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CHAPTER 1

INTRODUCTION

This chapter provides the following. Section 1.1 defines the concept of learning

and its relationship to memory, section 1.2 is about biological organisms as information

processing entities. Section 1.3 describes the goals and contributions of the dissertation,

and section 1.4 gives an overview of the chapters.

1.1 Learning and memory

According to Simon (1983), learning “denotes changes in the system that are

adaptive in the sense that they enable the system to do the same task or tasks drawn

from the same population more efficiently and more effectively the next time.” This

is a very broad definition; on the other hand, Carbonell et al. (1983) differentiate two

forms of learning: 1) ”knowledge acquisition” as the process of acquiring new symbolic

information together with the ability to apply that information effectively, and 2) ”skill

refinement” as a process of refining learned skills by repeated practice.

Machine learning finds methods for computing machines to become intelligent. Such

methods cover encoding knowledge; learning strategies, such as strategies for learning

from instruction or from examples; and strategies for learning by deduction, by analogy,

or by observation (Michalski, 1987). Machine learning models for knowledge acquisition

comprise decision trees, instance based learning, artificial neural nets, and genetic

algorithms, among others (Mitchell, 1997). Artificial neural nets and genetic algorithms

are inspired by biological systems, where the complex dynamics of biological systems

are usually very simplified.

Memory is measured by the observation of behavioral changes in an animal [or

1
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system] after learning.Memory is a process that includes acquisition, consolidation,

retention, and retrieval of information (Abel and Lattal, 2001).

In biological organisms, there is more evidence that memory is based at the molecular

level (Abel and Lattal, 2001; Squire and Kandel, 2000; Vianna et al., 2001). The intra

and inter-cellular molecule-based dynamics are responsible for learning and memory

processes. The present study is an attempt to build a machine learning architecture based

on a model of the dynamics of molecular interactions.

1.2 Biological organisms as information processing entities

Nature is organized in hierarchies. Biological system hierarchies run through

subatomic particles, atoms, molecules, cells, organs, individuals, communities, and

ecosystem levels. Each level of organization has its own characteristics. For example

atomic characteristics can not be directly applied to organisms.

In the context of biological systems Gatlin (1972) says that “life can be defined

operationally as an information processing system – a structural hierarchy of functioning

units – that has acquired through evolution the ability to store and process information

necessary of its own accurate reproduction”. Then Gatlin defines information as “the

capacity to store and transmit meaning or knowledge, [but] not the meaning or knowledge

itself “. In other words, the author finds conceptual differences between the knowledge

itself, and the capacity to store and transmit knowledge which she callsinformation.

Biological systems can be viewed as information processing entities since they use,

create, and process information in order to survive. Four and a half billion years of

evolution has generated a huge variety of ways of finding solutions to various problems.

A subset of these biological strategies can be applied to solve technical problems. There
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are several approaches that use evolutionary techniques, such as genetic programming

(Koza, 1992), evolutionary programming (Fogel et al., 1966), evolutionary strategies

(Schwefel, 1995), genetic algorithms (Holland, 1975), and cultural algorithms (Reynolds,

1994; Reynolds and Zannoni, 1992). But none of these explicitly use the hierarchical

properties found in the architecture of life.

This work is motivated by the evidence that the hierarchical organization of biological

systems plays an important role in information processing, learning, and problem solving

(Conrad, 1983; Simon, 1962, 1973). Currently most scientific activities are focused on

the study of one particular level of organization. For example, biology studies cells

and organisms, chemistry studies atoms and molecules, ecology studies ecosystems, and

so on. Research integrating mechanisms across levels is necessary. The results of this

research should lead to a coherent view of complex systems.

1.3 Goals and contributions

In this study, I designed and implemented a novel architecture, called the

hypernetwork architecture, based on the hierarchical organization and principles of

biological information processing. It integrates information flow from the molecular,

cellular, and organismic levels.

The hypernetwork architecture is a theoretical model of a biological system, capturing

elements of its organization, dynamics and evolution. The model is based on molecular

evolution and the formation of networks of molecular interactions.

This is an architecture for machine learning, a tool for understanding how hierarchies

work, a tool for studying evolutionary strategies, and a model for building molecular

computers.
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1.4 Overview

Chapter 2 is a broad overview of hierarchy theory, complex systems, evolution and

adaptive surfaces, and discusses the problem of scale.

Chapter 3 describes some conceptual antecedents of the hypernetwork architecture,

such as evolutionary algorithms, neural networks models, and Conrad’s enzymatic neuron

and percolation network models. The hypernetwork model has some elements of each of

these, but it is based solely on particle interactions. This interactional point of view will

be stressed in the following chapters.

Chapter 4 is a detailed description of the hypernetwork architecture. First, a

description of the components of the model is presented: molecules, cells, and the

organism. Secondly, the variation-selection algorithm based on molecular mutations is

described. Some sections of the chapter were previously published by myself and M.

Conrad (Segovia-Juarez and Conrad, 1999, 2001), excerpts reprinted with permission.

Chapter 5 shows the learning capabilities of the hypernetwork model for four

classification problems: the N-input parity task, the tic-tac-toe endgame problem, the

two x two-bit multiplier, and the double spiral data set.

Chapter 6 shows the effect of inhibition and negative feedback regulation on

hypernetwork learning.

Chapter 7 is a study of the mutation-buffering capabilities of the hypernetwork

organisms and discusses their importance. Sections of the chapter appear in (Segovia-

Juarez and Colombano, 2001), excerpts reprinted with permission.

Chapter 8 shows the evolvability properties of the hypernetwork model. The

relationship between the size of the model organisms and learning is explored with the
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N-input parity and two x two parity problems.

Chapter 9 contains the conclusions, a summary of the experimental results, and

pointers to future work.
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CHAPTER 2

BACKGROUND

Biological systems are complex, multi-dimensional, non-linear systems, structurally

organized into hierarchical levels. This chapter is a brief review of previous work on

complex systems (section 2.1), hierarchical systems (section 2.2), evolution and adaptive

surfaces (section 2.3), emergent properties (section 2.4), and discusses of the problem of

scale (section 2.5).

2.1 Complex systems

Feedback models, studied by Wiener (1948), Ashby (1956) and others, recognized

that living systems are complex feedback regulatory systems. These authors frequently

use differential equations to describe the system. The problem with this approach is that it

is not a good approximation to the study of hierarchies, since continuous representations

are not suitable for modeling the complex discrete structures found in hierarchies (van

Zandt, 1995).

Chemical reaction graphs were introduced by Kauffman (1993) to study molecular

dynamics at the cellular level. The reactions are modeled by bipartite graphs (see Figure

2.1).

Green (1994) states that digraphs (directed graphs) are inherent in the relationships

between elements, and in transitions between different states in biological systems. He

argue that “the pattern of interactions ... influences biological processes”.

Beurle (1962) attempted to show that a random connected network of neuron cells

could perform a useful function. Later Kauffman (1969) introduced Boolean networks to

simulate complex dynamics. Boolean networks are made up of binary variables where



7

p1

p2

p3

p4

p5

p6

r1

r2

Figure 2.1: Bipartite Graph.p1, p2, p3, .., p5 are theproductsor reactantsand r1, r2 are
thereactions(Kauffman, 1993, 1996).

“each variable is regulated by some other variables in the network, which serve as its

inputs. Thedynamical behaviorof each variable ... is governed by a logical switching

rule orBoolean function” (Kauffman, 1993). Models using boolean networks are found

in Wuensche (1994) , Capra (1996), and Somogyi and Fuhrman (1998).

Biological systems are complex self-regulatory systems. Clearly they are not random,

but rather ordered systems. Their description can be verbal, logical, or with equations.

Kinetic logic is an attempt to capture feedback regulatory mechanisms using logic

(Thomas, 1990). This method includes asynchronic feedback loops that are intended

to represent cellular dynamics. Martinet-Edelist (1994) applied this method to the study

of virus dynamics.

A relational model proposed by Rosen (1972, 1985), named Metabolic-Repair (M-

R)-systems makes a distinction between the repair machinery and metabolic activities.

Interactive systems, according to Wegner (1997, 1998), express a rich behavior

and cannot be modeled by Turing machines. The behavior of interaction machines is
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characterized by theirinteraction historieswhich arenon-enumerable. Open systems like

living systems are interactive systems, since the boundaries of the interaction histories is

unknown; on the other hand Turing machines are completely closed systems. Interactions

bring information into the system and improve computational success. Wegner, following

a holistic point of view, proposes an “irreducibility” thesis “observable behavior of

components is not expressible by inner behavior specifications; interaction semantics is

not expressible by state-transition semantics and vice versa”.

2.2 Hierarchical systems

There are many ways to define a hierarchical system, each depending on the context

and discipline. Hierarchical social systems can be described as groupings of closely

related entities, forming other higher scale entities with different functions. Here the

hierarchical levels run from persons to cities, regions, countries, and so on.

The definition of hierarchies given by Simon (1962, 1973, 1996) is rather circular.

By hierarchical system, he understands “a system that is composed of interrelated

subsystems, each of the latter being in turn hierarchic in structure until I reach some

lowest level of elementary subsystem”.

A hierarchy can be defined as a partial ordering of a sets, as a universe of set within

sets. The relationship between two sets of different hierarchical level is antisymmetric

and transitive (Webster, 1979). However, in biological systems the effects across scale are

not transitive (Salthe, 1985). O’Neill et al. (1986) define “constraints” to the asymetric

relationship between hierarchical levels.

I define a hierarchyH as a 3-tuple H =<E, I, P>, where E is the set of elements

E = f e1, e2, e3, ..g, I is the set of interactions or relationships among the elements,
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including reflexive interactions, forming a network I =fi1, i2, i3, ...g, P is the set of

properties (physical or logical) of that hierarchy P =f p1, p2, p3 ..g. From an atomistic

point of view, elements of one hierarchy can contain other hierarchies of lower scale, until

an atom-like structure is reached. This atomic-like structure is called thehierarchy unit

H0, defined by an element, a reflexive interaction, and a given set of properties (Figure

2.2.) Every hierarchical unitH0 differs from others in at least one property (i.e., spatial

location, charge, state, etc). Therefore it is not possible to abstract a global entity from a

set of such entities without losing some information.

Figure 2.2: The Hierarchical UnitH0. It is an atomic-like structure with its reflexive
interaction.

The nested hierarchies form the hierarchical system (Figure 2.3) with the lowest level

the elements of the hierarchy unit (H0), the medium level (H1), and the higher level (H2).

A set of elements of a given level form the next hierarchical level. For example, when a

set of elements of level H1, form an element of level H2, the set of properties of H2 are

different than those at H1, and the interactions are also different (even when they involve

elements of level H1).

One property of any hierarchy isconnectivity. Connectivity indicates how strong the

connections between the elements of one set of a given level are.

Connectivity of elements within a hierarchical level is stronger than connectivity

between entities of the same hierarchical level. For example in Figure 2.3, connectivity

among elements of levelH0 is stronger than connectivity among elements of level H1.
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H0
H0

H1

H1

H2

Figure 2.3: A nested hierarchical system

According to Simon (1996), there are two types of interactions in hierarchies:

interactions among subsystems and interactions within subsystems. The interactions

among subsystems are considered “weak” (they have low energy bonds, low frequency

dynamics, based on the time that takes to finish a process relative to a given level)

as compared to the relatively stronger interactions within subsystems (they have high

energy bonds, and high frequency dynamics). He describes such subsystems as ”nearly

decomposable” since ”interactions among the subsystems are weak but not negligible”

(Simon, 1996).

The importance of hierarchies in understanding the origin of operation and the origin

of life is addressed by Pattee (1970). He considers “hierarchical organization” to be a

coherent collection of entities, such as found in living matter, and “hierarchical control”

to be the main feature of this type of organization. Pattee states that the structure of

hierarchies can be distinguished by forces, numbers, and time scales (Pattee, 1972, 1973).

The strongest forces are responsible for smaller or lower-level structures. The time scale
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is related to the forces: shortest time is related to stronger forces (occur at lower levels),

and longest time is related to weaker forces and larger structures, that occur at higher

levels.

Pattee (1972) recognized the following properties of control hierarchies:

� A control hierarchy constrains the behavior of the elements of a collection so

that they perform some coherent activity. Thus the elements of the collection do

not behave randomly but their behavior is under hierarchical control.

� The coherent activity of hierarchical control systems is simpler than the

detailed activities of its elements. Thus some detail is lost in the control

operation and the hierarchical control selects which features of the elements are

most important for the behavior of the collective system.

� New hierarchical constraints can continue to appear at higher levels without

destroying the existing constraints at the lower levels, suggesting that “if we

could discover how any new functional organization or new classification is created

spontaneously from a set of more or less disordered elements, we could generalize

this discovery into a theory of hierarchical origins” (Pattee, 1972).

� There are many physical structures that execute the same function and there

are many descriptions of the same physical structure. Pattee considered this

an essential property of life, raising problems about limitations of language for

describing structures, and limitations on defining functions.

Koestler (1976), proposedholonsas hierarchical “quasi-autonomous” entities that
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maintain individuality, but at the same time are part of a larger whole. This duality ”is

inherent in the concept of hierarchical order”, and is therefore a universal characteristic

of hierarchical elements of living systems. In short, the holon is an integrated body of its

parts that will form, another holon, with others of their class. For example, holons can be

cells, tissues, organs, individuals, populations, species, etc.

Allen and Hoekstra (1992), proposed criteria to order higher levels over lower levels

as described below:

� Bond strength. The higher the level, the weaker the strength of the bonds that hold

entities at that level together.

� Relative frequency. Higher levels have a longer return time in their processes, that

is, they behave at a lower frequency.

� Containment. Configuring nested systems where the upper level is composed of

lower levels. In such systems, the whole changes more slowly than its parts, and

the whole is clearly the context of its parts.

� Constraint. Where “upper levels constrain lower levels by behaving at lower

frequency, by doing nothing or even by refusing to act”(Ahl and Allen, 1996).

There exist filters between levels that allow the passing of only certain information.

Conrad (1972, 1983) described hierarchical organizations of living systems with

compartments. The compartments of the biota are cells, organs, organisms, and

populations. The environment is decomposed into regions. The compartments are nested,

and in order to avoid redundancy in the descriptions, the concept of partial state is defined
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for each compartment. Thus, it is possible to specify the state of the biota in terms of the

state of each of its compartments. The compartments are defined by the density of the

connections among the components and by the scale in which they act (Conrad, 1995b).

Auger (1989) studied hierarchies in the framework of mathematics. Auger’s

hierarchies are groupings of strongly connected elements into more loose connections

at the superior level.

2.3 Evolution and adaptive surfaces

Evolution is the collective effect of changes of gene frequencies of individuals in a

population. Natural selectionis the main agent of evolution. Natural selection results

from interaction between organisms and their environment, and operates by “differential

reproductive success” (Pianka, 1994) (i.e., success in transferring genetic information

into the population). The mechanism ofvariation andselectionincreases the survival of

populations in their environment (“fitness”).

Types of natural selection.

According to Pianka (1994), there are several types of natural selection. Populations

can have stabilizing selection (if the fitness actually remains the same), directional

selection (when the population shifts its phenotype in order to reach a new fitness), or

disruptive selection (when the population splits their phenotype).

Other types of natural selection are: frequency-dependent selection, which “occurs

when the fitness of a particular phenotypic trait varies with its frequency in the

population” (Pianka, 1994); age-specific selection; density-dependent selection; density-

independent selection; kin selection; and sexual selection. A comparison of evolutionary
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approaches to computer science is found in B¨ack (1994), and B¨ack et al. (1997).

The steps of evolutionary systems by natural selection are given in the algorithm of

Figure 2.4. There are two main steps:variation , andselectionof sub-populations that

have the best fitness value.

Require: Sub-populations and the environment
Ensure: Increase the fitness of sub-populations
1: loop fForeverg
2: Sub-populations reproduce introducing mutated individuals (Variation )
3: for Each sub-populationPi do
4: Check the fitness for each sub-populationPi (Selection)
5: Some sub-populationPi has more reproductive success than the others.
6: end for
7: The population and external agents may modify the environment.
8: end loop

Figure 2.4: A generic variation-selection algorithm to evolve subpopulations towards their
highest fitness value.

Adaptive surfaces.

Evolution may be viewed as a “hill-climbing” process on adaptive surfaces (Wright,

1932), leading to some global or local optima for each population. The key is to find

the global optima, but the problem is that sometimes populations can get stuck in local

optima.

In order to simulate an evolutionary system in a computer, it is convenient to have

an idea of the “fitness”, perhaps plotting the phenotype or genotype against some

performance measure called fitness. This plot is also referred as anadaptive landscape.

Many times the fitness is predefined; in other cases the fitness is an emergent property

in the model, as for example in the evolutionary ecosystem models of Conrad and Pattee
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(1970), and Conrad and Rizki (1980).

It is possible to increase the dimensionality of the adaptive landscape in such way

that local peaks are converted into saddle points, making it possible to find a pathway to

escape a given local optimum (Conrad, 1990a). This “extradimensional bypass” improves

the possibility of finding the optimal point.

According to Simon (1973) hierarchical systems allow a speed up of evolution:

“hierarchies will evolve much more rapidly from elementary constituents than will do

non-hierarchic systems containing the same number of elements. Hence, almost all

very large systems will have hierarchic organization” (Simon, 1973). Complexity of

hierarchical systems improves the search for optimal points in the adaptive landscape.

2.4 Emergent properties

According to Simon (1996), emergence in the strong sense ”postulates new system

properties and relations among subsystems that had no place in the system components”.

The weaker interpretation of emergence states: ”emergence simply means that the parts

of a complex system have mutual relations that do not exist for the parts in isolation”. In

that sense a molecule has a function when it is in a given medium, but not in isolation.

I will define emergent properties as those collective properties that cannot be found

inside a hierarchical level. For example, the behavior of each cell of an organ does not

define all the properties of the organ; the behavior of every neuron can not express the

behavior of the brain as a whole. This anti-reductionistic point of view, states that there

are collective properties that cannot be deduced from the inside or from the entities in

isolation, but can be observed from higher hierarchical levels, or when the relationships

among the entities are established.
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Another way of expressing this concept of emergence is with Figure 2.3. The

properties and relationships of hierarchical level H2 cannot be deducted from the

properties of every element of level H1. Thus I say that H2 has emergent properties

over H1.

2.5 The problem of scale

Scale is a very important feature in nature. Among the properties where scale is

observed are: dissipation, mass, time, number of objects, object lifespan (Feekes, 1986),

and energy (Auger, 1989; Feekes, 1986; Pahl-Wostl, 1995). Moreover there are features

unique at each level. For example, an atom has quantum properties that are not evident at

the macro level (Conrad, 1994; Rosen, 1974).

The problem of scale and its importance was recognized by Levin (1992),and Holling

(1992). Other references to the problem are in Allen and Hoekstra (1992); Allen and Starr

(1982); Conrad (1979c, 1983); O’Neill (1989); O’Neill et al. (1986); Pahl-Wostl (1995);

Pianka (1994); Webster (1979).

Levin (1992) gives importance to scale and the multi-scale problem in the following

terms: [there is] “no single natural scale at which ecological phenomena should be

studied; systems generally show characteristic variability on a range of spatial, temporal,

and organizational scales. ... The key to prediction and understanding lies in the

elucidation of mechanisms underlying observed patterns. ... Those mechanisms operate

at different scales than those on which the patterns are observed.”

Holling (1992) concludes that “the landscape is structured hierarchically by a small

number of structuring processes into a small number of levels, each characterized by

a distinct scale of “architectural” texture and of temporal speed variables”. He also
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states the need to develop a “meta-model” that would “focus explicitly on cross-scale

interactions”.

An important fact to consider are properties across hierarchical levels. For example,

Bonner (1965) found that there exist a linear log-log relationship between the length of

an organism and its generation time. Rosen (1967), called this log-log relationship in

biological systems an allometric law. Moreover, Holling (1992) found that there exists a

log-log relationship among different hierarchical levels with respect to space and time

of development (in the case of a forest) or decision time (in the case of carnivorous

mammals). Similar relationships are described by Holling (1992), Pahl-Wostl (1995),

Allen and Starr (1982), Peters (1983), and others. Models of hierarchies including scale

should be able to capture at least some of the scale features bounded by limitations of

memory and speed.

2.6 Concluding remarks

Biological organisms are complex, self-regulatory, hierarchical organized systems.

This structure, based on levels of hierarchical organization, is appropiate for evolutionary

search of optimal points in the fitness landscape, thereby speeding up evolution.
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CHAPTER 3

ANTECEDENTS OF THE HYPERNETWORK MODEL

This chapter describes some of the conceptual antecedents of the hypernetwork model

and related architectures. Section 3.1 briefly reviews evolutionary algorithms, section 3.2

describes neural network models, and section 3.3 describes Conrad’s enzymatic neuron

model. Finally, section 3.4 describes the percolation network model that addresses

information flow across scales.

3.1 Evolutionary algorithms

The view of evolution as a metaphor for problem solving is the origin of evolutionary

computation methods. Many computational problems involve finding solutions in a huge

search space, like biological species do when they adapt to their niches in evolutionary

time. Variation-selection mechanisms are central to the evolutionary computing approach

to problem solving.

Evolutionary algorithms cover four main closely related approaches: genetic

algorithms, evolutionary programming, evolution strategies, and cultural algorithms.

Genetic algorithms introduced by Holland (1975), uses a genetic representation to

represent the solution of a problem. For a given problem, there is a population of possible

solutions encoded in ”chromosomes” (frequently using binary strings). A fitness value

is evaluated for each ”chromosome”, reflecting the quality of the solution. Genetic

operators are applied to create a new population: ”Selection” of the best individuals to be

reproduced; ”crossover”, where two parents recombine their genes, and random mutation

are applied to produce an offspring.

An extension of genetic algorithms into programs is calledgenetic programming
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(Koza, 1992). Programs usually expressed in trees, after variation (due to mutation or

crossover) are selected until the best one is selected to satisfy a fitness function.

Evolutionary programming was originally intended to create artificial intelligence

(Fogel et al., 1966; Fogel, 1999). The representation of the problem may be tailored to

the problem, and during the mutation and creation of new individuals, no recombination

operators are performed.

Evolution strategieswere developed by Rechenberg and Schwefel (1995). They use

a real value vector representation for optimization problems. A population of vectors is

randomly created. The offspring vector is created by modifying each value according to a

given distribution. Then, individuals with the least error are the parents for the next loop.

Cultural algorithms , introduced by Reynolds (1994), have two levels of evolution:

cultural (macro level) and population (micro level). The cultural level is a model of human

culture, a kind of knowledge repository that accelerates the problem solving process. The

population level may be implemented by any evolutionary system, such as evolutionary

programming, genetic algorithms, or evolution strategies. The knowledge, accumulated

and processed in the ”belief space”, directs future individual actions. Evolution takes

place at the population and at the belief space. There are communication channels

between the macro and micro levels, and a scheme of updating the knowledge by selected

individuals.

3.2 Neural network models

The fact that memory, the thought process, and in general intelligence are in

relationship with neurons and their connectivity is the origin of the neural hypothesis

for building neural network models.
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There are between7x1010 and8x1010 neurons in humans (Sch¨uz, 1995) and about

thousands of contacts in the neurons (i.e., 100,000 synaptic connections in human

Purkinje cells (Smith, 1994)).

According to the model, the brain is considered to be “a densely connected electrical

switching network conditioned largely by the biochemical processes” (Zurada, 1992).

The neuron proposed by McCulloch and Pitts (1943) is a simplified unit, where the

output is evaluated according to a non-linear function (usually a sigmoid function) of the

inputs to the neuron. The inputs are a representation of dentritic connections from other

neurons or from the environment, and the output is a binary signal to the axon (see Figure

3.1).

T

Input
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Figure 3.1: A McCulloch-Pitts neuron. The neuron has a thresholding element T that fires
as a function of the weightswi of the activated dentritic inputsxi.

The first learning algorithm was proposed by Hebb on the basis of the formation of

’cell assemblies’ with the reinforcement of synaptic connectivities (Hebb, 1949). In the

model information is stored in the connections.

Single layer network of neurons calledperceptrons were introduced in 1958 by

Frank Rosenblatt. Perceptron neurons have limitations with respect to solving non-
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linearly separable problems (Minsky and Papert, 1969). Multilayer learning methods

were designed by Werbos in 1974 (Werbos, 1994) and independently by McClelland

and Rumelhart (1986) solving non-linearly separable problems. Later, other supervised

and unsupervised learning methods, feedback networks, associative memories, and many

other variations were created. The description of these methods is beyond the scope of this

work, but I should state that all of these, more or less, are based on the McCulloch-Pitts

neuron model.

The neural networks have the following features according to Gurney (1997):

Information is stored in the weights and distributed across the network; computation is

relatively robust to noise and hardware failure; neural networks algorithms have good

generalization properties.

3.3 Molecule-based models of information processing

The enzymatic neuron modelproposed by Conrad (1974) is a theoretical model

involving molecules as decision making elements. The abstraction of the neuron involves

enzymatic dynamics that will form the output of the neuron. Moreover, he proposed the

formation of networks with layers of enzymatic neurons, and proved that any McCulloch-

Pitts network can be simulated by some enzymatic network. Networks of enzymatic

neurons are amenable to evolution by “trial and error selection of the excitases [enzymes]”

(Conrad, 1974).

A computer implementation of the enzymatic neuron is described in Chen (1993),

where the system consists on “cytoskeletally controlled enzymatic neurons” (Chen and

Conrad, 1997b) and layers of memory access neurons for indexing, named reference

neurons (Conrad, 1977). This model was used to solve some navigational tasks and
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categorization of Chinese characters (Chen and Conrad, 1997a).

The cytomatrix neuron model (Ugur and Conrad, 1999) is a neuron with multiple

molecular dynamics, trained with an evolutionary learning algorithm. This architecture

solved the 2-bit and the 4-bit parity problems, but it has difficulties in solving the 8-bit

parity problem.

3.4 The percolation network model

The percolation network model is a multi-scale model that stresses the flow of

information among different hierarchical levels (Conrad, 1979b, 1984, 1993, 1995a,b,

1997). Information percolates across scale if it is neither ignorable nor eliminable for

the purposes of calculating the time development of the system as viewed at other scales.

These influences go both bottom-up and top-down. Influences from the environment

impinge on the top level of the system. The influences then filter down into lower levels

(organs, cells) through “integrative dynamics”, until they reach lower levels (meso and

microscale). Specific influences percolate to upper levels by “selective amplification”

until they again reach the environment at the top level (see Figure 3.2).

The cross-scale interactions can be exemplified with any action that the organism

takes. When an organism expresses a behavioral action, it cells change state, and inside

the cells molecules also undergo dynamic and structural changes. The influences of higher

levels are filtered into the molecular level. In turn, molecular changes also are percolated

up to affect the behavior of the organism.

The cyclic AMP system of neurons provides an example of cross-scale interactions

and of the transduction-amplification process. Neurotransmitter molecules (e.g.,

epinephrine, vasopressin) bind excitatory receptors that activate G-proteins; these are first
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Figure 3.2: Schematic representation of a percolation network.

stage amplifying components that activate adenylate cyclase, the enzyme that produces

the second messenger cAMP from ATP. The cAMP in turn activates target proteins

(protein kinases) that activate effector proteins. These might be associated with DNA,

with cytoskeleton, with synaptic vesicles, or may be ion channel proteins that control

nerve impulse activity (Shepherd, 1994). The net result is a change in the internal network

of the cell that can percolate up to higher levels of organization.

The cyclic nucleotide system is ubiquitous in the cells of higher organisms. Its role

in controlling the firing behavior of central neurons suggests that the percolation network

principle is operative in the brain (Liberman et al., 1985). The immune and developmental

systems can also be viewed in this manner. The general feature is this: external influences

(e.g., photons, messenger molecules) filter down to alter internal networks of molecular

interactions within the cell. The influences are combined in space and time through

these interactions, leading eventually to activation of cellular effector molecules. The
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interactions percolate up from the molecular to the cellular level through interactions

between effector and receptor molecules of different cells. Integration and selection

of information occurs at all stages. Multiple scales contribute synergistically to this

process. The key underlying mechanism is molecular conformation. The structure and

function in biological systems is most essentially controlled by shape interactions among

macromolecules.

3.5 Concluding remarks

Traditional neural network models view neurons as a switching units, where the

internal dynamics is simplified down to a threshold function. However, neurons are

complex information processing cells. A model that incorporates neuron enzymatic

dynamics called “enzymatic neuron model” was proposed by Conrad (1974).

Evolutionary algorithms find solutions by searching with variation-selection

mechanisms. These models typically do not have an explicit representation of hierarchies,

or of the information flow across levels.

The hypernetwork architecture described in the next chapter is based on the enzymatic

neuron model including a representation of hierarchical levels and molecular evolution.
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CHAPTER 4

THE HYPERNETWORK ARCHITECTURE

This chapter provides the following. Section 4.1 contains the main features of the

model description at each hierarchical level, the molecular, cellular, and organismic.

Section 4.2 describes the levels of evolution in the hypernetwork architecture. Section

4.3 describes the molecular evolution algorithm, and section 4.4 is a discussion of the

hypernetwork architecture.

4.1 Model description

The hypernetwork architecture is inspired by a biological system (i.e. neuronal

tissue), and attempts to capture the following properties: cross-scale flow of information,

learning, evolvability, and mutation-buffering.

The design of the model is bottom up, from the molecular to the organismic levels. A

first view is shown in Figure 4.1. The system has an environment with which it interacts

via input and outputs.

4.1.1 Molecular level

This level is modeled by molecules reminiscent of proteins represented by a binary

string. Theself-assemblyof proteins and other macromolecules, “a self-organizing

process driven by free energy minimization” (Conrad, 1992), is modeled byinteractions

based on shape complementarity. Two molecules react if their recognition sites are

complementary to each other as shown here:

Interaction (I)

M1 M2
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Figure 4.1: Three hierarchical levels of the hypernetwork model: molecular, cellular, and
organismic. The arrows show interactions.
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In a previous design (Segovia-Ju´arez and Conrad, 1999) the molecule had just one site

with excitatory and catalytic properties. Currently the molecule has three parts of up to

14 bits each (see Figure 4.2). There are two receptor sites,excitatoryandinhibitory, that

put the molecule into the active state or the inactive state, respectively. The third site is

called thecatalyticsite, by means of which the molecule will activate neighbor molecules

if there is complementarity matching (i.e., matching above a threshold) to the receptor

sites of the target molecules (Segovia-Juarez and Conrad, 2001).

Excitatory 
Receptor 
Site

Receptor
Inhibitory

Molecule

   Site

Catalytic site

Figure 4.2: Representation of a molecule with inhibitory, excitatory and catalytic sites.

The existence of inhibitory and excitatory sites allows the creation ofpositiveand

negative feedback regulatory networkswith neighbor molecules, that are described in

more detail in Chapter 6.
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Molecular types The model has four types of molecules: receptors, effectors, internals,

and readouts.

� Receptors are molecules that are sensitive to external influences (from the

environment or from molecules of other cells).

� Effectors are molecules that transfer information out of a cell into other cells via

their receptors. They behave like neurotransmitters in neural tissues.

� Internals are molecules that, influenced by receptors, will form networks of

interactions inside the cell.

� Readouts are molecules that obtain information from the effector molecules of

output cells and send information to the external world.

Molecular States Molecules have the following states:

� Ready: When a molecule is waiting to be activated by one of its neighbors.

� Active: When a molecule is activated by one of its neighbors, then for one time step

it can activate its neighbors if there is complementarity matching.

� Inactive: After being activated, the molecule will be inactive for one time step

before going back to thereadystate.

� Delayed: Occurring just in receptor molecules, this is the time delay until the

molecule is activated. This is to simulate the timing of the interactions among

cells.
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The state diagram of the internal and effector molecules is shown in Figure 4.3, and

that of receptor molecules is shown in Figure 4.4.

Output cells have readout structures that read the state of a particular molecule. If that

molecule was activated, then the readout will be in an active state, otherwise it will be in

the inactive state. A readout structure reads the state of just one molecule, but this could

vary in future implementations.

R A IReady Active Inactive

Inhibition

Activation

Figure 4.3: The state diagram of theinternalandeffectormolecules.

R IADReady Delay Active Inactive

Inhibition

Activation 

Figure 4.4: The state diagram of thereceptormolecules.
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4.1.2 Cellular level

The cell is modeled by a two-dimensional cellular automaton with wrap-around. The

cascades of molecular reactions are modeled withnetworks of molecular interactions

inside the cell.

Every cell hasreceptor, internal, andeffectormolecules. The output cells also have

readout molecules. Molecules are placed randomly in the locations of the grid, and

the relationship of neighborhood is shown in Figure 4.5 where molecule M may have

interactions with eight neighbors.

M

1 2

3

456

7

8

 

Figure 4.5: A molecule M, in the cell, interacts with eight neighbors.

Interactions start when the molecule is active. Using its catalytic site, it searches

every one of its neighboring molecules for complementarity matching at their excitatory

and inhibitory sites. The target molecule will be activated in the next time step if the

matching is above a threshold and there is not any inhibitory matching to it. In case there

is an inhibitory match, the target molecule will go to the inactive state in the next time

step, regardless of any other activation.

The receptor molecules of the input cells are activated by external influences as

described below.
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Types of cells

There are three cell types:

� Input cells: have receptor molecules that gather influences from the environment.

� Internal cells: do not interact with the external world.

� Output cells: have readout molecules that communicate the state of the system to

the environment.

The number of cells and the number of molecules in each cell are initial constants

in this version of the model, but this can evolve in future enhancements. Experimental

hypernetwork organisms usually have 25 to 49 molecules for each cell, and from 15 to 36

cells for each organism. In the cell, the number of receptor and effector molecules may

vary between 4 and 10. Output cells have readout structures randomly located.

4.1.3 Organismic level

A spatially organized group of cells constitutes an organism (an organism is shown in

Figure 4.6). The arrangement is given primarily by the cellular function. Input cells gather

influences from the environment, and output cells deliver the global state of the organism

to the environment, through the states of their readout molecules. In the experiments the

organisms have two layers of internal cells.

In Figure 4.6 the potential cell to cell interactions are shown with dotted lines. The

actual interactions are between the effector and receptor molecules of the respective cells

(Figure 4.7). The cell-cell interactions can change depending on the influences of a

particular input.
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Figure 4.6: A hypernetwork with two input cells, two layers of internal cells, and an
output layer with four cells.
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Figure 4.7: Effector-receptor inter cellular interactions. The Figure shows two cells with
their molecules. Receptors are black, effectors are dashed, internal molecules are gray.
Dotted lines show the potential effector-receptor interactions.
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4.1.4 Population level

This level is not yet implemented, but involves two or more evolving populations with

different organisms. Future implementations of the architecture can include this level.

Several populations could compete in the search for global optimum.

4.2 Levels of evolution in the hypernetwork architecture

The hypernetwork architecture supports evolution acting at different hierarchical

levels. Molecules can change their structure, cells their function, organisms their

behavior, and at the population level there is speciation. The hypernetwork architecture

allows the study of evolution at those different hierarchical levels. Every evolutionary

level includes the next lower one, as a nested hierarchy:

Molecular level evolution.

At this level molecular structures are mutated during reproduction. Every molecule has

a probability of mutation, independent of any other factor. The molecule to be mutated

can change a fraction of its structure randomly. The rate of mutation and the fraction of

molecular change are experimental parameters.

Cellular level evolution.

At this level the organism can change, add or delete molecules within a cell, set the

molecular types (effector, receptor, internal), and modify the location and number of

readout structures. It includes the molecular level evolution.

Organismic level evolution.

This level includes changes in the number and types of cells, as well as relationships
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among cells. It includes the cellular level evolution. The theory of neuronal group

selection of Edelman and Finkel (1984) can be included at this level.

Population level evolution.

This level is based on reproduction with mutation and selection of the best individuals.

It includes evolution at the organismic level.

Ecosystem level evolution.

At this level several populations evolve to learn different tasks. They may compete or

cooperate in the process. It includes evolution at the level of populations.

4.3 The variation-selection algorithm

At the present state of development the hypernetwork architecture has implemented

the molecular level coupled with the population level of evolution. An overview of

the variation-selection algorithm is shown in Figure 4.8. An organism is reproduced

with molecular mutation (evolution at molecular level), then its performance or fitness

is evaluated. The performance of the child with the parent is compared, and choose the

best one as the organism to be reproduced in the next loop.

The hypernetwork gathers influences from the environment using receptor molecules

in the input cells (see Figure 4.6). Influences flow through the organism by dynamical

formation of networks of interactions of molecular structures. The interactions, as

mentioned before, are based on the shape complementarity of molecules. Finally, the

influences arrive at the effector molecules of output cells, where the information is

gathered from the outside by means of the readout structures. The state of each cell is

“ON” if any readout molecule is active, “OFF” otherwise.
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Figure 4.8: An overview of the variation-selection algorithm

Influences from the environment come in the form of a binary string that will activate

the receptor molecules of input cells. and the output of the organism is another binary

string formed by the concatenation of states from the output cells.

The output string is compared with a desired one to measure the performance of the

organism for this particular input. Then, the process is applied to every input vector of

the set to be learned by the algorithm. This iteration is called anepoch.

After the algorithm has processed all the input vectors from the set, its global

performance is evaluated. A detailed description follows in section 4.3.2.

4.3.1 Initialization of the organisms

The initial organism is created with a previously established molecular size, cellular

size, possible cell to cell interactions, and number of cells. The molecular structures are

initialized randomly, as are the locations of the readout molecules in the output cells.
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4.3.2 Testing the performance of an organism

The next three steps are performed for every input vector.

� Input of influences into the hypernetwork

The input vector is split into small two bit fractions. Each of these will activate

an input cell (via activation of its receptors). Molecular receptors have two-bit

molecules at their receptor site. Every input cell has at least four different receptor

molecules, thereby assuring that at least one of them will be activated by each

fraction of the input vector.

� Spread of influences

Once the receptor molecules of the input cells are activated, they will activate

their neighbors. In this way the influences travel through the cell until they reach

effector molecules. Once the effector molecules are active, they will search for

receptor molecules of other cells, according to the cell to cell topology. The cell-

cell interactions are formed dynamically, based on which effectors were activated

at that time.

� Generation of output vectors

Eventually, influences will activate the effector molecules of the output cells. When

this happens the output of the cell is evaluated according to the state of the readout

molecules. The global state of each output cell is “1” if there is at least one readout

molecule activated, otherwise its global state will be ”0”. The output vector is

formed by the concatenation of all the cellular binary states. Then the Hamming

distance from the output vector to the desired output vector is measured.



37

The performance of the organism was obtained from the sum of distances evaluated

previously for each input vector.

4.3.3 Reproduction with molecular mutation

Once the performance or fitness of the organism is obtained and if it is below 100%

learning or a termination condition is not fulfilled, the organism is reproduced with

mutation. Every molecule has a small probability of mutation, and it changes just a

fraction of its structure.

The performance of the offspring is evaluated and compared to its parents as described

above. The algorithm for hypernetwork learning is described in Figure 4.9.

Require: Two organisms, Input Vectors (I), Desired output vectors (D)

1: Initialize organism A
2: Reproduce organism A with mutation to generate organism B
3: repeat
4: for Organism A and Bdo
5: for Every input vectorIi, desired output vectorDi do
6: Read input vectorIi into input cells
7: repeat
8: Propagate interactions through cells
9: Form cell to cell interactions

10: until Effectors of output cells are activated
11: Read output vectorOi from theoutput cells
12: end for
13: Evaluate the global error for each organismEo =

P
n

1
(Oi �Di)=n

14: end for
15: Selection. Obtain the organism with best performance (smallerEo) to become

organism A
16: if (EA > �) then
17: Variation. Reproduce organism A with mutation to generate organism B
18: end if
19: until (EA � �) or termination condition

Figure 4.9: The variation-selection algorithm for hypernetwork learning.
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4.4 Discussion

Features of scale are inherently difficult to model in computers. For example the actual

number of molecules of a cell could not even be represented. However, the representation

of hierarchies in the hypernetwork model contribute to understanding the complex system

and to building one with more features amenable to evolution.

Scale features are modeled with the relative proportionality of entities at each level. In

the experiments the number of molecules are kept at about ten times more than the number

of cells, in each organism. To represent the frequency of changes and the relationships of

strength of interactions at different levels, the architecture has a smaller number of cell to

cell interactions than of molecular interactions, and there is a delay of one time step after

the receptor-effector molecules of different cells interact.

There are major differences between neural nets and the hypernetwork architecture.

Neural nets do not represent scale features, and the cell dynamics is represented by a

threshold function. Neural nets store their memory in the synaptic weights. In contrast

the hypernetwork architecture incorporates a representation of scale from the molecular

level potentially up to the ecosystem level. Moreover, the hypernetwork stores its memory

in its molecular structures distributed across the organism, and the synaptic connections

are formed dynamically by external influences.

4.5 Conclusions

The hypernetwork architecture has two components: the structure and the dynamics.

The structure consists of molecular, cellular, and organismic levels. The dynamics

is based on the molecular interactions modeled after protein self-assembly. External

influences on receptor molecules of input cells percolate into the cells to trigger cascades
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of molecular reactions, expressed in the form of networks of molecular interactions.

Intracellular dynamics are filtered up to higher levels to the organismic level. The output

of the organism is obtained from the readout molecules of the output cells.

The adaptive algorithm for learning is based on molecular evolution. An organism

is reproduced with molecular mutation, and the best organism is selected for the next

iteration.
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CHAPTER 5

SOLVING PROBLEMS WITH THE HYPERNETWORK MODEL

The current implementation of the hypernetwork was evaluated with four sets of

problems:

� The N-input parity problem

� The tic-tac-toe endgame problem

� The two x two bit multiplier

� The double spiral problem

In the next section I will show the results of learning for these problems.

5.1 Solving the N-input parity problem

The N-input parity problem is to compute the odd parity of binary strings of length

N (2N vectors, it is one of22
N

different boolean functions). The network must output

a ”one” if the input has an odd number of ”one” bits, and ”zero” otherwise. The two-

input parity problem (XOR function) is known to be impossible to solve for first order

perceptrons (Minsky and Papert, 1969). Tesauro and Janssens (1988) found that a neural

network with back-propagation could learn up to N=8, but it did not converge for N=10.

TheNOVELmethod, a global optimization method in a neural network, can learn up to

99.8% in the case of N=10 (Shang and Wah, 1996). This problem was found difficult for

genetic algorithms (Langdon and Poli, 1998).

Table 5.1 shows the average learning for the (4-10)-input parity task. The

hypernetwork achieved learning up 100% in the cases of N=4 and N=6. In the case
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of N=8, the hypernetwork obtained 100% learning in four of the ten runs, with an average

of 96.80 % for all 10 runs. The 10-input parity task is exponentially more complex,

but in spite of its complexity I achieve 100% learning in one organism, and a correct

classification average of 93.13%. Learning the tasks for N=12 or greater is left for future

experiments.

N No. of training Average 95% Minimum Maximum n
patterns % Conf.Level % % runs

4 16 100 0 100 100(10) 10
6 64 100 0 100 100(10) 10
8 256 96.80 2.66 90.63 100(4) 10
10 1024 93.13 8.85 81.25 100(1) 5

Table 5.1: Results of learning the (4-10)-input parity task. The number of organisms that
obtain the maximum value of 100% correct classification is shown in parenthesis.

5.1.1 Learning the 4-input parity task

The organism used to learn the 4-input parity task is shown in Figure 5.1. It has two

input cells, 6 internal cells, and one large output cell. The size of the cells is shown with

the cell grid. All the ten organisms learn the task by 20,000 epochs (see Table 5.2 and

Figure 5.2). Details of the experimental parameters are found in the Appendix.

5.1.2 Learning the 6-input parity task

The organism used to learn the 6-input parity task is shown in Figure 5.3. It has 3

input cells, 6 internal cells, and one large output cell. The size of the cells is shown with

the cell grid. All organisms learn the tasks by 40,000 epochs (see Table 5.3 and Figure

5.4 ). Details of the experimental parameters are found in the Appendix.
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Exp. No. of Correct %
No. epochs classification

1 20,062 100
2 2,637 100
3 7,037 100
4 7,215 100
5 4,160 100
6 5,046 100
7 10,253 100
8 14,862 100
9 3,516 100

10 12,931 100

Mean 8,772 100
95% CL 4,060 0

Table 5.2: Learning the 4-input parity task. Details of ten runs. CL is the confidence
level.

5.1.3 Learning the 8-input parity task

The organisms used for training the 8 and 10-input parity tasks are not more complex

than those used for the (4-6)-input parity tasks. I added just one input cell to read the

larger input vector (see Figure 5.5). I obtained 100% learning in 4 of the 10 runs. Results

are shown in Table 5.4 and the learning curves are shown in Figure 5.6.

5.1.4 Learning the 10-input parity task

The organism trained to learn the 10-input parity task is shown in Figure 5.7. It has

5 input cells, internal cells, and one output cell. Learning the 1024 input vectors was

achieved in only one of the five runs (see Table 5.5 and Figure 5.8).
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Exp. No. of Correct %
No. epochs classification

1 21,280 100
2 9,873 100
3 21,523 100
4 38,297 100
5 9,852 100
6 38,192 100
7 11,002 100
8 12,483 100
9 18,914 100

10 17,325 100

Mean 19,874 100
95% CL 7,618 0

Table 5.3: Learning the 6-input parity task. Details of ten runs. CL is the confidence
level.

Exp. No. of Correct %
No. epochs classification

1 53,599 100.00
2 150,000 90.63
3 106,120 100.00
4 150,000 96.88
5 150,000 98.44
6 150,000 96.88
7 116,447 100.00
8 74,435 100.00
9 97,500 92.19

10 150,000 94.54

Mean 119,810 96.80
95% CL 25,789 2.66

Table 5.4: Learning the 8-input parity task. Details of ten runs with up to 150,000 epochs
each. CL is the confidence level.
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Figure 5.1: Structure of an organism used to train the 4-input parity task.
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Figure 5.2: Learning curves for 10 organisms training the 4-input parity task. Correct
classification (%) is on the vertical axis.
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Figure 5.3: Structure of an organism used to train the 6-input parity task.
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Figure 5.4: Learning curves for 10 organisms training the 6-input parity task. Correct
classification (%) is on the vertical axis.
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Figure 5.5: An organism used to train the 8-input parity task.
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Figure 5.6: Learning curves for 10 organisms training the 8-input parity task. Correct
classification (%) is on the vertical axis.
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Figure 5.7: An organism used to train the 10-input parity task.

50

55

60

65

70

75

80

85

90

95

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
or

re
ct

 c
la

ss
ifi

ca
tio

n 
(%

)

No. of epochs

50

55

60

65

70

75

80

85

90

95

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
or

re
ct

 c
la

ss
ifi

ca
tio

n 
(%

)

No. of epochs

Figure 5.8: Learning curves for 5 organisms training the 10-input parity task. Correct
classification (%) is in the vertical axis.
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Experiment No. of Correct %
number epochs classification

1 124,270 100.00
2 115,000 93.75
3 130,600 96.88
4 150,000 93.75
5 150,000 81.25

Mean 133,974 93.13
95% CL 19,428 8.85

Table 5.5: Learning the 10-input parity task. Results of of five runs, with up to 150,000
epochs each. CL is the confidence level.
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5.2 Solving the tic-tac-toe endgame problem

The tic-tac-toe endgame problem contains 958 possible legal endgame boards (Aha,

1991; Matheus, 1990; Matheus and Rendell, 1989). About 65.3% of these instances are

positive (i.e., winners for a player ”x”, assumed to have played first). The task is to learn

to classify the endgame board configuration into winners or losers for player “x”.

The original data, obtained from “www.ics.uci.edu/pub/mlearn/databases/tic-tac-toe/”

was given with three values for each cell of the board (player ”x”, player ”o”, and blank

”b”), and the output as positive or negative. I transform the value ”x” into ”01”, ”o”

into ”10”, and ”b” into ”00”. In order to obtain the input vector I concatenate the board

configuration into a vector of 18 binary digits. I construct the training set with a randomly

chosen 70% (671 vectors) of the initial 958 vectors, using 30% (287 vectors) as the test

set.

Aha (1991), with variations of an instance-based learning algorithm, obtained

performance between 82% and 99%.

Results of seven experiments, run with the organism of Figure 5.9, are shown in Table

5.6. The best organism learned 94.99% of the training set, and had 89.61% of the answers

correct in the test set. On average I obtained 90.55% of correct classification for the

training set and 84.74% for the test set. The learning curves are shown in Figure 5.10.
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Figure 5.9: Organism used to learn the tic-tac-toe endgame problem. The organism has 9
input cells, 3 cells in each of two internal layers, and one output cell. The size of the cells
is shown. Only part of the potential cell to cell interactions is shown.
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Figure 5.10: Learning curves for 7 organisms for the tic-tac-toe endboard problem.

Experiment Correct % Correct %
number training set test set

1 91.32 87.45
2 92.64 84.94
3 93.82 85.30
4 85.13 82.08
5 87.93 83.15
6 94.99 89.61
7 88.07 80.65

Mean 90.55 84.74
95% CL 3.33 2.87

Table 5.6: Results for 7 organisms learning the tic-tac-toe endboard problem. The number
of epochs is 150,000, and every run takes about one day on a Pentium III 550 MHz. CL
is the confidence level.
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5.3 Learning the two x two-bit multiplier table

The two x two bit multiplier is a circuit in which the logic operation is two by two-bit

multiplication. The task for the hypernetwork is to learn its truth table, achieving the

functionality of the multiplier.

The topology used to train is shown in Figure 5.11. Each organism has a total of 304

molecules distributed in 12 cells. I obtained 99.22% average learning for 10 organisms,

with 100% learning in five of the ten cases (see Table 5.7). It takes less than 10 minutes

to learn the task with a Pentium III 550 MHz (see Figure 5.12).

Experiment No. of Correct %
Number epochs learning

1 200,000 98.44
2 69,776 100.00
3 200,000 98.44
4 82,805 100.00
5 86,569 100.00
6 200,000 98.44
7 200,000 98.44
8 160,589 100.00
9 62,223 100.00

10 200,000 98.44

Mean 146,196 99.22
95% CL 44,704 0.59

Table 5.7: Results for 10 organisms learning the two x two bit multiplier table. CL is the
confidence level.
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Figure 5.11: Organism used to learn the two x two bit multiplier truth table. The organism
has two input cells, two layers of internal cells, and an output layer with 4 cells.
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Figure 5.12: Learning curve for two x two bit multiplier truth table. I ran up to 200,000
epochs in each run, which takes about 10 minutes in a Pentium III 550 MHz. CL is the
confidence level.



54

5.4 Learning the double spiral data set

5.4.1 Double spiral with 225 points

The organism must learn to discriminate the spiral of ”1s” from the spiral of ”0s”

from the double spiral data set of 225 vectors shown in Figure 5.13. This data set is

slightly different than another double spiral data set proposed by Lang and Witbrock

(1989) that has 194 points in a x-y plane. This is a highly non-linear problem, solvable

for example with back-propagation (Lang and Witbrock, 1989), fuzzy logic and adaptive

resonance theory neural networks (Carpenter et al., 1992), genetic programming (Koza,

1992), among others.

The 8-bit input vectors were formed by concatenation of the x and y coordinates

shown in Figure 5.13. The input vectors were trained with the organism in Figure 5.11.

Results of eight runs show an average of 94.03% correct classification (an average of

211.57 out of 225 vectors were classified correctly), in 150,000 epochs (see Table 5.8).

The learning curves are shown in Figure 5.15.

Experiment Correct % No. of correct
number classification vectors

1 92.01 207
2 95.56 215
3 93.33 210
4 93.33 210
5 96.00 216
6 96.89 218
7 88.89 200
8 94.23 212

Mean 94.03 211
95% CL 2.47 4.79

Table 5.8: Results for learning the double spiral data set with 225 vectors. The number of
epochs was 150,000. CL is the confidence level.
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0001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0010 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0011 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1
0100 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0101 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1
0110 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1
0111 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1
1000 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1001 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1
1010 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1
1011 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1
1100 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1
1101 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1110 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
1111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 5.13: The double spiral data set with 225 points. See text for details.
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Input
Cells

Output Cell

Figure 5.14: Organism used to learn the double spiral data set. The organism has 4 input
cells, two layers of internal cells, and an output layer with 4 cells.
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Figure 5.15: Learning the double-spiral data set with 225 points. Every experiment takes
about seven hours on a Pentium III 550 MHz.
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5.4.2 Double spiral with 56 points

From the 225-point data set I took the first 56 vectors, starting from the center of

the spiral (see Figure 5.16), in order to test the performance of the hypernetwork with a

smaller data set. I used the same organism shown in Figure 5.11. Results of the 10 runs

are shown in Table 5.9. I obtained an average of 97.5% learning, with 100% in three

cases. The learning curve of the organisms is in Figure 5.17.

Experiment No. of Correct % No. of correct
number epochs classification vectors

1 150,000 98.21 55
2 133,354 100.00 56
3 85,536 100.00 56
4 150,000 98.21 55
5 150,000 96.43 54
6 150,000 98.21 55
7 150,000 98.21 55
8 150,000 91.07 51
9 69,917 100.00 56

10 150,000 94.64 53

Mean 133,881 97.50 54.6
95% CL 21,655 2.01 1.13

Table 5.9: Results of learning the double spiral data set with 56 vectors. The number of
epochs was up to 150,000. CL is the confidence level.
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0101 1 1 1 1 1 1 1
0110 1 0 0 0 0 0 1
0111 1 0 1 1 1 0 1
1000 1 0 1 0 1 0 1
1001 1 0 0 0 1 0 1
1010 1 1 1 1 1 0 1
1011 0 0 0 0 0 0 1
1100 1 1 1 1 1 1 1

1 1 1 1 0 0 0
0 0 0 0 1 1 1
1 1 0 0 1 1 0
1 0 1 0 1 0 1

Figure 5.16: The double spiral data set with 56 points
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Figure 5.17: Learning the double-spiral data set with 56 points. Ten runs with up to
150,000 epochs.
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5.5 Conclusions

This chapter explores the learning capabilities of the hypernetwork architecture. I

obtained up 100% learning for the (4-10)-input parity tasks, up to 94.99% learning 671

points of the tic-tac-toe endboard problem, and 100% learning the two x two bit multiplier

truth table. For the double spiral data set I obtained 96.89% learning in the case of 225

points, and 100% in the case of 56 points. Generalization properties of the hypernetwork

architecture are shown only with the tic-tac-toe endboard problem. I obtained up to

89.61% on a test set of 287 vectors. More experiments are needed to show generalization

in different problems.

The problems explored are of different nature, synthetic and from real problems. The

organisms that solve the problems have a similar structure and parameter setting (see

appendix).

These results show the learning capabilities of the hypernetwork architecture for

solving these fairly complex tasks with not much different organisms and parameter

settings.
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CHAPTER 6

THE EFFECT OF INHIBITION AND FEEDBACK REGULATION ON LEARNING

6.1 Introduction

Feedback control mechanisms in biological systems (Ashby, 1956; von Bertalanffy,

1968; Wiener, 1948) operate from the molecular to the ecosystem levels (Aon and

Cortassa, 1997; DeAngelis, 1995). There are regulatory feedback mechanisms of gene

expression (Jacob and Monod, 1961). At the cellular level, the complex intra-cellular

dynamics has many positive and negative feedback regulatory mechanisms (Alberts et al.,

1994). At the tissue level, the endocrine system is an example of inter-cellular dynamics.

Regulation at the molecular level seems important for understanding memory (Bhalla

and Iyengar, 1999; Squire and Kandel, 2000). An example of negative feedback inside

neurons is in glutamate induced molecular cascades. Glutamate is a major excitatory

neurotransmitter that plays an important role in memory and learning in the Central

Nervous System (CNS) (McDonald and Johnston, 1990). Excessive amounts of glutamate

can result in pathological damage in the CNS (Danysz et al., 1995). There are two types of

glutamate receptors, the ionotropic and metabotropic receptors. The ionotropic receptors

are for fast, and metabotropic for slower and lasting generation of molecular cascades

(Francesconi and Duvoisin, 2000). There are many types of metabotropic glutamate

receptors (mGluR1-8), and they have functions in regulating membrane excitability,

synaptic transmission, and neurotransmitter release, among others. The mGluR1� can

initiate both the InsP3/Ca2+ cascade where protein kinase C (PKC) is activated, and the

cAMP cascade where cAMP-dependent protein kinase (PKA) is activated. Francesconi

and Duvoisin (2000) found that there isnegative feedback regulationof mGluR by
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inhibition of mGluR1� by PKC, via the InsP3 pathway. Such regulatory mechanisms

may play an important role in learning.

Other examples of negative regulation are during axon growth, and the development

of connectivity (Dodd and Schuchardt, 1995), molecular inhibitory mechanisms play

an important role in synaptic plasticity (Abel et al., 1998), and removal of inhibitory

constraints is required for memory formation inAplysia(Abel et al., 1998).

Several approaches to the study of complex regulatory networks exist, for example

Thieffry and Romero (1999) have a modulatory approach with boolean networks,

and Sakamoto et al. (1998) analyze feedback inhibition with Michaelis-Menten-type

reactions.

My approach to the study of feedback regulation is to model it on the hypernetwork

architecture.

Experimental results on the hypernetwork architecture show that learning is improved

when molecules have structures that allow them to became inactive. These inhibitory

features regulate the formation of cascades of molecular interactions in the cell. This

effect is observed inside neural cells.

Using this framework, this chapter stresses the role of inhibition and the formation of

intra-cellular negative feedback regulation in hypernetwork learning.

6.2 Formation of regulatory networks in the hypernetwork architecture

The molecular structure and molecular relationships in a cell allow for the formation

of negative and positive feedback regulation. An example of activation and inhibition of

molecules is shown in Figure 6.1, where molecule M1 activates molecule M3 and inhibits

M4 at time “t+1”. The molecule is in an active or inactive state for one time step, then
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when it is back in a ready state it can be activated by another molecule.

I

E I

E I

C

E I

M1

M3 M4

M2

C

t

E

C C
t+2

t+1

t+2

t+1
t+3

t+4

Figure 6.1: Molecule M1 inhibits M4 at time “t+1”, later after time “t+3” M4 is ready
to be activated by M2. The excitatory (E), inhibitory (I), and catalytic (C) sites of each
molecule are shown.

The formation of positive feedback regulatory networksin the hypernetwork

architecture is possible when a target molecule could activate one of the molecules that

cause its activation in the first place. For example in Figure 6.2 molecule M1 activates

molecule M3 at time “t+1”, then molecule M3 activates molecule M4 at time “t+2”. Later

molecule M4 will activate molecule M1 at time “t+3”, allowing the possibility of more

activations of molecules M3 and M4 in future time steps.

Negative feedback regulatory networksare formed by means of the inhibitory site of

the molecular structures. For example, in Figure 6.3 activated molecule M1 activates

molecule M3 at time “t+1”, and molecule M3 activates M4 at time “t+2”. Then molecule

M4 inhibits molecule M1 at time “t+3”. There are other possibilities of interactions

depending on the structures and states of the molecules.



63

I

E I

E I

C

C

E I

M1

M3 M4

M2

C

t

t+1

E

t+3

t+2C

Figure 6.2: Example of a positive feedback regulatory network. Molecule M1 is activated
at time “t”, then it activates M3 at time “t+1”, which in turn it activates M4 at “t+2”.
Molecule M4 in turn can activate M1 at time “t+3”, producing more activations of
molecules M1, M3 and M4. The excitatory (E), inhibitory (I), and catalytic (C) sites
of each molecule are shown.
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Figure 6.3: Example of a negative feedback regulatory network. Molecule M1 is activated
at time “t” and one of its cascade products, molecule M4, will inhibit the activation of M1
at time “t+3”. The excitatory (E), inhibitory (I), and catalytic (C) sites of each molecule
are shown.
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6.3 Effect of inhibition on learning

The experiments are divided in two parts. First, I observe the effect of the inhibition

threshold and the percentage of inhibitory molecules on learning the 4-input parity task.

Secondly, I study the effect of inhibition on learning the N input parity tasks, with N=4 to

N=8.

6.3.1 Effect of threshold on inhibition and percentage of inhibitors on learning the

4-input parity task.

Hypernetwork organisms were trained to learn the 4-input parity tasks, varying the

threshold for molecular inhibition from 10% to 90% of the string matching. Each cell

had 20% of its molecules with inhibitory sites. Figure 6.4 shows the average number of

epochs required for learning the task. Learning took a greater number of epochs when

the threshold was low (10%), or high (90%). This corresponds to over-inhibition in the

first case, and over-excitation of the molecular cascades in the second case. Figure 6.4

shows that an inhibition threshold between 30% and 70% gave almost similar results in

the number of epochs required for learning. For the following experiments I set the value

of inhibition threshold to 70%.

The relation of the number of molecules with inhibitory ability in each cell and

learning is shown in Figure 6.5. I observe a decreasing curve in the number of epochs

needed to learn the 4-input parity task, as a function of the percentage of molecules with

inhibitory sites.
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Figure 6.4: Average number of epochs for learning the 4-input parity task as a function
of the threshold to inhibit a molecule. There is 20% of molecules with inhibitory sites in
each cell of the organism. Average of 10 runs, up to 150,000 epochs. Molecular activation
threshold is 60%. Molecule string length is 14 bits/site. CI is confidence interval.
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Figure 6.5: 4-Input parity learning average as a function of the percentage of molecules
in the cell that exhibit inhibitory sites. Molecular inhibition threshold is set to 70%, and
activation threshold to 60%. Average of 10 runs, up to 150,000 epochs. Molecule string
length is 14 bits/site. CI is the confidence interval.
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6.3.2 Effect of inhibition on learning the 4-8 input parity tasks

I ran experiments for learning the N-input parity task, with and without inhibition.

Values of N where N=4, N=6, and N=8.

Figure 6.6 shows the average number of epochs required for learning the 4-8 input

parity tasks. The number of epochs needed to solve the problem is larger when the system

has no inhibition. I ran up to 150,000 epochs, and in the case of N=8, Figure 6.6 shows

this bias.
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Figure 6.6: Average of ten runs in the number of epochs for the N-input parity task N=4,
N=6, and N=8, with and without inhibition. Runs where terminated when learning was
achieved or 150,000 epochs were reached. Threshold for molecular inhibition = 70%,
threshold for molecular activation = 60%, percentage of molecules with inhibitory sites =
20%.

Figure 6.7 shows the average learning for the same tasks. The figure shows that

organisms that have molecular inhibition show faster learning than the ones that did not
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Figure 6.7: Learning average of ten runs for the N-Input parity task, N=4, N=6, and
N=8 with and without inhibition. Runs where terminated when learning was achieved or
150,000 epochs were reached. Threshold for molecular inhibition = 70%, threshold for
molecular activation = 60%, percentage of molecules with inhibitory sites = 20%.

have molecular inhibition. I obtain 100% learning with inhibition in N=4 and N=6, but

without inhibition organisms have more difficulty learning the parity tasks.

The learning curve for the 4-input parity task with no inhibition is shown in Figure 6.8.

Of the ten runs, four did not converge (see Table 6.1). In the case of learning the 6-input

parity task two cases did not converge (see Figure 6.9 and Table 6.2). I got 100% learning

in every run of both tasks when the organisms had molecular inhibition (see Figures 5.2

and 5.4).

Learning the 8-input parity task with no molecular inhibition is shown in Figure 6.10.

Of the ten runs, only two reached 100 % learning, as shown in Table 6.3.



70

50

55

60

65

70

75

80

85

90

95

100

0 20000 40000 60000 80000 100000 120000 140000 160000

C
or

re
ct

 c
la

ss
ifi

ca
tio

n 
(%

)

No. of epochs

Figure 6.8: Learning curves for the 4-input parity task with no inhibition. Of the ten runs,
four did not improve over 75 %.
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Exp. No. of Correct %
No. epochs classification

1 9,534 100
2 52,627 100
3 9,141 100
4 14,086 100
5 18,684 100
6 150,000 75
7 150,000 75
8 150,000 75
9 150,000 75

10 17,357 100

Mean 72,143 90
95% CL 48,720 9.23

Table 6.1: Results of learning the 4-input parity task with no molecular inhibition. CL is
the confidence level.
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Figure 6.9: Learning curves for 6-input parity task without inhibition. Of ten runs, two
did not improve over 87.5%.
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Exp. No. of Correct %
No. epochs classification

1 18,309 100
2 22,168 100
3 150,000 87.5
4 54,978 100
5 150,000 87.5
6 70,279 100
7 149,957 100
8 58,919 100
9 71,739 100

10 64,499 100

Mean 81,085 97.5
95% CL 36,402 3.77

Table 6.2: Results of learning the 6-input parity task with no molecular inhibition. CL is
the confidence level.
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Figure 6.10: Learning curves for the 8-input parity task without inhibition.
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Exp. No. of Correct %
No. epochs classification

1 150,000 87.50
2 150,000 56.25
3 150,000 87.50
4 124,867 100.00
5 96,407 100.00
6 150,000 56.25
7 150,000 81.25
8 150,000 81.25
9 150,000 98.44

10 150,000 81.25

Mean 142,127 82.87
95% CL 12,805 11.43

Table 6.3: Results of learning the 8-input parity task with no molecular inhibition. CL is
the confidence level.
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6.4 Conclusions

In general, negative feedback mechanisms stabilize a system, controlling the positive

feedback systems of over-reactions. Biological systems exhibit feedback regulation

at several hierarchical levels. Feedback regulatory networks formed in the cells of

hypernetwork organisms are important for information processing. Those inhibitory

features are important for keeping the homeostatic balance in the organism, thus

improving learning ability.

Experimental results show that, in the hypernetwork architecture, learning improves

when the molecules have functional inhibition sites allowing inhibition and the formation

of molecular negative feedback regulation inside cells. Moreover, the number of

molecules with inhibitory capacity could be large in proportion to the total number of

molecules. This suggest a likelihood that more molecular inhibitory mechanisms will be

discovered in biological systems, and that the importance of these will be even greater in

the context of learning and development.

Currently the hypernetwork architecture has evolution at the molecular level only.

Future implementations will have evolution and regulation at the cellular level, where

cells and their interactions could be evolved. Experiments on these models could give

more information about the evolution of regulatory mechanisms involving cells and

tissues.
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CHAPTER 7

MUTATION BUFFERING CAPABILITIES OF THE HYPERNETWORK MODEL

7.1 Introduction

The bootstrap principle of evolutionary adaptability proposed by Conrad (1979a)

states that ”the degree of gradualism with which protein function changes ... is both a

condition for and a consequence of evolution by variation and natural selection” (Conrad,

1983).

This principle is based on the mutation buffering concept, where at different

hierarchical levels, structural redundancies serve to buffer the effect of changes in the

components, facilitating evolution (Conrad, 1983, 1985). For instance, at molecular level

two versions of a protein may have the same function, but one of them may give the

organism more evolutionary advantages. There are several examples of such variants of

proteins such as allozymes and isoenzymes.

The system should allow some internal changes due to mutation, deterioration, or

failure. These capabilities are of great importance for the survival and evolution of such

systems. Other complex systems show error tolerance (Albert et al., 2000).

In this chapter I show the mutation buffering capabilities of the hypernetwork model

(Segovia-Juarez and Colombano, 2001), and I discuss its importance in searching the

adaptive landscape (Wright, 1932) (see Figure 7.1). The fitness landscape in this case is

a multi-dimensional space of molecular structure distributions.

Molecular buffering percolates up to the organismic level and allows organisms to

behave differently in previously unknown environments or to produce similar behavior,

to the same input, even when they do not have identical low level molecular structures.
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Fitness

Molecular distribution

Figure 7.1: Fitness landscape.

These capabilities are a driving force in evolution. They allow biological organisms

to search for other peaks in the fitness landscape without losing functionality.

Using the organisms that learned the two x two-bit multiplier and (6-10) input parity

tasks, some experiments were conducted to test the ability to maintain functionality in the

presence of random molecular mutation or denaturation.

7.2 Testing the mutation buffering capabilities of the organisms

I investigate the robustness of the hypernetwork to structural changes. The changes

could be at the molecular, cellular, or organismic levels. In this part I concentrate on

changes at the level of molecular structures.

The organisms that achieved 100% learning in the previous tasks underwent molecular

mutations during reproduction. There are two types of substitution: random mutation, and

molecular denaturation.
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� Random substitution: a molecule is substituted for another molecule with random

structure.

� Molecular ”denaturation”: all the “1” bits of the molecule are replaced by ”0”. This

is a representation of a molecule that has less complexity than others.

From each trained organism I generated a sub-population of twenty organisms

with mutations in one molecule, another sub-population of twenty individuals with

mutations in two molecules, and so on. After the sub-populations were obtained, I

tested their performance against the training set to find out how the mutations affected

the performance of each subpopulation. This procedure was done for every experiment

and for each type of mutation. Receptor molecules from input cells were not considered

for mutation in order to assure that all the input vectors were read, and that the mutation

affected only the dynamics of the networks of interactions.

Figures 7.2 to 7.9 show the performance of the different sub-populations. The boxes

represent the number of mutants that have a given performance or percentage of correct

classifications, for each sub-population. Below I explain the details for each experiment.

7.2.1 Buffering capabilities of the two x two-bit multiplier organisms

From each of five organisms I generated another twenty, resulting in sub-populations

of 100 mutants. Figure 7.2 shows that in the sub-population where three molecules

were mutated randomly, 40 mutants show 100% correct classification. Also, in the

sub-population where two molecules were mutated, close to 70 mutants were able to

obtain 100% correct classification. The results for the sub-population with six mutated

molecules are that about 10% of the mutants performed as well as their parents (100
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% correct learning). In contrast, in the sub-population with six randomly denatured

molecules I observed that 30% have the same performance as their parents (see Figure

7.3).

The total number of molecules in each organism is 304, and six molecules represent

1.97% of them.
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Figure 7.2: Performance and mutant count of sub-populations generated by random
mutation from five two x two-bit multiplier organisms. There are 100 mutants in each
sub-population.
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Figure 7.3: Performance and mutant count of sub-populations generated by molecular
denaturation from five two x two-bit multiplier organisms. There are 100 mutants in each
sub-population.
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7.2.2 Buffering capabilities of the 6-input parity and 8-input parity organisms

Figures 7.4 and 7.5 show the performance of sub-populations obtained from 6-input

parity organisms. In the figures I note that, as expected, the performance of the organisms

in the sub-populations decreases as the number of mutated molecules increases, but there

are subpopulations from 4 to 6 mutated or denaturized molecules where about 10% of

the individuals obtain 100% learning. The same behavior is observed in sub-populations

from 8-input parity organisms (see Figures 7.6 and 7.7.)

7.2.3 Buffering capabilities of the 10-bit parity test organism

I tested the buffer capabilities in the organism that was able to learn the complete 10-

input parity table. In Figure 7.8 is observed that after a one-molecule mutation, 50% of

individuals have the same performance as their ancestor. However, if the mutation were

five molecules or more, the organisms were very damaged, not showing more than 70%

learning.

On the other hand, in the case of molecular denaturation there was a more gradual

decay of the performance, but a relative high percent of correct answers persists for up to

four denatured molecules (0.78%) behaving like their parents.
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Figure 7.4: Performance and mutant count of sub-populations generated by random
mutation from ten 6-input parity organisms. There are 200 mutants in each sub-
population.
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Figure 7.5: Performance and mutant count of sub-populations generated by molecular
denaturation from ten 6-input parity organisms. There are 200 mutants in each sub-
population.



85

10

20

30

40

50

60

10

3
4

5
6

7
8

9

2
1

55

60

65

70

75

80

85

90

95

100

Figure 7.6: Performance and mutant count of sub-populations generated by random
mutation from five 8-input parity organisms. There are 100 mutants in each sub-
population.
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Figure 7.7: Performance and mutant count of sub-populations generated by molecular
denaturation from five 8-input parity organisms. There are 100 mutants in each sub-
population.
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Figure 7.8: Performance and mutant count of sub-populations generated by random
mutation from one 10-input parity organism. There are 20 mutants in each sub-
population.
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Figure 7.9: Performance and mutant count of sub-populations generated by molecular
denaturation from one 10-input parity organism. There are 20 mutants in each sub-
population.
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7.3 Discussion

Biological systems have mutation buffering capabilities at the molecular, cellular, and

organismic levels. These capabilities are important in two aspects:

� Potential for evolution allows exploration of different paths in the fitness landscape,

when environmental condition changes, or internal changes force the organism to

have a different behavior.

� Buffering ability allows to the organism and its components to survive when some

elements of it, like cells or molecules, are damaged.

7.3.1 Buffering at the molecular level

At the molecular level mutation buffering is modeled in the learning procedure by

allowing a molecule to flip just 15% of its bits. In this way the hypernetwork may generate

molecules with different structures but with similar function (isozymes). The isozymes

can become a valuable asset when other neighbor molecules are mutated, allowing the

formation of a new dynamics previously unlikely if that molecule had kept its original

structure.

Formation of new molecular network dynamics allows the evolving organism to

search for other peaks in the fitness landscape. This buffering capacity has been observed,

for instance, in catalytic RNA (Lehman et al., 2000).

7.3.2 Buffering at the organismic level

I study the buffering capabilities of organisms by generating a subpopulation of

mutants. From the experiments I found that about ten to twenty percent of mutants with

up to five mutations (or 1% - 2% of their molecules), show the same function as their
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parents. These mutants explore the fitness landscape simultaneously, making the search

more efficient. Also, the organisms are able to perform well, even when they suffer some

molecular damage.

The experiments show that in some cases it could be better for a trained organism

to denature some of its molecules, instead of mutating them to some other functional

structures. New structures could give the organisms other unwanted features that would

undermine the original function. This is part of a necessary compromise between

acquiring new functions and maintaining all the necessary ones.

7.3.3 The trade-off principle

The trade-off principle of adaptability says: ”a computing system can not at the same

time have high programmability, high computational efficiency, and high evolutionary

adaptability” (Conrad, 1988).

Current implementations of computers have very high programmability, but very low

evolvability. Some implementations of systems could have a high degree of computational

efficiency but poor programmability, such as molecular pattern recognition systems. I

argue that, at least in some cases, for instance in autonomous exploration, it is important

for a system to perform the task and, at the same time, to be able to adapt to changes

in its environment. The hypernetwork model shows the feasibility of building a physical

realization of such characteristics.

7.4 Conclusions

Mutation-buffering properties are observed in hypernetwork organisms. The

generation of mutants in the population that have the same or even better fitness value

allows the system to explore efficiently on the fitness landscape. The hypernetwork
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model of biological information processing could serve as model for the study of buffering

capabilities of biological inspired computing systems.
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CHAPTER 8

EVOLVABILITY PROPERTIES OF THE HYPERNETWORK

8.1 Introduction

Evolvability in biological systems is understood as the ability of a system to a

self-organize through a variation-selection process (Conrad, 1990b), “the capacity to

evolve” (Turney, 1999), and the “dispositional capacity to produce exhibited evolvability”

(Nehaniv, 2000). According to Conrad (1998), this ability or capacity of organisms

is based on the self-organization dynamics and mutation-buffering capabilities of their

components.

In an organism the self-organization dynamics are based on the interaction and

emergent properties of its components organized hierarchically (i.e., atomic interactions,

molecules, cells, organisms). Moreover, the components are capable of having redundant

features that allow for the same functionality when they have structural variation

(mutations or damage). Examples are: pleiotropy at the genetic level, isozymes at

the macro-molecular level, multiple reaction networks at the cellular level, and similar

behavior observed in different organisms. Mutation-buffering capabilities allow the

system to look for optimal structures in the adaptive fitness landscape, without losing

previously required necessary functions.

The exploration of a complex fitness landscape by organisms is realized in the

hypernetwork architecture. Learning is interpreted as traveling through a complex fitness

landscape in search of a molecular distribution with required properties (not necessarily

optimal).

Elements considered to play a role in evolvability are the following:



93

� At the molecular level, the complexity of the molecules, molecular redundancy,

the ways that molecules interact to form positive and negative feedback regulatory

networks.

� At the cellular level, the number and types of molecules in the cell (effectors,

receptors, etc.).

� At the organismic level, the relationships among cells (cell to cell interactions), and

the formation of networks of cells.

The goal of this chapter is to show how the complexity of molecular and organismic

structures affects their evolvability, expressed in terms of their success for learning.

The study covers the effects of molecular size and total organismic cell number on the

evolvability of organisms.

Molecular complexity plays a role in biological information processing. Simple

molecules would form only a limited network of interactions, thus negatively affecting

performance of the organism. The number of molecules and cells also plays a role in

learning. This relationship is explored in the context of learning two tasks: the N-input

parity task, and the two x two bit multiplier truth table. Both tasks are described in

Chapter 5. The experiments described below attempt to answer the question as to how the

complexity of the components affect the evolvability of organisms in the hypernetwork

architecture.

The plan of the chapter is as follows: First the experiments performed are described,

followed by a discussion of the results and conclusions.
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8.2 Evolvability experiments with the hypernetwork architecture

To explore the effect of molecular and organismic complexity on evolvability I train

organisms to solve the following tasks: to learn the two x two-bit multiplier, and the (6-

8)-input parity tasks. In each case two organisms with different numbers of molecules

and cells were used, and experiments were run with 2-bit, 6-bit, 10-bit, and 14-bit length

at each site of the molecule.

I find that in general the complexity of larger organisms would allow them to solve

the tasks more quickly and efficiently than smaller ones. The complexity of the molecular

structures expressed by their length would have a similar function.

8.2.1 Task description

The organisms used to solve the two x two-bit multiplier truth table are shown in

Figure 8.1. The smaller and larger organisms have 96 and 304 molecules, respectively

(see Table 8.1). The experimental parameters are shown in Table 8.2.

Task Organism No. of Total no. No. of cell-cell
size cells molecules interactions

2 x 2 Multiplier Large 12 304 27
Small 8 96 7

6-input parity Large 10 216 21
Small 6 60 5

8-input parity Large 11 236 24
Small 7 84 6

Table 8.1: Some characteristics of the experimental organisms
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The organisms train to solve the 6-input parity task are shown in Figure 8.2. The

smaller organism has six cells with a total of 60 molecules, and the larger organism has

ten cells with 216 molecules. The organisms for training the 8-input parity task are shown

in Figure 8.3. The small organism has 7 cells with a total of 84 molecules, and the larger

one 11 cells with a 236 molecules (see Table 8.1).

2x2 Mul- 2x2 Mul- 6-inp. 6-inp. 8-inp. 8-inp.
tiplier tiplier parity parity parity parity

Parameter Large Small Large Small Large Small

No. of cells in the organism 12 8 10 6 11 7
Threshold of mol. activation 60% 60% 60% 60% 60% 60%
Threshold of mol. inhibition 70% 70% 70% 70% 70% 70%
Probability of mol. mutation 0.6 0.6 0.9 0.9 0.8 0.8
Percentage of mol. change 30% 30% 30% 30% 30% 30 %
No. of receptors for cell 4 4 4 4 4 4
No. of effectors for cell 4 4 4 4 4 4
No. of internal molec./ cell 12 4 12 4 12 4
No. readouts in output cell 3 4 6 3 6 3
% of inhibitors / cell 20% 30% 20% 20% 20% 20%

Table 8.2: Parameters of the experimental organisms.
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Figure 8.1: Large and small organisms trained to solve the two x two bit multiplier
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Figure 8.2: Large and small organisms trained to solve the 6-input parity task
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Figure 8.3: Large and small organisms trained to solve the 8-input parity task
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8.2.2 Effect of molecular complexity

There is a tendency for learning to be improved by larger molecules. This effect is

observed in learning the two x two-bit multiplier by the small and large organisms (see

Figure 8.4).

The effect of molecular complexity has interesting results in the case of the (6-8)-

input parity task. The tendency for improved learning performance is observed clearly

in small organisms, but in large organisms the performance was better when each site

of a molecule had 2 and 14 bits than when they had 6 and 10 bits (see Figures 8.5, and

8.6). When organisms have medium sized molecules, there exists a greater probability

of finding neighboring molecules with which to form interactions, thereby causing over-

excitation in the hypernetwork, and setting the output cells to “ON” most of the time. This

problem may be avoided with smaller molecules, with very large molecules, restricting

the size of the cells, or increasing the threshold of molecular activation.

The fact that I did not observe the problem of non-specific molecules in solving the

two x two-bit multiplier may be due to the nature of the task. The N-Input parity problem

has a “needle in a haystack” fitness landscape (Langdon and Poli, 1998).

8.2.3 Effect of the size of the organism

Organisms with more cells and more molecules per cell learn better in solving the

two x two multiplier problem (see Figure 8.4). This was also observed in learning the

(6-8)-input parity tasks (see Figures 8.5 and 8.6) , but only in the cases where each site

of the molecule had 2 and 14-bits. The excessive number of networks of interactions

that are generated in larger organisms with molecular site size of 6 and 10 bits cause

the poor performance. This could be adjusted by changing the threshold for activating
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molecules from 70% to a large number. Further experiments are needed to show the role

of organismic size in learning.
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Figure 8.4: Effect of molecular size on learning the two x two-bit multiplier. It is shown
the 95% Confidence Interval of learning of ten runs, with 200,000 epochs each.
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Figure 8.5: Effect of molecular size on large and small organisms learning the 6-input
parity task. It is shown the 95% Confidence Interval of learning of ten runs, with up to
150,000 epochs each.
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parity task. Average of ten runs, with up to 150,000 epochs each.
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8.3 Concluding remarks

Experimental results how that, as noted by Conrad (1990a), evolvability is linked to

an increase in component redundancy in the context of a hierarchical structure. While

these results are preliminary, I have shown how the hypernetwork architecture could be

a useful tool for experimenting on evolvability features such as compartamentalization,

component redundancy and mutation-buffering. These properties of organisms facilitate

the search for better solutions on the fitness landscape, and allow generation of novelty

in the variation-selection algorithm. The relationship between evolvability and structural

complexity is still in debate (Wagner, 1999), but it is possible that different strategies

could coexist in different populations.
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CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

9.1 Conclusion

A novel computational model of biological information processing, the hypernetwork

architecture, has been designed and implemented. The architecture is a theoretical model

of a biological system, such as a neural tissue. It is a multi-level vertical model that

includes representations of scale, information flow, feedback regulation control, and

learning. All hierarchical features are formulated in terms of interactions of elementary

macromolecular subunits. Molecules, represented by binary strings, form networks of

interactions. The molecular interactions are based on shape complementarity.

A cell comprises a set of molecules of four types. Receptors gather information from

other cells or the environment; effectors send influences to the receptors of other cells;

internals interact with effectors, receptors, and with other internals; readout structures

send signals to the environment reflecting the current cellular state.

The hypernetwork interacts with the environment by means of molecules in its

input and output cells. Influences impinging on the receptor molecules of input cells

dynamically form networks of molecular interactions. There are positive and negative

feedback regulatory networks at the molecular level. Cell to cell interactions are formed

by effector-receptor molecules of the interacting cells. Once the influences reach the

effector molecules of output cells, the output state of a cell is obtained from its readout

molecules.

The system is molded to perform classification tasks through a variation-selection

algorithm acting on the structure of the molecular subunits. This molecular evolutionary
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algorithm allows the organism to search for peaks in the fitness landscape.

The hypernetwork architecture will facilitate the study of hierarchical control and

evolution at the different levels. It should also provide insights into how future bio-

computers might be constructed.

9.2 Summary of experimental results

From the large number of simulations performed with the hypernetwork architecture,

the major results are summarized as follows:

1. Learning capabilities.

The hypernetwork architecture exhibits capabilities for addressing fairly complex

classification problems. Hypernetwork organisms solved the following benchmark

tasks:

� The N-Input parity problem from N = 4 to N=10.

� A type of double spiral problem with 56 points with up to 100%, and with 225

points with up to 96.89% learning.

� The two x two multiplier truth table.

� The tic-tac-toe endgame problem with 95% learning of a training set of 658

vectors, and up to 89.61% of a test set of 287 vectors.

2. Mutation-buffering capabilities

Hypernetwork organisms exhibit mutation-buffering capabilities in the context of

evolving populations. From experiments I found that as many as twenty percent

of mutants with up to 2% molecular mutations retain the same function as their

parents.
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3. Evolvability properties.

Results from experiments with hypernetwork organisms confirm that evolvability

is linked to an increase in component complexity and redundancy, as expressed in

terms of molecular complexity and organismic size.

4. Molecular regulation properties

Inhibition and negative feedback regulation at the molecular level play a very

important role in learning.

9.3 Future work

� Evolution in hierarchical systems

The current implementation of the hypernetwork architecture has molecular level

evolution coupled with selection of individuals. Complexity at the molecular level

could be increased with the introduction of complex approaches to generating

artificial molecules, such as Molnets (Colombano et al., 2000).

Future implementations could include evolution at the level of cell interactions in

order to better understand how cells change function in evolutionary time or in

the course of development, and the role of regulation involving specialized cells.

Moreover, evolving populations could be introduced to find solutions in parallel.

� Experimental test-bed

The hypernetwork architecture can be used as an experimental test-bed in the

areas of artificial life, evolution and adaptability theories, and models of molecular

regulation.
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� Exploring the hypernetwork evolutionary learning algorithm

The hypernetwork architecture exhibits generalization properties. However, more

experimentation is needed to find the strengths and weaknesses of the hypernetwork

evolutionary learning algorithm, when compared with other learning algorithms

such as back-propagation and decision trees. Evolution across scales is also a

potential unique feature that requires further exploration.

� Towards the physical realization of the hypernetwork

The molecular interaction basis of the hypernetwork, a representation of biological

entities, could facilitate the design of future “bio-computers” based on networks

of molecular interactions and hierarchical control. This architecture complements

Conrad’s ideas of conformation-driving computing (Conrad, 1995c).
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APPENDIX A. DESCRIPTION OF THE EXPERIMENTAL PARAMETERS.

Parameter Description
createorganism #1 Create an organism with #1 cells
thresholdactivation #1 Threshold of matching #1 to activate a molecule
thresholdinhibition #1 Threshold to inhibit a molecule (matching over

#1 percentage of the string bits)
mutationratemol cell #1 Mutation rate #1 of the molecule
mutationrateatommol #1 Percentage of bits #1 that randomly flip

when a molecule is mutating
molecularshapesize #1 Size of the molecules in the organism (#1 bits)
createcell #1 #2 rect x y #3 #4 Create a cell with parameters:

#1 = Cell number
#2 = no. of molecules/cell
rect = rectangular topology
x = side of the rectangle
y = side of the rectangle
#3 = cell type
#4 = no. of readouts/cell

n receptorscell #1 no. of receptors in the cell #1
n effectorscell #1 no. of effectors in the cell #1
n internal cell #1 no. of internal molecules in the cell #1
p inhibitors cell #1 Percentage of molecules in the cell #1

with active inhibitory site
copy structurecell #1 #2 Copy cell properties

from cell #1 to cell #2
cell cell #1 #2 To set potential cell to cell relationships

from cell #1 to cell #2
fraction input vector #1 Number of bits #1 to activate an input cell
minimal global error #1 #1 is the desired error to stop training
seeds clock clock The initial seeds of the random number

generator are set to a function of the clock
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APPENDIX B. PARAMETER FILES OF THE EXPERIMENTS IN CHAPTER FIVE.

Parameter file for the organism trained to solve the 4-input parity task.
create_organism 9
threshold_activation 60
threshold_inhibition 70
mutation_rate_mol_cell 0.2
mutation_rate_atom_mol 30
molecular_shape_size 14

create_cell 1 20 rect 5 4 input 0
n_receptors_cell 1 4
n_effectors_cell 1 4
n_internal_cell 1 12
p_inhibitors_cell 1 20

create_cell 2 20 rect 5 4 input 0
n_receptors_cell 2 4
n_effectors_cell 2 4
n_internal_cell 2 12
p_inhibitors_cell 2 20

create_cell 3 20 rect 5 4 internal1 0
n_receptors_cell 3 4
n_effectors_cell 3 4
n_internal_cell 3 12
p_inhibitors_cell 3 15

create_cell 4 20 rect 5 4 internal1 0
n_receptors_cell 4 4
n_effectors_cell 4 4
n_internal_cell 4 12
p_inhibitors_cell 4 20

create_cell 5 20 rect 4 5 internal1 0
copy_structure_cell 4 5

create_cell 6 20 rect 5 4 internal2 0
n_receptors_cell 6 4
n_effectors_cell 6 4
n_internal_cell 6 12
p_inhibitors_cell 6 20

create_cell 7 20 rect 5 4 internal2 0
create_cell 8 20 rect 5 4 internal2 0



110

copy_structure_cell 6 7
copy_structure_cell 6 8

create_cell 9 25 rect 5 5 output 6
n_receptors_cell 9 5
n_effectors_cell 9 5
n_internal_cell 9 15
p_inhibitors_cell 9 20

cell_cell 1 3
cell_cell 1 4
cell_cell 1 5
cell_cell 2 3
cell_cell 2 4
cell_cell 2 5
cell_cell 3 6
cell_cell 3 7
cell_cell 3 8
cell_cell 4 6
cell_cell 4 7
cell_cell 4 8
cell_cell 5 6
cell_cell 5 7
cell_cell 5 8
cell_cell 6 9
cell_cell 7 9
cell_cell 8 9

fraction_input_vector 2
minimal_global_error 0.001
seeds clock clock

end.
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Parameter file for the organism trained to solve the 6-input parity task
create_organism 10
threshold_activation 60
threshold_inhibition 70
mutation_rate_mol_cell 0.9
mutation_rate_atom_mol 30
molecular_shape_size 14

create_cell 1 20 rect 5 4 input 0
n_receptors_cell 1 4
n_effectors_cell 1 4
n_internal_cell 1 12
p_inhibitors_cell 1 20

create_cell 2 20 rect 5 4 input 0
n_receptors_cell 2 4
n_effectors_cell 2 4
n_internal_cell 2 12
p_inhibitors_cell 2 20

create_cell 3 20 rect 5 4 input 0
n_receptors_cell 3 4
n_effectors_cell 3 4
n_internal_cell 3 12
p_inhibitors_cell 3 20

create_cell 4 20 rect 5 4 internal1 0
n_receptors_cell 4 4
n_effectors_cell 4 4
n_internal_cell 4 12
p_inhibitors_cell 4 20

create_cell 5 20 rect 4 5 internal1 0
create_cell 6 20 rect 4 5 internal1 0
copy_structure_cell 4 5
copy_structure_cell 4 6

create_cell 7 20 rect 5 4 internal2 0
n_receptors_cell 7 4
n_effectors_cell 7 4
n_internal_cell 7 12
p_inhibitors_cell 7 20

create_cell 8 20 rect 5 4 internal2 0
create_cell 9 20 rect 5 4 internal2 0
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copy_structure_cell 7 8
copy_structure_cell 7 9

create_cell 10 25 rect 5 5 output 6
n_receptors_cell 10 5
n_effectors_cell 10 5
n_internal_cell 10 15
p_inhibitors_cell 10 20

cell_cell 1 4
cell_cell 1 5
cell_cell 1 6

cell_cell 2 4
cell_cell 2 5
cell_cell 2 6

cell_cell 3 4
cell_cell 3 5
cell_cell 3 6

cell_cell 4 7
cell_cell 4 8
cell_cell 4 9

cell_cell 5 7
cell_cell 5 8
cell_cell 5 9

cell_cell 6 7
cell_cell 6 8
cell_cell 6 9

cell_cell 7 10
cell_cell 8 10
cell_cell 9 10

fraction_input_vector 2

minimal_global_error 0.001
seeds clock clock

end.
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Parameter file for the organism trained to solve the 8-input parity task

create_organism 11
threshold_activation 60
threshold_inhibition 70
mutation_rate_mol_cell 0.8
mutation_rate_atom_mol 30
molecular_shape_size 14

create_cell 1 20 rect 5 4 input 0
n_receptors_cell 1 4
n_effectors_cell 1 4
n_internal_cell 1 12
p_inhibitors_cell 1 20

create_cell 2 20 rect 5 4 input 0
n_receptors_cell 2 4
n_effectors_cell 2 4
n_internal_cell 2 12
p_inhibitors_cell 2 20

create_cell 3 20 rect 5 4 input 0
n_receptors_cell 3 4
n_effectors_cell 3 4
n_internal_cell 3 12
p_inhibitors_cell 3 20

create_cell 4 20 rect 5 4 input 0
n_receptors_cell 4 4
n_effectors_cell 4 4
n_internal_cell 4 12
p_inhibitors_cell 4 20

create_cell 5 20 rect 5 4 internal1 0
n_receptors_cell 5 4
n_effectors_cell 5 4
n_internal_cell 5 12
p_inhibitors_cell 5 20

create_cell 6 20 rect 4 5 internal1 0
create_cell 7 20 rect 4 5 internal1 0
copy_structure_cell 5 6
copy_structure_cell 5 7

create_cell 8 20 rect 5 4 internal2 0
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n_receptors_cell 8 4
n_effectors_cell 8 4
n_internal_cell 8 12
p_inhibitors_cell 8 20

create_cell 9 20 rect 5 4 internal2 0
create_cell 10 20 rect 5 4 internal2 0
copy_structure_cell 8 9
copy_structure_cell 8 10

create_cell 11 25 rect 5 5 output 6
n_receptors_cell 11 5
n_effectors_cell 11 5
n_internal_cell 11 15
p_inhibitors_cell 11 20

cell_cell 1 5
cell_cell 1 6
cell_cell 1 7

cell_cell 2 5
cell_cell 2 6
cell_cell 2 7

cell_cell 3 5
cell_cell 3 6
cell_cell 3 7

cell_cell 4 5
cell_cell 4 6
cell_cell 4 7

cell_cell 5 10
cell_cell 5 8
cell_cell 5 9

cell_cell 6 10
cell_cell 6 8
cell_cell 6 9

cell_cell 7 8
cell_cell 7 9
cell_cell 7 10
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cell_cell 8 11
cell_cell 9 11
cell_cell 10 11

fraction_input_vector 2

minimal_global_error 0.001
seeds clock clock

end.
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Parameter file for the organism trained to solve the 10-input parity task
create_organism 12
threshold_activation 60
threshold_inhibition 70
mutation_rate_mol_cell 0.6
mutation_rate_atom_mol 30
molecular_shape_size 14

create_cell 1 20 rect 5 4 input 0
n_receptors_cell 1 4
n_effectors_cell 1 4
n_internal_cell 1 12
p_inhibitors_cell 1 20

create_cell 2 20 rect 5 4 input 0
n_receptors_cell 2 4
n_effectors_cell 2 4
n_internal_cell 2 12
p_inhibitors_cell 2 20

create_cell 3 20 rect 5 4 input 0
n_receptors_cell 3 4
n_effectors_cell 3 4
n_internal_cell 3 12
p_inhibitors_cell 3 20

create_cell 4 20 rect 5 4 input 0
n_receptors_cell 4 4
n_effectors_cell 4 4
n_internal_cell 4 12
p_inhibitors_cell 4 20

create_cell 5 20 rect 5 4 input 0
n_receptors_cell 5 4
n_effectors_cell 5 4
n_internal_cell 5 12
p_inhibitors_cell 5 20

create_cell 6 20 rect 5 4 internal1 0
n_receptors_cell 6 4
n_effectors_cell 6 4
n_internal_cell 6 12
p_inhibitors_cell 6 20
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create_cell 7 20 rect 4 5 internal1 0
create_cell 8 20 rect 4 5 internal1 0
copy_structure_cell 6 7
copy_structure_cell 6 8

create_cell 9 20 rect 5 4 internal2 0
n_receptors_cell 9 4
n_effectors_cell 9 4
n_internal_cell 9 12
p_inhibitors_cell 9 20

create_cell 10 20 rect 5 4 internal2 0
create_cell 11 20 rect 5 4 internal2 0
copy_structure_cell 9 10
copy_structure_cell 10 11

create_cell 12 25 rect 5 5 output 6
n_receptors_cell 12 5
n_effectors_cell 12 5
n_internal_cell 12 15
p_inhibitors_cell 12 20

cell_cell 1 6
cell_cell 1 7
cell_cell 1 8

cell_cell 2 6
cell_cell 2 7
cell_cell 2 8

cell_cell 3 6
cell_cell 3 7
cell_cell 3 8

cell_cell 4 6
cell_cell 4 7
cell_cell 4 8

cell_cell 5 6
cell_cell 5 7
cell_cell 5 8

cell_cell 6 9
cell_cell 6 10
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cell_cell 6 11

cell_cell 7 9
cell_cell 7 10
cell_cell 7 11

cell_cell 8 9
cell_cell 8 10
cell_cell 8 11

cell_cell 9 12
cell_cell 10 12
cell_cell 11 12

fraction_input_vector 2

minimal_global_error 0.001
seeds clock clock

end.
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Parameter file for the organism trained to solve the double spiral data set
create_organism 11
threshold_activation 60
threshold_inhibition 70
mutation_rate_mol_cell 0.8
mutation_rate_atom_mol 30
molecular_shape_size 14

create_cell 1 20 rect 5 4 input 0
n_receptors_cell 1 4
n_effectors_cell 1 4
n_internal_cell 1 12
p_inhibitors_cell 1 20

create_cell 2 20 rect 5 4 input 0
n_receptors_cell 2 4
n_effectors_cell 2 4
n_internal_cell 2 12
p_inhibitors_cell 2 20

create_cell 3 20 rect 5 4 input 0
n_receptors_cell 3 4
n_effectors_cell 3 4
n_internal_cell 3 12
p_inhibitors_cell 3 20

create_cell 4 20 rect 5 4 input 0
n_receptors_cell 4 4
n_effectors_cell 4 4
n_internal_cell 4 12
p_inhibitors_cell 4 20

create_cell 5 20 rect 5 4 internal1 0
n_receptors_cell 5 4
n_effectors_cell 5 4
n_internal_cell 5 12
p_inhibitors_cell 5 20

create_cell 6 20 rect 4 5 internal1 0
create_cell 7 20 rect 4 5 internal1 0
copy_structure_cell 5 6
copy_structure_cell 5 7

create_cell 8 20 rect 5 4 internal2 0
n_receptors_cell 8 4
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n_effectors_cell 8 4
n_internal_cell 8 12
p_inhibitors_cell 8 20

create_cell 9 20 rect 5 4 internal2 0
create_cell 10 20 rect 5 4 internal2 0
copy_structure_cell 8 9
copy_structure_cell 8 10

create_cell 11 25 rect 5 5 output 6
n_receptors_cell 11 5
n_effectors_cell 11 5
n_internal_cell 11 15
p_inhibitors_cell 11 20

cell_cell 1 5
cell_cell 1 6
cell_cell 1 7

cell_cell 2 5
cell_cell 2 6
cell_cell 2 7

cell_cell 3 5
cell_cell 3 6
cell_cell 3 7

cell_cell 4 5
cell_cell 4 6
cell_cell 4 7

cell_cell 5 10
cell_cell 5 8
cell_cell 5 9

cell_cell 6 10
cell_cell 6 8
cell_cell 6 9

cell_cell 7 8
cell_cell 7 9
cell_cell 7 10

cell_cell 8 11
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cell_cell 9 11
cell_cell 10 11

fraction_input_vector 2

minimal_global_error 0.001
seeds clock clock

end.
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Parameter file for the organism trained to solve the two x twx multiplier

create_organism 12
threshold_activation 60
threshold_inhibition 70
mutation_rate_mol_cell 0.6
mutation_rate_atom_mol 30
molecular_shape_size 14

create_cell 1 20 rect 5 4 input 0
n_receptors_cell 1 4
n_effectors_cell 1 4
n_internal_cell 1 12
p_inhibitors_cell 1 20

create_cell 2 20 rect 5 4 input 0
n_receptors_cell 2 4
n_effectors_cell 2 4
n_internal_cell 2 12
p_inhibitors_cell 2 20

create_cell 3 20 rect 5 4 internal1 0
n_receptors_cell 3 4
n_effectors_cell 3 4
n_internal_cell 3 12
p_inhibitors_cell 3 20

create_cell 4 20 rect 5 4 internal1 0
n_receptors_cell 4 4
n_effectors_cell 4 4
n_internal_cell 4 12
p_inhibitors_cell 4 30

create_cell 5 20 rect 5 4 internal1 0
n_receptors_cell 5 4
n_effectors_cell 5 4
n_internal_cell 5 12
p_inhibitors_cell 5 30

create_cell 6 20 rect 5 4 internal2 0
n_receptors_cell 6 4
n_effectors_cell 6 4
n_internal_cell 6 12
p_inhibitors_cell 6 30



123

create_cell 7 20 rect 5 4 internal2 0
copy_structure_cell 6 7

create_cell 8 20 rect 5 4 internal2 0
copy_structure_cell 6 8

create_cell 9 25 rect 5 5 output 3
n_receptors_cell 9 5
n_effectors_cell 9 5
n_internal_cell 9 15
p_inhibitors_cell 9 20

create_cell 10 25 rect 5 5 output 3
n_receptors_cell 10 5
n_effectors_cell 10 5
n_internal_cell 10 15
p_inhibitors_cell 10 20

create_cell 11 25 rect 5 5 output 3
n_receptors_cell 11 5
n_effectors_cell 11 5
n_internal_cell 11 15
p_inhibitors_cell 11 20

create_cell 12 25 rect 5 5 output 3
n_receptors_cell 12 5
n_effectors_cell 12 5
n_internal_cell 12 15
p_inhibitors_cell 12 20

cell_cell 1 3
cell_cell 1 4
cell_cell 1 5

cell_cell 2 3
cell_cell 2 4
cell_cell 2 5

cell_cell 3 6
cell_cell 3 7
cell_cell 3 8

cell_cell 4 6
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cell_cell 4 7
cell_cell 4 8

cell_cell 5 6
cell_cell 5 7
cell_cell 5 8

cell_cell 6 9
cell_cell 6 10
cell_cell 6 11
cell_cell 6 12

cell_cell 7 9
cell_cell 7 10
cell_cell 7 11
cell_cell 7 12

cell_cell 8 9
cell_cell 8 10
cell_cell 8 11
cell_cell 8 12

fraction_input_vector 2

minimal_global_error 0.001
seeds clock clock

end.
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Parameter file for the organism trained to solve the tic-tac-toe endgame problem

create_organism 16
threshold_activation 60
threshold_inhibition 70
mutation_rate_mol_cell 0.8
mutation_rate_atom_mol 30
molecular_shape_size 14

create_cell 1 20 rect 5 4 input 0
n_receptors_cell 1 4
n_effectors_cell 1 4
n_internal_cell 1 12
p_inhibitors_cell 1 20

create_cell 2 20 rect 5 4 input 0
n_receptors_cell 2 4
n_effectors_cell 2 4
n_internal_cell 2 12
p_inhibitors_cell 2 20

create_cell 3 20 rect 5 4 input 0
n_receptors_cell 3 4
n_effectors_cell 3 4
n_internal_cell 3 12
p_inhibitors_cell 3 20

create_cell 4 20 rect 5 4 input 0
n_receptors_cell 4 4
n_effectors_cell 4 4
n_internal_cell 4 12
p_inhibitors_cell 4 20

create_cell 5 20 rect 5 4 input 0
n_receptors_cell 5 4
n_effectors_cell 5 4
n_internal_cell 5 12
p_inhibitors_cell 5 20

create_cell 6 20 rect 5 4 input 0
n_receptors_cell 6 4
n_effectors_cell 6 4
n_internal_cell 6 12
p_inhibitors_cell 6 20
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create_cell 7 20 rect 5 4 input 0
n_receptors_cell 7 4
n_effectors_cell 7 4
n_internal_cell 7 12
p_inhibitors_cell 7 20

create_cell 8 20 rect 5 4 input 0
n_receptors_cell 8 4
n_effectors_cell 8 4
n_internal_cell 8 12
p_inhibitors_cell 8 20

create_cell 9 20 rect 5 4 input 0
n_receptors_cell 9 4
n_effectors_cell 9 4
n_internal_cell 9 12
p_inhibitors_cell 9 20

create_cell 10 20 rect 5 4 internal1 0
n_receptors_cell 10 4
n_effectors_cell 10 4
n_internal_cell 10 12
p_inhibitors_cell 10 20

create_cell 11 20 rect 4 5 internal1 0
create_cell 12 20 rect 4 5 internal1 0
copy_structure_cell 10 11
copy_structure_cell 10 12

create_cell 13 20 rect 5 4 internal2 0
n_receptors_cell 13 4
n_effectors_cell 13 4
n_internal_cell 13 12
p_inhibitors_cell 13 20

create_cell 14 20 rect 5 4 internal2 0
create_cell 15 20 rect 5 4 internal2 0
copy_structure_cell 13 14
copy_structure_cell 13 15

create_cell 16 25 rect 5 5 output 6
n_receptors_cell 16 5
n_effectors_cell 16 5
n_internal_cell 16 15
p_inhibitors_cell 16 20
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cell_cell 1 10
cell_cell 1 11
cell_cell 1 12

cell_cell 2 10
cell_cell 2 11
cell_cell 2 12

cell_cell 3 10
cell_cell 3 11
cell_cell 3 12

cell_cell 4 10
cell_cell 4 11
cell_cell 4 12

cell_cell 5 10
cell_cell 5 11
cell_cell 5 12

cell_cell 6 10
cell_cell 6 11
cell_cell 6 12

cell_cell 7 10
cell_cell 7 11
cell_cell 7 12

cell_cell 8 10
cell_cell 8 11
cell_cell 8 12

cell_cell 9 10
cell_cell 9 11
cell_cell 9 12

cell_cell 10 13
cell_cell 10 14
cell_cell 10 15

cell_cell 11 13
cell_cell 11 14
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cell_cell 11 15

cell_cell 12 13
cell_cell 12 14
cell_cell 12 15

cell_cell 13 16
cell_cell 14 16
cell_cell 15 16

fraction_input_vector 2

minimal_global_error 0.001
seeds clock clock

end.
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THE HYPERNETWORK ARCHITECTURE:
A HIERARCHICAL MOLECULAR INTERACTION MODEL OF BIOLOGICAL

INFORMATION PROCESSING

by
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A novel architecture for machine learning, the hypernetwork architecture, has been

specially designed and implemented in this study. This is a multi level, vertical model

of a biological information processing system that includes the flow of information and

feedback regulation control inspired by biological systems. The levels considered are the

molecular, cellular and organismic.

The molecular level consists of many molecules, i.e., binary string representations

derived from enzyme-like structures. Each molecule has an excitatory and a catalytic site,

but each has an optional inhibitory site. A molecular interaction, binary string matching,

represents a biomolecular self-assembly process. Dynamic formation of networks of

molecular interactions represents reaction cascades in biological cells.

Molecules are placed in cells modeled by cellular automata, and an organized group

of cells forms an organism. Cell to cell interactions are produced by effector-receptor

molecules of the cells.
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External influences on the receptor molecules of input cells dynamically trigger

cascades of molecular interactions inside the cells of the organism. Then the cascade

activates readout molecules on the output cells to form the output of the cell.

Hypernetwork organisms learn classification tasks by means of a variation-selection

algorithm based on molecular evolution. Each iteration consists of an organism being

reproduced with random molecular mutation, and the better one being chosen to perform

the task. The mutation-buffering capabilities of the hypernetwork allow to search for

optimal peaks in the fitness landscape.

The hypernetwork effectively learns classification tasks such as the (4-10)-input

parity problem, the tic-tac-toe endgame problem, the two x two bit multiplier truth

table, and a type of double spiral data set. Experimental results show that, in the

hypernetwork architecture, learning improves when molecules exhibit inhibitory sites.

This improvement is the result of molecular inhibition and negative feedback regulation

inside the cells.
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Publications
Segovia-Juarez, J. and Conrad, M. Learning with the molecular-based hypernetwork
model. Proceedings of the 2001 Congress on Evolutionary Computation, 27-30 May
2001, Seoul-Korea. pp: 1177-1182, May 2001.

Segovia-Juarez, J. and Conrad, M. Hypernetwork Model of Biological Information
Processing. Proceedings of the 1999 Congress on Evolutionary Computation, 6-9 July,
Washington D.C., USA. pp: 511-515, July 1999.

Sethi, I. K., Coman, I., Day B., Jiang, F., Li, D., Segovia-Juarez, J., Wei, G. and You, B.
ColorWISE: A System for Image Similarity Retrieval Using Color. Storage and Retrieval
for Image and Video Databases VI - SPIE Proceedings, 28 - 30 January 1998, San Jose,
CA, USA. pp: 140 -149. 1998.

Segovia-Juarez, J. and Conrad, M. Modeling vertical information flow in biological
systems. Quantum Approaches to Consciousness. Conference at Northern Arizona
University, Flagstaff, Arizona, July 28 - August 1, 1999.

Segovia-Juarez, J. and Hoces-Roque, D. Un modelo din´amico de la poblaci´on de vicuñas.
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