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Abstract

Rockfalls can have severe consequences for the affected population and infras-
tructure and cause high reconstruction cost. For this reason it is important to un-
derstand rock instabilities in order to implement appropriate safety measures. Limit
Equilibrium Methods (LEM) are models to asses rock instabilities which are often
used due to their simplicity and reliability. Despite these advantages, LEM analyze
the slope stability by assuming temporally invariant conditions (friction, cohesion,
geometry, etc.). The aim of this thesis is therefore the implementation of a tem-
porally variant condition (progressive tensile edge crack) into LEM for the planar
failure in rock slopes with the objective to carry out a time-dependent analysis. A
code that combines LEM with crack growth theory to evaluate the evolution of the
tensile edge crack growth for single blocks was developed. The implemented code
evaluates if the base provides enough stability to the block or if a progressive tensile
edge crack will propagate. When a progressive tensile edge crack starts to propa-
gate the code selects between Paris or Charles crack growth law, choosing the faster
one. The code during this crack propagation records the crack opening, the length
of the crack, iteration and the time until the crack reaches a critical state. In a critical
state, the tensile strength between the toe of the block and the tip of the edge crack
plus the resisting base forces are less than the driving forces. This will cause the
block failure. To perform a back analysis of the code, which consists of plotting the
field data over the code result, three different photogrammetries near Grimsel Pass
(Switzerland) were made. From these photogrammetries, digital elevation models
(DEM) were obtained. Then two different types of blocks with planar characteris-
tics and a visible tensile edge crack were mapped: existing blocks (96) and failed
blocks (16). Characteristics such as height, length, perimeter and slope angle were
recorded. The mapped blocks were classified according to their slope angle (< 40◦

,40◦− 50◦ and 50◦− 60◦) and represented in different plots. Three different zones ex-
ist in each plot. In the first zone the base provides stability, in the second the tensile
edge crack propagates and causes block failure and in the third the blocks topple.
The results show that the existing blocks are distributed in the three areas and the
failed blocks in the non-toppling area. If the blocks are located in the zone where the
edge crack has propagated, this indicates that the edge crack dominated the process
and that it had reached the critical length to hold the blocks in their position. For the
failed blocks located in the zone where the base provides stability, the failure cause
is unclear. Probably they have failed due to external events (seism, extreme rainfalls,
etc.). The results of the model help to understand the evolution of the tensile edge
crack propagation in planar failure rock slopes and the model can be further used to
add new modules. However, the model has some limitations and the results need to
be evaluated carefully.
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Chapter 1

Introduction

1.1 Introduction

Rock slope stability analyses are important for population and infrastructure safety
(Eberhardt, 2002). Rockfalls can have different consequences for society, in the worst
case it causes human fatalities. Other consequences are economic impacts, which are
related to loss of utility or damage to the infrastructure. Indirect economic impacts
are for example the cost of closing a road or if big areas with an economy based on
the transportation network are affected (Winter et al., 2014). For example in Switzer-
land during the 2017 the cost of rockfalls, landslides and debris flows was about 170
Million Swiss francs (Andres and Badoux, 2018).

Slope instabilities can be classified according to if they happen in soils or rocks. In
the case of rockfall, there are four primary failure modes: planar, rotational, wedge
and toppling failure (Kliche, 2003). Different methods and analysis (i.e kinematic
methods, probability methods, etc.) exist to assess the slope stability (Raghuvanshi,
2017). In this thesis I only focus on the planar failure mode. I analyzed this failure
mode with the Limit Equilibrium Method (LEM) and to it added the theory of pro-
gressive tensile crack growth. To validate the proposed model, a back analysis with
the data obtained from Grimsel Pass (Switzerland) was performed.

This thesis has the following structure. First, a literature review is provided from
which the specific research gap is derived. Then, the underlying theories are dis-
cussed in more detail. In the next chapter the research goals are presented. The
following chapter "Methodology and Data" reviews the formulas that were used in
the Matlab code and outlines the code workflow. After that the photogrametry pro-
cess is explained. The obtained results and their data interpretation are presented in
the subsequent chapter. Finally the conclusions are drawn.

1.2 Literature Review

1.2.1 Rockfalls

Several authors have classified modes of failures (i.e. Hocking, 1976, Hoek and Bray,
1981 Wyllie and Mah, 2005). The detachment process is divided by Varnes (1978),
into five groups: slide, flow, drift, topple and fall. Goodman and Kieffer (2000),
provide a detailed description of the modes of failure of slopes (including the ones
classified by Varnes (1978), and some additional ones). Each of the different detach-
ment processes can occur in debris, rock, soil or mud. In the specific case of rockfall
Selby (1982), classify it like a very small landslide which removes individual blocks
or superficial rocks from a cliff face.

The process of rockfall starts with the detachment of rocks from bedrocks. Bedrock
slopes are exposed to different conditions of weathering (this can include physical
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and chemical weathering) (Schumm and Chorley, 1964; Day, 1997). According to
Jaboyedoff and Derron (2005), there are internal parameters (IP) and external factors
(EF) which provide a conceptual framework to describe the slope system. Some of
the most important internal parameters are: morphology, geology, fracturing, me-
chanical properties of rocks and soils and hydrogeology. These internal parame-
ters can evolve to external factors which are: gravitational effects, water circulation,
weathering, erosion, seismicity, active tectonics, microclimate, nearby instabilities,
human activities, etc.

Plane mode or planar failure usually is controlled by a structurally weak surface
(faults, joints, bedding planes, variation in shear strength between layers) or by the
contact between firm bedrock and overlying weathered rock (Kliche, 2003;Raghu-
vanshi, 2017). Different conditions such as that the structural discontinuity plane
dips (or daylight) towards the valley at an smaller angle than the slope angle face
(greater than the angle of friction of the discontinuity surface) are necessary in order
that a plane failure happens (Wyllie and Mah, 2005).

The stability of the slope depends on the relationship between driving forces and
resisting forces (Wyllie and Mah, 2005; Kliche, 2003; Hoek, 2007; Eberhardt, 2002).
As mentioned above, IP and EF are very important for the stability analysis.

1.2.2 Stability Analysis Techniques

There exist different methods to analyze the stability of the rock slopes which can
be grouped into two main approaches. On the one hand there are the conventional
approaches which include kinematic methods, empirical methods, limit equilibrium
methods and probability methods.On the other hand there are the numerical meth-
ods which include continuum modeling, discontinuum modeling and hybrid mod-
eling (Raghuvanshi, 2017).

Conventional Approaches

• Kinematic methods: The kinematic methods analyze the geometric conditions
that are required for the movement of the rock over the discontinuity planes.
However they do not consider the forces that generate this sliding. (Goodman,
1989;Hoek and Bray, 1981). In the last few years some new classifications for
the lateral boundaries have been developed (Price, 2009). One of their princi-
pal characteristics is that they are represented on an stereo-net.

• Empirical methods: The empirical methods are based on rock mass classifica-
tion systems, such as the Slope Mass Rating (SMR) (Romana, 1985), the Mod-
ified Slope Mass Rating (MSMR) (An-balagan, 1992) and the rock mass clas-
sification systems for slopes (Liu and Chen, 2007). In general these methods
establish a relationship between the slope inclination and dip of the disconti-
nuity. In some cases the degree of weathering, the shear strength of the slope
material and geological and environmental factors are considered.

• Limit equilibrium methods: Limit equilibrium methods evaluate the forces
that are responsible for the driving and resisting forces that act on the rock
mass (Hoek, 2007;Hoek and Bray, 1981; Kliche, 2003; Eberhardt, 2002). The
ratio of resisting forces to driving forces defines the factor of safety (FOS). If
the FOS is higher than 1 it suggests a stable slope, if it is less than 1 then the
slope is in a critical state of equilibrium. The factors considered are: geome-
try of the slope, geometry of the block, failure plane characteristics and water
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and external triggering factors (Hoek, 2007;Hoek and Bray, 1981; Kliche, 2003;
Eberhardt, 2002).

• Probabilistic methods: Some of the considered parameters (friction angle, dip
strike, etc.) show uncertainty whereas others such as slope height, slope incli-
nation, etc. are fixed. With these methods it is possible to incorporate the un-
certain parameters in a systematic way and define the slope stability in prob-
abilistic terms (Chowdhury, Flentje, and Bhattacharya, 2010;Kliche, 2003 ). In
these methods a target population is considered, as well as a random sample
and a biased sample (Miller and Freund, 1985). The result of these methods
are a FOS with a probability distribution over a certain range. There exist
three different probabilistic methods which are the First Order Second Mo-
ment Approach (FOSA), the Point Estimate Approach (PEA) and the Monte
Carlo Simulation Approach (MSA).The FOSA provides values of the FOS and
their variance. With the PEA the discrete values can be estimated at the mean
values of the variables and mean and standard deviation of the FOS can be
calculated. In the MSA, each variable has a probability of distribution and the
discrete values are randomly selected (Chowdhury, Flentje, and Bhattacharya,
2010).

Numerical Methods

Rocks slopes are not homogeneous, for example they show differences in geologi-
cal formation. This cause a non linear behaviour in the potential failure plane. For
this reason such complex features can not be evaluated by the conventional tech-
niques. The numerical methods include continuum, discontinuum and hybrid meth-
ods (Stead, Eberhardt, and Coggan, 2006; Eberhardt, 2002).

• Continuum modeling: This method can be applied to slopes where character-
istics do not largely vary. For example it can consider heavily disintegrated
rock mass overburden another geological formation. The modeling is based
on finite element, finite difference and boundary element methods. For the
case of continuum modeling the inputs are: constitutive model, in situ stress,
shear strength parameters, etc. (Stead, Eberhardt, and Coggan, 2006).

• Discontiuum modeling: In a situation where the rock mass has discontinu-
ities and the failure mechanism is controlled by pre-existing discontinuities,
it is recommended to use this modeling. The movement of the intact rock
blocks within discontinuities can be assessed for static and dynamic conditions
(Stead, Eberhardt, and Coggan, 2006).

• Hybrid modeling: This modeling combines the continuum and the discontin-
uum modeling. The methods mentioned above are not capable to model frac-
turing through intact rocks if the pre-existing structures (ie. non-continuous
rock joints) inside the rock mass are at the origin of the new fracturing. To
tackle this problem different approaches based on fracture mechanics have
been developed. With the hybrid modeling it is possible to model the evo-
lution of non-directional physical rupture surface, with the formation, propa-
gation and coalescence of cracks (Alzo’ubi, 2016).
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1.2.3 Effectiveness and Limitations of Stability Analysis Techniques

Each technique has advantages and disadvantages, therefore they should be used
appropriately.

Kinematics analysis is often used as a preliminary analysis, as it is rather easy
and time efficient to perform. Furthermore, field data for this analysis can be easily
collected (Raghuvanshi, 2017). But the results of this analysis are not very exact as
strength parameters (discontinuities and rock mass) and acting forces on the slope
are not taken into account (Alzo’ubi, 2016). Therefore this method does not allow to
analyze complex geological scenarios. (Tang, Yong, and Ez Eldin, 2017) In addition,
it does not provide a quantitative result of the slope stability analysis (Raghuvanshi,
2017).

Empirical methods are also not difficult to perform and can be used in a large
area, and in the case of the planar failure can be applied directly on the field, but in
case of complicated parameters (different lithologies, variable slope geometry) this
method can not be applied.(Alzo’ubi, 2016). On the contrary, they cannot be applied
in complex geologic cases, for this reason this system should not be applied for a
design purpose (Alzo’ubi, 2016).

Limit Equilibrium Methods are relatively simple methods that can be easily ap-
plied and are very common methods in the engineering field even if they involve
internal deformation. (Huang, 2014;Eberhardt, 2002). Several different approaches
have been developed and they provide an exact solution (Alzo’ubi, 2016) (Chowd-
hury, Flentje, and Bhattacharya, 2010).On the other hand they can tend to over sim-
plify the reality.

The probabilistic methods have the advantage that they provide an assessment
of the uncertain parameters with the use of different simulations like Monte Carlo
(Raghuvanshi, 2017; Digvijay P. et al., 2017). They also allow to take into account
many variable factors (i.e. cohesion, friction, tensile strength, etc) (Alzo’ubi, 2016)
and consider events which are difficult to predict such as for example extreme rain-
falls or earthquakes (Kliche, 2003). But a disadvantage is that a large amount of
detailed data must be collected in order to use probabilistic methods (Raghuvanshi,
2017).

Continuous or discontinuum methods can be applied where stratified discon-
tinuties exist and is one of the principal benefits that each of the discontinuities can
be explicitly modeled (Alzo’ubi, 2016). Neverthless, the continuum techniques de-
fine the rock mass as continuum which is a simplification in some cases of the dis-
contiuum rock mass (Hack, 1998). The discontinuum methods require a defined
failure surface and the current surface is not able to grow free inside the rock mass
(Alzo’ubi, 2016). For accurate modeling the discontinuity needs to be indicated at
block level, which can be hard to collect (Raghuvanshi, 2017).

1.2.4 Limit Equilibrium Methods

In this thesis I use a Limit Equilibrium Method for my analysis and I will there-
fore provide a more detailed literature review on this method here. During the last
century many researchers and engineers have been working with Limit Equilibrium
Methods and a large theoretical literature has been developed. For reasons of space, I
will only describe the most important features of these methods. There exists various
books and articles such as Fredlund (1984), Duncan (1996), Digvijay P. et al. (2017)
or Huang (2014) which can be consulted for a more in-depth literature review. Limit
Equilibrium Methods have been used for almost 100 years. They are commonly
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used in geotechnical engineering and in soil and rock analysis. One of the first ap-
proaches was done by Petterson in 1916, when he was working in Gothenburg. He
presented the stability analysis for the Stigberg Quay (Gothenburg) discretizing a
sliding mass into vertical slices. Then in 1936 Fellenius introduced the Ordinary or
Swedish method of slices, where he divided the soil mass into slices and found their
equilibrium equating the forces and moments to zero (Steward et al., 2011). In 1969
Bailey presented the normal method (Bailey and Christian, 1969) and the simplified
Bishop method in which he defined the factor of safety as the ratio of the available
shear strength of the soil to that required to maintain equilibrium (Bishop, 1954).

Static Slope Stability Analyses

This analysis is based on the static equilibrium of an unstable rock mass. An unstable
rock block needs to be defined (height, lenght, slope angle) and in this block the
resisting and driving forces are evaluated. Then the FOS is calculated by the ratio
of resisting forces to driving forces. The simplest expression for a 2D model was
presented by Hoek and Bray (1981). They included the following factors in their
model: sliding forces, the weight of the rock mass block, the inclination of the slope,
cohesion and angle of internal friction (or angle of shearing resistance).The last one,
angle of internal friction is equivalent to the Mohr-Coulumb failure criterion. They
also developed additional formulas that take into account the influence of water
and a tension crack at the top of the block (always perpendicular to the slope angle).
Moreover, in the third version of their book, they further expanded their model to
include the influence of under-cutting the toe of a slope, reinforcement of the slope
and the analysis when the failure happens in a rough plane.

Several scientists have modified or added parameters to the FS presented above.
Aydan and Kawamoto (1992) proposed a LEM for flexural toppling failure. Ad-
hikary et al. (1997) proposed a mechanism of flexural toppling as well with LEM.
Mauldon, Arwood, and Pionke (1998) included statistical parameters to the planar
and wedge failure. Bobet (1999) studied toppling failure based on LEM , he consid-
ered water seepage into his analysis. Kemeny (2003) included the time-dependent
cohesion rock degradation using subcritical crack growth in a planar sliding exam-
ple with a probabilistic model. Kim et al. (2004) studied different failure modes
from a perspective of Geographical Information Systems (GIS) considering kine-
matics and LEM‘s analysis. Jimenez-Rodriguez, Sitar, and Chacón (2006) analyzed
quantitatively the reliability of stability analysis. He presented two blocks resting
in a inclined plane separated by a tension crack and with random water level. This
list only includes works that have been done in English and not every proposal is
documented here.

Pseudo-Static Slope Stability Analyses

If other external factors (i.e. earthquakes or external loads) are present in the analy-
sis, these factors are introduced as coefficients and the new analysis is called pseudo-
static analysis (Hossain, 2011). Several studies have introduced these coefficients
to LEM. For example Ling and Cheng (1997) included the influence of the seismic
forces in a 2-D LEM. Additionally, they also included in their model a tension crack
obtaining acceleration and permanent displacement of the rock mass. Yang (2007)
using kinematic theorem with limit analysis studied the seismic coefficient. Hoek
(2007) presented an update of the FOS in which the seismic coefficient, water pres-
sure distribution, tension fracture and anchors are considered. Shukla et al., 2009
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analyzed the FOS with different factors (water forces, horizontal seismic forces, etc).

1.3 Research Gaps

Slope stability is a topic that has been thoroughly studied by different authors and
scientists as the literature review has shown. Therefore, many different methods to
assess slope stability have been developed. However, most of them analyze the slope
stability from an static perspective. This means that the variables remain constant
during the analysis. For the case of crack growth, one solution is to use the concept of
material fatigue that has been proposed by Paris, Gomes, and Anderson (1961).The
concept of material fatigue originates from fracture mechanics science and has been
the object of many studies in the last century (Anderson et al., 2005). It allows to
include the progressive crack growth in the analysis.

Different authors such as Kirane and Bažant (2016), Pugno et al. (“A generalized
Paris’ law for fatigue crack growth”), Tada, Paris, and Irwin (The Stress Analysis of
Cracks Handbook, Third Edition), Le, Manning, and Labuz (2014), Ko and Kemeny
(2011), etc have used and tested the concept of material fatigue propagation (or pro-
gressive failure) to analyze crack propagation in the recent past. However, no au-
thor in the performed literature review has used or applied the concept of material
fatigue in the context of the planar failure. Sellmeier (2015) is the only author that
mentions a possible value of the concept for the analysis of planar failure, but she
does not perform an analysis with it.

Therefore, in general terms (see Chapter 3 for the specific research goals) the
goal of this thesis is to incorporate progressive tensile crack growth formulas to the
Limit Equilibrium Method and perform a back analysis with the information ob-
tained from the field data. The objective is to evaluate the evolution of the tensile
crack growth in planar failure and gain knowledge to better understand this evolu-
tion.
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Chapter 2

Background

2.1 Theory

2.1.1 Slope Stability

Depending on the material in the area, which can be rock or soil, different methods
and analyses can be performed to assess slope stability. Often rocks contain dis-
continuities and they have several parameters that influence the analysis (geometric
parameters and geotechnical or geological features). For this reason it is important
to take into account the different geological structures as these are associated with
different types of slope failure (Wyllie and Mah, 2005). Therefore different types of
analysis exist (Vallejo and Ferrer, 2012). In the case of rock slopes, they are condi-
tioned by the fracture types and their orientation in the rock mass. The most frequent
failure types are : planar failure, wedge, toppling, buckling and non planar (see fig-
ure 2.1). However, reality is much more complex and the diagrams (see Fig. 2.1) are
not able to show the different geological situations which can generate in the same
slope more than one specific form of failure (such as ravelling, block torsion, etc)
(Goodman and Kieffer, 2000). Despite these limitations, the classification of Varnes
(1978) is important as different analysis methods are used for the various failure
types (Wyllie and Mah, 2005).

Planar failure is one of the less complicated failure modes and there exists a lot
of literature about it. This constitute a good basis for introducing new concepts and
try to test them. For this reason this thesis only focuses on planar failure.

Failure Types

Plane failure (see Fig. 2.1 (a)) takes place along a pre-existing surface or discontinuity,
this can be a fault, bedding plane, or tectonic joint. The discontinuities must be
dipping out of the slope face, and the slope angle must be less than the rock friction
angle in order for sliding to occur.(see Fig. 2.1 (a))

Wedge failure is presented in (see Fig. 2.1 (b)) This kind of failure consists of two
discontinuity planes whose line of intersection dips towards the slope face. As in the
plane failure the slope angle must be greater than the failure plane angle (dip of the
line of the intersection of the two planes) and to the friction angle as well. Toppling
failure (see Fig. 2.1 (c)) occurs in slopes where the strata dips steeply away from the
slope. Buckling occurs when the bedding planes are parallel to the slope and the
dip is greater than the friction angle. Finally the non-planar failure (see Fig.2.1 (d))
can occur when the rock mass is heavily jointed or broken, because of this the whole
body behaves as individual sets and the rock mass behaves like a soil. (Vallejo and
Ferrer, 2012).
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FIGURE 2.1: Types of failure in rock slopes. On the left the graphi-
cal representation, and on the right the Stereographic representation,

indicating the characteristics of each of them. (Wyllie, 2014)

2.1.2 Slope Analysis

Different slope analysis’s can be performed, which includes limit equilibrium (de-
terministic) and numerical analysis. Limit equilibrium analysis can be used to cal-
culate the factor of safety, numerical analysis examines the stresses and strains from
the slope. (Wyllie and Mah, 2005) The most common analysis is the limit equilib-
rium analysis to evaluate sensitivity of possible failure conditions. More advanced
techniques are required for analyzing complex slope geometry, multiple or complex
structural geometry, variable rock strength parameters and complex hydrological
conditions (Kliche, 2003).
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Limit of Equilibrium

At a determined state a block is in a limiting equilibrium condition. This moment
happens just before the block falls. At this point, different forces such as driving
forces (stress, moments) and resisting forces (cohesion and friction at the base) (see
Fig. 2.2) are equal. In this moment, the ratio between driving and resisting forces
is close to one. This ratio is called factor of safety (see equation 4.9) and is obtained
by dividing the resisting forces against the driving forces. If the ratio is greater than
one the block is stable. Otherwise it will probably fall (Kliche, 2003). According to
Eberhardt (2002) this analysis method is widely used, thus numerous software’s are
available in the market and one can vary the used factors (cohesion, slope angle,
rock type, etc.).

FIGURE 2.2: Mechanical approach for a limit equilibrium analysis in
the case of planar failure, the corresponding equations are equation

4.2 to equation 4.8 (Kliche, 2003).

General Conditions for Plane Failure

According to Wyllie and Mah (2005) the following conditions must be satisfied: the
plane on which sliding occurs must strike parallel or nearly parallel (+/- 20◦) to
the slope face. The sliding plane must dip less than the dip of the slope face. The
dip must be greater than the angle of friction. The upper end of the block intersect
the upper slope or terminates in a tension crack. And finally release surfaces pro-
vide negligible resistance to sliding, and they should be present to define the lateral
boundaries.

Tension Crack-Water

Wyllie and Mah (2005), Kliche (2003) and several other authors consider the exis-
tence of a tension crack (dry or filled with water) and ground water in the analysis.
However, they consider the tension crack as a static parameter, in other words no
crack growth occurs.Wyllie and Mah (2005) mention that it is an indicator when a
tension crack became visible that shear failure has initiated within the rock mass. He
suggests that the formation of them is just the start of a complex progressive failure
process of which little is known.
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2.1.3 Fracture Mechanics

Failure Causes

Vallejo and Ferrer (2012) indicated that the slope stability depends on geometric
conditions, such as whats required in LEM: height and slope angle, geomechani-
cal factors such as strength, permeability, deformability and geological factors such
as anisotropy or weakness area. A difference can be established between active trig-
gering factors such as heavy rainstorms, earthquakes, application of static or dy-
namic loads, etc, and passive factors which includes degree of fracturing, weather-
ing, lithology and frequency of discontinuities.

Crack Growth

Materials tend to have defects and microcracks, this generates fractures which are
related to crack growth. If the crack is stable (not growing) it is denominated as
stationary. If a specific critical load or deformation is reached, then crack initiation
takes places and it starts to grow and is denominated as non-stationary. Very slow
crack propagation under constant loading (1 mm/s or less) is called subcritical. If
the crack propagates under a cyclic loading (10−6 mm per cycle) then it is called
fatigue crack growth (Gross and Seelig, 2011). This concept was develop by P. Paris
in 1961 (Paris, Gomes, and Anderson, 1961):

da/Dn = C(4KI)
m (2.1)

where a = a(N) is the crack length following the Nth load cycle, C and m are
material and climate dependent constants and4KI is the amplitude of the cyclically
varying mode I stress intensity factor KI (see 2.1.3 K concept) (Eppes and Keanini,
2017).

Crack Opening Modes

From a macroscopic point of view (continuum mechanical) a crack is observed as a
separation in a material which has crack surfaces. There exist three types of crack
openings: Mode I, mode II and mode III (see Fig.2.3).
Mode I shows a symmetric crack opening with respect to x-z plane. Mode II presents
displacement in the x-direction and mode III in the z-direction. These classifications
can only be applied locally (near the crack tip). In continuum mechanics the extend
of the influence area is important, therefore the considered process zone must be
very small in comparison to the whole dimension of the body (Gross and Seelig,
2011).

FIGURE 2.3: Classification of crack opening modes with respect of the
deformation (Gross and Seelig, 2011).
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K Concept

The stress intensity factor (KI) is a linear elastic material constant, the crack-tip con-
ditions are characterized by this constant. When the material locally fails, the con-
stant turns into a critical stress intensity factor (KIC). This critical stress intensity
factor is an alternate measure of fracture toughness (Anderson et al. (2005)). In this
section, I analyze case mode I crack opening, because it is directly related with the
opening mode from planar failures.

FIGURE 2.4: The figure shows the area of influence of KI. (Gross and
Seelig, 2011)

The stress influence area is different for each material which is represented in the
next graphic by a circle with radius R (see Fig. 2.4). According to Gross and Seelig
(2011) the influence outside this area can not be neglected, but the largest impacted
area is inner R. For the rock case, plastic or inelastic deformations appear at the crack
tip (denoted by ρ ). The plastic zone is rρ. Additionally, it is proposed that the KI
region is much larger than the areas P and rp . These assumptions make the processes
a black box, therefore it is assumed that the processes are controlled by the near KI
field. It is indicated that the stress intensity factor, and the stress are state variable
or loading parameters of the area near to the crack tip. Using the stress factor, it is
possible to introduce the fracture criterion. It states that the propagation of a fracture
starts when the stress intensity reaches the rock critical value KIc.

KIc is a parameter which is determined by laboratory experiments (such as Brazil-
ian test) which has the [stress][length]1/2 units N m−3/2 or MPa m 1/2(Gross and
Seelig, 2011).

Stress Intensity Factor

Different modes of the K factors exists, it depends on the mode of loading (Mode I,
Mode II or Mode III, see Fig. 2.3 ) as well depending of the test specimen configura-
tion (Anderson et al., 2005; Gross and Seelig, 2011). In the case of planar failure (see
Fig. 2.1) there exists a similar sample configuration that can be used. It receives the
name of single edge notch test specimen (see Fig. 2.5) and the equations have been
proposed by different authors.

Crack Opening at the Edge

Tada, Paris, and Irwin (The Stress Analysis of Cracks Handbook, Third Edition) have
developed an equation (Equation 4.24) that based on the crack length, provides the
crack opening at the edge.
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FIGURE 2.5: Stress intensity factor that can be applied to the planar
fractures. (The Stress Analysis of Cracks Handbook, Third Edition)

FIGURE 2.6: Longitude of the crack opening at the edge. Gross and
tada have proposed equations. (The Stress Analysis of Cracks Handbook,

Third Edition)

Crack Growth-Weathering

It has been experimentally found that the presence of water and higher temperatures
are directly related to an increase in the crack rate. However liquid water is not a
determining factor for subcritical cracking, while temperature is. The global annual
averages range of air temperature is between 5 ◦C - 25 ◦C and at the land surface
10 ◦C - 20 ◦C (Eppes and Keanini, 2017). For this reason it is very important to have
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the local temperature data.
Regarding to the lower stress intensity limit Kth, below which subcritical crack-

ing does not occur exists no consensus. Using experimental data only the upper
stress intensity limit Kth can be obtained. Therefore this parameter lacks data in a
geological time context (Eppes and Keanini, 2017).

To model this climate dependency, it is first necessary to model the stress. As
seen before I use Paris‘s Law. Then the temperature is introduced by diurnal thermal
cycling. The magnitude of stress varies according to these temperatures as well from
the difference in thermal expansion coefficient of the rock primary minerals and the
rock‘s Poisson ratio (Eppes and Keanini, 2017).

Cracking Growing Dimension

The equations (eq. 4.14 and 4.15) are limited to grain scale, this means that the initial
length is a0 and is in the order of the characteristic grain size dg. The critical crack
length ac that Eppes and Keanini (2017) use in their model is as well in the order of
characteristic grain size. The stresses, in terms of intergranular stress are considered
between Feldspar and Quartz. These two minerals mostly control the thermal stress
and the fracture response of granite. The equation does not consider rock albedo,
biologic cover, light penetration, nor fast temperature changes (Eppes and Keanini,
2017).

Accommodation of Moisture

The moisture is related to the Paris law, which includes m and C factors. m and
C stands for Paris law exponent and coefficient for cyclic fatigue cracking under
different environmental conditions. However there is almost no existing data for
these factors for rocks (Eppes and Keanini, 2017). Data from non-cyclic subcritical
cracking of rocks has been correlated using Charle‘s law (Charles, 1958) of subcritical
crack growth (Equation 4.15).

Crack Evolution per Stress Cycle

For a single surface-initiated, representative crack that grows under cyclic heating
caused by diurnal N cycles of heating.Eppes and Keanini, 2017 have developed an
equation that relates the stress caused by the different minerals of the granite (4.14).

2.2 Study Site

To perform a back analysis of the proposed model of progressive tensile crack prop-
agation, it is necessary to select a location where enough scientific information is
available. Geological parameters such as rock type, tectonic settings (for exam-
ple tectonic faults and joint sets), geotechnical data as well as rock parameters are
needed to carry out an exhaustive back analysis. One area where these requirements
are fulfilled is the Grimsel area.

During the last 12 years, in this area, several rockfalls have occurred which have
been detected and analyzed (Ernst (2017). Although there are no large cities and the
zone is only poorly populated, the Grimsel area has been subject to a considerable
amount of research and monitoring of its geological properties. This is due to the
location of important transport infrastructure, artificial dams, power lines and a ge-
ological research facility (Grimsel Rock laboratory) in the area. Furthermore, it is
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also a popular destination for tourist activities. In conclusion, the Grimsel area is an
important place which requires investigation and protection.

2.2.1 Geology

Grimselpass is located in the central Aar Massive (Raumer, 1993). Which consists
primarily of late Variscan intrusive rocks (see Fig. 2.8). Large plutons are present as
"Southern stripe of the central Aar Granite" (sCAGr), "Mittagfluh Granite" (MiGr)
"Central Aar Granite" (CAGr) and "Grimsel Granodiorite" (GrGr). The largest plu-
tons present in the area are the Central Aar Granite and Grimsel Granodiorite. Sur-
rounding these plutons are older polymetamorphic gneisses and schists (Labhart,
1977; Abrecht, 1994) which name is Altkristallin (Ger.).

The Central Aar Granite is a light, coarse to middle grained granite (Sutter, 2008).
Masive to foliated (foliacion direcion 157◦/64◦ (Sutter, 2008)) or 149◦/77◦ ( Ziegler,
2013). The Mittagfluh Granite which is present in the North of the studied area is
similar to the Central Aar Granite. The main difference is the amount of dark mica
content, which therefore is less foliated.(Labhart, 1977). In terms of percentage it is
around 35% of Quartz (For details see Fig.2.7).

FIGURE 2.7: Detailed composition of Mittagluh Granite and the Cen-
tral Aar Granite. (Schneeberger, 2017)

Faults

Sutter (2008) classified five different tectonic fault sets in the area between Lake
Gelmer and Lake Räterischboden (see Fig. 2.9). Set S1 are brittle discontinuities and
show a mean orientation of 138◦/75◦ (dip direction/dip angle). Near Grimsel pass,
South of the study area, Set S2 is located with an orientation of 167◦/73◦. Through-
out the area (with the exception of Southwest) he found S3 with an orientation of
190◦/67◦ . Fault set S4 has an mean orientation of 244◦/71◦ and only appears in the
south. Set S5 shows a mean orientation 330◦/74◦.

Joint Sets

Sutter, 2008 has intensively studied and described the area, there he indicates the
existence of six different joint sets (see fig. 2.10). J1, J2 and JPUJ (post uplift joint)
(’exfoliation joints’)are the principals in the region while J3, J4 and JU J (uplift joints)
are minors.

Then K1 139◦/71◦ is the most frequent joint in the area. In the south there is a
change of direction of 15◦ clockwise. k2 198◦/70◦ is also present in the area, and
similar to K1 it shows a change of direction of 13◦ to the south. Regarding K3 the
main orientation is 244◦/76◦, this is more abundant in the south. K4 orientation is
330◦/64◦ however it is not abundant in the area. JUJ varies in dip direction and the
range of dip is between 0◦ − 34◦. However, they are not found in the whole studied
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FIGURE 2.8: In the study region dominates the Grimsel Granodiorite
(GrGr), in less amount is present Mittagfluh Granite, which is very

similar in composition from the GrGr. (Ziegler, 2013)

area and are difficult to distinguish from the other joint sets (Ernst, 2017). In this area
one can also distinguish another kind of joints. These are exfoliation joints, which
are dependent on the topography. For this reason the exfoliation joints depend on
their location and can be divided in four generations (Ziegler, 2013).

Slopes

Ernst (2017) has categorized the area with five different slope angles (see Fig. 2.11). It
is represented in a map, with a color scale, between 0◦− 30◦ (yellow), 30◦− 40◦(light
green), 40◦ − 50◦ (green), 50◦ − 60◦ (blue) and 60◦ − 90◦(dark blue). It is indicated
that the most common slope angle in the studied area is 0◦− 30◦ and the mean angle
is about 33◦. Lakes are not considered in this classification and they are represented
in blue.

Exfoliation

Different investigations have been performed in the area (Ernst, 2017; Ziegler, 2013;
Bolay, 2013). Ziegler (2013) states that the exfoliation joints can have a topographic
perturbation origin. He has demonstrated that if the near-surface in-situ stress ex-
ceeds the overburden stress then an exofliation joint develops. He performed a clas-
sification of them in the area, and divided them into four generations. Each of them
have a different geologic origin time as well different directions:

• Generation 1. It originated in the Lower Pleistocene, in the main and hanging
valleys and on the top of the mountains. The general fracture surface is around
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FIGURE 2.9: Map showing the four different fault zones. (Ernst, 2017)

FIGURE 2.10: Most important joint sets K1 (in red) and K2 (blue).
WIth directions: 139◦/71◦ and 198◦/70◦ respectively (Bolay, 2013)

30◦ or more. However this generation is not completely well defined due to
accessibility reasons.
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FIGURE 2.11: Map from the study area with the slopes angles. The
colors indicate the different angles. Lakes are not included in the clas-

sification. (Ernst, 2017)

• Generation 2. It originated in the Middle Pleistocene. They are present in the
principal valley and they curve from one valley side to the other. The spacing
of this second generation is about 10 m and they reach a maximum depth of
260 m. The angle between the valley wall and the joint surface is 20◦.

• Generation 3. It probably originated in the Upper Pleistocene. They were
formed either during or before the Last Glaciar Maxium (LGM) because they
have an direction to the bed-rock surfaces. In some cases they present a similar
orientation as generation 2.

• Generation 4. It most likely originated in the Late Glacial or Holocene. They
are closely spaced and are quite similar to today’s topography. Another indi-
cator that these generation is new is the existence of fresh surfaces.

The following map (see Fig.2.12) shows the location of the different exfoliation gen-
erations.
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FIGURE 2.12: Proposed exfoliation generations by Ziegler in which
they are differentiated by joint distributions, types and characteris-

tics. (Ziegler, 2013)

2.2.2 Kinematic Analyses

Rock Falling Types

Ernst (2017) analyzed the joint characteristics in the area. For this analysis she has
used orthophotos and different stability programs such as DIPS 7. This analysis was
performed in 7 different areas near Grimsel pass (see Fig. 2.13).

In the performed classification by Ernst (2017) she mentions planar sliding as
well wedge failure. Since the current Master topic is in planar sliding I have only
focused on this. In the next graphic (see Fig.2.14) I show her analysis. In two ar-
eas it shows that the planar sliding probability is higher: Aaerlen (Hasli Valley
(045◦/75◦)) and Trieebtenseewli (western slope (327◦/80◦)) present a probability of
failure greater than 40% (see Fig. 2.14).
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FIGURE 2.13: Ernst, 2017 Have perform an kinematic analysis from
seven areas near to Grimsel Pass.

Swedge Analysis Ernst (2017) has used another program (Swedge) for the slope
stability analysis. In this case different friction angles were tested 20◦, 30◦ and 40◦

and four specific cases were studied dry (with-and without Exfoliation fractures
(JExf), acting as basal planes) and wet (with-and without JExf) (see figure 2.15)

In this analysis the wet conditions have a clearly higher probability of failure,
and in most of the cases it is as well higher when it is performed with JExf.

Dips Analysis

Ernst (2017) has considered for each analysis different parameters, however the Fric-
tion angle in all the sites is set to 20◦. The results are expressed in terms of rock type
failure probability. Ernst (2017) has analysed different types of rockfall, however I
present here only where I consider that planar failure has the most importance char-
acter.

Aerlen In the case of the Aerlen site, it can be observed two slopes. For this reason,
Ernst (2017) has divided it into two valleys. Aerlen (A) and Hasli (H) valley, the
north-facing slope (slope A), has an 356◦/62◦ orientation and the northeast-facing
slope (slope H) has a mean orientation of 045◦/75◦.

These slope angles, allowed Ernst (2017) to find planar failures, because the Joint
JExf A and JExf H are dipping towards the same slope direction and the angles of
the joints are (in some cases) less than the slope angles. For the case of Aerlen the
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FIGURE 2.14: Planar sliding, wedge sliding and flexural toppling
probability of failure analysis. Perform with Dips 7.0 From.(Ernst,

2017)

probability range is from 33% to 38%. However in the Hasli Valley it is much less
probable that a planar failure happens. It just shows a 2% probability.
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FIGURE 2.15: Four probability failure analysis cases were performed,
dry and wet conditions and as well with/wihout JExf. Perform with

Swedge Analysis. (Ernst, 2017)
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Chapter 3

Research Goals

Limit Equilibrium Methods (LEM) provide a useful means of assessing the potential
kinematic failure of rock blocks. These models assume temporally invariant con-
ditions (cohesion, geometry, load, etc). A while a range of groundwater pressures
may be investigated to assess the combination of conditions that allow failure, a
time-dependant analysis (that includes the evolution of driving stress) is rarely un-
dertaken.

The evolution of stress and strain is fundamental to the stability of blocks sub-
jected to planar sliding. A time- dependant analysis allowed me to improve on ex-
isting probabilistic analysis by assessing the time required for sub-critical conditions
(e.g tensile strength provided by shrinking rock bridges) to become critical.

For the reasons above, the primary goal of this thesis is the addition of progres-
sive tensile crack growth to the LEM. Additionally it is necessary to perform a back
analysis of the implemented numerical model and therefore it is necessary to gather
real data.

In order to obtain field data, I have performed and used three Photogrammetric
models (near Grimsel Pass - Switzerland). From them I have extracted the necessary
block data (blocks with planar failure characteristics). Two different types of blocks
were mapped: existing blocks and failed blocks. The obtained field data comprises
length, height, perimeter and slope angle of the blocks. I then used this obtained
field data to perform a back analysis from the implemented equations to evaluate
their accuracy.

The following research questions were addressed within the scope of the thesis:

• How can the addition of progressive tensile crack growth equations to the con-
cept of LEM (planar failure mode) classify the state (stable, growing crack, top-
pling) of the rock blocks?

• How can field /laboratory data be used to perform a back analysis of the equa-
tions?

• How can the obtained field data from Grimsel pass be correlated with the dif-
ferent outcomes from the proposed code?

• How can the model be used to understand the evolution of tensile cracks on
planar rock fall in the areas around Grimsel Pass?

The outputs of this thesis will be a quantitative analysis and will provide an-
swers to the proposed research questions. The implementation of the code will be
performed in Matlab with a modular implementation. Additionally, the use of dif-
ferent methods, such as photogrammetric modeling and mapping with ArcGis, will
be used to try reproduce the time dependency in the selected places near to Grimsel
Pass.
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Chapter 4

Methodology and Data

4.1 Introduction

A numerical model was developed in Matlab, which incorporates the Paris law
(equation 4.14), the Charles law (equation 4.19) into the Limit Equilibrium Method
for the case of the planar sliding (equation 4.10). The model also includes further
equations which are presented in Chapter 4.2 (Governing Equations).

Field data was obtained in three different areas in the form of Unmanned aerial
vehicle (UAV) photographs as well as manually executed terrestrial photographs
near Grimsel Pass (see 4.3). Based on the data obtained three photogrammetric mod-
els were constructed. From these photogrammetric models it was possible to extract
field data of blocks (length, height, perimeter and slope) with planar failure charac-
teristics. This data was then used to perform a back analysis of the generated code
(5 .3 Back Analysis).

In this chapter, the governing equations for the developed code are explained.
The model implementation (including assumptions and used variables) is described.
In addition, the code work-flow is analyzed. A the end, the photogrametric proce-
dure is described. This includes the acquisition of the photos, the post-processing
and the mapping of the blocks.

4.2 Model Implementation

4.2.1 Governing Equations

Detecting Toppling

Toppling failure is not covered in this thesis, however this kind of failure is very
similar to planar failure. The main difference is if the ratio of the block length (h) to
the height (b), is less than tan β (β as the dip of the failure plane) (see Fig. 4.1) then
the block topples (Eq. 4.1)(Kliche, 2003). For this reason, I check if the block topples
to exclude it from the analysis.

topple = β + tan ((b/2)/(h/2) (4.1)
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FIGURE 4.1: Toppling is governed by slenderness ratio (h/b). It con-
trols the resultant force due to the weight of the block and with re-
spect to the pivot point (which is located at the block base). If the
pivot Point is out from the block base, then the block will topple. (Fig.

adapted from Kliche, 2003)

Limit Equilibrium Method

There are several forces acting on the inclined block, (see Fig.4.2) along the base act:
shear stress, cohesion and normal stress. To express this mathematically the follow-
ing equations exist:

τ = c + σtanφ (4.2)

σ =
N
A

=
W × cosβ

A
(4.3)

Replacing equation 4.3 in equation 4.2 it is obtain:

FIGURE 4.2: Mechanical approach for a limit equilibrium analysis in
the case of planar failure, the corresponding equations are show from

Equation 4.2 to 4.8 (Fig. adapted from Kliche, 2003).
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τ = c + (
W × cosβ

A
)× tanφ (4.4)

W = b× h× ρ× g0 (4.5)

shear f orce = τ × A (4.6)

resisting f orce = c ∗ A + W cos β× tan φ (4.7)

driving f orce = W sin β (4.8)

Where:
τ = shear stress along the base (according to the Mohr-Coulomb failure theory)
c= cohesion along the base
σ = normal stress along the base
φ = angle of internal friction along the base
N = magnitude of the normal force on the base
A= area of the base
W= weight of the mass
b= height of the block
h= length of the block
ρ= density of the block
g0= gravity
β = dip angle of the failure plane

Factor o f Sa f ety =
resisting f orces
driving f orces

(4.9)

Factor o f sa f ety =
cA + Wcosβ tan φ

W sin β
(4.10)

These equations are provided by Kliche (2003).

This last equation 4.10 is one of the principal equations of the code, as the pro-
gressive tensile crack growth is incorporated in this equation. Wijk (1978) introduced
the concept of tensile strength. When an edge crack (a) is propagating (Chapter 4.2.3
Edge Crack Growth ), there exists from the block base to the edge crack an area
where the rock is intact. This area provides the tensile strength σrt. This tensile
strength maintains the block stable (see Fig.4.3) until the crack reaches a determined
length and the tensile strength is not strong enough to maintain the block stable.

To this basic analysis the progressive tensile edge crack and the resisting force
from the top block is added (area under the tensile edge crack). The following equa-
tions (equation 4.11 and equation 4.12) introduce the concept:

tensheight = b− a (4.11)

Where b is the height of the block and a is the length of the crack.

σrt = tensheight ∗ σT (4.12)
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FIGURE 4.3: Block in a limit of equilibrium. The letters represent
different properties of the block, l states for wide, h length and b for
height of the block. In blue is represented the progressive crack grow-
ing, with a length of a and is represented as well the stress on the

tension crack with σrt.

For this equation σT represents tensile strength which is a value obtained in lab-
oratory experiments. σrt is a resisting force, therefore the equation 4.12 is added to
equation 4.10 which results in the next equation:

Factor o f sa f ety =
(cA + Wcosβ tan φ) + (σrt)

W sin β
(4.13)

Edge Crack Growth

In order to find the crack growth, different authors have proposed different ap-
proaches (ie. Paris Law or Charles Law):

Paris Law For a single surface-initiated, representative crack that grows under
cyclic heating caused by diurnal N cycles of heating. Eppes and Keanini, 2017 has
the following equation:

a(N) = [aβ
0 + βC1N]1/β (4.14)

Where a(N) is the crack length in function of the number of cycles, a0 states for
the initial crack length. β = 1− m/2, and m has been demonstrated that has the
same value of n (Equation 4.15). C1 = C∆σm

maxπm/2 and C states for the Paris law
coefficient (which is similar to dgK−m

c ). N is the number of cycles and finally ∆σmax
(See 4.17) is explained in the next paragraph.

Accommodation of Moisture

da/Dn = Cc(KI)
n (4.15)

The left-hand side of the equation stands for crack growth rate,Cc stands for
rock and environment constant, KI stands for stress- and crack geometry dependent
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stress intensity, and n for "subcritical crack growth index". Crack growth is depen-
dent on chemical reactions, therefore n highly depends on the amount of moisture.
Moreover Eppes and Keanini (2017) have demonstrated that m=n.

Stress Accommodation Eppes and Keanini (2017) reference the equation of An-
derson et al. (2005) in which he correlates:

∆KI(z, t) = ∆σmax (4.16)

Where KI(z, t) is dependent, the temperature (t) and depth (z). Eppes and Keanini
(2017) define the effective stress amplitude (∆σmax) as the intergranular thermal stress
caused by diurnal temperature cycle and the two primary mineral constituents. This
generates:

∆σmax = ∆αE∆T0/(1− v) (4.17)

∆T0 = T(sur f ace.max) − T(in f initus) (4.18)

Where:
∆ T0 = T(sur f ace.max) − T(in f initus), this expresses the maximum surface temperature
variations produced by diurnal temperature cycling. ∆α = is the difference in co-
efficients of thermal expansion of the mineral constituents. E stands for Young‘s
modulus and v for Poisson‘s ratio. Eppes and Keanini (2017) neglects the depth-
wise decay in the near surface temperature field because Eppes and Keanini (2017)
work is on the order of characteristic grain size.

Charles Law The second crack growth approach is given by Ko and Kemeny (2011).
In which Ko and Kemeny (2011) the crack growth is based on Charles (1958) the fol-
lowing equation:

δa
δt

= A[
KI

KIC
]n (4.19)

where a is crack length, dt is per cycle (time) and A and n are material parameters.
KI is the Stress intensity factor (equation 4.20) and KIC is the critical Stress intensity
factor.

KI Stress Intensity Factor

The stress intensity factor KI , used in (equation 4.19) depends on the stress, the crack
length as well numerical values for a relation between crack length and block height:

KI = σ
√

πaF(a/b) (4.20)

Where σ is obtained in (Eq.4.12) and stand for σrt. a represents the length of the
crack, b the height of the block and h the length of the block. F(a/b) is a relation that
can be obtained with different methods (Equation 4.21, 4.21 and 4.21):

• Gross, Srawley, and Jr (1964) and Brown and Srawley (1966) propose a least
squares fitting based on laboratory experiments, which is 0.5% accurate for
a/b =< 0.6%:

F = (
a
b
) = 1.122− 0.231(

a
b
) + 10.550(

a
b
)2 − 21.710(

a
b
)3 + 30.382(

a
b
)4 (4.21)
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• The second was proposed by Tada in 1973 and is better than 1% for a/b < 0.2
and 0.5% for a/b > 0.2 :

F = (
a
b
) = 0.265(1− a

b
)4 + (0.857 + 0.265

a
b
)/(1− a

b
)

3
2 (4.22)

• The last equation is as well from Tada (1975) and is better than 0.5% for any
a/b:

F = (
a
b
) =

√
2b
πa

tan
πa
2b
∗ 0.752 + 2.02(

a
b
) + 0.37 ∗ (1− sin

πa
2b

)3/cos
πa
2b

(4.23)

The above equations can be found in (The Stress Analysis of Cracks Handbook, Third
Edition). The variables are introduced in Figure 2.5.

Crack Opening at the Edge

The following equation (Equation 4.24) measures the crack opening (see Fig. 2.6) at
the edge δ (The Stress Analysis of Cracks Handbook, Third Edition):

δ =
4σa
E′

V1(
a
b
) (4.24)

Where σ is σrt (Eq.4.12) ,a is edge crack length ,E’ is the elastic constant for the
plane strain E’=E/(1 − v2), in which E states for Young modulus and v for Rock
Poisson ratio. b is the block height and V1 is a relation, which can be found in the
equation 4.25. The equation proposed by Tada, Paris, and Irwin (The Stress Analysis
of Cracks Handbook, Third Edition), is expected to have an accuracy for any a/b of 1%:

V1(
a
b
) =

1.46 + 3.42(1− cos(πa/2b))
(cosπa/2b)2 (4.25)

4.2.2 Model Implementation

In the following subsections the code implementation for single block analysis is
described (Chapter 4.2.1 Preventing toppling to 4.2.7 Progressive Crack Growth).
In the next section, the variable values used in the code are presented (Chapter 4.3
Variable values) and at the end the code workflow diagram is presented (Chapter
4.4. Code Workflow).

Model Assumptions and Considerations

It is important to note that in this proposed model Eppes and Keanini, 2017 indicate
some model limitations. This limitations were taken in consideration as well at the
moment of applying their equations:

• The equation (equation 4.14) can only be applied to grain scale (Eppes and
Keanini, 2017). For this reason the developed model is restricted to a maximal
crack growth per stress cycle to grain size. However the cumulative crack
growth goes from grain size to meters.

• Eppes and Keanini (2017) assume the crack model is not growing along rock
imperfections such as joints or foliations because this causes a reduction in K.
Therefore, in the model the cracks are supposed to grow in a intact rock.
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• Eppes and Keanini (2017) model considers a intergranular thermal stress, gen-
erated from quartz and feldspar. The selected locations near Grimsel pass have
rocks which main components are quartz and feldspar (Granite).

• Eppes and Keanini (2017) assume the cracks grow perpendicular to the rock
surface. This is also occurring in our model due to KI crack opening mode.

• The model from Eppes and Keanini (2017) just considers the daily thermal cy-
cle variation, it does not consider changes in temperature (due to other cycles
or abrupt temperature changes) or albedo, biologic cover or light penetration.

• The model from Eppes and Keanini (2017) neglects thermal expansion anisotropy
along mineral axes.

• The crack growth always has a perpendicular direction from the block surface
(or slope surface).

Variable Values Used in the Model

For the model implementation different fomulas were used, such as Charles law
(see equation 4.19), Paris law (see equation 4.14) and all the equations mentioned in
the (4.2 Model Implementation). They are indicated in 4.3 Matlab Workflow. These
formulas use different variables. For this reason the following table (see Table 4.1)
presents the following information: name of parameter, symbol, matlab used sym-
bols, reference magnitude, calculation units and the reference from were the values
were took.

TABLE 4.1: Rock parameters used in all the calculations
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4.2.3 Code Workflow

The implemented Matlab code follows a logical procedure. The entire code can be
found in (Appendix C). The figure 4.4 is the summary of the whole procedure.

FIGURE 4.4: Matlab resume workfow for the code. The reference for
the used equations are indicated in parenthesis.

There are different forms used in the code. The diamonds represent where the
result must be evaluated and depending on the outcome follows different paths.
Inside the rectangular blocks procedures or outcomes are indicated.

The code starts with the input of a block range of different values, block height
and length (range from 0.25 to 12 m). For the slope angle the range goes from 40 to 60
in intervals of 10 degrees (these values can be be modified, as well as the intervals).
The rock constant values can be modified as well (ie. cohesion, density, etc). The first
step is the block topples evaluation (see 4.2.1 Preventing Toppling). If the center of
mass is projected outside of block base, then the block topples and it is the end of the
code (a message will indicate that the block topples), if the block does not topple, the
code continues and calculates the parameters with the modified Limit Equilibrium
Method (equation 4.11).

In this step, the driving forces and the resisting forces are evaluated. If the re-
sisting forces are smaller than the driving, then the block falls and the code ends.
In the opposite case, when the resisting forces are bigger than the driving, it will be
calculated if the base of the block provides stability to the block. If the base provides
stability then the crack will not propagate and the code will end with the result that
the base provides stability. If it is higher then the propagation of the crack starts.
The next step is to calculate the temperature for the particular depth of the crack
and then evaluate between Charles law (equation 4.19) or Paris law (equation 4.14)
to see which is faster. The one that is faster will dominate the crack length growth.
With this new crack length the modified Limit Equilibrium Method (equation 4.13)
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is once more calculated until the crack is large enough to make the whole block fall.
In the following sections the process is explained in much more detail.

Detecting Toppling

The first procedure performed is to detect toppling (Equation 4.1). If the angle of the
failure plane plus the angle between the base and the center of gravity is less than
90◦ then the block does not topple (see Fig. 4.1)(Goodman and Bray, 1976). If the
block topples, the process is interrupted, a message "the block topple" appears and
it is the end of the code. If the block does not topple, then it calculates the Limit
Equilibrium Method.

Limit Equilibrium Method

The analysis of the single blocks was performed with the Limit Equilibrium Method.
The equation 4.10, where the factor of safety is obtained is taken as base.

Block Stability

There exists three possible outcomes from this analysis, that the base provides stabil-
ity (progressive tensile edge crack is not propagating), unstable edge crack (the crack
will propagates, or growing crack) or the block topples. The following terminology
is used (see Fig. 4.3)):

• σrb= resisting stress (provided by the base of the block)

• σd = driving stress (driving force)

• σrt = stress on the tension crack (remain surface between the base of the block
and the tip of the edge crack).

This generates the next equation:

σrt = σd − σrb (4.26)

Equation 4.26 states that, if the resisting stress (σrb) plus the stress on the tension
crack (σrt ) is greater than driving stress (σd) then the block is stable. Then the crack
will not grow and a message will appear: the base provides stability. Otherwise
if the driving stress (σd) minus the resisting stress (σrb) is greater than 0, then the
edge crack will start a sustained crack growth. The crack will start growing until the
edge crack stress (σrt) plus resisting stress (σrb) are lower than the driving stress (σd).
During the crack growth the code records the time, number of iterations, and length
of the crack.

Stress Intensity of the Tension Crack Tip

It is assumed that if the Critical Stress Intensity factor (KIC) of the granite is 1 500
000 M N m−1/2 (Eppes and Keanini, 2017) then the crack will generate stress until it
reaches the (KIC), where it then fails.

Eppes and Keanini (2017) indicate the existence of the Threshold Stress Inten-
sity Factor (Kth) (the minimum stress that is required for cracks to start a sustained
subcritical crack growth) for the edge crack. It is assumed that the Threshold Stress
Intensity Factor (Kth) is around 20% of Critical Stress Intensity factor (KI) (Eppes and
Keanini, 2017). However discrepancies exist about the exact value of the threshold.
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Segall (1984) indicates that it is 10%, while others like Le, Manning, and Labuz (2014)
indicate that exists a range (however it does not indicate what the range is). Pugno
et al. (“A generalized Paris’ law for fatigue crack growth”) show 5% for a 1045 steel
sample. For this reason I do not consider any threshold and the progressive edge
crack starts growing at the time the base can not hold the driving stress, however
the iteration time will be high.

stable edge crack = KI edge < KI critical (4.27)

The crack stress will propate until it reaches the critical stress intensity. This KI
is calculated with the equation 4.20, and different numerical values for F(a/b), in
which a stands for crack length and b for block height. This relation can be obtained
from the equations (equation 4.21, equation 4.22 and equation 4.23 ). They corre-
spond to the following methods whit different percentage accuracy:

• Gross (1964) and Brow (1966)

• Tada (1975)

• Tada (1975)

Edge Crack Opening

As it can be complicated to measure the crack depth in the field, Tada, Paris, and
Irwin (The Stress Analysis of Cracks Handbook, Third Edition) have developed an equa-
tion that relates the length to the crack opening (see equation 4.24 and equation 4.25).

Temperature Cycle

As indicated in Chapter 1.1.4 Fracture Mechanics- Crack Growth- weathering, one
of the factors that generates stress in the rock is the change of temperature. To repro-
duce this change of temperature an annual temperature variation was implemented
in the code. The model was provided by Kerry Leith and it reproduces the tempera-
ture during one year (2016) from Finland (South of Långören), where they installed
a monitoring system which included a weather station that records temperature to
a depth of 1m depth (Leith et al., 2017). This can be correlated with the existing
temperature measurements in the area around Grimsel Pass. The depth of the prop-
agating crack growing is correlated with the temperature decay in the rock. This is
correlated to Paris law (equation 4.14) with the equation (equation 4.18) in which
the maximum temperature variations produced by diurnal temperature cycling are
introduced.

Progressive Crack Growth

Wtih consideration of the above points, the code starts the analysis with a combina-
tion of different block sizes as well as the defined Variables (See 4.3 Variable Values).
It then goes through the diurnal temperature variation cycle with the corresponding
iterations for the edge crack growth. Once the edge crack has reach a determined
length, it causes the block to fall.
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4.2.4 Equations Verification

In this section, I conduct a verification of the different equations implemented in the
code. The authors often present a graph where they use their respective formula. I
try to reproduce the same results that they show in their papers or research.

Stress Intensity of the Tension Crack Tip

Numerical values for the stress intensity factor used in (equation 4.20). In the Fig.
4.5 the three methods are compared:

• Gross (1964) and Brow (1966) (equation 4.21).

• Tada (1975) (equation 4.22).

• Tada (1975) (equation 4.23).

Based on the relationship between crack length (a) and height of the block (b), the
best fitting of the different methods is used. From the plot, I can affirm that the stress
intensity factor was correctly implemented.

FIGURE 4.5: On the top, Proposed numerical values of F (a/b). At the
top, graphic from Tada, Paris, and Irwin (The Stress Analysis of Cracks
Handbook, Third Edition). On the bottom, corroboration of the values.
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Edge Crack Opening

This equation is implemented (see Fig.4.6) in the code to record the edge crack open-
ing (equation 4.24 and 4.25). From the plot I confirm that the Edge crack opening
implementation was correct.

FIGURE 4.6: To corroborate if the edge crack opening code was imple-
mented correctly a corroboration was performed.(The Stress Analysis

of Cracks Handbook, Third Edition)



Chapter 4. Methodology and Data 35

Progressive Crack Growth

For the progressive crack growth, two possibilities exist: (equation 4.19) which ex-
presses the possible crack length per cycle from Ko and Kemeny (2011) and (equa-
tion 4.14) from Eppes and Keanini (2017). To test if the code was correctly imple-
mented, a comparison with the published reports was made.

Charles Law For the case of the formula proposed by Ko and Kemeny (2011) I was
able to reproduce the same results. (see Fig. 4.7)

FIGURE 4.7: On the top, Charles law with experimental data from Ko
and Kemeny (2011) at the bottom, results of the implemented code.
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Paris Law In the case of the equation used in Eppes and Keanini (2017), (see equa-
tion 4.14 and description), a crack evolution per stress cycle is proposed. The equa-
tion can be applied for a single surface initiated crack under cyclic heating (which
can be applied to Grimsel slopes). They have tested their equations with respect to a
model from Delbo et al. (2014). Delbo et al. (2014) has tested a crack growth model in
the laboratory for two different meteoritic rocks. In the experiment they were tested
in the climatic chamber for 76 and 331 temperature cycles which sum a total of 407
cycles. The model goes up to 107 and 108(respectively) cycles where they stopped
it as the crack length reached the rock diameter (5mm approximately in both cases).
For the first sample, Sahara, the initial crack size is 0.41 mm and for Murchison 0.76
mm. After 400 cycles they present a crack growth length of 0.13 mm and 0.03 mm
respectively (see Fig. 4.8).

At the moment of verifying the equation 4.14 , m is the Paris law exponent which
is used in β = 1−m/2, then β is used as exponent : 1/β. I found that by using the
given values the corroboration was not possible. If m is larger than 2 when β is used
as root (with a negative base), then an imaginary result is generated.By dividing the
value m by 100 and dividing the final crack length by 106 I was able to obtain almost
the same results (see Fig. 4.8).
The exact number of thermal cycles used by Eppes and Keanini (2017) is not avail-
able, for this reason I used approximated values. It is visible in the graph of Eppes
and Keanini (2017) that in the case of the Sahara sample a notable crack growth starts
at 106 thermal cycles. In my results this crack growth starts at 105 thermal cycles. In
the case of the Murchison sample the results of Eppes show that the crack growth
starts at 108 thermal cycles. However, in my results it starts at 105 thermal cycles.

For this reason, the m value in the implemented code, was 0.6 (see table 4.1) and
then the crack length results divided by 106. Eppes and Keanini (2017) (equation
4.14) use the parameter m (Paris law exponent) and assign a value (varying with
humidity content) of m = 77.6 for 10% humidity and of m = 58 for 80% humidity.
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FIGURE 4.8: Thermal cycles to propagate a crack. At the top are the
results of Eppes (Eppes and Keanini, 2017) equation for crack growth
used to reproduce the laboratory test and model from Delbo et al.,

2014. At the bottom are my results.
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4.3 Photogrammetric Slope Model

In the present thesis, metric 3D images obtained from three areas near Grimsel pass
(See Fig. 4.9) were used to map blocks that fulfill the characteristics of planar failure
mode (Chapter 2 .1.1 Slope stability). The measured block properties were height,
length, perimeter and slope angle.

The photogrammetric principle works similarly to visual perception. Two im-
ages of the same object with slightly different objective positions are obtained. They
are then used to construct a 3D model. Subsequently, it is necessary to georeference
the images to gain a real dimension of the model which allows the measure of the
above mentioned block properties.

For two areas (East from Grimsel lake and near Handegg), an Unmanned Aerial
vehicle (UAV) was used and for the area Tschingelmad a base photogrammetry was
performed (see Fig. 4.9). In the case of UAV images, they were obtained by Ziegler
Martin (2018) and referenced with ground control points (GCP) using Differential
Global Positioning Systems (DGPS) measurements or GPS base station for inacces-
sible rock slopes. In the case of base photogrammetry, the photos were taken in
September 2018 and the control points were provided by Ziegler Martin as well. In
the case of the UAV the camera used was a Sony ILCE-6000, and the pictures were
6000 x 4000 pixel with 350 dots per inch (dpi) and a focal length of 19 mm. Through-
out this procedure the ISO (sensitive image sensor) was 100. For the base photos, the
camera used was Nikon D5300, the pictures were 6000 x 4000 pixel with 400 dpi and
the focal length was 52 mm. The ISO was set to 200.

4.3.1 Images Requirement

The images always require the same distance from the objective (parallel) and angle
to the slope. RAW pictures are recommended, then they can be converted to TIFF.
The parameters ISO and the focal depth must be low and high (respectively) enough
to capture all the desired objectives (for further information see Agisoft, 2018).

4.3.2 Software Processing

The program Agisoft PhotoScan 1.4, searches for the common points on the loaded
photographs, matches them, locates the position of the camera and refines the cal-
ibration parameters. After this step, a sparse point cloud is obtained. Then, it is
necessary to generate a dense point cloud. The third phase is to generate a surface.
Different surface possibilities are available such as Mesh and/or DEM 3D. Lastly,
the generated surface can be textured (Agisoft, 2018) (see Fig. 4.10).

From the obtained surface (see Fig. 4.12) it is possible to measure the following
block parameters (see Fig. 4.13):

• Height

• Length

• Perimeter

Once the DEM was obtained, it was exported to ArcGIS ArcMap to obtain the corre-
sponding slopes. (see Fig. 4.11)
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FIGURE 4.9: Location of the three different photogrammetric mod-
els. Tschingelmad (North) was captured with terrestrial photographs.
Handegg (central of the map) and Lake East (South) in the map were

taken with an UAV.
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FIGURE 4.10: 3D model from the East of Grimsel lake. In both cases
the product is obtained using Agisoft Photoscan. Above is the tex-
tured mode, and in zoom one single block as example. At the bottom

is the generated DEM

4.3.3 Existing and Failed Blocks Mapping

The principal task was to measure in situ blocks. In the selected in situ blocks had
either a visible top cracks or were limited with another superior block (see Fig. 4.13).
When mapping failed blocks, it can be complicated to precisely define if the failed
block had broken off in one single piece, in multiple pieces or if there had ever been
a block or not. However, in some cases the difference of color of the fresh surfaces
(see Fig. 4.14) helps to identify the boundaries, because fresh surfaces are brighter
than older ones. Another characteristic of fresh surfaces is the lower amount of
lichen. For both cases (existing blocks and failed blocks), measuring the height is
complicated, After mapping all of the blocks, the data was exported to Matlab to
verify the proposed model.
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FIGURE 4.11: Slope angles generated in ArcMap for the Rock slope
located East from Grimsel Lake. With the DEM obtained from the
Agisoft Photoscan. The numbers represent the number of the block
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FIGURE 4.12: On the left, you can observe the single block with the
presence of a fracture at the top. On the right side the DEM of the

proposed block in red.

FIGURE 4.13: Block from the area denominated Lake East, Block
T16, the mean height and length are measured in the corresponding

planes.
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FIGURE 4.14: Failed block (B3) from Lake East. It is possible to iden-
tify the area were the block was due to a brighter coloration of the

Granite.



44

Chapter 5

Results

5.1 Code Results

5.1.1 Range of Block Parameters

Once the code was implemented in Matlab (see Fig.4.4 or for the complete code see
Appendix C), three simulations using the the corresponding parameters (see Fig.4.1)
were performed.

The main difference between the three simulations is the slope angle. The first
one is for 40◦ degrees, the second one is 50◦ degrees and the third one for 60◦ degrees
(see Fig 5.1). For the three performed simulations, different block height and length
ranges were simulated. The range goes from 0.25 m to 12 m with an interval of 0.25
m for each calculation in each respective case.

The output of the simulation is a plot (see Fig.5.1) for each of the different slope
angles. In the horizontal axis different lengths are plotted and in the vertical axis
different heights. Four different areas are shown:

• A zone in sky blue which indicates that the base provides stability, which
means that the crack will not grow.

• The blue zone indicates that the crack grows and eventually the block will fail.

• The yellow zone indicates that the block will topple.

• The orange zone indicates that the crack grows but only Paris law will influ-
ence the growth until it falls.

The first analysis of 40◦ degrees (see Fig.5.1) shows an estimated slope of 50◦ de-
grees. This slope divides the blocks that topple (yellow zone) from the ones which
the base provides stability (sky blue zone) and the ones in which the crack propa-
gates (blue zone). The division between the blocks where the base provides stability
is at 4 meters.
This would mean that a block of 4 m length, 1 m height and at 40◦ degrees, will be
in the zone where the base provides stability and no crack will propagate.
For the case of a block with 4 m of length (same block length as the previous exam-
ple), but 4,5 m of height at 40◦ degrees it be located in the zone where a crack will
start to propagate until the block fails. For the last case of 40 degrees, 4 m of length
and 6 m of height, the block will topple.
A similar analysis can be performed for the case of 50◦ and 60◦ degrees. Every
time the slope angle increases, the limit between blocks that topple/don’t topple
decreases. The same relationship can be observed between the limit for the blocks
of which the base provides stability (sky blue area) /crack propagation which leads
to failure (blue area). For example, in the case of 40◦ degrees the division between
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the area where the base provide stability/crack propagation to failure is 4 m (block
height). For 50◦ degrees is 2 m (block height). Finally for 60◦ degrees is 1.5 m (block
height). This indicates that at steeper angles the height of the block where the base
provides stability decreases.

FIGURE 5.1: Results of the analysis performed. Three different an-
gles, for 40◦, 50◦ and 60◦. Four zones are observed in the graph, de-
pending on the blocks characteristics, it will be plotted in a specific
zone. These zones include: the base provides stability, the crack is
propagating to failure, the block should topple and the crack expands

but only Paris law dominates the expansion.
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Crack Opening Edge

Using the equation 4.24 and 4.25 it is possible to obtain the crack opening at the
edge. In the figure 5.2 is presented the crack opening at the edge one year prior to
the different block falls. The various of crack opening’s are in the order of 0.02 mm
to 0.2 mm. The blue zone (color scale of 0) represents areas where the block topples
or where the base provides stability and the edge crack does not expand.

FIGURE 5.2: The code also analyses the crack edge opening (equation
4.25). Here are the results for one year before the block falls. Three

different angles are plotted: 40◦, 50◦ and 60◦.

5.1.2 Defined Block Parameters

In the implemented code it is possible to perform an analysis using a range of pa-
rameters (Section 5. Range of Block Parameters) or is possible to provide a specific
block height, length and slope angle. The code analyzes the single block parameters
using the same work-flow (see Fig. 4.4). What is different is the output, the results
are five different plots (see Fig. 5.3). In all of the cases, the horizontal axis repre-
sents the year. The black line indicates that the edge crack propagation is larger with
the analysis Paris equation (equation 4.15) than the Charles equation (see Fig. 4.18).
When Charles law is larger, then the line is coloured red.

• The first plot examines the duration of the performed iteration.
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• The second plots the edge crack length (in percentage of the block height).

• The third indicates the edge crack stress intensity (in a percentage of critical
stress intensity).

• The fourth indicates the crack opening in terms of meters.

• The last one presents the variation from mean crack extension

The examined block has dimensions of 6.5 m length, 5 m height, and 40◦ Degrees
(Fig. 5.3).

• The first plot, as mentioned before indicates the iteration process. For the first
3,5 x104log10 years (x axis) the time that the iteration lasts is 10 2.69 when the
Eppes equation dominates. As soon as the Charles law starts to dominate the
process, the last of the iteration value decreases until 10 −7.4 year. This in-
dicates that the iteration is much faster when the Charles law dominates the
tensile edge crack growing.

• The second plot shows that during the first 14∗104 years Eppes equation domi-
nates the crack growth. The edge crack growth is almost linear. As soon as the
Charles equation dominates the process, the line goes almost perpendicular
until reaching 74 % of the total block height when it falls.

• In the third plot, the edge crack stress intensity as a percentage of the critical
stress intensity increases smoothly for the first five million years, just reach-
ing 6.58 %. In 10 million years it reaches 18% and in the next 4 million years
the percentage increases up to 57% just before Charles law starts to dominate.
Then in the last 400 000 years the value escalates much faster up to 100% when
the block fails.

• The next plot has a very similar plot shape due to the fact that the edge crack
opening is directly related with the edge crack lenght. The values on the crack
opening are in the order of 0.1 to 0.2 millimeter.

• In the last plot, the variation reaches a value of 0.01 % mean crack extension
with the Eppes equation and then once the Charles equation dominates, it
reaches a maximum of 0.4% per year.

The time when Paris law dominates the progressive crack growth (due to uncertain-
ties during the Paris law validation) may be +/-101 factor less. This difference is
shown at the moment of Paris law validation ( See section 4.4.3 Paris Law).
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FIGURE 5.3: Matlab results for a single block of 6.5 m length, 5 m
height, and at 40 Degrees. The black line represents the obtained pa-
rameters from the Eppes equation (equation 4.15), and the red line is
obtained with the Charles law (equation 4.18). In the first plot, years
(log10) vs iteration is plotted. The second plots crack length in terms
of a percentage of the total block height. The third plot shows the
Stress intensity / Critical stress intensity vs years. The fourth plot
shows crack opening at surface vs years. The last one is the variation

from mean crack extension vs year.
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FIGURE 5.4: Zoom from the figure 5.3 for the transition Paris law -
Charles law for edge crack length

FIGURE 5.5: Zoom from the figure 5.3 for the transition Paris law -
Charles law for the edge crack stress intensity
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FIGURE 5.6: Zoom from the figure 5.3 for the transition Paris law -
Charles law for the edge crack opening
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5.2 Field Results

Three different areas have been mapped (see Fig. 4.9): at the north Tschingelmad (see
Fig.5.7) , in the central part of the valley, Handegg (see Fig. 5.8) and at the south
Lake East (see Fig. 5.9).

FIGURE 5.7: Area denominated Tschingelmad, photogrammetry per-
formed with terrain photography.

FIGURE 5.8: Photogrametry of the area denominated Handegg, was
performed with a UAV.

I have developed two classifications: existing blocks (see fig. 5.12) and missing
blocks (blocks that do not exist anymore and that I suspect have fallen) (see Fig.
5.14). In the following subsections the number of blocks and their length, perimeter,
height and the angle is defined. In the case of height, it was difficult to measure
directly because it was only possible to measure with existing surfaces and in some
cases the surface was not totally perpendicular to the slope surface. In some cases
trigonometry was used to calculate this angle. The missing blocks were in some
cases quite difficult to interpret or to calculate the real dimension, for this reason
the data must be used with caution. The blocks were classified according to their
slope angle. The used range goes from 30◦-40◦, 40◦-50◦, 50◦-60◦ and more than 60◦.
Depending on the existence of the mentioned angles. Unfortunately at the moment
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FIGURE 5.9: Area denominated Lake East, photogrametry performed
with an UAV.

of performing the photogrammetry I only had control points to reference the image,
but no control points to control the resolution of the images and to exactly determine
what size was visible or not.

In the three areas it was possible to map 94 existing blocks and 16 failed blocks
(See Appendix A)in total. The blocks details are specified in the corresponding sec-
tion (Tschingelmad, Handegg and Lake East).

5.2.1 Tschingelmad

In the area, 19 existing blocks have been mapped (See Fig. 5.10). With a minimum of
0.79 m length, 2.53 m perimeter, 0.4 m height and 46◦ degrees. The maximum values
are 6.43 m length, 24.3 m perimeter, 2.188 m height, and 67◦ degrees (See Appendix
A).

In the figure 5.11 the 19 existing blocks are plotted. In this case there is no clear
correlation between the height/length and the angle of the block.

For the Case of failed blocks in Tschingeldmad, it was not possible to determine
them. Therefore no results for this area is presented.
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FIGURE 5.10: Tschingelmad, the red polygons are the existing blocks.
In the area failed blocks were not mapped due to non-recognizable

characteristics.

5.2.2 Handegg

In this area, there are 54 existing blocks (see Fig. 5.12) and 13 failed blocks (see Fig.
5.14) . With a minimum of 0.54 m length, 8.79 m perimeter, 0.48 m height, and
33◦ degrees. The maximum values for different blocks are 15.1 m length, 77.25 m
perimeter, 12.36 m height, and 69◦ degrees (See Appendix A).

In the Figure 5.15 the x-axis shows the length of the block, and the y-axis the
height. The different slope angles are classified with different colors. The linear
correlation between slope angles less than 40◦ degrees, 40◦ − 50◦ and more than 60◦

has a similitude. However, the linear correlation for angles between 50◦ − 60◦ does
not show a similar angle with the other lines.
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FIGURE 5.11: Tschingelmad, correlation between Height/lenght and
the angle. No clear correlation is visible

FIGURE 5.12: Handegg: Map blocks, in red the existing blocks and in
violet the failed blocks

For the case of failed blocks, it was possible to map 13 blocks. One with less than
40◦ degrees. Therefore the linear correlation is only represented for 40◦ − 50◦ and
50◦ − 60◦ degrees (see Fig.5.16).
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FIGURE 5.13: Handegg: Close-up to see the existing blocks.

FIGURE 5.14: Handegg: Same area shown in Fig.5.13. Showing two
failed blocks that were identified. They are limited with a violet poly-
gon. There is a central one and the other is in the bottom left part of

the picture.

5.2.3 Lake East

In this area, there are 22 existing blocks (see Fig. 5.17) and 3 failed blocks. The min-
imum values are 0.6 m length, 5.15 m perimeter, 0.31 m height, and 28◦ degrees.
The maximum values are 8.42 m length, 40.75 m perimeter, 3.29 m height, and 52◦

degrees (See fig. 5.18) (See Appendix A) . In the plot no correlation between the two
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FIGURE 5.15: Handegg, existing blocks. It exists a correlation be-
tween the blocks at different angles and their correlation line , with

exception from angles bigger than 60◦ degrees.

FIGURE 5.16: Handegg, failed blocks. Just two different classifica-
tions. In total 13 blocks were mapped.

slopes is visible. In the case of blocks in a slope angle of more than 50 degrees it
was only possible to find one block with these characteristics. Therefore, no slope is
created for this range.

In the case of failed blocks in the Lake East area, it was only possible to identify
three blocks (see Fig. 5.19).
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FIGURE 5.17: Existing blocks in the area Lake East. One can observe
19 map blocks in red and 3 missing in violet.

5.2.4 Block Summary

In the three areas it was possible to map 94 existing blocks and 16 failed blocks in
total. The complete list is found in (Appendix A). The blocks details are specified in
the corresponding section (Tschingelmad, Handegg and Lake East).

In the next plot (see Fig. 5.20), all the existing blocks from Handegg, Lake East
and Tschingelmad are plotted. In blue are the blocks with an angle less than 40◦

degrees, in orange angles between 40◦ − 50◦ and in Grey angles between 50◦ − 60◦

degrees. There is no range greater than 60◦ due to the fact that only 2 blocks within
this range exist. There is no visible correlation between the different slopes and the
different angles.
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FIGURE 5.18: Correlation of the height/length- angle, it has a very
low correlation. For the case of blocks with an angle > than 50◦ there
is no correlation because just one block exist where the angle is more

than 50◦

FIGURE 5.19: Lake East, failed blocks, 3 blocks were mapped for this
area.
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FIGURE 5.20: Plot showing all the different blocks from Handegg,
Lake East and Tschingelmad, 3 angle ranges exist and they go from

less than 40◦, 40◦ − 50◦ and 50◦ − 60◦.

5.3 Back Analysis

The last step of the analysis is to combine the obtained field data (mapped existing
and not-existing blocks from the three areas) (5.2.4 Block Summary) with the ob-
tained model (see Fig.5.1). For this step all 94 mapped existing blocks and 16 failed
blocks data were imported to the Matlab code and plotted.

In the section 5.2.4 Block Summary, it is indicated that 3 different ranges of slope
angles were classified based on the field data. For this reason, in the Matlab code the
same angle ranges were taken (see Fig. 5.1). In all of the cases, the regions or zones
are the same as the ones presented in Chapter 5.1 Matlab Results (see Fig. 5.1 ). Four
different zones were defined:

• The yellow zone indicates that the block topples.

• The blue zone indicates that the tension crack propagates to failure.

• The sky blue zone indicates that the base provides stability.

• The orange zone indicates that only the Paris law equation dominates the crack
evolution.

The existing blocks are represented with black circles and the failed blocks are
represented with red circles. In the blue zone (tension crack propagates to failure)
a line is shown that divides the area in two. This line is generated from the crack
opening edge results (see Fig. 5.2). Above this line the results of the edge crack
opening are under 0.12 mm which is probably due to the resolution of the performed
photogrametry not being visible (Chapter 5.1.1 Crack Opening Edge).
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In the first plot (see Fig. 5.21) (for less than 40◦), almost all of the existing blocks
are plotted in the sky blue zone which indicates that the base provides stability. With
the exception of two blocks that are in the toppling zone and one that is in the blue
zone. In the case of the failed blocks only two blocks exist. Both are in the area that
indicates that the base provides stability. One is very close to the toppling zone and
another failed block is 0.70 m from the limit zone of block crack propagating zone.
The line inside the blue zone, indicates that above it (according to crack opening) the
edge cracks should not be visible.

FIGURE 5.21: Results of the developed code (different areas) and the
field blocks (in blue the existing and in red non-existing) for the case

of 40◦
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In the case of the plot for 40◦ − 50◦ degrees (see Fig. 5.22), the existing blocks are
distributed in the three zones. Three are located in the toppling zone and two very
close to the propagating crack zone.The rest can be found in the propagating crack
zone and where the base provides stability. From the failed blocks 7 are located in
the zone where the base provides stability and only one is located in the zone where
the tension crack propagates to failure.

FIGURE 5.22: Result of the developed code (different areas) the field
blocks (in blue the existing and in red non-existing) for the case of 50◦
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In the last case, when the angle is between 50◦ − 60◦ degrees (see Fig. 5.23), the
majority of the existing blocks are plotted in the non-toppling zone. Only 9 of them
are plotted in the toppling zone and in many cases they are very close to the non-
toppling zone. 15 are located in the zone where the base provides stability and 8 are
in the zone where the tension crack propagates to failure. For the failed blocks, all
of them are plotted in the non-toppling zone. Three of them are plotted in the prop-
agating crack zone and the other three are in the blue sky zone: the base provides
stability. However two from these three, that are in the zone where the base provides
stability are very close to the zone where the tension crack propagates to failure.

FIGURE 5.23: Results of the developed code (different areas) and the
field blocks (in blue the existing and in red non-existing) for the case

of 60◦
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Chapter 6

Data Interpretation and Discussion

6.1 Matlab Code

The implemented equations (4.2 Governing Equations) in the matlab code (see fig.
4.4) have introduced the evolution of stress and strain to the LEM by adding the
assessment of the time required for a progressive tensile edge crack to reach a critical
condition.

The developed code follows a logical cycle which is a simplification of reality.
However, it has the following limitations:

• Regarding the forces that act on the block, the analyzed block does not take
into consideration the tension that is generated on it from the lateral blocks
(Kliche, 2003).

• The K(I) factor is for a intact rock (Eppes and Keanini, 2017), therefore the
generated code can only reproduce new cracks. Rocks are often rich with pre-
existing cracks (Erismann and Abele, 2001) for this reason the model only re-
produces new cracks.

• During the whole analysis the base block area remains constant. This mean
that the base provides the same resisting force throughout the entire analysis.
However, it is possible that the entirety of remaining rock bridges on the base
also degrade with time, reducing the cohesion strength per unit area.

• One single edge crack in the proposed model is developed. In reality it is
possible that multiple cracks expand at the same time (Wang and Cao, 2017).

• The model does not consider earthquakes or extreme rainfall, nor the stress
generated from the ice (Erismann and Abele, 2001). These events can trigger
the block fall.

• Paris law (Equation 4.15) and Charles law (Equation 4.19) were used to de-
termine the edge crack growth rate. Both formulas provided the edge crack
growing length. The largest result (for each determined depth) was used.

• The model considers the cyclic variation of the temperature for one year. It
does not consider extreme climate events. This change is only applied for the
Paris equation because it is the only equation that includes temperature change
(Equation 4.15).

Due to the mentioned factors the outcome of the model is limited. The different
output zones (see fig. 5.1) that the code provides (base provides stability, the edge
crack will propagate, topple, etc.) are strongly dependent on the slope angle. At
bigger slopes angles, the ratio of block height to block length decreases. For the



Chapter 6. Data Interpretation and Discussion 64

crack opening edge values (5.2) the results are directly correlated with the edge crack
length. The larger the edge crack length, the larger the edge crack opening is.

The crack opening (see fig. 5.2), contrary to what I expected, is not larger at larger
block heights. The results show that for a block with the same length but different
heights, the larger crack opening is larger for small heights. From these final results,
which are directly correlated with the edge crack length, I can confirm that the edge
crack length is also larger for blocks with small heights.

Fixed Parameters

In the case of single block evaluation (see fig. 5.3), the time evaluation depends on
Paris Law (eq. 4.24) or Charles law (eq. 4.15). At the moment of Paris law imple-
mentation, I could not reproduce the exact same results proposed by Tada, Paris, and
Irwin (The Stress Analysis of Cracks Handbook, Third Edition). My formula verification
show a difference of a factor of 101 years less when the crack starts to propagate (See
section 4.5.3 Paris Law). For this reason the displayed times do not accurately repre-
sent the reality. However, it is a good indicator to how the crack propagation would
look like in comparison to the crack propagation of Charles law.

From the fixed parameters evaluation I obtain that in general Paris law domi-
nates the tensile edge crack growing. From all the time that takes to the block to
fall, Paris law dominates more than the 90% of all the time and just on the last 10%
dominates Charles law.

6.2 Photogrametry

In the case of Photogrametry, the three different places: Tschingelmad, Handegg
and Lake East (see map. 4.9) need to be georeferenced. After this georeferencing and
photo alignment I have obtained for each photogrametry an alignment error.

• For Tschingelmad, the error is quite high at 3.3 m.

• The error for Handegg was 0.7 m which is acceptable.

• Finally in the Lake East photogrammetry the error is just 0.16 m.

In the case of Tschingelmad this high error is due to the large height of it. Due that
this photogrametry was performed with terrestrial photographs the higher areas
present a higher distortion. In the second and third cases the pictures were obtained
from a drone. Therefore the error is less.

In the case of Tschingelmad, this generates a model of low quality since the
mapped blocks have (in most cases) a height of less than 1 meter. Regarding the
amount of map blocks, for Tschingelmad I mapped 19 existing blocks, and no failed
blocks were identified. The Handegg area has the most amount of map blocks, with
54 existing blocks and 13 failed blocks. Finally in Lake East area, I mapped 22 exist-
ing blocks and 3 failed blocks. In terms of percentage of mapped blocks Tschingel-
mad represents 20%, Handegg is 56% and Lake East 23%. For this reason the error
in respect to map blocks is acceptable. However, some uncertainties exist at the
moment of mapping the blocks. Firstly, there is no methodology to mapping single
blocks. In this work all the blocks were mapped without distinguishing special char-
acteristics (i.e. no lateral blocks, just one lateral block, etc). However, some blocks
have different possible configurations of surrounding blocks (one lateral block, two
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lateral blocks, one lateral and a top block, etc). This could be a source of variation in
the back analysis.

In the task of mapping missing blocks, it was performed only visually (it do not
exist a register to compare them). However it is quite complicated to recognize the
limits of the missing blocks. Moreover I don’t know what triggered the fall of these
blocks

6.3 Back Analysis Results

After obtaining the results from the implemented code (see Fig. 5.1) I plotted the
results of block mapping (5.2 Field Results) over them in the three established angle
range (40◦ , 50◦ and 60◦ grades). The results (see fig. 5.21, 5.22 and 5.23) show some
of the blocks out of the areas where ideally plotted. A perfect (Hypothetical) result
would be that the existing blocks were not plotted in the toppling zone. They could
be in the other zones (crack propagation to failure zone or the base provides stability
zone). The failed blocks could be in both zones. If they are in the zone where the
base provides stability then they have probably failed, but not due to a tension crack
propagation, rather to a base that has lost the cohesive strength per unit area. If they
are in the blue zone then we can suppose that the triggering factor was the tension
crack propagation to failure.

In addition the proposed model has assumptions, limitations (4.3.1 Model as-
sumptions and considerations and 6.1 Matlab Code) and errors from the results ob-
tained from the block mapping at the field (see 4.3 Photogrammetry). In my point
of view one of the principals factors that limits this back analysis is the previous
existence of joints and structural discontinuities in the area around Grimsel pass.
As well as the query about if the the external trigger factors (extreme temperatures,
earthquake,etc) have caused the block fall.

Despite these limitations in the implemented code (4.4) there is still room for
improvement. The code has been developed in different modules and each module
can be independently modified. For example, the local temperature variation and
the rock parameters, such as cohesion or Young modulus can be replaced for each
specific location. Moreover, it is possible to add different sections.

6.4 Recommendations

During the realization of this thesis I have thought about different approach’s and
procedures to assess or to implement into the chosen formulas. However, it took
me a long time to locate the problem with the Paris Law formula implementation.
For this reason I have not further develop the model. Despite this, I would like to
mention what can still be done/included in future investigations. The code has been
written in modular form, so it is possible to add more components to it. I would like
to mention the relevant points for future investigation:

Central Cracks and Multiple Cracks

In this thesis the only crack that is included is edge crack. Although, in reality, it
is possible that one will need to deal with multiple cracks (Gross and Seelig, 2011),
central crack or base crack as the one show in Fig. 6.1.
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FIGURE 6.1: Tada, Paris, and Irwin (The Stress Analysis of Cracks Hand-
book, Third Edition) proposes an approach for the stress analysis of

cracks at the base in the case of rock sliding

Water

Different authors include groundwater in the LEM analysis. The presence of ground-
water generates forces. This can also be included into the model (Kliche, 2003).

Seismic Activity

The seismic activity can be included as vibrational forces. This is often included as a
factor that reduces the normal forces (Kliche, 2003).

Block Geometry

The geometry of the proposed block was always rectangular. However in some
occasions the block is truncated or have a different form. This can also be modified.

Multiple Block Analysis

In this current thesis one single block was analyzed. However the possibility exists
to assess it with more blocks that interact or have an affect on the forces with the one
analyzed.

Photogrammetry

The data obtained from the failed blocks was performed only visually (exist no
record to compare it). I have no evidence other than some indications such as: dif-
ference of rock color or presence of lichens. I also do not know when it happened,
or the trigger. For this reason this data can only be used as a reference. A solution
for this problem will be to perform a photogrammetry some years after from the
same area. Then compare the two different DEMs and obtain the exact dimensions
of missing blocks. Finally perform a more accurate model validation with the new
data. It will also be important to measure the resolution of the photogrammetry in
order to obtain better quality.
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Chapter 7

Conclusions

The aim of this thesis was the implementation of a variant condition (progressive
tensile edge crack) into the Limit Equilibrium Method to carry out a time-dependent
analysis. At first a short introduction of the different stability analysis techniques
was written to provide a general context. Then a more specific review of LEM and
the progressive tensile edge crack was provided. From this specific review the for-
mulas that were used in the model implementation were obtained. Afterwards the
model was implemented and a back analysis with Grimsel data was performed. The
obtained results led to the following conclusions for the proposed research ques-
tions.

How can the addition of progressive tensile crack growth equations to the
concept of LEM (planar failure mode) classify the state (stable, growing crack,
toppling) of the rock blocks?

The process of a logical procedure to simulate progressive tensile edge crack
growth and to consequently generate a planar rock falling was successfully imple-
mented (see Fig. 4.4). It enabled an evaluation of different dimensions of blocks in a
possible planar failure (See Fig. 5.1). Resulting from this evaluation were three dif-
ferent zones: where the block topples, where the base provides stability and where
the crack is propagating until it will fail. The code is implemented to allow for the
analysis of a single block with user-defined variables and goes through a series of
steps (see Fig. 4.4). It also allows the user to evaluate the time iteration, the edge
crack grow, the edge crack intensity, the crack opening and the crack length varia-
tion. However, due to the time scale I was not able to exactly reproduce the Paris
equation results (see 4.5.3 Paris Law ). There exists a difference of a factor of +/-101

years. Therefore, the time results can be used as a reference, however they still need
to be adjusted.

How can field /laboratory data be used to perform a back analysis of the equa-
tions?

So far in the performed literature review (see Chapter 2) there is no directly cor-
relatable data that can be used to assess the progressive edge crack growth for LEM.
Large amounts of data from compressing the sample (Brazilian test) exist. However,
these do not represent the constant load from a block in the case of planar failure (in
the test the load increases). Nonetheless, data does exist from fracture growth from
fracture mechanics. In the last few years investigators have tried to correlate climate
factors that cause crack growth as Eppes and Keanini (2017), that uses the tension
generated between the mineral components under diurnal temperature variation.
He does not provide data that can be used to perform a LEM black analysis. How-
ever, he provides a correct way in which to approach the progressive tensile edge
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crack growth. Due to this lack of data I decided to perform a Photogrammetric anal-
ysis of different rock areas (Chapter 4.3), in which existing and failed blocks were
mapped. Then the obtained field data was used to perform a back analysis of the
implemented equations.

How can the obtained field data from Grimsel pass be correlated with the dif-
ferent outcomes from the proposed code?

The required geometry block variable inputs in the implemented code are height,
length and slope angle. It is possible to obtain this data from photogrammetries.
From the three performed photogrammetries (see 4.3 Photogrammetry) two were
quite successful in terms of accuracy. Tschingelmad had a considerable location error
of 3.3 m, Handeg and Lake East have an error of 0.7 m and 0.16 m respectively which
is acceptable. However, in terms of number of plot blocks, the amount of mapped
blocks in Tschingelmad only represents 20% of the total blocks. Therefore, I still con-
sider the use of the data helpful. Mapping the blocks is time consuming, as there is
no automation to search the blocks under planar failure and record them. Neither
is there an established classification. A total of 95 blocks were mapped. However,
there is uncertainty as to whether they are dominated by the existing joints. Failed
blocks were also mapped, but only 16 were possible to record. The task was compli-
cated due to a lack of two information sources: it was performed visually and there
is no previous or current photogrammetry from the area to compare them. For this
reason, this data is used as an indicator. Once all the respective data was gathered, I
was able to obtain the code plot results (see Fig. 5.1). Over it I plotted the field data
results (94 existing blocks and 16 failed blocks. See Fig. 5.20). In the case of existing
blocks, the vast majority (87%) is located in the zone where the base provides stabil-
ity or where the edge crack is propagating. In the case of failed blocks, theoretically
all of them should be located in the edge crack propagation zone. However, only
four of them are located in this zone, which means that only 40% of the blocks have
fallen due to the edge crack propagation. The cause of the other 60% is unclear (ex-
ternal factors or toppling). However, these results are not precise due to the block
analysis simplifications and the errors in the field data (obtaining and post process-
ing).

How can the model be used to understand the evolution of tensile cracks on
planar rock fall in the areas around Grimsel Pass?

The implemented model has some limitations and constraints with the accuracy.
One of the biggest limitations in the used formulas in regards to code implemen-
tation (Chapter 6) is that the KI (Stress intensity factor) is used for an intact rock,
while in reality the rocks in Grimsel Pass have several joints. It is very probable that
the cracks tend to grow in the discontinuities rather than in other planes. Neither
account for external factors such as earthquakes or heavy rainstorms.Additionally,
when performing the back analysis, the obtained field data only shows an accuracy
of 40%. For all the above mentioned reasons, the model can not be used to accurately
predict the time it takes for a block to fail.

Although I did not get the optimum results with the field correlation, there is still
room for improvement. Adding more modules to the code or modifying approaches
could lead to more accurate real-life outcomes.
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Appendix A

Mapped Blocks

A.1 Existing Blocks

A.1.1 Tschingelmad

TABLE A.1: Principal characteristics of the mapped blocks
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A.1.2 Handegg

TABLE A.2: Principal characteristics of the mapped blocks
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TABLE A.3: Continuation of table A.2. Principal characteristics of the
mapped blocks
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A.1.3 Lake East

TABLE A.4: Principal characteristics of the mapped blocks.
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A.2 Failed Blocks

A.2.1 Handegg

TABLE A.5: Principal characteristics of the mapped failed blocks

A.2.2 Lake East

TABLE A.6: Principal characteristics of the mapped failed blocks
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Appendix B

Code Results

B.1 Crack Length

FIGURE B.1: Full range of results for crack length, the plots show the
crack opening for different years and angles
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B.2 Crack Opening

FIGURE B.2: Full range of results for crack opening, the plots show
the crack opening for different years and angles
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Appendix C

Matlab Code

c l o s e a l l
c l e a r v a r i a b l e s
c l c

s e t ( 0 , ' d e f a u l t t e x t i n t e r p r e t e r ' , ' Latex ' ) ;
%% 1 Inputs
%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%% Block var iables
B . l = 5 ; % ( meter ) lenght of the base .
B . h=5; % ( meter ) height of the B .
B . d= 4 0 ; % ( degrees ) diF angle of f a i l u r e plane

B . phi =30; %49 % ( degrees ) t y p i c a l value f o r angle of i n t e r n a l f r i c t i o n *
phi

B .C= 20*10^3 ; % ( Pa= N/m^2 = kg/m* s^2 = J /m^3) cohesion
B . dens i ty = 2670 ; % ( kg/m^3) dens i ty of g r a n i t e %Schneeberger 2017 Table 2 . 6
B . g r a v i t y = 9 . 8 1 ; % (m/s ^2)
B . t e n s _ s t r e n g t h =10*10^6; % ( Pa ) T e n s i l e s t r en g th of Granite
B . k 1 _ c r i t i c a l = 1 . 5 * 1 0 ^ 6 ; % (MN/m^ 1 . 5 ) C r i t i c a l s t r e s s f a c t o r of the g r a n i t e . I f

t h i s value i s overcome then the crack develops
B . cl_e_prop = 0 . 0 1 ; % edge crack length as proport ion of block height .
B . c l _ e = B . h*B . cl_e_prop ;
B . c l _ c =0; % c e n t e r crack

% %% F i e l d data
%
% %Import the E x i s t i n g blocks
% % Import the data
% [~ , ~ , raw ] = xls read ( ' E :\ Documents\UZ\Courses\Master Arbei t\Compile

blocks . xlsx ' , ' Tabel le2 ' , ' A5 : E99 ' ) ;
%
% %Kerry f i l e
% %[~ , ~ , raw ] = xls read ( 'D:\03 MSc\2018\ Zapatorres\Compile blocks . xlsx ' , '

Tabel le2 ' , ' A5 : E99 ' ) ;
% raw ( c e l l f u n (@( x ) ~isempty ( x ) && isnumeric ( x ) && isnan ( x ) , raw ) ) = { ' ' } ;
% c e l l V e c t o r s = raw ( : , 1 ) ;
% raw = raw ( : , [ 2 , 3 , 4 , 5 ] ) ;
%
% % Create output v a r i a b l e
% data = reshape ( [ raw { : } ] , s i z e ( raw ) ) ;
%
% % Create t a b l e
% Compileblocks = t a b l e ;
%
% % A l l o c a t e imported array to column v a r i a b l e names
% Compileblocks .Name = c e l l V e c t o r s ( : , 1 ) ;
% Compileblocks . Dipangle = data ( : , 1 ) ;
% Compileblocks . Length = data ( : , 2 ) ;
% Compileblocks . Height = data ( : , 3 ) ;
% Compileblocks . PerimeHerbasearea = data ( : , 4 ) ;
%
% % Clear temporary v a r i a b l e s
% c l e a r v a r s data raw c e l l V e c t o r s ;
%
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% %Import the non e x i s t i n g blocks
% % Import the data
% [~ , ~ , raw ] = xls read ( ' E :\ Documents\UZ\Courses\Master Arbei t\Compile

Non_e_blocks . xlsx ' , ' Tabel le2 ' , ' A5 : E20 ' ) ;
% %Kerry f i l e
% %[~ , ~ , raw ] = xls read ( 'D:\03 MSc\2018\ Zapatorres\Compile Non_e_blocks .

xlsx ' , ' Tabel le2 ' , ' A5 : E20 ' ) ;
% raw ( c e l l f u n (@( x ) ~isempty ( x ) && isnumeric ( x ) && isnan ( x ) , raw ) ) = { ' ' } ;
% c e l l V e c t o r s = raw ( : , 1 ) ;
% raw = raw ( : , [ 2 , 3 , 4 , 5 ] ) ;
%
% % Create output v a r i a b l e
% data = reshape ( [ raw { : } ] , s i z e ( raw ) ) ;
%
% % Create t a b l e
% CompileNoneblocks1 = t a b l e ;
%
% % A l l o c a t e imported array to column v a r i a b l e names
% CompileNoneblocks1 .Name = c e l l V e c t o r s ( : , 1 ) ;
% CompileNoneblocks1 . Dipangle = data ( : , 1 ) ;
% CompileNoneblocks1 . Length = data ( : , 2 ) ;
% CompileNoneblocks1 . Height = data ( : , 3 ) ;
% CompileNoneblocks1 . PerimeHerbasearea = data ( : , 4 ) ;
%
% % Clear temporary v a r i a b l e s
% c l e a r v a r s data raw c e l l V e c t o r s ;
%
%% Thermal model var iables
%i f we need i t , c a l c u l a t e the thermal model , otherwise load the data f i l e s
T . Thermal_dz = 0 . 0 2 5 ; %v e r t i c a l r e s o l u t i o n of thermal model − in meters
%[ T , Tvar ] = Thermal_model ( T . Thermal_dz )

%load ( 'D:\03 MSc\2018\ Zapatorres\Tvar . mat ' ) ; %
Kerry computer f i l e

load ( 'E :\ Documents\UZ\Courses\Master Arbei t\Matlab\Simple block\Tvar . mat ' ) ; %
Marco computer F i l e

T . Tvar = Tvar ; c l e a r Tvar

%% Charles Law var iables
C.A=1*10^−3; %m/s Avro g r a n i t e . B? c k s t r ?m e t a l l 2 0 0 8 . . . re ferenced from Ko and

Kemney( 2 0 1 1 ) p17
C. n= 48 ; %S t r e s s corros ion index . B? c k s t r ?m e t a l l 2008 Table 2

%% Solver var iables
S . yr = 3 6 5 * 2 4 * 6 0 * 6 0 ; % Year in seconds
S . kyr = 1000* S . yr ; % K years
S . maxIter = 100000 ; % Number max of i t e r a t i o n s
S . minDT = 1 ;
S . maxDT = 10^9*S . yr ;
S . i n i t i a l D T = 0 . 1 * S . yr ;
S . time = 0 ;
S .mm = 0 . 0 0 1 ;
S . propEst = 1* S .mm; %t h i s i s the d i s t a n c e we ' d l i k e our crack to propagate (m)

%Switch the s o l v e r s
%S . p l o t I n t = 4 0 0 ; %Defined block parameters in B . h and B . l
S . p l o t I n t = nan ; %i n t e r v a l f o r p l o t t i n g r e s u l t s ( in i t e r a t i o n s )

%% Paris Law var iables

P . a0= 0.41*(10^−3) ;%4.1*10−7; %2.3*10^−3 %mm I n i t i a l crack lenght ,
r e l a t e d to grain diameter

P .m= 0 . 6 ; %60 From t a b l e 1 EPPES %S u b c r i t i c a l crack growth index = P a r i s law
exponent

P . delAlpha =3*10^−5;%From t a b l e 1 EPPES %C^−1 C h a r a c t e r i s t i c thermal expansion
d i f f e r e n c e

P . E= 5 0 . 6 * ( 1 0 ^ 9 ) ; %From t a b l e 1 EPPES %Pa Young modulus Granite
i f e x i s t ( ' Tvar ' , ' var ' )

T . Tvar = T . Tvar ;
e l s e

T . Tvar= 2 9 ; %Celc ius T s u r f max − T i n f i n i t u s
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end

P . v= 0 . 3 3 ; %Rock Poisson ' s r a t i o %Schneeberger 2017
Table 2 . 6

P . dg = 0.7*10^−3; %7*10^−3; % diameter of the grain %From t a b l e 1 EPPES
P . Kc = ( 2 . 1 6 *10^6) ; %Granite f r a c t u r e toughness

P . B=1−P .m/2; %Eppes t e x t f o r Eq . 5 m = s u b c r i t i c a l growth
index

P . c= P . dg*P . Kc^−P .m; %Eppes t a b l e 1 . P a r i s law c o e f f i c i e n t
P .G = P . E/(1−P . v^2) ; %bulk modulus

%%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%%C a l c u l a t i o n s
%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%i f we don ' t want to p l o t the evolut ion of a s i n g l e crack , then run a
%parametric search
i f isnan ( S . p l o t I n t )

%Load a l i s t of parameters
d_Var = 4 0 : 1 0 : 6 0 ;
l_Var = 0 . 2 5 : 0 . 2 5 : 1 2 ; %[ 0 . 2 0 . 4 0 . 6 0 . 8 1 ] ; % 1 : 3 2 ; %1:10;
h_Var = 0 . 2 5 : 0 . 2 5 : 1 2 ; %[ 0 . 2 0 . 4 0 . 6 0 . 8 1 ] ; %[0.01 1 2 3 4 5 6 7 8 9 1 0 ] ;

%1:10 ;
e l s e

d_Var = B . d ;
l_Var = B . l ;
h_Var = B . h ;

end

s teps = length ( d_Var ) * length ( l_Var ) * length ( h_Var ) ;

f = waitbar ( 0 , ' 1 ' , 'Name ' , ' C a l c u l a t i ng cracks . . . ' , ...
' CreateCancelBtn ' , ' setappdata ( gcbf , ' ' cance l ing ' ' , 1 ) ' ) ;

setappdata ( f , ' cance l ing ' , 0 ) ;
cnt = 0 ;
c r i t R e c = [ ] ;
f o r i = 1 : length ( d_Var )

f o r j = 1 : length ( l_Var )
f o r k = 1 : length ( h_Var )

% Check f o r c l i c k e d Cancel button
i f getappdata ( f , ' cance l ing ' )

break
end
cnt = cnt +1;
% Update waitbar and message
waitbar ( cnt/steps , f , s p r i n t f ( '%s %2.1 f%s %2.1 f%s %2.1 f ' , ' Phi = ' , d_Var ( i ) ,

' deg Len = ' , l_Var ( j ) , 'm Height = ' , h_Var ( k ) ) )
B . d = d_Var ( i ) ;
B . l = l_Var ( j ) ;
B . h = h_Var ( k ) ;
[ crackSummary ( i , j , k ) . dt , crackSummary ( i , j , k ) . k1_e , crackSummary ( i , j , k ) .

delCrack , crackSummary ( i , j , k ) . charlesProp , crackSummary ( i , j , k ) . c l_e ,
crackSummary ( i , j , k ) . time , crackSummary ( i , j , k ) . exitCode ] = c r a c k I t ( B

, T , C, P , S ) ;
%record i f the crack s u c c e s s f u l l y propagated
i f crackSummary ( i , j , k ) . exitCode == 0

%t h i s has the i n d i c e s of phi , length , height
c r i t R e c = [ c r i t R e c ; i j k ] ;

end
end

end
end
%d e l e t e the waitbar
d e l e t e ( f )

%i f we don ' t want to p l o t the evolut ion of a s i n g l e crack , then
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%p l o t a summary of r e s u l t s
i f isnan ( S . p l o t I n t )

%p l o t a l l the i n f o f o r the s i n g l e block f a i l u r e times
s i n g l e B l o c k P l o t s ( S , c r i t R e c , crackSummary , d_Var , l_Var , h_Var )

end

%%
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%%Functions
%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Propagate a crack
funct ion [ dt , k1_e , delCrack , charlesProp , c l_e , time , exitCode ] = c r a c k I t ( B , T , C,

P , S )
exitCode = 1 0 0 ;
isTopple = checkTopple ( B . d , B . h , B . l ) ;
%i f the block isn ' t toppl ing
i f isTopple == 0

%get the i n i t i a l dr iving and r e s i s t i n g f o r c e s
[ sigma_d , sigma_rb , sigma_rt ] = b l o c k S t a b i l i t y ( B . phi , B . l , B . d , B . C, B . h , B

. density , B . gravi ty , B . tens_s t rength , B . k 1 _ c r i t i c a l , B . c l_e , B . c l _ c ) ;
%get the a c t u a l t e n s i l e s t r e s s in the i n t a c t rock below the tens ion crack
sigma_t = sigma_d−sigma_rb ;
%i f the block i s s t a b l e
i f ( sigma_rb + sigma_rt ) > sigma_d

%i f the s t a b i l i t y depends on the tens ion crack
i f ( sigma_d − sigma_rb ) > 0

%c a l c u l a t e crack propagation with time
i = 1 ;
dt = S . i n i t i a l D T ;
%record the s t a r t i n g day of the year
DoY = 1 ;
%get the i n i t i a l crack length
c l _ e ( i ) = B . c l _ e ;

%get the i n i t i a l crack opening
delCrack ( i ) = getCrackOpening ( B . h , c l _ e ( i ) , sigma_t , P .G) ;

%get the i n i t i a l time
time ( i ) = S . time ;
%while the crack length i s l e s s than the block height and the max
%i t e r a t i o n s haven ' t been reached
while c l _ e ( i ) < B . h && i <= S . maxIter

%re−c a l c u l a t e the driving and r e s i s t i n g f o r c e s with the new
crack geometry

[ sigma_d , sigma_rb , sigma_rt ] = b l o c k S t a b i l i t y ( B . phi , B . l , B . d ,
B . C, B . h , B . density , B . gravi ty , B . tens_s t rength , B .

k 1 _ c r i t i c a l , c l _ e ( i ) , B . c l _ c ) ;
%get the a c t u a l t e n s i l e s t r e s s in the i n t a c t rock below the

tens ion crack
sigma_t = sigma_d−sigma_rb ;
%c a l c u l a t e the s t r e s s i n t e n s i t y f a c t o r a t the crack t i p
k1_e ( i ) = KI_edgeCrack ( B . h , c l _ e ( i ) , sigma_t ) ;

%i f the s t r e s s i n t e n s i t y i s l e s s than the c r i t i c a l
i f k1_e ( i ) <= B . k 1 _ c r i t i c a l

%c a l c u l a t e the r a t e of crack growth ( da/dt ) based on P a r i s
law

%to do t h i s we have to c a l c u l a t e the number of d a i ly c y c l e s
in t h i s time step

%and round down to ensure we have an i n t e g e r
N = f l o o r ( dt ( i ) / ( 2 4 * 6 0 * 6 0 ) ) ;

i f sum( s i z e ( T . Tvar ) ) == 2
B . Thermal_dz = 1000000 ;
DoYrec = ones (N, 1 ) ;

e l s e
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%get the temperature v a r i a t i o n at t h i s depth / time
DoYrec = zeros (N, 1 ) ;
DoYrec ( 1 , 1 ) = DoY ;
f o r j = 2 :N

i f DoY == 365
DoY = 1 ;

e l s e
DoY = DoY+1;

end
DoYrec ( j ) = DoY ;

end
end

%c a l c u l a t e the change in length
%da_P = par i sCa lc ( a0 , B , delAlpha , v ,m, c , E ,N, Tvar , DoYrec ,

Thermal_dz ) ;
%f ind the c l o s e s t depth in Tvar

T_Zind = c e i l ( P . a0/B . Thermal_dz ) ;
Tvar_ave = sum( T . Tvar ( T_Zind , DoYrec ) ) /N

%note : here we ' re assuming the propagating crack i s always
one grain long

%t h i s i s the e f f e c t i v e length of the s t r e s s v a r i a t i o n
da_P = p a r i s _ n o I t e r C a l c ( P . dg , P . B , P . delAlpha , P . v , P .m, P . c , P .

E ,N, Tvar_ave ) ;
%c a l c u l a t e the mean r a t e of propagation f o r P a r i s law in

t h i s time step
dadt_p = da_P / dt ( i ) ;

%c a l c u l a t e the r a t e of crack growth ( da/dt ) based on Charles
law

[ dadt_c ] = c h a r l e s C a l c (C .A, k1_e ( i ) ,B . k 1 _ c r i t i c a l ,C . n ) ;
%Obtain the length based on the elapsed time
da_C = dadt_c * dt ( i ) ;
%Add the new crack lengths to the previous crack length
c l _ e ( i +1) = c l _ e ( i ) + da_C + da_P ;

%c a l c u l a t e the crack opening
delCrack ( i +1) = getCrackOpening ( B . h , c l _ e ( i +1) , sigma_t , P .G) ;

%record i f Charles law i s f a s t e s t
char lesProp ( i ) = dadt_c > dadt_p ;

%p l o t the new r e s u l t
i f ~isnan ( S . p l o t I n t )

plotPropagat ion ( i , dt , time , S . yr , c l_e , k1_e , B . h , B .
k 1 _ c r i t i c a l , charlesProp , S . p l o t I n t , delCrack ) ;

end

%c a l c u l a t e a new dt based on the r a t e of the previous
propagation

dt ( i +1) = new_dt ( dadt_c , dadt_p , dt ( i ) , S . minDT , S . maxDT, S .
propEst ) ;

%update the time
time ( i +1) = time ( i ) +dt ( i +1) ;
%update counter
i = i +1;

e l s e
%t idy up the l a s t s t r e s s i n t e n s i t y value we over−ran
k1_e ( i ) = B . k 1 _ c r i t i c a l ;
char lesProp ( i ) = charlesProp ( i −1) ;
%here we could a l s o c a l c u l a t e the c r i t i c a l crack length
%%%%%% but how??

%p l o t the new r e s u l t
i f ~isnan ( S . p l o t I n t )

plotPropagat ion ( i , dt , time , S . yr , c l_e , k1_e , B . h , B .
k 1 _ c r i t i c a l , charlesProp , i , delCrack ) ;

end
exitCode = 0 ;
break
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end
end

f a c t o r O f S a f e t y = ( sigma_rb+sigma_rt ) /sigma_d ; %Update the f a c t o r
of s a f e t y

e l s e
i f ~isnan ( S . p l o t I n t )

' the base of the block provides s t a b i l i t y '
end
k1_e = nan ;
char lesProp = nan ;
dt = nan ;
c l _ e = nan ;
delCrack = nan ;
time = nan ;
exitCode = 1 ;

end
e l s e

i f ~isnan ( S . p l o t I n t )
' the block i s unstable '

end
k1_e = nan ;
char lesProp = nan ;
dt = nan ;
c l _ e = nan ;
delCrack = nan ;
time = nan ;
exitCode = 2 ;

end
e l s e

i f ~isnan ( S . p l o t I n t )
' the block toppled '

end
k1_e = nan ;
char lesProp = nan ;
dt = nan ;
c l _ e = nan ;
delCrack = nan ;
time = nan ;
exitCode = 3 ;

end
end

%% Check i f the block Topple
func t ion [ isTopple , angleToCoM ] = checkTopple ( d ,H, l )

angleToCoM = d + atand ( (H/2) / ( l /2) ) ;
i f angleToCoM < 90 %( Toopling )

isTopple = 0 ;
e l s e % I f the value of angleToCoM i s >90 , nothing i s c a l c u l a t e d

because toppl ing happens .
isTopple = 1 ;

end

end

%% Block s t a b i l i t y
func t ion [ sigma_d , sigma_rb , sigma_rt ] = b l o c k S t a b i l i t y ( phi , l , d , C, H, density ,

gravi ty , tens_s t rength , k 1 _ c r i t i c a l , c l_e , c l _ c )
%funct ion [ sigma_d , sigma_rb , sigma_rt ] = b l o c k S t a b i l i t y ( p , l , d , C, H, density ,

gravi ty , tens_s t rength , k 1 _ c r i t i c a l , c l_e , c l _ c )
a= l * 1 ; %( Square meter ) base area of the block

w=a *H* dens i ty * g r a v i t y ; % weight of the block

[ sigma_rb , sigma_d ]= c a l c D r i v i n g R e s i s t i n g S t r e s s (C, d , a , phi ,w) ; %Ca l cu l a te i f the
block i s s t a b l e or not .

%sigma_rb= r e s i s t i n g s t r e s s
%simga_d= driving s t r e s s
% i f the driving s t r e s s i s higher than the r e s s i s t i n g s t r e s s the block wil f a i l .
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sigma_dt = sigma_d−sigma_rb ; % remaining s t r e s s in the remaining i n t a c t rock rock
from the base to the f i s u r e

% driving s t r e s s − r e s i s t i n g s t r e s s from base
% i f the driving f o r c e i s g r e a t e r than the basa l r e s i s t a n c e

i f sigma_dt > 0 %then check the s t r e s s i n t e n s i t y on the tens ion crack t i p ( s )
k1_e=KI_edgeCrack (H, c l_e , sigma_dt ) ; %S t r e s s i n t e n s i t y f a c t o r f o r the edge crack

%and check i f they ' re s t a b l e . We assume the k r i t i c a l s t r e s s i n t e n s i t y
%of g r a n i t e i s 1 500 000 MN/m^2 , i f t h i s c r i t i c a l s t r e s i s overcomed ,
%then a f a i l u r e happens .
s t a b l e _ c r a c k _ e = k1_e< k 1 _ c r i t i c a l ;

e l s e
%otherwise the cracks w i l l be s t a b l e
s t a b l e _ c r a c k _ e = 1 ;

end
tens_he ight = H − c l _ e ; %Length of the block from the base to the bottom of the

f i s u r e .
s igma_rt = tens_he ight * t e n s _ s t r e n g t h * s t a b l e _ c r a c k _ e ; % I f one of the componets

i s 0 then the equation turns in 0
end

%% Calculate the driving and r e s i s t i n g s t r e s s e s
func t ion [ sigma_rb , sigma_d ] = c a l c D r i v i n g R e s i s t i n g S t r e s s (C, d , a , phi ,w)

sigma_rb = C* a +(w* cosd ( d ) * tand ( phi ) ) ; % R e s i s t i n g s t r e s s of the block base
sigma_d =w* sind ( d ) ; % Driving f o r c e

end

%% S tr e ss I n t e n s i t y f a c t o r KI (mode 1) for edge crack . Tada Hiroshi . The s t r e s s
analysis of crack handbook . pg 52

%see equation f o r Edge crack in a p l a t e under u n i a x i a l s t r e s s

%t h i s funct ion c a l l s the lower two
%came from V a l i d a t e _ s t r e s s _ i n t e n s i t y _ k l .m
funct ion [ KI ]= KI_edgeCrack (H, c l_e , s i g _ d t )

%method can be : ' Gross_Brown ' , ' TadaV1 ' , ' TadaV2 ' )
Fa_b = getKI_F ( c l_e , H, ' TadaV2 ' ) ;
KI = getK1 ( s ig_dt , c l_e , Fa_b ) ;

end
%t h i s one c a l c u l a t e s the second f a c t o r of the equation
funct ion F = getKI_F ( a , b , method )

vecLen = max( length ( a ) , length ( b ) ) ;
i f length ( a ) < vecLen

a = repmat ( a , 1 , vecLen ) ;
end
i f length ( b ) < vecLen

b = repmat ( b , 1 , vecLen ) ;
end

a_b = a ./ b ;

switch method
case ' Gross_Brown '

max_a_b = 0 . 6 ;
a_b = a_b ( a_b <= max_a_b ) ;
a = a ( a_b <= max_a_b ) ;
b = b ( a_b <= max_a_b ) ;
i f ~isempty ( a_b )

F = 1 .22 −0 .231* ( a_b ) + ( 1 0 . 5 5 * ( a_b ) . ^ 2 ) − (21 .71* ( a_b ) . ^ 3 ) + ( 3 0 . 3 8 2 * ( a_b )
. ^ 4 ) ;

e l s e
F = nan ;

end
case ' TadaV1 '

max_a_b = 0 . 9 9 ;
a_b = a_b ( a_b <= max_a_b ) ;
a = a ( a_b <= max_a_b ) ;
b = b ( a_b <= max_a_b ) ;
i f ~isempty ( a_b )
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F = 0 .265 . * (1 − a_b ) . ^ 4 + ( ( 0 . 8 5 7 + 0 . 2 6 5 . * a_b ) ./(1−a_b ) . ^ ( 3 / 2 ) ) ;
e l s e

F=nan ;
end

case ' TadaV2 '
max_a_b = 0 . 9 9 ;
a_b = a_b ( a_b <= max_a_b ) ;
a = a ( a_b <= max_a_b ) ;
b = b ( a_b <= max_a_b ) ;
i f ~isempty ( a_b )

var = ( pi . * a ) . / ( 2 . * b ) ;
F = s q r t ( 1 . / var . * tan ( var ) ) ...

. * ( ( 0 . 7 5 2 + 2 . 0 2 . * a_b +0.37 .* (1− s in ( var ) ) . ^ 3 ) ...

. / ( cos ( var ) ) ) ;
e l s e

F=nan ;
end

end

end
%and t h i s one c a l c u l a t e s the s t r e s s dependance
funct ion KI = getK1 ( s i g _ t , a , Fa_b )

KI = s i g _ t . * s q r t ( pi . * a ) . * Fa_b ;
end

%% Charles law
%da/dt= A* ( KI/KIc ) ^n ; % Eq . ( 3 ) Charles law . From : Ko and Kemney 2011 ( pg .
%2)

funct ion [ dadt ] = c h a r l e s C a l c (A, k1_e , k 1 _ c r i t i c a l , n )
logdadt=log10 (A) + n* log10 ( k1_e/ k 1 _ c r i t i c a l ) ;

dadt = 10^ logdadt ;
end

%% Paris law ( with daily i t e r a t i o n s for temperature − slower ! ! )−−− NOT PARIS LAW (
Eppes ) −−− Is Crack Evolution per S t re ss cyc le!!!!!−−−−−−−−−−

%%
funct ion [dadN] = par i sCa lc ( a0 , B , delAlpha , v ,m, c , E ,N, Tvar , DoYrec , Thermal_dz )

%check we have a f u l l c y c l e
i f N > 1

%record the i n i t i a l length
a _ i n i t = a0 ;

%propagate the crack through a number of c y c l e s
f o r i = 1 :N

%find the c l o s e s t depth in Tvar
T_Zind = c e i l ( a0/Thermal_dz ) ;
delSigMax = delAlpha * ( E/1000000) * Tvar ( T_Zind , DoYrec ( i ) ) /(1−v ) ; %Eppes

t e x t f o r Eq . 3 ; Emod should be in MPa f o r t h i s c a l c u l a t i o n
C1 = c * delSigMax m̂* pi ^(m/2) ; %Eppes under Eq . 5 m; m = E f f e c t i v e

s t r e s s amplitude

a_len ( i ) = ( a0^B + B*C1 * 1 ) ^(1/B ) ;
a0 = a_len ( i ) ;

end
%j u s t get the f i n a l change in length in (m)
dadN = ( a_len ( i ) − a _ i n i t ) /1000;

e l s e
dadN = 0 ;

end
end

%% Paris law ( without i t e r a t i o n s )
func t ion [dadN] = p a r i s _ n o I t e r C a l c ( a0 , B , delAlpha , v ,m, c , E ,N, Tvar_ave )
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%check we have a f u l l c y c l e
i f N > 1

%propagate the crack f o r a given a number of c y c l e s
%we assume everything i s otherwise constant

delSigMax = delAlpha * ( E/1000000) * Tvar_ave/(1−v ) ; %Eppes t e x t f o r Eq . 3 ;
Emod should be in MPa f o r t h i s c a l c u l a t i o n

C1 = c * delSigMax m̂* pi ^(m/2) ; %Eppes under Eq . 5 m; m = E f f e c t i v e
s t r e s s amplitude

a_len = ( a0^B + B*C1*N) ^(1/B ) ;
%j u s t get the f i n a l change in length in (m)

dadN = a_len /1000;
e l s e

dadN = 0 ;
end

end

%% c a l c u l a t e the time steps for the model
func t ion [ dt ] = new_dt ( dadt_c , dadt_p , dt_i , minDT , maxDT, propEst )

%the minimum f u n c t i o n a l DT ( anything f a s t e r i s almost dynamic )
%f i r s t f ind the f a s t e r r a t e of Charles law or P a r i s law
max_dadt = max( dadt_c , dadt_p ) ;
%get the change in propagation r a t e from the previous step
log10_ddt_i = log10 ( propEst/max_dadt ) − log10 ( d t _ i ) ;
%then update the time step to get approx ( propRateEst )m
%propagation in the next s tep
i f log10_ddt_i > 1

dt = 10^( log10 ( d t _ i ) +log10_ddt_i * 0 . 1 ) ;
e l s e i f log10_ddt_i < 1

dt = 10^( log10 ( d t _ i )−log10_ddt_i * 0 . 1 ) ;
e l s e

dt = propEst/max_dadt ;

%e l s e
% dt = 10^( log10 ( d t _ i )−2) ;
%end

end
dt = max( dt , minDT) ;
dt = min ( dt , maxDT) ;

end

%% plot the propagation of the crack
func t ion plotPropagat ion ( i , dt , time , yr , c l_e , k1_e , H, k 1 _ c r i t i c a l , charlesProp ,

p l o t I n t , delCrack )
%p l o t every XXth r e s u l t to speed up the c a l c
i f mod( i , p l o t I n t ) ==0 || p l o t I n t == i

%i f the f i g u r e doesn ' t e x i s t
i f ~ishandle ( 1 )

f i g u r e ( 1 )
subplot ( 5 , 1 , 1 ) % add f i r s t p l o t in 5 x 1 grid
t i t l e ( ' log10 ( dt ( in years ) ) vs . i t e r a t i o n ' )
hold on
subplot ( 5 , 1 , 2 ) % add second p l o t in 5 x 1 grid
t i t l e ( ' edge crack length (% block height ) vs . yr ' )
hold on
subplot ( 5 , 1 , 3 ) % add t h i r d p l o t in 5 x 1 grid
t i t l e ( ' edge crack s t r e s s i n t e n s i t y (% K1c ) vs . yr ' )
hold on
subplot ( 5 , 1 , 4 ) % add fourth p l o t in 5 x 1 grid
t i t l e ( ' Crack opening vs . yr ' )
hold on
subplot ( 5 , 1 , 5 ) % add f i f t h p l o t in 5 x 1 grid
t i t l e ( ' Var ia t ion from mean crack extens ion vs . yr ' )
hold on

end
%s e t the p l o t point s i z e
p t s i z e = 4 ;
xes = 1 : i ;
subplot ( 5 , 1 , 1 ) % add f i r s t p l o t in 3 x 1 grid
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s c a t t e r ( xes ( char lesProp ) , log10 ( dt ( char lesProp ) /yr ) , p ts ize , '
r ' , ' f i l l e d ' )

%p l o t ( xes , log10 ( dt/yr ) , ' r ' )
s c a t t e r ( xes (~ char lesProp ) , log10 ( dt (~ char lesProp ) /yr ) , p ts ize , '

k ' , ' f i l l e d ' )

subplot ( 5 , 1 , 2 ) % add second p l o t in 3 x 1 grid
s c a t t e r ( time ( char lesProp ) /yr , c l _ e ( char lesProp ) ./H *100 , pts ize , '

r ' , ' f i l l e d ' ) % p l o t using + markers
s c a t t e r ( time (~ char lesProp ) /yr , c l _ e (~ char lesProp ) ./H *100 , pts ize , '

k ' , ' f i l l e d ' )

subplot ( 5 , 1 , 3 ) % add second p l o t in 3 x 1 grid
s c a t t e r ( time ( char lesProp ) /yr , k1_e ( char lesProp ) / k 1 _ c r i t i c a l *100 , p ts ize , '

r ' , ' f i l l e d ' )
s c a t t e r ( time (~ char lesProp ) /yr , k1_e (~ char lesProp ) / k 1 _ c r i t i c a l *100 , p ts ize , '

k ' , ' f i l l e d ' )

subplot ( 5 , 1 , 4 ) % add second p l o t in 3 x 1 grid
s c a t t e r ( time ( char lesProp ) /yr , delCrack ( char lesProp ) , p ts ize , ' r ' , ' f i l l e d ' )
s c a t t e r ( time (~ char lesProp ) /yr , delCrack (~ char lesProp ) , p ts ize , ' k ' , ' f i l l e d '

)

drawnow
end
i f p l o t I n t > 1000 && p l o t I n t == i

subplot ( 5 , 1 , 5 )
xes = 1 : i ;

% del_t ime = time ( f ind (~ charlesProp , 1 , ' l a s t ' ) ) − time ( 1 0 0 0 ) ;
% d e l _ c l _ e = c l _ e ( f ind (~ charlesProp , 1 , ' l a s t ' ) ) − c l _ e ( 1 0 0 0 ) ;

del_t ime = time ( 1 0 0 0 0 ) − time ( 1 0 0 0 ) ;
d e l _ c l _ e = c l _ e ( 1 0 0 0 0 ) − c l _ e ( 1 0 0 0 ) ;
ave_cl_e_per_t ime = d e l _ c l _ e /del_t ime ;
c l _ e _ t i e p o i n t = c l _ e ( 1 0 0 0 )−time ( 1 0 0 0 ) * ave_cl_e_per_t ime ;
c l_e_ var = cl_e−c l _ e _ t i e p o i n t−time * ave_cl_e_per_t ime ;
p l o t ( xes (~ char lesProp ) , c l_e _var (~ char lesProp ) , ' k ' ) ;
hold on
p l o t ( xes ( char lesProp ) , c l_e _var ( char lesProp ) , ' r ' ) ;

end
end

%% plot the summary of crack propagation for d i f f e r e n t geometries

func t ion s i n g l e B l o c k P l o t s ( S , c r i t R e c , crackSummary , d_Var , l_Var , h_Var )
% E x t r a c t the crack geometry d e t a i l s
%s e t t imes to f a i l u r e to i n v e s t i g a t e
S . TTFs = 4 ;
TTF = nan ( s i z e ( c r i t R e c , 1 ) ) ;
LTF = nan ( s i z e ( c r i t R e c , 1 ) , S . TTFs +1) ;
OTF = nan ( s i z e ( c r i t R e c , 1 ) , S . TTFs +1) ;
f o r i = 1 : s i z e ( c r i t R e c , 1 )

time_tmp = crackSummary ( c r i t R e c ( i , 1 ) , c r i t R e c ( i , 2 ) , c r i t R e c ( i , 3 ) ) . time ;
length_tmp = crackSummary ( c r i t R e c ( i , 1 ) , c r i t R e c ( i , 2 ) , c r i t R e c ( i , 3 ) ) . c l _ e ;
opening_tmp = crackSummary ( c r i t R e c ( i , 1 ) , c r i t R e c ( i , 2 ) , c r i t R e c ( i , 3 ) ) . delCrack ;
%get the time to f a i l u r e
TTF ( i ) = time_tmp ( end ) ;
%and crack lengths f o r various times p r i o r to f a i l u r e
f o r j = 1 : S . TTFs+1

i f ~isempty ( f ind ( TTF ( i ) − time_tmp ( : ) > S . yr *10^( j −1) , 1 , ' l a s t ' ) )
LTF ( i , j ) = length_tmp ( f ind ( TTF ( i ) − time_tmp ( : ) > S . yr *10^( j −1) , 1 , '

l a s t ' ) ) ;
OTF( i , j ) = opening_tmp ( f ind ( TTF ( i ) − time_tmp ( : ) > S . yr *10^( j −1) , 1 ,

' l a s t ' ) ) ;
end

end
c l e a r time_tmp length_tmp

end
%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% p l o t images f o r a l l geometries a t a given angle f o r a given time to f a i l u r e
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%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%make a grid to p l o t on
[ xq , yq ] = meshgrid ( l_Var , h_Var ) ;
f i g u r e ( 2 )
cnt = 0 ;
%f o r one angle
ds_tmp = 1 : c e i l ( length ( d_Var ) /5) : length ( d_Var ) ;
TTFs_tmp = 0 : S . TTFs ;
f o r i = ds_tmp

f o r k = 1 : length ( TTFs_tmp )
j = length ( TTFs_tmp )+1−k ;
cnt = cnt +1;
%e x t r a c t the data f o r t h i s p l o t
l_tmp = l_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 2 ) ) ' ;
h_tmp = h_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 3 ) ) ' ;
LTF_tmp = LTF ( c r i t R e c ( : , 1 ) == i , j ) ;
LTFpercent_tmp = LTF_tmp ./ h_tmp * 1 0 0 ;
%grid the data
vq = griddata ( l_tmp , h_tmp ' , LTFpercent_tmp , xq , yq ) ;

subplot ( length ( ds_tmp ) , length ( TTFs_tmp ) , cnt ) % add f i r s t p l o t in 3
x 1 grid

t i t l e ( s p r i n t f ( '%s %1.0 f%s %1.0 f%s ' , '% Len of ' , 10^TTFs_tmp ( j ) , ' yr to
f a i l on ' , d_Var ( i ) , ' deg ' ) )

hold on
x l a b e l ( ' Block length (m) ' ) ;
y l a b e l ( ' Block height (m) ' ) ;
x t i c k s = 5 : 5 : length ( l_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
x l a b e l s = l_Var ( 5 : 5 : length ( l_Var ) ) ; %time l a b e l s
s e t ( gca , ' XTick ' , x t i c k s , ' XTickLabel ' , x l a b e l s ) ;
y t i c k s = 2 : 2 : length ( h_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
y l a b e l s = l_Var ( 2 : 2 : length ( h_Var ) ) ; %time l a b e l s
s e t ( gca , ' YTick ' , y t i ck s , ' YTickLabel ' , y l a b e l s ) ;
imagesc ( vq , [0 1 0 0 ] )
a x i s square
c o l or ba r

end
end
%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% p l o t i n c r e a s e in crack length f o r a l l geometries a t a given angle f o r a given
time to f a i l u r e

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%make a grid to p l o t on
[ xq , yq ] = meshgrid ( l_Var , h_Var ) ;
f i g u r e ( 3 )
cnt = 0 ;
%f o r one angle
ds_tmp = 1 : c e i l ( length ( d_Var ) /5) : length ( d_Var ) ;
f o r i = ds_tmp

j = S . TTFs +1;
%e x t r a c t the data f o r t h i s p l o t
l_tmp = l_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 2 ) ) ' ;
h_tmp = h_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 3 ) ) ' ;
LTF_tmp = LTF ( c r i t R e c ( : , 1 ) == i , j ) ;
LTFpercent_ref = LTF_tmp ;%./ h_tmp * 1 0 0 ;

%f o r each time to f a i l u r e
f o r k = 1 : S . TTFs

j = S . TTFs+1 − k ;
cnt = cnt +1;
%e x t r a c t the data f o r t h i s p l o t
l_tmp = l_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 2 ) ) ' ;
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h_tmp = h_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 3 ) ) ' ;
LTF_tmp = LTF ( c r i t R e c ( : , 1 ) == i , j ) ;
LTFpercent_tmp = LTF_tmp ;%./ h_tmp * 1 0 0 ;
LTFpercentgrowth_tmp = LTFpercent_tmp − LTFpercent_ref ;
%grid the data
vq = griddata ( l_tmp , h_tmp ' , LTFpercentgrowth_tmp , xq , yq ) ;
LTFpercent_ref = LTFpercent_tmp ;

subplot ( length ( ds_tmp ) , S . TTFs , cnt ) % add f i r s t p l o t in 3 x 1 grid
t i t l e ( s p r i n t f ( '%s %1.0 f%s %1.0 f%s %1.0 f%s ' , ' Crack growth (m) from ' , 10^ j ,

' yr to ' , 10^( j −1) , ' yr f o r f a i l on ' , d_Var ( i ) , ' deg ' ) )
hold on
x l a b e l ( ' Block length (m) ' ) ;
y l a b e l ( ' Block height (m) ' ) ;
x t i c k s = 5 : 5 : length ( l_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
x l a b e l s = l_Var ( 5 : 5 : length ( l_Var ) ) ; %time l a b e l s
s e t ( gca , ' XTick ' , x t i c k s , ' XTickLabel ' , x l a b e l s ) ;
y t i c k s = 2 : 2 : length ( h_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
y l a b e l s = l_Var ( 2 : 2 : length ( h_Var ) ) ; %time l a b e l s
s e t ( gca , ' YTick ' , y t i ck s , ' YTickLabel ' , y l a b e l s ) ;
imagesc ( vq , [0 1 . 2 ] )
a x i s square
c o l or ba r

end
end

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% p l o t images f o r a l l geometries a t a given angle f o r a given time to f a i l u r e
%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%make a grid to p l o t on
[ xq , yq ] = meshgrid ( l_Var , h_Var ) ;
f i g u r e ( 4 )
cnt = 0 ;
%f o r one angle
ds_tmp = 1 : c e i l ( length ( d_Var ) /5) : length ( d_Var ) ;
TTFs_tmp = 0 : S . TTFs ;
f o r i = ds_tmp

f o r k = 1 : length ( TTFs_tmp )
j = length ( TTFs_tmp )+1−k ;
cnt = cnt +1;
%e x t r a c t the data f o r t h i s p l o t
l_tmp = l_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 2 ) ) ' ;
h_tmp = h_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 3 ) ) ' ;
OTF_tmp = OTF( c r i t R e c ( : , 1 ) == i , j ) ;
OTFpercent_tmp = OTF_tmp ;
%grid the data
vq = griddata ( l_tmp , h_tmp ' , OTFpercent_tmp , xq , yq ) ;

subplot ( length ( ds_tmp ) , length ( TTFs_tmp ) , cnt ) % add f i r s t p l o t in 3
x 1 grid

t i t l e ( s p r i n t f ( '%s %1.0 f%s %1.0 f%s ' , ' Opening (mm) of ' , 10^TTFs_tmp ( j ) , '
yr to f a i l on ' , d_Var ( i ) , ' deg ' ) )

hold on
x l a b e l ( ' Block length (m) ' ) ;
y l a b e l ( ' Block height (m) ' ) ;
x t i c k s = 5 : 5 : length ( l_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
x l a b e l s = l_Var ( 5 : 5 : length ( l_Var ) ) ; %time l a b e l s
s e t ( gca , ' XTick ' , x t i c k s , ' XTickLabel ' , x l a b e l s ) ;
y t i c k s = 2 : 2 : length ( h_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
y l a b e l s = l_Var ( 2 : 2 : length ( h_Var ) ) ; %time l a b e l s
s e t ( gca , ' YTick ' , y t i ck s , ' YTickLabel ' , y l a b e l s ) ;
imagesc ( vq *1000 , [0 1.5*10^−1])
a x i s square
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c o l or ba r
end

end

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% p l o t i n c r e a s e in crack opening f o r a l l geometries a t a given angle f o r a given
time to f a i l u r e

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%make a grid to p l o t on
[ xq , yq ] = meshgrid ( l_Var , h_Var ) ;
f i g u r e ( 5 )
cnt = 0 ;
%f o r one angle
ds_tmp = 1 : c e i l ( length ( d_Var ) /5) : length ( d_Var ) ;
f o r i = ds_tmp

j = length ( TTFs_tmp ) ;
%e x t r a c t the data f o r t h i s p l o t
l_tmp = l_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 2 ) ) ' ;
h_tmp = h_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 3 ) ) ' ;
OTF_tmp = OTF( c r i t R e c ( : , 1 ) == i , j ) ;
OTFpercent_ref = OTF_tmp ;%./ h_tmp * 1 0 0 ;

%f o r each time to f a i l u r e
f o r k = 1 : S . TTFs

j = S . TTFs+1 − k ;
cnt = cnt +1;
%e x t r a c t the data f o r t h i s p l o t
l_tmp = l_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 2 ) ) ' ;
h_tmp = h_Var ( c r i t R e c ( c r i t R e c ( : , 1 ) == i , 3 ) ) ' ;
OTF_tmp = OTF( c r i t R e c ( : , 1 ) == i , j ) ;
OTFpercent_tmp = OTF_tmp ;%./ h_tmp * 1 0 0 ;
OTFpercentgrowth_tmp = OTFpercent_tmp − OTFpercent_ref ;
%grid the data
vq = griddata ( l_tmp , h_tmp ' , OTFpercentgrowth_tmp , xq , yq ) ;
OTFpercent_ref = OTFpercent_tmp ;

subplot ( length ( ds_tmp ) , S . TTFs , cnt ) % add f i r s t p l o t in 3 x 1 grid
t i t l e ( s p r i n t f ( '%s %1.0 f%s %1.0 f%s %1.0 f%s ' , ' Crack opening (mm) from ' , 10^

j , ' yr to ' , 10^( j −1) , ' yr f o r f a i l on ' , d_Var ( i ) , ' deg ' ) )
hold on
x l a b e l ( ' Block length (m) ' ) ;
y l a b e l ( ' Block height (m) ' ) ;
x t i c k s = 5 : 5 : length ( l_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
x l a b e l s = l_Var ( 5 : 5 : length ( l_Var ) ) ; %time l a b e l s
s e t ( gca , ' XTick ' , x t i c k s , ' XTickLabel ' , x l a b e l s ) ;
y t i c k s = 2 : 2 : length ( h_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s

only
y l a b e l s = l_Var ( 2 : 2 : length ( h_Var ) ) ; %time l a b e l s
s e t ( gca , ' YTick ' , y t i ck s , ' YTickLabel ' , y l a b e l s ) ;
imagesc ( vq *1000 , [0 1*10^−1])
a x i s square
c o l or ba r

end
end

%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% p l o t images f o r a l l e x i t codes a t a given angle f o r a given time to f a i l u r e
%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%make a grid to p l o t on
f i g u r e ( 6 )
colormap ( j e t ( 5 ) )
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cnt = 0 ;
f o r i = ds_tmp

cnt = cnt +1;
%e x t r a c t the data f o r t h i s p l o t
exitCode_tmp = [ crackSummary ( i , : , : ) . exitCode ] ;
%reshape the data to produce a grid again
exitCode_tmp = reshape ( exitCode_tmp , s i z e ( crackSummary , 2 ) , s i z e (

crackSummary , 3 ) ) ' ;
%change 100 to −1
exitCode_tmp = exitCode_tmp +1;
exitCode_tmp ( exitCode_tmp == 101) = 6 ;

subplot ( length ( ds_tmp ) , 1 , cnt ) % add f i r s t p l o t in 3 x 1 grid
t i t l e ( s p r i n t f ( '%s %1.0 f%s ' , ' S t a b i l i t y modes f o r ' , d_Var ( i ) , ' deg ' ) )
hold on
x l a b e l ( ' Block length (m) ' ) ;
y l a b e l ( ' Block height (m) ' ) ;
x t i c k s = 5 : 5 : length ( l_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s only
x l a b e l s = l_Var ( 5 : 5 : length ( l_Var ) ) ; %time l a b e l s
s e t ( gca , ' XTick ' , x t i c k s , ' XTickLabel ' , x l a b e l s ) ;
y t i c k s = 2 : 2 : length ( h_Var ) ; %a d j u s t as appropriate , p o s i t i v e i n t e g e r s only
y l a b e l s = l_Var ( 2 : 2 : length ( h_Var ) ) ; %time l a b e l s
s e t ( gca , ' YTick ' , y t i ck s , ' YTickLabel ' , y l a b e l s ) ;
image ( exitCode_tmp )
a x i s square

end

l a b e l s = { ' Crack propagation to f a i l u r e ' , ' Base i s s t a b l e ' , ' block i s unstable
' , ' Toppling ' , ' dunno ' } ;

l c o l o r b a r ( l a b e l s , ' fontweight ' , ' bold ' ) ;

%p l o t the FIELD DATA blocks .
hold on
cnt =0;
f o r i = ds_tmp

cnt=cnt +1;
subplot ( length ( ds_tmp ) , 1 , cnt ) % add f i r s t p l o t in 3 x 1 grid

%S c a t t e r mul t ip l ied by 4 to get the same s c a l e as image .
% l e s s than <40
i f cnt ==1
% E x i s t i n g block
s c a t t e r ( Compileblocks . Length ( 1 : 1 9 ) * 4 , Compileblocks . Height ( 1 : 1 9 )

* 4 , 1 9 )
% Non e x i s t i n g block
s c a t t e r ( CompileNoneblocks1 . Length ( 1 : 2 ) * 4 , CompileNoneblocks1 . Height

( 1 : 2 ) * 4 , 1 9 , ' r ' )

% Between < 40− 50
e l s e i f cnt ==2

% E x i s t i n g block
s c a t t e r ( Compileblocks . Length ( 2 0 : 5 6 ) * 4 , Compileblocks . Height ( 2 0 : 5 6 )

* 4 , 1 9 )
% Non e x i s t i n g block

s c a t t e r ( CompileNoneblocks1 . Length ( 3 : 1 0 ) * 4 , CompileNoneblocks1 .
Height ( 3 : 1 0 ) * 4 , 1 9 , ' r ' )

%Between < 50− 60
e l s e i f cnt ==3

% E x i s t i n g block
s c a t t e r ( Compileblocks . Length ( 5 7 : 8 8 ) * 4 , Compileblocks . Height ( 5 7 : 8 8 )

* 4 , 1 9 )
% Non e x i s t i n g block

s c a t t e r ( CompileNoneblocks1 . Length ( 1 1 : end ) * 4 , CompileNoneblocks1 .
Height ( 1 1 : end ) * 4 , 1 9 , ' r ' )

end
hold o f f
end

end
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%% Calculate the crack aperture
func t ion [ delCrack ]= getCrackOpening (H, c l_e , s ig_dt , E )

%method can be : ' Gross_Brown ' , ' TadaV1 ' , ' TadaV2 ' )
Va_b=getFormula_V ( c l_e ,H, ' V_2 ' ) ;
delCrack=getDel ta ( s ig_dt , c l_e , Va_b , E ) ;

end

funct ion V=getFormula_V ( a , b , method )
vecLen=max( length ( a ) , length ( b ) ) ;

i f length ( a ) <vecLen
a= repmat ( a , 1 , vecLen ) ;

end

i f length ( b ) <vecLen
b= repmat ( b , 1 , vecLen ) ;

end

a_b=a ./ b ;

switch method

case ' V_1 '
% From : The s t r e s s a n a l y s i s of cracks Handbook , Tada 2000 . Crack opening at

the edge ( pag . 5 3 )
%Gross 0.5% accuracy f o r 0.2 < a/b <0.7
max_a_b = 0 . 9 9 ;
a_b=a_b ( a_b <= max_a_b ) ;
a = a ( a_b <= max_a_b ) ;
b = b ( a_b <= max_a_b ) ;

i f ~isempty ( a_b )
V=(1 .46+3 .42 . * (1 − cos ( pi . * a_b /2) ) ) . / ( cos ( pi . * a_b /2) . ^ 2 ) ;

e l s e
V=nan ;

end

case ' V_2 '
%1%accuracy f o r any a/b
max_a_b =1;
a_b=a_b ( a_b <= max_a_b ) ;
a = a ( a_b <= max_a_b ) ;
b = b ( a_b <= max_a_b ) ;

i f ~isempty ( a_b )
V=( a_b ./(1−a_b ) . ^ 2 ) . * (0 .99 − a_b .*(1− a_b ) . * ( 1 . 3 − 1 . 2 * a_b + 0 . 7 * ( a_b ) . ^ 2 ) ) ;

e l s e
V=nan ;

end
end

end

funct ion d e l t a =getDel ta ( s i g _ t , a , Va_b , E1 )
d e l t a = 4 . * s i g _ t . * a . * Va_b ./ E1 ;
end
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