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Abstract 
 

Sarmiento, Martin Guillermo Cornejo; Epprecht, Eugenio Khan (Advisor); 

Chakraborti, Subhabrata (Co-advisor). Tolerance Intervals for Sample 

Variances Applied to the Study of the Phase II Performance and Design 

of 𝑺𝟐 Charts with Estimated Parameters.  Rio de Janeiro, 2019. 155p. Tese 

de Doutorado - Departamento de Engenharia Industrial, Pontifícia 

Universidade Católica do Rio de Janeiro. 

The 𝑆2 control charts are fundamental tools widely used to monitor the 

process dispersion in applications of Statistical Process Monitoring and Control. 

Phase II performance of different types of control charts, including the 𝑆2 chart, 

with unknown process parameters may be significantly different from the nominal 

performance due to the effect of parameter estimation. In the last few years, this 

effect has been addressed predominantly under the conditional perspective, which 

considers the variability of parameter estimates obtained from different Phase I 

reference samples instead of the traditional unconditional performance measures 

based on the marginal (unconditional) run length (𝑅𝐿) distribution, such as the 

unconditional average run length. In light of this new conditional perspective, the 

analysis of the Phase II performance and design of control charts is frequently 

undertaken using the Exceedance Probability Criterion for the conditional (given 

the parameter estimates) in-control average run length (𝐶𝐴𝑅𝐿0), that is, the criterion 

that ensures a high probability that the 𝐶𝐴𝑅𝐿0 is at least a specified minimum 

tolerated value. Tolerance intervals for sample variances are useful when the main 

concern is the precision of the values of the quality characteristic and then they can 

be used in decision-making on lot acceptance sampling. Motivated by the fact that 

these tolerance intervals, specifically in the case of the two-sided intervals, have not 

been addressed in the literature so far, exact and approximate two-sided tolerance 

limits for the population of sample variances are derived and presented in this work. 

The mathematical-statistical relationship between tolerance interval for the sample 

variance and the exceedance probability (survival probability) of the 𝐶𝐴𝑅𝐿0 for the 

𝑆2 control chart with estimated parameter is recognized, highlighted and used in 

this work in such a way that the study of the Phase II performance and design of 

this chart can be based on tolerance interval for the sample variance, and vice versa. 

Works on performance and design of 𝑆2 chart with estimated parameter generally 
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focused on only one perspective (either unconditional or conditional) and 

considered only one type of chart (either upper one-sided chart or two-sided chart). 

The existence of both perspectives and two types of charts may be confusing for 

practitioners. For that reason, the performance and design of 𝑆2 control chart 

according to these two perspectives are compared, considering each type of chart. 

Similarly, these two types of charts are also compared for each perspective. Some 

important results related to the 𝑆2 chart design, which are not yet available in the 

literature, were required and obtained in this work to provide a comprehensive 

comparative study that enables practitioners to be aware of the significant 

differences between these two perspectives and the two types of charts so that 

proper informed decisions about the chart design to choose can be made. 

Furthermore, because the conditional 𝑅𝐿 distribution is usually highly right-

skewed, the median and some extreme quantiles of the conditional 𝑅𝐿 distribution 

are proposed as complementary performance measures to the customary mean 

(𝐶𝐴𝑅𝐿0). Finally, some practical recommendations are offered. 

 

Keywords 

Phase II Performance of 𝑆2 Control Charts; Design of 𝑆2 Control Charts; 

Tolerance Limits for Sample Variances; Conditional Performance; Run Length 

Distribution and Quantiles. 
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Resumo 

 

Sarmiento, Martin Guillermo Cornejo; Epprecht, Eugenio Khan (Orientador); 

Chakraborti, Subhabrata (Co-orientador). Intervalos de Tolerância para 

Variâncias Amostrais Aplicados ao Estudo do Desempenho na Fase II e 

Projeto de Gráficos de 𝑺𝟐 com Parâmetros Estimados. Rio de Janeiro, 

2019. 155p. Tese de Doutorado - Departamento de Engenharia Industrial, 

Pontifícia Universidade Católica do Rio de Janeiro. 

Os gráficos de controle de 𝑆2 são ferramentas fundamentais amplamente 

utilizados para monitoramento da dispersão do processo em aplicações de CEP. O 

desempenho na Fase II de diferentes tipos de gráficos de controle, incluindo o 

gráfico de 𝑆2, com parâmetros desconhecidos pode ser significativamente diferente 

do desempenho nominal por causa do efeito da estimação de parâmetros. Nos anos 

mais recentes, este efeito tem sido abordado predominantemente sob a perspectiva 

condicional, que considera a variabilidade das estimativas de parâmetros obtidas a 

partir de diferentes amostras de referência da Fase I em vez das típicas medidas de 

desempenho baseadas na distribuição marginal (incondicional) do número de 

amostras até o sinal (Run Length-𝑅𝐿), como sua média. À luz dessa nova 

perspectiva condicional, a análise do desempenho da Fase II e do projeto de gráficos 

de controle é frequentemente realizada usando o Exceedance Probability Criterion 

para a média da distribuição condicional do 𝑅𝐿 (𝐶𝐴𝑅𝐿0), isto é, o critério que 

garante uma alta probabilidade de que 𝐶𝐴𝑅𝐿0 seja pelo menos um valor mínimo 

tolerado e especificado. Intervalos de tolerância para variâncias amostrais são úteis 

quando o maior interesse está focado na precisão dos valores de uma característica 

de qualidade, e podem ser usados na tomada de decisões sobre a aceitação de lotes 

por amostragem. Motivado pelo fato de que estes intervalos, especificamente no 

caso dos intervalos bilaterais, não foram abordados na literatura, limites bilaterais 

de tolerância exatos e aproximados de variâncias amostrais são derivados e 

apresentados neste trabalho. A relação matemática-estatística entre o intervalo de 

tolerância para a variância amostral e o Exceedance Probability (função de 

sobrevivência) da 𝐶𝐴𝑅𝐿0 do gráfico de 𝑆2 com parâmetro estimado é reconhecida, 

destacada e usada neste trabalho de tal forma que o estudo do desempenho na Fase 

II e o projeto desse gráfico pode ser baseado no intervalo de tolerância para a 

variância amostral, e vice-versa. Os trabalhos sobre o desempenho e projeto do 
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gráfico de 𝑆2 com parâmetro estimado focaram-se em apenas uma perspectiva 

(incondicional ou condicional) e consideraram somente um tipo de gráfico 

(unilateral superior ou bilateral). A existência de duas perspectivas e dois tipos de 

gráficos poderia ser confusa para os usuários. Por esse motivo, o desempenho e o 

projeto do gráfico de 𝑆2 de acordo com essas duas perspectivas são comparados, 

considerando cada tipo de gráfico. Da mesma forma, esses dois tipos de gráficos 

também são comparados para cada perspectiva. Alguns resultados importantes 

relacionados ao projeto do gráfico de 𝑆2, que ainda não estão disponíveis na 

literatura, foram necessários e obtidos neste trabalho para fornecer um estudo 

comparativo completo que permita aos usuários estarem cientes das diferenças 

significativas entre as duas perspectivas e os dois tipos de gráficos para tomar 

decisões informadas sobre a escolha do projeto do gráfico de 𝑆2. Além disso, dado 

que a distribuição condicional do 𝑅𝐿 é em geral fortemente enviesada à direita, a 

mediana e alguns quantis extremos desta distribuição são propostos como medidas 

de desempenho complementares à sua tradicional média (𝐶𝐴𝑅𝐿0). Finalmente, 

algumas recomendações práticas são oferecidas. 

 

Palavras – chave 

Desempenho na Fase II de Gráficos de Controle de 𝑆2; Projeto de Gráficos 

de Controle de 𝑆2; Intervalos de Tolerância para Variâncias Amostrais; 

Desempenho Condicional; Distribuição e Quantis do Número de Amostras Até Um 

Alarme. 
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𝛼  Nominal false alarm rate  

𝛼∗  Adjusted nominal false alarm rate 

𝐴𝑅𝐿  Unconditional average run length     

   (𝐸(𝑅𝐿) = 𝐴𝑅𝐿 = 𝐸(𝐶𝐴𝑅𝐿)) 

𝐴𝑅𝐿0  Unconditional in-control average run length    

𝐴𝑅𝐿0
∗  Desired and specified unconditional in-control average run 

length in the case of unconditional adjustment   

1 − 𝛽 Nominal proportion or content of the tolerance interval for 

the sample variance 

𝛽∗ Adjusted value of 𝛽, which is the complement of the nominal 

proportion of the tolerance interval for the sample variance   

𝛽𝐶𝐸
∗   Approximate of 𝛽∗ based on the CE method 

𝛽𝐾𝑀𝑀
∗   Approximate of 𝛽∗ based on the KMM method 

cdf  Cumulative distribution function 

𝐶𝐴𝑅𝐿  Conditional average run length 

CE   Conditional expectation 

𝐶𝐹𝐴𝑅  Conditional false alarm rate 

𝐶𝑀𝑅𝐿  Conditional median run length 

𝐶𝑃𝑆  Conditional probability of a signal 

𝐶𝑅𝐿  Conditional run length 

𝐶𝑅𝐿𝑞  Conditional run length 𝑞-quantile 

df  Degrees of freedom 

𝐸𝑃  Exceedance Probability 

𝐸𝑃𝐶  Exceedance Probability Criterion  

EX   Exact method 

𝐸(𝑋)  Expected value of the random variable 𝑋  

𝜀 Tolerance factor to determine a proper conditional 

performance threshold using the 𝐸𝑃𝐶    
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𝑓𝑋 Probability distribution function (or probability mass 

function) of the continuous (or discrete) random variable 𝑋 

𝐹𝑋  Cumulative distribution function of the random variable 𝑋 

𝐹𝑋
−1 Inverse of the cumulative distribution function (quantile 

function) of the random variable 𝑋 

IC  In control  

𝑘  Tolerance factor for a normal distribution 

KMM  Krishnamoorthy, Mathew and Mukherjee 

𝐺(𝑌) Actual coverage of the two-sided tolerance interval for the 

sample variance expressed as a function of 𝑌 

𝛾 Confidence level of the tolerance interval for the sample 

variance 

𝐿∗ Exact two-sided lower tolerance factor for the sample 

variance 

𝐿𝐶𝐸 Approximate two-sided lower tolerance factor for the sample 

variance based on the CE method 

𝐿𝐾𝑀𝑀 Approximate two-sided lower tolerance factor for the sample 

variance based on the KMM method 

𝐿𝑡𝑤𝑜 Lower control limit factor of two-sided 𝑆2 chart when 𝜎0
2 is 

known   

𝐿𝑡𝑤𝑜
∗  Adjusted lower control limit factor of two-sided 𝑆2 chart 

when 𝜎0
2 is unknown and estimated   

  𝐿𝐶𝐿𝑡𝑤𝑜 Lower two-sided 𝑆2 control limit when 𝜎0
2 is known   

𝐿𝐶�̂�𝑡𝑤𝑜 Lower two-sided 𝑆2 control limit when 𝜎0
2 is unknown and 

estimated     

𝐿𝐶�̂�𝑡𝑤𝑜
∗  Adjusted lower two-sided 𝑆2 control limit when 𝜎0

2 is 

unknown and estimated     

𝑚 Number of Phase I samples (in the context of both tolerance 

intervals for sample variances and 𝑆2 control charts) 

𝑚𝑎𝑥 (𝑇) Maximum value of 𝑇   

𝜇 Mean of the normal population, from which samples are 

collected to generate sample variances that make up the 

inferred population using tolerance interval   
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𝜇0   Phase I (in-control) process mean (in the context of 𝑆2 chart) 

𝑛 Phase I sample size and sample size required to obtain the 

sample variances that make up the inferred population (in the 

context of tolerance intervals for sample variances), and size 

of each Phase I and Phase II sample (in the context of 𝑆2 

control charts)  

one Used as a subscript to indicate that upper one-sided 𝑆2 chart 

is considered 

OOC  Out of control  

𝑝 The risk (probability) that the 𝐶𝐴𝑅𝐿0 is smaller than a 

specified tolerated value   

𝑃𝐷 Percentage difference between the values related to the 

approximate tolerance interval for the sample variance 

(based on either the CE method or the KMM method) and the 

exact ones (1 − 𝛽∗, 𝐿∗, 𝑈∗, �̂�𝐿∗
2 , �̂�𝑈∗

2 , 𝑊𝐼)  

pdf  Probability distribution function 

pmf  Probability mass function 

𝑅𝐿  Run length 

𝜌 Ratio between the process standard deviations in Phases II 

and I 

𝜎2 (or 𝜎) Variance (or standard deviation) of the normal population, 

from which samples are collected to generate sample 

variances (or standard deviations) that make up the inferred 

population using tolerance interval   

𝜎0
2   Phase I (in-control) process variance 

𝜎1
2   Phase II process variance 

�̂�2 Estimator for 𝜎2 

�̂�0
2   Estimator for 𝜎0

2 

𝑆𝐷𝐴𝑅𝐿  Standard deviation of the 𝐶𝐴𝑅𝐿 

SPC  Statistical Process Monitoring and Control 

𝑆2 (or 𝑆) Sample variance (or standard deviation) 
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𝑆𝑖
2 𝑖-th Phase I sample variance (𝑖 = 1,2, … ,𝑚) obtained from a 

sample of size 𝑛 (in the context of both tolerance intervals for 

sample variances and 𝑆2 control charts)   

𝑆𝑙
2 𝑙-th Phase II sample variance (𝑙 = 𝑚 + 1,𝑚 + 2,…) 

obtained from a sample of size 𝑛 (in the context of 𝑆2 control 

charts)  

𝑆𝑝
2   Pooled sample variance   

�̂�𝐿∗
2  Exact two-sided lower tolerance limit for the sample variance 

�̂�𝐿𝐶𝐸
2  Approximate two-sided lower tolerance limit for the sample 

variance based on the CE method 

�̂�𝐿𝐾𝑀𝑀
2  Approximate two-sided lower tolerance limit for the sample 

variance based on the KMM method 

�̂�𝑈∗
2  Exact two-sided upper tolerance limit for the sample variance 

�̂�𝑈𝐶𝐸
2  Approximate two-sided upper tolerance limit for the sample 

variance based on the CE method 

�̂�𝑈𝐾𝑀𝑀
2  Approximate two-sided upper tolerance limit for the sample 

variance based on the KMM method 

two Used as a subscript to indicate that two-sided 𝑆2 chart is 

considered 

⌈𝑡⌉   The smallest integer greater or equal to 𝑡 

⌊𝑡⌋   The largest integer less than or equal to 𝑡 

𝑈  Uniform random variable between 0 and 1  

𝑢 A observed value or realization of a uniform random variable 

𝑈. It also denotes the order of the quantiles of the 𝑌 

distribution  

𝑈∗ Exact two-sided upper tolerance factor for the sample 

variance 

𝑈𝐶𝐸 Approximate two-sided upper tolerance factor for the sample 

variance based on the CE method  

𝑈𝐾𝑀𝑀 Approximate two-sided upper tolerance factor for the sample 

variance based on the KMM method 
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𝑈𝑜𝑛𝑒 (𝑈𝑡𝑤𝑜) Upper control limit factor of one-sided (two-sided) 𝑆2 chart 

when 𝜎0
2 is known   

𝑈𝑜𝑛𝑒
∗  (𝑈𝑡𝑤𝑜

∗ ) Adjusted upper control limit factor of one-sided (two-sided) 

𝑆2 chart when 𝜎0
2 is unknown and estimated    

𝑈𝐶𝐿𝑜𝑛𝑒 (𝑈𝐶𝐿𝑡𝑤𝑜)  Upper one-sided (or two-sided) 𝑆2 control limit when 𝜎0
2 is 

known 

𝑈𝐶�̂�𝑜𝑛𝑒 (𝑈𝐶�̂�𝑡𝑤𝑜)  Upper one-sided (or two-sided) 𝑆2 control limit when 𝜎0
2 is 

unknown and estimated   

𝑈𝐶�̂�𝑜𝑛𝑒
∗  (𝑈𝐶�̂�𝑡𝑤𝑜

∗ ) Adjusted upper one-sided (or two-sided) 𝑆2 control limit 

when 𝜎0
2 is unknown and estimated   

𝑊  Chi-square random variable with (𝑛 − 1) degrees of freedom  

𝑊𝐻  Wilson-Hilferty  

𝑊𝐼  Width of the exact tolerance interval for the sample variance 

𝑊𝐼𝐶𝐸 Width of the approximate tolerance interval for the sample 

variance based on the CE method 

𝑊𝐼𝐾𝑀𝑀 Width of the approximate tolerance interval for the sample 

variance based on the KMM method 

𝑋𝑖𝑗 𝑗-th observation of the 𝑖-th Phase I sample  (𝑖 = 1,2, … ,𝑚 

and 𝑗 = 1,2, … , 𝑛). 𝑋𝑖𝑗 are iid 𝑁(𝜇, 𝜎2) in the context of 

tolerance intervals for sample variances and 𝑁(𝜇0, 𝜎0
2) in the 

context of 𝑆2 control charts 

𝑋𝑗
′ 𝑗-th (test or future) observation in the context of tolerance 

intervals for sample variances. 𝑋𝑗
′ are iid 𝑁(𝜇, 𝜎2), 𝑗 =

1,2, … , 𝑛   

�̅� Sample mean  

�̅�𝑖   𝑖-th Phase I sample mean 

𝜒𝑑𝑓
2    Chi-square random variable with 𝑑𝑓 degrees of freedom  

𝜒𝑑𝑓,𝑞
2  𝑞-quantile of the distribution of a chi-square random variable 

with 𝑑𝑓 degrees of freedom. This is also denoted as 𝐹
𝜒𝑑𝑓
2
−1 (𝑞) 

𝜒𝑑𝑓,𝑞
2 (𝑛𝑐) 𝑞-quantile of the distribution of a non-central chi-square 

random variable with 𝑑𝑓 degrees of freedom and non-

centrality parameter 𝑛𝑐  
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𝑌 Chi-square random variable with 𝑚(𝑛 − 1) degrees of 

freedom  

𝑦 A observed value or realization of a chi-square random 

variable 𝑌  

0 Used as a subscript to indicate that in-control process is 

considered 
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1 
Introduction 

1.1  
Motivation and Contributions 

Control charts are one of the main techniques of Statistical Process 

Monitoring and Control (SPC) for quality control and improvement. These charts, 

which were proposed in the 1920s and 1930s by Walter A. Shewhart (see Shewhart, 

1931), are powerful tools to monitor traditional manufacturing processes as well as 

service and recent communication processes, for instance, nowadays, social 

networks and public health are being monitored using control charts. Statistical 

tolerance intervals, which were studied for the first time by Samuel S. Wilks in the 

early 1940s (see Wilks, 1941), are used in statistical inference-based decision 

making. These intervals are useful tools extensively utilized in manufacturing 

(quality control), engineering (reliability) and different scientific fields. In the case 

of quality control and improvement applications, tolerance intervals are usually 

constructed to be examined in conformity assessment and acceptance of products 

(or processes). It is worth to note that these intervals are generally employed in the 

release of production lots (incoming raw materials or components and finished 

products), while control charts are used in on-line (in real time) process monitoring.  

Three types of statistical intervals, which are computed from a random 

sample and quantify the uncertainty related to sampling variability, are the most 

important in statistical inference. The most well-known interval is the confidence 

interval that is analyzed to infer about unknown parameters of the corresponding 

distribution of the studied population. Prediction intervals are used when the 

interest is in predicting one or more future observations from this population. 

However, sometimes the user desires to get information on a relatively large 

number of such future observations or (given that this number could be unknown 

or theoretically infinite) a large proportion of the entire population. In such a case, 

the construction of tolerance intervals can be useful, that is, setting limits that cover 
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at least a specified large proportion of a population of interest with a preassigned 

high confidence level can provide the required information. 

In several applications of quality assessment, the major concern is the 

precision of the measurements of the quality characteristic of interest, and thus the 

process variability must be small. For instance, in mass production, processes based 

on the manufacture of interchangeable parts require to achieve highly accurate and 

precise measurements of certain quality characteristics of manufactured parts. In 

addition, in many real applications, the related decision-making must be based on 

a specific sample. In this situation, the construction of statistical tolerance intervals 

for the population of sample variances can be of great utility because it can bring 

significant gains in knowledge of the product/process variability. For that reason, 

Tietjen & Johnson (1979) proposed the construction of one-sided upper tolerance 

limits for the population of sample variances. They justified their proposal by 

pointing out that the control of increases in the process variability is the principal 

interest in applications. Accordingly, the process deterioration can be monitored. 

However, although one-sided upper tolerance limits are useful in examining how 

large the process variability is, they disregard the information on how small the 

process variability is, which is a fundamental objective pursued in quality control 

and improvement. Motivated by this fact, the study of two-sided tolerance intervals 

for sample variances, which allows us to examine the process improvement as well 

as the process deterioration and are yet not available in the literature, represents a 

research gap. 

In the context of SPC, the 𝑆2 process control chart is one of the most well-

known and used tool to monitor the variability of the quality characteristic of 

interest. In real 𝑆2 control chart applications, the in-control process variance (𝜎0
2) 

is generally unknown and needs to be estimated from a reference dataset, which is 

constituted of 𝑚 independent samples (or subgroups) of size 𝑛 and is collected from 

the Phase I process. With this estimate of 𝜎0
2, the control limits of the 𝑆2 chart are 

constructed to be used in prospective Phase II process monitoring, where Phase II 

sample variances (plotting statistics), obtained from samples (also of size 𝑛) 

collected at regular intervals, are compared with the estimated control limit(s). The 

Phase II chart performance is usually measured by some property of the distribution 

of the run length (𝑅𝐿), which is the number of sample variances until an alarm (i.e., 
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the number of plotting statistics plotted until getting the first one outside the control 

limits), such as its expected value, the so-called average run length (𝐴𝑅𝐿). When 

𝜎0
2 is known or specified (unrealistic case), the 𝑅𝐿 follows a geometric distribution 

with parameter equal to the probability of an alarm (signal). If the process is in-

control (IC), the signal probability is called the false alarm rate (the probability of 

type I error, denoted as 𝛼). Any associated property of the in-control run length 

(𝑅𝐿0) distribution is a constant value that depends on a specified 𝛼, for instance, 

the 𝐴𝑅𝐿 is the reciprocal value of 𝛼.      

Several works have revealed that the Phase II performance of control charts  

with process parameters estimated in Phase I (including the 𝑆2 chart) may be 

extremely different from the theoretical (or nominal) performance that it would 

have in the (unrealistic) parameters-known case, in which no Phase I is needed, or 

if the Phase I estimate were “absolutely accurate”. It is worth to note that most of 

these works about the effect of parameter estimation on the performance of control 

charts have concentrated on the marginal (or unconditional) distribution of the 𝑅𝐿 

(called the unconditional perspective), particularly on the expected value of the 

marginal IC 𝑅𝐿 (the unconditional in-control average run length, denoted as 𝐴𝑅𝐿0).  

With regard to the 𝑆2 chart, the unconditional 𝑅𝐿 distribution can be found 

by averaging the conditional 𝑅𝐿 probabilities (conditioned on the estimator of 𝜎0
2, 

denoted as �̂�0
2) over the distribution of �̂�0

2. So, the unconditional 𝑅𝐿 distribution 

(which, differently from the 𝜎0
2-known case, isn’t geometrically distributed), and 

any associated (derived) unconditional performance measure as well, represent an 

“average” performance of the chart, rather than the actual (or attained) performance 

of any particular control chart in a given application. However, this unconditional 

perspective can be considered as theoretical and not practical because, in practice, 

there generally exists only a unique reference dataset to estimate 𝜎0
2 and different 

instances of a same control chart constructed from different reference datasets 

would have different performances (the so-called “practitioner-to-practitioner 

variability”). A “new” conditional perspective that take into account that this 

variability may be significantly large has emerged in the last few years (since mid-

2015). So, the focus moved from, the prevailing approach until then, the 

unconditional 𝑅𝐿 distribution to the conditional 𝑅𝐿 (𝐶𝑅𝐿) distribution. The 𝐶𝑅𝐿 

when the process is IC (denoted as 𝐶𝑅𝐿0) follows a geometric distribution, 
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parameter of which is a particular realization of the conditional false-alarm rate 

(𝐶𝐹𝐴𝑅), that is, the false alarm rate conditioned on (given) a particular �̂�0
2 obtained 

from a certain Phase I reference dataset. The estimation of 𝜎0
2 turns the associated 

properties of the 𝐶𝑅𝐿0 distribution (constant values in the 𝜎0
2-known case) into 

random variables expressed as functions of �̂�0
2 for a given value of 𝛼 (the specified 

or nominal false alarm rate in the 𝜎0
2-known case). For instance, the conditional in-

control average run length (𝐶𝐴𝑅𝐿0), which is the reciprocal of 𝐶𝐹𝐴𝑅, and some of 

its properties, such as its standard deviation (𝑆𝐷𝐴𝑅𝐿0) and exceedance probability 

(𝐸𝑃), are used rather than the unconditional performance measures. Since small 

realizations of 𝐶𝐴𝑅𝐿0 are undesired, the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0, which is the probability 

that the 𝐶𝐴𝑅𝐿0 is at least a minimum tolerated value, is a useful conditional 

performance measure.  

Moreover, since the 𝐶𝑅𝐿 distribution is generally highly right-skewed, 

especially when the specified 𝛼 is small (e.g., traditional value of 0.0027), the sole 

use of the mean of this 𝐶𝑅𝐿 distribution (i.e., the 𝐶𝐴𝑅𝐿) as a performance measure 

may convey limited information about this distribution and, therefore, the 

examination and knowledge of the entire 𝑅𝐿 distribution, by means of its quantiles 

(the conditional run length 𝑞-quantile, denoted as 𝐶𝑅𝐿𝑞) are convenient. These 

quantiles, which are random variables rather than constant values (the parameters 

known case), better depict the location of a skewed distribution, and particular 

quantiles such as the conditional median run length (𝐶𝑀𝑅𝐿) may be considered 

more robust measures of centrality than the 𝐶𝐴𝑅𝐿 since the mean is more impacted 

by extreme 𝐶𝑅𝐿 values than the median. When the process is IC, the analysis of 

lower quantiles of the 𝐶𝑅𝐿0 (that is, the random variable called 𝑞-quantile of the 

conditional in-control run length, denoted as 𝐶𝑅𝐿0,𝑞), such as 𝐶𝑅𝐿0,0.05, could be 

of practical interest and more useful for practitioners. In this way, large realizations 

of 𝐶𝑅𝐿0,𝑞 are preferred, because they correspond to smaller values of 𝐶𝐹𝐴𝑅 or 

larger values of 𝐶𝐴𝑅𝐿0. 

Studies on the Phase II performance of control charts with estimated 

parameter(s) have also pointed out that the required amount of Phase I reference 

data to ensure a desired (unconditional or conditional) IC performance of the Phase 

II chart could be fairly larger than the recommended amounts in many books and 

manuals (traditionally, 𝑚 = 20 to 30 and 𝑛 = 4 or 5, see, for instance, 
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Montgomery, 2009). This desired IC performance can be the unconditional one 

close to the nominal performance that the chart would have in the parameter known 

case, such as the nominal 𝐴𝑅𝐿0 (unconditional perspective) or a specified minimum 

tolerated IC performance based on the Exceedance Probability Criterion (𝐸𝑃𝐶) for 

the 𝐶𝐴𝑅𝐿0 (conditional perspective). This 𝐸𝑃𝐶 takes into account the “practitioner-

to-practitioner variability” and can be defined as the required high probability that 

the 𝐶𝐴𝑅𝐿0 is at least a specified minimum tolerated value (a high value of the 𝐸𝑃 

of the 𝐶𝐴𝑅𝐿0) in a given application. Note that the cumulative distribution function 

(cdf) of the 𝐶𝐴𝑅𝐿0 is needed to apply this 𝐸𝑃𝐶. Since the required large amount of 

Phase I reference data is most often infeasible in practice, some authors have 

proposed to adjust the control limit(s), given a practical and available amount of 

data, in order to achieve a desired (either unconditional or conditional) IC 

performance as outlined above. 

The close mathematical-statistical relationship between the two-sided 

tolerance intervals for sample variances and the cdf of the 𝐶𝐹𝐴𝑅 or, equivalently, 

the 𝐸𝑃 (survival probability or the complement of the cdf) of the 𝐶𝐴𝑅𝐿0 of the two-

sided 𝑆2 chart is exploited in this work. For instance, we highlight the use of exact 

tolerance limits as adjusted control limits to ensure a specified minimum tolerated 

value of the 𝐶𝐴𝑅𝐿0 with a high probability. Hence, characteristics associated with 

the 𝐶𝐴𝑅𝐿0 (its cdf and 𝐸𝑃) and the values related to the design of the 𝑆2 control 

chart are obtained on the basis of exact tolerance intervals for the population of 

sample variances. In this work, the “design” of 𝑆2 control chart entails the decisions 

about the amount of Phase I samples and/or the use of unadjusted or adjusted control 

limits and, if adjusting them, the values of the adjusted control limits factors 

required to achieve a specified Phase II performance.   

Similarly to the construction and implementation of tolerance intervals, the 

decision to use either upper one-sided or two-sided 𝑆2 (or 𝑆) control chart must be 

based on the context and the objective of the particular application, and so both 

configurations have their place in practice. When the detection of increases in the 

process variance (or standard deviation) is the principal concern of the monitoring 

process variability (information about process deterioration), 𝑆2 (or 𝑆) chart can be 

constructed without the lower control limit. It is well known that, given a specified 

significance level, the power of the one-tailed hypothesis test outperforms the 
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power of the two-sided one, likewise, the upper one-sided 𝑆2 (or 𝑆) chart is greater 

power to detect increases in the process variability. However, when the user is 

interested in detecting increases along with decreases in the process variability, 𝑆2 

(or 𝑆) chart designed with two-sided control limits is appropriate (information about 

process deterioration as well as process improvement). Furthermore, it is important 

to detect whether the process dispersion decreases, through a two-sided 𝑆2 (or 𝑆) 

chart, because the limits of �̅� control chart depend on the estimated process standard 

deviation. For example, if this standard deviation has shifted to a smaller value 

(possibly due to a process improvement during the Phase II monitoring), the IC and 

out-of-control (OOC) performances of the �̅� chart deteriorate and improve, 

respectively. However, there would be mistaken measurements of these both 

performances unless such decrease is detected and the control limits are 

recalculated using the new estimate of the process standard deviation. 

The existing studies on the performance and design of 𝑆2 (and 𝑆) control 

charts with estimated parameters have been conducted considering either upper 

one-sided chart or two-sided chart, alternately, but never on both, and have focused 

on either unconditional perspective or conditional one. In addition, all works on the 

performance and design of the 𝑆2 (and 𝑆) control charts under the unconditional 

perspective have considered only two-sided charts. On the other hand, works under 

the conditional perspective considered only one-sided charts. 

Failing to distinguish between the particularities of the two existing 

perspectives and between the characteristics of the two types of 𝑆2 charts can give 

rise to a likelihood of confusion among practitioners, and thus lead to making wrong 

conclusions about Phase II performance and design of 𝑆2 chart. Accordingly, a 

comparison study between both perspectives enables practitioners to gain 

information for constructing 𝑆2 control charts that guarantee a specified chart 

performance based on each perspective so that the differences of the design of 𝑆2 

chart can be clearly identified. A comparison study between both types of charts 

can also be useful for practitioners to understand the performance differences 

between these charts, in order to be aware of them in making decision about chart 

design of a particular application. Additionally, these comparisons are relevant 

because there are some involved cost, including cost of sampling, cost of 
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unnecessary production stops due to false alarms and costs of producing defective 

units as well as low-quality units.  

Under some assumptions (namely, normally distributed data, charts with 

probability limits, the use of the pooled sample variance (𝑆𝑝
2) and its square root as 

estimators of 𝜎0
2 and 𝜎0 for the 𝑆2 and 𝑆 control charts, respectively), the control 

limit(s) of the 𝑆 chart equals the square root of the corresponding limit(s) of the 𝑆2 

chart (for the same specified false alarm rate (𝛼), and same number and size of 

Phase I samples (𝑚 and 𝑛)), considering one-sided chart as well as equal-tailed two-

sided chart. Consequently, these charts are completely equivalent and could be used 

interchangeably: they would signal exactly at the same monitoring time (the same 

samples), and will have the same performance; for this reason, the focus is 

restricted, for simplicity, to the 𝑆2 chart; the reader should keep in mind that all 

results presented in this work apply to the 𝑆 charts with limits that are the square 

root of the 𝑆2 chart limits. Based on similar assumptions, but in the context of our 

proposed tolerance intervals, if the construction of exact two-sided tolerance 

intervals for the populations of sample standard deviations is required, the pooled 

sample standard deviation (𝑆𝑝) must be used as the estimator of the standard 

deviation of the analyzed normal population 𝜎 (which has been suggested in the 

literature, see, for example, Mahmoud et al., 2010) so that the required tolerance 

factors can be obtained by simply taking the square root of the corresponding 

tolerance factors of tolerance intervals for sample variances. 

With this background outlined above, this work seeks to achieve the 

following objectives: 

1. To derive the formulas for the tolerance factors required to construct exact 

two-sided statistical tolerance intervals for the population of sample 

variances for data that come from a normal distribution. These obtained 

tolerance factors are tabulated for various cases (settings) to be implemented 

in practice. 

 

2. To derive approximate tolerance factors to obtain approximations for the 

aforementioned tolerance intervals (item 1) since the computation of the 

exact tolerance limits for sample variances is a non-trivial problem. Indeed, 
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the corresponding exact tolerance factors cannot be provided in closed-form 

equations and a numerical method is necessary to solve a system of 

nonlinear equations. With this in mind, two approximate methods are 

proposed to facilitate the construction of tolerance intervals in practice. To 

the best of our knowledge, there is no study in the literature about exact and 

approximate two-sided tolerance intervals for sample variances; 

 

3. To derive the formula of the exact cdf of the conditional average run length 

𝐶𝐴𝑅𝐿 (and the exact cdf of its reciprocal, the conditional probability of a 

signal (𝐶𝑃𝑆)) of the two-sided 𝑆2 control chart. Since we identified and 

highlighted the close mathematical-statistical relationship between the two-

sided tolerance intervals for sample variances and the exceedance 

probability (𝐸𝑃) of the 𝐶𝐴𝑅𝐿 (or, equivalently, the cdf of the 𝐶𝑃𝑆), we 

exploit this relationship so that these exact cdf's are derived on the basis of 

the exact tolerance intervals for sample variances, which are addressed in 

item 1. These cdf's had been identified as research gaps in the literature 

review we undertook. However, when the present work was in progress and 

these cdf's were already derived, the paper by Guo & Wang (2017) appeared 

providing these cdf's.  

 

4. To compare the conditional and unconditional perspectives for designing 

the Phase II 𝑆2 control charts, considering two-sided chart as well as one-

sided chart. Furthermore, we compare the one-sided and two-sided 𝑆2 

control charts, in terms of their Phase II performance and design, 

considering unadjusted limits and adjusted limits (aiming to guarantee a 

desired IC performance of the chart) according to each perspective 

(conditional or unconditional). The cdf of the 𝐶𝐴𝑅𝐿0, which is addressed in 

item 3, is required in these comparisons, namely, when the 𝐸𝑃 and the 

Exceedance Probability Criterion (𝐸𝑃𝐶) for the 𝐶𝐴𝑅𝐿0 are used. Some 

results unavailable in the previous literature and necessary for the detailed 

comparisons are presented, such as   
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 for the two-sided 𝑆2 chart: the minimum numbers of Phase I samples 

(𝑚) required to guarantee a specified conditional IC performance based 

on the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0; 

 for the two-sided 𝑆2 chart and adjustments under the conditional 

perspective: for a given amount of Phase I data, the adjusted control limit 

factors that guarantee a specified conditional IC performance based on 

the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0. As noted above, when the present work was in 

progress and the adjusted control limit factors were already obtained, the 

paper by Guo & Wang (2017) appeared providing these factors; 

 for the one-sided 𝑆2 chart and adjustments under the unconditional 

perspective: the adjusted control limit factors that guarantee the desired 

unconditional average run length (𝐴𝑅𝐿0) for a given amount of Phase I 

data; 

 for the one-sided and two-sided 𝑆2 charts and adjustments under the 

unconditional perspective: assessment of the resulting IC performance 

of the 𝑆2 chart using the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 (conditional perspective) 

when the control limit(s) is(are) adjusted according to the unconditional 

perspective (to attain a specified unconditional 𝐴𝑅𝐿0); and 

 the analysis of the characteristics and differences between the 𝐶𝐴𝑅𝐿0 

distributions of the one-sided and two-sided 𝑆2 charts, which is 

fundamental for this comparative study. 

 

5. To derive the formulas of the exact cdf’s of the conditional run length 𝑞-

quantile (𝐶𝑅𝐿𝑞) of the one- and two-sided 𝑆2 chart. The derivation of this 

distribution for the one-sided chart is based on exact analytical derivations. 

The 𝐶𝑅𝐿𝑞 distribution for the two-sided chart is based on the exact two-

sided tolerance intervals for sample variances, which are addressed in item 

1. These two distributions are presented for the first time in the literature. 

The 𝐶𝑅𝐿0,0.05 and 𝐶𝑅𝐿0,0.5 (the conditional in-control median run length) 

may serve as complementary performance measures to the traditional mean 

of the conditional in-control run length distribution (𝐶𝐴𝑅𝐿0) since the 

distribution of the conditional run length is generally highly right-skewed.  
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1.2  
Methodology of this work 

First of all, a thorough literature review on the effect of parameter estimation 

on the Phase II performance of control charts as well as on tolerance intervals were 

made. Therefore, some research gaps on this topic regarding 𝑆2 (and 𝑆) control 

charts along with the tolerance intervals for sample variances were identified and 

the practical relevance of them were verified. In this way, formulas, results and 

comparisons related to the aforementioned five objectives have not been conducted 

yet in the previous literature and, therefore, they are addressed throughout this 

work.  

To achieve the objectives of the present work, some techniques of 

mathematical statistics were used to obtain the required formulas and the results of 

the five objectives: 

 Differential and integral calculus. For instance, the derivation of the formula 

of the exact tolerance factors of the two-sided tolerance limits for sample 

variances (and thus the exact cdf of the 𝐶𝐴𝑅𝐿) requires the analysis of first 

and second derivatives of the actual coverage of the tolerance interval. 

Moreover, the computation of the expected value and the standard deviation 

of the 𝐶𝐴𝑅𝐿0 requires the use of integral calculus.   

 Probability theory. Analytical derivations based on properties of continuous 

and discrete distributions are used. For instance, the derivation of the exact 

cdf of 𝐶𝐴𝑅𝐿 (and hence the corresponding 𝐸𝑃𝐶 for 𝐶𝐴𝑅𝐿0) and the exact cdf 

of 𝐶𝑅𝐿𝑞 are obtained using some properties of chi-squared and geometric 

distributions, respectively.  

 Numerical analysis. A root-finding algorithm called the secant method is used 

because numerical solutions of systems of nonlinear equations are required. 

For instance, exact tolerance factors of two-sided tolerance limits for sample 

variances, the exact cdf 's of the 𝐶𝐴𝑅𝐿, minimum number of Phase I samples 

to ensure a conditional IC performance and adjusted control limits factors of 

the two-sided 𝑆2 control chart using the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0 (conditional 

perspective), which aren’t expressed in closed-form equations, required this 

secant method.  
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 Normal approximation (or transformation) methods. Two approximate 

methods for computing two-sided tolerance limits for the population of 

sample variances are used. These methods are based on the Wilson-Hilferty 

normal approximation (see Wilson and Hilferty, 1931) and the 

Krishnamoorthy-Mathew-Mukherjee approximation (see Krishnamoorthy et 

al., 2008).   

 

R-codes were written to apply these techniques of mathematical statistics 

indicated above and make all the computations and plots presented in this work. 

Some of the main R-codes are provided in Appendix F. 

 

1.3  
Organization of the Thesis 

The remainder of this work is organized as follows: 

 Chapter 2 presents a comprehensive literature review on the previous works 

about exact and approximate tolerance intervals (especially, for a gamma 

distribution), the effect of parameter estimation on the Phase II performance 

of 𝑆2 and 𝑆 control charts, the design of these charts, and the recently 

published works about these topics under the unconditional and conditional 

perspectives. The definition of two-sided tolerance intervals for sample 

variances, the formulas of control limits and the Phase II performance of the 

𝑆2 charts are also presented. 

 Chapter 3 provides the derivations of the exact two-sided tolerance limits 

for the population of sample variances and also two approximate methods 

for computing these tolerance limits. These methods are based on the 

Wilson-Hilferty (WH) normal approximation for a chi-square random 

variable. The first method is called the conditional expectation (CE) 

method. The second method, which is based on an adaptation of 

approximate tolerance intervals for a gamma distribution, is called the 

Krishnamoorthy-Mathew-Mukherjee (KMM) method. A comparison of the 

tolerance factors based on the proposed (CE and KMM) approximate 

methods and the exact tolerance factors is made. To illustrate these methods, 
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real data from an application is used to compare the exact and approximate 

tolerance limits for sample variances. 

 Chapter 4 presents the relationship between the two-sided tolerance 

intervals for sample variances and the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿 (or the cdf of the 

𝐶𝑃𝑆) of the 𝑆2 control chart so that the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0, required for 

designing 𝑆2 control chart under the conditional perspective, is applied on 

the basis of the derivation of the exact two-sided tolerance intervals for 

sample variances. Furthermore, formulas of the conditional run length 𝑞-

quantile (𝐶𝑅𝐿𝑞) of the upper one-sided 𝑆2 chart and its distribution are 

provided.  

 Chapter 5 provides the comparison between the conditional and 

unconditional perspectives for designing the Phase II 𝑆2 control charts, 

considering two-sided chart as well as upper one-sided chart. Moreover, the 

one-sided and two-sided 𝑆2 control charts are compared, in terms of their 

Phase II performance and design, considering unadjusted limits and 

adjusted limits (in order to guarantee a desired IC performance of the chart) 

according to each perspective (conditional and unconditional). 

 Chapter 6 presents some conclusions of this work and some practical 

recommendations. 

To complement the understanding of this work, appendixes provide tables of 

exact tolerance factors of two-sided tolerance intervals for sample variances 

considering different settings (cases), and some extra proofs and derivations to 

obtain some of the proposed formulas.  
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Literature review and basic concepts 

2.1  
Previous works 

Most of the published literature on statistical inference considers three 

principal types of statistical intervals, namely, the confidence interval, the 

prediction interval and the tolerance interval (see, for example, Hahn, 1970a, b; 

Vardeman, 1992; Ryan, 2007; Meeker et al., 2017). The proper election of an 

interval depends on the underlying problem. Nevertheless, there is sometimes a 

mistaken or confused use of statistical intervals in practice. Due to this issue, 

Meeker et al. (2017) provide a useful guideline to choice a suitable statistical 

interval for a specific application.  

The first studies on the statistical tolerance interval (addressed in this work) 

were carried out by Wilks (1941, 1942), Wald (1943) and Wald and Wolfowitz 

(1946) in the traditional case of a normal population. From then on, several 

researches have been conducted to construct tolerance intervals parametrically, 

considering different distributions, either continuous (e.g., Shirke et al., 2005; Chen 

& Ye, 2017) or discrete (e.g., Cai & Wang, 2009; Wang & Tsung, 2009) as well as 

nonparametrically that apply to any continuous distribution (e.g., Ahmadi & 

Arghami, 2003; Young & Mathew, 2014). Bayesian tolerance intervals have been 

studied, for example, by Aitchison (1964) and Hamada et al. (2004). There are also 

some works on tolerance intervals for regression and multivariate normal settings 

(see, for instance, Lee & Mathew, 2004; Krishnamoorthy & Mondal, 2006). Earlier 

literature reviews were carried out by Jílek (1981), Patel (1986) and Jílek & 

Ackermann (1989). In more recent literature, the books by Krishnamoorthy & 

Mathew (2009) and Meeker et al. (2017) provide complete developments, 

applications and theory of tolerance intervals. Tolerance intervals have wide 

applicability in manufacturing (quality control), engineering (reliability) and 

contemporary applications of several fields of science, such as Economy, Medicine, 

Pharmacy, Biochemistry, Hydrology, Meteorology, Environmental Science, and 
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Occupational and Industrial Hygiene (see, for instance, Millard & Neerchal, 2000; 

Gibbons et al., 2001, 2009; Fernandez, 2010; Lee & Liao, 2012).  

Tolerance intervals are routinely used in quality control of manufacturing 

applications, namely, in conformity assessment and acceptance of products or 

processes (product acceptance sampling). The quality assessment can be carried out 

by checking whether the tolerance interval obtained for a quality characteristic of a 

product (or a process) is contained within its defined specification limits (see, for 

example, Lai et al., 2012; Dong et al., 2015b), that is, tolerance intervals are often 

useful to analyze the process capability. Montgomery (2009, p. 389) states in this 

regard, “…unless the product specifications exactly coincide with or exceed the 

tolerance limits of the process, an extremely high percentage of the production will 

be outside specifications, resulting in a high loss or rework rate…” Moreover, 

tolerance intervals are sometimes used in setting or revising product specification 

limits since them are not well-defined and there is a lack of previous knowledge of 

the process (see, for instance, Dong et al., 2015a). 

In the construction of tolerance intervals, similarly to the case of the 

hypothesis test and confidence intervals, the user should decide to use either a 

directional (one-sided) or nondirectional (two-sided) interval. This choice is made 

according to the context of application, the questions of interest, and the nature of 

the quality characteristic. Although both types of tolerance intervals have received 

attention in practice, some authors, including Meeker at al. (2017) and Fraser 

(2011), have suggested the construction and report of two-sided intervals since the 

examination of the two tails of the corresponding distribution can provide more 

complete information. Indeed, Meeker et al. (2017, p. 33) state, “…there are many 

applications for which one is primarily interested in either a lower bound or an 

upper bound. Even in such situations it is often still convenient to report a two-

sided interval…” As noted before, tolerance intervals for sample variances can be 

useful when the main interest is in the precision of the values of the quality 

characteristic of interest. Tietjen & Johnson (1979) considered one-sided upper 

tolerance limits, while the two-sided ones, which have not been yet studied, are 

proposed in this work.  

Setting tolerance limits, especially in the case of two-sided limits that 

usually cannot be expressed in a closed-form, is mathematically more challenging 
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than setting confidence and prediction limits because the computation of exact 

tolerance limits is generally based on numerical methods. Special statistical 

software packages, which are available to find tolerance factors (or limits) for 

different probability distributions (e.g., the R package “tolerance” by Young, 2010, 

2014b), may be complicated for a non-expert user. Furthermore, these exact factors 

are sometimes provided in tables to expedite the construction of tolerance intervals, 

for instance, the one-sided and two-sided tolerance factors for the normal 

distribution, the one-sided tolerance factors for the Weibull distribution and the 

one-sided tolerance factors for the two-parameter exponential distribution are 

tabulated by Krishnamoorthy & Mathew (2009). Nevertheless, tables of factors 

may offer incomplete information because a limited number of settings 

(combinations of sample size, nominal proportion, and confidence level) is 

frequently made available. Due to this difficulty, several authors have proposed 

approximate methods for computing tolerance limits for some probability 

distributions. For example, Howe (1969) and Jensen (2009) worked on 

approximations of tolerance limits for the normal population, and Bain & 

Engelhardt (1981) and Rinne (2008) for the Weibull distribution. In the case of 

discrete distributions, author such as Krishnamoorthy et al. (2011), Young (2014a) 

provided approximate tolerance intervals for binomial, Poisson and negative 

binomial distributions.   

The computation of exact one-sided upper tolerance limit for the population 

of sample variances is not a demanding task (see Tietjen & Johnson, 1979) because 

this is equivalent to the computation of a one-sided upper confidence limit on a 

certain quantile of the distribution of the sample variance. On the other hand, since 

the construction of exact two-sided tolerance limits (the focus of this work) is not 

reduced to the computation of a two‐sided confidence interval for a certain quantile, 

and then the corresponding computation is not straightforward, approximate 

tolerance limits for sample variances are proposed so that they can easily be 

implemented in practice. For that purpose, first of all, notice that the population of 

sample variances follows a multiple of a chi-square distribution or, equivalently, a 

gamma distribution. Consequently, previous studies of approximate tolerance limits 

for a gamma distribution can be useful. First works in this line assumed that at least 

one of the two distribution parameters is known or accurately estimated from a 
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specific reference sample (see Bain et al., 1984; Ashkar & Ouarda, 1998). Because 

both parameters are almost always unknown in practice, other approximate 

intervals that consider the effect of parameter estimation have arisen. Namely, 

Aryal et al. (2008) proposed one-sided tolerance limits for a gamma distribution 

using a log-normal approximation, while Krishnamoorthy et al. (2008) proposed 

one- and two-sided tolerance limits using the Wilson-Hilferty (WH) normal 

approximation (see Wilson and Hilferty, 1931). WH approximation can be 

described as follows: the cube-root of the ratio between a chi-square random 

variable and its degrees of freedom approximately follows a normal distribution, 

whose mean and variance depending on these degrees of freedom. In recent years, 

Chen & Ye (2017) presented the construction of approximate one-sided tolerance 

limits, which are not expressed in closed-form, using the generalized fiducial 

method (see, for more details of this method, Hannig, 2009). With this framework, 

two methods to compute approximate two-sided tolerance limits for sample 

variances are presented in this work. One of these proposed methods is based on 

the WH transformation, and the other one is adapted from the article by 

Krishnamoorthy et al. (2008) to obtain a closed-form formula. 

With regard to SPC, the majority of works about control charts with 

estimated parameters obtained from a Phase I reference dataset (for more 

information about Phase I analysis, see Chakraborti et al., 2009; Jones-Farmer et 

al., 2014) and the effect of parameters estimation on the Phase II chart performance 

have focused on the unconditional perspective, i.e., on the marginal (unconditional) 

distribution of the 𝑅𝐿 distribution (detailed literature reviews on this effect is 

conducted by Jensen et al., 2006; Psarakis et al., 2014). Jensen et al. (2006) 

identified three main issues on this topic and asked the following related questions 

(i) “…Just how poorly (or well) might a chart perform if designed with estimates 

in place of known parameters?”, (ii) “What sample size is needed in Phase I to 

ensure adequate performance in Phase II?”, and (iii) “How should the Phase II 

limits be adjusted to compensate for the size of the Phase I sample?”  

Regarding the answers to the first and second questions for two-sided 𝑆2 

and 𝑆 charts designed with probability and equal-tailed limits, namely, to achieve 

“proper” mean and standard deviation of the unconditional 𝐼𝐶 𝑅𝐿 distribution 

(denoted 𝐴𝑅𝐿0 and 𝑆𝐷𝑅𝐿0, respectively) close to the ones of the chart with known 
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parameter, Chen (1998) suggested that the user should have at least 75 samples of 

size 5. In a similar way, but using simulated values of the unconditional 𝐴𝑅𝐿0 and 

𝑆𝐷𝑅𝐿0, Maravelakis et al. (2002) recommended at least 𝑚 = 200 with 5 ≤ 𝑛 ≤

20 or at least 𝑚 = 100 with 𝑛 > 20. Castagliola et al. (2009) assessed the absolute 

percentage difference between the cdf of the 𝐼𝐶 𝑅𝐿 in the variance-known case and 

its unconditional cdf in the variance-unknown case, and suggested at least 𝑚 = 200 

to achieve absolute differences of no more than 2%.  

The three main issues, indicated by Jensen et al. (2006) above, have also 

been addressed according to the prominent conditional perspective since mid-2015. 

Epprecht et al. (2015) presented the first work of the conditional performance of 

the upper one-sided 𝑆2 and 𝑆 charts, while Saleh et al. (2015), who introduced the 

term “practitioner-to-practitioner variability”, worked on the �̅� and 𝑋 charts 

according to the conditional perspective for the first time. With respect to the first 

two issues, Epprecht et al. (2015) provided the cdf of the 𝐶𝐹𝐴𝑅 (or, equivalently, 

the cdf of the 𝐶𝐴𝑅𝐿0) and the required amounts of Phase I reference data to ensure 

a specified minimum tolerated 𝐼𝐶 performance in terms of the Exceedance 

Probability Criterion 𝐸𝑃𝐶 (proposed by Albers & Kallenberg, 2005; Albers et al., 

2005) for the 𝐶𝐴𝑅𝐿0 of the upper one-sided 𝑆2 (and 𝑆) charts. Their findings 

revealed that these amounts should be even larger (several hundreds or even some 

thousands) than the amounts found on the basis of the unconditional perspective 

mentioned earlier. Table 1 summarizes our literature review related to the Jensen’s 

second issue according to the perspective adopted, that is, unconditional (an 

unconditional 𝐴𝑅𝐿0 close to a nominal value) or conditional (using the 𝐸𝑃𝐶 for the 

𝐶𝐴𝑅𝐿0), and type of chart considered (one-sided or equal-tailed two-sided charts 

with probability limits). From Table 1, it is important to note that all authors that 

addressed the unconditional perspective considered only two-sided charts, while 

the unique authors that focused on the conditional perspective considered only 

upper one-sided charts. Therefore, works on 𝑆2 and 𝑆 charts, which are shown in 

Table 1, partially address the second major question (mentioned by Jensen et al., 

2006) that will be completed and seen with more detail in Subchapter 5.2.    
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Table 1 - Overview of the literature on the amount of Phase I reference data required for guaranteeing 

a desired Phase II performance under the unconditional and conditional perspectives for the one-

sided and two-sided 𝑆2 and 𝑆 charts 

Unconditional Perspective  Conditional Perspective 

Limits Reference Chart/ Method  Limits Reference Chart/ Method 

Two-

sided 

Chen (1998) 
𝑆 and 𝑆2/ Numerical 

integration (exact) 

 One-

sided 

Epprecht et 

al. (2015) 
𝑆 and 𝑆2/ Search 

algorithm (exact) 

Castagliola 

et al. (2009) 
𝑆2 / Numerical 

integration (exact) 

 
   

Maravelakis 

et al. (2012) 

𝑆 / Simulation 

(approximation) 

 
   

 

Since the amount of Phase I reference data is usually large and often 

unfeasible, some authors proposed adjustments of control limits to overcome this 

problem (third question quoted by Jensen et al., 2006). Under the unconditional 

perspective, Castagliola et al. (2009) and Diko et al. (2017) proposed adjusted 

control limits based on a desired unconditional 𝐴𝑅𝐿0 for the two-sided 𝑆2 chart 

(using a numerical method) and for the two-sided 𝑆 chart (using a first-order Taylor 

approximation and a numerical method), respectively. Our literature review on 𝑆2 

and 𝑆 charts with control limits adjustments considers a desired unconditional 𝐴𝑅𝐿0 

as the aim in the unconditional perspective. There are other authors who considered 

other aims, for instance, Yang and Hillier (1970) and Schoonhoven et al. (2011) 

found adjusted factors of the two-sided 𝑆2 and 𝑆 control limits to achieve a specified 

unconditional false-alarm rate, however, as argued by Quesenberry (1993), initially 

for the case of �̅� charts, the adjustments proposed were not reliable, since the 

authors disconsidered that the signaling events are dependent. Along the same lines 

as in Quesenberry (1993), Maravelakis et al. (2002) demonstrated this dependence 

in the case of the 𝑆 control chart.  

On the other hand, regarding the conditional perspective, Faraz et al. (2015, 

2018) and Goedhart et al. (2017a) proposed adjustments to the upper one-sided 𝑆 

and 𝑆2 control limits for guaranteeing a specified minimum tolerated 𝐼𝐶 

performance (also using the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0). Faraz et al. (2015) used the 

bootstrap approach proposed by Gandy & Kvaløy (2013); while Goedhart et al. 

(2017a) and Faraz et al. (2018) used analytical derivations. To complement the 

overview, Table 2 organizes the literature review (related to the third question 

quoted by Jensen et al., 2006) by perspective adopted, namely, unconditional (for 

achieving a desired unconditional 𝐴𝑅𝐿0) or conditional (using the 𝐸𝑃𝐶 for the 
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𝐶𝐴𝑅𝐿0), and type of chart considered (one-sided or equal-tailed two-sided charts 

with probability limits). Note that all works proposing adjustments to the control 

limits under the unconditional perspective have considered only two-sided charts. 

On the other hand, works under the conditional perspective considered only one-

sided charts. However, as noted earlier, when this work was in progress and the 

adjusted control limit factors were already obtained, Guo & Wang (2017), which 

were not shown in Table 2, appeared providing the adjustments to control limits 

(Jensen’s third issue) of the two-sided 𝑆2 chart. Therefore, works, which are shown 

in Table 2, partially deal with the third main question (mentioned by Jensen et al., 

2006) that will be completed and examined with more detail in Subchapter 5.3. 

Motivated by this background that is summarized in Tables 1 and 2, the present 

work seeks to fill the indicated gaps. This entails that this work pursues to examine 

the three issues indicated by Jensen et al. (2006) for the two-sided 𝑆2 chart with 

estimated parameter, but according to the conditional perspective. Note that these 

three issues can be addressed on the basis of the tolerance limits for sample 

variances, that is, taking advantage of the close mathematical-statistical relationship 

between the tolerance intervals for sample variances and the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 (or, 

equivalently, the cdf of the 𝐶𝐹𝐴𝑅) of the 𝑆2 control chart. 

 

Table 2 - Overview of the literature on adjustments of probability control limit(s) of the one-sided 

and two-sided 𝑆2 and 𝑆 charts under the unconditional and conditional perspectives 

Unconditional Perspective  Conditional Perspective 

Limits Reference Chart/ Method  Limits Reference Chart/ Method 

Two-

sided 

Castagliola 

et al. (2009) 
𝑆2 / Numerical 

integration (exact) 

 

One-

sided 

Faraz et al. 

(2015) 

𝑆2 / Bootstrap 

simulation 

(approximation) 

Diko et al. 

(2017) 

S / Numerical 

integration (exact) and 

Taylor approximation  

 Goedhart et al. 

(2017a),  Faraz 

et al. (2018) 

𝑆 and 𝑆2 / 

Analytical 

derivation (exact) 

 

For the two-sided charts (under the unconditional and conditional 

perspectives), the presented literature review focuses on the equal-tailed design (see 

Table 2). However, other alternative chart designs have been proposed in the 

literature. For instance, for the 𝑆2 chart design, Zhang et al. (2005) proposed the 

“smallest area criterion” (SAC) and the “two points criterion” (TPC), and Guo & 

Wang (2015) presented the 𝐴𝑅𝐿-unbiased criterion (applied initially by Champ & 

Lowry, 1994; Pignatiello et al., 1995 for 𝑆 charts when 𝜎0 is known). Moreover, for 

the 𝑆2 chart and using EPC, a comparative study of the equal-tailed design and the 
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𝐴𝑅𝐿-unbiased design was made by Guo & Wang (2017). The chosen equal-tailed 

design is the most common one and presents shorter length of the interval than those 

of other mentioned types of designs (see, for instance, comparison studies by Zhang 

et al., 2005; Guo & Wang, 2017 under the unconditional and conditional 

perspectives, respectively). 

Additionally, several authors, including Chakraborti (2007), Mei (2008), 

Zhou et al. (2012), Graham et al. (2014), Woodall & Montgomery (2014) and Teoh 

et al. (2016), have recommended the analysis of the entire 𝑅𝐿 distribution and its 

quantiles (such as some extreme quantiles and the median), and not only the 𝐴𝑅𝐿, 

because this distribution is usually right-skewed. The first works about the quantiles 

of the 𝑅𝐿 distribution as performance measures of control charts are due to Barnard 

(1959) and Bissell (1969). Radson & Boyd (2005) provided a short review of the 

literature and proposed a modified boxplot, which is very useful for displaying the 

complete 𝑅𝐿 distribution and some of its main quantiles. Khoo (2004) and 

Chakraborti (2007) studied the 𝑅𝐿 distribution and its quantiles for the Shewhart �̅� 

chart when the process parameters are known and unknown (considering the 

unconditional 𝑅𝐿 quantiles), respectively. The latter author also proposed the 

adjustments of control limits based on a desired in-control median run-length 

(𝑀𝑅𝐿0). During recent years, in the same line, some authors have recommended 

this 𝑀𝑅𝐿0 criterion for different types of control charts, for instance, Lee & Khoo 

(2006), Khoo et al. (2011) and Teoh et al. (2014, 2016). These last mentioned 

studies have addressed only the unconditional 𝑅𝐿 distribution. Since, as far as we 

know, there has been no study in the literature to date focusing on the conditional 

run length quantiles (𝐶𝑅𝐿𝑞), these are derived and examined for the one- and two-

sided 𝑆2 charts in this work. 

 

2.2  
Definition of two-sided tolerance intervals for sample variances 

Sarmiento et al. (2018), which is one of the research articles that arises from 

the present work, provide a study of the construction of exact two-sided statistical 

tolerance intervals for the population of sample variances based on the assumption 

of normally distributed data. In this subchapter, a briefly definition of these 

tolerance intervals is presented.  
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Let 𝑆2 be the (test or future) variance of a random sample of size 𝑛, 

observations of which come from the normal distribution (with unknown mean 𝜇 

and unknown variance 𝜎2) of the random variable 𝑋 that represents a product (or a 

process) quality characteristic of interest. This 𝑆2 is obtained from a (test or future) 

sample {𝑋1
′ , 𝑋2

′ , … , 𝑋𝑛
′ } and is given by 𝑆2 =

1

𝑛−1
∑ (𝑋𝑗

′ − �̅�′)
2𝑛

𝑗=1 , where the (test 

or future) observations 𝑋𝑗
′ are iid (𝑋𝑗

′~𝑁(𝜇, 𝜎2), 𝑗 = 1, 2, … , 𝑛) and �̅�′ =
1

𝑛
∑ 𝑋𝑗

′𝑛
𝑗=1 .  

In the same way that other types of tolerance intervals (see, for instance, 

Krishnamoorthy & Mathew, 2009; Meeker et al., 2017), the construction of 

tolerance intervals for sample variances depends on the estimation of the unknown 

parameters of the underlying distribution, namely, on the estimation of 𝜎2. This 

makes sense since, in most practical applications, the parameters of the population 

of interest are unknown and must be estimated on the basis of a reference dataset 

collected from a process that must be in a state of statistical control (similarly to the 

context of SPC, in the so-called Phase I analysis).  

The (1 − 𝛽,  𝛾) two-sided tolerance interval for the population of (test or 

future) sample variance 𝑆2 (�̂�𝐿∗
2 , �̂�𝑈∗

2 ) is defined as the interval that contains at least 

a specified (1 − 𝛽)100% of the population with a specified probability 𝛾, and is 

given as follows  

𝑃�̂�2(𝑃𝑆2(�̂�𝐿∗
2 ≤ 𝑆2 ≤ �̂�𝑈∗

2  | �̂�2) ≥ 1 − 𝛽) = 𝛾, (1) 

where �̂�𝐿∗
2  and �̂�𝑈∗

2  are the lower and upper tolerance limits, respectively, 1 − 𝛽 is 

the nominal proportion or content (0 < 1 − 𝛽 < 1), 𝛾 is the confidence level (0 <

𝛾 < 1) of the tolerance interval, and 𝑃𝑆2(�̂�𝐿∗
2 ≤ 𝑆2 ≤ �̂�𝑈∗

2  | �̂�2) is the actual 

coverage. In practical applications, 1 − 𝛽 and 𝛾 are large, and usually greater than 

or equal to 0.90.  

The distribution of 𝑆2 is a multiple (
𝜎2

𝑛−1
) of the chi-square distribution with 

(𝑛 − 1) degrees of freedom (df). Since the 𝑆2 distribution is most often right-

skewed, we consider “equal-tailed” (lower and upper) probability tolerance limits 

rather than the traditional “𝑘-sigma” limits. In the unrealistic (theoretical) case 

where the parameter 𝜎2 is known, the lower and upper tolerance limits are constant 

values: 
𝜎2

𝑛−1
𝜒
𝑛−1,

𝛽

2

2  and 
𝜎2

𝑛−1
𝜒
𝑛−1,1−

𝛽

2

2 , respectively, so that the actual coverage attains 
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its specified minimum value (nominal proportion) of 1 − 𝛽. Note that the proposed 

“equal-tailed” lower and upper tolerance limits consider the (
𝛽

2
) and the (1 −

𝛽

2
) 

quantiles of a chi-square distribution with (𝑛 − 1) df. However, the concern focuses 

on the 𝜎2-unknown case, where 𝜎2 is estimated from the Phase I reference data, 

namely, from 𝑚 independent random samples of equal size 𝑛. Therefore, the 

tolerance interval is a random interval, and the lower and upper tolerance limits are 

random variables that are defined, respectively, by 

�̂�𝐿∗
2 =

�̂�2

𝑛−1
𝜒
𝑛−1,

𝛽∗

2

2  and �̂�𝑈∗
2 =

�̂�2

𝑛−1
𝜒
𝑛−1,1−

𝛽∗

2

2 , 

where the quantity 𝛽∗ is the “adjusted” value of 𝛽. This 𝛽∗ takes into account the 

error of the variance estimation and, hence, 𝛽∗ depends on 𝑚 and 𝑛 (the amount of 

Phase I reference data) in order to guarantee an interval that covers at least the 

nominal proportion 1 − 𝛽 of the population of sample variances with a specified 

confidence level 𝛾 (so, 𝛽∗ also depends on 𝛽 and 𝛾).  

The lack of knowledge of 𝜎2 is taken into consideration by the specified 𝛾 

associated with the tolerance interval. Note that the actual coverage of the 𝑆2 

distribution contained within the tolerance interval is a random variable because 

this coverage depends on the estimator �̂�2. We consider that 𝜎2 is estimated by the 

unbiased pooled sample variance (𝑆𝑝
2) as follows 

𝑆𝑝
2 =

1

𝑚
∑ 𝑆𝑖

2𝑚
𝑖=1 =

1

𝑚(𝑛−1)
∑ ∑ (𝑋𝑖𝑗 − �̅�𝑖)

2𝑛
𝑗=1

𝑚
𝑖=1 , (2) 

where 𝑆𝑖
2 is the 𝑖-th Phase I sample variance, �̅�𝑖 =

1

𝑛
∑ 𝑋𝑖𝑗
𝑛
𝑗=1  is the 𝑖-th sample 

mean (𝑖 = 1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛) and 𝑋𝑖𝑗 is the 𝑗-th observation of the 𝑖-th 

sample in Phase I (the observations 𝑋𝑖𝑗 are iid 𝑁(𝜇, 𝜎2)). Then, using �̂�2 = 𝑆𝑝
2, the 

two-sided (lower and upper) tolerance limits for sample variances (�̂�𝐿∗
2 , �̂�𝑈∗

2 ) are 

given by 

         �̂�𝐿∗
2 =

𝜒
𝑛−1,

𝛽∗

2

2

𝑛−1
𝑆𝑝
2 and �̂�𝑈∗

2 =

𝜒
𝑛−1,1−

𝛽∗

2

2

𝑛−1
𝑆𝑝
2.    

Note that the tolerance limits are expressed as multiples of the variance 

estimator 𝑆𝑝
2. These multiples are denoted by 𝐿∗ and 𝑈∗ and are called the lower and 

upper tolerance factors, respectively, of the (1 − 𝛽,  𝛾) two-sided tolerance interval 

for the sample variance:     
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 𝐿∗ =

𝜒
𝑛−1,

𝛽∗

2

2

𝑛−1
 and 𝑈∗ =

𝜒
𝑛−1,1−

𝛽∗

2

2

𝑛−1
.   (3) 

Next, the corresponding lower and upper tolerance limits (�̂�𝐿∗
2 , �̂�𝑈∗

2 ) can be 

computed as follows: 

 �̂�𝐿∗
2 = 𝐿∗𝑆𝑝

2 and �̂�𝑈∗
2 = 𝑈∗𝑆𝑝

2.   (4) 

Accordingly, the value of 𝛽∗ should be found to compute the tolerance 

factors so that the tolerance limits can be established.  

 

2.3  

The Control Limits of the 𝑺𝟐 Charts 

The control limits of one-sided and two-sided 𝑆2 charts are shown in this 

subchapter. As in the case of tolerance intervals for sample variances described 

above, recall that normality and independence of the underlying data are assumed, 

probability limits are used rather than “three-sigma” limits (as have been suggested 

and justified by Epprecht et al., 2015; Woodall, 2017; Diko et al., 2017) and, for 

the two-sided chart, the equal-tailed design is considered. When the process is 

operating with natural (or inherent) variability, the process is in a state of statistical 

control. This is called the in-control (IC) process, whose sample observations (𝑋𝑖𝑗) 

follow a normal distribution with in-control process mean 𝜇0 and variance 𝜎0
2, that 

is, 𝑋𝑖𝑗 are iid 𝑁(𝜇0, 𝜎0
2) when the process is IC. On the other hand, when the process 

operates with the presence of assignable causes of variation, the process is out-of-

control (OOC). In this situation, since the focus is the monitoring and control of the 

process variability, given a certain shift in the process variance at a given time, the 

process variance becomes 𝜎1
2 and the process mean is assumed to remain unchanged 

at the IC value 𝜇0, that is, 𝑋𝑖𝑗 are iid 𝑁(𝜇0, 𝜎1
2) when the process is OOC.  

In the ideal (but not typical) case that 𝜎0
2 is specified or known exactly (the 

so-called variance-known case), the upper control limit of the one-sided 𝑆2 control 

chart (𝑈𝐶𝐿𝑜𝑛𝑒) is given by    

𝑈𝐶𝐿𝑜𝑛𝑒 =
𝜒𝑛−1,1−𝛼 
2

(𝑛−1)
𝜎0
2 = 𝑈𝑜𝑛𝑒𝜎0

2, (5) 
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and the lower and upper control limits of the equal-tailed two-sided 𝑆2 control chart 

(𝐿𝐶𝐿𝑡𝑤𝑜 and 𝑈𝐶𝐿𝑡𝑤𝑜, respectively) are given by 

𝐿𝐶𝐿𝑡𝑤𝑜 =
𝜒
𝑛−1,

𝛼
2
 

2

(𝑛−1)
𝜎0
2 = 𝐿𝑡𝑤𝑜𝜎0

2 and 𝑈𝐶𝐿𝑡𝑤𝑜 =
𝜒
𝑛−1,1−

𝛼
2
 

2

(𝑛−1)
𝜎0
2 = 𝑈𝑡𝑤𝑜𝜎0

2. (6) 

In Equations (5) and (6), 𝑛 is the size of samples (subgroups) in prospective 

process monitoring and 𝛼 denotes the nominal false alarm rate or the preassigned 

probability of type I error of the 𝑆2 control chart (the traditional 𝛼 is 0.0027). The 

upper one-sided and two-sided limits are multiples of 𝜎0
2, which are the upper one-

sided control limit factor (𝑈𝑜𝑛𝑒) and the lower and upper two-sided control limit 

factors (𝐿𝑡𝑤𝑜, 𝑈𝑡𝑤𝑜), respectively. 𝐿𝐶𝐿𝑡𝑤𝑜 and  𝑈𝐶𝐿𝑡𝑤𝑜 are called equal-tailed 

limits because are multiples of the 
𝛼

2
 and 1 −

𝛼

2
 quantiles of a chi-square distribution 

with (𝑛 − 1) df (denote as 𝜒
𝑛−1,

𝛼

2
 

2  and 𝜒
𝑛−1,1−

𝛼

2
 

2 , respectively). In the remainder of 

this work, subscripts 𝑜𝑛𝑒 and 𝑡𝑤𝑜 will be used when necessary to indicate that we 

are considering the one-sided or the two-sided 𝑆2 control chart, when it is the case, 

and will be omitted when a symbol or equation applies to both.  

As highlighted earlier, in most real applications, the IC process parameters 

are unknown and need to be estimated from the Phase I reference data, which are 

collected when the process is IC and are made up of 𝑚 independent samples 

(subgroups) each of size 𝑛. Similarly to the defined tolerance interval, we consider 

that the Phase I estimator of 𝜎0
2 (�̂�0

2) is the efficient (unbiased) multi-sample 

estimator, the so-called pooled sample variance (𝑆𝑝
2) given by Equation (2). Recall 

that, differently from the parameters of the normal population in the context of 

tolerance interval, each 𝑗-th observation of the 𝑖-th sample (𝑋𝑖𝑗) in Phase I (𝑖 =

1,2, … ,𝑚 and 𝑗 = 1,2, … , 𝑛) is 𝑁(𝜇0, 𝜎0
2). Then, considering �̂�0

2 = 𝑆𝑝
2, the 

traditional (unadjusted) upper control limit of the one-sided 𝑆2 control chart with 

estimated 𝜎0
2 (𝑈𝐶�̂�𝑜𝑛𝑒) is given by 

𝑈𝐶�̂�𝑜𝑛𝑒 =
𝜒𝑛−1,1−𝛼 
2

(𝑛−1)
𝑆𝑝
2 = 𝑈𝑜𝑛𝑒𝑆𝑝

2, (7) 

and the traditional (unadjusted) lower and upper control limits of the equal-tailed 

two-sided 𝑆2 control chart with estimated 𝜎0
2 (𝐿𝐶�̂�𝑡𝑤𝑜 and 𝑈𝐶�̂�𝑡𝑤𝑜, respectively) 

are given by 
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𝐿𝐶�̂�𝑡𝑤𝑜 =
𝜒
𝑛−1,

𝛼
2

2

(𝑛−1)
𝑆𝑝
2 = 𝐿𝑡𝑤𝑜𝑆𝑝

2 and 𝑈𝐶�̂�𝑡𝑤𝑜 =
𝜒
𝑛−1,1−

𝛼
2
  

2

(𝑛−1)
𝑆𝑝
2 = 𝑈𝑡𝑤𝑜𝑆𝑝

2. (8) 

where 𝑛 is the size of Phase I samples as well as Phase II samples. Note that 𝑈𝑜𝑛𝑒 

and (𝐿𝑡𝑤𝑜, 𝑈𝑡𝑤𝑜), defined by 𝑛 and 𝛼, are the (unadjusted) control limit factors of 

charts with limits that are not adjusted or corrected. These control limits are random 

variables expressed as functions of the IC process variance estimator (𝑆𝑝
2).  

As explained before, adjustments to the control limits are needed to ensure 

a specified IC chart performance, according to a certain performance criterion, with 

a practical amount of Phase I reference data at hand. These adjustments seek to 

compensate for the effects of the variance estimation on IC performance of Phase 

II 𝑆2 chart, avoiding the deterioration of it. For that purpose, adjustments to control 

limits for one-sided and two-sided charts consist in substituting the unadjusted 

control limit factors, i.e., 𝑈𝑜𝑛𝑒 and (𝐿𝑡𝑤𝑜, 𝑈𝑡𝑤𝑜) obtained given a specified 𝛼, by 

the corresponding adjusted upper one-sided control limit factor (𝑈𝑜𝑛𝑒
∗ ) and the 

adjusted lower and upper two-sided control limit factors (𝐿𝑡𝑤𝑜
∗ , 𝑈𝑡𝑤𝑜

∗ ), respectively, 

so that a specified (either unconditional or conditional) IC performance can be 

achieved. These adjusted factors, which are required for setting the control limits 

of both charts, depend on the value of the adjusted false alarm rate (the adjusted 𝛼) 

that is denoted as 𝛼∗. Similarly to 𝛽∗ in the context of tolerance intervals for sample 

variances, the quantity 𝛼∗ recognize the effect of the 𝜎0
2 estimation. This means that 

𝛼∗varies depending on the number (𝑚) of Phase I samples (subgroups), the size (𝑛) 

of each subgroup, and the estimator (�̂�0
2) chosen to estimate 𝜎0

2 (�̂�0
2 = 𝑆𝑝

2 is used 

here). The found value of 𝛼∗ must result in a specified IC chart performance, which 

is in turn defined based on a specific criterion (unconditional or conditional 

perspectives). 𝑈𝑜𝑛𝑒
∗  is defined as a multiple 1 − 𝛼∗ quantile of a chi-square 

distribution with (𝑛 − 1) df, while 𝐿𝑡𝑤𝑜
∗  and 𝑈𝑡𝑤𝑜

∗  are defined as multiples of the 
𝛼∗

2
 

and 1 −
𝛼∗

2
 quantiles, respectively, so that the adjusted two-sided control limits are 

equal-tailed (probability) control limits, as were originally defined in the case of 

charts with unadjusted control limits.  

Next, the Phase II performance measures of the 𝑆2 chart with estimated 

parameter are examined in the following subchapter. These performance measures, 

which are based on the unconditional and conditional point of view, take into 
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account the effect of the process variance estimation in such a way that the design 

of Phase II 𝑆2 chart can be analyzed and implemented considering this effect.  

 

2.4  

Phase II performance of 𝑺𝟐 control chart based on the conditional and 
unconditional average run lengths 

The run length (𝑅𝐿) is a random variable defined as the number of samples 

or charting statistics until a signal (alarm). Control chart performance is typically 

measured in terms of the 𝑅𝐿 distribution and some of its attributes, such as the 

expected value (the mean), that is, the so-called average run length (𝐴𝑅𝐿). When 

the process is in control, the 𝐴𝑅𝐿 (in this case denoted by 𝐴𝑅𝐿0) is the expected 

number of samples until a false alarm.  

In the ideal (typically unrealistic) case that the IC process parameters were 

known exactly, in which no Phase I is needed, or if the Phase I estimates were 

“absolutely accurate”, the 𝑅𝐿 follows a geometric distribution with parameter equal 

to the specified probability of a signal so that any associated property of the 𝑅𝐿 

(such as the mean, the standard deviation and the quantiles) would be a constant 

value, which depends on the probability of a signal. In particular, the nominal false 

alarm rate (𝛼) is the distribution parameter of the run length when the process is in-

control (denoted 𝑅𝐿0) and the corresponding mean 𝐴𝑅𝐿0 equals 1 𝛼⁄ .  

In most real applications, the IC process parameters are unknown and they 

need to be estimated using a Phase I reference data so that the marginal (or 

unconditional) 𝑅𝐿 no longer follows a geometric distribution and the probability of 

a signal becomes a random variable. Under the conditional point of view, that is, 

taking account of the “practitioner-to-practitioner variability”, the conditional false 

alarm rate 𝐶𝐹𝐴𝑅 (i.e., conditional probability of a signal 𝐶𝑃𝑆 when the process is 

in-control) and, its reciprocal, the conditional in-control average run length 𝐶𝐴𝑅𝐿0 

are random variables expressed as functions of the estimators of the IC process 

parameters because the chart’s limits are set as functions of those estimators. Thus, 

for any Shewhart-type chart in a particular application, the conditional (given the 

parameters estimates) in-control run length (denoted as 𝐶𝑅𝐿0) is also geometrically 

distributed, so its distribution parameter is a certain realization (given the 
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parameters estimates) of the 𝐶𝐹𝐴𝑅 and its mean  the 𝐶𝐴𝑅𝐿0  is the reciprocal 

of the 𝐶𝐹𝐴𝑅.         

 First, the probability of a signal, which is an important measure of the Phase 

II performance of 𝑆2 control chart, is examined. The 𝐶𝑃𝑆 is the probability that 

each 𝑙-th charting statistic (Phase II sample variance of size 𝑛, denoted as 𝑆𝑙
2) falls 

outside the estimated (given the particular estimate �̂�0
2) control limits range during 

the Phase II monitoring (where 𝑙 = 𝑚 + 1,𝑚 + 2, …). Therefore, the conditional 

run length (𝐶𝑅𝐿) distribution (i.e., given �̂�0
2, the distribution of the number of 𝑆𝑙

2 

until a signal) is geometric with probability of success equal to 𝐶𝑃𝑆.  

To express the 𝐶𝑃𝑆 in mathematical terms, let’s define the process variance 

of the Phase II monitoring as 𝜎1
2. Thus, according to equations of the 𝑆2 control 

limits (Equations (7) and (8)) and considering the fact that 𝑆𝑙
2(𝑛 − 1) 𝜎1

2⁄  follows 

a chi-square distribution with 𝑛 − 1 df, the 𝐶𝑃𝑆′s of the one-sided and two-sided 

𝑆2 control charts, respectively, are given by Equations (9) and (10): 

𝐶𝑃𝑆𝑜𝑛𝑒(𝜌
2) = 𝑃(𝑆𝑙

2 > 𝑈𝐶�̂�𝑜𝑛𝑒) = 1 − 𝐹𝜒𝑛−12 (
𝑆𝑝
2

𝜎0
2

𝜒𝑛−1,1−𝛼
2

𝜌2
), (9) 

 

𝐶𝑃𝑆𝑡𝑤𝑜(𝜌
2) = 𝑃( 𝑆𝑙

2 < 𝐿𝐶�̂�𝑡𝑤𝑜  ∪  𝑆𝑙
2 > 𝑈𝐶�̂�𝑡𝑤𝑜) 

= 1 − (𝐹𝜒𝑛−12 (
𝑆𝑝
2

𝜎0
2

𝜒
𝑛−1,1−

𝛼
2

2

𝜌2
) − 𝐹𝜒𝑛−12 (

𝑆𝑝
2

𝜎0
2

𝜒
𝑛−1,

𝛼
2

2

𝜌2
)), 

(10) 

where 𝐹𝜒𝑛−12  denotes the cdf of a chi-square random variable with 𝑛 − 1 df, and 𝜌2 

represents a shift in the process variance, i.e., the ratio between the process 

variances in Phases II and I (or, equivalently, 𝜌 is a shift in the process standard 

deviation), and is defined by 

𝜌2 = 𝜎1
2 𝜎0

2⁄ . (11) 

When 𝜎1
2 = 𝜎0

2 (𝜌2 = 1), the process is IC, otherwise, the process is OOC. 

From Equations (9) and (10), let 𝑌 be defined as follows: 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎0

2⁄ . 

Note that  𝑌 follows a chi-square distribution with 𝑚(𝑛 − 1) df and the error of the 

process variance estimation is quantified by a particular realization of the multiple 

of the random variable 𝑌, namely, 𝑌 𝑚(𝑛 − 1)⁄ . Next, given a value of the variance 
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ratio 𝜌2, from Equations (9) and (10), the 𝐶𝑃𝑆′s are functions of the random 

variable 𝑌. Thus, the cdf’s of the geometric 𝐶𝑅𝐿′s of the one-sided and two-sided 

𝑆2 charts are given by Equations (12) and (13), respectively, as follows: 

𝐹𝐶𝑅𝐿𝑜𝑛𝑒(𝜌2)(𝑡) = 𝑃(𝐶𝑅𝐿𝑜𝑛𝑒(𝜌
2) ≤ 𝑡) = 𝑃(𝑅𝐿𝑜𝑛𝑒(𝜌

2) ≤ 𝑡 | 𝑌) 

= 1 − (1 − 𝐶𝑃𝑆𝑜𝑛𝑒(𝑌; 𝜌
2))

𝑡
= 1 − (𝐹𝜒𝑛−12 (

𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1,1−𝛼 
2 ))

𝑡

, 

(12) 

 

𝐹𝐶𝑅𝐿𝑡𝑤𝑜(𝜌2)(𝑡) = 𝑃(𝐶𝑅𝐿𝑡𝑤𝑜(𝜌
2) ≤ 𝑡) = 𝑃(𝑅𝐿𝑡𝑤𝑜 ≤ 𝑡 | 𝑌) 

= 1 − (1 − 𝐶𝑃𝑆𝑡𝑤𝑜(𝑌; 𝜌
2))

𝑡
 

= 1 − (𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛼

2

2 ) − 𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒
𝑛−1,

𝛼

2
 

2 ))

𝑡

, 

(13) 

where 𝑡 ≥ 1 is a real number. Because the 𝐶𝑅𝐿 of the 𝑆2 chart is geometrically 

distributed, the conditional average run length (𝐶𝐴𝑅𝐿(𝑌; 𝜌2)) is the reciprocal of 

𝐶𝑃𝑆(𝑌; 𝜌2); therefore, from Equations (14) and (15), the 𝐶𝐴𝑅𝐿’s are given by  

𝐶𝐴𝑅𝐿𝑜𝑛𝑒(𝑌; 𝜌
2) = [𝐶𝑃𝑆𝑜𝑛𝑒(𝑌; 𝜌

2)]−1 

= [1 − 𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒𝑛−1,1−𝛼
2 )]

−1

, 

(14) 

 

𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑌; 𝜌
2) = [𝐶𝑃𝑆𝑡𝑤𝑜(𝑌; 𝜌

2)]−1 

= [1 − (𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛼

2

2 ) − 𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒
𝑛−1,

𝛼

2
 

2 ))]

−1

. 

(15) 

Since the 𝐶𝑅𝐿, by definition, is a discrete (geometric) random variable, the 

𝑞-quantile of the conditional run length (𝐶𝑅𝐿𝑞), where 0 < 𝑞 < 1, is defined as the 

smallest positive integer 𝐶𝑅𝐿𝑞 so that the cdf of 𝐶𝑅𝐿 at 𝐶𝑅𝐿𝑞 is larger than or equal 

to 𝑞 (i.e., 𝐹𝐶𝑅𝐿(𝐶𝑅𝐿𝑞) ≥ 𝑞). The 𝐶𝑅𝐿𝑞 can be found, from Equations (12) and (13), 

as being the smallest integer that satisfies: 1 − (1 − 𝐶𝑃𝑆(𝑌; 𝜌2))
𝐶𝑅𝐿𝑞

≥ 𝑞. Thus, 

from Equations (16) and (17), the 𝐶𝑅𝐿𝑞’s are given by  
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𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑌; 𝜌
2) = ⌈𝑙𝑛 (1 − 𝑞) 𝑙𝑛 (𝐹𝜒𝑛−12 (

𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1,1−𝛼 
2 ))⁄ ⌉, (16) 

 

𝐶𝑅𝐿𝑞,𝑡𝑤𝑜(𝑌; 𝜌
2) 

= ⌈𝑙𝑛 (1 − 𝑞) 𝑙𝑛 (𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛼

2

2 ) − 𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒
𝑛−1,

𝛼

2
 

2 ))⁄ ⌉, 

(17) 

where ⌈𝑏⌉ denotes the smallest integer greater or equal to 𝑏 (ceiling function) and 

then 𝐶𝑅𝐿𝑞 = {1, 2, 3, … }. 

The 𝑟𝑡ℎ moment of the 𝐶𝐴𝑅𝐿(𝜌2) can be obtained as the 𝑟𝑡ℎ moment of a 

function of the chi-square random variable 𝑌 with 𝑚(𝑛 − 1) df (as shown in 

Equations (14) and (15)). So, the first and second moments of the 𝐶𝐴𝑅𝐿(𝑌; 𝜌2) 

distribution are given by  

𝐸𝑌(𝐶𝐴𝑅𝐿(𝑌; 𝜌
2)) = 𝐴𝑅𝐿(𝜌2) = ∫ 𝐶𝐴𝑅𝐿(𝑦; 𝜌2)

∞

0
𝑓𝑌(𝑦)𝑑𝑦 , (18) 

 

𝐸𝑌(𝐶𝐴𝑅𝐿(𝑌; 𝜌
2)2) = ∫ 𝐶𝐴𝑅𝐿(𝑦; 𝜌2)2

∞

0
𝑓𝑌(𝑦)𝑑𝑦, (19) 

where 𝑓𝑌(𝑦) denotes the probability density function (pdf) of 𝑌. From Equation 

(18), an interesting point to note is that the expected value of the 𝐶𝐴𝑅𝐿 (the 

expected value of the marginal (unconditional) 𝑅𝐿 distribution) equals the 

unconditional 𝐴𝑅𝐿. This arises from the Law of Total Expectation, that is, 

𝐸𝑌(𝐶𝐴𝑅𝐿(𝑌)) = 𝐸𝑌(𝐸(𝑅𝐿|𝑌)) = 𝐸(𝑅𝐿) = 𝐴𝑅𝐿. From Equations (18) and (19), 

the standard deviation (𝑆𝐷) can be found using the first and second moments of the 

𝐶𝐴𝑅𝐿(𝑌; 𝜌2), denoted as 𝑆𝐷𝐴𝑅𝐿(𝜌2), as follows 

𝑆𝐷(𝐶𝐴𝑅𝐿(𝑌; 𝜌2)) = 𝑆𝐷𝐴𝑅𝐿(𝜌2)

= √𝐸𝑌(𝐶𝐴𝑅𝐿(𝑌; 𝜌2)2) − (𝐸𝑌(𝐶𝐴𝑅𝐿(𝑌; 𝜌2)))
2

, 
(20) 

when the process is IC (𝜌2 = 1), the 𝐶𝑃𝑆 represents the conditional false alarm rate 

(denoted 𝐶𝐹𝐴𝑅), i.e., 𝐶𝐹𝐴𝑅(𝑌) = 𝐶𝑃𝑆(𝑌; 𝜌2 = 1), the 𝐶𝑅𝐿𝑞 represents the 

conditional in-control run length 𝑞-quantile (denoted 𝐶𝑅𝐿0,𝑞) and the 𝐶𝐴𝑅𝐿 

represents the conditional in-control average run length (denoted 𝐶𝐴𝑅𝐿0). 

Formally, 𝐶𝐴𝑅𝐿0(𝑌) = 𝐶𝐴𝑅𝐿(𝑌; 𝜌2 = 1) = (𝐶𝐹𝐴𝑅(𝑌))
−1

. Its expected value 
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𝐸𝑌(𝐶𝐴𝑅𝐿0(𝑌)) and standard deviation 𝑆𝐷𝐴𝑅𝐿0 = 𝑆𝐷(𝐶𝐴𝑅𝐿0(𝑌)) can be 

obtained substituting Equations (14) and (15) into Equations (18)-(20) with 𝜌 = 1. 

Note that the subscripts 𝑜𝑛𝑒 and 𝑡𝑤𝑜 do not appear in Equations (18)-(20), because 

this equation applies for both the one-sided and two-sided charts. We will keep this 

pattern throughout this work.   

Figure 1 shows the curves of 𝐶𝐴𝑅𝐿0 of one-sided and two-sided 𝑆2 charts 

(obtained from Equations 14 and 15, respectively) with traditional control limits 

that are not adjusted (𝛼 = 0.0027, i.e., nominal 𝐴𝑅𝐿0 = 370.4). These curves of 

𝐶𝐴𝑅𝐿0 are parameterized by different values of 𝑚 and 𝑛 = 5. The curves of 

𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 were already examined by Epprecht et al. (2015). However, as far as we 

know, this is the first time that the curves of 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 are examined, published 

and compared with the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒. The 𝐶𝐴𝑅𝐿0′s are shown as functions of a 

uniform random variable (𝑈), which is the order quantile of 𝑌 distribution. This 

relation is established through the probability integral transformation, namely, 𝑌 =

𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑈), where 𝐹

𝜒𝑚(𝑛−1)
2
−1  denotes the inverse of the cdf (or the quantile function) 

of the chi-squared distribution with 𝑚(𝑛 − 1) df. Since 𝑈 only takes values 

between 0 and 1, realizations of 𝐶𝐴𝑅𝐿0 can be visualized clearly: 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒(𝑈) 

and 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜(𝑈) in the left and right panels, respectively. Two additional 

horizontal lines are added. These correspond to values of 𝐶𝐴𝑅𝐿0 equal to the 

nominal 𝐴𝑅𝐿0 = 370.4 and the maximum value of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜, denoted 

𝑚𝑎𝑥(𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜), which depends only on the values of 𝑛 and 𝛼, regardless of the 

value of 𝑚. This last property is shown later in the cdf of the 𝐶𝐴𝑅𝐿𝑡𝑤𝑜. In this 

analyzed case (𝑛 = 5 and 𝛼 = 0.0027), the 𝑚𝑎𝑥(𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) equals 459.1. The 

fact that 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 cannot be larger than 𝑚𝑎𝑥(𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) is a particular and 

remarkable property of the two-sided chart.   

 The plots of Figure 1 describe some interesting characteristics of the 

𝐶𝐴𝑅𝐿0. 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 is a monotonic increasing function of 𝑈 so the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 

quantiles can be directly obtained from it, while the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 is non-monotonic. 

The same difference holds between 𝐶𝐹𝐴𝑅𝑜𝑛𝑒 and 𝐶𝐹𝐴𝑅𝑡𝑤𝑜 since 𝐶𝐹𝐴𝑅 =

1/𝐶𝐴𝑅𝐿0. The shape of the curves of 𝐶𝐴𝑅𝐿0′s can be verified mathematically by 

their first and second derivatives, similarly to the proof given in Appendix A in the 

context of tolerance intervals, which is required in the next chapter. 
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Figure 1 - 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 of 𝑆2 charts with unadjusted limits (𝛼 = 0.0027) as functions 

of 𝑈 for different values of 𝑚 and 𝑛 = 5. Nominal 𝐴𝑅𝐿0 = 370.4 and maximum value of 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 

(𝑚𝑎𝑥 (𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) = 459.1) 

 

The effect of the amount of Phase I samples (𝑚) on the Phase II IC 

performance of the one- and two-sided 𝑆2 control charts are shown in the plots of 

Figure 1: the curves of 𝐶𝐴𝑅𝐿0 are closer to the horizontal line of nominal 𝐴𝑅𝐿0 =

370.4 as 𝑚 increases (for example, note the difference between the curves for 𝑚 =

 10 and for 𝑚 = 500). In other words, the discrepancy between the nominal 

𝐴𝑅𝐿0 = 370.4 and the actual 𝐶𝐴𝑅𝐿0 is considerably more likely to be larger when 

𝑚 is small. It is also interesting to note the opposite effects on the two sides of the 

0.5-quantile of 𝑌 (𝑢 = 0.5), especially for small values of 𝑚. When 𝜎0
2 is 

underestimated (left tails of the 𝐶𝐴𝑅𝐿0’s plots, e.g., 𝑢 < 0.4), the actual 𝐶𝐴𝑅𝐿0 

may be smaller than the nominal 𝐴𝑅𝐿0. On the other hand, when 𝜎0
2 is 

overestimated (right tails of the 𝐶𝐴𝑅𝐿0’s plots, e.g., 𝑢 > 0.6), the actual 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 

may be quite larger than the nominal 𝐴𝑅𝐿0, differently from the actual 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 

that may be either somewhat larger or smaller than the nominal 𝐴𝑅𝐿0, as can be 

seen in the plots of Figure 1. This finding is related to the answer to the first major 

question indicated by Jensen et al. (2006).  
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3 
Derivation of the two-sided tolerance limits for sample 
variances 

In this chapter, the derivation and formulas of the proposed exact and the 

proposed approximate two-sided tolerance factors for constructing two-sided 

tolerance intervals for sample variances are presented. Two approximate methods 

of tolerance factors are presented. The first method is called the CE method and is 

based on the Wilson–Hilferty (WH) transformation (see Wilson and Hilferty, 1931) 

and the use of conditional expectation. The second one is called the KMM method 

and is adapted from the approximate two-sided tolerance interval for a gamma 

distribution (see Krishnamoorthy et al., 2008). The performances of the two 

proposed approximate tolerance intervals are examined by means of the assessment 

of the accuracy of the corresponding approximate tolerance factors and an 

illustration of a dataset from a real application. For more details on the exact method 

and the second approximate method, see Sarmiento et al. (2018) and Yao et al. 

(2019), respectively, which are two resulting articles of the present thesis.      

 

3.1  
Derivation of the exact two-sided tolerance limits for sample variances 

In this part, we show how to obtain the equations to find the exact value of 

𝛽∗, which is required to compute the exact tolerance factors from Equation (3). 

Once the exact factors are obtained, the corresponding exact tolerance limits can be 

computed from Equation (4) and, therefore, the exact tolerance interval can be 

established. In order to gain a better understanding of our obtained formulation, 

some mathematical details of our derivations are provided in Appendix A. 

Tolerance factors, for several cases (settings) extensively used in practice, are 

tabulated and presented in Appendix B (Tables B.1-B.3) so that the two-sided 

tolerance intervals for sample variances can be constructed in practice.       

First, substituting Equations (2)-(4) into Equation (1), the actual coverage 

𝑃𝑆2(�̂�𝐿
2 ≤ 𝑆2 ≤ �̂�𝑈

2  | 𝑆𝑝
2) is denoted as the function 𝐺 that can be expressed in terms 
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of the chi-squared random variable 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎2⁄  with 𝑚(𝑛 − 1) df. So, 

the actual coverage 𝐺(𝑌) is defined by  

𝐺(𝑌; 𝛽∗, 𝑚, 𝑛) = 𝑃𝑊 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,

𝛽∗

2

2 ≤ 𝑊 ≤
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛽∗

2

2 | 𝑌), (21) 

where 𝑊 = (𝑛 − 1)𝑆2 𝜎2⁄  follows also a chi-square distribution with (𝑛 − 1) df. 

𝑌 and 𝑊 are independent random variables since the (test or future) sample and the 

Phase I reference samples are independent. Thus, the (1 − 𝛽, 𝛾) two-sided tolerance 

interval for sample variances, given by Equation (1), can also be defined as follows 

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) 

= 𝑃𝑌 (𝑃𝑊 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,

𝛽∗

2

2 ≤ 𝑊 ≤
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛽∗

2

2 | 𝑌) ≥ 1 − 𝛽) = 𝛾. 
(22) 

Analyzing Equation (22), note that, when 𝑌 equals its expected value 𝑚(𝑛 −

1) or, equivalently, when there is no error in the variance estimation (that is, �̂�2 =

𝑆𝑝
2 = 𝜎2), the actual coverage 𝐺(𝑌) equals 1 − 𝛽∗. Moreover, given a specified 

confidence level that is usually high (say, 𝛾 = 0.95), we can point out that 1 − 𝛽∗ >

1 − 𝛽 because, first, the tolerance interval must cover at least the specified 

proportion 1 − 𝛽 and, second, because of the effect of variance estimation 

(measured through the random variable 𝑌 or, equivalently, through the ratio 

𝑆𝑝
2 𝜎2⁄ ). As the amount of reference data (𝑚𝑛) to estimate 𝜎2 increases, the value 

of 1 − 𝛽∗ decreases and converges to 1 − 𝛽, otherwise a large discrepancy between 

them is found. These indicated relations can be verified in Tables B.1-B.3 

(Appendix B).  

Since the real coverage 𝐺(𝑌) is a concave function, increasing over (0, 𝑦0) 

and decreasing over (𝑦0,∞) with a maximum at 𝑦0 (see Note 1 in Appendix A), the 

coverage probability 𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽), from Equation (22), can be 

rewritten as (see Note 2 in Appendix A):   

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) = 𝐹𝜒𝑚(𝑛−1)

2 (𝑦2 ) − 𝐹𝜒𝑚(𝑛−1)
2 (𝑦1), (23) 

where 𝐹𝜒𝜏2 denotes the cdf of a chi-square distribution with 𝜏 df, and 𝑦1 and 𝑦2 

(𝑦1 < 𝑦2) are the solutions of 𝐺(𝑌; 𝛽∗, 𝑚, 𝑛) = 1 − 𝛽 (see Equation 21). Hence, 

given the values of 𝑚, 𝑛, 1 − 𝛽 and 𝛾, the required 𝛽∗ is found by solving a system 

of three nonlinear equations for 𝛽∗, 𝑦1 and 𝑦2: 
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{
 
 

 
 𝐹𝜒𝑛−12 (

𝑦1
𝑚(𝑛 − 1)

𝜒
𝑛−1,1−

𝛽∗

2

2 ) − 𝐹𝜒𝑛−12 (
𝑦1

𝑚(𝑛 − 1)
𝜒
𝑛−1,

𝛽∗

2

2 ) = 1 − 𝛽

𝐹𝜒𝑛−12 (
𝑦2

𝑚(𝑛 − 1)
𝜒
𝑛−1,1−

𝛽∗

2

2 ) − 𝐹𝜒𝑛−12 (
𝑦2

𝑚(𝑛 − 1)
𝜒
𝑛−1,

𝛽∗

2

2 ) = 1 − 𝛽

𝐹𝜒𝑚(𝑛−1)
2 (𝑦2 ) − 𝐹𝜒𝑚(𝑛−1)

2 (𝑦1) = 𝛾,

 (24) 

using a numerical (search) method, where 0 < 𝑦1 < 𝑦0 < 𝑦2 < ∞, 1 − 𝛽 <

𝑀𝑎𝑥 (𝐺(𝑌)), 𝑦0 = 𝑚(𝑛 − 1) ln (𝑈
∗ 𝐿∗⁄ ) (𝑈∗ − 𝐿∗)⁄  and  

𝑀𝑎𝑥(𝐺(𝑌)) = 𝐺(𝑦0) = 𝐹𝜒𝑛−12 (
ln (𝑈∗ 𝐿∗⁄ )

(𝑈∗−𝐿∗)
𝜒
𝑛−1,1−

𝛽∗

2

2 ) − 𝐹𝜒𝑛−12 (
ln(𝑈∗ 𝐿∗⁄ )

(𝑈∗−𝐿∗)
𝜒
𝑛−1,

𝛽∗

2

2 ). 

Recall that 𝐿∗ and 𝑈∗ are the exact two-sided lower and upper tolerance factors, 

respectively, defined in Equation (3). From Equation (24), as noted earlier, the 

value of 𝛽∗ depends on the amount of data that is used to estimate 𝜎2 (𝑚 and 𝑛), 

the specified proportion (1 −  𝛽) and the specified confidence level (𝛾).   

Tables B.1-B.3 (provided in Appendix B) show the exact (1 − 𝛽, 𝛾) lower 

and upper tolerance factors for different combinations of the specified proportion 

1 − 𝛽 = {0.90, 0.95, 0.99} (for Tables B.1, B.2 and B.3, respectively) and the 

specified confidence level 𝛾 = {0.90, 0.95, 0.99}, considering different amounts of 

reference data 𝑚 = {5, 10, 15, 20, 25, 30, 50, 75, 100, 200, 250,∞} and 𝑛 =

{2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25}, which are used to estimate the process variance 

𝜎2 using �̂�2 = 𝑆𝑝
2.  In addition, the values of 1 − 𝛽∗ related to each setting are also 

provided so that these values can be compared with the nominal value 1 − 𝛽. Note 

that these tables of factors (Appendix B) are an extension of the ones provided by 

Sarmiento et al. (2018), that is, Tables B.1-B.3 present a larger amount of settings 

(cases) than tables provided in the cited paper.       

For instance, let suppose that the construction of the exact (1 − 𝛽 = 0.90, 

𝛾 = 0.95) two-sided tolerance interval for sample variances, which arise from 5 

observations (𝑛 = 5), is required. Suppose also that 30 samples (𝑚 = 30) each of 

size 5 to estimate 𝜎2 is available. From Table B.1, we find 1 − 𝛽∗ = 0.9348 and 

thus the required exact (lower and upper) tolerance factors are 𝐿∗ = 0.1401 and 

𝑈∗ = 2.6282, respectively. Accordingly, the exact lower and upper tolerance 

limits, given by �̂�𝐿∗
2 = 0.1401 ∗ 𝑆𝑝

2 and �̂�𝑈∗
2 = 2.6282 ∗ 𝑆𝑝

2, respectively, make up 

the required two-sided tolerance interval.  
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Note that, from Tables B.1- B.3, given a reference dataset used to estimate 

𝜎2 (𝑚 and 𝑛) and a specified proportion (1 − 𝛽), when the values of the specified 

confidence level (𝛾) is larger, the width of the tolerance interval (�̂�𝑈∗
2 − �̂�𝐿∗

2 ) 

increases. For example, for 𝑚 = 10 and 𝑛 = 5, the exact (1 − 𝛽 = 0.90, 𝛾 = 0.90) 

two-sided (lower and upper) tolerance factors are 0.1193 and 2.8018, respectively. 

On the other hand, for the same (𝑚, 𝑛) and 1 − 𝛽, the exact (1 − 𝛽 = 0.90, 𝛾 =

0.99) two-sided tolerance factors are 0.0610 and 3.5349 such that the resulting 

width is approximately 30% larger than the one of the (1 − 𝛽 = 0.90, 𝛾 = 0.90) 

tolerance interval.  

It can also be seen from Tables B.1-B.3 that, given the values of 𝑛, 1 − 𝛽 

and 𝛾, the values of 1 − 𝛽∗ decrease and converge to 1 − 𝛽 as the number of 

subgroups (𝑚) increases. Accordingly, the exact lower and upper tolerance factors 

(increases and decreases, respectively) converge to the ones for the variance known 

case ( lim
𝑚→∞

𝐿∗ =
𝜒
𝑛−1,

𝛽
2

2

𝑛−1
 and lim

𝑚→∞
𝑈∗ =

𝜒
𝑛−1,1−

𝛽
2

2

𝑛−1
), which are provided in the last row 

of Tables B.1-B.3 (𝑚 → ∞), so that the width of the exact t olerance interval 

becomes narrower and converges to the one for the variance known case. For 

example, the width of a two-sided (1 − 𝛽 = 0.95, 𝛾 = 0.90) tolerance interval with 

𝑛 = 5 and 𝑚 = 5 is 3.7978 ∗ 𝑆𝑝
2, however, when 𝑚 increases to 250, this width 

decreases to 2.7305 ∗ 𝑆𝑝
2 which is 28.1% smaller.  

Sarmiento et al. (2018) also made a comparison between the proposed two-

sided tolerance limits and the one-sided upper tolerance limits for sample variances, 

which was studied in Tietjen & Johnson (1979). For the same setting (same values 

of 𝑚 ≥ 5, 𝑛 ≥ 5, 1 − 𝛽 ≥ 0.90 and 𝛾 ≥ 0.90), Sarmiento et al. (2018) revealed 

that the width of the two-sided tolerance interval is narrower than the one of the 

corresponding one-sided upper tolerance interval.  

The construction of these proposed exact two-sided tolerance intervals is 

not straightforward and can be a complicated task for beginner users because of the 

challenging computation of the tolerance factors, which cannot be provided in 

closed-form formulas, and the fact that the available tables of tolerance factors may 

not include a required setting (case). With that in mind, from a practical point of 

view, we propose two approximation methods for computing tolerance limits for 
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sample variances more easily in practice, and then the approximate factors are 

compared with the exact ones in the next subchapter.  

 

3.2  
Derivation of the approximate two-sided tolerance limits for sample 
variances  

3.2.1  
Derivation of the approximate two-sided tolerance limits for sample 
variances based on the CE method 

Since the value of 𝛽∗ cannot be found directly by solving Equation (22), an 

approximation of the coverage probability, that is 𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽), 

could help to find the value of 𝛽∗ in an easier way. To this end, this approximation 

should be a reduced and tractable expression. Note that, in this situation, the found 

value of 𝛽∗ would be an approximate value. Therefore, we try to find the 

approximation of the coverage probability.  

First, on the basis of the Wilson–Hilferty (WH) transformation (see Wilson 

& Hilferty, 1931), from Equation (22), the chi-square random variable 𝑊 with 

(𝑛 − 1) df is transformed into 𝑊𝑇 = √
𝑊

𝑛−1

3
 that follows a normal distribution with 

mean 1 −
2

9(𝑛−1)
 and variance 

2

9(𝑛−1)
. Let 𝑑 =

2

9(𝑛−1)
 so that 𝑊𝑇~𝑁(1 − 𝑑, 𝑑). 

Next, the approximate coverage probability can be obtained by means of some 

analytical derivations (for more details, see Appendix C) such that  

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) ≅ 1 − 𝐹𝜒𝑚(𝑛−1)

2 (𝑅(𝑌; 𝛽∗, 𝑚, 𝑛, 1 − 𝛽)), (25) 

where 𝑅 is a function of the chi-square random variable 𝑌 with 𝑚(𝑛 − 1) df (see 

this 𝑅 function in Appendix C). Thus, from Equations (22) and (25), we have: 

1 − 𝐹𝜒𝑚(𝑛−1)
2 (𝑅(𝑌; 𝛽∗, 𝑚, 𝑛, 1 − 𝛽)) ≅ 𝛾.  

The left side of the latter equation can be obtained by conditioning it on 𝑌 

using the conditional expectation. For that reason, this first proposed approximation 

method is called the Conditional Expectation (CE) method. Then, we get  

𝐸𝑌 (1 − 𝐹𝜒𝑚(𝑛−1)
2 (𝑅(𝑌; 𝛽∗, 𝑚, 𝑛, 1 − 𝛽))| 𝑌 = 𝑦) = 
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1 − ∫ 𝐹𝜒𝑚(𝑛−1)
2 (𝑅(𝑦; 𝛽∗, 𝑚, 𝑛, 1 − 𝛽))𝑓𝑌(𝑦)𝑑𝑦

∞

0
≅ 𝛾. 

Finally, based on the probability integral transformation (namely, 𝑈 =

𝐹𝜒𝑚(𝑛−1)
2 (𝑌), where 𝑈 is uniformly distributed between 𝑢 = 0 and 𝑢 = 1), the 

approximate value of 𝛽∗ (denoted 𝛽𝐶𝐸
∗ ) can be found from the following equation 

1 − ∫ 𝐹𝜒𝑚(𝑛−1)
2 (𝑅(𝑢; 𝛽𝐶𝐸

∗ ,𝑚, 𝑛, 1 − 𝛽))𝑓𝑈(𝑢)𝑑𝑢
1

0
= 𝛾, 

thus, given the values of 𝑚, 𝑛, 1 − 𝛽 and 𝛾, 𝛽𝐶𝐸
∗  can be found from Equation (26) 

by a numerical (search) method 

1 − ∫ 𝐹𝜒𝑚(𝑛−1)
2

(

 
 
 16(√2𝑚

2(𝑛−1))(√𝜒1,1−𝛽
2 ((

𝐴(𝑢)+𝐵(𝑢)

2
)
2
))

3

27(
√
𝜒
𝑛−1,1−

𝛽𝐶𝐸
∗

2

23 −
√
𝜒
𝑛−1,

𝛽𝐶𝐸
∗

2

23 )

3

)

 
 
 
𝑑𝑢

1

0
= 𝛾, (26) 

where 𝜒1,1−𝛽
2 ((

𝐴(𝑢)+𝐵(𝑢)

2
)
2

) denotes the (1 − 𝛽)-quantile of a non-central chi-

square distribution with 1 df and non-centrality parameter (
𝐴(𝑢)+𝐵(𝑢)

2
)
2

. 𝐴 and 𝐵, 

which are functions of a realization of the uniform random variable 𝑈, are given by    

 

Recall that 𝑑 =
2

9(𝑛−1)
 and 𝜒𝜏,𝜐

2  denotes the 𝜐-quantile of a central chi-square 

distribution with 𝜏 df. The found value of 𝛽𝐶𝐸
∗  is used to compute the approximate 

lower and upper tolerance factors (𝐿𝐶𝐸 and 𝑈𝐶𝐸, respectively) and limits (�̂�𝐿𝐶𝐸
2  and 

�̂�𝑈𝐶𝐸
2 , respectively) based on the CE method from Equations (27) and (28), and 

hence the approximate (1 − 𝛽, 𝛾) equal-tailed two-sided tolerance interval for the 

sample variance based on the CE method can be constructed.  

𝐿𝐶𝐸 =

𝜒
𝑛−1,

𝛽𝐶𝐸
∗

2

2

𝑛−1
 and 𝑈𝐶𝐸 =

𝜒
𝑛−1,1−

𝛽𝐶𝐸
∗

2

2

𝑛−1
, 

(27) 

 

�̂�𝐿𝐶𝐸
2 = 𝐿𝐶𝐸𝑆𝑝

2 and �̂�𝑈𝐶𝐸
2 = 𝑈𝐶𝐸𝑆𝑝

2. (28) 

𝐴(𝑢) =

√
𝜒𝑚(𝑛−1),𝑢
2

𝑚(𝑛−1)2
𝜒
𝑛−1,1−

𝛽𝐶𝐸
∗

2

2
3

−(1−𝑑)

√𝑑
, 𝐵(𝑢) =

√
𝜒𝑚(𝑛−1),𝑢
2

𝑚(𝑛−1)2
𝜒
𝑛−1,

𝛽𝐶𝐸
∗

2

2
3

−(1−𝑑)

√𝑑
. 
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3.2.2  
Derivation of the approximate two-sided tolerance limits for sample 
variances based on the KMM method 

The determination of the exact tolerance interval is complex because 

solutions of a system of three nonlinear equations are required. Although the CE 

method is less complicated than the exact one because requires the solution of a 

unique nonlinear equation, from a practical point of view, it is useful to find another 

fairly simpler approximation with a closed-form formula. To this end, in this second 

approximation method, we adapt the Normal-Based Method proposed by 

Krishnamoorthy, Mathew and Mukherjee (see, for more details, Krishnamoorthy et 

al., 2008) and we called it the KMM method. The Normal-Based Method, which 

considers the WH transformation, is used in the construction of approximate (one- 

and two-sided) tolerance intervals for a gamma distribution and can be applied in 

this work because the population of sample variances (𝑆2) is distributed as a 

multiple (
𝜎2

𝑛−1
) of the chi-square distribution with (𝑛 − 1) df which, in turn, is 

equivalent to a gamma distribution with a shape parameter (
𝑛−1

2
) and scale 

parameter (
2𝜎2

𝑛−1
), that is,   

𝑆2~(
𝜎2

𝑛−1
) 𝜒𝑛−1

2 ~𝐺𝑎𝑚𝑚𝑎 (
𝑛−1

2
,
2𝜎2

𝑛−1
). 

The approximate tolerance limits are obtained in three steps. In the first step, 

we apply the WH transformation on each of the 𝑚 Phase I sample variances 

{𝑆1
2, 𝑆2

2, … . , 𝑆𝑚
2 }. Since the transformed variables are approximately normally 

distributed, in the second step, we use the tolerance intervals for the normal 

distribution as described in Krishnamoorthy et al. (2008) for the transformed data. 

Finally, in the third step, the tolerance limits for the original data are obtained by 

back transforming, that is, by cubing the tolerance limits found in step two (see, for 

more details on these three steps, Appendix D).  

Thus, denoting 𝑇𝑖 = (𝑆𝑖
2)

1

3 and letting �̅� and 𝑆𝑇 denote, respectively, the 

mean and the standard deviation of (𝑇1, 𝑇2, … . , 𝑇𝑚), the approximate (1 − 𝛽,  𝛾) 

lower and upper tolerance limits for 𝑆2 based on the KMM method (�̂�𝐿𝐾𝑀𝑀
2 , �̂�𝑈𝐾𝑀𝑀

2 ) 

are simply given by 
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�̂�𝐿𝐾𝑀𝑀
2 = [�̅� − 𝑘 𝑆𝑇]

3 and �̂�𝑈𝐾𝑀𝑀
2 = [�̅� + 𝑘 𝑆𝑇]

3, (29) 

where 𝑘 is the well-known tolerance factor for the two-sided tolerance interval for 

a normal distribution that depends on 𝑚, 1 − 𝛽 and 𝛾 (see, for instance, exact values 

of 𝑘 from Table B2 in Krishnamoorthy & Mathew, 2009, p. 365). Note that these 

factors can also be obtained from the R package ‘tolerance’ provided by Young 

(2010, 2014b). Furthermore, an approximation of 𝑘 can be found in the literature, 

namely, 𝑘 ≅ (
(𝑚−1)𝜒1,1−𝛽

2 (1 𝑚⁄ )

𝜒𝑚−1,1−𝛾
2 )

1

2

 (see, for instance, Krishnamoorthy & Mathew, 

2009). More details of the proof of the resulting Equation (29) are outlined in 

Appendix D.  

Note that the tolerance limits based on the KMM method (Equation 29) are 

obtained directly from the Phase I data and there are not tolerance factors in our 

formulation. However, for purposes of comparison with the exact tolerance factors, 

we can define the approximate tolerance limits as �̂�𝐿𝐾𝑀𝑀
2 = 𝐿𝐾𝑀𝑀𝑆𝑝

2 =
𝜒
𝑛−1,𝛽𝐿

∗
2

𝑛−1
𝑆𝑝
2 

and �̂�𝑈𝐾𝑀𝑀
2 = 𝑈𝐾𝑀𝑀𝑆𝑝

2 =
𝜒
𝑛−1,1−𝛽𝑈

∗
2

𝑛−1
𝑆𝑝
2 so that we can find (e.g., via simulation) the 

corresponding approximate (lower and upper) tolerance factors and 𝛽∗ based on the 

KMM method (𝐿𝐾𝑀𝑀, 𝑈𝐾𝑀𝑀 and 𝛽𝐾𝑀𝑀
∗ , respectively) as  

𝐿𝐾𝑀𝑀 =
�̂�𝐿𝐾𝑀𝑀
2

𝑆𝑝
2 =

𝜒
𝑛−1,𝛽𝐿

∗
2

𝑛−1
=

[�̅�−𝑘 𝑆𝑉]
3

�̅�
, 

𝑈𝐾𝑀𝑀 =
�̂�𝑈𝐾𝑀𝑀
2

𝑆𝑝
2 =

𝜒
𝑛−1,1−𝛽𝑈

∗
2

𝑛−1
=

[�̅�+𝑘 𝑆𝑉]
3

�̅�
 and 𝛽𝐾𝑀𝑀

∗ = 𝛽𝐿
∗ + 𝛽𝑈

∗ , 

(30) 

where each 𝐻𝑖 (𝐻𝑖 = (𝑛 − 1)𝑆𝑖
2 𝜎2⁄ , 𝑖 = 1,2, …𝑚) follows a chi-square 

distribution with (𝑛 − 1) df, �̅� is the mean of (𝐻1, 𝐻2, … . , 𝐻𝑚), 𝑉𝑖 = (𝐻𝑖)
1

3 with 

mean �̅� and standard deviation 𝑆𝑉, respectively.  

Yao et al. (2019) examine the second KMM method and complement this 

present thesis by providing a simulation study of the accuracy (assessment through 

the width of the tolerance interval) and the robustness (over different values of 

parameters and types of distributions of sample variances) of the approximate two-

sided tolerance limits based on the KMM method, which are compared with the 

ones of the exact tolerance limits.     
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3.3  
Accuracy of the approximate tolerance intervals for sample variances 
based on CE and KMM methods  

3.3.1  
Comparison of the exact (EX) and approximate (based on CE and KMM 
methods) tolerance factors for sample variances 

For 𝑛 = 5, different number of samples to estimate 𝜎2 using 𝑆𝑝
2 (𝑚 =

10, 25, 50, 100, 250) and 1 − 𝛽, 𝛾 = {0.90, 0.95, 0.99}, Table 3 gives the 

approximate values of 1 − 𝛽∗ and the corresponding approximate (1 − 𝛽, 𝛾) lower 

and upper tolerance factors based on the CE method (1 − 𝛽𝐶𝐸
∗ , 𝐿𝐶𝐸 and 𝑈𝐶𝐸 from 

Equations (26) and (27)) and the KMM method (1 − 𝛽𝐾𝑀𝑀
∗ , 𝐿𝐾𝑀𝑀 and 𝑈𝐾𝑀𝑀 

obtained by simulation from Equation (30), specifically, by generation of 100,000 

random samples of size 𝑚 (𝐻1, 𝐻2, …, 𝐻𝑚)). These approximate values are 

compared to the exact (EX) ones (1 − 𝛽∗, 𝐿∗ and 𝑈∗, respectively). We can note 

that the approximations of the tolerance factors based on the CE method are quite 

satisfactory most of the time and outperform the KMM approximation, which is 

often acceptable or moderately satisfactory in settings examined in Table 3. For 

instance, in the case of the CE method, the absolute differences between 𝐿𝐶𝐸 and 𝐿∗ 

vary between 0.0003 and 0.0199 for all considered settings. For the upper 

tolerance factors (𝑈𝐶𝐸 and 𝑈∗), these absolute differences are smaller than 0.1 for 

the settings (1 − 𝛽 ≤ 0.95, 𝛾 ≤ 0.99), except for the case of the settings (1 − 𝛽 ≤

0.95, 𝛾 = 0.99) with 𝑚 ≤ 25, where absolute differences achieve values of up to 

0.3186. In the case of the KMM method, for the settings (1 − 𝛽 ≤ 0.95, 𝛾 ≤ 0.95) 

with 𝑚 ≥ 25, the absolute differences between the lower tolerance factors (𝐿𝐾𝑀𝑀 

and 𝐿∗) and between the upper tolerance factors (𝑈𝐾𝑀𝑀 and 𝑈∗) are smaller than 

0.05 and 0.64, respectively.  

The accuracies of the proposed methods are also measured in terms of the 

relative percentage difference (𝑃𝐷) between the approximate (lower and upper) 

tolerance factors based on each method and the EX (lower and upper) tolerance 

factors, which are provided in Table 3, denoted as (𝑃𝐷(𝐿𝐶𝐸), 𝑃𝐷(𝑈𝐶𝐸)) and 

(𝑃𝐷(𝐿𝐾𝑀𝑀), 𝑃𝐷(𝑈𝐾𝑀𝑀)), respectively. These values of 𝑃𝐷 are presented in Table 

4. In general, the 𝑃𝐷 of an approximate value related to tolerance interval for 

sample variances is computed as follows:  
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𝑃𝐷(𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒) = 100%
(𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 − 𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒)

𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒
. (31) 

For instance, the 𝑃𝐷 of 𝑈𝐶𝐸 is given by 𝑃𝐷(𝑈𝐶𝐸) = 100% (𝑈𝐶𝐸 − 𝑈
∗) 𝑈∗⁄ . 

From Table 4, for the settings (1 − 𝛽 ≤ 0.95, 𝛾 ≤ 0.95) using 𝑚 of at least 25 

samples, the absolute values of 𝑃𝐷(𝐿𝐶𝐸) and 𝑃𝐷(𝑈𝐶𝐸) are no larger than 4.1% and 

1.6%, respectively, while the absolute values of 𝑃𝐷(𝐿𝐾𝑀𝑀) and 𝑃𝐷(𝑈𝐾𝑀𝑀) are 

smaller than 45.3% and 20.1%, respectively. If the nominal confidence and the 

nominal proportion are reduced up to (1 − 𝛽 ≤ 0.90, 𝛾 ≤ 0.90) and the minimum 

value of 𝑚 is increased up to 50 samples, the absolute values of 𝑃𝐷(𝐿𝐾𝑀𝑀) and 

𝑃𝐷(𝑈𝐾𝑀𝑀) won’t exceed 19.1% and 8.5%, respectively.  

Moreover, in Table 4, we provide the 𝑃𝐷 between the approximate and the 

EX values of 1 − 𝛽∗ (𝑃𝐷(1 − 𝛽𝐶𝐸
∗ ) and 𝑃𝐷(1 − 𝛽𝐾𝑀𝑀

∗ )), and the 𝑃𝐷 between the 

width of the approximate tolerance interval based on each proposed method (𝑊𝐼𝐶𝐸 

and 𝑊𝐼𝐾𝑀𝑀) and the width of the EX tolerance interval (𝑊𝐼). For instance, from 

Equation (31), the 𝑃𝐷(𝑊𝐼𝐶𝐸) is given by 𝑃𝐷(𝑊𝐼𝐶𝐸) = 100%(𝑊𝐼𝐶𝐸 −𝑊𝐼) 𝑊𝐼⁄ , 

where 𝑊𝐼 = (𝑈∗ − 𝐿∗)𝑆𝑝
2 and 𝑊𝐼𝐶𝐸 = (𝑈𝐶𝐸 − 𝐿𝐶𝐸)𝑆𝑝

2. Since the values of 

𝑃𝐷(1 − 𝛽𝐶𝐸
∗ ) vary between negative and positive values (namely, −0.99% and 

0.33%), the approximate tolerance intervals based on the CE method are sometimes 

contained within the EX tolerance intervals (𝑊𝐼𝐶𝐸 < 𝑊𝐼) and sometimes not 

(𝑊𝐼𝐶𝐸 > 𝑊𝐼). In the case of the proposed KMM method, the value of the 𝑃𝐷(1 −

𝛽𝐾𝑀𝑀
∗ ) is always positive and we get 𝐿𝐾𝑀𝑀 < 𝐿∗ and 𝑈𝐾𝑀𝑀 > 𝑈∗ for all settings 

considered here. Therefore, the width of the approximate tolerance interval based 

on the KMM method is always wider than the one of the EX tolerance interval 

(𝑊𝐼𝐾𝑀𝑀 > 𝑊𝐼). It means that the KMM approximation of the tolerance interval is 

conservative. For example, for the settings (1 − 𝛽 ≤ 0.95, 𝛾 ≤ 0.95) using 𝑚 of at 

least 25 samples, the values of 𝑃𝐷(𝑊𝐼𝐾𝑀𝑀) vary between 3.76% and 21.87%.  

Since our two proposed approximate methods are based on the WH 

approximation, as the sample size 𝑛 increases, the accuracy of the approximate 

tolerance limits gets better. Zar (1978) presented an assessment of the accuracy of 

the approximate quantiles of the chi-square distribution obtained according to the 

WH transformation. For instance, in the case of the CE method, when 𝑛 = 3 and 4, 

the approximation is acceptable, and quite satisfactory when 𝑛 = 10. Although the 

KMM approximation method does not work very well as the CE method, the 
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accuracy of the KMM approximation is usually satisfactory for large values of 𝑛, 

e.g., for the settings (1 − 𝛽 ≤ 0.95, 𝛾 ≤ 0.95) with 𝑛 = 10 and 25 ≤ 𝑚 ≤ 250, 

the 𝑃𝐷(𝐿𝐾𝑀𝑀), 𝑃𝐷(𝑈𝐾𝑀𝑀) and 𝑃𝐷(𝑊𝐼𝐾𝑀𝑀) vary between (−27.3%,−5.0%), 

(2.8%, 17.3%) and (4.7%, 23.0%), respectively.  

Table 3 - Comparison between the exact and approximate (1 − 𝛽, 𝛾) two-sided tolerance factors for 

𝑆2 (which come from 𝑛 = 5 observations) using 𝑚 subgroups each of size 𝑛 = 5 to estimate 𝜎2 

 

EX method   1 − 𝛽∗ 𝐿∗ 𝑈∗   

CE method   1 − 𝛽𝐶𝐸
∗  𝐿𝐶𝐸  𝑈𝐶𝐸   

KMM method    1 − 𝛽𝐾𝑀𝑀
∗  𝐿𝐾𝑀𝑀 𝑈𝐾𝑀𝑀   

1 − 𝛽 𝑚 𝛾 = 0.90 𝛾 = 0.95 𝛾 = 0.99 

0.90 

10 

0.9513 0.1193 2.8018 0.9660 0.0984 3.0115 0.9863 0.0610 3.5349 

0.9511 0.1196 2.7990 0.9605 0.1066 2.9249 0.9765 0.0809 3.2258 

0.9848 0.0733 3.6606 0.9934 0.0491 4.2071 0.9993 0.0177 5.7725 

25 

0.9290 0.1467 2.5780 0.9389 0.1351 2.6673 0.9573 0.1111 2.8793 

0.9303 0.1453 2.5886 0.9366 0.1378 2.6454 0.9486 0.1229 2.7698 

0.9605 0.1080 2.9385 0.9720 0.0896 3.1358 0.9877 0.0574 3.5960 

50 

0.9188 0.1581 2.4973 0.9253 0.1510 2.5472 0.9383 0.1359 2.6609 

0.9205 0.1562 2.5102 0.9249 0.1514 2.5441 0.9332 0.1419 2.6139 

0.9438 0.1281 2.7089 0.9539 0.1145 2.8214 0.9701 0.0899 3.0621 

100 

0.9123 0.1650 2.4512 0.9165 0.1606 2.4805 0.9250 0.1513 2.5447 

0.9142 0.1630 2.4646 0.9173 0.1597 2.4863 0.9230 0.1535 2.5289 

0.9312 0.1422 2.5811 0.9391 0.1326 2.6506 0.9526 0.1149 2.7921 

250 

0.9072 0.1704 2.4171 0.9095 0.1679 2.4325 0.9143 0.1629 2.4649 

0.9092 0.1683 2.4304 0.9111 0.1663 2.4431 0.9147 0.1625 2.4675 

0.9196 0.1546 2.4859 0.9249 0.1486 2.5252 0.9345 0.1373 2.6027 

0.95 

10 

0.9812 0.0719 3.3551 0.9883 0.0560 3.6282 0.9964 0.0305 4.2929 

0.9822 0.0698 3.3872 0.9868 0.0597 3.5592 0.9937 0.0408 3.9744 

0.9959 0.0393 4.5282 0.9986 0.0239 5.2834 0.9999 0.0070 7.4668 

25 

0.9687 0.0942 3.0592 0.9744 0.0845 3.1778 0.9843 0.0655 3.4566 

0.9710 0.0904 3.1041 0.9747 0.0841 3.1827 0.9812 0.0718 3.3562 

0.9867 0.0599 3.5519 0.9918 0.0463 3.8160 0.9974 0.0248 4.4407 

50 

0.9623 0.1040 2.9517 0.9664 0.0978 3.0182 0.9741 0.0852 3.1693 

0.9651 0.0997 2.9974 0.9678 0.0955 3.0445 0.9728 0.0873 3.1423 

0.9784 0.0749 3.2414 0.9836 0.0641 3.3913 0.9912 0.0452 3.7174 

100 

0.9581 0.1100 2.8904 0.9608 0.1061 2.9294 0.9662 0.0981 3.0149 

0.9612 0.1056 2.9351 0.9632 0.1027 2.9651 0.9667 0.0972 3.0247 

0.9714 0.0862 3.0703 0.9759 0.0780 3.1640 0.9831 0.0636 3.3539 

250 

0.9548 0.1147 2.8452 0.9563 0.1125 2.8657 0.9594 0.1082 2.9087 

0.9580 0.1102 2.8883 0.9592 0.1085 2.9058 0.9615 0.1051 2.9397 

0.9645 0.0965 2.9435 0.9677 0.0914 2.9956 0.9734 0.0818 3.0992 

0.99 

10 

0.9980 0.0228 4.6137 0.9990 0.0156 5.0268 0.9998 0.0064 5.9927 

0.9988 0.0175 4.8989 0.9994 0.0126 5.2558 0.9999 0.0047 6.3221 

0.9997 0.0112 6.5862 0.9999 0.0057 7.8571 ≅1 0.0013 11.6261 

25 

0.9954 0.0348 4.1501 0.9967 0.0293 4.3378 0.9985 0.0197 4.7687 

0.9970 0.0279 4.3931 0.9977 0.0241 4.5512 0.9989 0.0170 4.9348 

0.9991 0.0143 4.9757 0.9996 0.0091 5.4167 0.9999 0.0031 6.4576 

50 

0.9937 0.0407 3.9782 0.9948 0.0369 4.0847 0.9966 0.0297 4.3246 

0.9958 0.0332 4.2013 0.9964 0.0305 4.2952 0.9976 0.0251 4.5051 

0.9980 0.0189 4.4777 0.9988 0.0140 4.7209 0.9996 0.0069 5.2578 

100 

0.9925 0.0445 3.8801 0.9933 0.0421 3.9424 0.9948 0.0371 4.0794 

0.9948 0.0368 4.0885 0.9954 0.0349 4.1474 0.9963 0.0311 4.2714 

0.9968 0.0237 4.1990 0.9976 0.0195 4.3489 0.9988 0.0128 4.6600 

250 

0.9915 0.0475 3.8082 0.9920 0.0461 3.8406 0.9929 0.0433 3.9093 

0.9940 0.0398 4.0030 0.9943 0.0386 4.0367 0.9950 0.0363 4.1040 

0.9953 0.0290 3.9934 0.9961 0.0260 4.0772 0.9972 0.0209 4.2445 
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Table 4 - Percentage difference (𝑃𝐷) between the approximate and exact values related to the (1 − 𝛽, 𝛾) two-sided tolerance intervals for 𝑆2 provided in Table 3 

 

 

CE method     𝑃𝐷(1 − 𝛽𝐶𝐸
∗ ) 𝑃𝐷(𝐿𝐶𝐸) 𝑃𝐷(𝑈𝐶𝐸) 𝑃𝐷(𝑊𝐼𝐶𝐸)     

KMM  method     𝑃𝐷(1 − 𝛽𝐾𝑀𝑀
∗ ) 𝑃𝐷(𝐿𝐾𝑀𝑀) 𝑃𝐷(𝑈𝐾𝑀𝑀) 𝑃𝐷(𝑊𝐼𝐾𝑀𝑀)     

1 − 𝛽 𝑚 𝛾 = 0.90 𝛾 = 0.95 𝛾 = 0.99 

0.90 

10 
-0.02% 0.26% -0.10% -0.12% -0.56% 8.27% -2.88% -3.25% -0.99% 32.63% -8.75% -9.47% 

3.51% -38.60% 30.65% 33.73% 2.84% -50.12% 39.70% 42.74% 1.32% -70.99% 63.30% 65.66% 

25 
0.13% -0.97% 0.41% 0.49% -0.24% 2.04% -0.82% -0.97% -0.91% 10.60% -3.80% -4.38% 

3.39% -26.38% 13.98% 16.42% 3.52% -33.69% 17.56% 20.30% 3.17% -48.37% 24.89% 27.83% 

50 
0.19% -1.19% 0.52% 0.63% -0.04% 0.28% -0.12% -0.15% -0.54% 4.44% -1.77% -2.10% 

2.73% -19.01% 8.47% 10.33% 3.10% -24.16% 10.76% 12.96% 3.39% -33.87% 15.08% 17.71% 

100 
0.21% -1.24% 0.55% 0.68% 0.09% -0.54% 0.23% 0.29% -0.22% 1.48% -0.62% -0.76% 

2.07% -13.85% 5.30% 6.69% 2.47% -17.46% 6.86% 8.54% 2.99% -24.08% 9.72% 11.86% 

250 
0.22% -1.23% 0.55% 0.69% 0.17% -0.98% 0.44% 0.54% 0.04% -0.24% 0.11% 0.13% 

1.37% -9.24% 2.85% 3.76% 1.69% -11.53% 3.81% 4.95% 2.21% -15.73% 5.59% 7.10% 

0.95 

10 
0.10% -2.89% 0.96% 1.04% -0.15% 6.50% -1.90% -2.03% -0.27% 33.78% -7.42% -7.72% 

1.50% -45.38% 34.96% 36.72% 1.04% -57.35% 45.62% 47.24% 0.35% -77.13% 73.93% 75.01% 

25 
0.24% -4.03% 1.47% 1.64% 0.02% -0.45% 0.16% 0.17% -0.31% 9.60% -2.90% -3.14% 

1.86% -36.38% 16.11% 17.77% 1.78% -45.22% 20.09% 21.87% 1.34% -62.18% 28.47% 30.22% 

50 
0.29% -4.10% 1.55% 1.75% 0.15% -2.38% 0.87% 0.98% -0.13% 2.50% -0.85% -0.94% 

1.67% -28.00% 9.81% 11.19% 1.79% -34.49% 12.36% 13.93% 1.76% -46.97% 17.29% 19.07% 

100 
0.32% -4.02% 1.55% 1.77% 0.24% -3.22% 1.22% 1.39% 0.06% -0.89% 0.32% 0.37% 

1.38% -21.66% 6.22% 7.33% 1.57% -26.49% 8.01% 9.30% 1.76% -35.16% 11.24% 12.80% 

250 
0.33% -3.88% 1.51% 1.74% 0.30% -3.62% 1.40% 1.60% 0.22% -2.80% 1.07% 1.21% 

1.01% -15.81% 3.45% 4.26% 1.19% -18.80% 4.54% 5.49% 1.45% -24.37% 6.55% 7.74% 

0.99 

10 
0.08% -23.01% 6.18% 6.33% 0.03% -19.00% 4.56% 4.63% 0.01% -26.34% 5.50% 5.53% 

0.17% -50.89% 42.75% 43.22% 0.09% -63.14% 56.30% 56.68% 0.02% -79.63% 94.00% 94.19% 

25 
0.16% -19.92% 5.86% 6.07% 0.11% -17.74% 4.92% 5.07% 0.04% -14.14% 3.48% 3.56% 

0.37% -58.88% 19.89% 20.56% 0.29% -68.96% 24.87% 25.51% 0.15% -84.41% 35.41% 35.91% 

50 
0.21% -18.43% 5.61% 5.86% 0.16% -17.50% 5.15% 5.36% 0.09% -15.22% 4.17% 4.31% 

0.43% -53.63% 12.56% 13.24% 0.40% -62.22% 15.58% 16.29% 0.30% -76.75% 21.58% 22.26% 

100 
0.23% -17.33% 5.37% 5.63% 0.21% -17.07% 5.20% 5.44% 0.15% -16.09% 4.71% 4.90% 

0.43% -46.77% 8.22% 8.86% 0.44% -53.52% 10.31% 11.00% 0.40% -65.50% 14.23% 14.97% 

250 
0.25% -16.30% 5.12% 5.39% 0.24% -16.39% 5.11% 5.37% 0.21% -16.29% 4.98% 5.22% 

0.38% -39.01% 4.86% 5.42% 0.41% -43.56% 6.16% 6.76% 0.43% -51.83% 8.58% 9.25% 
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3.3.2  
Illustration 

A dataset presented by Tietjen & Johnson (1979) is used here to illustrate 

the construction of the exact two-sided tolerance interval for sample variances as 

well as the approximate intervals based on the two proposed methods. They 

illustrated the one-sided tolerance interval for sample variances using a dataset from 

the field of explosives engineering, namely, a dataset of detonation (ignition) times 

related to a detonation process. This type of process requires a number of nearly 

simultaneous explosions that are initiated by detonators in such a way that the 

variance of the detonation (or initiation or ignition) times (e.g., a set of 𝑛 detonators 

that are fired/pulsed simultaneously) should be small enough according to certain 

specified limits. This requires a thorough evaluation and monitoring of the 

corresponding process variability because it must be quite small. Note that the 

assessment of the process variability can be based on the available samples 

(dataset), namely, we can construct tolerance interval for sample variances of the 

detonation times to carry out the conformity assessment and therefore we can make 

a decision about the acceptance or rejection of this process (or production lot) in 

terms of quality. So we use the available dataset, reproduced in Table 5, to compare 

the approximate and EX tolerance intervals. There are 20 shots for each of 14 

detonators, that is, the data were collected as 20 subgroups or samples (𝑚 = 20) 

each of size 𝑛 = 14 to estimate 𝜎2 using 𝑆𝑝
2. Next, the values of each of the twenty 

sample variances (𝑆𝑖
2) and 𝑆𝑝

2 are provided.  

Tietjen & Johnson (1979) focused on the construction of EX one-sided 

upper tolerance limits for the sample variances of the detonation times that is useful 

when the detection of an increase in the variance is of interest to prevent the 

worsening of the quality of the detonation process. However, note that we can get 

more comprehensive information about process variability using the two-sided 

tolerance intervals instead of the one-sided ones. This is because, in addition to 

detecting the process deterioration, we can identify the quality improvement of the 

detonation process due to the inclusion of the corresponding lower tolerance limits, 

that is, we can gain information about how small the variance of detonation times 

is as well as how large this variance is (see Sarmiento et al., 2018). 
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Even though the construction of the EX two-sided tolerance intervals for the 

sample variances can provide meaningful information, this is technically 

challenging because the computation of tolerance factors depends on a numerical 

method to solve a system of nonlinear equations. Furthermore, there is not available 

software packages that provide directly the required tolerance factors and the 

available tables of tolerance factors do not include all the possible settings. In light 

of this difficulty, we construct the approximate two-sided tolerance intervals for 

sample variances (which come from 14 observations) of the detonation times based 

on our two proposed (CE and KMM) methods using the dataset given in Table 5 to 

estimate 𝜎2. The approximate values of 1 − 𝛽∗ and tolerance (lower and upper) 

factors and limits are provided and compared with the corresponding EX values of 

tolerance intervals in Table 6 (using Equations (3), (4), (24) and (26)-(30)) for all 

possible pairs of settings (1 − 𝛽, 𝛾) from {0.90, 0.95, 0.99}. 

Similarly to Table 4, for purposes of evaluation of the accuracy of the two 

proposed approximation methods, using the values provided in Table 6 and 

Equation (31), Table 7 presents the relative percentage differences (𝑃𝐷) between 

the approximate (lower and upper) tolerance limits (based on the CE and KMM 

methods) and the EX tolerance limits, denoted as (𝑃𝐷(�̂�𝐿𝐶𝐸
2 ), 𝑃𝐷(�̂�𝑈𝐶𝐸

2 )) and 

(𝑃𝐷(�̂�𝐿𝐾𝑀𝑀
2 ), 𝑃𝐷(�̂�𝑈𝐾𝑀𝑀

2 )), respectively. Additionally, the 𝑃𝐷 between the width 

of the approximate tolerance intervals and the width of the EX tolerance intervals 

(denoted as 𝑃𝐷(𝑊𝐼𝐶𝐸) and 𝑃𝐷(𝑊𝐼𝐾𝑀𝑀) for the CE and KMM methods, 

respectively) are also given in Table 7. As noted earlier in the comparison of 

approximate and EX tolerance factors from Tables 3 and 4 of Subchapter 3.3.1 (𝑛 =

5), the approximate tolerance limits based on the CE method works very well in the 

considered settings. Even though the KMM approximation method is less accurate 

than the CE approximation method, the accuracy of the KMM approximation is 

satisfactory for most of the cases. This is because, in this illustration, the sample 

size is not small (𝑛 = 14).  

Regarding the CE method, the approximate lower and upper tolerance limits 

are rather close to the EX lower and upper tolerance limits, respectively. We get 

�̂�𝐿𝐶𝐸
2 > �̂�𝐿∗

2 , �̂�𝑈𝐶𝐸
2 < �̂�𝑈∗

2 , and then the width of the approximate tolerance interval 

based on the CE method is a little bit narrower than the width of the EX tolerance 

interval (𝑊𝐼𝐶𝐸 < 𝑊𝐼) except for the setting (1 − 𝛽 = 0.99, 𝛾 = 0.90). For a fixed 
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value of 1 − 𝛽, as the value of 𝛾 decreases, the absolute values of 𝑃𝐷(�̂�𝐿𝐶𝐸
2 ), 

𝑃𝐷(�̂�𝑈𝐶𝐸
2 ) and 𝑃𝐷(𝑊𝐼𝐶𝐸) become smaller, that is, the accuracy of the CE 

approximation gets better. For example, for the settings (1 − 𝛽 ≤ 0.99, 𝛾 = 0.99), 

the absolute values of 𝑃𝐷(�̂�𝐿𝐶𝐸
2 ) and 𝑃𝐷(�̂�𝑈𝐶𝐸

2 ) do not exceed 6% and the absolute 

values of 𝑃𝐷(𝑊𝐼𝐶𝐸) are no larger than 3.7%. If the confidence level decreases to 

𝛾 = 0.95, the absolute values of 𝑃𝐷(�̂�𝐿𝐶𝐸
2 ), 𝑃𝐷(�̂�𝑈𝐶𝐸

2 ) and 𝑃𝐷(𝑊𝐼𝐶𝐸) are smaller 

than 1.5%, and if the reduction is up to 𝛾 = 0.90, the absolute values of 𝑃𝐷(�̂�𝐿𝐶𝐸
2 ), 

𝑃𝐷(�̂�𝑈𝐶𝐸
2 ) are no longer than 0.6% and the absolute values of 𝑃𝐷(𝑊𝐼𝐶𝐸) do not 

exceed 0.4%. 

The results in Tables 6 and 7 indicate that the approximate tolerance interval 

based on the proposed KMM method, as opposed to the CE approximation, is 

conservative, that is, �̂�𝐿𝐾𝑀𝑀
2 < �̂�𝐿∗

2 , �̂�𝑈𝐾𝑀𝑀
2 > �̂�𝑈∗

2  and thus 𝑊𝐼𝐾𝑀𝑀 > 𝑊𝐼. For a 

given value of 1 − 𝛽 (or 𝛾), as the value of 𝛾 (or 1 − 𝛽) decreases, the absolute 

values of 𝑃𝐷(�̂�𝐿𝐾𝑀𝑀
2 ), 𝑃𝐷(�̂�𝑈𝐾𝑀𝑀

2 ) and 𝑃𝐷(𝑊𝐼𝐾𝑀𝑀) become smaller, that is, the 

accuracy of the KMM approximation gets better and the tolerance interval is less 

conservative. For instance, the absolute values of 𝑃𝐷(�̂�𝐿𝐾𝑀𝑀
2 ) and 𝑃𝐷(�̂�𝑈𝐾𝑀𝑀

2 ) are 

no larger than 8.90% and 𝑃𝐷(𝑊𝐼𝐾𝑀𝑀) equals 7.22% for the setting (1 − 𝛽 =

0.99, 𝛾 = 0.90). For a reduction of the nominal proportion to 1 − 𝛽 = 0.90 in the 

last setting, the absolute values of 𝑃𝐷(�̂�𝐿𝐾𝑀𝑀
2 ) and 𝑃𝐷(�̂�𝑈𝐾𝑀𝑀

2 ) are smaller than 

4.16% and the value of 𝑃𝐷(𝑊𝐼𝐶𝐸) is 6.41%. 
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Table 5 - Detonation times (𝜇𝑠𝑒𝑐) of 20 shots with 14 detonators per shot (Tietjen & Johnson, 1979) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Shot Detonator number (𝑗) 
𝑆𝑖
2 number 

(𝑖) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 2.689 2.677 2.675 2.691 2.698 2.694 2.702 2.698 2.706 2.692 2.691 2.681 2.700 2.698 0.000081 

2 2.687 2.683 2.683 2.693 2.693 2.702 2.687 2.683 2.702 2.687 2.683 2.677 2.687 2.704 0.000065 

3 2.701 2.690 2.701 2.719 2.711 2.707 2.711 2.711 2.709 2.705 2.723 2.703 2.727 2.709 0.000081 

4 2.681 2.679 2.677 2.687 2.691 2.689 2.679 2.693 2.689 2.685 2.695 2.683 2.695 2.702 0.000048 

5 2.690 2.688 2.674 2.694 2.680 2.686 2.676 2.690 2.684 2.692 2.692 2.676 2.686 2.694 0.000042 

6 2.689 2.685 2.689 2.698 2.704 2.689 2.690 2.708 2.704 2.692 2.704 2.690 2.710 2.702 0.000067 

7 2.695 2.684 2.689 2.695 2.689 2.691 2.691 2.678 2.695 2.676 2.689 2.676 2.686 2.688 0.000043 

8 2.715 2.690 2.721 2.698 2.700 2.698 2.701 2.698 2.705 2.682 2.698 2.696 2.696 2.698 0.000085 

9 2.678 2.678 2.692 2.694 2.690 2.701 2.690 2.698 2.690 2.674 2.707 2.694 2.703 2.707 0.000101 

10 2.690 2.676 2.694 2.705 2.697 2.688 2.690 2.713 2.699 2.705 2.697 2.703 2.711 2.699 0.000091 

11 2.715 2.698 2.706 2.727 2.715 2.715 2.706 2.719 2.715 2.702 2.713 2.706 2.715 2.723 0.000063 

12 2.710 2.700 2.727 2.710 2.712 2.723 2.708 2.718 2.700 2.714 2.718 2.700 2.718 2.725 0.000077 

13 2.700 2.708 2.698 2.714 2.718 2.704 2.698 2.698 2.700 2.714 2.712 2.710 2.714 2.730 0.000077 

14 2.699 2.685 2.693 2.697 2.699 2.691 2.707 2.703 2.685 2.697 2.697 2.701 2.712 2.703 0.000052 

15 2.722 2.701 2.710 2.720 2.709 2.707 2.703 2.701 2.709 2.709 2.720 2.709 2.714 2.718 0.000048 

16 2.708 2.691 2.710 2.726 2.710 2.707 2.695 2.697 2.697 2.705 2.710 2.726 2.707 2.705 0.000098 

17 2.690 2.694 2.690 2.692 2.707 2.694 2.709 2.699 2.705 2.699 2.728 2.715 2.721 2.723 0.000157 

18 2.697 2.709 2.713 2.713 2.716 2.701 2.713 2.703 2.711 2.697 2.722 2.693 2.720 2.724 0.000090 

19 2.701 2.688 2.703 2.711 2.711 2.695 2.699 2.689 2.707 2.699 2.709 2.693 2.699 2.699 0.000050 

20 2.704 2.692 2.706 2.706 2.704 2.676 2.684 2.706 2.692 2.700 2.702 2.704 2.715 2.696 0.000093 

              𝑆𝑝
2 0.000075 
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Table 6 - Comparison between the exact and approximate (1 − 𝛽, 𝛾) two-sided tolerance factors and limits for 𝑆2 of detonation times, using the reference dataset from Table 5 

to estimate 𝜎2 

 

Table 7 - Percentage difference (𝑃𝐷) between the approximate and exact tolerance limits and between the width of the approximate tolerance interval and the width of the exact 

tolerance interval for 𝑆2 of detonation times obtained from Table 6 

Method                

EX       1 − 𝛽∗ 𝐿∗ 𝑈∗ �̂�𝐿∗
2 ∗ 104 �̂�𝑈∗

2 ∗ 104      

CE       1 − 𝛽𝐶𝐸
∗  𝐿𝐶𝐸 𝑈𝐶𝐸 �̂�𝐿𝐶𝐸

2 ∗ 104 �̂�𝑈𝐶𝐸
2 ∗ 104      

KMM       1 − 𝛽𝐾𝑀𝑀
∗  𝐿𝐾𝑀𝑀 𝑈𝐾𝑀𝑀 �̂�𝐿𝐾𝑀𝑀

2 ∗ 104 �̂�𝑈𝐾𝑀𝑀
2 ∗ 104      

1 − 𝛽 𝛾 = 0.90 𝛾 = 0.95 𝛾 = 0.99 

0.90 

0.9253 0.4226 1.7983 0.3189 1.3568 0.9348 0.4094 1.8342 0.3089 1.3839 0.9534 0.3793 1.9205 0.2862 1.4490 

0.9246 0.4236 1.7958 0.3196 1.3549 0.9311 0.4146 1.8198 0.3128 1.3730 0.9451 0.3936 1.8787 0.2969 1.4175 

0.9404 0.4174 1.9108 0.3087 1.4132 0.9572 0.3873 1.9971 0.2864 1.4771 0.9809 0.3259 2.1971 0.2411 1.6250 

0.95 

0.9662 0.3533 2.0014 0.2666 1.5100 0.9718 0.3397 2.0464 0.2563 1.5440 0.9818 0.3098 2.1524 0.2337 1.6240 

0.9660 0.3536 2.0003 0.2668 1.5093 0.9699 0.3446 2.0298 0.2600 1.5315 0.9774 0.3241 2.1005 0.2445 1.5848 

0.9755 0.3433 2.1368 0.2539 1.5804 0.9844 0.3123 2.2468 0.2310 1.6617 0.9949 0.2500 2.5057 0.1849 1.8532 

0.99 

0.9947 0.2424 2.4377 0.1829 1.8393 0.9960 0.2294 2.5023 0.1731 1.8880 0.9979 0.2027 2.6478 0.1530 1.9978 

0.9948 0.2410 2.4448 0.1818 1.8446 0.9957 0.2327 2.4857 0.1756 1.8755 0.9972 0.2147 2.5801 0.1620 1.9467 

0.9970 0.2253 2.6266 0.1666 1.9426 0.9986 0.1951 2.7926 0.1443 2.0654 0.9998 0.1379 3.1867 0.1020 2.3569 

Method          

CE     𝑃𝐷(�̂�𝐿𝐶𝐸
2 ) 𝑃𝐷(�̂�𝑈𝐶𝐸

2 ) 𝑃𝐷(𝑊𝐼𝐶𝐸)    

KMM     𝑃𝐷(�̂�𝐿𝐾𝑀𝑀
2 ) 𝑃𝐷(�̂�𝑈𝐾𝑀𝑀

2 ) 𝑃𝐷(𝑊𝐼𝐾𝑀𝑀)    

1 − 𝛽 𝛾 = 0.90 𝛾 = 0.95 𝛾 = 0.99 

0.90 
0.23% -0.14% -0.26% 1.29% -0.78% -1.38% 3.76% -2.18% -3.64% 

-3.20% 4.16% 6.41% -7.27% 6.73% 10.76% -15.77% 12.14% 19.02% 

0.95 
0.09% -0.05% -0.08% 1.45% -0.81% -1.26% 4.61% -2.41% -3.59% 

-4.76% 4.66% 6.68% -9.88% 7.63% 11.11% -20.89% 14.11% 20.00% 

0.99 
-0.60% 0.29% 0.39% 1.42% -0.66% -0.87% 5.92% -2.56% -3.26% 

-8.90% 5.62% 7.22% -16.64% 9.40% 12.02% -33.32% 17.97% 22.23% 
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4 
Derivation of the cumulative distribution functions of the 

𝑪𝑨𝑹𝑳, 𝑪𝑷𝑺 and 𝑪𝑹𝑳𝒒 of 𝑺𝟐 chart  

In this chapter, we present the cumulative distribution functions (cdf’s) of 

the main conditional performance measures of the two-sided 𝑆2 chart, specifically, 

the cdf’s of the conditional average run length (𝐶𝐴𝑅𝐿), the conditional probability 

of a signal (𝐶𝑃𝑆) and the conditional run length 𝑞-quantile (𝐶𝑅𝐿𝑞). In addition, the 

𝐶𝑅𝐿𝑞 distribution of the upper one-sided 𝑆2 chart is provided.    

The distributions of the performance measures for the two-sided 𝑆2 chart 

are derived on the basis of their mathematical-statistical relationship with the two-

sided tolerance interval for the sample variance. First, this relationship is revealed 

showing the equation of the Exceedance Probability (𝐸𝑃) of the 𝐶𝐴𝑅𝐿 (or, 

equivalently, the cdf of the 𝐶𝑃𝑆) and the equation of two-sided tolerance interval 

for the sample variance, and then the equivalence between the “components” of 

these two equations are identified and highlighted. We focus on this relationship 

when the process is IC since a specified IC performance measure (using 𝐶𝐴𝑅𝐿0 or 

𝐶𝐹𝐴𝑅) is required to design the Phase II 𝑆2 chart. By “components” we mean 

tolerance factors, proportion and confidence level (equation of the tolerance 

interval), control limit factors, tolerated lower bound of the 𝐶𝐴𝑅𝐿0 and the value of 

𝐹𝐶𝐴𝑅𝐿0 (equation of the 𝐸𝑃 or complement of the cdf of the 𝐶𝐴𝑅𝐿0), and the number 

and size of Phase I samples (𝑚 and 𝑛) for both equations. Accordingly, the exact 

cdf of 𝐶𝐴𝑅𝐿0 (and cdf of the 𝐶𝐹𝐴𝑅) and thus the Exceedance Probability Criterion 

(𝐸𝑃𝐶), which is used to obtain the adjusted control limits and minimum number of 

Phase I samples 𝑚 (design of Phase II two-sided 𝑆2 chart), are obtained exploiting 

the derivations of the exact two-sided tolerance intervals for sample variances 

(provided in Subchapter 3.1). The exact cdf of the 𝐶𝑅𝐿𝑞 for the two-sided 𝑆2 chart 

is also obtained using this studied tolerance interval.  

In the case of the upper one-sided 𝑆2 chart, Epprecht et al. (2015) derived 

the exact cdf’s of the 𝐶𝐴𝑅𝐿 and 𝐶𝑃𝑆. The exact cdf of the 𝐶𝑅𝐿𝑞, which also turns 
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into a random variable due to estimation of 𝜎0
2, is derived on the basis of exact 

analytical derivations and provided in the present thesis for the first time in the 

literature. 

 

4.1  
Relation between two-sided tolerance interval for the sample 

variance and the Exceedance Probability of the 𝑪𝑨𝑹𝑳 of the 

two-sided 𝑺𝟐 control chart  

The cdf of the 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 is defined as the probability that the random 

variable 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 is less than or equal to a real positive value 𝑡 (𝑡 ≥ 1). The cdf of 

the 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 (denoted 𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡)) can be expressed in terms of the cdf of its 

reciprocal 𝐶𝑃𝑆𝑡𝑤𝑜 (denoted 𝐹𝐶𝑃𝑆𝑡𝑤𝑜) as follows 

𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡) = 𝑃(𝐶𝐴𝑅𝐿𝑡𝑤𝑜 ≤ 𝑡) = 𝑃 (𝐶𝑃𝑆𝑡𝑤𝑜 ≥
1

𝑡
) = 1 − 𝐹𝐶𝑃𝑆𝑡𝑤𝑜 (

1

𝑡
).  

The Exceedance Probability (𝐸𝑃) of the 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 is the complement of its 

cdf (1 − 𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡)). Thus, using the 𝐶𝑃𝑆𝑡𝑤𝑜 defined in Equation (10), the 𝐸𝑃 of 

the 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 is given by 

1 − 𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡) = 𝐹𝐶𝑃𝑆𝑡𝑤𝑜 (
1

𝑡
)

= 𝑃 (𝑃( 𝑆𝑙
2 < 𝐿𝐶�̂�𝑡𝑤𝑜  ∪  𝑆𝑙

2 > 𝑈𝐶�̂�𝑡𝑤𝑜) ≤
1

𝑡
)

= 𝑃 (𝑃(𝐿𝐶�̂�𝑡𝑤𝑜 ≤ 𝑆𝑙
2 ≤ 𝑈𝐶�̂�𝑡𝑤𝑜 ) ≥ 1 −

1

𝑡
). 

(32) 

Note that, from Equation (32), the expression of the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 (or 

the cdf of the 𝐶𝑃𝑆𝑡𝑤𝑜) is similar to the expression of the two-sided tolerance interval 

for the sample variance, which is given by Equation (1).  

The Phase II sample variances (𝑆𝑙
2), which arise from a sample of size 𝑛, can 

be deemed as the sample variances that make up the inferred population in the 

context of tolerance intervals (𝑆2). Therefore, each “component” of the expression 

of the 𝐸𝑃 can be associated with the corresponding one of the expression of 

tolerance interval for the sample variance. 

In the case when the process is IC (𝜌 = 1), substituting Equations (10) and 

(15) into Equation (32), we have the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 of the two-sided  𝑆2 

chart, denoted as 1 − 𝐹𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜(𝑡) (Equation 33), and from Equation (22), the two-
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sided tolerance interval for the sample variance can be rewritten in Equation (34) 

as follows  

 

1 − 𝐹𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜(𝑡) = 𝐹𝐶𝑃𝑆𝑡𝑤𝑜 (
1

𝑡
) 

= 𝑃𝑌 (𝐹𝜒𝑛−12 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛼

2

2 | 𝑌) − 𝐹𝜒𝑛−12 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,

𝛼

2

2 | 𝑌) ≥ 1 −
1

𝑡
). 

(33) 

 

𝛾 = 𝑃𝑌 (𝐹𝜒𝑛−12 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛽∗

2

2 | 𝑌) − 𝐹𝜒𝑛−12 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,

𝛽∗

2

2 | 𝑌) ≥ 1 − 𝛽), (34) 

Since Phase II sample variances (𝑆𝑙
2) and sample variances (𝑆2) of the 

inferred population (through tolerance intervals), from Equations (32) and (1), 

respectively, come from samples of the same size 𝑛 (observations that come from 

normal distributions with variance 𝜎0
2 and 𝜎2, respectively), four “components” of 

the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 are associated with the corresponding ones of the tolerance 

interval (see Equations 33 and 34):  

 

a) the amount of Phase I reference samples (𝑚): the number of Phase I 

reference data (𝑚𝑛) to estimate 𝜎0
2 (𝑆2 chart) can be associated with the 

required one to estimate 𝜎2 (tolerance interval). Because the size of Phase I 

samples in the context of 𝑆2 chart (𝑛) is equivalent to the one in the context 

of tolerance interval for the sample variance, the corresponding numbers of 

Phase I samples (𝑚’s) are equivalent. We use the same notation of 𝑚 and 𝑛 

in both contexts;      

b)  𝐹𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜(𝑡) = 1 − 𝛾: the cdf of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 at 𝑡 (𝑡 > 1) is equivalent 

to the complement of the specified confidence level of the tolerance interval 

(0 < 𝛾 < 1); 

c) 𝑡 =
1

𝛽
: the point 1 −

1

𝑡
 (where 𝑡 = 𝐹𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜

−1 (1 − 𝛾)) is equivalent to the 

specified proportion of the tolerance interval (1 − 𝛽); and 

d) 𝛼 = 𝛽∗: since the corresponding control limits and tolerance limits were 

defined as equal-tailed limits in previous chapters, the nominal false alarm 

rate 𝛼 is equivalent to the “adjusted” value of 𝛽 (denoted 𝛽∗). Hence, the 
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unadjusted (lower and upper) control limits factors (𝐿𝑡𝑤𝑜 and 𝑈𝑡𝑤𝑜 from 

Equation 8) are equivalent to the (lower and upper) tolerance factors (𝐿∗ and 

𝑈∗ from Equation 3), respectively:  

𝐿𝑡𝑤𝑜 = 𝐿
∗ =

𝜒
𝑛−1,

𝛼
2

2

𝑛−1
=

𝜒
𝑛−1,

𝛽∗

2

2

𝑛−1
 and 𝑈𝑡𝑤𝑜 = 𝑈

∗ =
𝜒
𝑛−1,1−

𝛼
2

2

𝑛−1
=

𝜒
𝑛−1,1−

𝛽∗

2

2

𝑛−1
. 

 

Note that this equivalence (d) can also be considered in the case of adjusted 

control limits, that is, considering 𝛼∗, 𝐿𝑡𝑤𝑜
∗  and 𝑈𝑡𝑤𝑜

∗  rather than 𝛼, 𝐿𝑡𝑤𝑜 and 𝑈𝑡𝑤𝑜, 

respectively. These described four equivalences can be exploited to obtain some 

properties of the examined performance measures (such as the cdf and the 𝐸𝑃𝐶 for 

the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) and the values related to the design of the 𝑆2 chart based on the 

two-sided tolerance interval for the population of sample variances (Subchapter 

3.1), and vice versa.  

In the present thesis, given the sample size 𝑛 (in both contexts, 𝑆2 chart and 

tolerance intervals for sample variances), if we know three of the four 

“components” of the 𝑆2 chart indicated above (a-d, see also Equations 33 and 34), 

the unknown “component” in the context of 𝑆2 can be found using the derivations 

obtained in the context of  exact two-sided tolerance interval for the sample variance 

(Equation 24 in Subchapter 3.1). Therefore, we are interested in three main issues 

or computations that will be addressed later, namely, the cdf of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜, the 

number of Phase I samples (m) and adjusted control limits that guarantees a 

conditional IC performance in Subchapters 4.2, 5.2.2 and 5.3.2, respectively. 

 

4.2  

Distributions of the conditional average run length (𝑪𝑨𝑹𝑳) and 
conditional probability of a signal (𝑪𝑷𝑺)   

In the previous subchapter, we focus on the performance measures when the 

process is IC (𝜌 = 1), however, in this part, we present the cdf’s of the 𝐶𝐴𝑅𝐿 and 

𝐶𝑃𝑆 when 𝜌 can be different than 1 (OOC process). The exact cdf of the 𝐶𝑃𝑆 (or, 

equivalently, the complement of the cdf of the 𝐶𝐴𝑅𝐿0) for the upper one-side 𝑆2 

chart, i.e., the 𝐹𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒(𝑡) (or 𝐹𝐶𝐹𝐴𝑅𝑜𝑛𝑒(𝑡
−1)), was derived and studied by 

Epprecht et al. (2015). For the two-sided 𝑆2 chart, as noted before, the cdf of the 

𝐶𝐴𝑅𝐿𝑡𝑤𝑜, i.e., 𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡) (or 𝐹𝐶𝑃𝑆𝑡𝑤𝑜(𝑡
−1)) was presented by Guo & Wang (2017) 
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when this was already derived in the present thesis. Differently from the one-sided 

chart, the cdf of 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 is not presented in a closed form since a numerical 

method is required.  

From Equations (33) and (34) and considering the four “components” (a)-(d) 

in Subchapter 4.1 (recall that the sample size 𝑛 is the same in both contexts, i.e., for 

𝑆2 chart and tolerance intervals for sample variances), we can derive the cdf of the 

𝐶𝐴𝑅𝐿𝑡𝑤𝑜 as follows:  

 In the context of 𝑺𝟐 control chart: given the values of 𝑚, 𝑡 and 𝛼 

(unadjusted limits), we want to obtain 𝐹𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜(𝑡) (Equation 36). 

 In the context of tolerance interval for the sample variance: the three 

known “components” are 𝑚, 𝛽 =
1

𝑡
 and 𝛽∗ = 𝛼, while the unknown 

“component” is 𝛾. Thus, 𝛾 is found using two-sided tolerance interval 

(Equation (24)) so that 𝐹𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜(𝑡) = 1 − 𝛾   

Thus, these expressions of the cdf’s are given by 

𝐹𝐶𝐴𝑅𝐿𝑜𝑛𝑒(𝑡) = 1 − 𝐹𝐶𝑃𝑆𝑜𝑛𝑒(𝑡
−1) = 𝑃(𝐶𝐴𝑅𝐿𝑜𝑛𝑒 ≤ 𝑡) 

        = {

0,  𝑡 ≤ 1

𝐹𝜒𝑚(𝑛−1)
2 (

𝜌2𝑚(𝑛−1)𝜒
𝑛−1, 1−𝑡−1
2

𝜒𝑛−1, 1−𝛼
2 ) ,  𝑡 > 1 

, 

(35) 

and 

𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡) = 1 − 𝐹𝐶𝑃𝑆𝑡𝑤𝑜(𝑡
−1) = 𝑃(𝐶𝐴𝑅𝐿𝑡𝑤𝑜 ≤ 𝑡) 

= {

0,                𝑡 ≤ 1   
1 − (𝑢2 − 𝑢1),      1 < 𝑡 < 𝑚𝑎𝑥(𝐶𝐴𝑅𝐿𝑡𝑤𝑜),

             1,    𝑡 ≥ 𝑚𝑎𝑥(𝐶𝐴𝑅𝐿𝑡𝑤𝑜)
 

(36) 

where 𝑢1 and 𝑢2 are the two solutions of 𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑈; 𝜌
2) = 𝑡, that is 

[1 − (𝐹𝜒𝑛−12 (
𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑈)

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1,1−𝛼 2⁄
2 )− 𝐹𝜒𝑛−12 (

𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑈)

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 𝛼 2⁄  
2 ))]

−1

= 𝑡, 

for 𝑈, being 𝑢1 < 𝑢0 < 𝑢2, 𝑢0 = 𝐹𝜒𝑚(𝑛−1)
2 (

𝜌2𝑚(𝑛−1)2ln (𝜒𝑛−1,1−𝛼 2⁄
2 𝜒𝑛−1, 𝛼 2⁄  

2⁄ )

𝜒𝑛−1,1−𝛼 2⁄
2 −𝜒𝑛−1, 𝛼 2⁄  

2 ) and 

𝑚𝑎𝑥(𝐶𝐴𝑅𝐿𝑡𝑤𝑜) =𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑢0) 
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=

[
 
 
 
 
 
 
 

1 −

(

 
 
 
 
 

𝐹𝜒𝑛−12

(

 
 
 
 
 

(𝑛 − 1)

ln (
𝜒
𝑛−1,1−

𝛼
2

2

𝜒
𝑛−1,

𝛼
2
 

2 )

𝜒
𝑛−1,1−

𝛼
2

2 − 𝜒
𝑛−1,

𝛼
2
 

2 𝜒
𝑛−1,1−

𝛼
2

2

)

 
 
 
 
 

− 𝐹𝜒𝑛−12

(

 
 
 
 
 

(𝑛 − 1)

ln (
𝜒
𝑛−1,1−

𝛼
2

2

𝜒
𝑛−1,

𝛼
2
 

2 )

𝜒
𝑛−1,1−

𝛼
2

2 − 𝜒
𝑛−1,

𝛼
2
 

2 𝜒
𝑛−1,

𝛼
2
 

2

)

 
 
 
 
 

)

 
 
 
 
 

]
 
 
 
 
 
 
 
−1

. 

Similarly to the two-sided tolerance interval for sample variances (Equation 

24), Equation (36) can be explained as follows: there are only two solutions for 𝑈 

of 𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑈; 𝜌
2) = 𝑡 (from Equation 15, where 𝑌 = 𝐹

𝜒𝑚(𝑛−1)
2
−1 (𝑈)) because 

𝐶𝐴𝑅𝐿𝑡𝑤𝑜 is a concave function of 𝑈, increasing on [0, 𝑢0] and decreasing on [𝑢0, 1] 

in such a way that 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 varies in the interval [1,𝑚𝑎𝑥(𝐶𝐴𝑅𝐿𝑡𝑤𝑜)], where 

𝑚𝑎𝑥(𝐶𝐴𝑅𝐿𝑡𝑤𝑜) =𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑢0). See this behavior when the process is IC (𝜌 = 1) 

and the control limits are unadjusted (𝛼 = 0.0027) in Figure 1 (Chapter 2, page 

52). In addition, from Equation (36), note that the value of 𝑚𝑎𝑥(𝐶𝐴𝑅𝐿𝑡𝑤𝑜) depends 

only on the values of 𝑛 and 𝛼, as highlighted and shown in Figure 1 in the case of 

IC process. The 𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑈; 𝜌
2) converges to one, in probability, when 𝑈 

converges to zero or one (see, e.g., Figure 1). Hence, the probability that 

𝐶𝐴𝑅𝐿𝑡𝑤𝑜 > 𝑡, which is the complement of the cdf of 𝐶𝐴𝑅𝐿𝑡𝑤𝑜, is the probability 

that 𝑈 belongs to the interval between 𝑢1 and 𝑢2, the two solutions of 

𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑈) = 𝑡.  

Note that the cdf’s of 𝐶𝐴𝑅𝐿 of the one- and two-sided 𝑆2 charts from 

Equations (35) and (36), respectively, depend on 𝑚, 𝑛, 𝜌2 and 𝛼 values. From these 

expressions, we can obtain (numerically) the corresponding probability density 

functions (pdf’s) of both 𝐶𝐴𝑅𝐿. Plots of Figure 2 show the cdf’s and pdf’s of the 

𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 of the one- and two-sided 𝑆2 charts with unadjusted 

limits, for 𝑚 = {10, 25, 50, 200, 500}, 𝑛 = 5 and 𝛼 = 0.0027. Similarly to Figure 

1, there are two additional vertical lines: 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐴𝑅𝐿0 = 370.4 and 

𝑚𝑎𝑥(𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) = 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜(𝑢0) = 459.11.  

From Figure 2, note that the difference between the shapes of the distributions 

of 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 is evident. It is remarkable that the pdf´s of 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 

are most often highly skewed to the right (especially, when 𝑚 is small), differently 

from the pdf´s of 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 which are left-skewed and have a finite maximum 

value. This in turn leads to the variability of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 is much smaller than 

that of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒. Note that when 𝑚 gets larger (such as 𝑚 = 500), the cdf´s 
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curves are much “closer” to the vertical line of the nominal value 370.4. From the 

cdf´s of 𝐶𝐴𝑅𝐿0 in Figure 2, it is seem that the median of the 𝐶𝐴𝑅𝐿0 distribution 

and the nominal 𝐴𝑅𝐿0 (=370.4) are approximately equal (i.e., 𝑃(𝐶𝐴𝑅𝐿0 ≤ 370.4) 

is around 50%), especially, when 𝑚 is large. This is because, from Equations (14) 

and (15), as the value of 𝑚 increases (i.e., the median of 𝑌 tends to its mean), 

𝑌 𝑚(𝑛 − 1)⁄  converges to 1 in probability (error factor of the variance estimate 

converges to 1 or, equivalently, 𝑆𝑝
2 converges to 𝜎0

2), and thus the value of the true 

𝐶𝐴𝑅𝐿0 converges to the nominal 𝐴𝑅𝐿0 (1 𝛼⁄ ) in probability.  

The examination of the differences in the 𝐶𝐴𝑅𝐿0 distribution between both 

charts, that is, the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 distributions, will enable a better 

understanding of the differences in performance between the one-sided and two-

sided 𝑆2 charts, either with adjusted or unadjusted limits.  

 

 

Figure 2. Cdf’s and pdf’s of the 𝐶𝐴𝑅𝐿0 (𝐹𝐶𝐴𝑅𝐿0  and 𝑓𝐶𝐴𝑅𝐿0 , respectively) of the one- and two-sided 

charts with unadjusted control limits (𝛼 = 0.0027) for different values of 𝑚 and 𝑛 = 5. Nominal 

𝐴𝑅𝐿0 = 370.4 and maximum value of 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 (𝑚𝑎𝑥 (𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) = 459.11). 
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4.3  

Exceedance Probability Criterion (𝑬𝑷𝑪) for the 𝑪𝑨𝑹𝑳𝟎   

Since the 𝐶𝐴𝑅𝐿0 is a random variable and quite small values are undesired, 

the Exceedance Probability (𝐸𝑃) of the 𝐶𝐴𝑅𝐿0 can be useful, that is, the assessment 

of the probability that the 𝐶𝐴𝑅𝐿0 exceeds a specified minimum value can provide 

valuable information. Indeed, the Exceedance Probability Criterion (𝐸𝑃𝐶), which 

was proposed by Albers and Kallenberg (2005) and Albers et al. (2005), has become 

the performance measure most used by the authors who adopted the conditional 

perspective. The 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0 is defined as requiring a high probability of 

1 − 𝑝 that the chart has a 𝐶𝐴𝑅𝐿0 greater or equal to a specified minimum tolerated 

value. It means, given a minimum tolerated of the 𝐶𝐴𝑅𝐿0, the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 

must be 1 − 𝑝. Note that this criterion depends on the cdf’s of the 𝐶𝐴𝑅𝐿0, which, 

in turn, is expressed as a function of the random variable 𝑌 and depends on 𝑚, 𝑛 

and 𝛼. In formal notation, this 𝐸𝑃𝐶 can be stated as: given the amount of Phase I 

data (𝑚 and 𝑛), the unadjusted or adjusted control limits (defined by 𝛼 or 𝛼∗, 

respectively) and the smallest (minimum) tolerated value of the 𝐶𝐴𝑅𝐿0 (defined by 

𝛼 and 𝜀), the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 must results in (1 − 𝑝), that is 

𝑃 (𝐶𝐴𝑅𝐿0 ≥
1

(1+𝜀)
(
1

𝛼
)) = 𝑃(𝐶𝐹𝐴𝑅 ≤ (1 + 𝜀)𝛼) = 1 − 𝑝, (37) 

where: 𝛼 is the nominal false alarm rate; 𝜀 ≥ 0 is a factor that is defined to 

determine a proper performance threshold, meaning that the smallest tolerated value 

for the 𝐶𝐴𝑅𝐿0 is 100 (
𝜀

1+𝜀
)% smaller than the nominal 𝐴𝑅𝐿0 = 1 𝛼⁄  (this is 

equivalent to saying that the largest tolerated value for the 𝐶𝐹𝐴𝑅 is (100𝜀)% larger 

than the nominal 𝛼, as used by Epprecht et al., 2015); and 𝑝 is the risk (probability) 

accepted by the practitioner that the true 𝐶𝐴𝑅𝐿0 be smaller than the specified 

tolerated value (or the true 𝐶𝐹𝐴𝑅 be larger than the specified tolerated value).  

 

4.4  
Distribution of the conditional run length quantile (𝑪𝑹𝑳𝒒)  

The cumulative distribution function (cdf) of the conditional run length 

quantiles for the one- and two-sided 𝑆2 charts (𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) and 𝐶𝑅𝐿𝑞,𝑡𝑤𝑜(𝜌

2)), 

that is, 𝐹𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑡) and 𝐹𝐶𝑅𝐿𝑞,𝑡𝑤𝑜(𝑡) (Equations (38) and (39), respectively) are 
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provided. Substituting 𝑞 = 0.05 and 𝑞 = 0.50 (conditional median run length 

𝐶𝑀𝑅𝐿) into both equations, the cdf’s of both important order quantiles can be 

obtained. The proof of the obtained cdf of the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 (𝐹𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑡)) is based on 

exact analytical derivations and is presented step by step in Appendix E. Similarly 

to the one-sided chart, the cdf of the 𝐶𝑅𝐿𝑞,𝑡𝑤𝑜 (𝐹𝐶𝑅𝐿𝑞,𝑡𝑤𝑜(𝑡)) is obtained using the 

same analytical derivations of the one-sided case as well as the derivations provided 

in the context of two-sided tolerance interval for the sample variance (Equation 23 

in Subchapter 3.1). Hence, the cdf’s of the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) and 𝐶𝑅𝐿𝑞,𝑡𝑤𝑜(𝜌

2) are 

given by Equations (38) and (39), respectively:       

𝐹𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) ≤ 𝑡) 

= {

0,  𝑡 < 1

𝐹𝜒𝑚(𝑛−1)
2 (

𝜌2𝑚(𝑛−1)𝜒
𝑛−1, (1−𝑞)1 ⌊𝑡⌋⁄
2

𝜒𝑛−1, 1−𝛼
2 ) ,  𝑡 ≥ 1 

, 

(38) 

where 𝑡 is a real value and ⌊𝑡⌋ denotes the largest integer less than or equal to 𝑡. 

Note that, from Equation (38), the cdf of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2), which is a non-decreasing 

step function, depends on 𝑚, 𝑛 and 𝛼 values.   

𝐹𝐶𝑅𝐿𝑞,𝑡𝑤𝑜(𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑡𝑤𝑜(𝜌
2) ≤ 𝑡) = 1 − (𝑢2 − 𝑢1),  𝑡 ≥ 1, (39) 

where 𝑢1 and 𝑢2 are the two solutions of 𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑈; 𝜌
2) =

1

1−(1−𝑞)1 ⌊𝑡⌋⁄ , that is 

𝐹𝜒𝑛−12 (
𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑈)

𝜌2𝑚(𝑛 − 1)
𝜒
𝑛−1,1−

𝛼
2

2 )− 𝐹𝜒𝑛−12 (
𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑈)

𝜌2𝑚(𝑛 − 1)
𝜒
𝑛−1,

𝛼
2
 

2 ) = (1 − 𝑞)1 ⌊𝑡⌋⁄ , 

for 𝑈, being 𝑢1 < 𝑢2. As opposed to the distribution of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒, this is not possible 

to obtain a closed-form equation for the cdf of the 𝐶𝑅𝐿𝑞,𝑡𝑤𝑜, so numerical (search) 

method is required, similarly to the cdf of the 𝐶𝐴𝑅𝐿𝑡𝑤𝑜 (Equation 36).    

To the best of our knowledge, this is the first time that the distributions of the 

𝐶𝑅𝐿𝑞 of the one- and two-sided 𝑆2 charts are examined. As noted before 

(Introduction), previous works have studied the unconditional 𝑅𝐿 quantiles 

(including the unconditional median run-length 𝑀𝑅𝐿0) only for the �̅� chart.
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Performance and design of the phase II 𝑺𝟐 control chart with 
estimated parameter  

The study of control chart performance is a very important concern for 

researchers and practitioners involved in SPC not just because they can analyze the 

chart’s ability to detect quickly shifts in the process parameter(s), but also because 

the examination of chart performance enables them to be able to make decisions 

about control chart design. In this work, the term “design” must be understood as 

the decision-making related to the choice of the amount of Phase I reference data 

and/or the decision of adjusting or not the control limits for ensuring a specified IC 

performance of the Phase II chart and, if adjusting them, the value of the adjusted 

control limit factor, which are used to construct the control charts.  

As noted in previous chapters, authors studying the design and performance 

of 𝑆2 and 𝑆 control charts with estimated parameters have followed principally 

either the unconditional perspective or the conditional perspective separately, i.e., 

according to the marginal (unconditional) and conditional distributions of the 𝑅𝐿, 

respectively, and considered only one of two configurations, namely, either the one-

sided chart (without a lower control limit) or the two-sided chart, alternately, but 

never on both.  

Under the unconditional perspective, the design of control charts is based 

on a specified unconditional 𝐴𝑅𝐿0. However, since differences in the actual 

performance of control charts of a same application but constructed based on 

different Phase I reference samples (the “practitioner-to-practitioner variability”) 

may be significantly large, the focus has moved from the unconditional 𝑅𝐿 

distribution, which had been the prevailing approach until then, to the conditional 

𝑅𝐿 distribution and associated performance measures (we called the conditional 

perspective). In this chapter, we focus on the random variable 𝐶𝐴𝑅𝐿0 as the main 

conditional performance measure, and then its distribution and properties are 

examined.  
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Each type of 𝑆2 chart (one-sided or two-sided charts) has a particular 

purpose and is widely used in monitoring the process dispersion, specifically, the 

upper one-sided chart is used to know only how large the process dispersion is 

(interest in process deterioration) and the two-sided chart is used to know how large 

as well as how small the process dispersion is (interest in process deterioration and 

improvement). 

The indicated differences, related to type of chart configuration and 

perspectives for designing chart, could become confusing for the practitioner. 

Jardim et al. (2019) presented a comparative study on the two mentioned 

perspectives for the �̅� chart. However, considering 𝑆2 and 𝑆 control charts, which 

are the principal charts for monitoring the process variability, there is no similar 

study guiding the practitioner for decision making of the design of 𝑆2 and 𝑆 charts. 

For that reason, a complete comparative study of the unconditional and conditional 

perspectives for designing one- and two-sided Phase II 𝑆2 charts is undertaken, and 

some important gaps (in the studies of previous authors) are filled. This proposed 

study is useful to assess if Phase II charts with adjusted control limits that guarantee 

a desired IC performance based on one perspective are able to satisfy the IC 

performance under the other perspective so that a better and complete 

understanding of chart performance can be gained and a proper chart design can be 

chosen. The chart design and the resulting Phase II performance of charts with 

adjusted limits are also compared to the ones with unadjusted limits and the ones 

for the known-parameter case (nominal chart performance). Such a comparative 

study is relevant due to the costs involved in designing control charts (e.g., cost of 

sampling, cost of unnecessary production stops due to false alarms, and costs of 

producing defective units).  

First of all, the Phase II performance of 𝑆2 control chart with traditional 

control limits that are not adjusted is examined. This Phase II performance depends 

on a specified nominal false alarm rate (𝛼), the amount of Phase I reference data 

(𝑚 and 𝑛) to estimate 𝜎0
2 and the chosen estimator of 𝜎0

2. The discrepancy between 

the Phase II performance of charts with unadjusted control limits, measured 

according to the unconditional and conditional perspectives, and the one in the 

known-𝜎0
2 case (nominal chart performance) is presented and discussed. Next, we 

find the amount of Phase I reference data (several combinations of values of 𝑚 and 
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𝑛) that leads to a non-significant level of this discrepancy. Specifically, under the 

unconditional perspective, we find the number of Phase I samples (𝑚) required to 

achieve an unconditional 𝐴𝑅𝐿0 close to the one of the chart with known 𝜎0
2; and 

under the conditional perspective, the minimum 𝑚 required to guarantee a tolerated 

lower bound for 𝐶𝐴𝑅𝐿0 with a high probability (i.e., the 𝐸𝑃𝐶 for 𝐶𝐴𝑅𝐿0). It is 

important to note that all works on number of Phase I samples that have been 

focused on the unconditional perspective considered only two-sided charts, while 

the sole work that has been conducted under the conditional perspective is about 

upper one-sided charts (see Table 1). To complement this assessment, the required 

minimum values of 𝑚 for one-sided versus two-sided charts (under each 

perspective) are compared, as well as the required minimum 𝑚 for the 

unconditional versus conditional perspectives (regarding each type of chart). 

Practitioners deal with a practical problem because the required number of 

Phase I samples (𝑚) to ensure a desired (conditional or unconditional) IC 

performance is large and usually infeasible. Due to this difficulty, adjusting the 

control limits represents an effective solution to guarantee a desired IC performance 

with a practical amount of 𝑚 at hand. To this end, formulas for the adjusted limits 

factors of the one- and two-sided 𝑆2 charts obtained under the unconditional and 

conditional perspectives are provided. Studies on adjustments under the 

unconditional perspective have been addressed only on the two-sided limits and no 

one has worked on the upper one-sided chart, while, under the conditional 

perspective, works have been focused on the upper one-sided chart (see Table 2), 

with the exception of Guo & Wang (2017) that presented their paper when the 

present work was in progress and the formulation of the adjusted control limits were 

already obtained (as indicated before in Chapter 1). In addition, researchers neither 

compared the unconditional and conditional perspectives for adjusting control 

limits of the 𝑆2 (or 𝑆) charts, regarding each chart (one-sided and two-sided charts), 

nor the adjustments of the one-sided and the two-sided 𝑆2 (or 𝑆) charts under each 

perspective. Thus, in the next subchapters, we pursue to fill the gaps mentioned 

(related to the three major questions from Jensen et al. (2006), which are indicated 

in Subchapter 2.1) and do such comparative analysis of the adjustments between 

these two perspectives and types of charts.  
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Finally, it is worth to note that, for designing two-sided 𝑆2 chart under the 

conditional perspective, we exploit the relationship between the exact two-sided 

tolerance interval for the sample variance and the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 (or, 

equivalently, the cdf of the 𝐶𝐹𝐴𝑅) of the two-sided 𝑆2 chart and, therefore, the 

minimum Phase I samples (𝑚) and the adjusted control limits to ensure a tolerated 

lower bound of the 𝐶𝐴𝑅𝐿0 (provided in Subchapters 5.2.2 and 5.3.2, respectively) 

are obtained on the basis of the derivations of the exact two-sided tolerance intervals 

for samples variances, which were given in Subchapter 3.1.           

 

5.1  

Phase II performance of one-sided and two-sided 𝑺𝟐 charts with 
unadjusted limits  

Table 8 shows values of certain measures associated with the 𝐶𝐴𝑅𝐿0, 

namely, expected value 𝐴𝑅𝐿0, standard deviation 𝑆𝐷𝐴𝑅𝐿0, and the Exceedance 

Probability 𝐸𝑃 (from Equation 37 for 𝜀 = 0 and 𝜀 = 0.20) for the one- and two-

sided 𝑆2 charts with unadjusted limits (𝛼 = 0.0027, i.e., with a nominal 𝐴𝑅𝐿0 of 

370.4) considering several values of 𝑚 and 𝑛 to estimate 𝜎0
2. The percentage ratio 

between the unconditional 𝐴𝑅𝐿0 and the nominal 𝐴𝑅𝐿0 (
𝐴𝑅𝐿0

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐴𝑅𝐿0
100%) is 

also provided in Table 8. The exact values of 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 are calculated 

numerically, substituting Equations (14) and (15) into Equations (18)-(20) with 𝜌 =

1, and the plots of them as functions of 𝑚, 𝑛 = 5 and 𝛼 = 0.0027 are shown in the 

panels (a) and (b) of Figure 3, respectively. In addition, Figure 4 provides modified 

boxplots that show the distributions and some percentiles (1𝑡ℎ, 5𝑡ℎ, 25𝑡ℎ, 50𝑡ℎ, 

75𝑡ℎ, 95𝑡ℎ and 99𝑡ℎ) of the 𝐶𝐴𝑅𝐿0 of one- and two-sided charts, for 𝑚 = 25 and 

𝑚 = 250 (panels a and b of Figure 4, respectively), 𝑛 = 5 and 𝛼 = 0.0027. 

From Table 8, the Phase II performance difference between the two charts 

is noticeable: the values of 𝐴𝑅𝐿0,𝑜𝑛𝑒 are always larger than the nominal value 

370.4, while the 𝐴𝑅𝐿0,𝑡𝑤𝑜 values are always somewhat smaller. As the amount of 

Phase I samples (𝑚) increases, the 𝐴𝑅𝐿0,𝑜𝑛𝑒 decreases and converges to 370.4, 

while the 𝐴𝑅𝐿0,𝑡𝑤𝑜 increases and converges to 370.4 (see the plots of panel a of 

Figure 3). For instance, when 𝑛 = 3 and 𝑚 =  25, the 𝐴𝑅𝐿0,𝑜𝑛𝑒 = 852.9 is more 

than twice larger than the nominal value, while 𝐴𝑅𝐿0,𝑡𝑤𝑜 = 336.4 is only 9.2% 

smaller than this nominal one.   
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Table 8 - Associated measures of the 𝑪𝑨𝑹𝑳𝟎 of the one- and two-sided 𝑺𝟐 charts with unadjusted 

limits (nominal 𝑨𝑹𝑳𝟎 of 𝟑𝟕𝟎. 𝟒) as functions of of m and n 

  𝐴𝑅𝐿0 

= 𝐸(𝐶𝐴𝑅𝐿0) 

𝐴𝑅𝐿0

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐴𝑅𝐿0
100% 

𝑆𝐷𝐴𝑅𝐿0 

= 𝑆𝐷(𝐶𝐴𝑅𝐿0) 
𝑃(𝐶𝐴𝑅𝐿0 ≥ 𝑇𝑜𝑙) 

  𝑇𝑜𝑙 = 370.4 𝑇𝑜𝑙 = 308.6 

𝑚 𝑛 
One-

sided 

Two-

sided 

One-

sided 

Two-

sided 

One-

sided 

Two-

sided 

One-

sided 

Two-

sided 

One-

sided 

Two-

sided 

25 

3 852.9 336.4 230.3% 90.8% 2889.9 141.8 47.3% 47.3% 53.5% 58.8% 

5 674.2 331.9 182.0% 89.6% 1292.9 113.4 48.1% 47.7% 55.3% 62.4% 

9 587.4 327.1 158.6% 88.3% 823.5 90.6 48.7% 45.0% 56.7% 65.6% 

50 

3 541.6 351.1 146.2% 94.8% 658.9 116.0 48.1% 48.1% 56.9% 64.2% 

5 490.8 348.3 132.5% 94.0% 458.1 91.2 48.7% 48.7% 58.7% 68.5% 

9 461.7 345.4 124.7% 93.2% 357.1 70.9 49.1% 48.4% 60.4% 73.1% 

75 

3 473.8 356.9 127.9% 96.3% 406.5 100.8 48.5% 48.5% 59.1% 67.9% 

5 445.2 354.8 120.2% 95.8% 308.6 78.7 48.9% 48.9% 61.2% 72.7% 

9 428.1 352.7 115.6% 95.2% 252.5 60.4 49.2% 49.1% 63.0% 77.8% 

100 

3 444.4 360.0 120.0% 97.2% 309.7 90.5 48.7% 48.7% 61.0% 70.8% 

5 424.6 358.4 114.6% 96.8% 244.1 70.3 49.1% 49.1% 63.2% 75.9% 

9 412.6 356.7 111.4% 96.3% 204.1 53.5 49.3% 49.3% 65.2% 81.3% 

150 

3 417.5 363.2 112.7% 98.1% 224.0 76.9 48.9% 48.9% 63.8% 75.3% 

5 405.3 362.1 109.4% 97.8% 182.6 59.4 49.2% 49.2% 66.3% 80.8% 

9 397.8 361.0 107.4% 97.5% 155.8 44.8 49.5% 49.5% 68.6% 86.3% 

200 

3 404.9 365.0 109.3% 98.5% 183.0 68.1 49.1% 49.1% 66.2% 78.7% 

5 396.2 364.1 107.0% 98.3% 151.6 52.4 49.3% 49.3% 68.9% 84.4% 

9 390.7 363.2 105.5% 98.1% 130.6 39.4 49.5% 49.5% 71.3% 89.8% 

250 

3 397.7 366.0 107.4% 98.8% 158.1 61.7 49.2% 49.2% 68.1% 81.5% 

5 390.8 365.3 105.5% 98.6% 132.2 47.4 49.4% 49.4% 71.0% 87.2% 

9 386.5 364.6 104.3% 98.4% 114.5 35.5 49.6% 49.6% 73.6% 92.2% 

 

∞ 

 

3 370.4 370.4 100% 100% 0.0 0.0 100% 100% 100% 100% 

5 370.4 370.4 100% 100% 0.0 0.0 100% 100% 100% 100% 

9 370.4 370.4 100% 100% 0.0 0.0 100% 100% 100% 100% 

 

 

Figure 3 - a) 𝑨𝑹𝑳𝟎,𝒐𝒏𝒆 and 𝑨𝑹𝑳𝟎,𝒕𝒘𝒐, and (b) 𝑺𝑫𝑨𝑹𝑳𝟎,𝒐𝒏𝒆 and 𝑺𝑫𝑨𝑹𝑳𝟎,𝒕𝒘𝒐 of the 𝑺𝟐 control charts 

with unadjusted limits (nominal 𝑨𝑹𝑳𝟎 = 𝟑𝟕𝟎. 𝟒) as a function of 𝒎 and 𝒏 = 𝟓 
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Figure 4 - Distributions and some percentiles of 𝑪𝑨𝑹𝑳𝟎,𝒐𝒏𝒆 and 𝑪𝑨𝑹𝑳𝟎,𝒕𝒘𝒐 of the 𝑺𝟐 charts with 

unadjusted limits (nominal 𝑨𝑹𝑳𝟎 = 𝟑𝟕𝟎. 𝟒) for 𝒏 = 𝟓 and (a) 𝒎 = 𝟐𝟓, 𝒎𝒂𝒙 (𝑪𝑨𝑹𝑳𝟎,𝒕𝒘𝒐) =

𝟒𝟓𝟗. 𝟏 and (b) 𝒎 = 𝟐𝟓𝟎, 𝒎𝒂𝒙 (𝑪𝑨𝑹𝑳𝟎,𝒕𝒘𝒐) = 𝟒𝟓𝟗. 𝟏 

 

This significant difference in the values of 𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝐴𝑅𝐿0,𝑡𝑤𝑜 (expected 

values of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜, respectively), which is shown in Table 8 

and plots of Figure 3(a), can be explained by the shapes and variabilities of their 

corresponding distributions. Regarding the shapes (see the plots of Figure 4), the 

distribution of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 is highly right-skewed, while the distribution of the 

𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 is left-skewed with a finite upper bound (from Figure 4, note that 

𝑚𝑎𝑥 (𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) = 459.1 depends only on 𝑛 = 5 and 𝛼 = 0.0027, regardless the 

value of 𝑚), as was described in Subchapter 4.2. With respect to the variability of 

the 𝐶𝐴𝑅𝐿0 distribution, the dispersion of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 distribution, measured in 

terms of the 𝑆𝐷𝐴𝑅𝐿0, is much larger than the one of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 distribution (see 

Table 8 and also the plots of Figure 3b): the values of 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 vary 

approximately between twice and eleven-times the 𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜 values. For 

instance, for 𝑚 = 25 and 𝑛 = 5, 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 = 1292.9 and 𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜 = 113.4. 

The variability of the 𝐶𝐴𝑅𝐿0 gets smaller when 𝑚 and 𝑛 increase, for example, for 

𝑚 = 250 and 𝑛 = 9, 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 = 114.5 and 𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜 = 35.5.    

For the sake of obtaining more information on Phase II performance of 

charts with unadjusted limits under the conditional point of view, from Table 8, the 

𝐸𝑃′𝑠 of the 𝐶𝐴𝑅𝐿0 of charts with unadjusted control limits are computed. When 

𝜀 = 0, 𝛼 = 0.0027 and all values of 𝑚 and 𝑛, note that 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) is a 

little bit less than 50% for the one- and two-sided charts, as can be seen in Figure 

4 (and also in Figure 2). These results represent unwanted performance measures 

of charts with unadjusted limits since excessive false alarms may be expected 

compared with the nominal level. Even though the value of 𝜀 is increased up 

to 20%, these 𝐸𝑃′𝑠 (for both charts) are not large enough, such as 90% or 95%, to 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



85 

 

avoid too many false alarms in most of the cases. For example, 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) 

is 58.7% and 68.5% for the one-sided and two-sided charts, respectively, for 𝑚 =

50 and 𝑛 = 5. Put another way, values of the 𝐶𝐴𝑅𝐿0 smaller than the tolerated 

minimum (308.6) are expected in more than 41% and 31% of the cases (for one- 

and two-sided charts, respectively) albeit the nominal 𝐴𝑅𝐿0 is 370.4. These high 

risks (probabilities) are undesirable outcomes of IC performance that could lead to 

a serious problem in designing charts. Only when 𝑚 and 𝑛 are large, 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) increases substantially in some cases, specially, for the two-

sided chart. For instance, given 𝑛 = 5, when 𝑚 is increased up to 250, 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) attains 87.2% for the two-sided chart, however, the 

probabilities for the one-sided chart do not exceed 71%. From Table 8, given 

certain values of 𝑛, 𝛼 and 𝜀 and a specific chart (one- or two-sided chart), the values 

of the 𝐸𝑃′𝑠 increases when the variability of the 𝐶𝐴𝑅𝐿0 (measured by the 𝑆𝐷𝐴𝑅𝐿0) 

decreases, that is, when 𝑚 takes on larger values. For the same values of 𝑚, 𝑛, 𝛼 

and 𝜀 in both types of charts, the values of the 𝐸𝑃′𝑠 of the two-sided chart are larger 

than the ones of the one-sided chart since the variability of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 

distribution is much larger than the one for the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 (see, for instance, Figures 

3b and 4). Accordingly, since the risk of poor IC performance of one-sided and two-

sided charts with unadjusted limits, based on the complement of the 𝐸𝑃′𝑠 of the 

𝐶𝐴𝑅𝐿0, is generally high, the practitioners face a serious problem that can be solved 

by adjusting the control limits, as will be examined later.  

 

5.2  

Number of Phase I samples (𝒎) that guarantees an IC performance of 

Phase II 𝑺𝟐 chart   

One of the more interesting practical question related to the effect of 

parameter estimation on the chart performance, as was highlighted by Jensen et al. 

(2006), is the determination of the amount of the Phase I reference data that enables 

to achieve a desired IC performance of Phase II control charts, in terms of either 

conditional or unconditional performance measure, using the traditional 

uncorrected control limits (also called unadjusted control limits). As we have noted 

previously in Table 1, note that all works on this question under the unconditional 

point of view have considered only two-sided charts, while the unique work under 
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the conditional point of view has considered only upper one-sided charts. In light 

of this, the distribution of the 𝐶𝐴𝑅𝐿0 and its properties, such as its expected value 

(the unconditional 𝐴𝑅𝐿0) and its 𝐸𝑃, are first used to find the number of Phase I 

samples (𝑚) that leads an unconditional 𝐴𝑅𝐿0 of the one-sided 𝑆2 chart close to the 

advertised nominal 𝐴𝑅𝐿0, which is typical in the known-𝜎0
2 case, and second, to 

compute the minimum 𝑚 that guarantees a conditional IC performance of the two-

sided 𝑆2 chart using the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0.  

 

5.2.1  

Number of Phase I samples (𝒎) that guarantees an unconditional IC 
performance  

From Table 8, the findings revealed by Chen (1998), Maravelakis et al. (2012) 

and Castagliola et al. (2009) for the two-sided charts can be verified, that is, the 

minimum number of Phase I samples (𝑚) must be around 200 (with a common 𝑛 

of 5) for obtaining an unconditional 𝐴𝑅𝐿0 (expected value of the 𝐶𝐴𝑅𝐿0) of the 

two-sided charts close to the nominal 𝐴𝑅𝐿0 = 370.4.  

Given specified values of 𝑛 and 𝛼 (for instance, see plots of Figure 3(a) when 

𝑛 = 5 and 𝛼 = 0.0027), as the value of 𝑚 increases, the 𝐴𝑅𝐿0,𝑡𝑤𝑜 increases and 

converges to the nominal 𝐴𝑅𝐿0 faster than the 𝐴𝑅𝐿0,𝑜𝑛𝑒 which, differently from the 

two-sided chart, decreases. Accordingly, 𝐴𝑅𝐿0,𝑡𝑤𝑜 reaches a value close to the 

nominal 370.4 with much less number of Phase I samples (𝑚) than 𝐴𝑅𝐿0,𝑜𝑛𝑒. For 

instance, when 𝑛 = 5 and 𝑚 =  25, the 𝐴𝑅𝐿0,𝑜𝑛𝑒 = 674.2 is 82% larger than the 

nominal value, while 𝐴𝑅𝐿0,𝑡𝑤𝑜 = 331.9 is just 10.4% smaller than the nominal 

370.4. If 𝑚 increases to 50, 𝐴𝑅𝐿0,𝑡𝑤𝑜 = 348.3 is now 6% smaller, while 

𝐴𝑅𝐿0,𝑜𝑛𝑒 = 490.8 is still not close to the nominal one, indeed, this is 32.5% larger. 

The values of (
𝐴𝑅𝐿0

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐴𝑅𝐿0
100%) in Table 8 bring to light an interesting 

finding, given 𝑛 = 5 and a value of 𝑚 of at least 200 (the minimum recommended), 

the 𝐴𝑅𝐿0,𝑡𝑤𝑜 is no more than 1.7% lower than the nominal 𝐴𝑅𝐿0 = 370.4. In the 

case of the one-sided 𝑆2 chart, the 𝐴𝑅𝐿0,𝑜𝑛𝑒 is no more than 7% higher than the 

nominal 𝐴𝑅𝐿0. Hence, given the same 𝑛 and 𝛼 (nominal 𝐴𝑅𝐿0) for the two types 

of charts, the minimum 𝑚 to achieve a value close to a desired unconditional 𝐴𝑅𝐿0 
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for the one-sided chart (computed for the first time in the literature) is moderately 

larger than the minimum 𝑚 for the two-sided chart.    

 

5.2.2  

Number of Phase I samples (𝒎) that guarantees a conditional IC 
performance  

A new perspective for designing control charts with estimated parameters, the 

so-called conditional perspective, has arisen in the last few years. This is the 

predominant point of view in the most recent researches that take into account the 

“practitioner-to-practitioner” variability inherent to any control chart with 

estimated parameters. This perspective is based on the use of the 𝐸𝑃𝐶 (Equation 

37), where the randomness of the 𝐶𝐴𝑅𝐿0 is considered through its distribution. 

Under this perspective, the question of interest is: What is the minimum number of 

Phase I reference samples (𝑚) that ensures a minimum tolerated value of the 𝐶𝐴𝑅𝐿0 

with a high probability of at least 1 − 𝑝 (e.g., 0.9)? Such minimum tolerated value 

is generally equal to or slightly smaller than the nominal 𝐴𝑅𝐿0, e.g., 95% of 370.4.  

For the case of the upper one-sided 𝑆 and 𝑆2 charts, with the same notation 

considered in the present thesis, Epprecht et al. (2015) presented the inequality 

𝑚(𝑛 − 1)𝜒𝑛−1, [1−(1+𝜀)𝛼]
2 ≤ 𝜒𝑚(𝑛−1), 𝑝

2 (𝜒𝑚(𝑛−1), 1−𝛼
2 ) that is used to obtain the 

smallest value of 𝑚 by a search algorithm. It is worth to remark that the expression 

of this inequality takes the relational operator “less than or equal to” (≤) instead of 

“greater than or equal to” (≥) that appears in Equation (17) in Epprecht et al. (2015). 

This was a typographical error in the cited paper. 

From what we know, there is no similar research in the literature about the 

two-sided chart. Motivated by this, using the cdf of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 (Equation 36) 

and the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 (Equation 37), given the chart with unadjusted limits 

(𝛼 = 0.0027), the minimum tolerated value of the 𝐶𝐴𝑅𝐿0 (defined by 𝛼 and 𝜀), the 

sample size 𝑛 and a specified high probability 1 − 𝑝, the minimum 𝑚 is obtained 

by a search algorithm so that 𝐹𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 (𝑡 =
1

(1+𝜀)
(
1

𝛼
) ;𝑚) ≤ 𝑝. Note that the last 

“=” operator in Equation (37) must be replaced by the “≥” operator because 𝑚 is 

an integer and a perfect match of the probability (1 − 𝑝) is generally not possible.  
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As highlighted above, equations to find the minimum 𝑚 for the two-sided 

chart can be derived on the basis of the exact two-sided tolerance interval for the 

sample variance. From Equations (33) and (34) and considering the four 

“components” (a)-(d) in Subchapter 4.1 (recall that the sample size 𝑛 is the same 

for the 𝑆2 chart and tolerance intervals for sample variances), we can find the 

minimum number of Phase I reference samples (𝑚) according to the 𝐸𝑃𝐶 for the 

𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 (Equation 37) as follows:     

 In the context of 𝑺𝟐 control chart: given the values of 𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡) = 𝑝, 

𝑡 =
1

(1+𝜀)𝛼
 and 𝛼 (unadjusted limits), we want to obtain 𝑚 (Equation 37).  

 In the context of tolerance interval for the sample variance: the three 

known “components” are 𝛾 = 1 − 𝑝, 𝛽 = (1 + 𝜀)𝛼 and 𝛽∗ = 𝛼, while the 

unknown “component” is 𝑚. Thus, 𝑚 is found using two-sided tolerance 

interval (Equation 24) . 

Table 9 provides the minimum 𝑚 needed to guarantee a specified conditional 

IC performance (in terms of the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0) of the one-sided and two-sided 

𝑆 and 𝑆2 charts. The value of 𝑚 is computed for several values of 𝑛, 𝛼 = 0.005, 

𝜀 = {10%, 20%} and 𝑝 = {0.05, 0.10}. In addition, the percentage ratio of the 

minimum values of 𝑚 for both charts, which is given by %𝑅𝑚 =

𝑚 for two−sided chart

𝑚 for one−sided chart
100%, is presented.  

As was shown by Epprecht et al. (2015), the required amount of Phase I 

reference samples (𝑚) is rather large (and almost always impractical). Furthermore, 

an interesting outcome is revealed in Table 9, for the same size of samples 𝑛 (in 

Phase I and II), the same specified minimum tolerated of the 𝐶𝐴𝑅𝐿0 to be 

guaranteed with the same specified high probability (the same specified values of 

𝜀, 𝛼 and 𝑝), the minimum number of 𝑚 of the two-sided chart is much smaller than 

the corresponding one of the one-sided chart, even with large sample sizes such as 

𝑛 = 30. More specifically, from the values of %𝑅𝑚, the minimum number of 𝑚 

needed by the two-sided charts are between 10% and 33% of the ones by one-sided 

charts. Despite these reductions, often, the amounts of 𝑚 for two-sided charts are 

still infeasible to collect in practice. For example, from Table 9, given 𝑛 = 5, the 

minimum 𝑚 for ensuring 𝑃(𝐶𝐴𝑅𝐿0 ≥ 181.8) ≥ 95% (𝜀 = 10% and 𝑝 = 0.05) is 

6337 for the one-sided chart, while for the two-sided chart, the minimum 𝑚 is 1325 
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samples: a reduction of 79%. However, note that, when 𝑛 is increased and/or the 

desired (specified) IC performance is less rigorous (namely, when the values of 𝜀 

and/or 𝑝 are increased), the minimum 𝑚 could decrease significantly. For instance, 

given 𝑛 = 20, the minimum 𝑚 for ensuring 𝑃(𝐶𝐴𝑅𝐿0 ≥ 166.7) ≥ 90% (𝜀 = 20% 

and 𝑝 = 0.10) is 668 for the one-sided chart, while for the two-sided chart, the 

minimum 𝑚 is 106 samples, in this case, a reduction of 84%. Hence, the results in 

Table 9 reveal that there are some cases in the two-sided chart (conditional 

perspective) where the minimum 𝑚 is no more than 120, for instance, when 𝑛 ≥

16, 𝜀 ≥ 20% and 𝑝 ≥ 0.10.                 

Table 9. Minimum number of Phase I samples (𝒎) required to guarantee a conditional IC 

performance of the one- and two-sided 𝑺𝟐 charts with unadjusted limits (𝜶 = 𝟎. 𝟎𝟎𝟓) 

 𝜀 = 0.10  𝜀 = 0.20 

 𝑝  𝑝 

  0.05     0.10  0.05  0.10 

n 
one-  

sided 

two-

sided 
%𝑅𝑚  

one-  

sided 

two-

sided 
%𝑅𝑚  

one-  

sided 

two-

sided 
%𝑅𝑚 

 one-  

sided 

two-

sided 
%𝑅𝑚 

2 11224 3366 30%  6838 2056 30%  3046 1002 33%  1862 616 33% 

3 8298 2144 26%  5052 1309 26%  2252 652 29%  1375 400 29% 

4 7053 1623 23%  4293 991 23%  1914 503 26%  1168 309 26% 

5 6337 1325 21%  3856 809 21%  1719 419 24%  1049 257 24% 

6 5861 1131 19%  3566 690 19%  1590 364 23%  970 223 23% 

7 5518 994 18%  3357 607 18%  1497 325 22%  913 199 22% 

8 5257 893 17%  3197 545 17%  1426 296 21%  869 181 21% 

9 5049 814 16%  3071 497 16%  1370 273 20%  835 167 20% 

10 4880 751 15%  2968 458 15%  1324 255 19%  806 156 19% 

11 4738 700 15%  2881 427 15%  1285 240 19%  783 147 19% 

12 4618 658 14%  2808 401 14%  1252 228 18%  763 140 18% 

13 4514 622 14%  2745 379 14%  1224 218 18%  746 133 18% 

14 4423 591 13%  2689 360 13%  1199 209 17%  730 128 18% 

15 4342 564 13%  2640 344 13%  1178 201 17%  717 123 17% 

16 4271 541 13%  2597 330 13%  1158 194 17%  705 119 17% 

17 4206 520 12%  2557 317 12%  1141 188 16%  695 115 17% 

18 4148 502 12%  2522 306 12%  1125 182 16%  685 112 16% 

19 4095 485 12%  2489 296 12%  1110 178 16%  676 109 16% 

20 4046 470 12%  2460 287 12%  1097 173 16%  668 106 16% 

25 3854 413 11%  2342 252 11%  1045 156 15%  636 96 15% 

30 3716 374 10%  2259 228 10%  1007 144 14%  613 89 15% 

 

From Tables 8 and 9, given the same setting (namely, the same 𝑛 and 𝛼), we 

can realize that the conditional perspective generates a larger number of Phase I 

samples (𝑚) compared to the unconditional perspective, for the one-sided chart as 

well as for the two-sided one.  

As mentioned earlier, since large amounts of Phase I reference data required 

to attain a desired (unconditional or conditional) IC performance of one-sided and 
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two-sided 𝑆2 charts, some authors have proposed adjustments to the control limit(s) 

in order to guarantee this desired IC performance with a practical amount of Phase 

I reference data. Furthermore, since the risk of poor IC performance (in terms of 

the 𝐸𝑃′𝑠 of the 𝐶𝐴𝑅𝐿0) of charts with unadjusted limits is most often high, the 

practitioners face a considerable issue that can be tackled by adjusting the control 

limits, as will be seen below.  

 

5.3  

Adjusting the control limits of 𝑺𝟐 control charts  

Adjusted or corrected control limits, denoted as 𝑈𝐶�̂�𝑜𝑛𝑒
∗  and (𝐿𝐶�̂�𝑡𝑤𝑜

∗ , 

𝑈𝐶�̂�𝑡𝑤𝑜
∗ ) for the one- and two-sided charts, respectively, are determined by 

replacing the traditional unadjusted control limit factors of one-sided and two-sided 

charts (𝑈𝑜𝑛𝑒 and (𝐿𝑡𝑤𝑜, 𝑈𝑡𝑤𝑜), respectively, from Equations 7 and 8) by the 

corresponding “new” adjusted or corrected control limit factors (𝑈𝑜𝑛𝑒
∗  and (𝐿𝑡𝑤𝑜

∗ , 

𝑈𝑡𝑤𝑜
∗ ), respectively, from Equations 40 and 41, which are shown below) in order to 

assure a specified (either unconditional or conditional) IC performance. In other 

words, the adjusted control limits are determined by replacing the nominal false 

alarm rate (𝛼) of one-sided and two-sided charts by the “new” adjusted false alarm 

rate 𝛼∗.   

The values of 𝛼∗ should be found and are required to compute the adjusted 

upper one-sided control limit factor (𝑈𝑜𝑛𝑒
∗ ) and the adjusted (lower and upper) 

control limit factors (𝐿𝑡𝑤𝑜
∗ , 𝑈𝑡𝑤𝑜

∗ ) which, in turn, are used to obtain the 

corresponding adjusted upper one-sided 𝑆2 control limit (𝑈𝐶�̂�𝑜𝑛𝑒
∗ ) and the adjusted 

(lower and upper) two-sided 𝑆2 control limits (𝐿𝐶�̂�𝑡𝑤𝑜
∗ , 𝑈𝐶�̂�𝑡𝑤𝑜

∗ ), respectively, from 

Equations (40) and (41):   

𝑈𝐶�̂�𝑜𝑛𝑒
∗ =

𝜒𝑛−1,1−𝛼∗ 
2

(𝑛−1)
𝑆𝑝
2 = 𝑈𝑜𝑛𝑒

∗ 𝑆𝑝
2, (40) 

𝐿𝐶�̂�𝑡𝑤𝑜
∗ =

𝜒𝑛−1,𝛼∗ 2⁄  
2

(𝑛−1)
𝑆𝑝
2 = 𝐿𝑡𝑤𝑜

∗ 𝑆𝑝
2 and 𝑈𝐶�̂�𝑡𝑤𝑜

∗ =
𝜒𝑛−1,1−𝛼∗ 2⁄  
2

(𝑛−1)
𝑆𝑝
2 = 𝑈𝑡𝑤𝑜

∗ 𝑆𝑝
2. (41) 

This subchapter is divided in two parts. We provide formulas of the adjusted 

false alarm rate 𝛼∗ of the (one- and two-sided) 𝑆2 charts that are obtained under 

both the unconditional and conditional perspectives, respectively, in Subchapters 

5.3.1 and 5.3.2.  
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5.3.1  
Adjusting the control limits under the unconditional perspective 

Under the unconditional perspective (see Table 2), the adjusted limits (or, 

specifically, the adjusted factors), from Equations (40) and (41), are obtained given 

a desired unconditional in-control average run length, denoted as 𝐴𝑅𝐿0
∗ . The 

traditional 𝐴𝑅𝐿0
∗  is 370.4, i.e., the value of the 𝐴𝑅𝐿0 in the 𝜎0

2-known case, given 

a nominal false alarm rate (𝛼) of 0.0027. The adjusted control limits are calculated 

by first obtaining the value of 𝛼∗ that yields this desired 𝐴𝑅𝐿0
∗ . The value of 𝛼∗ is 

found by solving the resulting equation of making Equation (18), for 𝜌 = 1, equal 

to 𝐴𝑅𝐿0
∗ .  

 

The adjusted factor of one-sided 𝑺𝟐 control chart 

Equation (14) with 𝜌 = 1 and 𝛼 = 𝛼∗ must be substituted into Equation (18). 

Thus, 𝛼∗ is found by a search method from 

𝐴𝑅𝐿0,𝑜𝑛𝑒
∗ = ∫ (1 − 𝐹𝜒𝑛−12 (

𝑌

𝑚(𝑛−1)
𝜒𝑛−1,1−𝛼∗
2 ))

−1
∞

0
𝑓𝑌(𝑦)𝑑𝑦, (42) 

with the 𝛼∗ value thus found, the adjusted upper one-sided factor (𝑈𝑜𝑛𝑒
∗ ) and limit 

(𝑈𝐶�̂�𝑜𝑛𝑒
∗ ) can be obtained using Equation (40). To the best of our knowledge, the 

adjusted factor 𝑈𝑜𝑛𝑒
∗  of the upper one-sided 𝑆2 control chart has not been examined 

yet. 

 

The adjusted factor of two-sided 𝑺𝟐 control chart 

Equation (15) with 𝜌 = 1 and 𝛼 = 𝛼∗ must be substituted into Equation (18). 

Thus, 𝛼∗ is found by a search method from 

𝐴𝑅𝐿0,𝑡𝑤𝑜
∗ = ∫ (1 − (𝐹𝜒𝑛−12 (

𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,1− 

 𝛼∗

2

2 ) −
∞

0

𝐹𝜒𝑛−12 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,

 𝛼∗

2
 

2 )))

−1

𝑓𝑌(𝑦)𝑑𝑦, 

(43) 

with the 𝛼∗ value thus found, the adjusted (lower and upper) factors (𝐿𝑡𝑤𝑜
∗ , 𝑈𝑡𝑤𝑜

∗ ) 

and limits (𝐿𝐶�̂�𝑡𝑤𝑜
∗ , 𝑈𝐶�̂�𝑡𝑤𝑜

∗ ) can be obtained using Equation (41). Castagliola et 
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al. (2009) and Diko et al. (2017) calculated these exact adjusted control limit factors 

of two-sided 𝑆2 and 𝑆 control charts, respectively.  

 

5.3.2  
Adjusting the control limits under the conditional perspective 

Under the conditional perspective (see related works on Table 2), the purpose 

of the adjustment is to guarantee that, with a high probability (say 95%), the 𝐶𝐴𝑅𝐿0 

is at least a minimum tolerated value (or the 𝐶𝐹𝐴𝑅 not larger than a maximum). 

This aim is achieved by the 𝐸𝑃𝐶, which was defined before (Equation 37). The 

𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0 is used to find the value of 𝛼∗, and thus the adjusted control 

limits can be computed for given (𝑚, 𝑛) combinations.  

 

The adjusted factor of upper one-sided 𝑺𝟐 control chart 

The adjusted false alarm rate (𝛼∗) of the upper one-sided 𝑆2 chart is obtained 

using the cdf of 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 with 𝜌 = 1 and 𝛼 = 𝛼∗ from Equation (35) and the 𝐸𝑃𝐶 

from Equation (37), based on exact analytical derivations, by solving the following 

equation 

𝐹𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 (𝑡 = (
1

1 + 𝜀
)
1

𝛼
; 𝛼∗) = 𝐹𝜒𝑚(𝑛−1)

2 (
𝑚(𝑛 − 1)𝜒𝑛−1, 1−(1+𝜀)𝛼

2

𝜒𝑛−1, 1−𝛼∗
2 ) = 𝑝 

for 𝛼∗, given the values of 𝑚, 𝑛, 𝛼, 𝜀 and 𝑝. Rearranging the terms above, the value 

of 𝛼∗ can be obtained by 

𝛼∗ = 1 − 𝐹𝜒𝑛−12 (
𝑚(𝑛 − 1)𝜒𝑛−1, 1−𝛼(1+𝜀)

2

𝜒𝑚(𝑛−1), 𝑝
2 ), (44) 

with the resulting value of 𝛼∗, the adjusted factor (𝑈𝑜𝑛𝑒
∗ ) and limit (𝑈𝐶�̂�𝑜𝑛𝑒

∗ ) of the 

upper one-sided 𝑆2 chart can be found using Equation (40). For various settings, 

Goedhart (2017) and Faraz et al. (2018) provided exact values of 𝑈𝑜𝑛𝑒
∗ . Faraz et al. 

(2015) had computed 𝑈𝑜𝑛𝑒
∗  using the Bootstrap method proposed by Gandy and 

Kvaløy (2013). However, given the assumption of normality of the data, 𝑈𝑜𝑛𝑒
∗  can 

be found analytically, and thus the use of the Bootstrap method is no longer 

necessary and may be questionable. So, we focus on exact methods and do not 

explore this approximation approach here. 
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The adjusted factors of two-sided 𝑺𝟐 control chart 

The value of 𝛼∗ of the two-sided 𝑆2 chart is obtained using the cdf of 

𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 with 𝜌 = 1 and 𝛼 = 𝛼∗ from Equation (36) and the 𝐸𝑃𝐶 from Equation 

(37). Or, more specifically, 𝛼∗ is found by solving the following system of 

equations for 𝛼∗, 𝑢1 and 𝑢2 (where 𝑢1 < 𝑢2) using a numerical method (such as a 

search algorithm): 

{
 
 
 

 
 
 

𝑢2 − 𝑢1 = 1 − 𝑝   

𝐹𝜒𝑛−12 (
𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑢1)

𝑚(𝑛 − 1)
𝜒
𝑛−1,1−

𝛼∗

2

2 ) − 𝐹𝜒𝑛−12 (
𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑢1)

𝑚(𝑛 − 1)
𝜒
𝑛−1,

𝛼∗

2
 

2 ) = 1 − (1 + 𝜀)𝛼

𝐹𝜒𝑛−12 (
𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑢2)

𝑚(𝑛 − 1)
𝜒
𝑛−1,1−

𝛼∗

2

2 ) − 𝐹𝜒𝑛−12 (
𝐹
𝜒𝑚(𝑛−1)
2
−1 (𝑢2)

𝑚(𝑛 − 1)
𝜒
𝑛−1,

𝛼∗

2
 

2 ) = 1 − (1 + 𝜀)𝛼,

 

 

(45)  

with the resulting value of 𝛼∗, the adjusted factors (𝑈𝑡𝑤𝑜
∗  and 𝐿𝑡𝑤𝑜

∗ ) and limits 

(𝐿𝐶�̂�𝑡𝑤𝑜
∗ , 𝑈𝐶�̂�𝑡𝑤𝑜

∗ ) of the two-sided 𝑆2 chart can be found using Equation (41).  

As indicated before, the relationship between the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 of the 

two-sided 𝑆2 chart and the two-sided tolerance interval for the sample variance is 

used to derive the equations of the adjusted control limit (or, specifically the 

equations to find 𝛼∗). In other words, (lower and upper) tolerance factors can be 

used as the adjusted (lower and upper) control limit factors, respectively. From 

Equations (33) and (34) and considering the four “components” (a)-(d) in 

Subchapter 4.1 (recall that the sample size 𝑛 is the same for the 𝑆2 chart and 

tolerance intervals for sample variances), we can find the adjusted control limits 

according to the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 (Equation 37) as follows:     

 In the context of 𝑺𝟐 control chart: given the values of 𝑚, 𝐹𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑡) = 𝑝 

and 𝑡 =
1

(1+𝜀)𝛼
, we want to obtain 𝛼∗ (Equation 45) and the corresponding 

adjusted (lower and upper) control limit factors: 𝐿𝑡𝑤𝑜
∗ =

𝜒
𝑛−1,

𝛼∗

2

2

𝑛−1
 and 𝑈𝑡𝑤𝑜

∗ =

𝜒
𝑛−1,1−

𝛼∗

2

2

𝑛−1
 (Equation 41).  

 In the context of tolerance interval for the sample variance: the three 

known “components” are 𝑚, 𝛾 = 1 − 𝑝 and 𝛽 = (1 + 𝜀)𝛼, while the 
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unknown “component” is 𝛽∗. Thus, 𝛽∗ is found using two-sided tolerance 

interval (Equation 24) so that 𝛼∗ = 𝛽∗, 𝐿𝑡𝑤𝑜
∗ =

𝜒
𝑛−1,

𝛽∗

2

2

𝑛−1
 and 𝑈𝑡𝑤𝑜

∗ =

𝜒
𝑛−1,1−

𝛽∗

2

2

𝑛−1
.   

 

5.4  

Comparison of 𝑺𝟐 chart designs between the unconditional and 
conditional perspectives  

Tables 10 and 11 provide the values of 𝛼∗ and the corresponding adjusted 

control limit factors for the upper one-sided 𝑆2 chart (𝑈𝑜𝑛𝑒
∗ ) and the two-sided 𝑆2 

chart (𝐿𝑡𝑤𝑜
∗ , 𝑈𝑡𝑤𝑜

∗ ), respectively, for 𝛼 = 0.0027 and various values of 𝑚 and 𝑛. 

These values are obtained under the unconditional perspective (denoted UNC), 

which guarantees 𝐴𝑅𝐿0
∗ = 370.4, i.e., 𝐸(𝐶𝐴𝑅𝐿0) = 370.4, and conditional 

perspective that guarantees 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 95% (𝐸𝑃𝐶 for (𝜀 = 0, 𝑝 =

0.05) denoted COND 1) and  𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 80% (𝐸𝑃𝐶 for (𝜀 = 0.20, 𝑝 =

0.20) denoted COND 2) from Equations (42)-(45). The last row of Tables 10 and 

11 (for 𝑚 → ∞) corresponds to the case in which 𝜎0
2 is known (so that 𝛼 = 0.0027 

and then the 𝐴𝑅𝐿0 equals the nominal 370.4 value), and hence the control limit 

factors are the ones of the one- and two-sided charts with unadjusted control limits: 

𝑈𝑜𝑛𝑒 and (𝐿𝑡𝑤𝑜, 𝑈𝑡𝑤𝑜), respectively (see Equations 7 and 8).  

To gain a better comparative picture between the unconditional and 

conditional perspectives, plots depicted in panels (a) and (b) of Figure 5 show the 

control limit factors of the one-sided and two-sided charts, respectively, expressed 

as functions of 𝑚 and 𝑛 = 5, when the corresponding control limits are adjusted 

under each perspective as well as when they are not adjusted.  

Tables 10 and 11 also provide the resulting IC performance measures 

according to one perspective of one-sided and two-sided charts, respectively, with 

adjusted control limits under the other perspective.  

For charts with adjusted limits under the unconditional perspective, the 𝐸𝑃′s 

of the 𝐶𝐴𝑅𝐿0 (probability that 𝐶𝐴𝑅𝐿0 is at least the minimum tolerated value from 

Equation 37), for 𝜀 = 0% and 𝜀 = 20% (corresponding then to the probabilities 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) and 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6), respectively), are obtained. The plots 

of Figure 6 show the comparison between the 𝐸𝑃′𝑠 of the 𝐶𝐴𝑅𝐿0 of charts with 

adjusted limits under the unconditional perspective (presented in Tables 10 and 11) 

and the ones with unadjusted limits (presented in Table 8) when 𝑛 = 5. The panels 
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(a) and (b) of Figure 6 correspond to the 𝐸𝑃′𝑠 of the one- and two-sided charts, 

respectively. These plots enable to know if the corresponding 𝐸𝑃′𝑠 values of charts 

with unadjusted and unconditional adjusted limits achieve (or not achieve) the 

specified high probabilities in the conditional perspective (1 − 𝑝 = 95% and 

80%). The reason to evaluate the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 is that the adjustments 

considering only the desired unconditional 𝐴𝑅𝐿0
∗  do not consider the risk of poor 

performance of a particular instance of the chart, and hence the consequences of 

this approach in terms of this risk can be examined. 

For charts with adjusted limits under the conditional perspective, the 

unconditional 𝐴𝑅𝐿0 (expected value of the 𝐶𝐴𝑅𝐿0) is computed. The plots of 

Figure 7 show the unconditional 𝐴𝑅𝐿0′𝑠 of the one- and two-sided charts (panels a 

and b, respectively) with unadjusted limits (Table 8) and with adjusted limits under 

each perspective (Tables 10 and 11) when 𝑛 = 5.          

In addition, Tables 10 and 11, for the one- and two-sided charts, respectively, 

provide the variability of the 𝐶𝐴𝑅𝐿0, in terms of the standard deviation of the 

𝐶𝐴𝑅𝐿0 (denoted 𝑆𝐷𝐴𝑅𝐿0), and the relative percentage difference (𝑃𝐷) between the 

𝑆𝐷𝐴𝑅𝐿0’s when the control limits are adjusted and unadjusted, which is given by 

𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) = 100%
𝑆𝐷𝐴𝑅𝐿0(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡𝑠)−𝑆𝐷𝐴𝑅𝐿0(𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡𝑠)

𝑆𝐷𝐴𝑅𝐿0(𝑢𝑛𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡𝑠)
. (46) 

The plots of Figure 8 show the 𝑆𝐷𝐴𝑅𝐿0′𝑠 of the one- and two-sided charts 

(panels a and b, respectively) with unadjusted limits (Table 8) and with adjusted 

limits under each perspective (Tables 10 and 11) when 𝑛 = 5.          
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Table 10 - Adjusted control limit factors of upper one-sided 𝑺𝟐 chart (𝑼𝒐𝒏𝒆
∗ ) under the unconditional (UNC) perspective (with 𝑨𝑹𝑳𝟎

∗ = 𝟑𝟕𝟎. 𝟒) and conditional perspective 

(COND 1: 𝑷(𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 𝟒) = 𝟗𝟓% and COND 2: 𝑷(𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎𝟖. 𝟔) = 𝟖𝟎% with 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 and different values of 𝒎 and 𝒏), and some resulting associated 

properties of the 𝑪𝑨𝑹𝑳𝟎  

 

 
 

𝛼∗ 𝑈𝑜𝑛𝑒
∗  

𝑃(𝐶𝐴𝑅𝐿0 ≥ 𝑇𝑜𝑙) 

𝐴𝑅𝐿0 

= 𝐸(𝐶𝐴𝑅𝐿0) 

𝑆𝐷𝐴𝑅𝐿0 

= 

𝑆𝐷(𝐶𝐴𝑅𝐿0) 
𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) 

  𝑇𝑜𝑙 

  370.4 308.6 

  (𝜀 = 0) (𝜀 = 0.20) 

m n UNC COND 1 COND 2 UNC COND 1 COND 2 UNC UNC COND 1 COND 2 UNC COND 1 COND 2 UNC COND 1 COND 2 

25 

3 0.00516 0.00020 0.00099 5.2670 8.5066 6.9147 25.6% 31.0% 32789.7 3276.1 856.3 1391074.0 23394.0 -70.4% 48036.5% 709.5% 

5 0.00448 0.00034 0.00123 3.7776 5.2134 4.5031 28.5% 35.1% 8600.4 1743.0 593.7 38432.4 4491.6 -54.1% 2872.6% 247.4% 

9 0.00406 0.00047 0.00141 2.8129 3.5023 3.1555 30.8% 38.4% 4343.8 1225.7 467.3 9593.7 2029.5 -43.3% 1065.0% 146.5% 

 3 0.00378 0.00051 0.00148 5.5782 7.5896 6.5179 32.1% 40.5% 3757.2 1078.9 408.1 7599.2 1569.1 -38.1% 1053.4% 138.1% 

50 5 0.00350 0.00068 0.00168 3.9170 4.8287 4.3281 34.4% 44.3% 2220.9 823.1 326.1 2797.7 853.3 -28.8% 510.7% 86.3% 

 9 0.00332 0.00083 0.00184 2.8790 3.3237 3.0714 36.2% 47.4% 1618.6 695.3 275.6 1541.0 576.8 -22.8% 331.5% 61.5% 

 3 0.00339 0.00072 0.00174 5.6874 7.2309 6.3567 35.2% 45.8% 2005.5 766.9 300.9 2339.0 730.7 -26.0% 475.4% 79.7% 

75 5 0.00321 0.00090 0.00192 3.9649 4.6721 4.2551 37.2% 49.5% 1420.4 640.2 248.1 1207.4 474.1 -19.6% 291.2% 53.6% 

 9 0.00310 0.00105 0.00205 2.9014 3.2491 3.0357 38.6% 52.6% 1141.8 569.6 213.4 782.5 351.6 -15.5% 209.9% 39.2% 

 3 0.00320 0.00089 0.00190 5.7431 7.0294 6.2646 37.1% 49.4% 1463.7 645.1 248.6 1287.8 484.7 -19.7% 315.8% 56.5% 

100 5 0.00308 0.00106 0.00207 3.9891 4.5824 4.2128 38.8% 53.1% 1123.6 561.3 207.8 759.9 338.7 -14.9% 211.3% 38.7% 

 9 0.00300 0.00121 0.00219 2.9127 3.2058 3.0149 40.1% 56.3% 946.3 512.1 180.2 529.3 261.9 -11.7% 159.3% 28.3% 

 3 0.00303 0.00111 0.00211 5.7995 6.8015 6.1589 39.4% 54.6% 1054.1 538.6 194.2 669.4 303.2 -13.3% 198.8% 35.4% 

150 5 0.00295 0.00128 0.00225 4.0135 4.4795 4.1638 40.9% 58.4% 873.5 487.8 164.4 444.9 226.6 -10.0% 143.6% 24.1% 

 9 0.00290 0.00141 0.00236 2.9240 3.1557 2.9905 41.9% 61.6% 770.5 456.3 143.6 331.9 182.5 -7.9% 113.0% 17.1% 

 3 0.00294 0.00127 0.00225 5.8280 6.6710 6.0977 40.8% 58.3% 884.3 489.1 164.6 458.7 228.8 -10.0% 150.7% 25.0% 

200 5 0.00288 0.00143 0.00237 4.0257 4.4199 4.1352 42.1% 62.2% 760.9 452.0 140.1 322.5 176.7 -7.5% 112.7% 16.6% 

 9 0.00285 0.00155 0.00247 2.9297 3.1264 2.9762 43.0% 65.5% 687.2 428.3 122.8 248.8 145.1 -5.9% 90.5% 11.1% 

 3 0.00289 0.00138 0.00234 5.8452 6.5842 6.0567 41.8% 61.3% 790.3 460.0 145.4 354.1 187.8 -8.1% 123.9% 18.8% 

250 5 0.00285 0.00153 0.00246 4.0331 4.3799 4.1159 42.9% 65.2% 695.7 430.3 124.2 257.4 147.8 -6.0% 94.7% 11.8% 

 9 0.00282 0.00165 0.00254 2.9331 3.1066 2.9665 43.7% 68.6% 637.6 411.0 109.1 202.8 122.9 -4.8% 77.0% 7.3% 

 3 0.00270 0.00270 0.00270 5.9145 5.9145 5.9145 100.0% 100.0% 370.4 370.4 0 0.0 0.0 - - - 

∞ 5 0.00270 0.00270 0.00270 4.0628 4.0628 4.0628 100.0% 100.0% 370.4 370.4 0 0.0 0.0 - - - 

 9 0.00270 0.00270 0.00270 2.9468 2.9468 2.9468 100.0% 100.0% 370.4 370.4 0 0.0 0.0 - - - 
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Table 11 - Adjusted control limit factors of two-sided 𝑺𝟐 chart (𝑳𝒕𝒘𝒐
∗ , 𝑼𝒕𝒘𝒐

∗ ) under the unconditional (UNC) perspective (with 𝑨𝑹𝑳𝟎
∗ = 𝟑𝟕𝟎. 𝟒) and conditional perspective 

(COND 1: 𝑷(𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟕𝟎. 𝟒) = 𝟗𝟓% and COND 2: 𝑷(𝑪𝑨𝑹𝑳𝟎 ≥ 𝟑𝟎𝟖. 𝟔) = 𝟖𝟎% with 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 and different values of 𝒎 and 𝒏), and some resulting associated 

properties of the 𝑪𝑨𝑹𝑳𝟎  

  

𝛼∗ 𝑈𝑡𝑤𝑜
∗  𝐿𝑡𝑤𝑜

∗  

𝑃(𝐶𝐴𝑅𝐿0 ≥ 𝑇𝑜𝑙) 

𝐴𝑅𝐿0 

= 𝐸(𝐶𝐴𝑅𝐿0) 

𝑆𝐷𝐴𝑅𝐿0 

= 

𝑆𝐷(𝐶𝐴𝑅𝐿0) 
𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) 

  𝑇𝑜𝑙 

  370.4 308.6 

  (𝜀 = 0) (𝜀 = 0.20) 

m n UNC COND 1 COND 2 UNC COND 1 COND 2 UNC COND 1 COND 2 UNC UNC COND 1 COND 2 UNC COND 1 COND 2 UNC COND 1 COND 2 

25 

3 0.00245 0.00038 0.00153 6.7050 8.5780 7.1771 0.0012 0.0002 0.0008 53.7% 63.8% 2365.8 590.8 158.1 1216.6 266.3 11.4% 757.8% 87.7% 

5 0.00242 0.00062 0.00184 4.5119 5.2653 4.6624 0.0250 0.0125 0.0218 57.1% 68.8% 1429.9 484.2 128.4 578.9 173.8 13.3% 410.5% 53.3% 

9 0.00238 0.00085 0.00210 3.2104 3.5353 3.2506 0.1124 0.0849 0.1085 60.4% 74.0% 1025.1 419.6 104.3 327.5 120.2 15.2% 261.7% 32.8% 

 3 0.00256 0.00085 0.00204 6.6616 7.7584 6.8869 0.0013 0.0004 0.0010 53.3% 68.0% 1100.8 463.3 123.3 419.5 159.0 6.3% 261.7% 37.1% 

50 5 0.00254 0.00112 0.00228 4.4846 4.9353 4.5433 0.0256 0.0169 0.0243 56.2% 73.3% 831.3 411.4 97.9 245.3 110.4 7.3% 168.8% 21.0% 

 9 0.00252 0.00136 0.00248 3.1926 3.3878 3.1975 0.1141 0.0964 0.1136 59.9% 78.9% 682.5 376.0 76.9 154.7 78.2 8.4% 118.1% 10.3% 

 3 0.00260 0.00115 0.00228 6.6451 7.4642 6.7789 0.0013 0.0006 0.0011 52.9% 71.0% 836.6 423.1 105.3 265.6 122.6 4.4% 163.4% 21.6% 

75 5 0.00259 0.00140 0.00248 4.4741 4.8134 4.4982 0.0259 0.0190 0.0253 55.5% 76.6% 681.0 386.7 82.7 166.2 86.9 5.1% 111.1% 10.5% 

 9 0.00257 0.00162 0.00264 3.1858 3.3328 3.1774 0.1148 0.1011 0.1156 58.9% 82.3% 586.8 360.8 63.9 108.7 62.0 5.8% 79.9% 2.7% 

 3 0.00262 0.00134 0.00241 6.6363 7.3079 6.7200 0.0013 0.0007 0.0012 52.6% 73.4% 722.9 402.6 93.6 200.9 103.0 3.4% 122.0% 13.8% 

100 5 0.00261 0.00158 0.00259 4.4685 4.7479 4.4735 0.0260 0.0201 0.0259 55.0% 79.2% 611.7 373.7 73.1 130.2 73.8 3.9% 85.2% 5.0% 

 9 0.00260 0.00178 0.00273 3.1822 3.3031 3.1664 0.1151 0.1037 0.1167 58.2% 85.0% 540.9 352.6 55.9 86.8 52.8 4.5% 62.0% -1.3% 

 3 0.00265 0.00158 0.00257 6.6272 7.1404 6.6551 0.0013 0.0008 0.0013 52.3% 77.3% 617.8 380.8 78.7 141.8 81.3 2.3% 84.4% 5.6% 

150 5 0.00264 0.00179 0.00272 4.4627 4.6772 4.4461 0.0261 0.0215 0.0265 54.3% 83.2% 544.5 359.5 61.0 95.4 58.9 2.7% 60.5% -0.8% 

 9 0.00263 0.00197 0.00284 3.1784 3.2710 3.1543 0.1155 0.1066 0.1179 57.0% 88.8% 495.2 343.6 46.2 64.8 42.3 3.1% 44.5% -5.6% 

 3 0.00266 0.00174 0.00267 6.6225 7.0494 6.6189 0.0013 0.0009 0.0013 52.0% 80.4% 567.1 369.1 69.3 113.4 69.0 1.7% 66.5% 1.3% 

200 5 0.00265 0.00192 0.00280 4.4597 4.6386 4.4308 0.0262 0.0223 0.0269 53.8% 86.3% 510.8 351.7 53.5 77.7 50.3 2.0% 48.3% -4.0% 

 9 0.00265 0.00208 0.00290 3.1764 3.2536 3.1475 0.1157 0.1083 0.1186 56.3% 91.6% 471.7 338.4 40.3 53.4 36.2 2.3% 35.7% -8.0% 

 3 0.00267 0.00184 0.00273 6.6196 6.9910 6.5952 0.0013 0.0009 0.0014 51.8% 82.9% 536.6 361.5 62.6 96.2 60.9 1.4% 55.9% -1.4% 

250 5 0.00266 0.00201 0.00285 4.4578 4.6137 4.4208 0.0263 0.0228 0.0272 53.4% 88.7% 490.2 346.6 48.2 66.8 44.6 1.6% 40.9% -6.0% 

 9 0.00266 0.00215 0.00294 3.1752 3.2424 3.1431 0.1158 0.1093 0.1191 55.7% 93.6% 457.2 335.1 36.2 46.3 32.2 1.9% 30.4% -9.5% 

 3 0.00270 0.00270 0.00270 6.6077 6.6077 6.6077 0.0014 0.0014 0.0014 100.0% 100.0% 370.4 370.4 0 0.0 0.0 - - - 

∞ 5 0.00270 0.00270 0.00270 4.4501 4.4501 4.4501 0.0264 0.0264 0.0264 100.0% 100.0% 370.4 370.4 0 0.0 0.0 - - - 

 9 0.00270 0.00270 0.00270 3.1701 3.1701 3.1701 0.1163 0.1163 0.1163 100.0% 100.0% 370.4 370.4 0 0.0 0.0 - - - 
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Figure 5 - Plots of control limits factors of the (a) one-sided (𝑼𝒐𝒏𝒆
∗ ) and (b) two-sided (𝑳𝒕𝒘𝒐

∗ , 𝑼𝒕𝒘𝒐
∗ ) 

𝑺𝟐 charts with unadjusted (Unadj) limits and adjusted (Adj) limits under the unconditional (Unc) 

and conditional (Cond) perspective using 𝑬𝑷𝑪 with 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕, 𝒏 = 𝟓 and different values of 𝒎. 

 

 

Figure 6 - Plots of the Exceedance Probability of the 𝑪𝑨𝑹𝑳𝟎 for 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕 and 𝜺 = 𝟎 and 𝟎. 𝟐𝟎 

with 𝒏 = 𝟓 and different values of 𝒎 of the (a) one-sided and (b) two-sided 𝑺𝟐 charts with 

unadjusted (Unadj) and adjusted (Adj) limits under the unconditional (Unc) perspective (with 

𝑨𝑹𝑳𝟎
∗ = 𝟑𝟕𝟎. 𝟒) 
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Figure 7 - Plots of the unconditional 𝐴𝑅𝐿0 of the (a) one-sided and (b) two-sided 𝑆2 charts with 

unadjusted (Unadj) and adjusted (Adj) limits under the unconditional (Unc) and conditional (Cond) 

perspectives using 𝐸𝑃𝐶 with 𝛼 = 0.0027, 𝑛 = 5 and different values of 𝑚 

 

 

Figure 8 - Plots of the 𝑺𝑫𝑨𝑹𝑳𝟎 of the (a) one-sided and (b) two-sided 𝑺𝟐 charts with unadjusted 

(Unadj) and adjusted (Adj) limits under the unconditional (Unc) and conditional (Cond) 

perspectives using 𝑬𝑷𝑪 with 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕, 𝒏 = 𝟓 and different values of 𝒎 

 

From Table 10, for the one-sided chart with adjusted limits under the 

unconditional perspective (UNC), the values of 𝛼∗ are always larger than 0.0027 

(the nominal false alarm rate), meaning that 𝑈𝑜𝑛𝑒
∗ < 𝑈𝑜𝑛𝑒. As the value of 𝑚 

increases, 𝑈𝑜𝑛𝑒
∗  increases and converges to 𝑈𝑜𝑛𝑒. On the other hand, under the 

conditional perspective (COND 1 and COND 2), the values of 𝛼∗ are always 

smaller than the nominal 0.0027 and hence, 𝑈𝑜𝑛𝑒
∗ > 𝑈𝑜𝑛𝑒 (see the plots of panel a 

of Figure 5). Put another way, under the unconditional perspective, the adjustment 

corresponds to decreasing the height of the upper control limit of the one-sided 

chart, and, conversely, to increasing this height in the case of the conditional 

perspective.  

The results of the adjustments to the one-sided control limits can be explained 

as follows: for the unconditional perspective, because the unconditional 𝐴𝑅𝐿0,𝑜𝑛𝑒 
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of the charts with unadjusted control limits is always larger than the specified 

𝐴𝑅𝐿0,𝑜𝑛𝑒
∗ = 370.4 (see Table 8 and the plots of panel a of Figure 7), which is the 

aim of the adjustment, the distribution of 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 must be pushed in the direction 

of the left tail until the unconditional 𝐴𝑅𝐿0,𝑜𝑛𝑒 value becomes the desired 𝐴𝑅𝐿0
∗ . 

This only can be achieved when 𝑈𝑜𝑛𝑒 is reduced. The variability of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 

distribution decreases (see the negatives values of 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒) in Table 10 

and the plots of panel a of Figure 8) as a result of the adjustment.  

By contrast, for the conditional perspective in the one-sided chart, since the 

adjustment pursues to attain the specified high probability 1 − 𝑝 that the minimum 

tolerated 𝐶𝐴𝑅𝐿0 value is exceeded, if this minimum tolerated 𝐶𝐴𝑅𝐿0 value is larger 

than the 𝑝-quantile of the 𝐶𝐴𝑅𝐿0 distribution of (one- or two-sided) charts with 

unadjusted limits, the 𝐶𝐴𝑅𝐿0 distribution must be pushed to the right until the 

minimum tolerated 𝐶𝐴𝑅𝐿0 value becomes its 𝑝-quantile. For instance, for a 

minimum tolerated value of 370.4 (𝛼 = 0.0027, 𝜀 = 0), 𝑛 = 5 and different values 

of 𝑚 (COND 1), since 370.4 is close to (a little bit larger than) the 0.50-quantile of 

the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 distribution of one-sided charts with unadjusted limits (see Table 8), 

the center of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 distribution must be pushed to the right until 370.4 

becomes the 𝑝-quantile of this distribution (namely, 𝑝 = 0.05). This outcome only 

can be reached increasing 𝑈𝑜𝑛𝑒. As a consequence of this conditional adjustment, 

where 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 370.4) = 95% (COND 1) is met, the variability of the 

𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 distribution increases a lot and its respective mean (the unconditional 

𝐴𝑅𝐿0,𝑜𝑛𝑒) is always rather larger than the nominal 370.4 (especially, when 𝑚 is 

small). For example, from Table 10, when 𝑚 = 50 and 𝑛 = 5, 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 =

2797.7 is 510.7% larger than the one of its counterpart with unadjusted control 

limits, and 𝐴𝑅𝐿0,𝑜𝑛𝑒 = 2220.9 is 6 times more larger than then nominal 370.4 value 

(see also the plots of panels a of Figures 7 and 8). Considering that the 𝐴𝑅𝐿0,𝑜𝑛𝑒, 

which results from conditional adjusted limits, can be extremely larger than the 

desired 𝐴𝑅𝐿0
∗ = 370.4 (based on the unconditional perspective), the values of 

𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 can be reduced through modifications in the parameters 

of the 𝐸𝑃𝐶 with the same amount of reference data, namely, relaxing (by being less 

rigorous in) the requirement of the conditional IC performance (reducing the 

specified tolerated lower bound of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 and/or reducing the specified 
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target of the 𝐸𝑃). For instance, for conditional adjusted control limits that satisfy 

𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 308.6) = 80% (COND 2), 𝐴𝑅𝐿0,𝑜𝑛𝑒 = 823.1 and 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 =

853.3. 

Following similar arguments as in the one-sided chart, the outcomes for the 

two-sided chart because of the adjustments under both perspectives can be 

explained. From Table 11, differently from the one-sided chart, the values of 𝛼∗ for 

the two-sided chart with adjusted limits under the unconditional perspective (UNC) 

are always smaller than 0.0027 (the nominal false alarm rate), which means that 

𝑈𝑡𝑤𝑜
∗ > 𝑈𝑡𝑤𝑜 and 𝐿𝑡𝑤𝑜

∗ < 𝐿𝑡𝑤𝑜. Note that, as 𝑚 increases, 𝑈𝑡𝑤𝑜
∗  decreases and 𝐿𝑡𝑤𝑜

∗  

increases, converging to the corresponding unadjusted values 𝑈𝑡𝑤𝑜 and 𝐿𝑡𝑤𝑜, 

respectively (see the plots of panel b of Figure 5). For the unconditional adjustment, 

a small increase in the unconditional 𝐴𝑅𝐿0,𝑡𝑤𝑜 is required, and this yields an 

increase in the variability of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜, particularly, when 𝑚 is small (see the 

panels b of Figures 7 and 8).  

For adjustments under the conditional perspective in the two-sided charts 

(COND 1 and COND 2 from Table 11), excepting the case in which 𝜀 = 0.20, 𝑝 =

0.20 (COND 2) and 𝑚𝑛 ≥ 750 (then 𝛼∗ > 0.0027), 𝛼∗ is always smaller than the 

nominal 0.0027 and thus the width of the adjusted control limit factors of the two-

sided chart 𝑈𝑡𝑤𝑜
∗ − 𝐿𝑡𝑤𝑜

∗  is larger than the one of its counterpart with unadjusted 

control limits (see the plots of panel b of Figure 5). The mean and the dispersion of 

the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 distribution increase (particularly, when 𝑚 is small) due to the 

conditional adjustment, excepting the case indicated above (see also the plots of 

panels b of Figures 7 and 8). Increases in the dispersion of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 

distribution (in terms of the 𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜) as a result of conditional adjustments are 

rather larger than the one due to unconditional adjustments (see the values of 

𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜) in Table 11).     

The panel (a) of Figure 6, for the upper one-sided chart with 𝑛 = 5 and 𝑚 ≤

250, note that the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 decreases due to adjustments under the 

unconditional perspective, namely, given (𝛼 = 0.0027, 𝜀 = 0), 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥

370.4) decreases from values of approximately 50% (see Table 8) to values 

between 28% and 43% (Table 10). These last probabilities less than 50% were to 

be expected, since the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 distribution is usually highly right-skewed and 

the minimum tolerated 370.4 corresponds to the mean of this distribution, which is 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



102 

 

the purpose of the unconditional point of view. Similarly, given (𝛼 = 0.0027, 𝜀 =

0.20), 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 308.6) also decreases from values between 55% and 71% 

(Table 8) to values between 35% and 65% (Table 10) because, as noted above, the 

distribution of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 is pushed to the left to achieve 𝐴𝑅𝐿0,𝑜𝑛𝑒
∗ = 370.4. It 

is worth to remark that, for the same setting (𝑚 ≤ 250, 𝑛, 𝛼 = 0.0027 and 𝜀 = 0 

or 0.20), these 𝐸𝑃′𝑠 of the 𝐶𝐴𝑅𝐿0 of the upper one-sided 𝑆2 charts with both 

unadjusted limits and adjusted limits according to the unconditional perspective, 

that is, 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 370.4) and 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 308.6) are smaller than the 

ones high specified targets with adjusted limits under the conditional perspective 

(1 − 𝑝 = 95% and 80%, respectively). It means that charts with unadjusted and 

unconditional adjusted limits are not satisfactory under the conditional perspective 

(see Table 10 and panel a of Figure 6).  

The panel (b) of Figure 6, for the two-sided chart with 𝑛 = 5 and 𝑚 ≤ 250, 

note that the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜, differently from the case of the one-sided chart, 

increases as a result of the adjustments under the unconditional perspective, 

namely, given (𝛼 = 0.0027, 𝜀 = 0), 𝑃(𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 ≥ 370.4) increases from values 

around 50% (Table 8) to values between 57% and 53% (Table 11). These last 

values greater than 50% were to be expected because the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 distribution is 

left-skewed and the minimum tolerated 370.4 corresponds to the mean of this 

distribution. Likewise, given (𝛼 = 0.0027, 𝜀 = 0.20), 𝑃(𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 ≥ 308.6) 

increases from values between 62% and 87% (Table 8) to values between 68% 

and 89% (Table 11) because, as noted above, the distribution of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 is  

pushed to the right to achieve 𝐴𝑅𝐿0,𝑡𝑤𝑜
∗ = 370.4. It is interesting to note that, for 

the same setting (𝑚 ≤ 250, 𝑛 = 5, 𝛼 = 0.0027 and 𝜀 = 0 or 0.20), these 𝐸𝑃′𝑠 of 

the 𝐶𝐴𝑅𝐿0 of the two-sided 𝑆2 charts with unadjusted limits as well as with adjusted 

limits according to the unconditional perspective, that is, 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 370.4) 

and 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 308.6) are smaller than the ones high specified with adjusted 

limits according to the conditional perspective (1 − 𝑝 = 95% and 80%, 

respectively), excepting the case in which the 𝐸𝑃 is 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 308.6) with 

𝑚 ≥ 150 (see Table 11 and panel b of Figure 6). 
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5.5  

Comparison of designs between the one-sided and two-sided 𝑺𝟐 
charts   

In this section, we compare the performance and the design of the one- and 

two-sided charts, without and with control limit adjustments aiming to guarantee a 

desired IC performance of the chart under each perspectives (conditional and 

unconditional).  

Tables 12-14 show, for 𝛼 = 0.0027 and several values of 𝑛 and 𝑚, the 

values of 𝛼∗ and the resulting adjusted factors for the upper one-sided (𝑈𝑜𝑛𝑒
∗ ) and 

two-sided (𝑈𝑡𝑤𝑜
∗  and 𝐿𝑡𝑤𝑜

∗ ) 𝑆2 charts, obtained under the unconditional perspective 

(Table 12) and conditional perspective (Tables 13 and 14), respectively. The 

unconditional adjustments guarantee 𝐴𝑅𝐿0
∗ = 370.4, i.e., 𝐸(𝐶𝐴𝑅0) = 370.4 in 

Table 12, while the conditional adjustments guarantee 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 95% 

and 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 80% in Tables 13 and 14, respectively, using the 𝐸𝑃𝐶 

for (𝜀 = 0, 𝑝 = 0.05) and (𝜀 = 20%, 𝑝 = 0.20). Similarly to Tables 10 and 11, 

Tables 12-14 also give the resulting IC performance measures of both charts, as 

defined before. Table 12 presents measures of spread of 𝐶𝐴𝑅𝐿0, namely, the 

standard deviation 𝑆𝐷𝐴𝑅𝐿0 and the percentage difference between the 𝑆𝐷𝐴𝑅𝐿0 

when the control limits are adjusted and unadjusted 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0), as well as the 

probability that 𝐶𝐴𝑅𝐿0 exceeds the minimum tolerated value according to the 

conditional perspective, for 𝜀 = 0% and 𝜀 = 20% (𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 from 

Equation 37), corresponding thus to the probabilities 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) and 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) respectively. Tables 13 and 14 present the expected values 

(𝐴𝑅𝐿0), the standard deviations (𝑆𝐷𝐴𝑅𝐿0), 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) and 𝑃𝐷(𝐴𝑅𝐿0) for 

comparing the performances of the two types of chart. The 𝑃𝐷(𝐴𝑅𝐿0) is the 

percentage difference between the 𝐴𝑅𝐿0’s when the control limits are adjusted and 

unadjusted, which are computed similarly to 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) in Equation (46).    

  From Table 12 (unconditional perspective), the values of 𝛼∗ for the one-

sided 𝑆2 chart are always larger than the nominal 0.0027 false alarm rate, 

symmetrically, for the two-sided 𝑆2 chart, the 𝛼∗ values are always smaller than 

0.0027: 𝛼∗(𝑡𝑤𝑜 − 𝑠𝑖𝑑𝑒𝑑) < 0.0027 < 𝛼∗(𝑜𝑛𝑒 − 𝑠𝑖𝑑𝑒𝑑). Put another way, the 

adjustment under the unconditional perspective yield: 𝑈𝑜𝑛𝑒
∗ < 𝑈𝑜𝑛𝑒, 𝑈𝑡𝑤𝑜

∗ > 𝑈𝑡𝑤𝑜 

and 𝐿𝑡𝑤𝑜
∗ < 𝐿𝑡𝑤𝑜.   
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From Tables 13 and 14 (conditional perspective), with the exception of the 

cases where 𝜀 = 0.20, 𝑝 = 0.20 and 𝑚𝑛 ≥ 750 (in which we get 𝛼∗(𝑜𝑛𝑒 −

𝑠𝑖𝑑𝑒𝑑) < 0.0027 < 𝛼∗(𝑡𝑤𝑜 − 𝑠𝑖𝑑𝑒𝑑)), the values of 𝛼∗ for both charts are always 

smaller than the nominal 0.0027, specifically, the 𝛼∗ values for the one-sided chart 

are always smaller than the 𝛼∗ values for the two-sided chart: 𝛼∗(𝑜𝑛𝑒 − 𝑠𝑖𝑑𝑒𝑑) <

𝛼∗(𝑡𝑤𝑜 − 𝑠𝑖𝑑𝑒𝑑) < 0.0027). In other words, the height of the adjusted upper 

control limit factor of the one-sided chart 𝑈𝑜𝑛𝑒
∗  and the width of the adjusted control 

limit factors of the two-sided chart 𝑈𝑡𝑤𝑜
∗ − 𝐿𝑡𝑤𝑜

∗  are larger than the ones of their 

counterparts with unadjusted control limits.  

Even though the expected values of the 𝐶𝐴𝑅𝐿0’s of both charts 

(unconditional 𝐴𝑅𝐿0’s) equal the nominal 370.4 due to unconditional adjustments, 

the variability of the 𝐶𝐴𝑅𝐿0 is much larger for the one-sided chart than for the two-

sided one. This difference is evidenced by the values of 𝑆𝐷𝐴𝑅𝐿0 in Table 12 and 

Figures 9(a) and 10. The variability of the 𝐶𝐴𝑅𝐿0 gets smaller when 𝑚 and 𝑛 

increase, and the values of 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 vary approximately between three and five-

times the 𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜 values (see the plots of Figure 9a). For instance, for 𝑚 = 25 

and 𝑛 = 5, 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 = 593.7 and 𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜 = 128.4. Figure 10, which 

provides modified boxplots that show the distributions and some percentiles 

(1𝑡ℎ, 5𝑡ℎ, 25𝑡ℎ, 50𝑡ℎ, 75𝑡ℎ, 95𝑡ℎ and 99𝑡ℎ) of the 𝐶𝐴𝑅𝐿0 for 𝑚 = 25 and 𝑚 =

250 (Figure 10a and b, respectively) and 𝑛 = 5.  

The comparison of the conditional IC performance between the one-sided 

and two-sided charts with adjusted control limits under the unconditional 

perspective is made. Given the same value of (𝑚, 𝑛) and using the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 

with 𝜀 = 0, from Table 12, note the following relation 25% < 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥

370.4) < 50% < 𝑃(𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 ≥ 370.4) < 61%, which can be seen in the plots 

of Figure 11(a) for the specific case of 𝑛 = 5. This was to be expected, since the 

minimum tolerated 370.4 corresponds to the mean of the 𝐶𝐴𝑅𝐿0 distribution that 

is right- and left-skewed for the one- and two-sided charts,  respectively (see Figure 

10), as has been highlighted before in the case of control charts with unadjusted 

limits (see Figure 2). When 𝜀 = 20%, the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0, i.e., 𝑃(𝐶𝐴𝑅𝐿0 ≥

308.6), increases, especially for the two-sided chart, but it is not large as well unless 

the amount of Phase I data is large. For instance, from Table 12, with 𝑚 = 25 and 

𝑛 = 5, 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) is 35.1% and 68.8% for the one- and two-sided charts, 
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respectively. To achieve 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) greater than 80%, it is necessary that 

𝑚 > 100 for the two-sided chart; the probabilities for the one-sided chart remain, 

though, between 53.1% and 65.2% when 100 ≤ 𝑚 ≤ 250. Accordingly, the 

described difference in the variability of the 𝐶𝐴𝑅𝐿0 between the charts explains 

why the values of 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) and 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) for the one-sided 

𝑆2 chart are smaller than those for the two-sided 𝑆2 chart (see Figure 11a).  

Moreover, we can examine and compare how the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0 changes 

in the one- and two-sided charts, as a result of the control limit adjustments 

according to the unconditional perspective. As noted before, since the variability of 

the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 is reduced (see the negatives values of 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒) in Table 

12) due to the adjustment, the values of 𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 370.4) and 

𝑃(𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 ≥ 308.6) will decrease (see the panel a of Figure 6). Contrarily, these 

𝐸𝑃's values of the two-sided chart will increase (see the panel b of Figure 6) because 

of the increment of the variability of the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 distribution (see the positive 

values of 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜) in Table 12). Hence, due to the adjustments under the 

unconditional perspective, the resulting conditional IC performance (measured in 

terms of the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0) of the two-sided chart improves, while the 

corresponding one of the one-sided chart deteriorates.  
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Table 12 - Adjusted control limit factors of one- and two-sided 𝑺𝟐 charts obtained under the unconditional perspective (with 𝑨𝑹𝑳𝟎
∗ = 𝟑𝟕𝟎. 𝟒), and some resulting associated 

properties of the 𝑪𝑨𝑹𝑳𝟎  

  

𝛼∗ 𝑈𝑜𝑛𝑒
∗  𝑈𝑡𝑤𝑜

∗  𝐿𝑡𝑤𝑜
∗  

𝑆𝐷𝐴𝑅𝐿0 

= 

𝑆𝐷(𝐶𝐴𝑅𝐿0) 

  𝜀 = 0 𝜀 = 0.20 

   

𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) 
𝑃(𝐶𝐹𝐴𝑅 ≤ 0.0027) 

= (1 − 𝑝) = 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) 

𝑃(𝐶𝐹𝐴𝑅 ≤ 0.0032) 
= (1 − 𝑝) = 

𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) 
  

    

m n 
one- 

sided 

two- 

sided 

one-  

sided 

two- 

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one- 

sided 

two- 

sided 

25 

3 0.00516 0.00245 5.2670 6.7050 0.0012 856.3 158.1 -70.4% 11.4% 25.6% 53.7% 31.0% 63.8% 

5 0.00448 0.00242 3.7776 4.5119 0.0250 593.7 128.4 -54.1% 13.3% 28.5% 57.1% 35.1% 68.8% 

9 0.00406 0.00238 2.8129 3.2104 0.1124 467.3 104.3 -43.3% 15.2% 30.8% 60.4% 38.4% 74.0% 

 3 0.00378 0.00256 5.5782 6.6616 0.0013 408.1 123.3 -38.1% 6.3% 32.1% 53.3% 40.5% 68.0% 

50 5 0.00350 0.00254 3.9170 4.4846 0.0256 326.1 97.9 -28.8% 7.3% 34.4% 56.2% 44.3% 73.3% 

 9 0.00332 0.00252 2.8790 3.1926 0.1141 275.6 76.9 -22.8% 8.4% 36.2% 59.9% 47.4% 78.9% 

 3 0.00339 0.00260 5.6874 6.6451 0.0013 300.9 105.3 -26.0% 4.4% 35.2% 52.9% 45.8% 71.0% 

75 5 0.00321 0.00259 3.9649 4.4741 0.0259 248.1 82.7 -19.6% 5.1% 37.2% 55.5% 49.5% 76.6% 

 9 0.00310 0.00257 2.9014 3.1858 0.1148 213.4 63.9 -15.5% 5.8% 38.6% 58.9% 52.6% 82.3% 

 3 0.00320 0.00262 5.7431 6.6363 0.0013 248.6 93.6 -19.7% 3.4% 37.1% 52.6% 49.4% 73.4% 

100 5 0.00308 0.00261 3.9891 4.4685 0.0260 207.8 73.1 -14.9% 3.9% 38.8% 55.0% 53.1% 79.2% 

 9 0.00300 0.00260 2.9127 3.1822 0.1151 180.2 55.9 -11.7% 4.5% 40.1% 58.2% 56.3% 85.0% 

 3 0.00303 0.00265 5.7995 6.6272 0.0013 194.2 78.7 -13.3% 2.3% 39.4% 52.3% 54.6% 77.3% 

150 5 0.00295 0.00264 4.0135 4.4627 0.0261 164.4 61.0 -10.0% 2.7% 40.9% 54.3% 58.4% 83.2% 

 9 0.00290 0.00263 2.9240 3.1784 0.1155 143.6 46.2 -7.9% 3.1% 41.9% 57.0% 61.6% 88.8% 

 3 0.00294 0.00266 5.8280 6.6225 0.0013 164.6 69.3 -10.0% 1.7% 40.8% 52.0% 58.3% 80.4% 

200 5 0.00288 0.00265 4.0257 4.4597 0.0262 140.1 53.5 -7.5% 2.0% 42.1% 53.8% 62.2% 86.3% 

 9 0.00285 0.00265 2.9297 3.1764 0.1157 122.8 40.3 -5.9% 2.3% 43.0% 56.3% 65.5% 91.6% 

 3 0.00289 0.00267 5.8452 6.6196 0.0013 145.4 62.6 -8.1% 1.4% 41.8% 51.8% 61.3% 82.9% 

250 5 0.00285 0.00266 4.0331 4.4578 0.0263 124.2 48.2 -6.0% 1.6% 42.9% 53.4% 65.2% 88.7% 

 9 0.00282 0.00266 2.9331 3.1752 0.1158 109.1 36.2 -4.8% 1.9% 43.7% 55.7% 68.6% 93.6% 

 3 0.00270 0.00270 5.9145 6.6077 0.0014 0 0 - - 100.0% 100.0% 100.0% 100.0% 

∞ 5 0.00270 0.00270 4.0628 4.4501 0.0264 0 0 - - 100.0% 100.0% 100.0% 100.0% 

 9 0.00270 0.00270 2.9468 3.1701 0.1163 0 0 - - 100.0% 100.0% 100.0% 100.0% 
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Table 13 - Adjusted control limit factors of one- and two-sided 𝑺𝟐 charts obtained under the conditional perspective (using 𝑬𝑷𝑪 for 𝜺 = 𝟎, 𝒑 = 𝟎. 𝟎𝟓 and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕) and 

some resulting associated properties of the 𝑪𝑨𝑹𝑳𝟎 

  Adjusted Limits to 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) = 95% (𝐸𝑃𝐶 for 𝜀 = 0,  𝑝 = 0.05, 𝛼 = 0.0027) 

  
𝛼∗ 𝑈𝑜𝑛𝑒

∗  𝑈𝑡𝑤𝑜
∗  𝐿𝑡𝑤𝑜

∗  
𝐴𝑅𝐿0 

= 𝐸(𝐶𝐴𝑅𝐿0) 
𝑃𝐷(𝐴𝑅𝐿0) 

𝑆𝐷𝐴𝑅𝐿0 
= 𝑆𝐷(𝐶𝐴𝑅𝐿0) 

𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) 
  

m n 
one- 

sided 

two- 

sided 

one-  

sided 

two- 

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one- 

sided 

two- 

sided 

25 

3 0.00020 0.00038 8.5066 8.5780 0.0002 32789.7 2365.8 3744.4% 603.3% 1391074.0 1216.6 48036.5% 757.8% 

5 0.00034 0.00062 5.2134 5.2653 0.0125 8600.4 1429.9 1175.7% 330.9% 38432.4 578.9 2872.6% 410.5% 

9 0.00047 0.00085 3.5023 3.5353 0.0849 4343.8 1025.1 639.5% 213.4% 9593.7 327.5 1065.0% 261.7% 

 3 0.00051 0.00085 7.5896 7.7584 0.0004 3757.2 1100.8 593.7% 213.5% 7599.2 419.5 1053.4% 261.7% 

50 5 0.00068 0.00112 4.8287 4.9353 0.0169 2220.9 831.3 352.5% 138.7% 2797.7 245.3 510.7% 168.8% 

 9 0.00083 0.00136 3.3237 3.3878 0.0964 1618.6 682.5 250.6% 97.6% 1541.0 154.7 331.5% 118.1% 

 3 0.00072 0.00115 7.2309 7.4642 0.0006 2005.5 836.6 323.3% 134.4% 2339.0 265.6 475.4% 163.4% 

75 5 0.00090 0.00140 4.6721 4.8134 0.0190 1420.4 681.0 219.0% 91.9% 1207.4 166.2 291.2% 111.1% 

 9 0.00105 0.00162 3.2491 3.3328 0.1011 1141.8 586.8 166.7% 66.4% 782.5 108.7 209.9% 79.9% 

 3 0.00089 0.00134 7.0294 7.3079 0.0007 1463.7 722.9 229.4% 100.8% 1287.8 200.9 315.8% 122.0% 

100 5 0.00106 0.00158 4.5824 4.7479 0.0201 1123.6 611.7 164.6% 70.7% 759.9 130.2 211.3% 85.2% 

 9 0.00121 0.00178 3.2058 3.3031 0.1037 946.3 540.9 129.4% 51.6% 529.3 86.8 159.3% 62.0% 

 3 0.00111 0.00158 6.8015 7.1404 0.0008 1054.1 617.8 152.5% 70.1% 669.4 141.8 198.8% 84.4% 

150 5 0.00128 0.00179 4.4795 4.6772 0.0215 873.5 544.5 115.5% 50.4% 444.9 95.4 143.6% 60.5% 

                      9 0.00141 0.00197 3.1557 3.2710 0.1066 770.5 495.2 93.7% 37.2% 331.9 64.8 113.0% 44.5% 

 3 0.00127 0.00174 6.6710 7.0494 0.0009 884.3 567.1 118.4% 55.4% 458.7 113.4 150.7% 66.5% 

200 5 0.00143 0.00192 4.4199 4.6386 0.0223 760.9 510.8 92.0% 40.3% 322.5 77.7 112.7% 48.3% 

 9 0.00155 0.00208 3.1264 3.2536 0.1083 687.2 471.7 75.9% 29.9% 248.8 53.4 90.5% 35.7% 

 3 0.00138 0.00184 6.5842 6.9910 0.0009 790.3 536.6 98.7% 46.6% 354.1 96.2 123.9% 55.9% 

250 5 0.00153 0.00201 4.3799 4.6137 0.0228 695.7 490.2 78.0% 34.2% 257.4 66.8 94.7% 40.9% 

 9 0.00165 0.00215 3.1066 3.2424 0.1093 637.6 457.2 65.0% 25.4% 202.8 46.3 77.0% 30.4% 

 3 0.00270 0.00270 5.9145 6.6077 0.0014 370.4 370.4 - - 0.0 0.0 - - 

∞ 5 0.00270 0.00270 4.0628 4.4501 0.0264 370.4 370.4 - - 0.0 0.0 - - 

 9 0.00270 0.00270 2.9468 3.1701 0.1163 370.4 370.4 - - 0.0 0.0 - - 
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Table 14 - Adjusted control limit factors of one- and two-sided 𝑺𝟐 charts obtained under the conditional perspective (using 𝑬𝑷𝑪 for 𝜺 = 𝟎. 𝟐𝟎, 𝒑 = 𝟎. 𝟐𝟎 and 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕) 

and some resulting associated properties of the 𝑪𝑨𝑹𝑳𝟎 

  Adjusted Limits to 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) = 0.80 (𝐸𝑃𝐶 for 𝜀 = 0.20,  𝑝 = 0.20, 𝛼 = 0.0027) 

  
𝛼∗ 𝑈𝑜𝑛𝑒

∗  𝑈𝑡𝑤𝑜
∗  𝐿𝑡𝑤𝑜

∗  
𝐴𝑅𝐿0 

= 𝐸(𝐶𝐴𝑅𝐿0) 
𝑃𝐷(𝐴𝑅𝐿0) 

𝑆𝐷𝐴𝑅𝐿0 
= 𝑆𝐷(𝐶𝐴𝑅𝐿0) 

𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) 
  

m n 
one- 

sided 

two- 

sided 

one-  

sided 

two- 

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one-  

sided 

two- 

sided 

one-  

sided 

two- 

sided 

25 

3 0.00099 0.00153 6.9147 7.1771 0.0008 3276.1 590.8 284.1% 75.6% 23394.0 266.3 709.5% 87.7% 

5 0.00123 0.00184 4.5031 4.6624 0.0218 1743.0 484.2 158.5% 45.9% 4491.6 173.8 247.4% 53.3% 

9 0.00141 0.00210 3.1555 3.2506 0.1085 1225.7 419.6 108.7% 28.3% 2029.5 120.2 146.5% 32.8% 

 3 0.00148 0.00204 6.5179 6.8869 0.0010 1078.9 463.3 99.2% 32.0% 1569.1 159.0 138.1% 37.1% 

50 5 0.00168 0.00228 4.3281 4.5433 0.0243 823.1 411.4 67.7% 18.1% 853.3 110.4 86.3% 21.0% 

 9 0.00184 0.00248 3.0714 3.1975 0.1136 695.3 376.0 50.6% 8.9% 576.8 78.2 61.5% 10.3% 

 3 0.00174 0.00228 6.3567 6.7789 0.0011 766.9 423.1 61.9% 18.6% 730.7 122.6 79.7% 21.6% 

75 5 0.00192 0.00248 4.2551 4.4982 0.0253 640.2 386.7 43.8% 9.0% 474.1 86.9 53.6% 10.5% 

 9 0.00205 0.00264 3.0357 3.1774 0.1156 569.6 360.8 33.1% 2.3% 351.6 62.0 39.2% 2.7% 

 3 0.00190 0.00241 6.2646 6.7200 0.0012 645.1 402.6 45.2% 11.8% 484.7 103.0 56.5% 13.8% 

100 5 0.00207 0.00259 4.2128 4.4735 0.0259 561.3 373.7 32.2% 4.3% 338.7 73.8 38.7% 5.0% 

 9 0.00219 0.00273 3.0149 3.1664 0.1167 512.1 352.6 24.1% -1.2% 261.9 52.8 28.3% -1.3% 

 3 0.00211 0.00257 6.1589 6.6551 0.0013 538.6 380.8 29.0% 4.8% 303.2 81.3 35.4% 5.6% 

150 5 0.00225 0.00272 4.1638 4.4461 0.0265 487.8 359.5 20.3% -0.7% 226.6 58.9 24.1% -0.8% 

 9 0.00236 0.00284 2.9905 3.1543 0.1179 456.3 343.6 14.7% -4.8% 182.5 42.3 17.1% -5.6% 

 3 0.00225 0.00267 6.0977 6.6189 0.0013 489.1 369.1 20.8% 1.1% 228.8 69.0 25.0% 1.3% 

200 5 0.00237 0.00280 4.1352 4.4308 0.0269 452.0 351.7 14.1% -3.4% 176.7 50.3 16.6% -4.0% 

 9 0.00247 0.00290 2.9762 3.1475 0.1186 428.3 338.4 9.6% -6.8% 145.1 36.2 11.1% -8.0% 

 3 0.00234 0.00273 6.0567 6.5952 0.0014 460.0 361.5 15.7% -1.2% 187.8 60.9 18.8% -1.4% 

250 5 0.00246 0.00285 4.1159 4.4208 0.0272 430.3 346.6 10.1% -5.1% 147.8 44.6 11.8% -6.0% 

 9 0.00254 0.00294 2.9665 3.1431 0.1191 411.0 335.1 6.3% -8.1% 122.9 32.2 7.3% -9.5% 

 3 0.00270 0.00270 5.9145 6.6077 0.0014 370.4 370.4 - - 0.0 0.0 - - 

∞ 5 0.00270 0.00270 4.0628 4.4501 0.0264 370.4 370.4 - - 0.0 0.0 - - 

 9 0.00270 0.00270 2.9468 3.1701 0.1163 370.4 370.4 - - 0.0 0.0 - - 
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Figure 9 - Plots of the 𝑺𝑫𝑨𝑹𝑳𝟎 of the one- and two-sided 𝑺𝟐 charts with adjusted limits under (a) 

the unconditional perspective (Adj-Unc) with 𝑨𝑹𝑳𝟎
∗ = 𝟑𝟕𝟎. 𝟒 and (b) the conditional perspective: 

Adj-Cond1 (using 𝑬𝑷𝑪 with 𝜺 = 𝟎  and 𝒑 = 𝟎. 𝟎𝟓) and Cond2 (using 𝑬𝑷𝑪 with 𝜺 = 𝟎. 𝟐𝟎 and 𝒑 =
𝟎. 𝟐𝟎) given 𝜶 = 𝟎. 𝟎𝟎𝟐𝟕, 𝒏 = 𝟓 and different values of 𝒎 

 

 

Figure 10 - Distributions and some percentiles of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 of 𝑆2 charts with 

adjusted limits under the unconditional perspective (with 𝐴𝑅𝐿0
∗ = 370.4) for 𝑛 = 5 and (a) 𝑚 =

25, 𝑚𝑎𝑥 (𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) = 514.7 and (b) 𝑚 = 250, 𝑚𝑎𝑥 (𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) = 465.7    

 

 

 

Figure 11. (a) Plots of 𝐸𝑃’s of the 𝐶𝐴𝑅𝐿0 of 𝑆2 charts with adjusted limits under the unconditional 

(Adj-Unc) perspective and (b) Plots of the unconditional 𝐴𝑅𝐿0 of the 𝑆2 charts with adjusted limits 

under the conditional perspective: Adj-Cond1 and Adj-Cond2 using 𝐸𝑃𝐶 with (𝜀 = 0 𝑝 = 0.05) and 

(𝜀 = 0.20 𝑝 = 0.20), respectively, given 𝛼 = 0.0027, 𝑛 = 5 and different values of 𝑚 
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Note that similarly to the cases of charts with unadjusted limits and charts 

with limits adjusted under the unconditional perspective, also when the limits are 

adjusted according to the conditional perspective, the resulting dispersion of the 

𝐶𝐴𝑅𝐿0 distribution for the one-sided chart is much larger than that for the two-sided 

chart. This is revealed by the values of 𝑆𝐷𝐴𝑅𝐿0 in Tables 13 and 14 and Figure 

9(b). As a result of this conditional adjustments, the 𝐴𝑅𝐿0 is very much larger for 

the one-sided than for the two-sided chart (𝐴𝑅𝐿0,𝑜𝑛𝑒 > 𝐴𝑅𝐿0,𝑡𝑤𝑜, see Figure 11b), 

specifically, in the case of the one-sided chart, the unconditional 𝐴𝑅𝐿0 is always 

larger than 370.4 and, often very much larger. This is similar to what happens with 

the two-sided chart, except in the cases when 𝜀 = 0.20, 𝑝 = 0.20 and 𝑚𝑛 ≥ 750. 

To sum up, 𝐴𝑅𝐿0,𝑜𝑛𝑒 and 𝑆𝐷𝐴𝑅𝐿0,𝑜𝑛𝑒 are very much larger than 𝐴𝑅𝐿0,𝑡𝑤𝑜 and 

𝑆𝐷𝐴𝑅𝐿0,𝑡𝑤𝑜, respectively, because the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 distribution is often highly right-

skewed, while the 𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 distribution is left-skewed and its domain reaches a 

maximum at a finite value. These differences in the resulting IC performance are 

naturally greater when the amount of Phase I data is smaller or the minimum 

tolerated value of the 𝐶𝐴𝑅𝐿0 is larger (i.e., smaller values of 𝜀). This behavior can 

be verified in Figures 9(b) and 11(b).  

Finally, we can examine, for the one- and two-sided charts separately, how 

the 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 change when the limits are adjusted according to the 

conditional perspective, and next compare the impacts of this adjustment on the two 

types of chart. The 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 will increase in both chart, with the exception 

of some cases in the two-sided chart (specifically, when 𝜀 = 0.20, 𝑝 = 0.20 and 

𝑚𝑛 ≥ 750), in which these values will decrease (see the negative values of 

𝑃𝐷(𝐴𝑅𝐿0) and 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) in Table 14). Note that the increases in the 𝐴𝑅𝐿0 and 

𝑆𝐷𝐴𝑅𝐿0 due to the adjustment are much larger in the case of the one-sided chart 

than in the case of the two-sided chart, as can be seen from the positive values of 

𝑃𝐷(𝐴𝑅𝐿0) and 𝑃𝐷(𝑆𝐷𝐴𝑅𝐿0) in Tables 13 and 14. Once again, this difference is 

due to the different shapes of the distribution of the 𝐶𝐴𝑅𝐿0 of the two types of chart.      

This work focused only on the charts’ IC performance. Nevertheless, given 

the results presented here (namely, given the unadjusted and adjusted control limit 

factors), some interesting findings regarding the out-of-control (OOC) performance 

are provided beforehand (see plots of Figure 5). They are:  
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 If upper control limits of one-sided 𝑆2 chart are adjusted according to 

the unconditional perspective, the adjustments lead to an 

improvement of the one-sided chart’s OOC performance because the 

adjusted upper control limit is smaller than the unadjusted one. On the 

other hand, if the conditional perspective is considered, the upper limit 

increases, and thus the corresponding OOC performance will be worse 

than the one of the charts designed with unadjusted limits. 

 If control limits of two-sided 𝑆2 chart are adjusted according to the 

unconditional perspective, the adjustment yields a deterioration of the 

OOC performance of the two-sided chart since the adjusted control 

limits interval is wider than the unadjusted control limits interval. 

Regarding the conditional perspective, the OOC performance may 

either deteriorate or improve, depending on the case (see also Table 

6): if the specified minimum IC performance is relaxed or less strict 

(namely, 𝜀 = 0.20 and 𝑝 = 0.20) and the amount of Phase I data is 

large (namely, 𝑚𝑛 ≥ 750, such as 𝑚 = 150 and 𝑛 = 5), the two-

sided chart’s OOC performance will improve (because the adjusted 

control limits interval is narrower than the unadjusted control limits 

interval); otherwise, the OOC performance will deteriorate, in that 

case, the conditional adjustment has a greater negative impact on the 

OOC performance than the unconditional adjustment.  

 

When the control limits are adjusted under the conditional perspectives and 

the amount of Phase I data (𝑚, 𝑛) is small, the deterioration of the OOC 

performance of (one-sided and two-sided) charts is large. On the other hand, when 

the values of 𝑚 and 𝑛 are large, the OOC performances of charts with unadjusted 

and adjusted limits are similar. For instance, in the case of upper one-sided chart 

and for (𝜀 ≥ 0.10, 𝑝 ≥ 0.05 and 𝜌 ≥ 1.5), Goedhart et al. (2017a) showed that, for 

the traditional 𝑚 = 25 and 𝑛 = 5, the 𝐶𝐴𝑅𝐿𝑜𝑛𝑒(𝑌 = 𝑚(𝑛 − 1);  𝜌) could be up to 

2.6 times more larger than the one for the unadjusted limits, however, for (𝑚 ≥ 200 

and 𝑛 ≥ 5) or (𝑚 ≥ 100 and 𝑛 ≥ 10), increases in the 𝐶𝐴𝑅𝐿𝑜𝑛𝑒(𝑌 =

𝑚(𝑛 − 1);  𝜌) do not exceed the 20% of the one for the unadjusted limits.
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6 
Conclusions and recommendations   

In several real industrial and different field of science applications, when the 

precision of a desired value of a quality characteristic of a process or a product is 

the main concern and the quality assessment (conformity assessment and 

acceptance of products) is based on sampling acceptance, the construction of 

tolerance intervals for samples variances can be very useful. The two-sided (lower 

and upper) tolerance factors are computed and tabulated for some settings (cases) 

used widely in practice. Unlike one-sided upper tolerance limits, these two-sided 

tolerance intervals provide valuable information not only about process 

degradation, but also about process improvement due to the addition of the lower 

tolerance limits. However, these two-sided tolerance intervals are not obtained 

directly since the computation of the corresponding tolerance factors are found by 

solving a system of three nonlinear equations using numerical methods. With that 

in mind, under normality assumption, two approximation methods that facilitate the 

computation of two-sided tolerance limits for sample variances are proposed here.  

Our findings have shown that the proposed CE approximation method for 

two-sided tolerance interval for sample variances is satisfactory for the number of 

samples (𝑚) and sample sizes (𝑛) at least 10 and 5, respectively, and is quite 

satisfactory for even larger values of 𝑚 and 𝑛. The computation of the CE 

approximate tolerance limits is easier than that of the exact tolerance limits, and the 

required computer run time of the CE method is shorter than that of the exact 

method. Despite the fact that the proposed KMM approximation method is less 

accurate than the proposed CE approximation method, this method turns out 

reasonable for moderate to large sample sizes (𝑛) and appealing because the KMM 

approximate two-sided tolerance limits can be obtained easily using a calculator 

without the use of advanced computational tools. In addition, the KMM 

approximation of the tolerance limits is more robust than that based on the CE and 

exact methods, and the performance of the KMM method is more satisfactory than 

the CE method in terms of the simulated coverage probabilities (as was revealed in 
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Yao et al., 2019). For that reason, based on our study, we would just recommend 

the use of this KMM method when the number of samples (𝑚) is large (say 𝑚 ≥

25) and sample size (𝑛) is moderate to large (say 𝑛 ≥ 10). Otherwise, the use of 

the CE approximation method may be more proper.                  

  The relationship between two-sided tolerance intervals for sample variances 

and the Exceedance Probability (𝐸𝑃) of the 𝐶𝐴𝑅𝐿0 (cdf of the 𝐶𝐹𝐴𝑅) of the 𝑆2 

control charts is highlighted and exploited in this work. Accordingly, the analysis 

of the IC performance and decision making about the design of the 𝑆2 control charts 

(minimum 𝑚 required to achieve a desired IC performance and the values of 

adjusted control limits) are based on tolerance limits for the population of sample 

variances, for instance, the (lower and upper) tolerance factors can be used as the 

adjusted control limit factors, which are required for guaranteeing a specified 

conditional IC performance.  

Since the construction of the 𝑆2 and 𝑆 charts with estimated parameters is 

based on a specified in-control performance, which in turn is measured according 

to either unconditional or conditional perspectives, and upper one-sided or two-

sided charts can be considered, it is fundamental that the practitioner can be aware 

of chart design differences between these two perspectives, and the two types of 

charts, in order to avoid, e.g., excessive false alarms, high cost of sampling and 

defective products. With this motivation, we studied side by side the designs and 

the resulting Phase II IC performances under both the unconditional and the 

conditional perspectives, regarding the upper one-sided and the two-sided 𝑆2 and 𝑆 

charts. This comparison study can provide relevant information to support the 

choice of the most appropriate chart design and, to the best of our knowledge, there 

is no such study for the 𝑆2 and 𝑆 charts available in the literature, as made by Jardim 

et al. (2019) in the context of the �̅� chart. Previous authors focused on the design 

and the Phase II performance according to one or other of these two perspectives 

but never on both, corresponding to 𝑆2 and 𝑆 charts with either upper one-sided 

limits or two-sided limits. We also obtained some results, not yet available in the 

literature, for completing this proposed study properly. The examination of the 

exact distribution of 𝐶𝐴𝑅𝐿0 play a key role in this work.    

As in the case of �̅� chart (see, e.g.,  Saleh et al., 2015), for the 𝑆2 chart with 

estimated parameter, the amount of Phase I reference data required for guaranteeing 
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a specified Phase II IC performance according to the conditional perspective is 

larger than the one according to the unconditional perspective, for the one-sided 

chart as well as for the two-sided chart. Epprecht et al. (2015) warned this difference 

of the required amount of dataset between these two perspectives, but they 

considered different types of charts, namely, two-sided chart (unconditional) and 

one-sided chart (conditional). In our work, providing tabulated values of 𝑚 and 𝑛, 

a complete comparison is made for each chart. Since the required Phase I dataset is 

often large and infeasible in practical terms, for the two perspectives and regarding 

one- and two-sided charts, control chart limits are adjusted to ensure a specified and 

desired Phase II IC performance under each perspective with a reasonable amount 

of Phase I data.   

Due to the unconditional adjustments, the OOC performance of the one-sided 

chart improves, while it deteriorates as a result of the conditional adjustments. For 

the two-sided chart, the OOC performance of charts with adjusted limits under the 

unconditional perspective is less deteriorated than the one under the conditional 

perspective, with the exception of some cases, that is, 𝜀 = 0.20, 𝑝 = 0.20, 𝛼 =

0.0027 when (𝑛 = 3, 𝑚 ≥ 200), (𝑛 = 5, 𝑚 ≥ 150) or (𝑛 = 9, 𝑚 ≥ 75). Owing 

to these results involved in chart design (required minimum 𝑚 and control limits 

adjustments), one could perhaps think that the unconditional perspective may be 

preferable, with respect to one-sided charts as well as two-sided one. However, this 

is a misleading conclusion because of the particularity of each criterion followed in 

these perspectives. Namely, under the unconditional perspective, the goal is to 

achieve a specified level of the unconditional 𝐴𝑅𝐿0. This means that the concern is 

the expected value of the 𝐶𝐴𝑅𝐿0 distribution rather than the true 𝐶𝐴𝑅𝐿0 (a certain 

realization of the 𝐶𝐴𝑅𝐿0, i.e., given a parameter estimate, the average number of 

subgroups until a false alarm). Under this unconditional adjustment, this true 

𝐶𝐴𝑅𝐿0 may be much smaller than a nominal value (say, 370.4) with a high 

probability, which is undesirable in practical applications. This is because the 

variability of the 𝐶𝐴𝑅𝐿0 distribution, which is overlooked in the unconditional 

perspective, is usually large (especially, in the case of the one-sided chart and/or 

when 𝑚 is small).  

It is worth to note that, for the same Phase I reference data (𝑚 and 𝑛), nominal 

false alarm rate (𝛼) and minimum tolerated of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒, the risk of poor IC 
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performance of a particular instance of the upper one-sided chart with adjusted 

control limit under the conditional perspective is smaller than the one under the 

unconditional perspective, that is, the 𝐸𝑃 of the 𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 of the chart with 

adjusted limit under the conditional perspective is larger than the one under its 

counterpart unconditional. In a similar way, this risk for the two-sided chart with 

adjusted control limits under the conditional perspective (in terms of the 𝐸𝑃 of the 

𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜) is smaller than the one under the unconditional perspective, with the 

exception of some particular cases indicated above (previous paragraph). On the 

other hand, even though adjustments under the conditional perspective guarantee a 

specified small risk (probability) that the 𝐶𝐴𝑅𝐿0 is smaller than a minimum 

tolerated value, it generates rather larger mean and standard deviation of the 𝐶𝐴𝑅𝐿0 

distribution (unconditional 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0, respectively) compared to the 

nominal 𝐴𝑅𝐿0 (say, 370.4), which demonstrates that the conditional perspective 

does not  guarantee desired levels of the mean and standard deviation of the 𝐶𝐴𝑅𝐿0 

distribution. In other words, the “conservative” adjustments under the conditional 

perspective take into account the variation of the parameter estimates from different 

reference samples of a same application (practitioner-to-practitioner variability), 

however, these adjustments may lead to an unacceptable unconditional 𝐴𝑅𝐿0 

(compared to the nominal 𝐴𝑅𝐿0, such as 370.4), especially, in the case of the one-

sided chart and/or when 𝑚 is small.  

Our results help the practitioner, for instance, first, gain a better understanding 

of the meaningful differences between the  𝑆2 (or 𝑆) chart design under to the two 

perspectives, and second, help them be aware that adjustments to control limits for 

guaranteeing a specified and desired chart performance under one perspective do 

not necessarily result in a “satisfactory” performance under the other perspective. 

Accordingly, the results and discussion of the design of the 𝑆2 and 𝑆 charts with 

estimated parameter based on the unconditional and conditional points of view 

reveal that each perspective is useful and has advantages and disadvantages in 

practical implementation, and thus both perspectives have their place in practice.            

On the basis of the results presented in Tables 10 and 11, some practical 

recommendations are offered when the control limits are adjusted under the 

conditional perspective. The values of the desired IC performance (settings used in 

the 𝐸𝑃𝐶: 𝜀 and 𝑝) in conjunction with the required amount of Phase I reference data 
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(𝑚 and 𝑛) are recommended in order to choose a range of adequate adjusted control 

limit factors so that this desired conditional IC performance, in terms of the 𝐸𝑃𝐶 

for the 𝐶𝐴𝑅𝐿0, can be guaranteed. In the same line with Jardim et al. (2019), the 

aim is to balance the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0 and the resulting values of the 𝐴𝑅𝐿0 and 

𝑆𝐷𝐴𝑅𝐿0. The choice of 𝜀 ≤ 0.20 and 𝑝 ≤ 0.20 leads to a minimum tolerated value 

of the 𝐶𝐴𝑅𝐿0 that won’t be smaller than 83.33% of the nominal 𝐴𝑅𝐿0 (= 1/𝛼) with 

a probability of at least 80%. This yields a low risk of constructing charts with an 

unacceptably small value of the 𝐶𝐴𝑅𝐿0 (compared to the specified nominal value). 

In addition, a choice of a proper combination of (𝑚, 𝑛) enables to avoid large values 

of 𝐴𝑅𝐿0 and 𝑆𝐷𝐴𝑅𝐿0 via the following rules: the values of 𝑚 and 𝑛 are found so 

that the 𝐴𝑅𝐿0 must not be larger than 1.5 times the nominal 𝐴𝑅𝐿0 (1/𝛼), that is, 

𝐴𝑅𝐿0 ≤ 1.5 (1/𝛼) and the 𝑆𝐷𝐴𝑅𝐿0 must not be larger than 50% of the nominal 

𝐴𝑅𝐿0, that is, 𝑆𝐷𝐴𝑅𝐿0 ≤ 0.5(1/𝛼). Accordingly, from Tables 10 and 11, for (𝜀 =

0, 𝑝 = 0.05) denoted as COND 1, we recommended (𝑛 ≥ 9, 𝑚 ≫ 250) for the one-

sided chart, and (𝑛 ≥ 9, 𝑚 ≥ 100) or (𝑛 ≥ 5, 𝑚 ≥ 150) or (𝑛 ≥ 3, 𝑚 ≥ 250) for 

the two-sided chart. For (𝜀 = 0.20, 𝑝 = 0.20) denoted as COND 2, we 

recommended (𝑛 ≥ 9, 𝑚 ≥ 150) or (𝑛 ≥ 5, 𝑚 ≥ 200) or (𝑛 ≥ 3, 𝑚 > 250) for 

the one-sided chart, and (𝑛 ≥ 9, 𝑚 ≥ 25) or (𝑛 ≥ 5, 𝑚 ≥ 25) or (𝑛 ≥ 3, 𝑚 ≥ 50) 

for the two-sided chart. It is worth to note that, for the same setting (𝛼, 𝜀 and 𝑝), the 

recommended amount of Phase I data (𝑚𝑛) for the �̅� chart is smaller than the one 

for the upper one-sided 𝑆2 chart, but larger than the one for the two-sided 𝑆2 chart. 

The results of this study reveal that the differences in IC performance between 

the one-sided and the two-sided charts are large and we believe that the users of 

these charts should be aware of this. 

Considering the 𝑆2 chart with probability limits (either adjusted or 

unadjusted, and under any of the two perspectives, the unconditional or the 

conditional one), our results revealed that the IC performance of the one-sided chart 

is more strongly affected by parameter estimation than that of the two-sided chart. 

With unadjusted control limits, the number of Phase I samples (𝑚) that guarantees 

an unconditional 𝐴𝑅𝐿0 close to a given nominal value (e.g., 370.4) or that 

guarantees a minimum tolerated 𝐶𝐴𝑅𝐿0 value (in terms of the 𝐸𝑃𝐶) is much smaller 

in the case of the two-sided chart than that in the case of the one-sided chart. Also, 

the standard deviation and the coefficient of variation of the 𝐶𝐴𝑅𝐿0 of the one-sided 
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chart are much larger than those of the two-sided chart. Such differences in 

variability (which are considerably more pronounced under the conditional 

perspective and when 𝑚 is small) are explained by the substantial differences 

between the distributions of the 𝐶𝐴𝑅𝐿0 of the two types of chart (namely, 

𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 has a finite maximum value and a left-skewed distribution, while 

𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 has generally a highly right-skewed distribution with no finite 

maximum). Accordingly, when the charts have their limits adjusted under the 

unconditional perspective (e.g., to achieve a desired unconditional 𝐴𝑅𝐿0 = 370.4), 

the resulting 𝐸𝑃’s for the 𝐶𝐴𝑅𝐿0 (the probabilities that the 𝐶𝐴𝑅𝐿0 is not smaller 

than a minimum tolerated value specified, e.g. 308.6) are larger for the two-sided 

chart than for the one-sided chart. Correspondingly, having found the adjusted 

limits under the conditional perspective using the 𝐸𝑃𝐶, the resulting values of the 

unconditional 𝐴𝑅𝐿0 are much larger for the one-sided than for the two-sided chart. 

Considering the effect of the adjustments on the performance of the charts:  

 If we adjust the control limits under the unconditional perspective and our goal 

is just to achieve a certain unconditional 𝐴𝑅𝐿0, both charts attain the same IC 

performance. This adjustment leads to an improvement of the OOC 

performance of the one-sided chart and to a deterioration of the OOC 

performance of the two-sided chart, especially for smaller number of Phase I 

samples (𝑚). Although the performance of the one-sided chart with adjusted 

control limits may seem better than the two-sided one, we should keep in mind 

that in the adjustments under this perspective, the sole concern is to attain the 

expected value of the 𝐶𝐴𝑅𝐿0, overlooking the practitioner-to-practitioner 

variability (i.e., the variability of the 𝐶𝐴𝑅𝐿0 distribution); our results show that 

the two-sided chart has smaller practitioner-to-practitioner variability. Namely, 

with the adjustment, the values of 𝑃(𝐶𝐴𝑅𝐿0 ≥ 370.4) and 𝑃(𝐶𝐴𝑅𝐿0 ≥ 308.6) 

decrease for the one-sided chart and increase for the two-sided chart.      

 When the adjustments are made under the conditional perspective, even though 

both charts achieve the same 𝐸𝑃 (1 − 𝑝) of the 𝐶𝐴𝑅𝐿0 (metric used in the 

conditional perspective), the increase in the variability and the mean of the 

𝐶𝐴𝑅𝐿0,𝑜𝑛𝑒 distribution due to the adjustment is much larger than those of the 

𝐶𝐴𝑅𝐿0,𝑡𝑤𝑜 distribution. As to the OOC performance, it may be deteriorated or 
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improved in the case of the two-sided chart (depending on the tolerances and 

on the amount of Phase I data, specifically, it improves when 𝜀 = 0.20, 𝑝 =

0.20 and 𝑚𝑛 ≥ 750, otherwise it deteriorates); in the case of the one-sided 

chart, the OOC performance always deteriorates, and more pronouncedly than 

the two-sided chart’s performance. It is well known that the one-sided chart 

with unadjusted limits detects increments in the process variance faster than the 

two-sided chart. Even though adjustments to control limits under the conditional 

perspective could deteriorate and improve the one- and two-sided charts, 

respectively, these corrections don’t lead to obtaining a worse OOC 

performance (e.g., the 𝐶𝐴𝑅𝐿(𝑌, 𝜌2)) of the one-sided chart than that of the two-

sided chart. Indeed, since the control limits factors of the two-sided chart with 

adjusted limits (under any perspective) are always larger than those of the one-

sided chart (𝑈𝑡𝑤𝑜
∗ > 𝑈𝑜𝑛𝑒

∗ ), increases in the process variance (𝜌2 > 1) in a 

specific chart application are detected by the one-sided chart faster than the two-

sided chart (e.g., 𝐶𝐴𝑅𝐿𝑜𝑛𝑒(𝑦, 𝜌
2) < 𝐶𝐴𝑅𝐿𝑡𝑤𝑜(𝑦, 𝜌

2)). On the other hand, as 

expected, decreases in the process variance (𝜌2 < 1) can be satisfactorily 

detected by the two-sided chart. 

Finally, future directions of research are proposed. First, the mathematical-

statistical relationship between the tolerance intervals and the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0 

highlighted in the present work can also be seen in other types of control charts, for 

instance, 𝑋 (individual control) chart and the two-sided tolerance interval for a 

normal population (see, Goedhart et al., 2017b and Krishnamoorthy & Mathew, 

2009) as well as the upper one-sided 𝑆2 chart and one-sided tolerance interval for 

sample variance (see, Goedhart et al., 2017a and Tietjen & Johnson, 1979). Hence, 

this relationship could continue to be exploited in more types of control charts. 

Since, in this work, the 𝐶𝑅𝐿𝑞 is a recommended performance measure and the cdf 

of the conditional run length 𝑞-quantile (𝐶𝑅𝐿𝑞) of 𝑆2 chart is derived for the first 

time in the literature, this cdf could be exploited for designing 𝑆2 charts based on 

the 𝐸𝑃𝐶 for the 𝐶𝑅𝐿0,𝑞 (in a similar way that the 𝐸𝑃𝐶 for the 𝐶𝐴𝑅𝐿0, which is the 

focus of the present work). Moreover, the impact of control limit adjustments on 

the OOC performance of the 𝑆2 chart can be thoroughly examined.     

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



7 
References 

AHMADI, J.; and ARGHAMI, N. R. Nonparametric confidence and 
tolerance intervals from record values data. Statistical Papers, v. 44(4), 
pp. 455-468, 2003. 

AITCHISON, J. Two papers on the comparison of Bayesian and 
frequentist approaches to statistical problems of prediction: Bayesian 
tolerance regions. Journal of the Royal Statistical Society. Series B, pp. 
161-175, 1964. 

ALBERS, W.; KALLENBERG, W. C. New Corrections for Old Control 
Charts. Quality Engineering, v. 17(3), pp. 457–473, 2005. 

ALBERS, W.; KALLENBERG, W. C.; NURDIATI, S. Exceedance 
probabilities for parametric control charts. Statistics, v. 39(5), pp. 429-443, 
2005. 

ARYAL, S.; BHAUMIK, D. K.; MATHEW, T.; GIBBONS, R. D. 
Approximate tolerance limits and prediction limits for the gamma 
distribution. Journal of Applied Statistical Science, v. 16(2), pp. 253-261, 
2008. 

ASHKAR, F.; OUARDA, T. B. Approximate confidence intervals for 
quantiles of gamma and generalized gamma distributions. Journal of 
Hydrologic Engineering, v. 3(1), pp. 43-51, 1998. 

BAIN, L. J.; ENGELHARDT, M. Simple approximate distributional 
results for confidence and tolerance limits for the Weibull distribution based 
on maximum likelihood estimators. Technometrics, v. 23(1), pp. 15-20, 
1981. 

BAIN, L. J.; ENGELHARDT, M.; SHIUE, W. K. Approximate tolerance 
limits and confidence limits on reliability for the gamma distribution. IEEE 
transactions on reliability, v. 33(2), pp. 184-187, 1984. 

BARNARD, G. A. Control Charts and Stochastic Processes. Journal 
of the Royal Statistical Society, v. 21(B), pp. 239-271, 1959. 

BISSELL, A. F. CUSUM Techniques for Quality Control. Applied 
Statistics, v. 18(1), pp. 1-30, 1969. 

CAI, T. T.; WANG, H. Tolerance intervals for discrete distributions in 
exponential families. Statistica Sinica, 19, pp. 905-923, 2009. 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



120 

 

CASTAGLIOLA, P.; CELANO, G.; CHEN, G. The exact run length 

distribution and design of the 𝑆2 chart when the in-control variance is 
estimated. International Journal of Reliability, Quality and Safety 
Engineering, v. 16(01), pp. 23-38, 2009. 

CHAKRABORTI, S. Run Length Distribution and Percentiles: The 

Shewhart �̅� Chart with Unknown Parameters. Quality Engineering, v. 19, 
pp. 119-127, 2007. 

CHAKRABORTI, S.; GRAHAM, M. A.; HUMAN, S. W. Phase I 
Statistical Process Control Charts: An Overview and Some Results. Quality 
Engineering, v. 21, pp. 52-62, 2009. 

CHAMP, C. W.; LOWRY, C. A. Adjusting the S-chart for detecting both 
increases and decreases in the standard deviation. In Proceedings of the 
Decision Sciences Institute Annual Conference, v. 3, pp. 2112-2114, 
1994. 

CHEN, G. The run length distributions of the 𝑅, 𝑆 and 𝑆2 control charts 

when 𝜎 is estimated. Canadian Journal of Statistics, v. 26(2), pp. 311-
322, 1998. 

CHEN, P.; YE, Z. S. Approximate statistical limits for a gamma 
distribution. Journal of Quality Technology, v. 49(1), pp. 64-77, 2017. 

DIKO, M. D.; GOEDHART, R.; CHAKRABORTI, S.; DOES, R. J. M. 
M.; EPPRECHT, E. K. Phase II control charts for monitoring dispersion 
when parameters are estimated. Quality Engineering, v. 29(4), pp. 605-
622, 2017. 

DONG, X.; TSONG, Y.; SHEN, M. Statistical considerations in setting 
product specifications. Journal of Biopharmaceutical Statistics, v. 25(2), 
pp. 280-294, 2015a. 

DONG, X.; TSONG, Y.; SHEN, M.; ZHONG, J. Using tolerance 
intervals for assessment of pharmaceutical quality. Journal of 
Biopharmaceutical Statistics, v. 25(2), pp. 317-327, 2015b. 

EPPRECHT, E. K.; LOUREIRO, L. D.; CHAKRABORTI, S. Effect of 

the Amount of Phase I Data on the Phase II Performance of 𝑆2 and 𝑆 Control 
Charts. Journal of Quality Technology, v. 47(2), pp. 139-155, 2015. 

FARAZ, A.; HEUCHENNE, C.; SANIGA, E. An exact method for 

designing Shewhart �̅� and 𝑆2 control charts to guarantee in-control 
performance. International Journal of Production Research, v. 56(7), pp. 
2570-2584, 2018. 

FARAZ, A.; WOODALL, W. H.; HEUCHENNE, C. Guaranteed 

conditional performance of the 𝑆2 control chart with estimated 
parameters. International Journal of Production Research, v. 53(14), 
pp. 4405-4413, 2015. 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



121 

 

FERNANDEZ, A. J. Tolerance limits for k-out-of-n Systems with 
Exponentially Distributed Component Lifetimes. IEEE Transactions on 
Reliability, v. 59(2), pp. 331-337, 2010. 

FRASER, D. A. S. Is Bayes posterior just quick and dirty confidence? 
Statistical Science, v. 26(3), pp. 299-316, 2011. 

GANDY, A.; KVALØY, J. T. Guaranteed Conditional Performance of 
Control Charts via Bootstrap Methods. Scandinavian Journal of 
Statistics, v. 40, pp. 647-668, 2013. 

GIBBONS, R. D.; BHAUMIK, D. K.; ARYAL, S. Statistical methods for 
groundwater monitoring, v. 59. John Wiley & Sons, New York, 2009. 

GIBBONS, R. D.; COLEMAN, D. E.; COLEMAN, D. D. Statistical 
methods for detection and quantification of environmental contamination. 
John Wiley & Sons, New York, 2001. 

GOEDHART, R.; da Silva, M. M.; SCHOONHOVEN, M.; EPPRECHT, 
E. K., CHAKRABORTI, S.; DOES, R. J.; VEIGA, Á. Shewhart control charts 
for dispersion adjusted for parameter estimation. IISE Transactions, v. 
49(8), pp. 838-848, 2017a. 

GOEDHART, R.; SCHOONHOVEN, M.; DOES, R.J.M.M. Guaranteed 

In-Control Performance for the 𝑋 and �̅� Control Charts. Journal of Quality 
Technology, v. 49(2), pp. 155-171, 2017b. 

GRAHAM, M. A.; CHAKRABORTI, S.; MUKHERJEE, A. Design and 
implementation of CUSUM exceedance control charts for unknown location. 
International Journal of Production Research, v. 52(18), pp. 5546-5564, 
2014. 

GUO, B.; WANG, B. X. The design of the ARL-unbiased 𝑆2 chart when 
the in control variance is estimated. Quality and Reliability Engineering 
International, v. 31(3), pp. 501–511, 2015. 

GUO, B.; WANG, B. X. The Design of the 𝑆2 Control Charts Based on 
Conditional Performance via Exact Methods. Quality and Reliability 
Engineering International, v. 33(7), pp. 1567-1575, 2017. 

HAHN, G. J. Statistical Intervals for a Normal Population Part I. Tables, 
Examples and Applications. Journal of Quality Technology, v. 2(3), pp. 
115-125, 1970a. 

HAHN, G. J. Statistical Intervals for a Normal Population, Part II. 
Formulas, Assumptions, Some Derivations. Journal of Quality 
Technology, v. 2(4), pp. 195-206, 1970b.  

HAMADA, M.; JOHNSON, V.; MOORE, L. M.; WENDELBERGER, J. 
Bayesian prediction intervals and their relationship to tolerance intervals. 
Technometrics, v. 46(4), pp. 452-459, 2004. 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



122 

 

HANNIG, J. On generalized fiducial inference. Statistica Sinica, v. 
19(2), pp. 491-544, 2009. 

HOWE, W. G. Two-sided tolerance limits for normal populations-some 
improvements. Journal of the American Statistical Association, v. 
64(326), pp. 610-620, 1969. 

JARDIM, F.; CHAKRABORTI, S.; EPPRECHT, E. K. Two perspetives 
for designing a control chart with estimated parameters: The case of the 

Shewhart �̅� Chart. Journal of Quality Technology, to appear, 2019. 

JENSEN, W. A. Approximations of tolerance intervals for normally 
distributed data. Quality and Reliability Engineering International, v. 
25(5), pp. 571-580, 2009. 

JENSEN, W. A.; JONES-FARMER, L. A.; CHAMP, C. W.; WOODALL, 
W. H. Effects of Parameter Estimation on Control Chart Properties: A 
Literature Review. Journal of Quality Technology, v. 38(4), pp. 349-364, 
2006. 

JÍLEK, M. A bibliography of statistical tolerance regions. Statistics: A 
Journal of Theoretical and Applied Statistics, v. 12(3), pp. 441-456, 
1981. 

JÍLEK, M.; ACKERMANN, H. A bibliography of statistical tolerance 
regions, II. Statistics: A Journal of Theoretical and Applied Statistics, 
v. 20(1), pp. 165-172, 1989. 

JONES-FARMER, L. A.; WOODALL, W. H.; STEINER, S. H.; CHAMP, 
C. W. An Overview of Phase I Analysis for Process Improvement and 
Monitoring. Journal of Quality Technology, v. 46(3), pp. 265-280, 2014. 

KHOO, M. B. C. Performance Measures for the Shewhart �̅� Control 
Chart. Quality Engineering, v. 16(4), pp. 585–590, 2004. 

KHOO, M. B., WONG, V. H., WU, Z., CASTAGLIOLA, P. Optimal 
designs of the multivariate synthetic chart for monitoring the process mean 
vector based on median run length. Quality and Reliability Engineering 
International, v. 27(8), pp. 981-997, 2011. 

KRISHNAMOORTHY, K.; MATHEW, T. Statistical tolerance regions: 
theory, applications, and computation. Vol. 744. John Wiley & Sons, New 
York, 2009. 

KRISHNAMOORTHY, K.; MONDAL, S. Improved tolerance factors for 
multivariate normal distributions. Communications in Statistics-
Simulation and Computation, v. 35(2), pp. 461-478, 2006. 

KRISHNAMOORTHY, K.; MATHEW, T.; MUKHERJEE, S. Normal-
based methods for a gamma distribution: Prediction and tolerance intervals 
and stress-strength reliability. Technometrics, v. 50(1), pp. 69-78, 2008. 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



123 

 

KRISHNAMOORTHY, K.; XIA, Y.; XIE, F. A simple approximate 
procedure for constructing binomial and Poisson tolerance intervals. 
Communications in Statistics-Theory and Methods, v. 40(12), pp. 2243-
2258, 2011. 

LAI, Y. H.; YEN, Y. F.; CHEN, L. A. Validation of tolerance interval. 
Journal of Statistical Planning and Inference, v. 142(4), pp. 902-907, 
2012. 

LEE, H. I.; LIAO, C. T. Estimation for conformance proportions in a 
normal variance components model. Journal of Quality Technology, v. 
44(1), pp. 63-79, 2012. 

LEE, M. H.; KHOO, M. B. Optimal statistical design of a multivariate 
EWMA chart based on ARL and MRL. Communications in Statistics-
Simulation and Computation, v. 35(3), pp. 831-847, 2006. 

LEE, Y. T., MATHEW, T. Tolerance regions in multivariate linear 
regression. Journal of statistical planning and inference, v. 126(1), pp. 
253-271, 2004. 

MAHMOUD, M. A.; HENDERSON, G. R.; EPPRECHT, E. K.; 
WOODALL, W. H. Estimating the Standard Deviation in Quality Control 
Applications. Journal of Quality Technology, v. 42(4), pp. 348-357, 2010. 

MARAVELAKIS, P. E.; PANARETOS, J.; PSARAKIS, S. Effect of 
Estimation of the Process Parameters on the Control Limits of the Univariate 
Control Charts for Process Dispersion. Communication in Statistics—
Simulation and Computation, v. 31(3), pp. 443-461, 2002. 

MEEKER, W. Q.; HAHN, G. J.; ESCOBAR, L. A. Statistical Intervals: 
A Guide for Practitioners and Researchers. Vol. 541. John Wiley & Sons, 
New York, 2017. 

MEI, Y. Is Average Run Length to False Alarm Always an Informative 
Criterion? (with Discussion). Sequential Analysis, v. 27(4), pp. 354–419, 
2008. 

MILLARD, S. P.; NEERCHAL, N. K. Environmental statistics with S-
Plus”. CRC Press, New York, 2000. 

MONTGOMERY, D.C. Introduction to Statistical Quality Control, 6th 
ed. John Wiley & Sons, Hoboken, New York, 2009. 

PATEL, J. K. Tolerance limits-a review. Communications in 
Statistics-Theory and Methods, v. 15(9), pp. 2719-2762, 1986. 

PIGNATIELLO Jr, J. J., ACOSTA-MEJIA, C. A., RAO, B. V. The 
performance of control charts for monitoring process dispersion. 
In Proceedings of the 4th Industrial Engineering Research 
Conference, pp. 320-328. Institute of Industrial Engineers, Nashville, TN, 
1995. 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



124 

 

PSARAKIS, S.; VYNIOU, A. K.; CASTAGLIOLA, P. Some recent 
developments on the effects of parameter estimation on control 
charts. Quality and Reliability Engineering International, v. 30(8), pp. 
1113-1129, 2014. 

QUESENBERRY, C. P. The Effect of Sample Size on Estimated Limits 

for �̅� and 𝑋 Control Charts. Journal of Quality Technology, v. 25(4), pp. 
237-247, 1993. 

RADSON, D.; BOYD, A. H. Graphical Representation of Run Length 
Distributions. Quality Engineering, v. 17(2), pp. 301–308, 2005. 

RINNE, H. The Weibull distribution: a handbook. Chapman and 
Hall/CRC, New York, 2008. 

RYAN, T. P. Modern engineering statistics. John Wiley & Sons, New 
York, 2007. 

SALEH, N. A.; MAHMOUD, M. A.; KEEFE, M. J.; WOODALL, W. H. 

The Difficulty in Designing Shewhart �̅� and 𝑋 Control Charts with Estimated 
Parameters. Journal of Quality Technology, v. 47(2), pp. 127-138, 2015. 

SARMIENTO M. G. C.; CHAKRABORTI S.; EPPRECHT E. K. Exact 

two‐sided statistical tolerance limits for sample variances. Quality and 
Reliability Engineering International, v. 34(6), pp. 1238-1253, 2018. 

SCHOONHOVEN, M.; RIAZ, M.; DOES, R. J. Design and analysis of 
control charts for standard deviation with estimated parameters. Journal of 
Quality Technology, v. 43(4), pp. 307-333, 2011. 

SHEWHART, W. A. Economic Control of Quality of Manufactured 
Product. Van Nostrand, New York, NY. Reprinted by ASQC Milwaukee, 
1980. 

SHIRKE, D. T.; KUMBHAR, R. R.; KUNDU, D. Tolerance intervals for 
exponentiated scale family of distributions. Journal of Applied Statistics, 
v. 32(10), pp. 1067-1074, 2005. 

TEOH, W. L.; KHOO, M. B.; CASTAGLIOLA, P.; CHAKRABORTI, S. 
Optimal design of the double sampling chart with estimated parameters 
based on median run length. Computers & Industrial Engineering, v. 67, 
pp. 104-115, 2014. 

TEOH, W. L.; KHOO, M. B.; CASTAGLIOLA, P.; LEE, M. H. The Exact 

Run Length Distribution and Design of the Shewhart �̅� Chart with Estimated 
Parameters Based on Median Run Length. Communications in Statistics-
Simulation and Computation, v. 45, pp. 2081-2103, 2016.  

TIETJEN, G. L.; JOHNSON, M. E. Exact statistical tolerance limits for 
sample variances. Technometrics, v. 21(1), pp. 107-110, 1979. 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



125 

 

VARDEMAN, S. B. What about the other intervals? The American 
Statistician, v. 46(3), pp. 193-197, 1992. 

WALD, A. An extension of Wilks' method for setting tolerance 
limits. The Annals of Mathematical Statistics, v. 14(1), pp. 45-55, 1943. 

WALD, A.; WOLFOWITZ, J. Tolerance limits for a normal 
distribution. The Annals of Mathematical Statistics, v. 17(2), pp. 208-215, 
1946. 

WANG, H.; TSUNG, F. Tolerance intervals with improved coverage 
probabilities for binomial and Poisson variables. Technometrics, v. 51(1), 
pp. 25-33, 2009. 

WILKS, S. S. Determination of sample sizes for setting tolerance limits. 
The Annals of Mathematical Statistics, v. 12(1), pp. 91-96, 1941. 

WILKS, S. S. Statistical prediction with special reference to the 
problem of tolerance limits. The annals of mathematical statistics, v. 
13(4), pp. 400-409, 1942. 

WILSON, E. B.; HILFERTY, M. M. The distribution of chi-square. 
Proceedings of the National Academy of Sciences, v. 17(12), pp. 684-
688, 1931. 

WOODALL, W. H. Bridging the gap between theory and practice in 
basic statistical process monitoring. Quality Engineering, v. 29(1), pp. 2-
15, 2017. 

WOODALL, W. H.; MONTGOMERY, D. C. Some current directions in 
the theory and application of statistical process monitoring. Journal of 
Quality Technology, v. 46(1), pp. 78-94. 

YANG, C. H.; HILLIER, F. S. Mean and variance control chart limits 
based on a small number of subgroups. Journal of Quality Technology, v. 
2(1), pp. 9-16, 1970. 

YAO, Y.; SARMIENTO, M. G. C.; CHAKRABORTI, S.; EPPRECHT, 
E. K. Approximate two-sided tolerance interval for sample variances. 
Quality Engineering. To appear, 2019. 

YOUNG, D. S. Tolerance: an R package for estimating tolerance 
intervals. Journal of Statistical Software, v. 36(5), pp. 1-39, 2010. 

YOUNG, D. S. A procedure for approximate negative binomial 
tolerance intervals. Journal of Statistical Computation and Simulation, 
v. 84(2), pp. 438-450, 2014a. 

YOUNG, D. S. Computing tolerance intervals and regions using R. In 
Handbook of Statistics (Vol. 32, pp. 309-338). Elsevier, 2014b. 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



126 

 

YOUNG, D. S.; MATHEW, T. Improved nonparametric tolerance 
intervals based on interpolated and extrapolated order statistics. Journal of 
Nonparametric Statistics, v. 26(3), pp. 415-432, 2014. 

ZAR, J. H. Approximations for the percentage points of the chi-
squared distribution. Journal of the Royal Statistical Society: Series C 
(Applied Statistics), v. 27(3), pp. 280-290, 1978. 

ZHANG, L.; BEBBINGTON, M. S., LAI, C. D.; GOVINDARAJU, K. On 

statistical design of the 𝑆2 control chart. Communications in Statistics—
Theory and Methods, v. 34(1), pp. 229-244, 2005. 

ZHOU, Q.; ZOU, C.; WANG, Z.; JIANG, W. Likelihood-Based EWMA 
Charts for Monitoring Poisson Count Data with Time-Varying Sample Sizes. 
Journal of the American Statistical Association, v. 107(499), pp. 1049-
1062, 2012. 
  

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



127 

 

Appendix A - Proof of Equation (24): exact two-sided 
tolerance limits for sample variances  

In this Appendix A, the proof of Equation (24), which is required to find the 

value of 𝛽∗, is provided so that the exact two-sided tolerance factors for sample 

variances can be obtained. First, the shape of the actual coverage 𝐺(𝑌) is examined 

on the basis of its first and the second derivatives. Using Equations (3) and (21), 

𝐺(𝑌; 𝛽∗, 𝑚, 𝑛) can be re-written as follows 

𝐺(𝑌; 𝛽∗, 𝑚, 𝑛) = 𝐹𝜒𝑛−12 (
𝑌

𝑚
𝑈∗| 𝑌) − 𝐹𝜒𝑛−12 (

𝑌

𝑚
𝐿∗| 𝑌).  

Then, the first derivative of 𝐺(𝑌) is given by 

𝐺′(𝑌) = 𝑓𝜒𝑛−12 (
𝑌

𝑚
𝑈∗) .

𝑈∗

𝑚
− 𝑓𝜒𝑛−12 (

𝑌

𝑚
𝐿∗) .

𝐿∗

𝑚
, 

where 𝑓𝜒𝑛−12 (𝑥) is the probability distribution function (pdf) of the chi-square 

random variable with 𝑛 − 1 df, that is, 𝑓𝜒𝑛−12 (𝑥) =
𝑥
𝑛−1
2
−1
𝑒
−𝑥
2

Γ((n−1) 2⁄ ).2(n−1) 2⁄
.  Let 𝑎 =

Γ((n − 1) 2⁄ ). 2(n−1) 2⁄  so that 𝐺′(𝑌) can be rewritten as 

𝐺′(𝑌) =
𝑌
𝑛−1
2
−1

𝑎
(
1

𝑚
)

𝑛−1

2
(𝑈∗

𝑛−1

2 . 𝑒
−𝑌

2𝑚
𝑈∗ − 𝐿∗

𝑛−1

2 . 𝑒
−𝑌

2𝑚
𝐿∗). 

 

Only one stationary point (𝑦0, 𝐺(𝑦0)) of 𝐺 is found by solving the equation 

𝐺′(𝑌) = 0, where  

𝑦0 = 𝑚(𝑛 − 1)ln (𝑈
∗ 𝐿∗⁄ ) (𝑈∗ − 𝐿∗)⁄ . 

 

Next, let 𝑏 =
𝑛−1

2
− 1 so that the second derivative of 𝐺(𝑌) is given by  

𝐺′′(𝑌) =
𝑑(𝐺′(𝑌))

𝑑𝑌
 

=
𝑌𝑏

2𝑎
[((

𝐿∗

𝑚
)
𝑏+2

. 𝑒
−𝐿∗𝑌
2𝑚 ) − ((

𝑈∗

𝑚
)
𝑏+2

. 𝑒
−𝑈∗𝑌
2𝑚 )] 

+
𝑏𝑌𝑏−1

𝑎
[((

𝑈∗

𝑚
)
𝑏+1

. 𝑒
−𝑈∗𝑌

2𝑚 ) − ((
𝐿∗

𝑚
)
𝑏+1

. 𝑒
−𝐿∗𝑌

2𝑚 )]. 
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Therefore, 𝐺′′(𝑌) evaluated at the point 𝑌 = 𝑦0 results in 

𝐺′′(𝑦0) =
(𝐿∗ − 𝑈∗)

2𝑚𝑎
(
2𝑚(𝑏 + 1)ln (𝑈∗ 𝐿∗⁄ )

𝑈∗ − 𝐿∗
)

𝑏

(
𝐿∗
𝑈∗(𝑏+1)
𝑈∗−𝐿∗

𝑈∗
𝐿∗(𝑏+1)
𝑈∗−𝐿∗

) 

 

Note that 𝑎 > 0, 𝑏 + 1 >
1

2
, 𝑈∗ − 𝐿∗ > 0 and ln(𝑈∗/𝐿∗) > 0. Thus, since 

(𝐿∗−𝑈∗)

2𝑚𝑎
< 0, (

2𝑚(𝑏+1)ln (𝑈∗ 𝐿∗⁄ )

𝑈∗−𝐿∗
)
𝑏

> 0 and (
𝐿∗
𝑈∗(𝑏+1)
𝑈∗−𝐿∗

𝑈∗
𝐿∗(𝑏+1)
𝑈∗−𝐿∗

) > 0, we have 𝐺′′(𝑦0) < 0. 

Accordingly, 𝐺(𝑌) is concave with a unique maximum at 𝑦0. 

 

Note 1. The coverage 𝐺(𝑌) is a non-monotonic concave function with the 

maximum point at (𝑦0, 𝐺(𝑦0)). In other words, 𝐺(𝑌) is increasing over the interval 

(0, 𝑦0) and decreasing over (𝑦0, ∞) because the coverage 𝐺(𝑌) has only one 

stationary point (𝑦0, 𝐺(𝑦0)), that is, 𝐺′(𝑦0) = 0, and 𝐺′′(𝑦0) < 0, where 

𝑦0 = 𝑚(𝑛 − 1) ln (𝑈∗ 𝐿∗⁄ ) (𝑈∗ − 𝐿∗)⁄  and  

𝐺(𝑦0) = 𝑀𝑎𝑥(𝐺(𝑌))

= 𝐹𝜒𝑛−12 (
ln (𝑈∗ 𝐿∗⁄ )

(𝑈∗ − 𝐿∗)
𝜒
𝑛−1,1−

𝛽∗

2

2 ) − 𝐹𝜒𝑛−12 (
ln(𝑈∗ 𝐿∗⁄ )

(𝑈∗ − 𝐿∗)
𝜒
𝑛−1,

𝛽∗

2

2 ). 

Since 𝛾 ≠ 0 (specifically, 0 < 𝛾 < 1), the specified proportion 1 − 𝛽 must 

be smaller than the 𝑀𝑎𝑥(𝐺(𝑌)), that is, 1 − 𝛽 < 𝐺(𝑦0). 

 

Note 2. Given the values of 𝑚, 𝑛, 𝛽 and 𝛾, the actual coverage 𝐺(𝑌) is used to find 

the value of 𝛽∗ by a search method. Since the actual coverage 𝐺(𝑌) is a concave 

function of 𝑌, the coverage probability 𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) is equivalent to 

𝑃𝑌(𝑦1 ≤ 𝑌 ≤ 𝑦2), as shown in Equation (23): 

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) = 𝐹𝜒𝑚(𝑛−1)

2 (𝑦2 ) − 𝐹𝜒𝑚(𝑛−1)
2 (𝑦1),  

where 𝑦1 and 𝑦2 (𝑦1 < 𝑦2) are the solutions of 𝐺(𝑌; 𝛽∗, 𝑚, 𝑛) = 1 − 𝛽 (see 

Equation 21). Therefore, the tolerance interval from Equation (22) given earlier 

(subchapter 3.1) as follows  

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) =  𝛾, 
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can be rewritten as 𝐹𝜒𝑚(𝑛−1)
2 (𝑦2 ) − 𝐹𝜒𝑚(𝑛−1)

2 (𝑦1) = 𝛾. Accordingly, 𝛽∗ is found by 

solving (see Equation 24) a system of three nonlinear equations for 𝛽∗, 𝑦1 and 𝑦2: 

 

{
 
 

 
 𝐹𝜒𝑛−12 (

𝑦1
𝑚(𝑛 − 1)

𝜒
𝑛−1,1−

𝛽∗

2

2 ) − 𝐹𝜒𝑛−12 (
𝑦1

𝑚(𝑛 − 1)
𝜒
𝑛−1,

𝛽∗

2

2 ) = 1 − 𝛽

𝐹𝜒𝑛−12 (
𝑦2

𝑚(𝑛 − 1)
𝜒
𝑛−1,1−

𝛽∗

2

2 ) − 𝐹𝜒𝑛−12 (
𝑦2

𝑚(𝑛 − 1)
𝜒
𝑛−1,

𝛽∗

2

2 ) = 1 − 𝛽

𝐹𝜒𝑚(𝑛−1)
2 (𝑦2 ) − 𝐹𝜒𝑚(𝑛−1)

2 (𝑦1) = 𝛾

  

using a search method, where 0 < 𝑦1 < 𝑦0 < 𝑦2 < ∞ and 1 − 𝛽 < 𝑀𝑎𝑥 (𝐺(𝑌)). 

Note that  

a) Since 𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) = 𝛾 and 0 < 𝛾 < 1, we have 

 0 < 𝑃(𝐺(𝑌) ≥ 1 − 𝛽) < 1. Thus, 0 < 1 − 𝛽 < 𝑀𝑎 𝑥(𝐺(𝑌)).  

b) The actual coverage 𝐺(𝑌) attains the minimum specified proportion (i.e., 

𝐺(𝑌) = 1 − 𝛽) at:  

 The minimum value of the ratio of the estimated variance 

𝑀𝑖𝑛(𝑆𝑝
2 𝜎2⁄ ) or 𝑌=𝑦1 (Underestimation of 𝜎2: 𝑆𝑝

2 𝜎2⁄ < 1), and at 

 The maximum value of the ratio of the estimated variance 

𝑀𝑎𝑥(𝑆𝑝
2 𝜎2⁄ ) or 𝑌=𝑦2 (Overestimation of 𝜎2: 𝑆𝑝

2 𝜎2⁄ > 1)        
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Appendix B – Tables of two-sided tolerance factors for 𝑺𝟐  

Table B.1 - The exact (1 − 𝛽 = 0.90, 𝛾) two-sided lower and upper tolerance factors for 𝑆2 based 

on 𝑛 observations (𝐿∗ and 𝑈∗, respectively) using 𝑚 subgroups each of size 𝑛 to estimate 𝜎2 

   1 − 𝛽 = 0.90 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

5 

2  0.9929 2E-05 8.5015  0.9988 5E-07 11.8291  ≈1 1E-12 24.4052 

3  0.9838 0.0081 4.8156  0.9944 0.0028 5.8720  0.9998 0.0001 9.0020 

4  0.9783 0.0405 3.7220  0.9907 0.0228 4.3299  0.9991 0.0048 5.9793 

5  0.9745 0.0844 3.1794  0.9879 0.0571 3.6063  0.9983 0.0208 4.7111 

6  0.9718 0.1289 2.8491  0.9857 0.0959 3.1794  0.9976 0.0457 4.0096 

7  0.9696 0.1701 2.6245  0.9840 0.1339 2.8947  0.9968 0.0745 3.5613 

8  0.9680 0.2071 2.4609  0.9825 0.1694 2.6896  0.9962 0.1041 3.2482 

9  0.9667 0.2400 2.3356  0.9813 0.2018 2.5340  0.9956 0.1329 3.0160 

10  0.9657 0.2694 2.2363  0.9803 0.2312 2.4113  0.9951 0.1602 2.8362 

15  0.9628 0.3777 1.9366  0.9768 0.3429 2.0475  0.9931 0.2713 2.3190 

20  0.9614 0.4481 1.7800  0.9750 0.4167 1.8628  0.9918 0.3496 2.0652 

25  0.9607 0.4984 1.6807  0.9738 0.4697 1.7479  0.9908 0.4075 1.9107 

10 

2  0.9701 0.0004 5.9236  0.9843 0.0001 7.0709  0.9978 2E-06 10.6115 

3  0.9601 0.0201 3.9149  0.9748 0.0127 4.3749  0.9927 0.0037 5.6119 

4  0.9548 0.0671 3.1900  0.9695 0.0511 3.4767  0.9890 0.0255 4.2108 

5  0.9513 0.1193 2.8018  0.9660 0.0984 3.0115  0.9863 0.0610 3.5349 

6  0.9489 0.1679 2.5553  0.9634 0.1446 2.7215  0.9842 0.1002 3.1305 

7  0.9470 0.2110 2.3828  0.9614 0.1865 2.5209  0.9825 0.1383 2.8584 

8  0.9456 0.2487 2.2543  0.9598 0.2238 2.3727  0.9811 0.1737 2.6611 

9  0.9445 0.2817 2.1542  0.9585 0.2570 2.2580  0.9800 0.2059 2.5107 

10  0.9436 0.3108 2.0736  0.9574 0.2865 2.1662  0.9790 0.2352 2.3916 

15  0.9409 0.4169 1.8247  0.9539 0.3951 1.8856  0.9755 0.3467 2.0348 

20  0.9396 0.4848 1.6913  0.9521 0.4652 1.7377  0.9734 0.4209 1.8513 

25  0.9389 0.5330 1.6055  0.9510 0.5151 1.6437  0.9720 0.4744 1.7365 

15 

2  0.9563 0.0008 5.2571  0.9705 0.0003 5.9474  0.9901 4E-05 7.8966 

3  0.9477 0.0265 3.6432  0.9612 0.0196 3.9428  0.9820 0.0090 4.7117 

4  0.9431 0.0788 3.0209  0.9562 0.0656 3.2125  0.9773 0.0418 3.6887 

5  0.9401 0.1337 2.6786  0.9529 0.1173 2.8205  0.9740 0.0853 3.1677 

6  0.9379 0.1835 2.4577  0.9505 0.1656 2.5711  0.9716 0.1292 2.8461 

7  0.9363 0.2269 2.3014  0.9486 0.2084 2.3963  0.9697 0.1700 2.6252 

8  0.9350 0.2647 2.1840  0.9472 0.2461 2.2658  0.9682 0.2067 2.4628 

9  0.9340 0.2977 2.0920  0.9460 0.2793 2.1640  0.9669 0.2396 2.3375 

10  0.9332 0.3267 2.0175  0.9450 0.3086 2.0819  0.9658 0.2691 2.2374 

15  0.9307 0.4317 1.7853  0.9417 0.4156 1.8282  0.9622 0.3790 1.9327 

20  0.9295 0.4986 1.6597  0.9400 0.4842 1.6926  0.9600 0.4510 1.7729 

25  0.9288 0.5459 1.5786  0.9390 0.5328 1.6057  0.9585 0.5024 1.6718 

20 

2  0.9477 0.0011 4.9468  0.9608 0.0006 5.4481  0.9816 0.0001 6.7863 

3  0.9402 0.0304 3.5093  0.9523 0.0242 3.7353  0.9728 0.0137 4.2974 

4  0.9361 0.0854 2.9360  0.9476 0.0743 3.0823  0.9678 0.0530 3.4379 

5  0.9334 0.1416 2.6162  0.9446 0.1281 2.7251  0.9645 0.1007 2.9872 

6  0.9315 0.1919 2.4081  0.9424 0.1773 2.4954  0.9621 0.1468 2.7043 

7  0.9301 0.2356 2.2599  0.9407 0.2206 2.3331  0.9602 0.1887 2.5079 

8  0.9289 0.2734 2.1481  0.9394 0.2583 2.2114  0.9587 0.2259 2.3622 

9  0.9280 0.3063 2.0602  0.9383 0.2914 2.1160  0.9575 0.2590 2.2492 

10  0.9273 0.3352 1.9888  0.9373 0.3206 2.0388  0.9564 0.2884 2.1584 

15  0.9250 0.4395 1.7651  0.9344 0.4266 1.7987  0.9528 0.3971 1.8796 

20  0.9238 0.5059 1.6435  0.9327 0.4944 1.6693  0.9507 0.4676 1.7318 

25  0.9231 0.5528 1.5649  0.9317 0.5423 1.5861  0.9493 0.5179 1.6377 
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Table B.1 - (Continued) 

 

   1 − 𝛽 = 0.90 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

25 

2  0.9419 0.0013 4.7646  0.9539 0.0008 5.1632  0.9743 0.0003 6.1870 

3  0.9351 0.0330 3.4285  0.9460 0.0274 3.6121  0.9654 0.0174 4.0585 

4  0.9314 0.0897 2.8843  0.9417 0.0800 3.0039  0.9606 0.0610 3.2899 

5  0.9290 0.1467 2.5780  0.9389 0.1351 2.6673  0.9573 0.1111 2.8793 

6  0.9273 0.1973 2.3776  0.9369 0.1849 2.4493  0.9550 0.1586 2.6190 

7  0.9260 0.2410 2.2345  0.9353 0.2283 2.2947  0.9532 0.2010 2.4369 

8  0.9249 0.2788 2.1261  0.9341 0.2661 2.1782  0.9517 0.2385 2.3011 

9  0.9241 0.3116 2.0407  0.9331 0.2991 2.0867  0.9505 0.2716 2.1954 

10  0.9234 0.3404 1.9712  0.9322 0.3282 2.0125  0.9495 0.3010 2.1102 

15  0.9212 0.4444 1.7528  0.9294 0.4335 1.7806  0.9460 0.4087 1.8470 

20  0.9201 0.5104 1.6337  0.9279 0.5007 1.6550  0.9440 0.4783 1.7064 

25  0.9194 0.5569 1.5565  0.9269 0.5482 1.5740  0.9426 0.5277 1.6166 

30 

2  0.9377 0.0015 4.6434  0.9486 0.0010 4.9775  0.9682 0.0004 5.8115 

3  0.9315 0.0349 3.3737  0.9414 0.0298 3.5297  0.9596 0.0204 3.9024 

4  0.9281 0.0928 2.8491  0.9374 0.0842 2.9511  0.9549 0.0669 3.1917 

5  0.9259 0.1503 2.5520  0.9348 0.1401 2.6282  0.9518 0.1187 2.8072 

6  0.9243 0.2011 2.3569  0.9329 0.1902 2.4181  0.9495 0.1670 2.5617 

7  0.9231 0.2448 2.2171  0.9314 0.2338 2.2685  0.9478 0.2098 2.3890 

8  0.9221 0.2826 2.1111  0.9303 0.2715 2.1556  0.9464 0.2474 2.2599 

9  0.9213 0.3154 2.0274  0.9293 0.3045 2.0667  0.9452 0.2805 2.1590 

10  0.9207 0.3441 1.9593  0.9285 0.3334 1.9946  0.9442 0.3098 2.0776 

15  0.9186 0.4477 1.7445  0.9259 0.4383 1.7683  0.9409 0.4168 1.8248 

20  0.9175 0.5134 1.6270  0.9244 0.5051 1.6453  0.9390 0.4857 1.6892 

25  0.9168 0.5598 1.5508  0.9235 0.5523 1.5659  0.9377 0.5346 1.6022 

50 

2  0.9279 0.0020 4.3957  0.9364 0.0016 4.6080  0.9523 0.0009 5.1044 

3  0.9232 0.0392 3.2595  0.9306 0.0353 3.3611  0.9450 0.0279 3.5933 

4  0.9205 0.0996 2.7753  0.9274 0.0934 2.8420  0.9409 0.0808 2.9940 

5  0.9188 0.1581 2.4973  0.9253 0.1510 2.5472  0.9383 0.1359 2.6609 

6  0.9175 0.2092 2.3132  0.9237 0.2017 2.3533  0.9363 0.1856 2.4448 

7  0.9166 0.2530 2.1807  0.9226 0.2455 2.2143  0.9348 0.2290 2.2912 

8  0.9158 0.2907 2.0797  0.9216 0.2832 2.1088  0.9336 0.2668 2.1753 

9  0.9152 0.3233 1.9997  0.9209 0.3159 2.0254  0.9326 0.2998 2.0843 

10  0.9146 0.3518 1.9344  0.9202 0.3447 1.9574  0.9318 0.3288 2.0104 

15  0.9129 0.4546 1.7274  0.9181 0.4483 1.7430  0.9290 0.4341 1.7791 

20  0.9120 0.5197 1.6135  0.9169 0.5141 1.6255  0.9274 0.5014 1.6535 

25  0.9114 0.5656 1.5393  0.9160 0.5606 1.5492  0.9263 0.5490 1.5725 

75 

2  0.9221 0.0024 4.2636  0.9288 0.0020 4.4169  0.9418 0.0013 4.7612 

3  0.9183 0.0417 3.1973  0.9241 0.0387 3.2714  0.9356 0.0327 3.4359 

4  0.9161 0.1035 2.7349  0.9214 0.0988 2.7836  0.9321 0.0891 2.8917 

5  0.9146 0.1626 2.4674  0.9196 0.1572 2.5038  0.9298 0.1458 2.5847 

6  0.9136 0.2138 2.2894  0.9184 0.2082 2.3186  0.9281 0.1962 2.3836 

7  0.9128 0.2576 2.1608  0.9174 0.2520 2.1852  0.9269 0.2399 2.2399 

8  0.9122 0.2952 2.0626  0.9166 0.2896 2.0837  0.9258 0.2776 2.1310 

9  0.9117 0.3277 1.9847  0.9160 0.3223 2.0032  0.9250 0.3104 2.0451 

10  0.9112 0.3561 1.9209  0.9154 0.3508 1.9376  0.9243 0.3393 1.9752 

15  0.9098 0.4583 1.7183  0.9136 0.4537 1.7295  0.9219 0.4435 1.7551 

20  0.9090 0.5230 1.6064  0.9126 0.5190 1.6150  0.9205 0.5098 1.6348 

25  0.9084 0.5687 1.5334  0.9119 0.5650 1.5405  0.9196 0.5567 1.5569 
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Table B.1 - (Continued) 

 

   1 − 𝛽 = 0.90 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

100 

2  0.9188 0.0026 4.1924  0.9245 0.0022 4.3158  0.9356 0.0016 4.5867 

3  0.9154 0.0432 3.1636  0.9204 0.0406 3.2235  0.9301 0.0356 3.3540 

4  0.9136 0.1057 2.7130  0.9180 0.1018 2.7523  0.9270 0.0938 2.8382 

5  0.9123 0.1650 2.4512  0.9165 0.1606 2.4805  0.9250 0.1513 2.5447 

6  0.9114 0.2164 2.2765  0.9154 0.2118 2.2999  0.9235 0.2020 2.3515 

7  0.9107 0.2601 2.1501  0.9145 0.2556 2.1696  0.9223 0.2458 2.2129 

8  0.9102 0.2976 2.0534  0.9138 0.2931 2.0703  0.9214 0.2835 2.1077 

9  0.9097 0.3301 1.9766  0.9133 0.3257 1.9914  0.9207 0.3162 2.0245 

10  0.9093 0.3584 1.9137  0.9128 0.3542 1.9270  0.9200 0.3449 1.9567 

15  0.9081 0.4603 1.7135  0.9112 0.4566 1.7224  0.9179 0.4485 1.7425 

20  0.9074 0.5247 1.6027  0.9103 0.5215 1.6095  0.9167 0.5143 1.6251 

25  0.9069 0.5702 1.5304  0.9097 0.5674 1.5359  0.9159 0.5608 1.5488 

200 

2  0.9128 0.0030 4.0714  0.9166 0.0027 4.1475  0.9241 0.0023 4.3073 

3  0.9104 0.0458 3.1058  0.9137 0.0441 3.1428  0.9201 0.0408 3.2206 

4  0.9091 0.1096 2.6756  0.9120 0.1071 2.6998  0.9179 0.1019 2.7508 

5  0.9082 0.1693 2.4235  0.9109 0.1665 2.4414  0.9163 0.1608 2.4795 

6  0.9075 0.2208 2.2546  0.9101 0.2179 2.2688  0.9152 0.2119 2.2992 

7  0.9070 0.2645 2.1318  0.9094 0.2616 2.1437  0.9144 0.2557 2.1691 

8  0.9067 0.3018 2.0378  0.9090 0.2991 2.0480  0.9137 0.2933 2.0698 

9  0.9063 0.3341 1.9629  0.9086 0.3315 1.9718  0.9132 0.3258 1.9911 

10  0.9061 0.3624 1.9015  0.9082 0.3598 1.9095  0.9127 0.3543 1.9267 

15  0.9052 0.4636 1.7055  0.9071 0.4614 1.7107  0.9112 0.4567 1.7223 

20  0.9047 0.5276 1.5966  0.9064 0.5257 1.6006  0.9103 0.5216 1.6094 

25  0.9043 0.5728 1.5254  0.9060 0.5711 1.5286  0.9096 0.5674 1.5359 

250 

2  0.9113 0.0031 4.0432  0.9147 0.0029 4.1090  0.9213 0.0024 4.2454 

3  0.9092 0.0465 3.0923  0.9121 0.0450 3.1243  0.9177 0.0420 3.1907 

4  0.9080 0.1105 2.6668  0.9105 0.1083 2.6877  0.9157 0.1039 2.7312 

5  0.9072 0.1704 2.4171  0.9095 0.1679 2.4325  0.9143 0.1629 2.4649 

6  0.9066 0.2218 2.2495  0.9088 0.2193 2.2617  0.9133 0.2142 2.2876 

7  0.9062 0.2655 2.1276  0.9083 0.2630 2.1378  0.9125 0.2580 2.1594 

8  0.9058 0.3028 2.0342  0.9078 0.3005 2.0429  0.9119 0.2955 2.0614 

9  0.9055 0.3351 1.9597  0.9075 0.3328 1.9674  0.9114 0.3280 1.9837 

10  0.9053 0.3633 1.8987  0.9072 0.3611 1.9055  0.9110 0.3564 1.9201 

15  0.9045 0.4643 1.7037  0.9061 0.4625 1.7081  0.9096 0.4585 1.7178 

20  0.9040 0.5283 1.5953  0.9055 0.5267 1.5986  0.9088 0.5232 1.6060 

25  0.9037 0.5734 1.5243  0.9051 0.5720 1.5270  0.9082 0.5688 1.5331 

∞ 

2  0.9000 0.0039 3.8415  0.9000 0.0039 3.8415  0.9000 0.0039 3.8415 

3  0.9000 0.0513 2.9957  0.9000 0.0513 2.9957  0.9000 0.0513 2.9957 

4  0.9000 0.1173 2.6049  0.9000 0.1173 2.6049  0.9000 0.1173 2.6049 

5  0.9000 0.1777 2.3719  0.9000 0.1777 2.3719  0.9000 0.1777 2.3719 

6  0.9000 0.2291 2.2141  0.9000 0.2291 2.2141  0.9000 0.2291 2.2141 

7  0.9000 0.2726 2.0986  0.9000 0.2726 2.0986  0.9000 0.2726 2.0986 

8  0.9000 0.3096 2.0096  0.9000 0.3096 2.0096  0.9000 0.3096 2.0096 

9  0.9000 0.3416 1.9384  0.9000 0.3416 1.9384  0.9000 0.3416 1.9384 

10  0.9000 0.3695 1.8799  0.9000 0.3695 1.8799  0.9000 0.3695 1.8799 

15  0.9000 0.4693 1.6918  0.9000 0.4693 1.6918  0.9000 0.4693 1.6918 

20  0.9000 0.5325 1.5865  0.9000 0.5325 1.5865  0.9000 0.5325 1.5865 

25  0.9000 0.5770 1.5173  0.9000 0.5770 1.5173  0.9000 0.5770 1.5173 

Nota that 2E-05 means 2 ∗ 10−5. 
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Table B.2 - The exact (1 − 𝛽 = 0.95, 𝛾) two-sided lower and upper tolerance factors for 𝑆2 based 

on 𝑛 observations (𝐿∗ and 𝑈∗, respectively) using 𝑚 subgroups each of size 𝑛 to estimate 𝜎2 

   1 − 𝛽 = 0.95 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

5 

2  0.9989 5E-07 11.9599  0.9999 3E-09 16.7709  ≈1 2E-17 34.6516 

3  0.9959 0.0020 6.1986  0.9990 0.0005 7.6127  ≈1 8E-06 11.7104 

4  0.9937 0.0175 4.6079  0.9979 0.0083 5.3922  0.9999 0.0011 7.4725 

5  0.9920 0.0460 3.8438  0.9969 0.0281 4.3821  0.9997 0.0080 5.7435 

6  0.9908 0.0796 3.3874  0.9961 0.0552 3.7977  0.9996 0.0224 4.8040 

7  0.9897 0.1137 3.0807  0.9954 0.0849 3.4130  0.9994 0.0421 4.2110 

8  0.9889 0.1461 2.8589  0.9949 0.1145 3.1387  0.9992 0.0644 3.8008 

9  0.9882 0.1761 2.6903  0.9944 0.1428 2.9321  0.9990 0.0876 3.4990 

10  0.9877 0.2037 2.5572  0.9939 0.1695 2.7702  0.9989 0.1107 3.2667 

15  0.9860 0.3105 2.1618  0.9923 0.2770 2.2949  0.9982 0.2124 2.6066 

20  0.9852 0.3830 1.9596  0.9914 0.3521 2.0570  0.9978 0.2891 2.2876 

25  0.9847 0.4360 1.8329  0.9908 0.4075 1.9107  0.9974 0.3478 2.0951 

10 

2  0.9912 3E-05 8.1141  0.9966 5E-06 9.8414  0.9998 2E-08 15.0232 

3  0.9860 0.0070 4.9619  0.9926 0.0037 5.5974  0.9986 0.0007 7.2672 

4  0.9831 0.0341 3.9040  0.9901 0.0238 4.2856  0.9974 0.0096 5.2398 

5  0.9812 0.0719 3.3551  0.9883 0.0560 3.6282  0.9964 0.0305 4.2929 

6  0.9798 0.1113 3.0129  0.9870 0.0920 3.2264  0.9956 0.0583 3.7375 

7  0.9788 0.1487 2.7764  0.9860 0.1273 2.9523  0.9949 0.0882 3.3689 

8  0.9779 0.1829 2.6019  0.9852 0.1604 2.7517  0.9943 0.1179 3.1045 

9  0.9772 0.2139 2.4670  0.9845 0.1909 2.5976  0.9939 0.1463 2.9045 

10  0.9767 0.2419 2.3591  0.9839 0.2187 2.4750  0.9934 0.1729 2.7472 

15  0.9750 0.3481 2.0302  0.9820 0.3262 2.1050  0.9919 0.2800 2.2821 

20  0.9742 0.4188 1.8571  0.9809 0.3988 1.9131  0.9909 0.3553 2.0466 

25  0.9737 0.4700 1.7471  0.9802 0.4517 1.7925  0.9902 0.4110 1.9008 

15 

2  0.9846 0.0001 7.1060  0.9914 3E-05 8.1502  0.9982 1E-06 11.0691 

3  0.9796 0.0103 4.5835  0.9865 0.0068 5.0007  0.9953 0.0023 6.0575 

4  0.9769 0.0423 3.6765  0.9838 0.0331 3.9342  0.9933 0.0183 4.5644 

5  0.9751 0.0834 3.1927  0.9820 0.0703 3.3797  0.9918 0.0466 3.8288 

6  0.9738 0.1247 2.8862  0.9807 0.1092 3.0337  0.9907 0.0799 3.3839 

7  0.9728 0.1631 2.6721  0.9796 0.1463 2.7943  0.9898 0.1135 3.0826 

8  0.9721 0.1978 2.5128  0.9788 0.1804 2.6174  0.9890 0.1455 2.8633 

9  0.9714 0.2291 2.3889  0.9781 0.2114 2.4805  0.9884 0.1753 2.6956 

10  0.9709 0.2571 2.2893  0.9775 0.2395 2.3709  0.9879 0.2028 2.5625 

15  0.9694 0.3628 1.9827  0.9756 0.3463 2.0360  0.9860 0.3104 2.1625 

20  0.9686 0.4328 1.8196  0.9746 0.4178 1.8599  0.9849 0.3842 1.9560 

25  0.9681 0.4833 1.7155  0.9739 0.4696 1.7482  0.9841 0.4384 1.8267 

20 

2  0.9800 0.0002 6.6385  0.9869 0.0001 7.3946  0.9957 7E-06 9.4149 

3  0.9754 0.0124 4.3968  0.9820 0.0090 4.7120  0.9918 0.0041 5.4909 

4  0.9729 0.0471 3.5618  0.9794 0.0391 3.7593  0.9894 0.0249 4.2344 

5  0.9713 0.0899 3.1100  0.9776 0.0788 3.2542  0.9877 0.0576 3.5968 

6  0.9701 0.1321 2.8213  0.9763 0.1193 2.9355  0.9864 0.0938 3.2045 

7  0.9692 0.1710 2.6185  0.9753 0.1572 2.7133  0.9855 0.1291 2.9359 

8  0.9685 0.2060 2.4669  0.9746 0.1917 2.5483  0.9847 0.1622 2.7388 

9  0.9679 0.2373 2.3486  0.9739 0.2229 2.4200  0.9840 0.1927 2.5870 

10  0.9675 0.2654 2.2532  0.9734 0.2510 2.3169  0.9834 0.2205 2.4660 

15  0.9660 0.3707 1.9579  0.9715 0.3574 1.9999  0.9815 0.3278 2.0991 

20  0.9652 0.4403 1.8000  0.9705 0.4282 1.8318  0.9803 0.4007 1.9076 

25  0.9647 0.4905 1.6989  0.9699 0.4793 1.7249  0.9795 0.4539 1.7869 
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Table B.2 - (Continued) 

 

   1 − 𝛽 = 0.95 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

25 

2  0.9767 0.0002 6.3656  0.9834 0.0001 6.9643  0.9929 2E-05 8.5124 

3  0.9724 0.0139 4.2840  0.9787 0.0107 4.5401  0.9885 0.0058 5.1611 

4  0.9701 0.0504 3.4918  0.9761 0.0432 3.6535  0.9860 0.0300 4.0376 

5  0.9687 0.0942 3.0592  0.9744 0.0845 3.1778  0.9843 0.0655 3.4566 

6  0.9676 0.1370 2.7814  0.9732 0.1259 2.8754  0.9830 0.1034 3.0953 

7  0.9668 0.1761 2.5854  0.9723 0.1643 2.6636  0.9820 0.1398 2.8461 

8  0.9661 0.2112 2.4386  0.9715 0.1991 2.5057  0.9812 0.1735 2.6622 

9  0.9656 0.2426 2.3237  0.9709 0.2303 2.3827  0.9805 0.2042 2.5201 

10  0.9651 0.2706 2.2309  0.9704 0.2584 2.2836  0.9799 0.2322 2.4064 

15  0.9637 0.3757 1.9427  0.9687 0.3644 1.9776  0.9780 0.3393 2.0596 

20  0.9630 0.4450 1.7880  0.9677 0.4347 1.8145  0.9768 0.4115 1.8773 

25  0.9625 0.4949 1.6888  0.9671 0.4855 1.7104  0.9760 0.4640 1.7619 

30 

2  0.9742 0.0003 6.1849  0.9806 0.0001 6.6847  0.9904 4E-05 7.9446 

3  0.9702 0.0150 4.2078  0.9761 0.0120 4.4252  0.9858 0.0071 4.9445 

4  0.9681 0.0527 3.4442  0.9736 0.0462 3.5822  0.9832 0.0340 3.9063 

5  0.9667 0.0973 3.0246  0.9721 0.0886 3.1259  0.9814 0.0714 3.3623 

6  0.9657 0.1404 2.7541  0.9709 0.1306 2.8345  0.9802 0.1104 3.0214 

7  0.9650 0.1797 2.5628  0.9700 0.1693 2.6298  0.9792 0.1475 2.7851 

8  0.9644 0.2148 2.4192  0.9693 0.2042 2.4767  0.9784 0.1816 2.6101 

9  0.9639 0.2462 2.3067  0.9687 0.2355 2.3572  0.9777 0.2125 2.4745 

10  0.9634 0.2743 2.2157  0.9682 0.2636 2.2608  0.9772 0.2406 2.3657 

15  0.9621 0.3791 1.9323  0.9666 0.3693 1.9623  0.9753 0.3474 2.0325 

20  0.9614 0.4482 1.7798  0.9657 0.4393 1.8026  0.9741 0.4190 1.8565 

25  0.9609 0.4979 1.6819  0.9651 0.4898 1.7005  0.9733 0.4710 1.7447 

50 

2  0.9683 0.0004 5.8188  0.9735 0.0003 6.1324  0.9825 0.0001 6.8756 

3  0.9651 0.0176 4.0493  0.9697 0.0153 4.1903  0.9781 0.0110 4.5139 

4  0.9634 0.0579 3.3444  0.9677 0.0532 3.4346  0.9757 0.0438 3.6402 

5  0.9623 0.1040 2.9517  0.9664 0.0978 3.0182  0.9741 0.0852 3.1693 

6  0.9615 0.1478 2.6966  0.9654 0.1410 2.7494  0.9729 0.1266 2.8694 

7  0.9609 0.1874 2.5152  0.9647 0.1803 2.5591  0.9720 0.1649 2.6591 

8  0.9604 0.2227 2.3785  0.9641 0.2154 2.4162  0.9713 0.1997 2.5021 

9  0.9600 0.2541 2.2709  0.9636 0.2468 2.3041  0.9707 0.2309 2.3797 

10  0.9597 0.2821 2.1837  0.9632 0.2748 2.2134  0.9702 0.2590 2.2810 

15  0.9585 0.3864 1.9109  0.9618 0.3797 1.9305  0.9685 0.3649 1.9759 

20  0.9579 0.4549 1.7630  0.9610 0.4489 1.7780  0.9675 0.4353 1.8129 

25  0.9575 0.5042 1.6677  0.9605 0.4987 1.6800  0.9668 0.4862 1.7087 

75 

2  0.9646 0.0005 5.6255  0.9688 0.0004 5.8498  0.9767 0.0002 6.3606 

3  0.9620 0.0192 3.9634  0.9657 0.0173 4.0658  0.9727 0.0137 4.2944 

4  0.9606 0.0610 3.2899  0.9640 0.0573 3.3557  0.9706 0.0499 3.5019 

5  0.9597 0.1078 2.9120  0.9629 0.1032 2.9604  0.9691 0.0935 3.0681 

6  0.9590 0.1521 2.6652  0.9620 0.1469 2.7036  0.9681 0.1360 2.7893 

7  0.9585 0.1918 2.4893  0.9614 0.1865 2.5212  0.9673 0.1750 2.5925 

8  0.9581 0.2271 2.3563  0.9609 0.2217 2.3836  0.9667 0.2100 2.4449 

9  0.9577 0.2585 2.2515  0.9605 0.2531 2.2755  0.9661 0.2413 2.3294 

10  0.9574 0.2864 2.1664  0.9602 0.2811 2.1879  0.9657 0.2694 2.2361 

15  0.9565 0.3903 1.8994  0.9590 0.3854 1.9136  0.9642 0.3747 1.9458 

20  0.9560 0.4585 1.7542  0.9583 0.4541 1.7650  0.9633 0.4443 1.7898 

25  0.9556 0.5075 1.6604  0.9579 0.5035 1.6692  0.9627 0.4945 1.6896 
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Table B.2 - (Continued) 

 

   1 − 𝛽 = 0.95 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

100 

2  0.9624 0.0006 5.5221  0.9661 0.0005 5.7017  0.9730 0.0003 6.1007 

3  0.9602 0.0201 3.9169  0.9633 0.0185 3.9994  0.9694 0.0154 4.1803 

4  0.9590 0.0627 3.2604  0.9618 0.0596 3.3134  0.9675 0.0534 3.4295 

5  0.9581 0.1100 2.8904  0.9608 0.1061 2.9294  0.9662 0.0981 3.0149 

6  0.9576 0.1544 2.6482  0.9601 0.1502 2.6791  0.9652 0.1413 2.7471 

7  0.9571 0.1942 2.4752  0.9596 0.1899 2.5008  0.9645 0.1805 2.5574 

8  0.9568 0.2296 2.3443  0.9591 0.2251 2.3662  0.9639 0.2157 2.4148 

9  0.9565 0.2609 2.2410  0.9588 0.2565 2.2602  0.9635 0.2470 2.3029 

10  0.9562 0.2888 2.1571  0.9585 0.2844 2.1742  0.9631 0.2751 2.2124 

15  0.9554 0.3924 1.8933  0.9574 0.3885 1.9046  0.9617 0.3799 1.9300 

20  0.9549 0.4604 1.7495  0.9568 0.4569 1.7581  0.9609 0.4491 1.7776 

25  0.9546 0.5092 1.6565  0.9564 0.5061 1.6635  0.9604 0.4989 1.6795 

200 

2  0.9585 0.0007 5.3480  0.9610 0.0006 5.4574  0.9659 0.0005 5.6892 

3  0.9569 0.0218 3.8378  0.9590 0.0207 3.8885  0.9632 0.0186 3.9954 

4  0.9560 0.0658 3.2102  0.9579 0.0638 3.2426  0.9617 0.0598 3.3113 

5  0.9554 0.1138 2.8537  0.9572 0.1113 2.8775  0.9608 0.1063 2.9280 

6  0.9550 0.1585 2.6194  0.9567 0.1558 2.6381  0.9600 0.1503 2.6782 

7  0.9547 0.1984 2.4514  0.9563 0.1957 2.4669  0.9595 0.1900 2.5001 

8  0.9544 0.2337 2.3240  0.9560 0.2310 2.3372  0.9591 0.2253 2.3656 

9  0.9542 0.2650 2.2234  0.9557 0.2623 2.2349  0.9587 0.2566 2.2598 

10  0.9541 0.2928 2.1414  0.9555 0.2901 2.1517  0.9584 0.2845 2.1738 

15  0.9535 0.3959 1.8831  0.9547 0.3936 1.8897  0.9574 0.3886 1.9044 

20  0.9531 0.4635 1.7418  0.9543 0.4614 1.7469  0.9568 0.4569 1.7580 

25  0.9529 0.5121 1.6503  0.9540 0.5102 1.6544  0.9564 0.5061 1.6634 

250 

2  0.9575 0.0007 5.3078  0.9598 0.0006 5.4019  0.9641 0.0005 5.5991 

3  0.9561 0.0222 3.8194  0.9580 0.0212 3.8631  0.9617 0.0194 3.9543 

4  0.9553 0.0665 3.1985  0.9570 0.0648 3.2264  0.9603 0.0613 3.2849 

5  0.9548 0.1147 2.8452  0.9563 0.1125 2.8657  0.9594 0.1082 2.9087 

6  0.9544 0.1594 2.6127  0.9559 0.1571 2.6288  0.9588 0.1524 2.6628 

7  0.9541 0.1994 2.4459  0.9555 0.1970 2.4592  0.9583 0.1922 2.4874 

8  0.9539 0.2347 2.3193  0.9552 0.2323 2.3306  0.9579 0.2274 2.3547 

9  0.9537 0.2659 2.2193  0.9550 0.2636 2.2292  0.9576 0.2588 2.2502 

10  0.9536 0.2937 2.1378  0.9548 0.2915 2.1466  0.9573 0.2867 2.1653 

15  0.9530 0.3967 1.8808  0.9541 0.3948 1.8864  0.9564 0.3905 1.8987 

20  0.9527 0.4642 1.7401  0.9537 0.4625 1.7444  0.9558 0.4587 1.7537 

25  0.9525 0.5127 1.6489  0.9534 0.5111 1.6523  0.9555 0.5077 1.6599 

∞ 

2  0.9500 0.0010 5.0239  0.9500 0.0010 5.0239  0.9500 0.0010 5.0239 

3  0.9500 0.0253 3.6889  0.9500 0.0253 3.6889  0.9500 0.0253 3.6889 

4  0.9500 0.0719 3.1161  0.9500 0.0719 3.1161  0.9500 0.0719 3.1161 

5  0.9500 0.1211 2.7858  0.9500 0.1211 2.7858  0.9500 0.1211 2.7858 

6  0.9500 0.1662 2.5665  0.9500 0.1662 2.5665  0.9500 0.1662 2.5665 

7  0.9500 0.2062 2.4082  0.9500 0.2062 2.4082  0.9500 0.2062 2.4082 

8  0.9500 0.2414 2.2875  0.9500 0.2414 2.2875  0.9500 0.2414 2.2875 

9  0.9500 0.2725 2.1918  0.9500 0.2725 2.1918  0.9500 0.2725 2.1918 

10  0.9500 0.3000 2.1136  0.9500 0.3000 2.1136  0.9500 0.3000 2.1136 

15  0.9500 0.4021 1.8656  0.9500 0.4021 1.8656  0.9500 0.4021 1.8656 

20  0.9500 0.4688 1.7291  0.9500 0.4688 1.7291  0.9500 0.4688 1.7291 

25  0.9500 0.5167 1.6402  0.9500 0.5167 1.6402  0.9500 0.5167 1.6402 

Nota that 2E-05 means 2 ∗ 10−5. 
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Table B.3 - The exact (1 − 𝛽 = 0.99, 𝛾) two-sided lower and upper tolerance factors for 𝑆2 based 

on 𝑛 observations (𝐿∗ and 𝑈∗, respectively) using 𝑚 subgroups each of size 𝑛 to estimate 𝜎2 

   1 − 𝛽 = 0.99 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

5 

2  ≈1 5E-11 20.6031  ≈1 9E-15 28.9613  ≈1 2E-28 59.8544 

3  0.9998 0.0001 9.4733  ≈1 8E-06 11.6882  ≈1 2E-08 18.0015 

4  0.9997 0.0025 6.6465  0.9999 0.0008 7.8139  ≈1 4E-05 10.8473 

5  0.9995 0.0116 5.3448  0.9999 0.0057 6.1198  ≈1 0.0009 8.0364 

6  0.9993 0.0272 4.5882  0.9998 0.0162 5.1646  ≈1 0.0046 6.5457 

7  0.9992 0.0468 4.0893  0.9997 0.0312 4.5477  ≈1 0.0120 5.6215 

8  0.9990 0.0683 3.7334  0.9997 0.0490 4.1141  ≈1 0.0227 4.9910 

9  0.9989 0.0902 3.4654  0.9996 0.0681 3.7913  ≈1 0.0359 4.5322 

10  0.9988 0.1118 3.2555  0.9996 0.0876 3.5407  ≈1 0.0505 4.1825 

15  0.9985 0.2063 2.6412  0.9994 0.1777 2.8178  0.9999 0.1281 3.2065 

20  0.9983 0.2776 2.3356  0.9992 0.2492 2.4631  0.9999 0.1965 2.7460 

25  0.9982 0.3324 2.1482  0.9991 0.3054 2.2480  0.9998 0.2528 2.4724 

10 

2  0.9996 7E-08 13.6929  0.9999 3E-09 16.8501  ≈1 2E-13 25.9358 

3  0.9988 0.0006 7.4608  0.9996 0.0002 8.5084  ≈1 1E-05 11.1514 

4  0.9984 0.0071 5.5580  0.9993 0.0040 6.1550  0.9999 0.0010 7.5891 

5  0.9980 0.0228 4.6137  0.9990 0.0156 5.0268  0.9998 0.0064 5.9927 

6  0.9977 0.0444 4.0409  0.9988 0.0335 4.3563  0.9998 0.0175 5.0810 

7  0.9975 0.0688 3.6525  0.9987 0.0549 3.9078  0.9997 0.0330 4.4875 

8  0.9973 0.0936 3.3698  0.9985 0.0777 3.5847  0.9996 0.0510 4.0681 

9  0.9972 0.1180 3.1536  0.9984 0.1005 3.3394  0.9996 0.0703 3.7547 

10  0.9970 0.1413 2.9822  0.9983 0.1228 3.1461  0.9995 0.0899 3.5106 

15  0.9966 0.2386 2.4694  0.9979 0.2185 2.5729  0.9993 0.1799 2.8028 

20  0.9964 0.3097 2.2068  0.9977 0.2904 2.2826  0.9992 0.2513 2.4532 

25  0.9962 0.3637 2.0429  0.9975 0.3454 2.1030  0.9991 0.3075 2.2399 

15 

2  0.9988 6E-07 11.7886  0.9996 7E-08 13.7603  ≈1 3E-10 19.0356 

3  0.9978 0.0011 6.8203  0.9989 0.0005 7.5256  0.9998 0.0001 9.2487 

4  0.9972 0.0101 5.1927  0.9985 0.0068 5.6059  0.9996 0.0027 6.5806 

5  0.9968 0.0287 4.3613  0.9981 0.0220 4.6514  0.9994 0.0119 5.3229 

6  0.9965 0.0528 3.8486  0.9979 0.0432 4.0721  0.9993 0.0273 4.5832 

7  0.9963 0.0788 3.4971  0.9977 0.0672 3.6792  0.9992 0.0467 4.0921 

8  0.9961 0.1049 3.2392  0.9975 0.0918 3.3931  0.9991 0.0679 3.7401 

9  0.9960 0.1301 3.0407  0.9973 0.1159 3.1743  0.9990 0.0895 3.4742 

10  0.9958 0.1539 2.8827  0.9972 0.1390 3.0008  0.9989 0.1109 3.2653 

15  0.9954 0.2520 2.4052  0.9968 0.2364 2.4806  0.9986 0.2048 2.6498 

20  0.9952 0.3230 2.1577  0.9965 0.3080 2.2134  0.9984 0.2766 2.3399 

25  0.9950 0.3766 2.0023  0.9963 0.3625 2.0467  0.9982 0.3322 2.1488 

20 

2  0.9981 2E-06 10.8919  0.9991 3E-07 12.3385  0.9999 6E-09 16.0812 

3  0.9970 0.0015 6.5001  0.9982 0.0009 7.0391  0.9995 0.0002 8.3351 

4  0.9964 0.0120 5.0060  0.9977 0.0089 5.3265  0.9992 0.0043 6.0758 

5  0.9960 0.0323 4.2308  0.9973 0.0263 4.4575  0.9990 0.0163 4.9799 

6  0.9957 0.0577 3.7484  0.9971 0.0493 3.9239  0.9988 0.0345 4.3245 

7  0.9955 0.0847 3.4157  0.9968 0.0746 3.5591  0.9986 0.0561 3.8845 

8  0.9953 0.1113 3.1706  0.9967 0.1002 3.2921  0.9985 0.0789 3.5665 

9  0.9951 0.1369 2.9813  0.9965 0.1250 3.0869  0.9983 0.1018 3.3248 

10  0.9950 0.1610 2.8302  0.9964 0.1486 2.9237  0.9982 0.1241 3.1339 

15  0.9946 0.2595 2.3710  0.9959 0.2466 2.4310  0.9979 0.2197 2.5665 

20  0.9944 0.3303 2.1314  0.9957 0.3180 2.1760  0.9976 0.2916 2.2778 

25  0.9942 0.3837 1.9805  0.9955 0.3721 2.0162  0.9975 0.3468 2.0985 
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Table B.3 - (Continued) 

 

   1 − 𝛽 = 0.99 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

25 

2  0.9974 3E-06 10.3668  0.9986 7E-07 11.5174  0.9997 3E-08 14.4320 

3  0.9963 0.0018 6.3059  0.9976 0.0012 6.7461  0.9992 0.0004 7.7929 

4  0.9958 0.0134 4.8913  0.9971 0.0104 5.1555  0.9988 0.0058 5.7691 

5  0.9954 0.0348 4.1501  0.9967 0.0293 4.3378  0.9985 0.0197 4.7687 

6  0.9951 0.0610 3.6862  0.9964 0.0536 3.8319  0.9982 0.0398 4.1639 

7  0.9949 0.0885 3.3651  0.9962 0.0797 3.4844  0.9981 0.0629 3.7549 

8  0.9947 0.1156 3.1278  0.9960 0.1058 3.2290  0.9979 0.0868 3.4577 

9  0.9946 0.1414 2.9443  0.9959 0.1310 3.0322  0.9978 0.1104 3.2308 

10  0.9944 0.1656 2.7974  0.9957 0.1549 2.8753  0.9977 0.1332 3.0511 

15  0.9940 0.2643 2.3496  0.9953 0.2532 2.3998  0.9972 0.2298 2.5136 

20  0.9938 0.3350 2.1150  0.9950 0.3244 2.1524  0.9970 0.3016 2.2380 

25  0.9937 0.3882 1.9668  0.9948 0.3783 1.9969  0.9968 0.3564 2.0663 

30 

2  0.9969 4E-06 10.0198  0.9982 1E-06 10.9806  0.9995 1E-07 13.3760 

3  0.9958 0.0021 6.1745  0.9971 0.0014 6.5490  0.9988 0.0006 7.4316 

4  0.9953 0.0144 4.8130  0.9966 0.0116 5.0392  0.9984 0.0071 5.5616 

5  0.9949 0.0366 4.0948  0.9962 0.0316 4.2560  0.9980 0.0225 4.6247 

6  0.9946 0.0634 3.6435  0.9959 0.0567 3.7689  0.9978 0.0439 4.0538 

7  0.9944 0.0913 3.3303  0.9957 0.0834 3.4330  0.9976 0.0680 3.6656 

8  0.9943 0.1186 3.0984  0.9955 0.1099 3.1855  0.9974 0.0926 3.3825 

9  0.9941 0.1445 2.9187  0.9953 0.1353 2.9946  0.9973 0.1168 3.1658 

10  0.9940 0.1688 2.7748  0.9952 0.1594 2.8420  0.9971 0.1399 2.9937 

15  0.9936 0.2676 2.3348  0.9948 0.2579 2.3783  0.9967 0.2372 2.4767 

20  0.9934 0.3383 2.1037  0.9945 0.3290 2.1361  0.9965 0.3088 2.2103 

25  0.9933 0.3914 1.9574  0.9944 0.3827 1.9835  0.9963 0.3634 2.0437 

50 

2  0.9955 8E-06 9.3212  0.9967 4E-06 9.9191  0.9985 9E-07 11.3474 

3  0.9945 0.0027 5.9016  0.9957 0.0021 6.1443  0.9975 0.0012 6.7013 

4  0.9940 0.0169 4.6488  0.9952 0.0146 4.7973  0.9970 0.0106 5.1338 

5  0.9937 0.0407 3.9782  0.9948 0.0369 4.0847  0.9966 0.0297 4.3246 

6  0.9935 0.0687 3.5533  0.9945 0.0638 3.6362  0.9963 0.0540 3.8228 

7  0.9933 0.0974 3.2567  0.9943 0.0917 3.3247  0.9961 0.0802 3.4775 

8  0.9932 0.1252 3.0361  0.9942 0.1190 3.0939  0.9959 0.1063 3.2236 

9  0.9931 0.1514 2.8647  0.9940 0.1450 2.9149  0.9958 0.1315 3.0279 

10  0.9930 0.1759 2.7269  0.9939 0.1693 2.7715  0.9957 0.1553 2.8717 

15  0.9926 0.2749 2.3038  0.9935 0.2682 2.3326  0.9952 0.2536 2.3978 

20  0.9924 0.3452 2.0799  0.9933 0.3389 2.1016  0.9950 0.3249 2.1508 

25  0.9923 0.3981 1.9378  0.9932 0.3921 1.9553  0.9948 0.3788 1.9953 

75 

2  0.9945 1E-05 8.9574  0.9956 8E-06 9.3799  0.9974 3E-06 10.3572 

3  0.9937 0.0032 5.7547  0.9947 0.0027 5.9300  0.9964 0.0018 6.3237 

4  0.9932 0.0183 4.5595  0.9942 0.0166 4.6674  0.9959 0.0132 4.9078 

5  0.9930 0.0431 3.9146  0.9939 0.0402 3.9921  0.9955 0.0343 4.1643 

6  0.9928 0.0718 3.5040  0.9936 0.0680 3.5644  0.9952 0.0603 3.6986 

7  0.9926 0.1009 3.2164  0.9935 0.0966 3.2659  0.9950 0.0877 3.3760 

8  0.9925 0.1289 3.0020  0.9933 0.1243 3.0440  0.9948 0.1146 3.1376 

9  0.9924 0.1554 2.8351  0.9932 0.1505 2.8716  0.9947 0.1403 2.9531 

10  0.9923 0.1800 2.7008  0.9931 0.1750 2.7331  0.9946 0.1645 2.8054 

15  0.9920 0.2789 2.2869  0.9928 0.2739 2.3078  0.9942 0.2631 2.3548 

20  0.9919 0.3490 2.0672  0.9926 0.3444 2.0829  0.9939 0.3341 2.1183 

25  0.9918 0.4017 1.9274  0.9924 0.3973 1.9400  0.9938 0.3875 1.9689 
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Table B.3 - (Continued) 

 

   1 − 𝛽 = 0.99 

   𝛾 = 0.90  𝛾 = 0.95  𝛾 = 0.99 

𝑚 𝑛  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗  1 − 𝛽∗ 𝐿∗ 𝑈∗ 

100 

2  0.9939 1E-05 8.7653  0.9949 1E-05 9.1003  0.9966 4E-06 9.8583 

3  0.9931 0.0034 5.6756  0.9940 0.0030 5.8163  0.9956 0.0022 6.1272 

4  0.9928 0.0192 4.5112  0.9936 0.0177 4.5980  0.9951 0.0148 4.7888 

5  0.9925 0.0445 3.8801  0.9933 0.0421 3.9424  0.9948 0.0371 4.0794 

6  0.9924 0.0735 3.4772  0.9931 0.0704 3.5258  0.9945 0.0640 3.6326 

7  0.9922 0.1028 3.1945  0.9929 0.0993 3.2343  0.9943 0.0919 3.3220 

8  0.9921 0.1310 2.9836  0.9928 0.1272 3.0173  0.9941 0.1193 3.0917 

9  0.9920 0.1575 2.8191  0.9927 0.1536 2.8484  0.9940 0.1452 2.9132 

10  0.9919 0.1822 2.6867  0.9926 0.1781 2.7126  0.9939 0.1695 2.7700 

15  0.9917 0.2810 2.2779  0.9923 0.2770 2.2946  0.9935 0.2683 2.3319 

20  0.9915 0.3511 2.0604  0.9921 0.3473 2.0729  0.9933 0.3391 2.1010 

25  0.9914 0.4036 1.9219  0.9920 0.4001 1.9320  0.9931 0.3923 1.9548 

200 

2  0.9927 2E-05 8.4468  0.9934 2E-05 8.6460  0.9948 1E-05 9.0768 

3  0.9922 0.0039 5.5423  0.9928 0.0036 5.6275  0.9940 0.0030 5.8094 

4  0.9919 0.0207 4.4294  0.9925 0.0197 4.4821  0.9936 0.0177 4.5945 

5  0.9917 0.0470 3.8217  0.9923 0.0454 3.8595  0.9933 0.0421 3.9403 

6  0.9916 0.0765 3.4319  0.9921 0.0746 3.4614  0.9931 0.0705 3.5243 

7  0.9915 0.1062 3.1576  0.9920 0.1040 3.1817  0.9929 0.0994 3.2332 

8  0.9914 0.1346 2.9524  0.9919 0.1323 2.9727  0.9928 0.1273 3.0164 

9  0.9913 0.1612 2.7921  0.9918 0.1588 2.8097  0.9927 0.1537 2.8477 

10  0.9913 0.1859 2.6629  0.9917 0.1835 2.6784  0.9926 0.1782 2.7120 

15  0.9911 0.2847 2.2628  0.9915 0.2823 2.2727  0.9923 0.2771 2.2943 

20  0.9910 0.3545 2.0493  0.9914 0.3522 2.0566  0.9921 0.3474 2.0727 

25  0.9909 0.4067 1.9129  0.9913 0.4047 1.9188  0.9920 0.4001 1.9318 

250 

2  0.9924 2E-05 8.3742  0.9931 2E-05 8.5445  0.9943 1E-05 8.9082 

3  0.9919 0.0040 5.5116  0.9925 0.0038 5.5847  0.9936 0.0032 5.7392 

4  0.9917 0.0211 4.4105  0.9922 0.0202 4.4557  0.9932 0.0185 4.5513 

5  0.9915 0.0475 3.8082  0.9920 0.0461 3.8406  0.9929 0.0433 3.9093 

6  0.9914 0.0773 3.4215  0.9918 0.0755 3.4467  0.9927 0.0720 3.5002 

7  0.9913 0.1070 3.1491  0.9917 0.1051 3.1697  0.9926 0.1011 3.2135 

8  0.9912 0.1355 2.9453  0.9916 0.1334 2.9626  0.9925 0.1292 2.9997 

9  0.9912 0.1621 2.7860  0.9916 0.1600 2.8010  0.9924 0.1556 2.8331 

10  0.9911 0.1868 2.6574  0.9915 0.1847 2.6707  0.9923 0.1802 2.6991 

15  0.9910 0.2855 2.2594  0.9913 0.2835 2.2678  0.9920 0.2791 2.2860 

20  0.9909 0.3552 2.0467  0.9912 0.3534 2.0529  0.9918 0.3493 2.0665 

25  0.9908 0.4074 1.9109  0.9911 0.4057 1.9158  0.9917 0.4019 1.9268 

∞ 

2  0.9900 4E-05 7.8794  0.9900 4E-05 7.8794  0.9900 4E-05 7.8794 

3  0.9900 0.0050 5.2983  0.9900 0.0050 5.2983  0.9900 0.0050 5.2983 

4  0.9900 0.0239 4.2794  0.9900 0.0239 4.2794  0.9900 0.0239 4.2794 

5  0.9900 0.0517 3.7151  0.9900 0.0517 3.7151  0.9900 0.0517 3.7151 

6  0.9900 0.0823 3.3499  0.9900 0.0823 3.3499  0.9900 0.0823 3.3499 

7  0.9900 0.1126 3.0913  0.9900 0.1126 3.0913  0.9900 0.1126 3.0913 

8  0.9900 0.1413 2.8968  0.9900 0.1413 2.8968  0.9900 0.1413 2.8968 

9  0.9900 0.1681 2.7444  0.9900 0.1681 2.7444  0.9900 0.1681 2.7444 

10  0.9900 0.1928 2.6210  0.9900 0.1928 2.6210  0.9900 0.1928 2.6210 

15  0.9900 0.2910 2.2371  0.9900 0.2910 2.2371  0.9900 0.2910 2.2371 

20  0.9900 0.3602 2.0306  0.9900 0.3602 2.0306  0.9900 0.3602 2.0306 

25  0.9900 0.4119 1.8983  0.9900 0.4119 1.8983  0.9900 0.4119 1.8983 

Nota that 2E-05 means 2 ∗ 10−5. 
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Appendix C – Proof of Equation (26): approximate two-sided 
tolerance limits for sample variances based on the CE 
method 

In this Appendix C, the proof of Equation (26), which is required to find the 

value of 𝛽𝐶𝐸
∗ , is provided so that the approximate two-sided tolerance factors for 

sample variances based on the CE method can be obtained.  

To obtain Equation (26), we need to demonstrate the approximation of the 

coverage probability shown in Equation (25):  

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) ≅ 1 − 𝐹𝜒𝑚(𝑛−1)

2 (𝑅(𝑌; 𝛽∗, 𝑚, 𝑛, 1 − 𝛽)).     

First, from Equation (22), we have the coverage probability:  

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) 

= 𝑃𝑌 (𝑃𝑊 (
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,

𝛽∗

2

2 ≤ 𝑊 ≤
𝑌

𝑚(𝑛−1)
𝜒
𝑛−1,1−

𝛽∗

2

2 | 𝑌) ≥ 1 − 𝛽), 

 

where recall that 𝑊 = (𝑛 − 1)𝑆2 𝜎2⁄  and 𝑌 = 𝑚(𝑛 − 1) 𝑆𝑝
2 𝜎2⁄  follow chi-square 

distributions with (𝑛 − 1) and 𝑚(𝑛 − 1) df, respectively. The WH cube root 

approximation is used to transform the chi-squared random variable 𝑊 into 𝑊𝑇 =

√
𝑊

𝑛−1

3
 that follows a normal distribution with mean 1 − 𝑑 = 1 −

2

9(𝑛−1)
 and variance 

𝑑 =
2

9(𝑛−1)
. Thus, the approximation of the coverage probability is given by    

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) 

≅ 𝑃𝑌 (𝑃𝑊𝑇 (√
𝑌

𝑚(𝑛−1)2
𝜒
𝑛−1,

𝛽∗

2

23 ≤ 𝑊𝑇 ≤ √
𝑌

𝑚(𝑛−1)2
𝜒
𝑛−1,1−

𝛽∗

2

23 | 𝑌) ≥ 1 − 𝛽). 

Then, 𝑊𝑇~𝑁(1 − 𝑑, 𝑑) is standardized so that 𝑍 =
𝑊𝑇−(1−𝑑)

√𝑑
~𝑁(0, 1). We 

get 

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) 

≅ 𝑃𝑌

(

 
 
𝑃𝑍

(

 
 
√

𝑌

𝑚(𝑛−1)2
𝜒
𝑛−1,

𝛽∗

2

23
−(1−𝑑)

√𝑑
≤ 𝑍 ≤

√
𝑌

𝑚(𝑛−1)2
𝜒
𝑛−1,1−

𝛽∗

2

23
−(1−𝑑)

√𝑑
| 𝑌

)

 
 
≥ 1 − 𝛽

)

 
 

. 
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From this last equation, let 𝐴 and 𝐵 denote functions of the chi-squared 

random variable 𝑌, given by 𝐴(𝑌) =

√
𝑌

𝑚(𝑛−1)2
𝜒
𝑛−1,1−

𝛽∗

2

23
−(1−𝑑)

√𝑑
 and 𝐵(𝑌) =

√
𝑌

𝑚(𝑛−1)2
𝜒
𝑛−1,

𝛽∗

2

23
−(1−𝑑)

√𝑑
. 

Note that, given any realization of 𝑌 (𝑦 > 0) and the fact that 0 < 𝛽∗ < 1, 

𝐴(𝑌) > 𝐵(𝑌). Thus, we have 

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) ≅ 𝑃𝑌(𝑃𝑍(𝐵(𝑌) ≤ 𝑍 ≤ 𝐴(𝑌)| 𝑌) ≥ 1 − 𝛽). 

Next, we can manipulate this last expression, namely, subtracting 

(
𝐴(𝑌)+𝐵(𝑌)

2
) and then squaring each end of 𝑍 so that we obtain:   

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) 

≅ 𝑃 (𝑃 ((𝑍 −
𝐴(𝑌)+𝐵(𝑌)

2
)
2

≤ (
𝐴(𝑌)−𝐵(𝑌)

2
)
2

| 𝑌) ≥ 1 − 𝛽). 

Let denote 𝐽 = (𝑍 −
𝐴(𝑌)+𝐵(𝑌)

2
)
2

 the random variable that follows a non-

central chi-square distribution with 1 degree of freedom and non-centrality 

parameter (
𝐴(𝑌)+𝐵(𝑌)

2
)
2

. Thus, we have  

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) ≅ 𝑃 (𝑃 (𝐽 ≤ (

𝐴(𝑌) − 𝐵(𝑌)

2
)

2

| 𝑌) ≥ 1 − 𝛽) 

≅ 𝑃 (𝜒1,1−𝛽
2 ((

𝐴(𝑌)+𝐵(𝑌)

2
)
2

) ≤ (
𝐴(𝑌)−𝐵(𝑌)

2
)
2

| 𝑌), 

where 𝜒1,1−𝛽
2 ((

𝐴(𝑌)+𝐵(𝑌)

2
)
2

) denotes the (1 − 𝛽)-quantile of a non-central chi-

square distribution with 1 df and non-centrality parameter (
𝐴(𝑌)+𝐵(𝑌)

2
)
2

.  

Since (
𝐴(𝑌)−𝐵(𝑌)

2
)
2

=
9

8( √𝑚2(𝑛−1)
3

)
𝑌
2

3 (√𝜒𝑛−1,1−𝛽
∗

2

23 − √𝜒𝑛−1,𝛽
∗

2

23 )

2

, we 

obtain: 

𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) 

≅ 𝑃 (𝜒1,1−𝛽
2 ((

𝐴(𝑌)+𝐵(𝑌)

2
)
2

) ≤
9

8( √𝑚2(𝑛−1)
3

)
𝑌
2

3 (√𝜒𝑛−1,1−𝛽
∗

2

23 − √𝜒𝑛−1,𝛽
∗

2

23 )

2

| 𝑌), 

Hence, the approximation of the coverage probability (shown in Equation 

25) is given by 
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𝑃𝑌(𝐺(𝑌; 𝛽
∗, 𝑚, 𝑛) ≥ 1 − 𝛽) ≅ 1 − 𝐹𝜒𝑚(𝑛−1)

2 (𝑅(𝑌; 𝛽∗, 𝑚, 𝑛, 1 − 𝛽)), 

where 𝑅(𝑌; 𝛽∗, 𝑚, 𝑛, 1 − 𝛽) =

16(√2𝑚2(𝑛−1))(√𝜒1,1−𝛽
2 ((

𝐴(𝑌)+𝐵(𝑌)

2
)
2
))

3

27( √𝜒𝑛−1,1−𝛽
∗

2

23 − √𝜒𝑛−1,𝛽
∗

2

23 )

3    

Finally, as explained in Subchapter 3.2.1., using the conditional expectation 

in the left side of Equation (25), Equation (26) is obtained.   
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Appendix D – Proof of Equation (29):  approximate two-sided 
tolerance limits for sample variances based on the KMM 
method 

In this Appendix D, the derivations are made to obtain directly the formulas 

of the approximate tolerance limits based on the KMM method rather than the 

formulas to find the exact or approximate values of 𝛽∗ (Appendixes A and C, 

respectively, for the exact and the CE methods).  

Similarly to Equation (1), the approximate (1 − 𝛽, 𝛾) two-sided tolerance 

interval for sample variances based on the KMM method, which is obtained in three 

steps, can be defined by  

𝑃𝑆12,𝑆22,…,𝑆𝑚2 (𝑃𝑆2(�̂�𝐿𝐾𝑀𝑀
2 ≤ 𝑆2 ≤ �̂�𝑈𝐾𝑀𝑀

2  | 𝑆1
2, 𝑆2

2, … , 𝑆𝑚
2 ) ≥ 1 − 𝛽) = 𝛾,  

where �̂�𝐿𝐾𝑀𝑀
2  and �̂�𝑈𝐾𝑀𝑀

2  are the approximate lower and upper tolerance limits, 

respectively.  

 

First step: We obtain 𝑚 sample variances {𝑆1
2, 𝑆2

2, … , 𝑆𝑚
2 } from the Phase I 

reference data (𝑚 random samples (subgroups) each of size 𝑛). The 𝑖-th Phase I 

sample variance is given by 𝑆𝑖
2 =

1

𝑛−1
∑ (𝑋𝑖𝑗 − �̅�𝑖)

2𝑛
𝑗=1 , where �̅�𝑖 =

1

𝑛
∑ 𝑋𝑖𝑗
𝑛
𝑗=1  is 

the 𝑖th Phase I sample mean and 𝑋𝑖𝑗 is the 𝑗-th observation of the 𝑖-th Phase I sample 

(𝑋𝑖𝑗~𝑁(𝜇, 𝜎
2), 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛). Since each 𝑆𝑖

2 follows a gamma 

distribution with shape parameter (
𝑛−1

2
) and scale parameter 2𝜎2 (𝑛 − 1)⁄ , a 

sample of 𝑚 gamma observations {𝑆1
2, 𝑆2

2, … , 𝑆𝑚
2 } are generated from the Phase I 

reference data. 

As used by Krishnamoorthy et al. (2008) in their proposed Normal-Based 

Method, we apply the WH transformation on each one of the 𝑚 Phase I sample 

variances {𝑆1
2, 𝑆2

2, … , 𝑆𝑚
2 }, namely, the cube-root of each 𝑆𝑖

2: 𝑇𝑖 = (𝑆𝑖
2)

1

3 , so that we 

get a sample of 𝑚 normal observations: 

𝑇1 = (𝑆1
2)

1

3, 𝑇2 = (𝑆2
2)

1

3, …, 𝑇𝑚 = (𝑆𝑚
2 )

1

3, where each 𝑇𝑖 follows a normal 

distribution (𝑖 = 1, 2, … ,𝑚).  
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 Second step: Given a sample of normal observations obtained in the First step 

{𝑇1
2, 𝑇2

2, … , 𝑇𝑚
2 } and the corresponding mean and standard deviation sample 

(denoted as �̅� and 𝑆𝑇, respectively), we can deal with the widely used tolerance 

interval for a normal distribution, as considered in Krishnamoorthy et al. (2008). It 

is well known that the exact two-sided “𝑘-sigma” tolerance interval for the normal 

distribution of 𝑇, tolerance factor of which is 𝑘, is given by 

𝑃�̅�,𝑆𝑇(𝑃𝑇(�̅� − 𝑘 𝑆𝑇 ≤ 𝑇 ≤ �̅� + 𝑘 𝑆𝑇 | �̅�, 𝑆𝑇) ≥ 1 − 𝛽) = 𝛾,  

 

Third step: The normal random variable 𝑇 is back transformed into the gamma 

random variable 𝑆2 (i.e., (𝑇)3 = 𝑆2). Thus, we have the approximate two-sided 

tolerance interval for sample variances, which follow a gamma distribution   

𝑃�̅�,𝑆𝑇(𝑃𝑆2([�̅� − 𝑘 𝑆𝑇]
3 ≤ 𝑆2 ≤ [�̅� + 𝑘 𝑆𝑇]

3 | �̅�, 𝑆𝑇) ≥ 1 − 𝛽) = 𝛾.  

Thus, the approximate tolerance limits for sample variances based on the 

KMM method are given by 

�̂�𝐿𝐾𝑀𝑀
2 = [�̅� − 𝑘 𝑆𝑇]

3 and �̂�𝑈𝐾𝑀𝑀
2 = [�̅� + 𝑘 𝑆𝑇]

3,  
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Appendix E - Proof of the obtained cdf of 𝑪𝑹𝑳𝒒,𝒐𝒏𝒆 of the one-

sided 𝑺𝟐 chart (Equation 38) 

First, the probability mas function (pmf) of the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 (denoted as 

𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒) is obtained.  

i. From Equation (16), let 𝑑 and 𝑏 be defined as: 

𝑑 = 𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 1−𝛼
2 ) 

𝑏 = 𝑙𝑛 (1 − 𝑞) 𝑙𝑛 (𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 1−𝛼
2 ))⁄ = 𝑙𝑛 (1 − 𝑞) 𝑙𝑛 (𝑑)⁄  

Thus,  

𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 = ⌈𝑏⌉ 

= ⌈𝑙𝑛 (1 − 𝑞) 𝑙𝑛 (𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 1−𝛼
2 ))⁄ ⌉ = ⌈𝑙𝑛 (1 − 𝑞) 𝑙𝑛 (𝑑)⁄ ⌉ 

ii. Note that 𝑏 > 0 and ⌈𝑏⌉ = 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 = {1, 2, 3, … }. Using the definition of 

ceiling function, we have the following relation between ⌈𝑏⌉ and 𝑏 (also, see 

the graph shown in Figure E): 

⌈𝑏⌉ − 1 < 𝑏 ≤ ⌈𝑏⌉, where 𝑏 > 0 and ⌈𝑏⌉ = 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 = {1, 2, 3, … } 

 

 

Figure E. Relation between ⌈𝒃⌉ (= 𝑪𝑹𝑳𝒒,𝒐𝒏𝒆(𝝆
𝟐)) and 𝒃: ⌈𝒃⌉ − 𝟏 < 𝒃 ≤ ⌈𝒃⌉ 

iii. Next, using the relation between ⌈𝑏⌉ and 𝑏 indicated in (ii), if ⌈𝑏⌉ = 𝜏 (where 

𝜏 = {1, 2, 3, … }), then 𝜏 − 1 < 𝑏 ≤ 𝜏. Hence, the pmf of the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 can 

be defined as follow   
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𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜏) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) = 𝜏) = 𝑃(⌈𝑏⌉ = 𝜏) = 𝑃(𝜏 − 1 < 𝑏 ≤ 𝜏), 

where:  𝜏 = {1, 2, 3, … } 

iv. Then, using the expression of 𝑏 from (i), the pmf of 𝐶𝑅𝐿𝑞 is derived as 

follows: 

𝑓𝐶𝑅𝐿𝑞(𝜏) = 𝑃(𝜏 − 1 < 𝑏 ≤ 𝜏) = 𝑃 (𝜏 − 1 <
𝑙𝑛(1 − 𝑞)

𝑙𝑛(𝑑)
≤ 𝜏)

= 𝑃(𝑙𝑛(1 − 𝑞)1 (𝜏−1)⁄ < 𝑙𝑛(𝑑) ≤ 𝑙𝑛(1 − 𝑞)1 (𝜏)⁄ )

= 𝑃((1 − 𝑞)1 (𝜏−1)⁄ < 𝑑 ≤ (1 − 𝑞)1 𝜏⁄ )

= 𝑃(𝑑 > (1 − 𝑞)1 (𝜏−1)⁄ ) − 𝑃(𝑑 > (1 − 𝑞)1 𝜏⁄ ) 

v. Thus, using the equation of 𝑑 from (i) and considering (1 − 𝑞)1 (𝜏−1)⁄ = 𝑀 

and (1 − 𝑞)1 𝜏⁄ = 𝑁, the pmf of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 becomes:  

𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜏) = 𝑃 (𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 1−𝛼
2 ) > 𝑀)

− 𝑃 (𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 1−𝛼
2 ) > 𝑁) 

When the values of the cdf of a chi-squared variable with 𝑛 − 1 df meet 

𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒𝑛−1, 1−𝛼
2 ) > 𝑀, the corresponding quantiles of this 

distribution meet the next relation 
𝑌

𝜌2𝑚(𝑛−1)
𝜒𝑛−1, 1−𝛼
2 > 𝜒𝑛−1, 𝑀

2 . The relation 

𝐹𝜒𝑛−12 (
𝑌

𝜌2𝑚(𝑛−1)
𝜒𝑛−1, 1−𝛼
2 ) > 𝑁 must be treated in a similar way, yielding:  

𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜏) = 𝑃 (
𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 1−𝛼
2 > 𝜒𝑛−1, 𝑀

2 )

− 𝑃 (
𝑌

𝜌2𝑚(𝑛 − 1)
𝜒𝑛−1, 1−𝛼
2 > 𝜒𝑛−1, 𝑁

2 ) 

𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜏) = 𝑃 (𝑌 >
𝜌2𝑚(𝑛 − 1)

𝜒𝑛−1, 1−𝛼
2 𝜒𝑛−1, 𝑀

2 ) − 𝑃 (𝑌 >
𝜌2𝑚(𝑛 − 1)

𝜒𝑛−1, 1−𝛼
2 𝜒𝑛−1, 𝑁

2 ) 

vi. Finally, because 𝑌 follows a chi-square distribution with 𝑚(𝑛 − 1) df, we 

can find the pmf of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2):   

𝒇𝑪𝑹𝑳𝒒,𝒐𝒏𝒆(𝝉) 

= 𝑭𝝌𝒎(𝒏−𝟏)
𝟐 (

𝝆𝟐𝒎(𝒏−𝟏)

𝝌𝒏−𝟏, 𝟏−𝜶
𝟐 𝝌

𝒏−𝟏, (𝟏−𝒒)𝟏 𝝉⁄
𝟐 ) − 𝑭𝝌𝒎(𝒏−𝟏)

𝟐 (
𝝆𝟐𝒎(𝒏−𝟏)

𝝌𝒏−𝟏, 𝟏−𝜶
𝟐 𝝌

𝒏−𝟏, (𝟏−𝒒)𝟏 (𝝉−𝟏)⁄
𝟐 ),   

𝝉 = {𝟏, 𝟐, 𝟑, … } 
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where, in general, 𝜒𝑛−1,𝑝
2  denotes the 𝑝-quantile of the distribution of a chi-

squared random variable with 𝑛 − 1 df (i.e., 𝐹𝜒𝑛−12
−1 (𝑝)) and 𝐹𝜒𝑚(𝑛−1)

2  denotes the 

cumulative distribution function (cdf) of a chi-squared random variable with 𝑚(𝑛 −

1) df. Note that the pmf of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 depends on 𝑚, 𝑛 and 𝛼 values. It is worth to 

note that since the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) is a discrete random variable (positive integer 

values), its pmf is zero for all non-integer values of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒. 

Finally, the cumulative distribution function (cdf) of the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 (denoted 

as 𝐹𝐶𝑅𝐿𝑞,𝑜𝑛𝑒) is obtained.  

i. Given that the 𝐶𝑅𝐿𝑞 is a discrete random variable, we can define its cdf as 

follow (see also Figure E): 

𝑡 < 1, 𝐹𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) ≤ 𝑡) = 𝑃(𝐶𝑅𝐿𝑞 ≤ 0) = 0 

𝑗 ≤ 𝑡 < 𝑗 + 1 (where 𝑗 = {1, 2, 3, … }),  

𝐹𝐶𝑅𝐿𝑞(𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) ≤ 𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌

2) ≤ 𝑗) 

=∑𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) = 𝑖)

𝑗

𝑖=1

 

ii. The pmf of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝛾
2) can be expressed as a function 𝑤 of 𝜏 : 

𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌2)(𝜏) 

= 𝐹𝜒𝑚(𝑛−1)
2 (

𝜌2𝑚(𝑛−1)

𝜒𝑛−1, 1−𝛼
2 𝜒

𝑛−1, (1−𝑞)1 𝜏⁄
2 ) − 𝐹𝜒𝑚(𝑛−1)

2 (
𝜌2𝑚(𝑛−1)

𝜒𝑛−1, 1−𝛼
2 𝜒

𝑛−1, (1−𝑞)1 (𝜏−1)⁄
2 ). 

= 𝑤(𝜏)−𝑤(𝜏 − 1) 

and, if 𝜏 = 0, 𝑤(0) = 0. 

  

iii. Then, the cdf of 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2)  (Equation 38) when 𝑡 ≥ 1,   𝑗 ≤ 𝑡 < 𝑗 + 1 

and 𝑗 = {1,2,3, … } (see part (ii.)) can be calculated as: 

of the one-sided 𝑆2 chart (using the pmf of the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒) 

𝐹𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2)  ≤ 𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌

2) ≤ 𝑗)

= 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 = 1) + 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 = 2) + 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 = 3) +⋯

+ 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒 = 𝑗)

= 𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(1) + 𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(2) + 𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(3) + ⋯+ 𝑓𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑗) 
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= (𝑤(1) − 𝑤(0)) + (𝑤(2) − 𝑤(1)) + (𝑤(3) − 𝑤(2)) + ⋯

+ (𝑤(𝑗) − 𝑤(𝑗 − 1)) 

= 𝑤(𝑗) − 𝑤(0) = 𝑤(𝑗) 

= 𝐹𝜒𝑚(𝑛−1)
2 (

𝜌2𝑚(𝑛 − 1)

𝜒𝑛−1, 1−𝛼
2 𝜒

𝑛−1, (1−𝑞)1 𝑗⁄
2 ) 

 

iv. Thus, the cdf of the 𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) is defined as: 

𝐹𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝑡) = 𝑃(𝐶𝑅𝐿𝑞,𝑜𝑛𝑒(𝜌
2) ≤ 𝑡) 

             = {

0,    𝑡 < 1

𝐹𝜒𝑚(𝑛−1)
2 (

𝜌2𝑚(𝑛 − 1)𝜒
𝑛−1, (1−𝑞)1 𝑗⁄
2

𝜒𝑛−1, 1−𝛼
2 ) ,         𝑡 ≥ 1,   𝑗 ≤ 𝑡 < 𝑗 + 1  𝑎𝑛𝑑  𝑗 = {1,2,3, … }

 

Substituting ⌊𝑡⌋ for 𝑗 (where ⌊𝑡⌋ denotes the largest integer less or equal to 𝑡), 

the equation above can be rewritten as  

𝑭𝑪𝑹𝑳𝒒,𝒐𝒏𝒆(𝒕) = 𝑷(𝑪𝑹𝑳𝒒,𝒐𝒏𝒆(𝝆
𝟐) ≤ 𝒕)

= {

𝟎,  𝒕 < 𝟏

𝑭𝝌𝒎(𝒏−𝟏)
𝟐 (

𝝆𝟐𝒎(𝒏 − 𝟏)𝝌
𝒏−𝟏, (𝟏−𝒒)𝟏 ⌊𝒕⌋⁄
𝟐

𝝌𝒏−𝟏, 𝟏−𝜶
𝟐

) ,  𝒕 ≥ 𝟏 
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Appendix F – R codes   

In this part, the R codes for computing the exact and approximate (based on the CE 

and KMM methods) two-sided tolerance factors for the sample variance are 

provided.  

 

R CODES FOR COMPUTING THE EXACT TOLERANCE FACTORS 

########## (1) Search method (secant method)  ##########  

### Secant method (increasing) ###  

secantc <- function (fun, x0, x1, tol=1e-10, niter=10000000){    

  for ( i in 1:niter ) { 

    funx1 <- fun(x1) 

    funx0 <- fun(x0) 

    x2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 ) 

    funx2 <- fun(x2) 

    if (abs(funx2) < tol) { 

      return(x2)   

    } 

    if (funx2 < 0)  

      x0 <- x2     ####convex function 

    else 

      x1 <- x2     ####concave function 

  } 

  stop ("exceeded allowed number of interactions") 

} 

### Secant method (decreasing) ###  

secant <- function (fun, x0, x1, tol=1e-10, niter=100000){   

  for (i in 1:niter ) { 

    funx1 <- fun(x1) 

    funx0 <- fun(x0) 
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    x2 <- ( (x0*funx1) - (x1*funx0) )/( funx1 - funx0 ) 

    funx2 <- fun(x2) 

    if (abs(funx2) < tol) { 

      return(x2)   

    } 

    if (funx2 < 0)  

      x1 <- x2   ####convex function 

    else 

      x0 <- x2   ####concave function 

  } 

  stop("exceeded allowed number of interactions") 

}  

########## (2) confidence of the TI [gamma_val=(P(G(Y)>=t)] ########## 

gamma_val <- function (t,beta_star,m,n) { 

  Y0<-m*((n-1)^2)*log((qchisq(1-(beta_star/2),n-1))/(qchisq((beta_star/2),n-

1)))/(qchisq(1-(beta_star/2),n-1)-(qchisq((beta_star/2),n-1))) 

  max_G<-pchisq((Y0/(m*(n-1)))*qchisq(1-(beta_star/2),n-1),n-1)-

pchisq((Y0/(m*(n-1)))*qchisq(beta_star/2,n-1),n-1) 

  G_function <- function (Y) { 

    a <-pchisq((Y/(m*(n-1)))*qchisq(1-(beta_star/2),n-1),n-1)-pchisq((Y/(m*(n-

1)))*qchisq(beta_star/2,n-1),n-1) 

    return(a) 

  } 

  G_functionsec <- function (g_func) { 

    k <- G_function(g_func)-t 

    return(k) 

  } 

  if (t<max_G) { 

    y1 <- secantc(G_functionsec,1.0e-50,Y0)     

    y2 <- secant(G_functionsec,Y0,1.0e+50)   

    c <- pchisq(y2,m*(n-1))-pchisq(y1,m*(n-1)) 

  } 

  else {c <- 0} 

DBD
PUC-Rio - Certificação Digital Nº 1412699/CA



150 

 

  return(c) 

} 

##########  (3) Find the beta* (beta_star) ##########  

 

find_beta_star<- function(m,n,beta,nom_gamma){ 

  G_quantile<- function(m,n,beta_star,nom_gamma){   

    gamma_valsec <- function (s) { 

      a <- gamma_val(s,beta_star,m,n)-nom_gamma 

      return (a) 

    } 

    d<-secantc(gamma_valsec,1-beta,1)  

    d     

  }                 

  beta_ref<-2*(1-pchisq(m*(n-1)*qchisq(1-beta,n-1)/qchisq(1-nom_gamma,m*(n-

1)),n-1)) 

  if(beta_ref<beta){ 

    ref_Uval<-beta_ref 

  } 

  if(beta_ref>=beta){ 

    ref_Uval<-beta 

  } 

  if(beta_ref-(beta/5)>0){ 

    ref_Lval<-ref_Uval-(beta/5) 

  } 

  if(beta_ref-(beta/5)<=0){ 

    ref_Lval<-0.00001 

  } 

  beta_adj <- function (beta_star) {   

    b <- G_quantile(m,n,beta_star,nom_gamma)-(1-beta)   

    return (b) 

  } 

  resp<-secantc(beta_adj,ref_Lval,ref_Uval)  
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  Ltwo<-qchisq(resp/2,n-1)/(n-1) 

  Utwo<-qchisq(1-(resp/2),n-1)/(n-1) 

  vect_resp<-c(1-resp,Ltwo,Utwo) 

  return(vect_resp) 

} 

########## INSTRUCTIONS  ########## 

##### First step: Run the Code (1)-(3) provided above #######  

##### Second step: Use the function "find_beta_star(m,n,beta,nom_gamma)" 

from Code (3) called "Find the beta*two", insert the values of m, n, beta and 

nom_gamma #######  

##### Third step: The output of the Second step is the vector (1-

beta*two,L*two,U*two), that is, the 1-beta star, and the lower and the upper 

tolerance factors  #######  

##### EXAMPLE: If we consider 

find_beta_star(m=25,n=5,beta=0.05,nom_gamma=0.95), we obtain: (1-

beta*two=0.97444508,L*two=0.08452931,U*two=3.17776208)  ########## 

##### NOTE: If we study a distribution of the sample variance (which comes 

from a sample of size n) using a single sample of N observations to estimate 

sigma^2, we should consider m=(N-1)/(n-1) in our code ####### 

 

R CODES FOR COMPUTING THE APPROXIMATE TOLERANCE 

FACTORS BASED ON THE CE METHOD 

########## (1) Search method (secant method)  ##########  

secant.method <- function(f, x0, x1, tol=1e-10, n_int=10000000){   ###100000  

### tol=1e-10 

  for ( i in 1:n_int ) { 

    fx1 <- f(x1) 

    fx0 <- f(x0) 

    x2 <- ( (x0*fx1) - (x1*fx0) )/( fx1 - fx0 ) 

    fx2 <- f(x2) 

    if (abs(fx2) < tol) { 

      return(x2)  ##### the search value will be the first one that is less than tol 

value (it can be + or -) 

    } 

    if (fx2 < 0)  

      x1 <- x2     ####convex function 
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    else 

      x0 <- x2     ####concave function 

  } 

  stop("out of the specified n_int") 

} 

######## (2) using Wilson HIlferton approximation ############## 

WH_gamma_approx<-function(beta,beta_star,m,n) { 

  EXPRESS<-function(u){ 

    U_two<-qchisq(1-beta_star/2,n-1)/(n-1) 

    L_two<-qchisq(beta_star/2,n-1)/(n-1) 

    A<-(((U_two*qchisq(u,m*(n-1))/(m*(n-1)))^(1/3))-(1-(2/(9*(n-1)))))/((2/(9*(n-

1)))^0.5) 

    B<-(((L_two*qchisq(u,m*(n-1))/(m*(n-1)))^(1/3))-(1-(2/(9*(n-1)))))/((2/(9*(n-

1)))^0.5) 

    a_b<-(((U_two*(n-1))^(1/3))-((L_two*(n-1))^(1/3)))^3 

    cte<-(((n-1)^0.5)*m*16*(2^0.5))/27 

    invchi<-qchisq(p=1-beta,df=1,ncp=((A+B)/2)^2) 

    expr<-pchisq(cte*(invchi^(3/2))/a_b,(m*(n-1))) 

    return(expr) 

  } 

  integrate_value<-integrate(EXPRESS,lower=0,upper=1, rel.tol = 1e-10)  ### 1e-

5 (for n=4, m=50,75, gamma=0.90 and 1-beta=0.90) ## rel.tol = 

.Machine$double.eps^0.13 

  d<-integrate_value$value 

  return(1-d)  

} 

######## (3) Finding the beta_star using the CE method ##### 

find1_beta_star<- function(m,n,gamma,beta){ 

  find2_beta_star <- function (beta_star) {  ###beta=beta*_two 

    b <- WH_gamma_approx(beta,beta_star,m,n)-(gamma)   ##using Wilson 

HIlferton approximation 1 ####   #((1+0.2)*0.0027)###beta_tol=beta; p=1-

gamma 

    return (b) 

  } 
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  beta_ref<-2*(1-pchisq(m*(n-1)*qchisq(1-beta,n-1)/qchisq(1-gamma,m*(n-1)),n-

1)) 

  if(beta_ref<beta){ 

    ref_Uval<-beta_ref 

  } 

  if(beta_ref>=beta){ 

    ref_Uval<-beta 

  } 

  if(ref_Uval/100-(beta/200)>0){  ###### if(ref_Uval/10-(beta/20)>0) 

    ref_Lval<-ref_Uval/100-(beta/200)   #####  ref_Lval<-ref_Uval/10-(beta/20) 

  } 

  if(ref_Uval/100-(beta/200)<=0){   ######   if(ref_Uval/10-(beta/20)<=0) 

    ref_Lval<-1.47e-08  ## 0.000001 

  } 

  resp<-secant.method(find2_beta_star,ref_Lval,ref_Uval) ### 1e-04,0.01  

###0.0009,0.002 ##0.000003572776 

##secant.method(find2_beta_star,ref_Lval,ref_Uval) 

  L_adj<-qchisq(resp/2,n-1)/(n-1) 

  U_adj<-qchisq(1-(resp/2),n-1)/(n-1)   

  answ<-c(1-resp,L_adj,U_adj) 

  return(answ) 

} 

##########  INSTRUCTIONS  ########## 

##### First step: Run the Code (1)-(3) provided above #######  

##### Second step: Use the function "find1_beta_star(m,n,gamma,beta)" from 

Code (3) called "Finding the beta_star using the CE method", insert the values of 

m, n, gamma and beta #######  

##### Third step: The output of the Second step is the vector (1-

beta*two,L*two,U*two), that is, the beta star, and the lower and the upper 

tolerance factors based on the CE method  #######  

##### EXAMPLE: If we consider 

find1_beta_star(m=25,n=5,gamma=0.95,beta=0.05), we obtain: (1-

beta*two=0.97466208,L*two=0.08414861,U*two=3.18269628)  ########## 
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R CODES FOR COMPUTING THE APPROXIMATE TOLERANCE 

FACTORS BASED ON THE KMM METHOD 

######  Simulated tolerance factors based on the KMM method ########## 

> install.packages("tolerance") 

> library(tolerance) 

 

KMM_method <- function (alpha,gamma,m,n,SIMrep) { 

  k<-K.factor(n=m, f = NULL, alpha = 1-gamma, P = 1-alpha, side = 2, method = 

"EXACT", m = 50) 

  L_KMM<-numeric(SIMrep) 

  U_KMM<-numeric(SIMrep) 

  count<-0 

  for (i in 1:SIMrep) { 

    w_values<-rchisq(n=m,df=n-1) 

    w_cube_root<-w_values^(1/3) 

    if(((mean(w_cube_root)-(k*sd(w_cube_root)))^3)/mean(w_values)<0){ 

      count<-count+1 

    } 

    L_KMM[i]<-max(((mean(w_cube_root)-

(k*sd(w_cube_root)))^3)/mean(w_values),0) 

    U_KMM[i]<-((mean(w_cube_root)+(k*sd(w_cube_root)))^3)/mean(w_values) 

  } 

  lower_KMM<-mean(L_KMM) 

  upper_KMM<-mean(U_KMM) 

  one_minus_alphaKMM<-pchisq(upper_KMM*(n-1),n-1)-

pchisq(lower_KMM*(n-1),n-1) 

  return(c(one_minus_alphaKMM,lower_KMM,upper_KMM,count)) 

} 
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