=1$ and $\operatorname{cov}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\rho$. Moreover,

$$
\left(\begin{array}{l}
u_{1} \\
u_{2} \\
\varepsilon_{1} \\
\varepsilon_{2}
\end{array}\right) \sim N\left(0,\left(\begin{array}{cc}
\Sigma_{u u} & \Sigma_{u \varepsilon} \\
\Sigma_{\varepsilon u} & \Sigma_{\mathscr{E}}
\end{array}\right)\right)
$$

Equations (2.11) and (2.12) cannot be estimated by OLS since:

$$
E\left(v_{i} / I_{1}^{*}>0, I_{2}^{*}>0\right)=E\left(v_{i} / \varepsilon_{1}>-A_{1}^{\prime} \psi_{1}, \varepsilon_{2}>-A_{2}^{\prime} \psi_{2}\right) \neq 0 .
$$

The procedure we use to estimate the model is an extension of the Heckman-Lee method of estimation of simultaneous equations with selectivity, applied to the case of double selection ${ }^{44}$.
(a) In the first stage, equations (2.13) and (2.14) are estimated using bivariate Probit.

[^31](b) In the second stage, using $\hat{\psi}_{1}, \hat{\psi}_{2}$ and $\hat{\rho}$ we calculate
$$
E\left(v_{i} / I_{1}^{*}>0, I_{2}^{*}>0\right)=\lambda_{i 1} M_{12}+\lambda_{i 2} M_{21} \quad i=1,2
$$
where $\quad M_{i j}=\left(1-\hat{\rho}^{2}\right)^{-1}\left(P_{i}-\hat{\rho} P_{j}\right), \quad P_{j}=\frac{\int_{-A_{1} \hat{\psi}_{1}}^{+\infty} \int_{-A_{2} \hat{\psi}_{2}}^{+\infty} \varepsilon_{j} f\left(\varepsilon_{1}, \varepsilon_{2}\right) d \varepsilon_{1} d \varepsilon_{2}}{F\left(A_{1} \hat{\psi}_{1}, A_{2} \hat{\psi}_{2}, \hat{\rho}\right)}$
and $F$ is a standard bivariate normal c.d.f. ${ }^{45}$. Using the moments of a truncated multivariate normal distribution ${ }^{46}$, let:
\[

$$
\begin{gathered}
c_{1}=-A_{1} \hat{\psi}_{1}, c_{2}=-A_{2} \hat{\psi}_{2}, C_{1}=\left(1-\hat{\rho}^{2}\right)^{-1 / 2}\left(c_{2}-\hat{\rho} c_{1}\right) \text { and } \\
C_{2}=\left(1-\hat{\rho}^{2}\right)^{-1 / 2}\left(c_{1}-\hat{\rho} c_{2}\right) .
\end{gathered}
$$
\]

$P_{1}$ and $P_{2}$ can be expressed as,

$$
\begin{aligned}
& P_{1}=\left\{\phi\left(c_{1}\right)\left[1-\Phi\left(C_{1}\right)\right]+\hat{\rho} \phi\left(c_{2}\right)\left[1-\Phi\left(C_{2}\right)\right]\right\} \cdot F\left(-c_{1},-c_{2}, \hat{\rho}\right)^{-1} \\
& P_{2}=\left\{\hat{\rho} \phi\left(c_{1}\right)\left[1-\Phi\left(C_{1}\right)\right]+\phi\left(c_{2}\right)\left[1-\Phi\left(C_{2}\right)\right]\right\} \cdot F\left(-c_{1},-c_{2}, \hat{\rho}\right)^{-1}
\end{aligned}
$$

where $\phi$ and $\Phi$ are the univariate standard normal p.d.f. and c.d.f. respectively. After that, I regress (2.11) and (2.12) by OLS, including $\hat{M}_{12}$ and $\hat{M}_{21}$ as regressors and calculate the fitted values $\hat{z}_{1}$ and $\hat{z}_{2}$.

[^32](c) In the third stage, I estimate the "structural" equations (2.9) and (2.10) using $\hat{z}_{1}$ and $\hat{z}_{2}$ as regressors. In this case we also have selection bias because,
$$
E\left(u_{i} / I_{1}^{*}>0, I_{2}^{*}>0\right)=E\left(u_{i} / \varepsilon_{1}>-A_{1}^{\prime} \psi_{1}, \varepsilon_{2}>-A_{2}^{\prime} \psi_{2}\right) \neq 0 .
$$

To correct for selection bias, the expressions $\hat{M}_{12}$ and $\hat{M}_{21}$ must be included on the right-hand side of each equation. The coefficients of these variables are the covariances $\operatorname{cov}\left(u_{i}, \varepsilon_{1}\right)$ and $\operatorname{cov}\left(u_{i}, \varepsilon_{2}\right), \quad \mathrm{i}=1,2$, respectively.
(d) There is a fourth stage where structural parameters of the home production function in equation (2.5) can be recovered. Those parameters can be easily obtained by using the estimated parameters of equations (2.9) and (2.10), and the standard errors are obtained using the delta method ${ }^{47}$.

## Econometric Specification of the Child Labor Supply

Having estimated the functions $z_{1}$, the spouse's labor supply $H_{1}$ is automatically determined given the time constraint $z_{1}+H_{1}=T$ under the assumption of no leisure in the model. In the case of the child labor supply and the

[^33]hours of education, having estimated $z_{2}$ and according to the time constraint $z_{2}+H_{2}+E=T$, it is necessary to estimate either the labor supply $H_{2}$ or the hours of education $E$. From equation (2.3) I will derive an econometric specification to estimate the structural parameters of the utility function.

The first step is to estimate a utility function. The only properties that this function must have are strict quasiconcavity and twice-differentiability. A common function which is both tractable and easy to estimate is the C.E.S. function. Let

$$
\begin{equation*}
U(c, Z, E)=\left(\alpha_{C} c^{\theta}+\alpha_{Z} z^{\theta}+\alpha_{E} E^{\theta}\right)^{\frac{1}{\theta}} \tag{2.15}
\end{equation*}
$$

be the utility function with $\alpha_{C}>0, \alpha_{Z}>0, \alpha_{E}>0$ and $-\infty<\theta<1$. The first order condition (2.3) becomes

$$
\begin{equation*}
\alpha_{E} \cdot E^{\theta-1}=\alpha_{C} \cdot c^{\theta-1} \cdot w_{2} \tag{2.16}
\end{equation*}
$$

From here on, I will set the term $P f_{0}=0$, so $c=Y+w_{1} H_{1}+w_{2} H_{2}$ and $E=T-z_{2}-H_{2}{ }^{48}$. Plugging in this terms into (2.16) and after some manipulations I get

[^34]\[

$$
\begin{equation*}
\frac{Y+w_{1} H_{1}+w_{2} H_{2}}{1-z_{2}-H_{2}}=\left(\frac{\alpha_{C}}{\alpha_{E}}\right)^{\frac{1}{1-\theta}} \cdot\left(w_{2}\right)^{\frac{1}{1-\theta}} \tag{2.17}
\end{equation*}
$$

\]

Taking natural logarithm to (2.17), and adding an error term $\varepsilon \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$ we get the linear equation

$$
\begin{equation*}
\log \left(\frac{Y+w_{1} H_{1}+w_{2} H_{2}}{1-z_{2}-H_{2}}\right)=\frac{1}{1-\theta} \log \left(\frac{\alpha_{C}}{\alpha_{E}}\right)+\frac{1}{1-\theta} \log \left(w_{2}\right)+\varepsilon_{i} \tag{2.18}
\end{equation*}
$$

The term on the left hand side contains the endogenous variable $H_{2}$ as well as the endogenous (but pre-determined) $H_{1}$ and $z_{2}$. The estimation of the child's labor supply requires taking the child's wage as an endogenous variable (what we observe is the equilibrium wage, not the minimum wage individual would be willing to accept to participate in the labor market). For that reason and due to the selectivity problem (the inclusion of $w_{2}$ in the regression restricts the sample to working children), I cannot estimate (2.18) directly by OLS.

It is necessary to estimate the child's wage first. Define the following linear wage equation:

$$
\begin{equation*}
\log \left(w_{2 i}\right)=x_{i}^{\prime} \beta+u_{i} \tag{2.19}
\end{equation*}
$$

where $x_{i}$ contains variables that may determine the child's wage, such as sex, age, region, and economic activity. Once $\log \left(\hat{w}_{2}\right)$ is estimated by OLS, I substitute it in (2.18) and regress this equation by OLS which gives consistent estimates of the parameters.

Concerning identification, I can obtain estimates of the structural parameter $\theta$ and the ratio $\alpha_{C} / \alpha_{E}$. However, this is enough information to obtain the slope of the child labor supply function.

## The data

I use Peruvian Living Standard Measurement Survey (LSMS) of years 1997 and 2000 to estimate the model. This survey collects information on employment and time allocation as well as a detailed description of socioeconomic characteristics of the household and contains data on individuals of six years of age and older.

One limitation of these estimations is that they require the observation of wages. In spite of the fact that child labor is a significant concern in Peru, where one of every four children works in an economic activity, only a minority of them
receive a wage. This dramatically reduces the sample size which may affect the consistency of the econometric results. For this reason, I pooled the surveys of 1997 and 2000 in order to increase the sample size. Since a substantial percentage of households were interviewed in both surveys ${ }^{49}$, I included each household only once to avoid possible serial correlation. Therefore, I used the whole sample of 1997 and only those households from 2000 that were not surveyed in 1997.

For empirical purposes, I define a "child" -who may potentially work- as an individual in the household between 6 and 17 years old. However, when I counted the family size, I included all the individuals that belong to a household, regardless the age.

Because the number of "children" in a household varies, I took into account only one child per household when I performed the econometric estimations. It is not feasible to estimate a model with a variable number of children. The criterion to select one child per household was to choose the child that worked the greatest number of hours in the market. If there were no working children in the household, I picked the oldest child in the subset of "children" aged 6 to 17 .

[^35]The variables "Household work" and "Market work" were defined as the hours individuals spent on those activities during a week. Household work is that work performed at home doing household chores, whose output is not intended to be sold in the market. By contrast, market work is defined as any activity (employed or self-employed) with the objective to sell the output in the market.

There is a third labor category, the "Non-paid family work", defined as hours worked in a family business or farm, without receiving a monetary wage. Individuals who are non-paid family workers were excluded from the sample because it seems that their behavior is systematically different than the one I propose in the model. In my model, wages determine the time allocation of family members. In the case of non-paid family workers, since they do not receive wages, other variables determine the participation in economic activities. Consequently, I excluded from the sample all households where at least one of the members (head, spouse or child) is a non-paid family worker.

Concerning unemployed workers, not all of them were included in the sample. The criterion was to include an individual who chose not to work and to exclude individuals that may report zero hours of work due to labor force conditions, beyond their control. Retired, individuals who were handicapped,
unemployed applying to new jobs and waiting for an answer, workers on vacation, sick workers, and workers on strike were excluded from the sample.

To calculate the weekly wages, we used the information provided in the survey on wages and salaries received in the last 7 days in the main job. Since the time unit of this earnings may vary (daily, monthly, quarterly, etc.), the wages were multiplied or divided appropriately by an scalar, to convert to weekly earnings. The main problem with wages is that they are not observed when the individual does not work in the market. I did not impute wages but left them as missing data wherever they were not reported.

Additional restrictions were applied to the sample. Households with no children between the ages of 6 and 17 were excluded. I also excluded households with one parent. In other words, I restricted the sample to households with a household head and spouse, and with at least one "child". Finally, I excluded all cases with missing data in the variables hours of home work and market work.

## Results

## Participation in the Labor Market

The first step is to estimate the bivariate Probit model for the participation of the spouse and child in the labor market. In each equation, I included variables related to individual characteristics such as age, education (in years) and sex, and variables that reveal household characteristics such as household head's wage, number of adults, and number of children less than 18 years old.

The results presented in table 1 are consistent with what standard theory predicts. In the case of the spouse's participation, the variables Age, Age Squared and Education have the correct signs and are significant. The "number of children with ages less than 6 years old" variable has a negative sign and it is significant, which means that this variable is an important barrier to spouse's participation in the labor market. In addition, the head's wage and the income of other household members have a negative sign, which would mean that the probability of participation in the labor market decreases when these variables increase. In contrast, the sign of the non-labor income per capita is positive. It is hard to find an explanation for this result.

Table 1. Probit Estimation of Participation in Labor Market

|  | Coefficient | t-statistic |
| :---: | :---: | :---: |
| Spouse: |  |  |
| Spouse's age | 0.1038 *** | 4.75 |
| Spouse's age square | -0.0012 *** | -4.71 |
| Spouse's education (years) | 0.0288 *** | 3.52 |
| Spouse's sex ( $1=$ male, $0=$ female $)$ | 0.7102 | 1.59 |
| \# of children < 6 years old | -0.1404 *** | -3.84 |
| Urban/Rural (urban=1, rural=0) | 0.0188 | 0.22 |
| Log(head's wage) | $-0.2732 * * *$ | -6.63 |
| $\log$ (non labor income per capita) | 0.0674 ** | 2.08 |
| Log(income of other household members) | -0.0547 *** | -3.25 |
| Constant | -1.0426 ** | -2.19 |
| Child: |  |  |
| Child's age | 0.1758 *** | 7.87 |
| Child's sex ( $1=$ male, $0=$ female $)$ | 0.2600 * | 1.91 |
| \# adults in household | -0.1590 *** | -2.79 |
| \# children < 18 | 0.1575 *** | 4.29 |
| \# girls 11-17 years old | -0.2770 *** | -2.87 |
| Urban/Rural (urban=1, rural=0) | -0.1022 | -0.81 |
| Log(head's wage) | -0.1824*** | -2.83 |
| $\log$ (non labor income per capita) | -0.1307 ** | -2.32 |
| Log(income of other household members) | 0.0898 *** | 2.68 |
| Attends school? ( $1=$ yes, $0=$ no) | -0.9454*** | -7.32 |
| Constant | -1.9091*** | -4.23 |
| $\rho$ (rho) | 0.1860 *** | $\chi^{2}{ }_{(1)}=7.54$ |
| Number of obs. | 1681 |  |
| Log likelihood | -1458.79 |  |
| Wald $\chi^{2}{ }_{(18)}$ | 341.59 |  |
| $\underline{\text { Prob }>\chi^{2}}$ | 0.00 |  |

* significant at $10 \%$ level, ${ }^{* *}$ significant at $5 \%$ level, $* * *$ significant at $1 \%$ level

In the case of childhood labor force participation, the older the child is, the more likely he or she participates in the labor market. This result agrees with
empirical papers on child labor ${ }^{50}$. There is also a greater participation for boys than for girls. The number of adults in the household decreases the probability of child participation. More adults in household mean more individuals who can work, and it is plausible that the household would "buy" more education and more leisure for the child, and consequently we would observe less child labor. The number of girls ages 11 - 17 also has negative impact on the participation in labor market. I expected a positive sign, since girls usually work at home and give more time to boys to work in the market.

Concerning the effect of head's wage, the coefficient on the log of the head's wage is negative. Non labor income also has a negative effect on childhood participation, but the effect of the income of other members is positive. A possible explanation for the latter result is if other members in the family work (like older siblings), the child would feel motivated to work as well. Finally, there exists a negative relationship between school attendance and participation of children in the labor market.

Regarding the other parameters and statistics, the parameter $\rho$, which is the correlation between the error terms in both equations, is positive and significant. This means that whenever we observe a working spouse, it is more likely to

[^36]observe at least one working child in household, and it confirms that the bivariate Probit estimation is the correct method instead of the standard Probit. The Wald statistic of joint significance of the variables shows that the model is a good fit.

## Structural Parameters

The second step involves estimating the model by two-stage least squares method and correcting for sample selection. All the results presented here are compared to the signs of the theoretical derivatives of the functions, as presented in chapter 1. Table 2 presents the results of the estimation of equations (2.9) and (2.10). The sign of the derivative of $z_{1}$ with respect to $z_{2}$ is insignificant and close to zero. The same occurs with the derivative of $z_{2}$ with respect to $z_{1}$. Theory says that a positive sign of this parameter means that the two labor inputs are complements, and a negative sign corresponds to substitutes. Since the parameters are not significant, I am unable to determine the relationship between $z_{1}$ and $z_{2}$.

Table 2. Estimation of the Simultaneous Regression Model

|  | $\begin{gathered} \mathrm{Z}_{1} \\ \text { (Spouse's Housework) } \\ \hline \end{gathered}$ |  | $\mathrm{Z}_{2}$(Child's Housework) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coefficient | t | Coefficient |  | t |
| Household work: |  |  |  |  |  |
| $\mathrm{Z}_{1}$ | -- | -- | 0.0808 |  | 0.41 |
| $\mathrm{Z}_{2}$ | -0.1270 | -0.40 | -- |  | -- |
| Wages: |  |  |  |  |  |
| Log(spouse's wage) | -6.2411 *** | -3.00 | -- |  | -- |
| Log(child's wage) | -- | -- | -3.3202 | * | -1.77 |
| Log(price housekeeping) | 24.9618 *** | 3.58 | -4.8016 |  | -0.69 |
| Individual characteristics: |  |  |  |  |  |
| Spouse's age | -0.2176 | -0.67 | -- |  | -- |
| Spouse's education | -1.1778 ** | -2.22 | -- |  | -- |
| Child's age | -- | -- | 1.8798 | * | 1.93 |
| Child's sex(1=male, $0=$ female $)$ | -- | -- | -6.1234 |  | -2.01 |
| Household characteristics: |  |  |  |  |  |
| \# adults in household | -1.7955 | -0.88 | -2.4570 | ** | -2.27 |
| \# children 0-6 years | -0.5206 | -0.22 | -2.2588 | * | -1.70 |
| Material of Walls: Adobe Material of Walls: Bricks or | 2.8045 | 0.48 | -8.6971 |  | -2.35 |
| Concrete | 2.6460 | 0.48 | -6.7657 |  | -1.98 |
| \# of floors | 7.7182 * | 1.84 | -2.2822 |  | -0.72 |
| Water connection inside dwelling | -10.1384** | -2.17 | 5.8652 |  | 1.35 |
| Sample Selection Variables: |  |  |  |  |  |
| m12 | -16.4023 | -1.21 | 19.4168 | ** | 2.47 |
| m21 | -6.9900 | -1.58 | 1.9672 |  | 0.47 |
| Constant: | 5.0443 | 0.16 | 10.6640 |  | 0.51 |
| Number of observations | 75 |  | 75 |  |  |
| F ( 13, 61) | 4.1 |  | 3.1 |  |  |
| Prob > F | 0.0001 |  | 0.0014 |  |  |
| R-squared | 0.4638 |  | 0.3943 |  |  |
| Adj R-squared | 0.3495 |  | 0.2652 |  |  |

[^37]Concerning the relationship between hours worked at home and market wages, table 2 shows that there is a significant negative relationship between those variables in the two equations, and the parameters are significant different from zero. In the case of the price of housekeeping services, the theory indicated that the relationship between household work and this price was positive. The results confirm this hypothesis in the first regression, but do not confirm in the case of child home labor equation.

Some of the individual characteristics affected the hours spent doing household work. The more educated the spouse was, the fewer hours the spouse worked at home. Spouse's age was not significant in the regression ${ }^{51}$. In the case of child's characteristics, the age and sex variables affected child's hours of household work. Older children participated more in housework than younger children. It is also observed in table 2 that girls work more at home than boys. These results are quite intuitive and expected.

Regarding the group of household characteristics, I included six: number of adults in household, number of children with ages 0-6 years old, two dummy variables describing the materials of walls, the number of floors of the dwelling, and water connection inside dwelling. The first two were significant only in the

[^38]child's regression, and all the signs of the parameters are negative. This means that when more adults are present in household, children work less hours doing house chores. Perhaps, those adults engage in household production, giving more time to children to study or play. Also, the presence of children from 0 to 6 years decreased the hours of child housework. An interpretation of this result is that very young children require the presence of an adult in household, and that adult does some chores, thus reducing the load of older siblings.

Concerning house characteristics, I included four variables to capture the effect of the quality of the house or dwelling and its effect on household work. The results show that in the case of Material of Walls: Adobe and Material of Walls: Bricks/Concrete, children worked less hours at home than the rest of the categories: walls made of cane and mud, stone and mud, wood, matting, and others. These variables were significant only in the child's regression. Something different occurs in the case of number of floors and the water connection inside dwelling variable. They are significant only in the spouse's regression. A larger house with more floors implies more spouse housework, and a water connection inside the dwelling implies less spouse housework. This last result is intuitive since a house without water connection requires large amounts of work in order to get the water the family needs.

The last group of variables in table 2 is the group of sample selection variables that correct the double selection problem. Only one of them was significant, but the " t " statistics of them in the spouse's regression are high. Perhaps the small fraction of the sample that was selected, only 75 observations out of 1681 observations in the simultaneous Probit in table 1, influenced these low " t " statistics.

It is interesting to obtain the technical parameters of the production function as well. Table 3 shows the estimation of the technical parameters in equations (2.6) and (2.7).

To obtain these results I estimate equations (2.6) and (2.7) directly, which produces estimates of the parameters of equation (2.5) and the "composite" parameters $\mathrm{b}_{1}$ and $\mathrm{b}_{2}$. Additionally, I imposed a cross equation restriction $\omega_{12}=\omega_{21}$, which means that the cross derivatives are equal, $\partial^{2} f / \partial z_{1} \partial z_{2}=\partial^{2} f / \partial z_{2} \partial z_{1}$. This restriction was not imposed in table 2 because it would require the imposition of non-linear restrictions to the system (2.9) and (2.10). Table 3 shows the results of these estimations, which are slightly different from those on table 2.

Table 3. Parameters of the Production Function

|  | Spouse's equation |  |  | Child's equation |  |  |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |
|  | Coefficient | t |  | Coefficient | t |  |
| Technical Parameters: |  |  |  |  |  |  |
| $\omega_{11}$ | -0.0944 | $* * *$ | -3.78 |  | - |  |
| $\omega_{12}=\omega_{21}{ }^{\dagger}$ | -0.0114 | -0.48 |  | -0.0114 | -0.48 |  |
| $\omega_{22}$ | - | -- |  | -0.1750 | $* *$ | -2.36 |

Prices:
$\log$ (price housekeeping $\begin{array}{llllll}\text { service } & 2.5253 & * * * & 2.86 & -0.2343 & -0.22\end{array}$

Individual Characteristics:

| Spouse's age | -0.0166 | -0.51 | -- | -- |
| :--- | :---: | :---: | :---: | :---: |
| Spouse's education | -0.1108 | $*$ | -1.9 | -- |
| Child's age | -- | -- | 0.2819 | -- |
| Child's sex(1=male, 0=female) | -- | -- | -0.9810 | 1.46 |
|  |  |  |  | -1.25 |
| Household Characteristics: | -0.0917 | -0.46 | -0.5131 | $* *$ |
| \# adults in household | -0.0854 | -0.38 | -0.4613 | $*$ |
| \# children 0-6 years | 0.2498 | 0.44 | -1.3745 | -1.73 |
| Material of Walls: Adobe <br> Material of Walls: Bricks or <br> Concrete | 0.4069 | 0.77 | -1.0401 | -1.55 |
| \# of floors <br> Water connection inside <br> dwelling | 0.7052 | 1.54 | -0.2136 | -1.27 |

Sample Selection Variables:

| m 12 | -2.0098 |  | -1.51 | 3.4227 | $* *$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| m 21 | -0.8595 | $* *$ | -1.98 | -0.0750 | 1.79 |
| Constant | 1.4310 |  | 0.47 | 3.4671 | -0.11 |
|  |  |  |  |  | 0.99 |
| $\Delta=\omega_{11} \cdot \omega_{22}-\omega_{12} \omega_{21}$ | 0.0164 |  |  |  |  |

${ }^{\dagger}$ Cross-equation restriction: $\omega_{12}=\omega_{21}$
$*=$ significant at $10 \%$ level, ${ }^{* *}=$ significant at $5 \%$ level, ${ }^{* * *}=$ significant at $1 \%$ level.

The negative sign of the parameters $\omega_{11}$ and $\omega_{22}$ show that the marginal products of labor are downward sloping. The parameter $\omega_{12}$ is close to zero and not significant, which confirms that the labor inputs are neither substitutes nor complements. Moreover, the sign of the determinant $\Delta=\omega_{11} . \omega_{22}-\omega_{12} \omega_{21}$ is positive, which confirms that the production function is strictly concave because the $\Omega$ matrix in equation (2.5) is negative definite.

Finally, table 4 shows some results on the parameters $b_{1}$ and $b_{2}$, which vary across individuals because they depend on the individual and household characteristics. According to the economic theory, these parameters should be strictly positive. In these results, this holds for parameter $b_{1}$, but not for all estimates of $b_{2}$. Fortunately, only one observation was negative, with a value close to zero.

Table 4. Estimation of $b_{1}$ and $b_{2}$

|  | $\mathrm{b}_{1}$ | $\mathrm{~b}_{2}$ |
| :--- | :---: | :---: |
| Mean | 6.7294 | 7.0337 |
| Standard Deviation | 1.0390 | 2.7170 |
| Minimum | 3.2492 | -0.3149 |
| Maximum | 10.8280 | 23.4858 |
| Number of observations | 1769 | 1769 |

## Estimation of the Parameters of the Utility Function and the Child Labor Supply

In this section, I estimate equations (2.18) and (2.19) in order to obtain the parameters of the utility function. The first step is to estimate the wage equation. The child's wage is affected by several variables, such as child's age, child's sex, the economic activity in which the child is involved, and some regional differences. Table 5 presents three OLS regressions of the child's wage equation controlling for the child's demographic characteristics, economic activity and geographic region. The standard errors were calculated using a robust variance estimator.

We observe that both the child's age and sex are significant in the three regressions. In all cases, boys receive higher wages than girls and wages increase with child's age. In column (2) I include dummy variables of the sector in which the child works. Children who work in agriculture, construction and transportation receive higher wages than their peers who work in manufacturing, sales, domestic services and other services. In column (3), I included a group of dummy variables
related to geographic regions. The excluded category was the Rural Sierra, which is traditionally the poorest region in Peru ${ }^{52}$.

Table 5. Determinants of the Child's Wage

|  | Log(child's wage) |  | Log(child's wage) |  |  | Log(child's wage) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (1) |  | (2) |  |  | (3) |  |  |
|  | Coef. | t | Coef. |  | t | Coef. |  | t |
| Child's characteristics: |  |  |  |  |  |  |  |  |
| Sex (1=male, 0=female) | 0.3473 *** | 2.91 | 0.2425 |  | 1.94 | 0.1883 | * | 1.66 |
| Age | 0.1409 *** | 4.08 | 0.1458 |  | 4.16 | 0.1165 | *** | 3.23 |
| $\text { Economic Activity }{ }^{\mathrm{a}} \text { : }$ |  |  |  |  |  |  |  |  |
| Agriculture | -- | -- | 0.3279 | ** | 2.21 | 0.3402 | ** | 2.05 |
| Construction | -- | -- | 0.5235 | ** | 2.51 | 0.5759 | *** | 2.91 |
| Transportation | -- | -- | 0.4292 | ** | 2.5 | 0.4161 | ** | 2.43 |
| $\text { Geographic Region }{ }^{\mathrm{b}} \text { : }$ |  |  |  |  |  |  |  |  |
| Lima Metropolitan Area | -- | -- | -- |  | -- | 0.7420 | *** | 3.90 |
| Urban Coast | -- | -- | -- |  | -- | 0.2604 |  | 1.21 |
| Rural Coast | -- | -- | -- |  | -- | 0.5044 | ** | 2.10 |
| Urban Sierra | -- | -- | -- |  | -- | 0.4997 | ** | 2.35 |
| Urban Jungle | -- | -- | -- |  | -- | 0.4241 | * | 1.87 |
| Rural Jungle | -- | -- | -- |  | -- | 0.5505 | ** | 2.25 |
| Lambda | -0.067 | -0.57 | 0.0468 |  | 0.36 | -0.0361 |  | -0.27 |
| Constant | 1.2895 * | 1.91 | 0.9923 |  | 1.42 | 1.1119 |  | 1.56 |
| Number of observations | 202 |  | 202 |  |  | 202 |  |  |
| F- statistic | 14.21 |  | 10.40 |  |  | 8.20 |  |  |
| Prob $>$ F | 0.00 |  | 0.00 |  |  | 0.00 |  |  |
| R-squared | 0.17 |  | 0.21 |  |  | 0.28 |  |  |

${ }^{\text {a }}$ Omitted categories: manufacturing, selling, domestic services, and other services.
${ }^{\mathrm{b}}$ Omitted category: Rural Sierra

* significant at $10 \%$ level, ${ }^{* *}$ significant at $5 \%$ level, ${ }^{* * *}$ significant at $1 \%$ level.
${ }^{52}$ Peru has three natural regions: the Coast, the Sierra (highlands) and the Jungle (Amazonia). The coast is the most developed region while the Sierra is the poorest. Additionally, as in most developing countries, the rural areas are less developed than urban areas.

The results of equation (3) show that wages in all the regions are higher than in rural sierra, except the urban coast. Finally, since in these regressions there is only one possible source of selection, I included the standard Mill's ratio. The parameter $\lambda$ of this regression was not significant in any of the three regressions.

Given the estimates of child's wage, the next step is to estimate equation (2.18) which involves the use of the predicted values of log of child's wage from column (3). Additionally, it is necessary to construct the variable in the left hand side of equation (2.18). I consider three regressions depending on the use of the actual or fitted values of $H_{1}$ and $z_{2}$ in the left hand side.

- Regression (a): Actual values of $H_{1}$ and $z_{2}$

$$
\log \left(\frac{Y+w_{1} H_{1}+w_{2} H_{2}+\text { other income }}{1-z_{2}-H_{2}}\right)=\frac{1}{1-\theta} \log \left(\frac{\alpha_{C}}{\alpha_{E}}\right)+\frac{1}{1-\theta} \log \left(\hat{w}_{2}\right)+\varepsilon_{i}
$$

- Regression (b): Actual value of $H_{1}$, fitted value of $z_{2}$

$$
\log \left(\frac{Y+w_{1} H_{1}+w_{2} H_{2}+\text { other income }}{1-\hat{z}_{2}-H_{2}}\right)=\frac{1}{1-\theta} \log \left(\frac{\alpha_{C}}{\alpha_{E}}\right)+\frac{1}{1-\theta} \log \left(\hat{w}_{2}\right)+\varepsilon_{i}
$$

- Regression (c): Fitted values of $H_{1}$ and $z_{2}$

$$
\log \left(\frac{Y+w_{1} \hat{H}_{1}+w_{2} H_{2}+\text { other income }}{1-\hat{z}_{2}-H_{2}}\right)=\frac{1}{1-\theta} \log \left(\frac{\alpha_{C}}{\alpha_{E}}\right)+\frac{1}{1-\theta} \log \left(\hat{w}_{2}\right)+\varepsilon_{i}
$$

Table 6 presents the results of the estimations by OLS of regressions (a), (b) and (c). Each equation was regressed twice, with and without the sample selection terms. We see that the estimated parameters do not vary across the three equations. Also note that the coefficient of $\log \left(\hat{w}_{2}\right)$ is significant in all the equations. In the case of the sample selection parameters, they are not significant in any of the three regressions. The estimated parameters of the utility function, $\theta$ and $\alpha_{C} / \alpha_{E}$, were only significant in regressions without the sample selection variables. The values of the parameter $\theta$ lie between 0 and 1 , which corresponds to an intermediate function between the Cobb-Douglas function $(\theta=0)$ and the case of perfect substitution $(\theta=1)$.

I use the parameter estimates to obtain the slope and the wage elasticity of the child labor supply function. From equation (2.17), the explicit solution of the child labor utility function is:

$$
H_{2}=\frac{w_{2}^{\frac{\theta}{1-\theta}}}{\left(\frac{\alpha_{C}}{\alpha_{E}}\right)^{\frac{1}{\theta-1}}}\left(112-z_{2}-\left(\frac{\alpha_{C}}{\alpha_{E}}\right)^{\frac{1}{\theta-1}} w_{2}^{\frac{1}{\theta-1}} \cdot\left(Y+w_{1} H_{1}\right)\right)
$$

Table 6. Estimation of Parameters of the Utility Function

| (t statistics in parenthesis) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Regression (a) |  | Regression (b) |  | Regression (c) |  |
| OLS <br> regression: |  |  |  |  |  |  |
| Constant | $\begin{gathered} \hline-0.954 \\ (-1.065) \end{gathered}$ | $\begin{gathered} \hline-0.559 \\ (-0.385) \end{gathered}$ | $\begin{aligned} & \hline-0.942 \\ & (-1.008) \end{aligned}$ | $\begin{gathered} \hline-0.531 \\ (-0.351) \end{gathered}$ | $\begin{gathered} \hline-0.351 \\ (-0.410) \end{gathered}$ | $\begin{gathered} \hline-0.248 \\ (-0.175) \end{gathered}$ |
| Log(child's |  |  |  |  |  |  |
| m12 | -- | $\begin{gathered} 0.826 \\ (1.412) \end{gathered}$ | -- | $\begin{gathered} 0.863 \\ (1.416) \end{gathered}$ | -- | $\begin{array}{r} 0.508 \\ (0.888) \end{array}$ |
| m21 | -- | $\begin{aligned} & -0.173 \\ & (-0.610) \end{aligned}$ | -- | $\begin{aligned} & -0.181 \\ & (-0.609) \end{aligned}$ | -- | $\begin{array}{r} -0.069 \\ (-0.247) \end{array}$ |
| Utility parameters: |  |  |  |  |  |  |
| $\alpha_{C} / \alpha_{E}$ | $\begin{gathered} 0.494 \\ (1.873) \end{gathered}$ | $\begin{array}{r} 0.612 \\ (0.861) \end{array}$ | $\begin{gathered} 0.499 * \\ (1.791) \end{gathered}$ | $\begin{array}{r} 0.625 \\ (0.816) \end{array}$ | $\begin{aligned} & 0.768 \text { * } \\ & (1.674) \end{aligned}$ | $\begin{array}{r} 0.817 \\ (0.894) \end{array}$ |
| $\Theta$ | $\begin{gathered} 0.261 * \\ (1.932) \end{gathered}$ | $\begin{array}{r} 0.123 \\ (0.546) \end{array}$ | $\begin{gathered} 0.261 \\ (1.850) \end{gathered}$ | $\begin{array}{r} 0.116 \\ (0.484) \end{array}$ | $\begin{gathered} 0.247 * \\ (1.843) \end{gathered}$ | $\begin{array}{r} 0.183 \\ (0.953) \end{array}$ |
| R-squared | 0.290 | 0.337 | 0.273 | 0.321 | 0.301 | 0.317 |
| F-statistic | 29.805 | 12.040 | 27.397 | 11.212 | 31.435 | 10.984 |
| Prob(F) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Number of obs. | 75 | 75 | 75 | 75 | 75 | 75 |

* = significant at $10 \%$ level, ${ }^{* *}=$ significant at $5 \%$ level, *** $=$ significant at $1 \%$ level.
where 112 represents the total time allotted to individuals per week ( 16 hours per day).

After several manipulations, the derivative with respect to the child wage is:

$$
\frac{\partial H_{2}}{\partial w_{2}}=\left(\frac{\theta}{1-\theta}\right) \cdot \frac{w_{2}^{\frac{2 \theta-1}{1-\theta}}}{\left(\frac{\alpha_{C}}{\alpha_{E}}\right)^{\frac{1}{\theta-1}}} \cdot\left(112-z_{2}\right)
$$

In table 7, I calculate the average slope of the child labor supply and the corresponding wage elasticity. The standard deviation reflects the variability in individual characteristics, since slopes and elasticities vary across individuals. It is not the standard error of any specific parameter.

Results indicate that the slope of the child's labor supply with respect to wage is positive, as standard theory predicts. This also means that the substitution effect is greater than the income effect. We also see that the results change if we correct for sample selection. The child labor supply is inelastic if I correct the sample selection problem, but it is elastic if I do not correct it (except in regression (c) where in both cases the labor supply is elastic).

Table 7 does not show minimum and maximum values of slopes and elasticities. All minimum values are positive, and the distribution of these variables has a thick right tail. In a few cases, estimated values were 30 units or more. However, the majority of values are concentrated around 1.

Table 7. Slope of the Child Labor Supply and the Wage Elasticity

|  | $\partial H_{2} / \partial w_{2}$ |  | Wage elasticity |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Mean | Standard <br> Deviation | Mean | Standard <br> Deviation |
| Regression (a) |  |  |  |  |
| Without sample selection correction | 1.5670 | 1.1565 | 2.3745 | 2.5766 |
| With sample selection correction | 0.4925 | 0.5391 | 0.6616 | 0.8375 |
| Regression (b) |  |  |  |  |
| Without sample selection correction | 1.5834 | 1.1694 | 2.3988 | 2.6033 |
| With sample selection correction | 0.4590 | 0.5105 | 0.6130 | 0.7837 |
| Regression (c) |  |  |  |  |
| Without sample selection correction | 2.4665 | 1.9145 | 3.6869 | 4.0469 |
| With sample selection correction | 1.3588 | 1.2871 | 1.9152 | 2.2503 |

## Conclusions to Chapter 2

Unlike other papers on child labor time allocation, this work estimates the child's labor supply and household work while taking into account the child's wage and the wages of other family members. My hypothesis was that wages play an important role in the time allocation of household members. The main result of this research is that wages are relevant when it comes to assigning chores at home and determining the hours that the child works in the labor market.

In the first part of the chapter, I estimated the household work function for a child and one parent, and the technical parameters of the household production function. These functions were estimated separately from the other endogenous variables because the theoretical model suggests that they depend on wages and the production function only. The econometric estimation required to correct two sources of sample selectivity, the observation of child's and spouse's wages. The results showed that the hours that individuals spend on household work depend negatively on their respective wages, but child housework does not depend on the spouse's household work (and vice versa). Additionally, hours spent on household work depend on individual characteristics like sex, age and education, and household characteristics. However, one shortcoming of these estimations is that the number of selected observations is very small compared to the total sample.

According to the estimation results, boys are more likely to participate in the labor market. That probability of labor force participation also increases with age. Some family characteristics also affect the participation in the labor market, as does the head's income, the non labor income and the income of other family members.

The results from the utility function parameters showed that child's wage depended on child's characteristics such as sex, age, the kind of economic activity in which the child was engaged and the geographic region. Additionally, I calculated some of the parameters of utility function and the standard errors.

Finally, using the estimates of the parameter of the utility function, I calculated the slope of the child's supply function and the corresponding elasticity. The labor supply has positive slope for all individuals, and the average elasticity was lower than 1 (inelastic supply) when I used the parameters of the regression corrected by sample selection. The elasticity was greater than 1 (elastic supply) when I used the parameters of the regression without that correction.

## CHAPTER 3

## THE EFFECT OF CHILD LABOR AND HOUSEHOLD WORK ON SCHOOL ATTAINMENT

It is widely accepted that child labor is dangerous to children less than 14 years old, who are exposed to exploitation and abuse. In addition to those risks, data shows that many children in developing countries spend a considerable amount of time working or doing household chores. For example, in Peru, one of every four children is engaged in some kind of economic activity and three of every four children do household work, which is understood as those chores performed at home like cleaning, cooking, etc.

There are some positive effects of work at an early age such as a better management of time and resources, the acquisition of experience, maturation and independence ${ }^{53}$. Nevertheless, very important negative effects exist such as: the decrease of the time dedicated to education, dropping out of school, difficulty

[^39]finding good jobs in the future, low educational attainment, low school attendance, lower wages, and unemployment, among others.

The objective of this research is to find the extent to which child labor and child household work affect human capital accumulation, paying special attention to the short-term and long-term effects. I propose here that both activities have a negative effect on school attainment, in the short and long run. In other words, any positive effect of child labor is surpassed by negative effects in the long run.

The argument that supports this hypothesis is the following: in the short run, when a child is engaged in child work and/or household work, he or she has less time to study. This may affect directly school attendance and school attainment. On the other hand, the medium and long-run effects are related to human capital accumulation. The current educational indicators and the labor force outcomes (such as wages, participation in labor markets, employment, etc.) depend not only on the current allocation of time, but also on the flow of past time allocations. For example, if in the present a child studies full time but in the past he or she was a child worker, it is likely that this boy or girl will be behind compared to other students of the same age group who were always fulltime students. Since there are certain skills that are not acquired at the right time (like reading and writing, for example), students who do not take advantage of
education at the right time will need a great effort in the future to overcome this disadvantage and to recover the time lost.

To support this hypothesis I have selected two indicators of school attainment: the Schooling-Age ratio and the probability of studying in higher education. This chapter evaluates econometrically the effect of current and past hours of household work and labor on the outcomes selected. To achieve this task I use panel data on 575 individuals who were surveyed in 1994, 1997 and 2000 as part of the Peruvian Living Standard Measurement Survey.

The chapter is organized in the following way. The first section reviews the literature on child and youth employment and its effect on some socioeconomic outcomes. The next section describes the econometric methods to be employed in the paper. The third section presents and discusses the main results. The last section provides a conclusion.

## Review of Literature

Most of the studies in this area focus on short-term effects when they regress, for example, school attendance on hours of child labor, using data from
the same survey (cross section). Some papers have studied the effect of high school work on future earnings, but only in the developed world. Only a handful of papers in the child labor and youth labor literature have studied directly the consequences of past child labor on current education attainment and labor market performance.

In a recent paper, K. Beegle, R. Dehejia and R. Gatti use data from Vietnam to find the impact of child labor five years later on school participation, educational attainment (highest grade completed), occupation, earnings and health. This empirical model includes an explanatory dummy variable whether the child did or did not work 5 years ago. According to the authors that dummy may cause some potential biases in estimates, so they use an instrumental variable approach to deal with this problem. Neither household work nor contemporary values of child labor are considered in the regressions. Their results show a negative and significant effect of child labor on school attendance and the highest grade completed five years later ${ }^{54}$.

In a study using data from the United States, R. Carr, J. D. Wright and C. J. Brody study the effect a decade later of high school work on educational

[^40]attainment, wages and participation in the labor market. They find a negative effect of high school work on the level of education attained but a positive effect on wages, labor force participation and employment status ${ }^{55}$. In contrast, using a shorter horizon, other studies have found different results such as Ronald D'Amico who found that, for the female group, working at high school reduces the probability of dropping out school (except for white females who worked more than 20 hours a week). In the case of males, working less than 20 hours a week reduces the probability of dropping out school, but for individuals who work more than 20 hours a week it is more likely to drop out high school (except for white males) ${ }^{56}$.

There are several papers that focus their attention on the short-run effect of child labor on school achievement. All of them use cross section data and, as a consequence, include contemporary values of child labor and school achievement only. For example, G. Psacharopoulos studies the effect of child labor on years of schooling, using data from two Latin American countries. He finds that child labor reduces schooling by two years on average. In other work, P. Jensen and H.S. Nielsen analyze the determinants of school attendance, under the assumption

[^41]that there is an exact trade off between child labor and hours of study (provided there are no more activities during the day). M. Ravallion and Q . Wodon do not make this assumption and ask if child labor displaces schooling. They find that a school-price subsidy increases schooling but has limited effect on child labor. H . A. Patrinos and G. Psacharopoulos, using data from Peru, do not find evidence that child labor influences the age-grade distortion. Finally, D. Levison and K. Moe state that child labor is not the only obstacle to schooling. Rather, household work is also an important deterrent to schooling, especially in the case of girls ${ }^{57}$.

Another group of papers measures the impact of child labor on learning achievement. Paul Glewwe presented a theoretical model of hours of work, schooling and acquisition of cognitive skills. V. Gunnarson et al analyze the impact of child labor on language and math scores in 11 Latin American countries, finding a negative impact. In a similar work and using data from Ghana, C. Heady includes in his regressions two kinds of child labor (at home and outside home) and child housework. He finds that child labor has a negative and significant effect on math and reading scores. Household work also has a negative

[^42]effect, but only has a significant effect on the easy math test. In an earlier work, H. Akabayashi and G. Psacharopoulos also analyze the effect on reading and math scores in the Tanzanian case. They find a negative effect of child labor on these scores, but their results are not robust when other variables are included in the regression such as school attendance and hours of study ${ }^{58}$.

## Hypothesis and Methodology

In this research I propose that child labor and household work have not only a short run effect on education outcomes but also a long run effect, due to the effect on human capital accumulation. Due to the dynamic nature of this hypothesis, it can only be measured and estimated using a panel of individuals.

A general econometric model is the following:

$$
\begin{equation*}
y_{i t}=\alpha_{0}+\sum_{j=0}^{2} \beta_{j} h_{i t-j}+\sum_{j=0}^{2} \gamma_{j} z_{i t-j}+\delta^{\prime} X_{i}+\varepsilon_{i t} \tag{3.1}
\end{equation*}
$$

[^43]where $y_{i t}$ is the outcome which corresponds to individual $i$ in period $t$ (year 2000), $h_{i t}$ represents the hours of child labor of individual $i$ in period $t, z_{i t}$ represents the hours of household work of individual $i$ in period $t$, and $X_{i}$ is a vector of other variables. Note that this is a model of distributed lags where two lags have been included due to restrictions on data. There is a short run effect (current effect) if $\beta_{0}$ and $\gamma_{0}$ are significantly different from zero, and there is a long run effect (past effect) if $\beta_{1}, \beta_{2}, \gamma_{1}$, and $\gamma_{2}$ are significantly different from zero.

The outcomes to be analyzed are: age-grade distortion or SAGE, and the probability of having some education beyond high school.

Definition of Dependent Variables

- The SAGE formula

The age-grade distortion or SAGE is measured as

$$
S A G E=\frac{S}{A-E} * 100
$$

where $S$ is years of schooling, $A$ is age and $E$ is entry age to school. Usually SAGE is a real number in between 0 and 1 , where 1 means that the individual has a good performance and she has not repeated any year nor has abandoned school. However, in few cases it could be the case that SAGE > 1 because some children might start education at an earlier age than the entry age. If SAGE is low (close to zero), it is a sign that this child has stopped studying for some years or has had a very low performance ${ }^{59}$. It is desirable that SAGE be close to 1 .

- The Probability of having "higher" education

The probability that an individual receives education in addition to high school is estimated through a binary decision model. The dependent variable is 1 if the individual studies some kind of higher level education (college or technical education) after high school and 0 if the individual does not study at all after high school.
$y_{i t}=\left\{\begin{array}{lc}1 & \text { if individual has studied for at least } 1 \text { year after high school } \\ 0 & \text { if individual attains at most complete high school }\end{array}\right.$

[^44]I prefer to refer to this variable as likelihood, rather than a decision because, even though attending or not attending college involves some prior decisions of individuals, it is also true that some individuals do not have the chance to choose. For example, individuals who never finished high school -for any reason- cannot choose to apply to a university. I am not testing the decision to attend a higher level of education or not, but rather examining how some variables may affect the probability of achieving this kind of education.

## Data and Definition of Groups

The data were taken from the Peruvian Living Standards Measurement Survey from 1994, 1997 and 2000. Roughly, each survey has information on about 3,800 households nationwide, from which only 602 constitute a panel. These surveys include detailed information of hours of child work, hours of child household work, household characteristics, years of schooling, wages, as well as other socioeconomic characteristics.

From that panel, many households did not have children aged 6 to 17 in 1994, so they were excluded. In addition, since the unit of analysis is the child, I
used data only from the children in 1994 who were followed in the next two surveys. In addition, many individuals had to be excluded because there was no record of them in one or two of the surveys. The total number of individuals selected for the sample is 575 , where two or more could belong to the same family. Of those individuals, 280 belong to Group I, 147 to Group II and 148 to Group III, as defined below.

Since the sample includes minors of ages 6 to 17 in 1994, I decided to separate them into three age groups. I did this because the decisions and outcomes individuals face are different across groups. The groups are:

- Group I: Ages 6 to 10 in 1994 (ages 12 to 16 in 2000)

These are children who are teenagers in 2000. According to their ages they should still be in high school because in the Peruvian system, a child who starts school at 6 years old and does not repeat or drop out of school should start high school at 12 years old and finish it at 16. The outcome to be analyzed is the SAGE ratio.

- Group II: Ages 11 to 13 in 1994 (17 to 19 in 2000)

The individuals of this group are supposed to have completed the mandatory education in year 2000, and are deciding whether to continue higher education or work. However, many of them could still be high
school students, or could be studying superior education. For this reason, I will also study the effect of child labor on the SAGE ratio.

Another reason to study this group separately from Group I is that we observe child labor and household work more frequently at ages 11 to 13 compared with ages 6 to 10 in Group I.

- Group III: Ages 14 to 17 in 1994 (20 to 23 in 2000)

Some authors do not consider this age group as "child laborers", but they are labeled "youth workers" ${ }^{60}$. In the year 2000 all of them were adults and it is likely that they were working or studying higher education. In this group I analyze how child or youth labor and household work may affect the probability of continuing superior education or not.

## The Econometric Specification

The econometric method depends on the outcome selected, but it must take into account the endogeneity of the regressors $h_{i t}$ and $z_{i t}$. Current hours of labor and household work are correlated with SAGE and school achievement because all of them depend on the time allotted to study. For that reason, some kind of

[^45]instrumental variable approach must be used; otherwise, the results may be biased due to the correlation between $h_{i t}$ and $z_{i t}$ and the error term in equation (3.1).

The lagged variables $h_{i t-1}, h_{i t-2}, z_{i t-1}$ and $z_{i t-2}$ could also be correlated with the error term $\varepsilon_{i}$ in equation (3.1) because the latter may include some household characteristics that could have affected $h_{i t-1}, h_{i t-2}, z_{i t-1}$ and $z_{i t-2}$ in the past. However, given the data in the sample, it is infeasible to find relevant instruments for 6 endogenous variables on the right hand side. Consequently, I decided to use instruments only for $h_{i t}$ and $z_{i t}$, and to include variables in equation (3.1) related to household preferences. Thus, the remaining error term should be "clean" of household preferences and should not be correlated with the lagged variables.

In the case of the SAGE variable for groups I and II, the econometric model to be estimated by instrumental variables is:

$$
\begin{equation*}
y_{i t}=\alpha_{0}+\beta_{0} h_{i t}+\sum_{j=1}^{2} \beta_{j} h_{i t-j}+\gamma_{0} z_{i t}+\sum_{j=1}^{2} \gamma_{j} z_{i t-j}+\boldsymbol{\delta}^{\prime} \boldsymbol{X}_{\boldsymbol{i}}+\varepsilon_{i t} \tag{3.1'}
\end{equation*}
$$

where the vector $\boldsymbol{X}_{i}$ includes variables related to household preferences.

Since $h_{i t}$ and $z_{i t}$ are correlated with $\varepsilon_{i t}$, a two stage least squares procedure is carried out, including two more equations:

$$
\begin{align*}
& h_{i t}=\alpha_{0}^{h}+\boldsymbol{\alpha}_{\mathbf{h}}^{\prime} \boldsymbol{Z}+\sum_{j=1}^{2} \beta_{j}^{h} h_{i t-j}+\sum_{j=1}^{2} \gamma_{j}^{h} z_{i t-j}+\boldsymbol{\varphi}_{\mathbf{h}}^{\prime} \boldsymbol{X}_{\boldsymbol{i}}+u_{1 i}  \tag{3.2}\\
& z_{i t}=\alpha_{0}^{z}+\boldsymbol{\alpha}_{\mathbf{z}}^{\prime} \boldsymbol{Z}+\sum_{j=1}^{2} \boldsymbol{\beta}_{j}^{z} h_{i t-j}+\sum_{j=1}^{2} \gamma_{j}^{z} z_{i t-j}+\boldsymbol{\varphi}_{\mathbf{z}}^{\prime} \boldsymbol{X}_{\mathbf{i}}+u_{2 i} \tag{3.3}
\end{align*}
$$

where $\boldsymbol{Z}$ is a vector of instrumental variables which satisfy the conditions of exogeneity (not correlated with $\varepsilon_{i t}$ ) and relevance (correlated with the endogenous variables), and the Greek letters are parameters to be estimated. Notice that the $\boldsymbol{Z}$ vector must be the same for the two endogenous variables.

The fitted values of $h_{i t}$ and $z_{i t}$ are substituted into equation (3.1'), and that equation is estimated by OLS. However, the standard errors of the OLS regression are not the correct ones because they do not consider the endogeneity of $h_{i t}$ and $z_{i t}$. Fortunately, current software packages present the correct estimates of the standard errors. Also, $u_{1 t}$ and $u_{2 t}$ are error terms with zero mean, and constant variance, zero covariance and not serially correlated.

The same regression is also estimated by the Generalized Method of Moments, which is a more efficient method than instrumental variables ${ }^{61}$. In the SAGE regressions I use the same vector of instruments for the IV method and the GMM method. One important advantage of these two methods is that they do not require assuming a specific distribution of the error term and inference is made on the basis of asymptotic theory.

In the case of the probability of having some college or technical education, a standard Probit model may give erroneous results due to the correlation between $h_{i t}, z_{i t}$ and $\varepsilon_{i t}$. In contrast the method of Instrumental Variable Probit takes into account that some of the right hand side variables may be endogenous. An explanation of this method in its Maximum Likelihood version and the two-step version can be found in W. Newey's work, and in a paper written by D. Rivers and Q.H. Vuong ${ }^{62}$. In this work I will estimate the IV Probit model by two methods: the two-step IV and the full-information maximum likelihood method.

[^46]
## Results

Table 8 summarizes some of the main characteristics of the sample. As we see in the table, participation in household work increases with age up to some point when it stops growing or decreases. In contrast, participation in labor market increases steadily with age. Concerning the hours spent in housework, they also increase slightly with age and decrease in the early twenties. On the other hand, hours of labor also increase steadily with age. One explanation for this result is that as labor increases with age, individuals have less time to dedicate to household chores.

The average SAGE indicator in 2000 is very similar in Groups I and II, but lower in Group III. Since education after high school is not mandatory, in the third group the gap between age and years of schooling increases. Another interesting statistic is the decrease in the fraction of workers who are non-paid family workers (NPFW) as age increases. It starts at $80 \%$ in Group I and ends at $30 \%$ in Group III. Table 8 also shows that an important fraction (38.5\%) of the sample reaches some kind of higher education at ages 20-23. We can also observe that the fraction of individual who live in urban areas increases with age. This result may have this interpretation: that individual migrate to cities when they grow up.

Table 8. Descriptive Statistics of the Sample

|  | Group I | Group II | Group III |
| :---: | :---: | :---: | :---: |
| Number of individuals | 280 | 147 | 148 |
| Ages in 1994 | 6 to 10 | 11 to 13 | 14 to 17 |
| Ages in 1997 | 9 to 13 | 14 to 16 | 17 to 20 |
| Ages in 2000 | 12 to 16 | 17 to 19 | 20 to 23 |
| \% who does housework in 1994 | 61.8\% | 83.7\% | 79.1\% |
| \% who does housework in 1997 | 86.1\% | 88.4\% | 81.8\% |
| \% who does housework in 2000 | 86.4\% | 78.9\% | 79.7\% |
| \% who works in 1994 | 10.4\% | 12.2\% | 26.4\% |
| \% who works in 1997 | 28.2\% | 33.3\% | 44.6\% |
| \% who works in 2000 | 35.0\% | 46.2\% | 64.2\% |
| Average weekly hours of household work (excluding zeros): |  |  |  |
| In 1994 | 10.78 | 10.68 | 14.14 |
| In 1997 | 10.34 | 12.93 | 14.01 |
| In 2000 | 11.87 | 13.72 | 12.88 |
| Average weekly hours of labor (excluding zeros): |  |  |  |
| In 1994 | 13.86 | 18.28 | 26.23 |
| In 1997 | 15.35 | 22.88 | 38.80 |
| In 2000 | 19.30 | 32.28 | 39.94 |
| Statistics in year 2000 |  |  |  |
| Average SAGE | 0.76 | 0.77 | 0.69 |
| \% in University and others | 0.0\% | 10.9\% | 38.5\% |
| \% Individual lives in urban areas | 58.9\% | 63.3\% | 73.0\% |
| \% NPFW from those who work | 80.6\% | 50.0\% | 30.5\% |
| \% of males | 53.2\% | 51.7\% | 61.5\% |

Note: Statistics are calculated from the sample (not weighted).

Finally, concerning the sex of the individual, there is a slight bias in group III where $61 \%$ are males and $39 \%$ are females. The bias is not observed in groups I and II.

## Estimation of the Effect of Child Labor and Household Work on SAGE

In this section I estimate the effect of household work and child or youth labor on the SAGE ratio. I have estimated these effects for the first two groups only because in Group III the SAGE ratio loses its power to represent school attainment (education is not mandatory after high school in Peru). In Group II (17 to 19), SAGE captures not only those students who continue studying in universities or other kinds of technical education, but also students who are behind and are still in high school at ages above 16. In Group I, SAGE captures how far teenagers at high school age are from the "perfect score" (SAGE equal to 1 ).

In all the regressions, standard statistics such as the F test on the significance of all the parameters in the regression and the R -squared have been calculated. In addition, I perform some tests that assess the validity of the instrumental variables in the model. As is well known, instruments must satisfy two conditions: "relevance" and "exogeneity". The first condition states that the
instruments must be correlated with the endogenous variables on the right-hand side. If this condition does not hold (i.e. instruments are "weak"), linear IV estimates are inconsistent and the limiting distribution of the parameters may not be normal. The second condition says that the instruments must not be correlated with the error term in the main equation, or in other words, they have been correctly excluded from the main equation and, if they have any effect on the endogenous variable in the left-hand side ( $y_{i t}$ in equation (3.1)), that effect should occur through the effect on the endogenous variables on the right-hand side. This condition is also related to identification of the model.

Some tests have been proposed in the literature to evaluate these conditions. In the case of "relevance", the easiest way to test this is to conduct an F test on the "excluded" instruments in the first-step regressions, in the IV and GMM regressions ${ }^{63}$. D. Staiger and J. Stock ${ }^{64}$ proposed a "rule of thumb" when we have only one endogenous variable in the right hand side. If the F statistic is greater than 10 , the instruments are strong; otherwise, they are weak. However, when we have more than one endogenous variable in the right-hand side, the F test and the "rule of thumb" is not good to test relevance. J.S. Cragg and S.G.

[^47]Donald proposed a test on identification of the model which J. Stock and M. Yogo used as a generalization of the F test ${ }^{65}$. The Cragg-Donald statistic is compared to the critical values tabulated by Stock and Yogo to assess if the instruments are weak or not. This statistic tests if the instruments are weak not for a single equation but for the model as a whole. The null hypothesis is that the instruments are weak, and the alternative hypothesis is that they are not weak.

When instruments are "weak", inference should be carried out with caution. The typical "estimate/standard error" statistic may be meaningless if weakness is severe. Two approaches arise in recent literature to deal with this problem. One requires correcting the bias in estimates and standard errors in order to improve the normal approximation. The second approach just presents the estimates and uses confidence intervals and tests which are fully robust to weak instruments. The Anderson-Rubin test is an example of this type of test. It tests if the parameters of the endogenous variables in the right-hand side of the main equation are jointly significant. This test is good when we have only one endogenous regressor but its power declines when two or more endogenous regressors are present ${ }^{66}$.

[^48]Concerning tests related to the "exogeneity" condition, the Anderson canonical correlations LR statistic tests if the model is identified or not. The null hypothesis is that the model is underidentified (matrix of data in the reduced form equations has rank $=\mathrm{k}-1$, where k is the number of regressors in the main equation). The Hansen-Sargan statistic is used to test if instruments are correlated or not with the error term. The null hypothesis is that instruments are not correlated with the error term, or in other words, they have been correctly excluded from the main equation.

The instruments I finally chose were a dummy variable if the family has a gas stove, the sex of the child, the hours of housework performed by the head of household's spouse, the logarithm of the non labor income per household member, the head of household's hours of market labor and a dummy which states if the child works in agriculture or retail sales. Some of them are highly correlated with one of the endogenous variables but not with the other. For example, the dummy "gas stove" is highly correlated with hours of household work, but it has little correlation to hours of market work. The same occurred with child's sex and head's hours of market labor. In contrast, the dummy variables "agriculture" and "retail sales" were highly correlated with child's total hours of market work but they were not correlated with hours of household work.

Table 9 shows the results for the first group where the main equation was estimated by OLS, IV and efficient GMM. The first group of statistics shows that all the parameters are jointly significant at the $1 \%$ level, but the R -squared is low in the three regressions. The second group of tests assesses the fulfillment of the "relevance" and "exogeneity" conditions. It is difficult to find good instruments that work for the two variables at the same time. Comparing the Cragg-Donald statistic with the critical values provided by Stock and Yogo, the instruments are weak at the $5 \%$ significance level when we consider a relative bias of 0.10 or lower ${ }^{67}$, but are strong if we tolerate a relative bias of 0.20 . The critical values are 9.92 and 6.16 respectively. The Anderson-Rubin test shows that the endogenous variables are jointly significant, but the t-statistic says that only current market work is significant. The other two tests show that the model is identified. With the Anderson canonical correlations test, the null of underindentification is rejected, and according to the result of the Hansen-Sargan test, I cannot reject the null of no correlation between the instruments and the error term.

[^49]Table 9. Regression of SAGE ratio: Group I
(All regressions with robust standard errors, t statistics in parenthesis)

| Independent Variables | OLS |  | IV (2SLS) |  | GMM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Household work: |  |  |  |  |  |  |
| z_2000 | -0.0003 |  | 0.0031 |  | 0.0030 |  |
|  | (-0.24) |  | (0.97) |  | (0.95) |  |
| z_97 | 0.0015 |  | 0.0011 |  | 0.0005 |  |
|  | (0.87) |  | (0.64) |  | (0.30) |  |
| z_94 | -0.0025 |  | -0.0031 |  | -0.0027 |  |
|  | (-1.23) |  | (-1.52) |  | (-1.33) |  |
| Market work: |  |  |  |  |  |  |
| h_2000 | -0.0026 | *** | -0.0039 | ** | -0.0037 | ** |
|  | (-3.44) |  | (-2.28) |  | (-2.17) |  |
| h_97 | -0.0009 |  | -0.0009 |  | -0.0011 |  |
|  | (-0.56) |  | (-0.53) |  | (-0.65) |  |
| h_94 | -0.0020 |  | -0.0010 |  | -0.0016 |  |
|  | (-0.69) |  | (-0.33) |  | (-0.52) |  |
| Other variables: |  |  |  |  |  |  |
| Child's age in 1994 | 0.0342 | *** | 0.0362 | *** | 0.0366 | *** |
|  | (4.09) |  | (4.24) |  | (4.32) |  |
| Head's years of schooling | 0.0107 | *** | 0.0102 | *** | 0.0105 | *** |
|  | (3.76) |  | (3.25) |  | (3.44) |  |
| Family size | -0.0149 | *** | -0.0162 | *** | -0.0175 | *** |
|  | (-2.71) |  | (-2.85) |  | (-3.23) |  |
| Studied in Primary Public |  |  |  |  |  |  |
| School | -0.0869 | * | -0.0843 | * | -0.0863 | * |
|  | (-1.84) |  | (-1.69) |  | (-1.78) |  |
| Constant | 0.4236 | *** | 0.3862 | *** | 0.3942 | *** |
|  | (3.18) |  | (2.80) |  | (2.98) |  |
| Number of observations | 278 |  | 278 |  | 278 |  |
| F( 10, 267) | 6.55 |  | 5.68 |  | 6.20 |  |
| Prob > F | 0.0000 |  | 0.0000 |  | 0.0000 |  |
| R-squared | 0.1856 |  | 0.1615 |  | 0.1629 |  |
| Root MSE | 0.1978 |  | 0.2007 |  | 0.1965 |  |
| Cragg-Donald F statistic | -- |  | 7.66 |  | 7.66 |  |
| Anderson-Rubin test Chi-sq | --- |  | 16.05 |  | 16.05 |  |
| Chi-sq(7) P-val | --- |  | 0.0246 |  | 0.0246 |  |

Table 9 -Continued
Anderson canon. correlation LR

| test | --- | 51.76 | 51.76 |
| :--- | :---: | :---: | :---: |
| Chi-sq(6) P-val | --- | 0.0000 | 0.0000 |
| Hansen-Sargan overident. test | --- | 8.17 | 8.17 |
| Chi-sq(5) P-val | --- | 0.1472 | 0.1472 |

* = significant at $10 \%$ level, ${ }^{* *}=$ significant at $5 \%$ level, ${ }^{* * *}=$ significant at $1 \%$ level.

Excluded instruments in IV\&GMM: Dummy gas stove, child's sex, spouse's hours of housework, $\log$ (non labor percapita income), head's hours of labor, dummy child works in agriculture, and retail sales.

As we can observe in the table, household work seems not to affect the SAGE ratio under any method in the short or long run. On the other hand, market work has a negative and significant effect only in the short run (year 2000). There is no evidence that market work at ages before 12 affects the SAGE ratio at ages 12-16. The signs are negative but the parameters are not significant. One possible explanation for this small or null effect is the small number of hours that are spent in both market work and household work when children are less than 12 years old, as we observed in Table 8.

At the age of 12-16, other variables seem to have stronger effects on the SAGE ratio, for example, the age of the child, the head of household's education level and the size of the family. The child's age has a positive and significant effect on SAGE, which is a possible result at early ages, because in the SAGE formula both the numerator and denominator increase with age. In the case of the
head's education, it has a positive effect which makes sense because a higher educated head of household would give a higher weight to education, paying more attention to child's education and increasing the probability of success (reducing the probability of failure).

SAGE is also lower as family size increases. Usually, a large family means many children who represent a big burden on household budget, especially in a poor country like Peru. The effect can be interpreted in this way: the economic situation may cause that some young members of a large family to stop studying for some time, while the family faces the crisis and finds a way to survive.

There is also a negative effect of having studied in a Public Primary School, represented as a dummy variable which assigns 1 to students who studied in public schools and 0 to those who studied in private schools. In Peru, poor children enroll in public schools because of the low fees despite the low quality of education they receive. In my opinion, this low quality of education increases the probability to fail in school and fall behind other students who received a private education.

Now I perform the same regressions with the second group (individual with ages 17 to 19 in 2000) by the same methods. The results of the regressions
are shown in table 10 and this time some new instruments were introduced: a dummy variable which assigns 1 if the house is connected to public sewage and 0 if not, the hours of housework per head of other family members who are not the parents or the children (cousins, uncles, aunts, grand parents, etc.), the spouse's hours of labor, a dummy if the child works in manufacturing, the total area of dwelling, and a dummy variable if individual is ill or suffers a chronic disease. Some of the instruments used in table 9 were not used this time. In addition, as in the first regression, some instruments were correlated to household work but not to child labor, and vice versa.

The Cragg-Donald test shows that the instruments are weak at the 5\% level for a relative bias of 0.10 , but they are strong if we tolerate a relative bias of 0.20 . The critical values are 10.22 and 6.20 respectively. However, the Anderson-Rubin test shows that the two coefficients are jointly significant, despite the weakness of the instruments. Observing the other two tests, the Anderson canonical correlation test and the Hansen-Sargan test show that the model is identified and that the instruments selected are not correlated with the error term. A quick review of the results for group II show that they are different compared with Group I.

Table 10. Regression of SAGE ratio: Group II

| Independent Variables | OLS |  | IV (2SLS) |  | GMM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Household work: |  |  |  |  |  |  |
| z_2000 | -0.0034 | ** | -0.0057 | ** | -0.0044 | ** |
|  | (-2.03) |  | (-2.20) |  | (-1.96) |  |
| z_97 | -0.0020 |  | -0.0020 |  | -0.0004 |  |
|  | (-0.81) |  | (-0.79) |  | (-0.79) |  |
| z_94 | 0.0021 |  | 0.0034 |  | 0.0023 |  |
|  | (1.22) |  | (1.50) |  | (1.50) |  |
| Market work: |  |  |  |  |  |  |
| h_2000 | -0.0017 | ** | -0.0028 | *** | -0.0027 | *** |
|  | (-1.98) |  | (-2.71) |  | (-2.77) |  |
| h_97 | -0.0020 | * | -0.0017 |  | -0.0021 | * |
|  | (-1.68) |  | (-1.30) |  | (-1.68) |  |
| h_94 | -0.0085 | *** | -0.0086 | *** | -0.0081 | *** |
|  | (-3.84) |  | (-4.03) |  | (-3.99) |  |
| Other variables: |  |  |  |  |  |  |
| Child's age in 1994 | -0.0379 | ** | -0.0362 | ** | -0.0259 | * |
|  | (-2.52) |  | (2.37) |  | (-1.89) |  |
| Head's years of schooling | 0.0077 | ** | 0.0068 | * | 0.0060 | * |
|  | (2.05) |  | (1.92) |  | (1.84) |  |
| Family size | -0.0198 | ** | -0.0217 | *** | -0.0180 | ** |
|  | (-2.43) |  | (-2.66) |  | (-2.31) |  |
| Constant | 1.6110 | *** | 1.6302 | *** | 1.4127 | *** |
|  | (5.37) |  | (5.22) |  | (4.94) |  |
| Number of observations | 147 |  | 145 |  | 145 |  |
| F( 10, 267) | 8.10 |  | 8.89 |  | 9.12 |  |
| Prob > F | 0.0000 |  | 0.0000 |  | 0.0000 |  |
| R-squared | 0.3368 |  | 0.3197 |  | 0.3214 |  |
| Root MSE | 0.1868 |  | 0.1817 |  | 0.1815 |  |
| Cragg-Donald F statistic | -- |  | 6.26 |  | 6.26 |  |
| Anderson-Rubin test Chi-sq | -- |  | 25.22 |  | 25.22 |  |
| Chi-sq(8) P-val | --- |  | 0.0014 |  | 0.0014 |  |
| Anderson canon. correlation LR test | --- |  | 47.542 |  | 47.542 |  |
| Chi-sq(7) P-val | --- |  | 0.0000 |  | 0.0000 |  |

Table 10 - Continued

| Hansen-Sargan overidentification test | --- | 9.953 | 9.953 |
| :--- | :--- | :--- | :--- |
| Chi-sq(6) P-val | --- | 0.1266 | 0.1266 |

* = significant at $10 \%$ level, ${ }^{* *}=$ significant at $5 \%$ level, ${ }^{* * *}=$ significant at $1 \%$ level.

Excluded instruments in IV\&GMM: Child's sex, Dummy Sewage connection inside dwelling, Hours of housework of other family members per head, spouse's hours of labor, dummies child works in manufacturing and retail sales, dummy variable if the individual is sick or suffers a chronic disease, and the area of land.

In Table 10, current household work affects the SAGE ratio negatively but there is no evidence of long-term effects. In the case of market work, the three regressions show that there is an important negative effect of current labor and past (child) labor on SAGE. This means that individuals who worked at ages 11 to 13 and then 14 to 16 had a lower SAGE ratio, compared to those who did not work at all. Notice that the effect is stronger for those who worked at ages 11 to 13.

Concerning the other variables, unlike regressions for Group I where age was positively correlated with SAGE, in this case the sign of the parameter is negative, which means that the gap between schooling and age increases with age. As in Group I, a more educated Head of household increases the SAGE ratio, and the family size also reduces SAGE. In this regression I did not included the dummy variable on public school because it was not significant.

Finally concerning the statistics on goodness of fit, they show a good fit in the three regressions. These statistics are higher than those in Table 9.

## Estimation of the Effect of Household Work and Child Labor on the Probability of Studying in Higher Education

As I explained above, for the third group I analyze the probability of studying in higher education beyond high school (university, technical schools, etc.) in year 2000. In my definition, it is not necessary to have completed this higher level of education, just to have studied at least one year to be considered an individual with higher education. The independent variables considered in this regression were almost the same as those in the SAGE regressions, where two of them (household work and labor in 2000) are endogenous. Because the dependent variable is dichotomous, I use appropriate methods of estimation for this kind of econometric model. Results are shown in Table 11, where the model was estimated using four alternative methods: linear probability model, linear probability with instrumental variables, Probit and Probit with instrumental variables. The standard linear probability model and the standard Probit have been included as benchmarks although it is known that their results are incorrect when there are endogenous variables on the right-hand side.

Table 11. Regression of Probability of Higher Education: Group III (All regressions with robust standard errors except IV probit ( 2 step ), t statistics in parenthesis)


Table 11-Continued

|  | 0.3 |  | 0. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| * = significant at $10 \%$ level, ${ }^{* *}=$ significant at $5 \%$ level, ${ }^{* * *}=$ significant at $1 \%$ level. <br> Excluded instruments in IV: Child's sex, Dummy Sewage connection inside dwelling, $\log$ (sum of income of other family members), Hours of housework of other family members per head, hours of head's household work, dummies child works in agriculture, manufacturing, transportation and retail sales. <br> Statistics in linear probability IV: Cragg-Donald test=7.54; Anderson-Rubin test Chi-sq=17.5, p-value $=$ 0.04 ; Anderson canon. corr. test $=62.18$, p-value $=0.00$; Hansen overindent. test $=8.843$, p-value $=0.2641$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

The results of Table 11 show that household work three years before the year 2000 affects the indicator of school attainment. Using all of the methods, there is evidence of an effect of year 2000 or year 1994 household work on school attainment (however, the parameters for 1994 are significant at $15 \%$ under some methods). Results are different in the case of market work, where working 3 years and 6 years beforehand negatively affects the probability of having some higherlevel education. As intuition predicted, the signs of these parameters are negative, which means that individuals who worked at ages 11 to 13 and 14 to 17 are less likely to study in universities or technical schools. Unlike the linear probability models and standard Probit, the IV Probit models predict that current hours of labor do not affect school attainment. Notice that in all the methods the negative effect is stronger (coefficients are greater) for child labor six years ago. It can thus be interpreted that child labor at an early age has a worse effect than child labor at a later age.

Other variables that affect this kind of school attainment are the head of household's years of schooling, which has a positive effect for the same reasons explained in the previous section. Family size also has negative and significant effect on the probability of enrollment at a higher level of education. This result can be interpreted as showing that in large families children are less likely to be highly educated.

In these estimations I also included a couple of new dummy variables which were significant ${ }^{68}$. The first one is a dummy variable which assigns 1 to individuals who live in the Rural Highlands (Sierra), the poorest and least developed region in Peru. As is easy to predict, the sign of the parameter is negative and significant. The second dummy variable assigns 1 to households that hire some sort of domestic service. This dummy variable has a positive effect on the probability, because housekeeping service gives free time to youngsters to study. Another interpretation of this dummy variable is that it may represent some poverty/richness effect because poor households do not have enough economic resources to hire housekeeping services.

[^50]
## Conclusions to Chapter 3

In this chapter, I studied the short-run and long-run effect of household work and child labor on the schooling-age ratio (SAGE) and the probability of studying in higher education. The results show that in general, household work does not have the same effect as child labor on school attainment. Even though in some regressions household work may have a negative effect, in general its effect is not significant. For example, in the case of the effect on SAGE, only current household work has a "weak" effect for Group II. In the case of the probability of studying in superior education for Group III (ages 20 to 23), only household work performed at ages 17-20 has a negative effect on that probability.

On the other hand, child labor has a clear negative effect on the analyzed school-attainment variables. For Group I, only current child labor affects the SAGE variable, perhaps because the small number of hours that children spend in child labor for ages below 12. The results for Group II show that both short-run and long-run effects of child labor on SAGE are negative and significant as intuition predicted. Finally, for Group III and according to the results of IV Probit, only the long-term effect of child labor on the probability of superior education is significant.

## WORKS CITED

Akabayashi, Hideo and George Psacharopoulos. "The trade-off between child labour and human capital formation: a Tanzanian case study." Journal of Development Studies 35(1999): 120-140.

Andrews, Donald W.K. and James Stock. Inference with weak instruments. Cowles Foundation Discussion Paper $\mathrm{N}^{\circ}$ 1530. New Haven: Yale University, 2005. http://cowles.econ.yale.edu/P/cd/dy2005.htm (accessed April 11, 2006).

Ashenfelter, Orley and James Heckman. "The estimation of income and substitution effects in a model of family labor supply." Econometrica 42, no. 1 (January 1974): 73-86.

Baland, Jean-Marie and James Robinson. "Is child labor inefficient?." Journal of Political Economy 108, no. 4 (August 2000): 663-679.

Becker, Gary S. "A theory of the allocation of time." The Economic Journal 75, no. 299 (1965): 493-517.

Beegle, Kathleen, Rajeev Dehejia and Roberta Gatti. Why should we care about child labor? The education, labor market, and health consequences of child labor. World Bank Policy Research Working Paper 3479. Washington, D.C.:World Bank, 2005.

Bhalotra, Sonia. Is child work necessary? Social Protection Discussion Paper Series. Washington, D.C.: World Bank, 2001.

Bhalotra, Sonia and Zafiris Tzannatos. Child labour: what have we learnt? Social Protection Discussion Paper Series. Washington, D.C.: World Bank, 2003.

Basu, Kaushik. "Child labor: cause, consequence, and cure, with remarks on international labor standards." Journal of Economic Literature 37, no. 3 (1999): 1083-1119.

Basu, Kaushik and Pham Hoang Van. "The economics of child labor." American Economic Review 88, no. 3 (June 1988): 412-427.

Binder, Melissa and David Scrogin. "Labor force participation and household work of urban schoolchildren in Mexico: characteristics and consequences." Economic Development and Cultural Change, 48, no. 1 (1999): 123-154.

Birdsall, Nancy. Child Schooling and the Measurement of Living Standards. Living Standards Measurement Study Working Paper No. 14. Washington, D.C.:World Bank, 1982.

Birdsall, Nancy and Susan E. Cochrane. "Education and parental decision making: a two generation approach." In Education and Development, ed. Anderson Lascelles and Douglas M. Windham, . Lexington Mass.: Lexington Books, D.C. Heath and Company, 1982.

Brown, Drusilla K., Alan V. Deardorff and Robert M. Stern. "Child labor: theory, evidence and policy". Discussion paper 474. Medford, M.A.: Tufts University, Department of Economics, 2001.
$\qquad$ . "U.S. trade and other policy options and programs to deter foreign exploitation of Child Labor". Discussion paper 99-04, Medford, M.A.: Tufts University, Department of Economics, 2003.

Blundell, Richard and Thomas MaCurdy. "Labor Supply: A review of alternative approaches." In Handbook of Labor Economics 3A, ed. O. Ashenfelter and D. Card, 1559-1695. Oxford: North Holland, 1999.

Carr, Rhoda V., James D. Wright and Charles J. Brody. "Effects of high school work experience a decade later: evidence from the National Longitudinal Survey." Sociology of Education 69, no. 1 (1966): 66-81.

Cigno, Alessandro, Furio C. Rosati y Zafiris Tzannatos. Child Labor Handbook. Social Protection Discussion Papers Series ${ }^{\circ}$ 0206. Washington, D.C.: World Bank, 2002.

D'Amico, Ronald. "Does employment during high school impair academic progress?" Sociology of Education 57, (1984): 152-164.

DeGraff, Deborah S., Richard E. Bilsborrow and Alejandro N. Herrin. "Children’s education in the Philippines: does high fertility matter?" Population Research and Policy Review 15, no. 3 (1996): 219-247.

DeGraff, Deborah S., Richard E. Bilsborrow. "Children's school enrollment and time at work in the Philippines." Journal of Developing Areas 15, no. 1 (2003): 127-158.

Dessy, Sylvain E. and Stephane Pallage. "Child Labor and coordination failures." Journal of Development Economics 65 (2001): 469-476.

Fishe, Raymond P.H., R.P. Trost and Philip M. Lurie. "Labor force earnings and college choice of young women: an examination of selectivity bias and comparative advantage". Economics of Education Review 1, no. 2 (1981): 169-191.

Glewwe, Paul. "School and skills in developing countries: education policies and socioeconomic outcomes." Journal of Economic Literature 40 (2002): 436-482.

Gronau, Reuben. "Leisure, home production, and work - the theory of the allocation of time revisited." Journal of Political Economy 85, no. 6 (1977): 1099-1123.

Grootaert, Christiaan and Ravi Kanbur. "Child labor: an economic perspective." International Labour Review 134, no. 2 (1995): 187-203.

Gunnarson, Victoria, Peter Orazem and Mario A. Sanchez. "Child labor and school achievement in Latin America." Working Paper \# 03023. Ames: Iowa State University, Department of Economics, 2003.

Hayashi, Fumio. Econometrics. New Jersey: Princeton University Press, 2000.
Heady, Christopher. "The effect of child labor on learning achievement." World Development 31, no. 2 (2003): 385-398.

International Labour Office (ILO). Global Report 2002: A Future without Child Labour. Ginebra: ILO, 2002.

Jensen, Peter and Helena Skyt Nielsen. "Child labor or school attendance? Evidence from Zambia." Journal of Population Economics 10 (1997): 407-424.

Jacoby, Hanan. "Shadow wages and peasant family labour supply: an economic application to the Peruvian Sierra." Review of Economic Studies 60 (1993): 903-921.

Kerkhofs, Marcel and Peter Kooreman. "Identification and estimation of a class of household production models." Journal of Applied Econometrics 18 (2003): 337-369.

Kotz, Samuel; N. Balakrishna and Norman L. Johnson (2000) Continuous Multivariate Distributions: Volume 1: Models and Applications. New York: Wiley, 2000.

Lee, Lung-Fei, G.S. Maddala and R.P. Trost. "Asymptotic covariance matrices of two-stage probit and tobit methods of simultaneous equations models with selectivity." Econometrica 48, no. 2 (1980): 491-504.

Levison, Deborah. "Children's labor force activity and schooling in Brazil." Ph.D. diss., University of Michigan, 1991.

Levison, Deborah and Karine S. Moe. "Household work as a deterrent to schooling: an analysis of adolescent girls in Peru." Journal of Developing Areas 32 (Spring 1998): 339-356.

Maddala, G.S. Limited-Dependent and Qualitative Variables in Econometrics. New York: Cambridge University Press, 1983.

Newey, Whitney. "Efficient estimation of limited dependent variable models with endogenous explanatory variables." Journal of Econometrics 36 (1987), 230-251.

Newman, John L. and Paul J. Gertler. "Family productivity, labor supply and welfare in a low income country." Journal of Human Resources 29, no. 4. Special Issue: The family and intergenerational relations (Autumn 1994): 989-1026.

Patrinos, Harry Anthony and George Psacharopoulos. "Family size, schooling and child labor in Peru - an empirical analysis." Journal of Population Economics 10 (1997): 387-405.

Psacharopoulos, George. "Child labor versus educational attainment: some evidence from Latin America." Journal of Population Economics 10 (1997): 377-386.

Ranjan, Priya. "An economic analysis of child labor." Economics Letters 64 (1999): $99-105$.
$\qquad$ . "Credit constraints and the phenomenon of child labor." Journal of Development Economics 64 (2001): 81-102.

Ransom, Michael M. "An empirical model of discrete and continuous choice in family labor supply." The Review of Economics and Statistics 69, no. 3 (1987): 465-472.

Ravallion, Martin and Quentin Wodon. "Does child labor displace schooling? Evidence on behavioral responses to an enrollment subsidy." The Economic Journal 110 (March 2000): C158-C175.

Ray, Ranjan. "Analysis of child labour in Peru and Pakistan: a comparative study." Journal of Population Economics 13 (2000): 3-19.

Rivers, Douglas and Quang H. Vuong. "Limited information estimators and exogeneity test for simultaneous probit models." Journal of Econometrics 39 (1988): 347-366.

Rogers, Carol Ann and Kenneth Swinnerton. "Does child labor decreases when parental income rises?" Journal of Political Economy 112, no. 4 (2004): 939-946.

Rosenzweig, Mark R. "Neoclassical theory and the optimizing peasant: an economic analysis of the market family labor supply in a developing country." Quarterly Journal of Economics 94, no. 1 (February 1980): 3155.

Rosenzweig, Mark R. and Robert Evenson. "Fertility, schooling, and the economic contribution of children in rural India: an econometric analysis." Econometrica 45, no. 5 (July 1977): 1065-1079.

Stock, James and Motohiro Yogo. Testing for weak instruments in linear IV regressions. NBER Technical Working Paper ${ }^{\circ}$ 284. Cambridge, MA: NBER, 2002.

Skoufias, E. "Market wages, family composition and the time allocation of children in agricultural households." Journal of Development Studies 30 (1994): 335-360.

Tunali, Insan. "A general structure for models of double-selection and an application to a joint migration/earnings process with remigration". Research in Labor Economics 8, Part B (1986): 235-282.

UNICEF. "Child Protection." Available from http://www.unicef.org/protection/ index_childlabour.html. Internet; accessed 10 January 2006.


[^0]:    ${ }^{1}$ UNICEF, "Child Protection. Child Labour," available from http://www.unicef.org/ protection/index_childlabour.html; Internet; accessed 10 January 2006.
    ${ }^{2}$ International Labour Office (ILO), Global Report 2002: A Future without Child Labour, (Ginebra: ILO, 2002), 14.

[^1]:    ${ }^{3}$ It is important to point out that I do not include in this research another kind of child labor: non paid family work. This is work performed at home or in home businesses whose output is sold in the market.

[^2]:    ${ }^{4}$ Using Peruvian data of 2000, on average a household spends 64 hours per week doing chores. This figure is the result of the sum of hours individuals spend time doing chores.

[^3]:    ${ }^{5}$ Later on, leisure will be eliminated for simplicity.

[^4]:    ${ }^{6}$ See for example Richard Blundell and Thomas MaCurdy, "Labor Supply: A review of alternative approaches," in Handbook of Labor Economics 3A, ed. O. Ashenfelter and D. Card, 1559-1695 (Oxford: North Holland, 1999); Reuben Gronau, "Leisure, home production, and work - the theory of the allocation of time revisited," Journal of Political Economy 85, no. 6 (1977): 1099-1123; Mark R. Rosenzweig, "Neoclassical theory and the optimizing peasant: an economic analysis of the market family labor supply in a developing country," Quarterly Journal of Economics 94, no. 1 (February 1980): 31-55; Nancy Birdsall, Child Schooling and the Measurement of Living Standards, Living Standards Measurement Study Working Paper No. 14, (Washington, D.C.:World Bank, 1982); Nancy Birdsall and Susan E. Cochrane, "Education and parental decision making: a two generation approach," in Education and Development, ed. Anderson Lascelles and Douglas M. Windham, (Lexington, Mass.: Lexington Books, D.C. Heath and Company, 1982).

[^5]:    ${ }^{7}$ Gronau, 1104-1113.

[^6]:    ${ }^{8}$ Rosenzweig, 33-40; Birdsall, 25-35; Birdsall and Cochrane, 175-179.; Deborah Levison, "Children's labor force activity and schooling in Brazil," (Ph.D. diss., University of Michigan, 1991), 20-31.
    ${ }^{9}$ Orley Ashenfelter and James Heckman, "The estimation of income and substitution effects in a model of family labor supply," Econometrica 42, no. 1 (January 1974): 74-78; Hanan

[^7]:    Jacoby, "Shadow wages and peasant family labour supply: an economic application to the Peruvian Sierra," Review of Economic Studies 60 (1993): 903-921; Mark R Rosenzweig and Robert Evenson, "Fertility, schooling, and the economic contribution of children in rural India: an econometric analysis," Econometrica 45, no. 5 (July 1977): 1065-1079; John L. Newman and Paul J. Gertler, "Family productivity, labor supply and welfare in a low income country," Journal of Human Resources 29, no. 4. Special Issue: The family and intergenerational relations (Autumn 1994): 989-1026.
    ${ }^{10}$ See for example, Drusilla K. Brown, Alan V. Deardorff and Robert M. Stern, "Child Labor: Theory, Evidence and Policy," Discussion paper 474, (Medford, M.A.: Tufts University, Department of Economics, 2001); Alessandro Cigno, Furio C. Rosati y Zafiris Tzannatos, Child Labor Handbook, Social Protection Discussion Papers Series N ${ }^{\circ}$ 0206, (Washington, D.C.: World Bank, 2002); Sonia Bhalotra and Zafiris Tzannatos, Child labour: what have we learnt?, Social Protection Discussion Paper Series, (Washington, D.C.: World Bank, 2003).
    ${ }^{11}$ Sonia Bhalotra, Is child work necessary?, Social Protection Discussion Paper Series, (Washington, D.C.: World Bank, 2001), 6-10.

[^8]:    ${ }^{12}$ Drusilla K Brown, Alan V. Deardorff and Robert M. Stern, "U.S. trade and other policy options and programs to deter foreign exploitation of Child Labor," Discussion paper 99-04, (Medford, M.A.: Tufts University, Department of Economics, 2003), 29-32.

[^9]:    ${ }^{13}$ E. Skoufias, "Market wages, family composition and the time allocation of children in agricultural households," Journal of Development Studies 30 (1994): 335-360; Deborah S. DeGraff, Richard E. Bilsborrow and Alejandro N. Herrin, "Children's education in the Philippines: does high fertility matter?," Population Research and Policy Review 15, no. 3 (1996): 219-247; Deborah S. DeGraff,, Richard E. Bilsborrow, "Children's school enrollment and time at work in the Philippines," Journal of Developing Areas 15, no. 1 (2003): 127-158; Deborah Levison and Karine S. Moe, "Household work as a deterrent to schooling: an analysis of adolescent girls in Peru," Journal of Developing Areas 32 (Spring 1998): 339-356.

[^10]:    ${ }^{14}$ Melissa Binder and David Scrogin, "Labor force participation and household work of urban schoolchildren in Mexico: characteristics and consequences," Economic Development and Cultural Change, 48, no. 1 (1999): 123-154; Hideo Akabayashi and George Psacharopoulos, "The trade-off between child labour and human capital formation: a Tanzanian case study," Journal of Development Studies 35(1999): 120-140; Ranjan Ray, "Analysis of child labour in Peru and Pakistan: a comparative study," Journal of Population Economics 13 (2000): 3-19.
    ${ }^{15}$ Marcel Kerkhofs and Peter Kooreman, "Identification and estimation of a class of household production models," Journal of Applied Econometrics 18 (2003): 337-369.

[^11]:    ${ }^{16}$ Christiaan Grootaert and Ravi Kanbur, "Child labor: an economic perspective," International Labour Review 134, no. 2 (1995): 187-203; Kaushik Basu, "Child labor: cause, consequence, and cure, with remarks on international labor standards," Journal of Economic Literature 37, no. 3 (1999): 1083-1119; Kaushik Basu and Pham Hoang Van, "The economics of child labor," American Economic Review 88, no. 3 (June 1988): 412-427; Priya Ranjan, "An economic analysis of child labor," Economics Letters 64 (1999): 99 - 105; Priya Ranjan, "Credit constraints and the phenomenon of child labor," Journal of Development Economics 64 (2001): 81-102; Jean-Marie Baland and James Robinson, "Is child labor inefficient?," Journal of Political Economy 108, no. 4 (August 2000): 663-679; Carol Ann Rogers and Kenneth Swinnerton, "Does child labor decreases when parental income rises?," Journal of Political Economy 112, no. 4 (2004):939- ; Sylvain E. Dessy and Stephane Pallage, "Child Labor and coordination failures," Journal of Development Economics 65 (2001): 469-476.

[^12]:    ${ }^{17}$ The role of education has been introduced in this model in a very simple way. In fact, it is just an activity performed by the child that affects positively the family utility.

[^13]:    ${ }^{19}$ This is so since from equations (1.2) - (1.4) I get: $w_{1}=P \cdot f_{1}$ and $w_{2}=P \cdot f_{2}$. These equations constitute a subsystem of two equations and two unknowns, $z_{1}$, and $z_{2}$.

[^14]:    ${ }^{20}$ This result is the same as that found by Rosenzweig.
    ${ }^{21}$ For a Cobb-Douglas technology, the cross derivative is positive. For a function like $f\left(z_{1}, z_{2}\right)=z_{1}^{0.5}+z_{2}^{0.5}$, the value is zero.

[^15]:    ${ }^{22}$ If the utility function were strictly concave, the derivative would be positive for sure.

[^16]:    ${ }^{23}$ These results are consistent with Rosenzweig (1980) who found the three effects for the husband and wife labor supply in a model with home production and two symmetric agents. In our model, they are not symmetric because of the education, and because we do not have leisure here.

[^17]:    ${ }^{24}$ In previous sections it was called $\lambda_{1}$. Now I call it $\lambda$ to simplify notation.

[^18]:    ${ }^{25}$ Newman and Gertler, 993-994.

[^19]:    ${ }^{26}$ This result is similar to that in Brown, Deardorff and Stern, U.S. trade and policy options, 31. The difference is that they assume constant marginal products and, consequently, they have specialization.

[^20]:    ${ }^{27}$ From equations (1.25) - (1.27) it is easy to get $w_{1}=P \cdot f_{1}$ and $w_{2}=P \cdot f_{2}$. Thus, the results discussed in the previous section about household work and the wife's labor supply functions are the same.

[^21]:    ${ }^{28}$ This is true in this case, but it is not a general rule for any utility and production function.

[^22]:    ${ }^{29}$ The Basu and Van's model says that we observe child labor if the family income drops below the subsistence level.

[^23]:    ${ }^{30}$ Rosenzweig, 37-38; Brown, Deardorff and Stern, U.S trade and policy options, 30-31.

[^24]:    ${ }^{31}$ Gary Becker, "A theory of the allocation of time," The Economic Journal 75, no. 299 (1965): 493-517; Gronau, 1099-1123; Mark R. Rosenzweig and Robert Evenson, "Fertility, schooling, and the economic contribution of children in rural India: an econometric analysis," Econometrica 45, no. 5 (July 1977): 1065-1079; Rosenzweig, 31-55; Nancy Birdsall, Child Schooling and the Measurement of Living Standards, Living Standards Measurement Study Working Paper No. 14, (Washington, D.C.:World Bank, 1982); Newman and Gertler, 989-1026.
    ${ }_{32}^{32}$ Bhalotra, 6-10.
    ${ }^{33}$ Brown, Deardorff and Stern, U.S trade and policy options, 30-31

[^25]:    ${ }^{34}$ Later we will see that the observation of wages is one of the greatest obstacles in the estimation of this kind of models.

[^26]:    ${ }^{35}$ DeGraff, Bilsborrow and Herrin, 219-247.
    ${ }^{36}$ DeGraff and Bilsborrow, 127-158.
    ${ }^{37}$ Levison and Moe, 339-356.

[^27]:    ${ }^{38}$ Binder and Scrogin, 123-154.

[^28]:    ${ }^{39}$ Martin Ravallion and Quentin Wodon, "Does child labor displace schooling? Evidence on behavioral responses to an enrollment subsidy," The Economic Journal 110 (March 2000): C158-C175.
    ${ }^{40}$ Akabayashi and Psacharopoulos, 120-140.

[^29]:    ${ }^{41}$ Kerkhofs and Kooreman, 337-369.
    ${ }^{42}$ Their structural model is composed by the first order conditions of the production function, where the inputs are the hours that family members spend at home.

[^30]:    ${ }^{43}$ Kerkhofs and Kooreman use this function in their estimation of the home production function in Sweden. One of the advantages is that the derivatives are linear and it is easy to verify if time inputs are substitutes or complements. It is also easy to introduce stochastic error terms. Other paper which also uses quadratic functions but in utility functions is Michael M. Ransom, "An empirical model of discrete and continuous choice in family labor supply," The Review of Economics and Statistics 69, no. 3 (1987): 465-472.

[^31]:    ${ }^{44}$ See Lung-Fei Lee, G.S. Maddala and R.P. Trost, "Asymptotic covariance matrices of two-stage probit and tobit methods of simultaneous equations models with selectivity," Econometrica 48, no. 2 (1980): 491-504; and Insan Tunali, "A general structure for models of double-selection and an application to a joint migration/earnings process with remigration," Research in Labor Economics 8, Part B (1986): 235-282.

[^32]:    ${ }^{45}$ See Raymond P.H. Fishe, R.P. Trost and Philip M. Lurie, "Labor force earnings and college choice of young women: an examination of selectivity bias and comparative advantage," Economics of Education Review 1, no. 2 (1981): 169-191; G.S. Maddala, Limited-Dependent and Qualitative Variables in Econometrics, (New York: Cambridge University Press, 1983), 282.
    ${ }^{46}$ See Samuel Kotz, N. Balakrishna and Norman L. Johnson, Continuous Multivariate Distributions: Volume 1: Models and Applications, (New York: Wiley, 2000), 207.

[^33]:    ${ }^{47}$ In STATA it is easy to get these estimates and standard errors from the estimates of equations (2.6) and (2.7) and including $M_{12}$ and $M_{21}$ in the system, and doing the estimation by 2SLS.

[^34]:    ${ }^{48}$ Data supports this late assumption because in the sub sample where $w_{2}$ is observed (children work), households do not hire housekeeping services at all.

[^35]:    ${ }^{49} 45.7 \%$ of households from the 2000 survey were also surveyed in 1997.

[^36]:    ${ }^{50}$ For example, Bhalotra and DeGraff \& Bilsborrow.

[^37]:    $*=$ significant at $10 \%$ level, ${ }^{* *}=$ significant at $5 \%$ level, ${ }^{* * *}=$ significant at $1 \%$ level

[^38]:    ${ }^{51}$ In the sample, $95 \%$ of the spouses are women.

[^39]:    ${ }^{53}$ Rhoda V. Carr, James D. Wright and Charles J. Brody, "Effects of high school work experience a decade later: evidence from the National Longitudinal Survey," Sociology of Education 69, no. 1 (1966): 67.

[^40]:    ${ }^{54}$ Kathleen Beegle, Rajeev Dehejia and Roberta Gatti, Why should we care about child labor? The education, labor market, and health consequences of child labor, World Bank Policy Research Working Paper 3479 (Washington, D.C.:World Bank, 2005), 19-20.

[^41]:    ${ }^{55}$ Rhoda V. Carr, James D. Wright and Charles J. Brody, "Effects of high school work experience a decade later: evidence from the National Longitudinal Survey," Sociology of Education 69, no. 1 (1966): 72-73.
    ${ }^{56}$ Ronald D'Amico, "Does employment during high school impair academic progress?," Sociology of Education 57, (1984): 160-161.

[^42]:    ${ }^{57}$ George Psacharopoulos, "Child labor versus educational attainment: some evidence from Latin America," Journal of Population Economics 10 (1997): 377-386; Peter Jensen and Helena Skyt Nielsen, "Child labor or school attendance? Evidence from Zambia," Journal of Population Economics 10 (1997): 407-424; Martin Ravallion, and Quentin Wodon, "Does child labor displace schooling? Evidence on behavioral responses to an enrollment subsidy," The Economic Journal 110 (March 2000): C158-C175; Harry Anthony Patrinos and George Psacharopoulos, "Family size, schooling and child labor in Peru - an empirical analysis," Journal of Population Economics 10 (1997): 387-405; Levison and Moe, 339-356.

[^43]:    ${ }^{58}$ Paul Glewwe, "School and skills in developing countries: education policies and socioeconomic outcomes," Journal of Economic Literature 40 (2002): 438-441; Victoria Gunnarson, Peter Orazem and Mario A. Sanchez, "Child labor and school achievement in Latin America," Working Paper \# 03023, (Ames: Iowa State University, Department of Economics, 2003): 17-22; Christopher Heady, "The effect of child labor on learning achievement," World Development 31, no. 2 (2003): 385-398; Akabayashi and Psacharopoulos, 132-138.

[^44]:    ${ }^{59}$ In the Peruvian Education System, a student who has a very low performance and his/her grades are low or below a minimum standard during the year must enroll in the same grade the next academic year.

[^45]:    ${ }^{60}$ The definition of "youth workers" is vague and sometimes it goes from 11 to 25 years old. However, in Peru an individual of 18 years and older is considered an adult.

[^46]:    ${ }^{61}$ For an explanation of the method, see Fumio Hayashi, Econometrics, (New Jersey: Princeton University Press, 2000), 204-207.
    ${ }^{62}$ Whitney Newey, "Efficient estimation of limited dependent variable models with endogenous explanatory variables," Journal of Econometrics 36 (1987): 235-238; Douglas Rivers and Quang H. Vuong, "Limited information estimators and exogeneity test for simultaneous probit models," Journal of Econometrics 39 (1988): 350-351.

[^47]:    ${ }^{63}$ The excluded instruments are those which appear in the reduced form equations but do not appear in the main equation.
    ${ }^{64}$ D. Staiger and J. H. Stock, "Instrumental variables regression with weak instruments," Econometrica 65, no. 3 (May 1997): 557-586, quoted by James Stock and Motohiro Yogo, Testing for weak instruments in linear IV regressions, NBER Technical Working Paper $\mathrm{N}^{\circ}$ 284, (Cambridge, MA: NBER, 2002), 29.

[^48]:    ${ }^{65}$ J.S. Cragg and S.G. Donald, "Testing identifiability and specification in instrumental variable models," Econometric Theory 9, (1993): 222-240, quoted by Stock and Yogo, 5.
    ${ }^{66}$ Andrews and Stock (2005), 8-10.

[^49]:    ${ }^{67}$ The relative bias is measured as $\mathrm{b}=\mathrm{IV}$ bias/OLS bias. For example, $\mathrm{b}=0.10$ means that the IV bias due to weak instruments is 10 percent of that bias if we estimate by OLS.

[^50]:    ${ }^{68}$ They were also included in the regressions of section 4.1, but they were not significant (they did not pass the test of exclusion of variables).

