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Abstract  
LiDAR as a tool for timber assortment assessment and characterization in 
mountain forests 
Cesar Ivan Alvites Diaz (cesar.alvites@unimol.it) 
Dept. of Bioscience and Territory, University of Molise, Pesche (IS), Italy. 
The timber assortment estimation from forests offers socio-economic and environmental benefits to humans. Its accurate 
assessment supports the better allocation and use of timber and reduces timber waste. It is of primordial importance in 
the sustainable management of forests, and the conservation of biodiversity over time. In the past, the traditional non-
destructive estimation method was commonly used, even if highly complex and with low performance, especially in 
natural and uneven-aged forests and old-intact forests. Now, in the present era, reliable and realistic representation of 
trees is possible through active remote sensing techniques such as Light Detection and Ranging (LiDAR). However, it 
has many operational and technical complexities (i.e., require expertise in data collection and processing), and the 
complexity of forest stand conditions is a further challenge (i.e., forest structure). These complexities are addressed in 
many studies, but a reliable method for extracting the timber assortment information using LiDAR data is still lacking. 
Hence, such a method would be extremely useful for valorising the timber resources and for promoting sustainable 
management activities.  
The aim of the thesis was to develop a robust procedure for timber assortment estimation of trees in a mixed-species and 
multi-layered forest using LiDAR data. To achieve the objective, the thesis is divided into three sub-objectives. The first 
research aim was to provide an overview of the most recent approaches used in timber assortment estimation using LiDAR 
data, through a literature review; the second study aim was to provide a stepwise approach to assess the stem volume and 
carbon stock at single tree level using Airborne Laser Scanning (ALS) data, while the third study aim was to provide a 
stepwise approach to retrieve the timber assortment information from forest stands using Terrestrial Laser scanning (TLS) 
data. These studies were carried out in Bosco Pennataro, a Mediterranean forest belonging to the Central Apennine 
Mountains in Molise (Italy).  
The first task on literature study proved that most research studies were focused on forest inventory (45.25 %) and forest 
productivity (23.46 %) topics, while few studies investigated the relation between the timber assortment and biodiversity 
conservation (7.26 %). Overall, the two most used LiDAR devices were ALS and TLS. Since 2010, machine learning 
algorithms have become essential for predicting, upscaling, modelling and classifying the LiDAR data as highlighted in 
many studies. The second task highlighted that the heterogeneity of forest structure (vertically and horizontally tree 
profiles) and the point cloud density are crucial for detecting single trees. The average detection rate was 48 % meaning 
that about half of trees were detected. The detection rate was higher in forests with heterogeneous structures regardless 
of the density of point clouds, reaching values between 0.49 and 0.65. The carbon stock was accurately predicted, with a 
bias ranging from -0.3 % to 1.5 %. The third task allowed to demonstrate that TLS greatly supports tree detection, 
recognizing 84.4% of trees, reconstructing 67% of detected trees and correctly quantifying 75% of merchantable logs. 
It is worthy to note that the two procedures (second and third studies) proposed in this thesis were tested for the first time 
for forest monitoring, especially in mixed-species and multi-layered forests. The implemented approach for detecting 
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trees using ALS data was found slightly more accurate in comparison with a study carried out previously in the same 
study area; improvement was more visible in understory trees. The unsupervised algorithms used in the detection approach 
allowed to identify the trees without previous knowledge of tree position and in a fast way. The stepwise approach applied 
to TLS data proved to be efficient for extracting the timber assortments for many tree species, especially the Q. cerris. 
Moreover, this approach provided many insights into TLS data improvement and use for timber assortment assessment. 
For instance, timber-leaf discrimination in the forest is possible through machine learning even in high species richness 
conditions. This thesis highlights the usefulness of LiDAR data for accurately and directly representing the timber 
assortment resources, avoiding destructive methods like cutting and felling of trees. This LiDAR technique also supports 
sustainable forest planning and management. 
 
Keywords: Sustainable forest management, remote sensing, Mediterranean forest, airborne laser scanning, terrestrial 
laser scanning. 
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Extended abstract 
Research framework 
Forests are essential for life, besides providing economic, social and environmental benefits to humans, 
they ensure human wellbeing for decades through their essential ecosystem services. Such benefits, 
however, are often fostered by the implementation of Sustainable Forest Management (SFM) actions, 
maximizing roundwood production and at the same time ensuring the delivery of other important forest 
ecosystem services (FRA 2015). In the last decades, the demand for roundwood, namely pulpwood, saw-
log, fuelwood and other roundwood categories, has increased, reaching 550 million m3 annually, 
representing a 40 % increment of total roundwood harvested (SoEF 2020). 
Roundwood represents an important source of income for forest owners, and it is central to modern and 
sustainable forest management through its crucial role in long-term carbon storage. Despite the forest 
potency in climate change mitigation, the correct estimates of its standing timber assortments are poorly 
explored, particularly in natural forests. National forest inventory and national statistical survey are the 
most common tools supporting currently the assessment of forest resources and forest chains, including 
timber assortments. Nonetheless, forest inventory is the most accurate non-destructive method for assessing 
forest resources, even if it is time-consuming, requires well-trained operators but overall low efficiency in 
describing the upper part of canopy (West 2009; La Marca and Notarangelo, 2009). Moreover, the true 
information is strongly affected by hindering factors, as forest stand accessibility, terrain slope, tree species 
richness, stem straightness, and stem tapering (Pinto et al. 2004; Kankare et al. 2014). Therefore, the 
destructive method, including bucking and sawing processes of felled trees, was previously considered 
solely the most accurate method for assessing timber assortments (Holopainen et al. 2010; Jukka et al. 
2010). But, an accurate and reliable method for assessing the timber assortments of standing trees is 
necessary to support and improve the quantification and description of timber assortments, forest 
productivity and for a more accurate carbon evaluation (FOREST EUROPE 2015). 
Light Detection and Ranging (LiDAR) is a powerful active remote sensing method, enabling the 
characterization of the stem profiles and morphology using georeferenced points. Nowadays, the most 
representative LiDAR data used for forest monitoring are Airborne Laser Scanning (ALS), Terrestrial Laser 
Scanning (TLS) and spaceborne LiDAR data (Beland et al. 2019). Though LiDAR is well known for forest 
planning and implementing SFM actions, its use for assessing timber assortments is still limited and 
therefore more efforts are made to fill this gap (Vastaranta et al. 2014; Saarinen et al. 2019). The use of 
LiDAR data for timber assortment evaluation can offer many insights, such as, the valorisation of 
abandoned forests, accurate quantification of the carbon stock stored in trees and the choice of trees with a 
lesser ecological value. Therefore, a study aimed to highlight both pros and cons of using LiDAR for 
assessing timber assortments as well as studies focused to improve timber detection rate are very important 
to support SFM, to valorise forest resources, to promote forest productivity and to better quantify the carbon 
stored in the forest resources regardless the management aims. In this thesis, we first developed a literature 
review aimed to retrieve the most pertinent information of the recent approaches for timber assortment 
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evaluation using LiDAR data, then, we propose two stepwise approaches to extract the timber assortment 
information from standing trees using both ALS and TLS data: 
The first study aims to provide an overview of the recent studies that used LiDAR data for timber assortment 
estimation between 2000 and 2018 using Elsevier’s Scopus ® search engine. 
The second study aims to introduce the combined use of two unsupervised techniques for carbon stock 
assessment at the tree level in a mixed-species and multi-layered forest using ALS data. 
The third study aims to introduce a stepwise approach for timber assortments estimation and classification 
using TLS data. 
Material and Methods 
Study 1: literature review 
To reach the aim of the first study, we follow three steps: 1) paper collection, 2) paper clustering, and 3) 
paper analysis. Firstly, using 10 keywords organized in 12 queries, we collected many scientific papers and 
stored these in a database through Elsevier’s Scopus ® search engine, in a timeframe 2000-2018. 
Subsequently, all the papers were accurately scrutinized and classified into six thematic clusters based on 
their main and secondary aims. Finally, we compared the methods and outputs among all papers to highlight 
the temporal evolution of LiDAR applications for timber assortments estimation. 
Study 2: tree detection and carbon quantification through ALS 
To reach the aim of the second study, we developed and implemented a stepwise approach consisting of 
the following five steps: 1) pre-processing of the ALS data; 2) grouping and stratifying the point clouds of 
each field plot in four complexity levels; 3) tree detection and segmentation; 4) validation of the predicted 
tree crowns; and 5) prediction of forest inventory variables. The collection of ALS data was carried out in 
2016 for 31 field plots (hereafter ADS) of 729 m2. The study area is located in a mixed-species and multi-
layered Mediterranean forest belonging to the Apennines Mountains, central Italy. First of all, the point 
cloud was clipped with the ADS boundaries. Subsequently, the field plots were categorized in four 
complexity levels (A, highly difficult; B, moderately easy; C, highly easy; D, moderately difficult) 
according to the three height variations and density of ADS point cloud. To better reflect the vertical 
stratification of tree crowns, each ADS point cloud was stratified into three layers (lower layer: small trees, 
intermediate layer: intermediate trees and upper layer: dominant and codominant trees). The pre-processing 
of each field plot point cloud was done on LAStools software. Seven accuracy parameters were used for 
validating the identification of trees, such as the detection rate (hereafter DR). The carbon stock prediction 
for each detected tree was assessed through Random Forests algorithm. 
Study 3: Assessing timber assortments through TLS 
A stepwise approach, consisting of the following four steps: 1) timber-leaves discrimination, 2) tree 
detection, 3) stem reconstruction, and 4) timber assortment estimation and classification was implemented. 
Theoretically, the first processing for obtaining the timber logs section from trunks was named bucking. 
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The bucking processing allows forest managers to divide the trunk timber section into several logs. The log 
is a desired timber section of the trunk axis with specific dimensions and length, and it can be classified 
into many types of assortments (i.e., saw-log). In our study, the trunk section was divided into merchantable 
(2.5 m ≤ length of log ≤ 3 m) and non-merchantable (2.5 m < length of log) logs; the merchantable logs 
were classified into one out of 15 types of assortments. The collection of TLS data was carried out in 2018 
and it covers five ADS of 729 m2 in the same study area of the previous study. The five ADS include a total 
of 12 tree species and 178 trees, wherein 70 of them were considered large trees, meaning trees with a 
diameter at breast height (DBH) higher than 20 cm. Finally, for the reconstructed trees, the timber 
assortments were recognized and categorized into one out of the 15 types of merchantable logs.   
Results 
Study 1: literature review 
A total of 179 papers were collected and stored in a database. The trend of the literature review highlights 
that there was a steady increment of publications from 2000 to 2016. The six clusters consisted in: Inventory 
(81 papers, 45.3 %), Productivity (42 papers, 23.5 %), Accuracy (24 papers, 13.41 %), Biodiversity (13 
papers, 7.3 %), Climate Change (8 papers, 4.8 %) and Review (11 papers, 6.1 %). Most of them were 
carried out in North America (43.40 %), and in Europe (42.77 %). The number of papers was equal for 
mixed and pure forests, 85 and 83 respectively. Most papers (75 %) were based on the ALS data, while 15 
% on spaceborne and 10 % on TLS, even if ALS and TLS resulted to be the most frequent devices used to 
assess timber assortments (i.e., inventory, and productivity). Since 2010, the integration between LiDAR 
and other remote sensing devices (satellite images) being increasingly used, particularly because that 
approach provides additional useful information (i.e., metrics) aimed to increase the performance of LiDAR 
data, especially when there is a low-quality point cloud (lower than 9 points m-2) through the high quality 
of remote sensing images (2.4 m per pixel). Furthermore, the integration approach between ALS and TLS 
proved to be useful for timber assortment assessment at plot level. Since 2010, machine learning algorithms 
became crucial for predicting, upscaling and classifying the ALS data, supporting large-scale forest 
monitoring. The main challenge in using ALS data was the DR, especially for small trees in mixed-species 
and multi-layered forests. Studies using TLS data revealed that the skeletonization, voxel-based and 
cylinder-fitting can be effective methods for reconstructing the architecture of trees, even if a clear 
connection with timber assortment evaluation was missed. 
Study 2: tree detection and carbon quantification through ALS 
The DR was greater for the ADS included in the highly easy (65 %) and moderately difficult (49 %) 
categories. A lesser detection accuracy was found for the ADS of moderately easy (DR = 43 %) and highly 
difficult (36 %) categories. The overall detection accuracy was found to be more accurate for intermediate 
layer (DR = 54 %) in comparison with lower layer (DR = 42 %) and upper layer (DR = 49 %). Overall, 952 
out of 2117 reference tree were detected. Significant values of coefficient of determination and root means 
squared error (RMSE) were showed for DBH (0.92; 4.03 cm), tree height (0.95; 1.33 m) and stem volume 
(0.82; 0.31 m3). A small absolute bias for the carbon stock prediction was shown for all four categories, 
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ranging from -0.8 (‘Highly easy’; relative bias = -0.46 %) to 0.1 tons’ ha-1 (‘Moderately difficult’; relative 
bias = -0.88 %). 
Study 3: Assessing timber assortments through TLS 
Timber-leaves discrimination of TLS point clouds was highly accurate, reaching an average accuracy of 
0.98. We were able to detect 151 out of 178 reference trees, accounting for 84.4 % (SD± = 4.7 %). An 
improved detection accuracy was observed for trees with a DBH higher to 30 cm due to all trees were 
correctly identified. As concern to stem reconstruction, we were capable to reconstruct 47 out of 70 large 
reference trees. The performance of the reconstruction proved to be accurate due to more than three-quarters 
of the trunk section was reconstructed for these 47 reconstructed trees, in detail 88.1% (SD = ±16.7 %). 
The stepwise approach allowed us to quantify 134 out of 179 reference merchantable logs, reaching an 
accuracy equal to 75 % (134 out of 179 reference merchantable logs). These 134 merchantable logs were 
classified in 11 out of 15 types of assortments. The classification of merchantable logs was more accurate 
for eight assortment types (i.e., some saw-log, pulpwood and other industrial roundwood), which was ± 2 
merchantable logs. 
Final remarks 
The results of this thesis revealed that the LiDAR data is a powerful source for assessing timber assortments 
from standing trees, regardless of the complexity of forest structure. This statement is supported by the 
power of LiDAR data to represent the vegetation structure rapidly, remotely and accurately. Over the years, 
the main hindering factors that conditioned the use of LiDAR for forest monitoring were gradually reduced, 
as for example, the availability of open-source LiDAR data for the whole Earth surface; the cost-
effectiveness ratio is increasingly being suited; the availability of intuitive and free approaches for 
characterizing the trees (i.e. CloudCompare software, Computree, TreeLS), for tree detection (reFLex, MS-
TSI algorithms) and for machine learning analysis (R packages) is even improved. Nonetheless, recent 
studies proved that handling LiDAR devices (i.e., portable laser scanning) can even be used for remote 
forest areas or areas where is not possible to flight for some reasons (e.g., ENAC restrictions). 
The literature review revealed that the success of the use of ALS for timber assortment assessment was 
conditioned by the detection accuracy. More efforts aimed to increase the detection accuracy, especially 
for small trees (DBH ≤ 20 cm), are still highly required, therefore, an alternative approach focused on 
detecting the trees through canopy layers can be useful to overcome this challenge. 
We proposed, for the first time, an unsupervised tree detection approach for detecting trees in a mixed and 
multi-layered Mediterranean forest, as well as to use random forests for predicting the carbons stock of 
detected trees. It is worth noting that the investigated forest structure was complex and characterized by 13 
different tree species. A stratification of the ALS point cloud was useful to simulate the vertical separation 
of strata. Enhanced detection accuracy was found in the ADS with significant structural heterogeneity, 
especially those covered with more than 30 points m-2, reaching an average detection accuracy equal to 65 
%. However, this detection accuracy decreases until 49 %, as the point density decreases. The accuracy 
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obtained in our study was slightly higher than the accuracy obtained from a similar study in the same forest 
stand condition in 2016 (Sačkov et al. 2016). Some strengths of our unsupervised approach reside in the 
capability for detecting trees without previous knowledge of stem position and in a fast way (about 65 sec 
per ADS). The obtained accuracy of carbon stock assessment for each detected tree was found to be 
comparable with the accuracy obtained for simple forest structure, as in pure forest stands of temperate 
forests (Popescu 2007). In the light of the above, our approach offered a considerable improvement for 
detecting the small trees, and it can be used for timber assortment assessment in forests with complex forest 
structures.  
Unlike the ALS studies, to date, several approaches are available to automatically process the TLS data in 
order to characterize the trees (i.e., stem volume, trunk volume), specifically, the cylinder-fitting approach. 
Unfortunately, a study using the cylinder-fitting approach for timber assortment evaluation from standing 
trees is still required. In this regard, we propose, for the first time, a stepwise approach for timber assortment 
assessment through the cylinder-fitting approach. To reach this, accurate timber-leaf discrimination of 
points was achieved through Random forests algorithm. This discrimination proved to be useful to free the 
timber points from leaf points, and it allowed us to reconstruct the trunk using the cylinder-fitting algorithm. 
However, the challenge in reconstructing the trunk was given to the stem form, the presence of lianas, 
bulges and microhabitats. Nevertheless, the proportion of reconstructed reference trees was rather high 
(0.67) considering the heterogeneous structure and the richness of tree species. This accurate reconstruction 
was validated by the accurate prediction of trunk volume for detected trees (coefficient of determination = 
0.91; RMSE = 0.03 m3). A good quantity of extracted logs from the trunk section was surveyed and 
classified into eleven different assortments. In summary, our stepwise approach allowed us to accurately 
quantify and classify the logs derived from standing trees using TLS data in mixed-species and multi-
layered forests.  
In conclusion, in this thesis, the literature review allowed us to identify the most important challenges and 
opportunities derived from LiDAR studies. As a result, we used some promising techniques for overcoming 
the challenges, as for example, the unsupervised algorithms for detecting the trees. The two stepwise 
approaches implementing for ALS and TLS data were tested for the first time for such targets, especially 
in mixed-species and multi-layered forests. Their application in other forests could provide better results 
than that obtained in our study, based on the heterogeneity of forest structure. As regards the ALS data, we 
discovered that the forest structural heterogeneity plays a slightly more important role than the point cloud 
in the occlusion of points in a tree detection step. In fact, in the down part of the canopy, where the point 
incidence is reduced, the detection accuracy decrease. As regards the TLS data, we discovered that optimal 
discrimination of timber-leaves points can facilitate the reconstruction of trees using the cylinder-fitting 
approach. However, the accuracy of that reconstruction was adjusted by the tree species and the stem 
defects (i.e., bulges. knots). Nevertheless, a study implementing our approach in other forest conditions can 
be useful to a deeper understanding of the potential of both stepwise approaches. The efficient use of timber 
resources in forests managed with conservative purposes could help to cater both the productivity and 
biodiversity, and at the same time it could allow managing the forest under SFM criteria. It is worth to note 
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that the timber resource in inner Italian forest areas is mainly used for energy purpose. Therefore, further 
efforts for valorising these forests can reduce the dependence from timber imported from extra EU countries 
and increasing the efficient use of our own timber resources. In addition, since the usability of this approach 
can result difficult to share with no expert, we thought that an intuitive, accurate and fast mobile app could 
be useful to overcome this challenge, so in future, it could be an interesting road to follows. 
Final remarks 
The results of this thesis revealed that the LiDAR data is a powerful source for assessing timber assortments 
from standing trees, regardless of the complexity of forest structure. This statement is supported by the 
power of LiDAR data to represent the vegetation structure rapidly, remotely and accurately. Over the years, 
the main hindering factors that conditioned the use of LiDAR for forest monitoring were gradually reduced, 
as for example, the availability of open-source LiDAR data for the whole Earth surface; the cost-
effectiveness ratio is increasingly being suited; the availability of intuitive and free approaches for 
characterizing the trees (i.e. CloudCompare software, Computree, TreeLS), for tree detection (reFLex, MS-
TSI algorithms) and for machine learning analysis (R packages) is even improved. Nonetheless, recent 
studies proved that handling LiDAR devices (i.e. portable laser scanning) can even be used for remote 
forest areas or areas where is not possible to flight for some reasons (e.g., ENAC restrictions). 
The literature review revealed that the success of the use of ALS for timber assortment assessment was 
conditioned by the detection accuracy. More efforts aimed to increase the detection accuracy, especially 
for small trees (DBH ≤ 20 cm), are still highly required, therefore, an alternative approach focused on 
detecting the trees through canopy layers can be useful to overcome this challenge. 
We proposed, for the first time, an unsupervised tree detection approach for detecting trees in a mixed and 
multi-layered Mediterranean forest, as well as to use random forests for predicting the carbons stock of 
detected trees. It is worth noting that the investigated forest structure was complex and characterized by 13 
different tree species. A stratification of the ALS point cloud was useful to simulate the vertical separation 
of strata. Enhanced detection accuracy was found in the ADS with significant structural heterogeneity, 
especially those covered with more than 30 points m-2, reaching an average detection accuracy equal to 65 
%. However, this detection accuracy decreases until 49 %, as the point density decreases. The accuracy 
obtained in our study was slightly higher than the accuracy obtained from a similar study in the same forest 
stand condition in 2016 (Sačkov et al. 2016). Some strengths of our unsupervised approach reside in the 
capability for detecting trees without previous knowledge of stem position and in a fast way (about 65 sec 
per ADS). The obtained accuracy of carbon stock assessment for each detected tree was found to be 
comparable with the accuracy obtained for simple forest structure, as in pure forest stands of temperate 
forests (Popescu 2007). In the light of the above, our approach offered a considerable improvement for 
detecting the small trees, and it can be used for timber assortment assessment in forests with complex forest 
structures.  
Unlike the ALS studies, to date, several approaches are available to automatically process the TLS data in 
order to characterize the trees (i.e. stem volume, trunk volume), specifically, the cylinder-fitting approach. 
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Unfortunately, a study using the cylinder-fitting approach for timber assortment evaluation from standing 
trees is still required. In this regard, we propose, for the first time, a stepwise approach for timber assortment 
assessment through the cylinder-fitting approach. To reach this, accurate timber-leaf discrimination of 
points was achieved through Random forests algorithm. This discrimination proved to be useful to free the 
timber points from leaves points and it allowed us to reconstruct the trunk using the cylinder-fitting 
algorithm. However, the challenge in reconstructing the trunk was given to the stem form, the presence of 
lianas, bulges and microhabitats. Nevertheless, the proportion of reconstructed reference trees was rather 
high (0.67) considering the heterogeneous structure and the richness of tree species. This accurate 
reconstruction was validated by the accurate prediction of trunk volume for detected trees (coefficient of 
determination = 0.91; RMSE = 0.03 m3). A good quantity of extracted logs from the trunk section was 
surveyed and classified into eleven different assortments. In summary, our stepwise approach allowed us 
to accurately quantify and classify the logs derived from standing trees using TLS data in mixed-species 
and multi-layered forests.  
In conclusion, in this thesis, the literature review allowed us to identify the most important challenges and 
opportunities derived from LiDAR studies. As a result, we used some promising techniques for overcoming 
the challenges, as for example, the unsupervised algorithms for detecting the trees. The two stepwise 
approaches implementing for ALS and TLS data were tested for the first time for such targets, especially 
in mixed-species and multi-layered forests. Their application in other forests could provide better results 
than that obtained in our study based on the heterogeneity of forest structure. As regards the ALS data, we 
discovered that the forest structural heterogeneity plays a slightly more important role than the point cloud 
in the occlusion of points in a tree detection step. In fact, in the down part of the canopy, where the point 
incidence is reduced, the detection accuracy decrease. As regards the TLS data, we discovered that optimal 
discrimination of timber-leaves points can facilitate the reconstruction of trees using the cylinder-fitting 
approach. However, the accuracy of that reconstruction was adjusted by the tree species and the stem 
defects (i.e. bulges. knots). Nevertheless, a study implementing our approach in other forest conditions can 
be useful to a deeper understanding of the potential of both stepwise approaches. The efficient use of timber 
resources in forests managed with conservative purposes could help to cater both the productivity and 
biodiversity and at the same time it could allow managing the forest under SFM criteria. It is worth to note 
that the timber resource in inner Italian forest areas is mainly used for energy purpose. Therefore, further 
efforts for valorising these forests can reduce the dependence from timber imported from extra EU countries 
and increasing the efficient use of our own timber resources. In addition, since the usability of this approach 
can result difficult to share with no expert, we thought that an intuitive, accurate and fast mobile app could 
be useful to overcome this challenge, so in future, it could be an interesting road to follow.  
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1. CHAPTER 1- Introduction  
 
Forest can provide many goods and services to society, e.g., roundwood, no-timber forest products, genetic 
resources and biodiversity conservation and climate change mitigation (MEA 2005). Accurate roundwood 
information, from forests, became crucial to increase socio-economic and environmental benefits to forest 
owners and stakeholders; however, managing the forest towards sustainable forest management (SFM) 
became a crucial step (SoEF 2020). The European forests, accounting for 35 % of the total territory, provide 
about 550 million m³ annually of the marketed roundwood (SoEF 2020). In merchantable terms, the 
roundwood can be categorized in several timber assortments (i.e., saw-log, pulpwood, woodfuel) (SoEF 
2020). Historically, the most accurate method for assessing timber assortment is the destructive one, 
because it considers the real log length and stem form (Jukka et al. 2010; Togni 2017). Moreover, such 
tendency was even supported by the challenges derived from the implementation of non-destructive 
methods, as forest inventory, which proved to be less accurate in the upper part of the canopy (West 2009). 
However, implementing the non-destructive methods might mean the timber assortment valorisation and 
the scheduling of SFM activities (Santopuoli et al. 2016). Therefore, an accurate and reliable non-
destructive method could be crucial for timber assortment assessment of standing trees. 
Since 2000, a representative non-destructive method, named LiDAR (Light Detection and Ranging), 
became a powerful tool for characterizing the structure of forests and trees through georeferenced points 
(Næsset 2002). The power of LiDAR was widely proved to accurately predict forest inventory variables, 
and therefore it was used for supporting local and national forest inventory (McRoberts and Tomppo, 2007; 
Næsset et al. 2011; Chirici et al. 2016) as well as, to schedule SFM activities aimed at promoting the 
biodiversity conservation (Barbati et al. 2014; Chirici et al. 2020) and the delivery of other important forest 
ecosystem services. 
LiDAR's data were categorized into three types of sources: terrestrial, airborne and spaceborne LiDAR 
sources (Beland et al. 2019). The most implemented LiDAR devices were airborne laser scanning (ALS) 
and Terrestrial laser scanning (TLS) and spaceborne LiDAR data (Beland et al. 2019). Whereas the 
spaceborne LiDAR data is composed primarily by Earth satellite information, such as, GLAS (Geoscience 
Laser Altimeter System; https://icesat.gsfc.nasa.gov/), ATLAS (Advanced Topographic Laser Altimeter 
System; https://icesat-2.gsfc.nasa.gov/), GEDI (Global Ecosystem Dynamics Investigation; 
https://gedi.umd.edu/) and MOLI (Multi-footprint Observation Lidar and Imager; https://www.wmo-
sat.info/)(Beland et al. 2019).  
Some studies using ALS data demonstrated that many hectares of forests can be monitored by each 
conducted flight strip, and it can be at an affordable price and with a suit cost-effectiveness ratio (Montaghi 
et al. 2013; Kelly and DiTommaso, 2015). Some studies using TLS data proved that even if a small part of 
forests can be monitored by each fixed device mounted on the tripod, the description of the stem form of 
trees is assured (Liang et al. 2018). Studies combining the ALS with TLS proved to be more accurate than 
studies using solely the ALS data, however, the TLS data plays a crucial role in modelling the tree structure 
(Liu et al. 2017; Giannetti et al. 2018) Studies using spaceborne LiDAR data suggested that the tree 
structure and stem volume can be accurately described at worldwide level (Beland et al. 2019). 
19 
 
LiDAR as a tool for timber assortment assessment and characterization in mountain forests 
In the light of the above, the ALS and TLS are presented as effective data for timber assortment assessment 
(Kankare et al. 2014; Liang et al. 2018; Wan et al. 2019). For ALS studies, despite the capability for 
monitoring forest where is not possible to flight for some reasons is promising, the performance of ALS 
models proved to be less accurate in mixed than pure stands, especially in multi-layered forest (Wang et al. 
2016, 2017). For TLS studies, despite many semi-automatic and automatic algorithms are available for 
stem form reconstruction, the success is strongly conditioned by many aspects, such as, operational (i.e., 
georeferencing, licenses), technical (i.e., automatic algorithms, huge quantity of data to manage), weather 
conditions, scan mode and forest stand structure (Wan et al. 2019).  
The findings obtained in ALS and TLS allowed improving the management of forests based on SFM aims, 
as maintaining the forest resource and carbon cycles (Chen 2015), ensuring the forest health and vitality 
(Junttila 2014) and conserving forest biological diversity (Kelly and DiTommaso, 2015). Few studies using 
ALS data to determine the health status of forests were even reported, such as, fire, insect, and disease 
hazard issues (Smigaj et al. 2019). Studies using TLS to investigate ecological aspects were even displayed, 
e.g., tree species composition (Othmani et al. 2016), land cover classification (Walicka et al. 2019), the 
habitat quality of bird species (Michel et al. 2008), and tree-related microhabitats (Santopuoli et al. 2020; 
Rehush et al. 2019).  
Despite the challenges and opportunities offering the LiDAR data to the forest science community, to date, 
a reliable and feasible approach using ALS data for timber assortment assessment was still necessary, 
especially at single tree level and for mixed-species and multi-layered forest (Silva et al. 2017). It is worth 
noting that, the use of ALS data can be affected by tree detection challenges, especially in multi-layered 
forests (Holopainen et al. 2010). Nevertheless, the use of TLS data, including many robust algorithms, i.e., 
TreeQSM (Raumonen et al. 2013), Simple-Tree (Hackenberg et al. 2015), requires further efforts for 
extracting the qualitative and quantitative description of timber assortment of standing trees (Saarinen et 
al. 2019; Chianucci et al. 2020). 
Even if concrete advances to overcome the tree detection challenges were provided by many algorithms 
(i.e., reFLex algorithm, Multisource Single-Tree Inventory “MS-STI”, robust processing), a well-quality 
of the point cloud (higher than 30 points m-2), followed by a stratification approach were mandatory 
prerequisites (Sačkov et al. 2016; Hamraz et al. 2017). A robust algorithm using TLS data for reconstructing 
the stem form, named the cylinder-fitting approach (Pfeifer et al. 2004; Liang et al. 2018), was capable to 
reconstruct the trunk section of trees.  
In the light of the foregoing, a study aimed at summarizing the most pertinent and available approaches for 
timber assortment assessment is still needed, and two stepwise approaches using ALS and TLS data for 
extracting the timber assortment information from standing trees were developed and described in this 
thesis. This study can be useful to optimize the use of timber sources from forests. In this thesis, three 
studies were described: 
 
1. To gain insights from the recent studies using LiDAR data for timber assortment assessment, a 
literature review was proposed, namely “Challenges and opportunities for timber assortment 
evaluation through LiDAR. A review.”;  
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2. To overcome the principal hindering factor affecting the detection of trees into ALS studies, 
making the timber assortment estimation, an unsupervised method was proposed for detecting and 
segmenting the trees in mixed-species and multi-layered Mediterranean forests namely 
“Unsupervised algorithms to detect single trees in a mixed-species and multi-layered 
Mediterranean forest using LiDAR data”; 
3. To extract the timber assortment from standing trees using TLS data in mixed-species and multi-
layered Mediterranean forest, a stepwise procedure was proposed, namely “A stepwise approach 
for deriving timber assortment of trees from Terrestrial Laser Scanning data”. 
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2. CHAPTER 2 – Paper review and scientific papers  
2.1. Challenges and opportunities for timber assortment 
evaluation through LiDAR. A review. 
2.1.1.  Preface  
In the forest, quantifying and classifying accurately the timber assortments from standing trees results in 
timber valorisation and allocation. Light Detection and ranging (LiDAR) is a promising source suitable to 
reconstruct the stem form using point cloud. It can be categorized into three different sources: terrestrial, 
airborne and spaceborne LiDAR sources (Beland et al. 2019). The most implemented approaches for 
analysing LiDAR data are the area-based approach (ABA) and individual tree detection (ITD). The ABA 
was used for predicting several forest inventory variables and vegetation indices at plot level (Næsset et al. 
2011; McRoberts et al. 2015). ITD was used for gathering stem form information from standing trees 
(Sackov et al. 2019; Wang et al. 2016). Nowadays, a better representation of the stem form was procured 
following ITD with respect to ABA. However, since there is a lot of information about ABA 
implementation, the processing used in ABA studies can even be useful for timber assortment assessment. 
This means that both approaches can provide valuable information to quantify and classify the timber 
assortment from standing trees using LiDAR data (White et al. 2014; Silva et al. 2017). Therefore, the 
objective of this study is to explore the challenges and opportunities derived from the implementation of 
LiDAR data for timber assortment assessment in the period 2000-2018. 
2.1.2.  Abstract  
Timber assortment estimation became crucial information for retrieving economic and social benefits from 
forest stands. Nowadays, for timber assortment estimation, the most implemented non-destructive method 
is that traditional, while the most accurate method is that destructive. Light Detection and Ranging (LiDAR) 
is a powerful technology for depicting the tree profiles using georeferenced 3D point clouds. LiDAR gained 
more attention from forest researchers due to its capability to provide accurate tree structure representation, 
as well as the versatility to cope with many forest issues Nevertheless, studies using LiDAR data for timber 
assortment assessment are still necessary, especially at single tree level. In this context, an overview of the 
methods available for implementing LiDAR data on timber assortment estimation can be useful firstly to 
implement LiDAR data for timber assortment assessment and secondly to promote the efficient extraction 
of the timber products, making it more sustainable the management of forests. 
This paper aims to provide an overview of the recent studies that used LiDAR data for timber assortment 
estimation between 2000 and 2018 using Elsevier’s Scopus ® search engine. To reach this objective, the 
study follows three steps: 1) paper collection, 2) paper classification, and 3) paper analysis. A total of 179 
papers were collected and grouped in six thematic forest topics: Inventory (45.25 %), Productivity (23.46 
%), Accuracy (13.41 %), Biodiversity (7.26 %), Climate Change (4.47 %) and Review (6.15 %). Nearby, 
half of the papers were focused on gathering forest inventory information of forest stand. Almost one-
quarter of papers have investigated forest productivity issues. Airborne and terrestrial LiDAR devices were 
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used for monitoring forest productivity issues. Though the airborne LiDAR devices reached to cover even 
large forest areas, detecting of trees remains a challenging step. Though the terrestrial LiDAR devices were 
capable to reconstruct the stems, the success of the collection of terrestrial LiDAR data depends on the 
operability, technical aspects and weather conditions. The integration of ALS with TLS proved to be an 
effective method for timber assortment prediction at plot level, however, among them, TLS data showed 
higher accuracy. The implementation of machine learning algorithms became effective for predicting, 
upscaling, modelling and classifying the LiDAR data in forest studies. However, studies using machine 
learning algorithms for timber assortment assessment were still limited, especially at single tree level. 
Further insights concerning the analysis of the combined use of LiDAR devices through machine learning 
algorithms can be useful information to promote accurate and faithful timber assortment estimation for 
large areas. 
Keywords: Timber quality, timber provision, ALS, TLS, 3D modelling, saw-log, pulpwood. 
2.1.3. Introduction 
2.1.3.1.  Background:  
In recent decades, remote sensing techniques, especially the Light Detection and Ranging (LiDAR), became 
crucial and increasingly applied for monitoring forest ecosystems (Wulder et al., 2008), and assessing many 
aspects of sustainable forest management (SFM). The huge versatility of the LiDAR data, due to the high 
accuracy and the amount of data provided, will further increase its implementation in forest management 
and planning. 
To date, LiDAR data can be obtained by three types of sources, such as satellite, airborne and terrestrial 
devices (Van Leeuwen et al. 2011; Montaghi et al. 2013). The satellite LiDAR data fosters the monitoring 
of the large forest areas periodically, with a continuous global observation of the Earth, allowing the 
temporal analysis and monitoring of changes over time (https://icesat.gsfc.nasa.gov/icesat/glas.php). 
Airborne Laser Scanning (ALS) represents the most suitable LiDAR device at landscape and local scales 
used for forest inventory and research purposes as a decision support tool for forest planning and 
management due to it provides high-resolution point clouds (Næsset 2002; McRoberts et al. 2015; Chirici 
et al. 2020). Conversely, Terrestrial Laser Scanner (TLS) is a powerful device to provide very high-
resolution point clouds at stand level, ensuring an accurate assessment of tree structure, even if several 
scans are necessary to cover a small forest area, resulting very expensive and time-consuming (Dassot et 
al. 2011; Liang et al. 2019; Saarinen et al. 2017). 
In addition to LiDAR platform sources, the modelling of forest measurements can be derived from two 
main approaches, namely the area-based approach (ABA) and the individual-tree detection (ITD) approach 
(Montaghi et al. 2013). The ABA is the most common approach used for forest inventory, allowing the 
assessment of the forest inventory variables (FIVs), as the estimation of above-ground biomass, tree height, 
and the carbon stock (Næsset et al. 2011; N. d’Oliveira et al. 2012; White et al. 2014). Usually, LiDAR 
metrics (summary statistics of point clouds about the height measurements) are compared with reference 
data, to generate most of the common FIVs and forest structural indices (Vis) through regression models 
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(Næsset 2002; McRoberts et al. 2015) (Mura et al. 2016). Unlike the ABA, the ITD approach includes the 
detection and segmentation of single trees, providing accurate reproduction of tree characteristics, as 
dimension and defects, at the tree level (i.e. tree diameter, basal area, stem volume, tree structure). However, 
ITD is less implemented, particularly for irregular forests as mixed forests, due to the high tree density for 
which a very high-resolution point cloud is required (Kaartinen et al. 2012; Wang et al. 2016). Though the 
implementation of both approaches resulted quite common for forest inventory assessment, depending on 
the availability of costs and well-trained personnel, some recent studies highlight that LiDAR can be very 
helpful to investigate particular forest management aspects, as for example forest biodiversity (Santopuoli 
et al. 2020; Rehush et al. 2018). Moreover, several authors stated that the integration of data from ABA 
and ITD allows obtaining better accuracy in forest inventory assessment (Tompalski et al. 2015; Shinzato 
et al. 2017). 
Despite the use of LiDAR in forest monitoring and planning is increased over the years, with highly 
successful implementations, information about the hindering factors in using LiDAR technology is barely 
reported. This aspect is particularly important for supporting the assessment of timber assortments and 
fostering the active and sustainable management of forest ecosystems. For this reason, an overview 
concerning the LiDAR sources and methodological approaches should provide crucial information to take 
advantage in forest monitoring and planning. This is even more evident considering the rapidness of climate 
change scenario and loss of biodiversity as emerged by both European Union Forest and Biodiversity 
Strategies. This study aims to highlight the state of the art about the recent advantages and challenges 
concerning the use of LiDAR for assessing FIVs and timber assortments through a literature review 
between 2000 and 2018. To reach this goal, scientific papers were collected using 10 keywords concerning 
timber assortment in the Elsevier’s Scopus ® search engine. After a brief description of the most common 
applications of LiDAR in forestry, the paper describes the main approaches and LiDAR devices used over 
the years. The implementation of the literature review is explained in section 2, while results, discussion 
and conclusion are described in sections 3, 4 and 5 respectively. 
2.1.3.2. State-of-the-Art: 
Over the years, the contribution of LIDAR being increased consistently on SFM implementation, covering 
most of the criteria and indicators for SFM, such as forest cover, forest health and vitality, timber 
production, conservation of biodiversity, protective function (Kelly and  Di Tommaso, 2015).  The interest 
of such contributes resides in the capability of LiDAR data to provide accurate estimates of forest variables 
with respect to those collected through surveyed field data (Næsset 2002; McRoberts et al. 2015). 
Beyond the most common FIVs, and the assessment of forest structure through the evaluation of the spatial 
distribution of trees and canopy, both vertically and horizontally, LiDAR was used to assess the habitat 
quality of forests (Clawges et al. 2008; Riedler et al. 2015) or also the forest biodiversity, through the 
evaluation of the leaf characteristics associated with the movement of Neotropical migrant songbird 
population (Goetz et al. 2010). Some authors demonstrated how point clouds were used for assessing 
ecological aspects, as tree species composition (Hollaus et al. 2009; Zhao et al. 2018), land cover 
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classification (Sasaki et al. 2012) and tree-related microhabitats (Santopuoli et al. 2020; Rehush et al. 
2018). Few studies aimed to assess forest disturbances and diseases as damages caused by insects, pests 
and fire (Junttila 2014; Smigaj et al. 2019). Moreover, some authors used ALS data (Vastaranta et al. 2014; 
Xu et al. 2016) for assessing the merchantable timber retrieved from forests, mainly in pure conifer forest 
stands, in Scandinavia (White et al. 2014), and Brazil (Silva et al. 2017). 
Considering the high versatility of LiDAR applications, and the increased operational implementation of 
LiDAR devices in forest management and planning, a well detailed and comprehensive review showing 
details about the LiDAR implementation, the pre-processing and processing methods, for predicting timber 
assortment could represent an important step to promote knowledge and to foster its implementation for 
assessing timber assortments estimates to support forest management and to schedule the forest activities 
in light of the recent threats/crisis concerned the climate change and biodiversity loss (Silva et al. 2017). 
Considering the high versatility of LiDAR applications, and the increased operational implementation of 
LiDAR devices in forest management and planning, a well detailed and comprehensive review showing 
details about the LiDAR implementation, the pre-processing and processing methods, for predicting timber 
assortment could represent an important step to promote knowledge and to foster its implementation for 
assessing timber assortments estimates to support forest management and to schedule the forest activities 
in light of the recent threats/crisis concerned the climate change and biodiversity loss. 
2.1.4. Material and Methods 
The literature review was carried out through three steps: paper collection, paper classification, and paper 
analysis (Figure 1). 
 
FIGURE 1 WORKFLOW OF THE PAPER COLLECTION, CLASSIFICATION AND ANALYSIS 
2.1.4.1.  Paper collection  
The literature review was carried out in November 2018 using Elsevier’s Scopus ® database. Ten keywords 
(Table 1) were used as input data to create 12 different queries, within which “Remote Sensing”, “LiDAR” 
and “Forest* or woodland” represented the fixed words for the codes (Figure 1; Table 2). Moreover, to give 
more emphasis on the timber assortments we use “timber”, “wood”, “branch” and “stem” as research words. 
Research papers were searched in three target sources “article title”, “abstract” and “keywords” in the 
period (2000-2018; July ends). The setting of the time frame is supported by the fact that the firsts LiDAR 
studies for mapping forest covers were done in the early 2000s (Wehr and Lohr, 1999). We did not use any 
restrictions, but non-English papers were excluded from the analysis.  
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TABLE 1 DESCRIPTION OF KEYWORDS USED TO RETRIEVE THE INFORMATION ABOUT LIDAR STUDIES. ADDITIONAL 
DETAILS ABOUT THE TERMS AND DEFINITIONS (A) ARE AVAILABLE AT 
HTTP://WWW.FAO.ORG/FORESTRY/FRA2015/ 
Description of the keywords 
N
Keyword Description study 
° 
It is the most important tool used for mapping forest covers through the (McRoberts and 
reflected energy from the Earth (i.e. sunlight). Tomppo, 2007) 
Remote sensing 
1 https://earthdata.nasa.g
(RS) 
ov/learn/backgrounder
s/remote-sensing 
It is an active RS device, suitable to rapidly and directly depict the trees 
2 LiDAR using 3D georeferenced points over different forest stands for large and (Næsset 2002, 2011) 
small areas. 
‘Forest’ is the land covered by more than 0.5 ha with trees able to reach a 
minimum of 5 m of height, which possess a canopy cover of more than 
(FOREST EUROPE 
10 %; while the “woodland” is a land covered by more than 0.5 ha with 
3 Forest or Woodland 2015) (a) 
trees able to reach 5 m of height at maturity, which possess a canopy 
 
cover of 5 - 10 %; or land covered by a combined cover of shrubs, 
bushes, and trees above 10 %. 
‘Timber’ and ‘wood’ are some of the most important goods provided by (FOREST EUROPE 
4 Timber or Wood 
forests, and they play a role important in the wood supply chain. and F.A.O. 2015) 
‘Stem’ is the above-ground trunk of a vascular plant with similar 
(Hauglin et al. 2013; 
5 Stem or Branch anatomical properties, while 'branch' is the woody part of the tree that 
Saarinen et al. 2017) 
arising from a trunk. 
Hardwood or ‘Hardwood’ is commonly associated with deciduous stand (denser wood), 
6 (Lim et al. 2003) 
softwood while “softwood” is often associated with coniferous (less dense wood). 
It indicates a tall plant composed of trunk and branches. Moreover, it is a (a) 
7 Tree 
principal component of both forest and woodland areas.  
‘Quality’ groups physical and chemical characteristics used for 
Quality or classifying wood based on specific wood features.; while the ‘assortment’ (a) 
8 
assortment term is widely used to characterize the log of trees according to a (Jukka et al. 2010) 
merchantable approach. 
This represents the physical form and external structure of trees. This 
(Antonarakis et al. 
9 Morphology word allowed us to collect papers having considered the morphology of 
2009) 
the tree as objective. 
1 Volume or These words allowed us to collect papers considering the wood in forest (Jozsa and Middleton, 
0 merchant* productivity and commercial terms as the target. 1994) 
 
TABLE 2 LITERATURE REVIEW STRINGS. ADVANCED DESCRIPTION OF CODES (SC) USED TO RETRIEVE THE 
INFORMATION ABOUT LIDAR STUDIES. THE FIXED WORDS ARE SHOWED IN ITALIC. 
Abbreviation Keywords used 
SC1 remote  AND  sensing* ; lidar ; forest*  OR  woodland ; timber OR wood AND  quality 
SC2 remote  AND  sensing* ; lidar ; forest*  OR  woodland ; timber OR wood  AND  assortment* 
SC3 remote  AND  sensing*; lidar; forest*  OR  woodland; timber OR wood AND  morphology 
SC4 remote  AND  sensing*; lidar; forest*  OR  woodland; timber OR wood AND  volume 
SC5 remote  AND  sensing*; lidar; forest*  OR  woodland; stem OR branch  AND  volume 
SC6 remote  AND  sensing*; lidar; forest*  OR  woodland; stem OR branch AND  morphology 
SC7 remote  AND  sensing*; lidar; forest*  OR  woodland; hardwood OR softwood AND  merchant* 
SC8 remote  AND  sensing*; lidar; forest*  OR  woodland; tree  AND  morphology 
SC9 remote  AND  sensing*; lidar; forest*  OR  woodland; tree  AND  merchant* 
SC10 remote  AND  sensing*; lidar; forest*  OR  woodland; tree  AND  assortment* 
SC11 remote  AND  sensing*; lidar; forest*  OR  woodland; tree  AND  quality 
SC12 remote  AND  sensing*; lidar; forest*  OR  woodland; tree  AND  volume 
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2.1.4.2.  Papers classification 
After the collection phase, papers were accurately scrutinized and then classified in six clusters:  Inventory 
(I); Productivity (P); Accuracy (A); Biodiversity (B); Climate Change (C); review (R), according to the 
main and secondary aims of articles.   
1. The cluster Inventory (I) includes papers focused on monitoring forest area, over 
distinct forest-stand conditions (e.g. structure and forest management system). Usually, 
papers included in this cluster were based on ALS devices, in a singular way or in a 
combination with other RS data (Li et al. 2014), applying the ABA.  
2. The cluster Productivity (P) includes papers centred on assessing the FIVs (i.e. tree 
height) and productivity issues (e.g. stem volume, above-ground biomass, carbon stock, 
saw-log volume, pulpwood volume), over distinct forest-stand conditions applying ITD 
approach. 
3. The cluster Accuracy (A) includes all the papers focused on the description of the 
algorithms used for point clouds elaboration and on the comparison of the result accuracy 
obtained.   
4. The cluster Biodiversity (B) includes the papers aimed to monitor the richness of tree 
species and habitat quality using LiDAR.  
5. The cluster Climate change (C) includes papers focused to assess the relationship 
between forest structure and climate change responses and forest health, for instance, the 
combination of RS and LiDAR data was used for determining the occurrence of timely 
fire events in forest covers (Wulder et al. 2009).  
6. The cluster Review (R) includes all review manuscripts found in the database. Papers 
included in this cluster were not used for the analysis of this paper because they had not 
a specific topic. 
2.1.4.3.  Comparison of paper’s methods and outputs 
Based on the study area reported in the papers a map indicating the geographic distribution of LiDAR 
studies was provided. Furthermore, for each cluster, the papers were compared among them to gain insights 
about the improvements of the methods and the findings carried out overtime. Narrative papers included in 
“R” cluster were not considered. The comparison was based on the forest-stand characteristics (i.e. 
coniferous, deciduous, plantations, mixed-forest) and the technical characteristics of LiDAR devices and 
platforms used, such as terrestrial, airborne and spaceborne platforms.  
To a deeper timber assortment evaluation, the clusters “I” and “P” were further explored and analysed, 
highlighting the improvements obtained overtime (2000-2018), giving particular attention to the paper’s 
aims, methods and analysis implemented for modelling the forest inventory and productivity variables. A 
chronological description of papers included in the cluster “I” allowed us to gain insights about the LiDAR 
developments focused on timber assortment estimation at plot level. 
The cluster “P” was further explored and analysed, highlighting (i) pre-processing methods (ii), tree 
detection approaches (iii) and modelling the timber provision variables. A chronological description of the 
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papers of cluster “P” allowed us to gain insights about the LiDAR developments focused on timber 
assortment estimation at tree level. Therefore, the main gaps in timber assortment assessment, as 
highlighted in many papers, were considered to highlight the challenges, weaknesses and strengths to face 
up for further improving the use of LiDAR devices and data in forest management and planning.  
2.1.5. Results 
2.1.5.1.  Literature review 
A database composed of 301 papers was created using 12 different combinations of codes through 
Elsevier’s Scopus® engine. However, the final database included 179 papers, because 122 out of 301 were 
repeated in more than one query. The literature review highlights that since 2000 the number of publications 
per year increased until 2016. Thereafter, the trend slightly decreased (Figure 2). Considering that the 
literature collected in 2018 ends in July, we can observe that since 2014 the scientific community has 
published about 20 papers per year on the topic of assessing forest variables through LiDAR. 
 
FIGURE 2 TREND OF THE ARTICLES PUBLISHED IN THE TIMEFRAME 2000-2018 (END JULY 2018). 
Considering the number of retrieved papers, SC2 and SC9 were the codes that collected the lowest number 
of papers (Table 3). By contrast, SC12 was the code that allowed to retrieve the highest number of papers 
(100). More precisely, looking at the first four codes (SC1, SC2, SC3, and SC4), the keywords “volume” 
and “quality”, SC4 and SC1 respectively, allowed retrieving more papers than keywords “assortment” 
(SC2) and “morphology” SC3.  
Similarly, looking at the last five codes, the keywords “merchant” (SC9) and “assortment” (SC10) were the 
keywords that retrieved the lowest number of papers, compared to keywords “volume” (SC12), and 
“quality” (SC11). Results show that the topics of timber assortment are poorly studied, while a more general 
term as forest volume is frequently explored. 
TABLE 3 NUMBER OF PAPERS COLLECTED BY DIFFERENT CODES. EXCLUDING THE REPEATED PAPERS, THE FINAL 
NUMBER OF PAPERS USED IN THE ANALYSIS WAS REPORTED FOR EACH RESEARCH CODE. 
Results of the paper collection 
Abbreviation N° collected papers N° faithful papers 
SC1 13 13 
SC2 2 1 
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SC3 3 1 
SC4 41 35 
SC5 54 40 
SC6 10 1 
SC7 6 1 
SC8 20 16 
SC9 2 1 
SC10 3 1 
SC11 47 33 
SC12 100 36 
TOTAL 301 179 
 
From a geographical point of view, most of the LiDAR applications were carried out in North America 
(43.40 %), and in Europe (42.77 %), while few applications were observed in Oceania (5.03 %), Asia (6.29 
%) and Africa (2.52 %) (Figure 3).  
 
FIGURE 3 GEOGRAPHICAL REPRESENTATION OF LIDAR APPLICATIONS. THE BOX IN THE TOP SHOWS A GLOBAL 
OVERVIEW, WHILE THE BOX A SHOWS THE STUDIES CARRIED OUT IN NORTH AMERICA, WHILE BOX B SHOWS 
THE STUDIES CARRIED OUT IN ITALY. 
2.1.5.2.  Paper clusterization 
The literature review highlights that forest inventory and forest productivity represent more than half of 
total papers published with 45.25 % and 23.46 % respectively (Figure 3). Few studies (13.41 %) deal with 
the improvement of LiDAR performances through statistic fundamentals, belonging to the accuracy cluster, 
and even fewer studies were reported for biodiversity (7.26 %) and climate change (4.47 %) clusters. As 
expected, literature reviews focused on LiDAR applications were rather limited (6.15 %). 
29 
 
LiDAR as a tool for timber assortment assessment and characterization in mountain forests 
 
FIGURE 4 PAPER FREQUENCY BELONGING THE SIX CLUSTERS: ACCURACY (A), BIODIVERSITY (B), CLIMATE CHANGE 
(C), INVENTORY (I), PRODUCTIVITY (P), REVIEW (R). 
Frequency of LiDAR application and forest stands. 
As observed in this LiDAR review, the frequency of papers focused on mixed-species forest stands (85 out 
of 168) was similar to the number of papers carried out in pure forest stands (83 out 168) (Table 4).  Among 
the pure forests, most LiDAR applications were carried out in conifers stands (62.65 %, 52 out of 83 
studies), rather than in deciduous (19.27 %, 16 out of 83 studies) and forest plantations (18.07 %, 15 out of 
83 studies).  
Studies focused on forest productivity issues were more implemented in pure forest stands rather than in 
mixed forest stands (26 and 16 studies respectively), while inventory was slightly more implemented in 
mixed forest stands than pure forest stands (38 and 43 studies respectively). Biodiversity (4 vs. 9 studies, 
pure and mixed stands, respectively) and climate change (3 vs. 5 studies, pure and mixed stands, 
respectively) (Table 4). No difference was observed between mixed and pure stands for cluster “A” (50 % 
vs. 50%). 
TABLE 4 FOREST-STAND CONDITION INFORMATION FOR EACH CLUSTER ANALYSED. REVIEW “R” PAPERS (11) WERE 
NOT CONSIDERED HERE 
Forest-stand condition 
N° papers for 
Cluster N° papers for pure stands 
mixed stands TOTAL 
Abbreviation 
Deciduous Coniferous Plantations Sub-total Mixed-forest 
I 6 28 4 38 43 81 
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P 7 12 7 26 16 42 
A 2 6 4 12 12 24 
B 1 3 0 4 9 13 
C 0 3 0 3 5 8 
R - - - - - - 
TOTAL 16 52 15 83 85 168 
 
LiDAR tools and RS devices 
The results revealed that the first differences between airborne and spaceborne LiDAR devices were based 
on the extend of surveyed forest area and the amount of the FIVs and Vis investigated by authors. In 
particular, comparing airborne vs. spaceborne LiDAR studies, many FIVs (i.e. above ground biomass) and 
Vis were often monitored for varied hectares by each flight vs. solely two FIVs (i.e. tree height and tree 
volume) were often monitored for consecutive footprint laser points of 70m. As regards the difference 
between airborne and terrestrial LiDAR devices, it was based on the extend of surveyed forest areas, the 
distance measurement accuracy and tree structure characterization. More precisely, comparing airborne vs. 
terrestrial LiDAR devices, vary FIVs and Vis could be monitored for large forest areas by each flight at an 
accuracy higher than 4 points/m2 (Wulder et al. 2012) vs. vary FIVs and the reconstruction of stem and 
branches could be monitored for small areas at an accuracy higher than ±2 mm at a distance of 25 m (Dassot 
et al. 2011). 
The results highlight that LiDAR applications were mostly implemented through airborne platforms (75 
%), followed by spaceborne (15 %) and terrestrial (10 %) platforms. ALS devices proved to be the most 
important airborne LiDAR devices (84.66 %) against the other airborne devices, due to their capability to 
cover large forest areas and to cope with multiple objectives, as assessing SFM indicators, supporting forest 
management and planning, forest accessibility, contributing to forest monitoring and surveillance, with a 
yearly application equal to 13.7 papers in the timeframe 2000 - 2018 (Figure 5).  
As regards the terrestrial platform, results highlighted that most LiDAR studies (68.2 %) were carried out 
through a fixed platform using TLS alone or in combination with a hyperspectral camera. However, the use 
of the mobile LiDAR platform (i.e. Portable Laser Scanning “PLS” and Mobile Laser Scanning “MLS”) 
was also rather common (31.8 %), particularly to assess the volume of stems and large branches through a 
voxel-based approach (Hosoi et al. 2013).    
Regarding the spaceborne devices, GLAS mounted on-board NASA's ICESat satellite was the unique 
satellite LiDAR device used for monitoring forest covers (22.58 %). It is worth noting that even if a few 
studies were based on the satellite LiDAR platform, the major part of them proved a combined use of 
spaceborne LiDAR and other RS sources, as for example, the combination of LIDAR data with open-source 
satellite imagery as Landsat TM, ETM+ (Ke et al. 2010) and commercial satellite as Quickbird, and 
IKONOS data (Clawges et al. 2008). 
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FIGURE 5 STACKED BAR GRAPH OF RS DEVICES USED IN THE PERIOD (2000-2018). 
2.1.5.3.  Diachronic analysis of LiDAR studies for assessing forest inventory 
variables. 
Over the last two decades, researchers explored various FIVs (i.e. stem density “SD”, diameter at breast 
height “DBH”, tree height “TH”, basal area “BA”, stem volume “VOL”, above-ground biomass “AGB”, 
carbon stock “CS” and vary Vis (i.e. leaf area index “LAI” and plant area index “PAI”) using airborne (i.e. 
ALS) and spaceborne (i.e. GLAS) devices. More precisely, GLAS LiDAR data were used mainly to assess 
VOL and TH, while, ALS data were used to assess not only VOL and TH, but also SD, DBH, AGB, CS, 
LAI and PAI.  
The first ALS study focused on modelling the FIV and VIs was implemented in a mixed and even-aged 
forest in Canada (Lim et al. 2003). ALS metrics (LiDAR-derived metrics) extracted from plots (49 plots of 
400 m2 were used to predict various FIVs. The accuracy reached, based on the coefficient of determination 
(R-squared), was 0.86 for TH, 0.63 for DBH, 0.87 for VOL, 0.85 for AGB, 0.82 for LAI, 0.76 for canopy 
openness and 0.86 for SD. In the subsequent year, Patenaude et al. (2004)used the canopy height model 
(CHM) as input data for quantifying the above-ground carbon content (AGCC) of woodland stands. The 
results were quantified at stand and woodland level. The coefficient of correlation between the AGCC 
prediction at plot level from both CHM (grid 20 * 20 m) and field-based approaches was equal to 0.85. In 
2005, (Parker and Mitchel, 2005) focused to assess the influence of occlusion factors (i.e. quality of point 
cloud) for VOL prediction accuracy. In particular, the occlusion factors tested were: point density 
(low/high), processing of ALS data (smooth and unsmooth methods applied for canopy surface) and forest 
stand condition (richness of tree species). Best accuracy was found in the forest containing a low number 
of trees by using low quality point clouds (1 point/m2), and the point cloud was analysed by an unsmoothed 
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approach. The VOL prediction (60.48 m³ 0.40 ha-1) was slightly lower than the results obtained by field 
data (63.08 m³0.40 ha-1).    
From 2005 to 2009, for the first time, LiDAR data were integrated with RS data for monitoring forest 
ecological aspects as the tree and shrub species composition (Hill and Thomson, 2005).    The integrated 
use of ALS data and Airborne Hyperspectral Scanner (HyMap) image was implemented to determine the 
species composition of two ancient woodland areas (i.e. Monkey and Bevill’s woodlands) in the United 
Kingdom (Hill and Thomson, 2005).  To reach this objective, the unsupervised classifier algorithm, named 
ISODATA, was used for classifying the forest covers. Nevertheless, in 2008, Waser et al. (2008), published 
a paper that demonstrated that the combined use of Color-infrared (CIR) with ALS data can be an effective 
source for investigating the forest and woodland loss areas by applying a generalized linear model (GLM) 
method. The factors assessed to reach such an objective were: shrub encroachment and clear-cutting.  
In both cases, the product derived from the point cloud, particularly DSM (Digital Surface Model) and 
CHM resulted strongly useful to classify forest cover maps. It is important to highlight that a pre-elaboration 
phase, focused on the co-registration and alignment of the LiDAR data with satellite imagery, was 
necessary and it represents a crucial hindering point for practical uses.  
In 2009, Kim et al. (2009) used the ALS data to assess and to compare the AGB of living and dead trees in 
Grand Canyon National Park. Based on the intensity of points cloud, the authors were able to discriminate 
the pattern of points clouds from living to dead trees. The metrics extracted were separately analysed 
through a stepwise regression model. Higher accuracy was obtained in live (AGB; R-squared = 0.85; RMSE 
= 50 Mg ha-1) respect to dead trees (AGB; R-squared = 0.79; RMSE = 42 Mg ha-1). In the same year, based 
on the assumption that ALS data allows describing the vertical and horizontal vegetation structure, Kellner 
and Asner (2009) evaluated the applicability of ALS data for assessing forest disturbances in Costa Rica 
and Hawaii rainforest. In this study, the ALS data was firstly used to assess the canopy height, and then the 
areas with a tree height lower than 2 m were considered as disturbed vegetation (i.e., gap-size). The study 
allowed identifying 434501 gap sizes across all rainforests. 
Since 2010, some studies have demonstrated that the integrated use of different sources of RS data can be 
advantageous to surpass the uncertainty associated with the quality of some of them. To support such a 
statement, Ke et al. (2010) combined low-quality ALS data (<1 point/m2) with well-quality RS data 
(Quickbird at 2.4m) to classify the forest species composition through machine learning algorithms. In this 
study, different metrics (i.e. spectral, topographic and ALS data) were analysed as input variables through 
the decision trees algorithm, reaching a kappa accuracy of 91.6%. Similarly, (Arroyo et al. 2010) applied 
the Object-based image analysis (OBIA) algorithm to map riparian forests in Australian tropical savannah 
areas. The overall accuracy reached by Arroyo et al. (2010) was equal to 85.6 %.  
In Italy, in San Rossore regional park, (Maselli et al. 2011) combined low-quality of ALS data (<9 
points/m2) with low-quality RS data (Landsat TM/ETM+; 30m*30m of pixel size) to map VOL. They use 
ALS metrics to predict VOL through machine learning algorithms calibrated by least-squared regression. 
Subsequently, they use Landsat TM/ETM+ data to upscale the VOL prediction from plots over to the large 
forest area using machine learning algorithms (i.e. locally calibrated regression “LCR” and k-Nearest 
Neighbors “k-NN”). They obtained more accurate maps with LCR (coefficient of correlation, r = 0.88; Root 
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means squared error “RMSE”  = 48.9 m³ haˉ¹) compared to k-NN (r = 0.847; RMSE = 59.2m³ haˉ¹), while 
the least-squared regression applied for reference data was less accurate (r = 0.626). 
Conversely, (Chen et al. 2012) combined low-quality ALS data (<3 points/m2) with well-quality RS data 
(< 2.44 m of pixel size) for assessing TH, AGB and VOL in forest ecosystems located in Boreal Shield 
Ecozone (Canada). The GEOgraphic Object-Based Image Analysis (GEOBIA) algorithm was 
implemented. Though the high quality of input data, the accuracy reached by GEOBIA was similar to the 
accuracy obtained in the previous studies (R-squared = 0.85; RMSE = 3.37 m) for TH, (R-squared = 0.85; 
RMSE = 39.48 Mg ha-1) for AGB and (R-squared = 0.85; RMSE = 52.59 m ha-1) for VOL.  
A different application of ALS data was recently performed by N. d’Oliveira et al. (2012), which focused 
to map the loss of forest cover due to the harvesting activities in Antimary State Forest (Brazil). They 
obtained an accuracy slightly lower than the previous studies (AGB, R-squared = 0.72 and VOL, R-squared 
= 0.69), and a marked difference of the AGB amounts was reported between impacted (225.3 Mg ha-1) and 
non-impacted (233 Mg ha-1) forest covers. Slightly better was the accuracy obtained by Tompalski et al. 
(2015), which focused to predict VOL (R-squared Adjusted = 0.86) and SD (RMSE = 149 trees ha−1 or 
24.4%) in Vancouver Island forests.  
From 2015 onward, the machine learning algorithms were frequently used to elaborate LiDAR data, due to 
authors recognized their power to improve the accuracy in prediction of FIVs. Particularly, an useful 
algorithm was the random forests (RF), which was implemented for example to upscale the prediction of 
the AGB and VOL from ALS transect to national forest cover in Canadian boreal forest (similar approach 
tested by Maselli et al. (2011). The Bayesian linear model (Junttila et al. 2015; Kauranne et al. 2017) was 
also used for assessing FIVs in Taiga boreal forest (Russia), obtaining the accuracy in terms of RMSE equal 
to 0.28 m³ ha-1 for VOL, 0.16 cm for DBH, and 0.07 m for TH.  
Over the years, some authors (Ortiz-Reyes et al. 2015) focused to compare and select the best predictors 
models (i.e. multiple linear regression, non-linear regression, ratio estimators and traditional forest 
inventory “stratified sampling”) in order to improve and foster the prediction of FIVs using LiDAR data. 
Ratio estimator proved best fit predictions for VOL (R-squared = 0.79; RMSE = 2.07 m³), BA (R-squared 
= 0.77; RMSE = 0.21 m²) and crown coverage (R-squared = 0.53; RMSE = 139.71 kg) and AGB (R-squared 
= 0.76; RMSE = 1340.08 m²). In addition, to reduce the huge point information using faithful approaches, 
(Moser et al. 2017) benchmarked three approaches aimed at reducing the number of predictor variables 
extracted from ALS data: Genetic algorithm combined with RMSE, Genetic algorithm combined with AIC, 
and RF algorithms. This study revealed that the Genetic algorithm with AIC (Akaike information criterion) 
showed a great capacity for selecting the predictor variables, ensuring fitted values in the prediction phase.  
2.1.5.4.  Diachronic analysis of LiDAR studies for assessing forest productivity variables. 
Over the last two decades, researchers explored various forest productivity-related issues using airborne 
and terrestrial LiDAR devices, within which the most explored were VOL, AGB and CS using both devices, 
and the stem diameter and stem reconstruction using terrestrial LiDAR data. 
Results show that the first ALS study focused on retrieving VOL and AGB at a single tree level was carried 
out in 2003 in pine and deciduous forest stands (Popescu et al. 2003). The authors implemented firstly the 
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local maxima filter with variable window size, “LMWS” for detection of trees and then the region-growing 
algorithm supported by Erdas Field Guide for the segmentation of tree crowns. The values obtained for the 
tree crowns, tree crown diameter (TDC) represented the input data to predict VOL and AGB. 
In 2004, Maltamo et al. (2004) proposed an alternative tree detection algorithm, named Arboreal Forest 
Inventory Tools software, for detecting trees within the temperate forest (Finland), and predicting the VOL 
and the SD. The differences compared to the previous study were: predictor variables (TCD vs. ALS 
metrics); objectives (VOL and AGB vs. VOL and SD); modelling approach (equations vs. parameter 
prediction method (PPM) and left-truncated distribution Truncated (Tw). This approach was able to identify 
between 309 and 694 out of 756 stems (large and small trees) with higher accuracy for VOL (RMSEPPM = 
16% and RMSETw = 22.5%) compared to SD (RMSEPPM = 49.2% and RMSETw = 72.7%), respectively. 
Enhanced detection accuracy, over small and large trees (ranged between 30% and 90%), was reported for 
(Maltamo et al. 2004) compared to LMWS method, because (Popescu et al. 2003) was focused on detecting 
large trees (15 % for the omission in detecting dominant and co-dominant trees). 
In 2006, a study tested the capability of LMWS and spatial wavelet analysis (SWA) for improving the 
accuracy of FIV assessment at a single tree level (Falkowski et al. 2006). The LMWS approach analysed the 
variation of Z values to search the tree position and tree crown dimension (based on region-growing), while 
the SWA analysed the signal derived from the sums of simpler trigonometric functions to define the tree 
profile. Enhanced prediction accuracy was observed using the SWA compared to LMWS approach (SWA: 
R-squared = 0.97 and RMSE = 2.64m, and LMWS: R-squared = 0.97 and RMSE = 2.81m) and the crown 
dimension (SWA: R-squared = 0.86 and RMSE = 1.35m, and LMWS: R-squared = 0.79 and RMSE = 1.66 
m²) responses. Subsequently, (Chen et al. 2007) obtained better results implementing the LMWS in 
combination with watershed segmentation (changed from region-growing method) for detecting trees in 
savannah woodland. The combined use suggested by Chen et al. (2007) resulted in more performance than 
the previous studies, particularly, for calculating the VOL and BA at a single tree level. In 2011, Lin et al. 
(2011) developed the algorithm MMAC (Multi-level morphological active contour) to further improve the 
detection accuracy of trees within 3 plots of 0.25 ha of mixed-species, plantation and coniferous stands, 
respectively. Though the algorithm allowed detecting 76 % of trees, the study highlighted a sensitivity for 
omission error (24%) rather than for commission error (13%). 
In the same years, the use of TLS data for assessing forest production increased due to the high accuracy 
for tree architecture description. Results showed that the first study that used TLS points cloud was carried 
out in 2009 (Antonarakis et al. 2009) aimed to discriminate leaves from timber using geometry-based 
patterns (i.e. roughness).  Other TLS studies using automatic algorithms for timber-leaves discrimination, 
stem diameter and stem reconstruction were also investigated, as for example, (Yao et al. 
2011)demonstrated that the automatic TLS algorithm named find trunks, which was previously developed 
by Lovell et al. (2011), was able to automatically produce the stem position and stem diameter of standing 
trees in mixed-species stands using Echidna® validation instrument (EVI) TLS data. These outputs were 
used for calculating the AGB. Higher R-squared values were found in SD (0.90) and AGB (0.85) compared 
to DBH (0.48); (Côté et al. 2011) revealed that the L-Architect algorithm, which was based on the 
skeletonization approach, was able to automatically reconstruct the stem architecture in coniferous pure 
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forest stands. These two studies highlighted that the accuracy of the prediction models was conditioned by 
operational aspects and weather conditions. However, the first algorithm describes the tree structure 
characteristics of 42% of all trees within 20 m of the scan position, and the L-Architect algorithm 
reconstructs the stem, large and small branches of solely five stems. 
Unlike the automatic TLS processing, innovative approaches aimed at improving the characterization of 
stems were also studied. For example, (Moorthy et al. 2011) tested an approach, named cross-sectional 
slicing, for describing the stem crown profile of trees through the separation of point cloud into several 
horizontal slices. The R-squared reached for LAI was ranged between 0.86 and 0.99 and for PAI was 0.76 
(RMSE = 0.26 m2 m-2); (Bremer et al. 2013) highlighted the importance of eigenvectors and eigenvalues 
patterns, from TLS and Mobile Laser Scanning (MLS) devices, in depicting the vegetation structure through 
the skeletonization approach; (Hosoi et al. 2013) highlighted that the grouping the points in a voxel space 
through a voxel-based approach (voxel size 0.13 cm3) can facilitate the reconstruction of the architecture 
of trees using Portable Laser Scanning (PLS). The VOL accuracy reached was higher for the stem and large 
branches (0.5 %, percentage error) than small branches (34 %, percentage error). 
Since 2013 onward, some studies assessed the feasibility of the combined use of active RS data for 
enhancing the accuracy of models to assess VOL and AGB. For example, (Allouis et al. 2013) tested the 
accuracy of two LiDAR systems (i.e., discrete return and full-waveform data), to evaluate the prediction of 
the VOL and AGB. As regards the AGB assessment, the full-waveform data proved more fit predictions 
with respect to discrete return (mean error = -15 vs. mean error = 5, respectively), and a similar pattern was 
observed for the prediction of VOL (mean error = -4 vs. mean error = 2, respectively). The combination of 
ALS data with RS data offers a more accurate estimation of timber provision with respect to the results 
obtained through one type of data (Shinzato et al. 2017). 
In 2017, as regards, TLS algorithms, (Saarinen et al. 2017) evaluated the automatic TLS algorithm, named 
cross-sections approach (also known as cylinder-fitting), which was already tested after 2004 (Pfeifer and 
Winterhalder, 2004), was able to automatically output the stem curve measurements and TH in mixed 
temperate forest using both TLS data (single scan and multiple-scan). Better accuracies were obtained using 
multiple-scans compared to single-scans, particularly, the rate of automatically derived diameters of 
multiple-scans (53.3 - 60.9 %) was higher than that observed using single-scan (44.1 %), however, the time 
consuming for collecting TLS single-scan (less than 10min.) was shorter than multiple-scans (less than 
20min and between 20 - 30 min.)  
From 2014 to 2018, as regards ALS algorithms, most studies introduced novel and versatile approaches for 
detecting trees in mixed-species and multi-layered forest stands. For example, focused on coniferous stands, 
Mikko et al. (2014) proposed an algorithm, named Multisource Single-Tree Inventory (MS-STI), to detect 
and to classify the stems and to predict the TH, DBH, VOL and timber assortments using ALS (< 
9points/m2) and RS (0.25 m; UltracamXp) data. The reached RMSE for TH was 4.2 - 5.3%, for DBH was 
10.0 - 19.9 %, for saw-log volume was 28.7 - 43.5 % and for pulpwood volume was 125.1 - 134.3 %. 
Moreover, focused on mixed-species and multi-layered forests, (Sačkov et al. 2016) proposed an algorithm, 
named reFLex, to detect the stems across several ALS horizontal slices obtained through the stratification 
approach of the point cloud (average 30 points/m2). This algorithm reached to detect 66 % of dominant, 48 
36 
 
LiDAR as a tool for timber assortment assessment and characterization in mountain forests 
% of the codominant, 18 % of the intermediate and 5 % of the suppressed stems. Similar stratification 
approach was applied to divide the ALS point cloud (average 50 points/m2) into overstory and multiple 
understory DSM-canopy layers (Hamraz et al. 2017). They reached to detect between 46 % and 68 % of 
trees for the understory layer. Even if the abovementioned studies suggested that the dense point cloud can 
increase the DR, the terrain conditions of plots (slope lower or equal to 50°) can also underestimate the TH 
of large trees (16.6 m) (Alexander et al. 2018). Branson et al. (2018) used an open-source derived from 
aerial and street view images of Google MapsTM for identifying the trees over the street through machine 
learning algorithms (i.e. convolutional neural networks). This study allowed detecting more than 70 % of 
trees across streets, 80 % of them was correctly matched with the tree species. 
2.1.5.5.  Timber assortment estimation, algorithms 
The most common methods (Table 5) used for pre-processing raw LiDAR data were: a) open-source 
algorithms developed by the authors (Popescu et al. 2003; Chen et al. 2007; Allouis et al. 2013), b) 
commercial algorithms (i.e. Cyclone 5.5 software, TerraScan ® software, LASTools software and the 
FUSION v3.50 software) and c) open source for scientific purpose, as for example, OPALS (Opals 
Orientation and Processing of Airborne Laser Scanning data software). 
Results revealed that the detection and segmentation of trees were mainly carried out through the combined 
use of LMWS with region-growing and or watershed segmentation as well as the largest and robust 
processing.  
From 2003 onward, the LMWS algorithm was the most applied algorithm for detecting the tree position of 
dominant trees for deciduous, coniferous and mixed stands. The ALS grid sources used were the CHM, 
DSM and DEM (Digital Elevation Model) raster-based. For the segmentation approach, we observed many 
approaches for delineating the crowns (i.e. region-growing, watershed segmentation, eCognition software).  
Studies using algorithms able to automatically develop both steps were reported after 2010: reFLex 
algorithm, MS-STI approach, OPALS software, Arboreal Forest Inventory Tools of Arbonaut algorithm.  
As regards the modelling of timber provision, we noted a marked difference between the first and second 
decades of the period considered (2000-2018), which goes the use of solely least-squared regression (i.e. 
polynomial, exponential, logarithm) to even implement machine learning algorithms (Support Vector 
Regression “SVR”, Bayesian algorithm, K-NN, RF). This is because machine learning has proven a great 
capability to accurately predict the forest variables (García-Gutiérrez et al. 2015), as well as to infer, to 
upscale, to model, to classify these using even huge quantity of LiDAR information, without loss the 
accuracy of models (Maselli et al. 2011; Junttila et al. 2015; Kauranne et al. 2017). While TLS data was 
able to reconstruct many segments of trees (i.e. stem, large and small branches), the automatic and 
innovative approaches tested were: T-Architect, voxelization, skeletonization, cross-slicing algorithms, 
cylinder-fitting approach, convolutional neural network. 
 
TABLE 5 MOST FREQUENT METHODS FOR PROCESSING LIDAR DATA. THE PRE-PROCESSING METHODS (1), TREE 
DETECTION APPROACHES (2) AND MODELLING THE TIMBER PROVISION VARIABLES (3) WERE DISPLAYED. 
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Methods applied for forest productivity purpose 
Methods 
Device/ 
Sensor Study/ Journal 
Year 
(1) (2) (3) 
The method explained Modelled through 
ALS LMWS algorithm and (Popescu et al. 2003). “Can. J. AeroScan by (Popescu et al. least-squared 
(2003) tree crown algorithm. Remote Sens.” 
2003). regression models. 
LMWS algorithm and 
(Tesfamichael et al. 2010)  
ALS Optech ALTM semi-variogram and Modelled through 
TerraScan ® software “Progress in Physical 
(2010) 3033 tree-spacing equations. 
Geography” 
approaches. 
ALS (Lin et al. 2011) “Photogramm. 
ALS50 TerraScan ® software MMAC algorithm 
(2011) Eng. Remote Sens.” 
Modelled through 
ALS RIEGL LMS- The method explained The method explained (Allouis et al. 2013) “IEEE J-
least-squared 
(2013) Q560 by the authors by the authors STARS” 
regression models. 
Terrestrial Nikon D5000 
PhotoScan software (Agisoft LLC, St. (Miller et al. 2015) “Urban 
device (Hyperspectral SFM-MVS software. 
Petersburg, Russia). Forestry and Urban Greening” 
(2015) camera) 
Modelled through 
ALS YellowScan equations and least-
LASTools software. reFLex algorithm. (Sačkov et al. 2016)  “Forests” 
(2016) Mapper squared regression 
models. 
TerraScan ® software LMWS in FUSION Modelled through k- (Alexander et al. 2017) “Int J 
ALS 
ALS70 HP and FUSION v3.50 v3.50 and Near Table medoids algorithm. Appl Earth Obs 
(2017) 
software. in ArcGIS (v10.1).  Geoinformation” 
The method explained Modelled through 
ALS ALS70-CM and by Sačkov et al. eCognition and reFLex equations and least-
(Sačkov et al. 2017) “Forests” 
(2017) Leica RCD30 (2017). algorithms. squared regression 
 models. 
Modelled through Best 
PCA (Principal 
ALS RIEGL LMS - The method explained Subset Selection and 
Component Analysis) (Shinzato et al. 2017) “IForest” 
(2017) Q680I in Shinzato 2017. cross- validation 
tree detection method. 
approaches. 
(Alexander et al. 2018) “Int J 
ALS LMWS in FUSION v3.50 and watershed ALS70 HP FUSION v3.60. Appl Earth Obs 
(2017) segmentation approach. 
Geoinformation” 
 
2.1.5.6.  Timber assortment estimation, strengths and weakness  
This section highlights the most important strengths and weaknesses come out from forest productivity 
literature. First of all, terrestrial LiDAR devices provide a better reconstruction of trees rather than airborne 
LiDAR devices, especially the TLS devices, which demonstrated slight improvements with respect to other 
terrestrial devices (as for example PLS and MLS). Nevertheless, its practical usability is strongly 
conditioned by technical and handling, as well as site-specific characteristics, as for example, the number 
of scansions influencing the quality of tree modelling are associated to the point cloud densities, weather 
conditions, richness of species, terrain slope, the density of trees and forest structure. 
In dense forests with high coverage of branches and leaves, the prediction of TH is rather difficult (Saarinen 
et al. 2017). However, by reducing the distance between the TLS devices and tree stem target, these issues 
can be surpassed (Moorthy et al. 2011), despite the presence of hindering factors, weather conditions (i.e. 
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wind), affecting the usage of it (Côté et al. 2011).  Significant improvements were obtained by combining 
the TLS and MLS data, where this last suggested to authors that the issue associated with the displacement 
of the fixed device can be overcome without losing the accuracy. Difficulties associated with processing 
suggested that the implementation of robust algorithms in modelling phases, such as object-based 
associated with skeletonization approach (Bremer et al. 2013), voxel-based approach (Hosoi et al. 2013) 
and the cylinder-fitting approach (Shinzato et al. 2017) resulted very useful for the stem reconstruction 
using TLS data. 
From forest productivity literature, few hindering factors, mainly related to the identification of very small 
branches (i.e. branch very slender < 5mm and located between 20 and 30 cm of the final part of branches) 
and the low-quality TLS point clouds in the upper canopy part were highlighted (Miller et al. 2015). This 
means that the small trees are affected by noise point clouds, derived from assembled and co-registration 
problems, respect to large trees (Bremer et al. 2013).  However, this issue can be surpassed by placing 
wooden stakes around single trees (Moorthy et al. 2011).  It is important to note that these hindering factors 
represent important challenges, rather than true obstacles for forest inventory and practical applicability 
and usability. Terrestrial photographs, acquired from the hyperspectral camera (Nikon D5000, lens: AF-S 
NIKKOR 35 mm) can offer important advantages in the monitoring of mixed-forest stands due to the 
capacity to be easy to handle at low cost in inaccessible forest field areas (Miller et al. 2015).  
Regarding the ALS advances, the development of a robust algorithm allowed authors to overcome the 
bottleneck phase affecting the correct calculation of timber assortment variables. The most frequent 
algorithms used for detecting and segmenting trees were the LMWS algorithm associated with region-
growing and watershed segmentation. However, these methods were focused mainly on large rather than 
on small trees. The tree detection algorithm associated with the stratifying approach of point cloud was 
used for identifying trees into several strata (Sačkov et al. 2016; Hamraz et al. 2017). In addition, the 
detection approach, the selection of best explicative predictor variables improving the performance of 
models (Ortiz-Reyes et al. 2015), as well as the modelling of such predictor variables using both least-
squared regression and machine learning algorithms (i.e. SVR, Bayesian algorithm, K-NN, RF).  
2.1.6.  Discussion 
The results revealed that since 2000 the interest shown by researchers for monitoring the timber assortments 
using LiDAR data is increased, especially in the period 2010 – 2016 (Figure 2), with more studies carried 
out in North America (43.40%) and Europe (42.77%) (Figure 3). This result was supported by the capability 
of LiDAR to rapidly, remotely, accurately depict the vegetation structure over distinct species, useful 
information from forest stands to support local and national forest inventory, ensuring the monitoring of 
timber provision in forest stands through sampling campaign (McRoberts and Tomppo, 2007; Vastaranta 
et al. 2014; Beland et al. 2019; Chirici et al. 2020). As regards the high interest of the scientific community 
from North America and Europe given to the timber assortment LiDAR issues, it could be supported by 
two assumptions:1) the firsts LiDAR studies (in absolute terms) aimed at monitoring the forest areas using 
LiDAR data were conducted in the Soviet Union, Finland and North America (Montaghi et al. 2013; Kelly 
and Di Tommaso, 2015); 2) the LiDAR data for many states of North America (e.g., Ohio, Pennsylvania) 
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and Europe (e.g. Germany) is being increasingly available (http://lidar.cr.usgs.gov/;  
https://www.geodaten.sachsen.de). Thereafter, after the ends of December 2018, the LiDAR data has 
become completely available for the Earth's surface (https://gedi.umd.edu/instrument/launch).  
The authors showed a poor interest in assessing timber assortment resources (23.5% of the total papers) 
compared to indicators of biodiversity (7.26 % of the total papers), as well as climate change effects on 
forest stands (4.47 % of the total papers) using LiDAR data (Figure 3). As far as concern the biodiversity, 
LiDAR data was used to describe the vertical and horizontal vegetation structure and tree species 
composition, two essential indicators used for assessing the habitat quality, occurrence of bird species. 
Regarding climate change impacts, LiDAR data were used to estimate forest cover loss or changes used for 
assessing the forest health after fire events, disease and other disturbance events. Though the methods for 
assessing the indicators of forest biodiversity and forest climate change are well documented from passive 
RS devices, due to a variety of useful information extracted from those devices (i.e. spectral reflectance, 
spectral indices, texture, spatial/temporal features) (Petrou et al. 2015), LiDAR data remains an essential 
and faithful data for extracting the tree structure and tree species composition from forest stands (Bergen 
et al. 2009). To date, despite the methods for assessing the forest biodiversity and forest climate change 
indicators using the tree structure as a proxy are well-documented (Ishii et al. 2004; Bohn and Huth, 2017), 
accurate characterization of trees from ALS data requires powerful tree detection methods (Hamraz et al. 
2017; Sačkov et al. 2016), and well-quality of LiDAR data (i.e. 10-25 lidar maximum pulse size, the 
average of 15cm for waveform data) using spaceborne devices (Bergen et al. 2009).  Moreover, another 
cause was associated with the cost of LiDAR acquisition (nearby half of the survey traditional inventory 
cost) (Kelly and Di Tommaso, 2015). However, nowadays, spaceborne LiDAR data are available at the 
worldwide level (at Earth level; https://gedi.umd.edu/instrument/launch), and airborne LiDAR data for 
various countries are already available (free source: https://www.geodaten.sachsen.de; commercial source: 
http://www.pcn.minambiente.it/mattm/procedura-richiesta-dati-lidar-e-interferometrici-ps/). Nevertheless, 
spaceborne LiDAR data might be most effective to retrieve forest inventory rather than timber assortment 
information. Therefore, in the future, it is expected the use of LiDAR data for extracting the timber products 
from forest stands, maintaining and conserving the biodiversity become more explored. 
Papers included in the productivity cluster have highlighted that the most terrestrial LiDAR device used to 
retrieve accurate evaluations of the timber assortment was the TLS device. The results could be supported 
by the capability to rapidly and accurately depict the stem profiles, as well as the TLS algorithms (i.e. 
cylinder-fitting) available for extracting the forest productivity variables. The success or failure of the tree 
architecture representation from point clouds takes into account many factors, such as, the operational (i.e. 
sampling design, number of scans), technical (i.e. pre-processing and processing) and weather factors (i.e. 
wind) (Dassot et al. 2011). Along with these factors, some studies revealed that the automation of the TLS 
algorithm and the forest structure plays an important role in the processing phase, especially for stem 
reconstruction (Liang et al. 2018).  Some of them allowed to reconstruct the trunk (i.e. cylinder-fitting), 
some of them allowed to reconstruct the whole stem architecture (i.e. skeletonization) and some of them 
allowed to extract automatically the VOL, AGB, CS of standing stems (L-Architect, Computree: 
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http://computree.onf.fr/, opalsForest OPALS package). Nevertheless, automatic and non-automatic 
approaches for timber assortment estimation (i.e. saw-log, pulpwood, or assortment types) from TLS data 
remain still required, especially for single trees. Therefore, an approach for timber assortment estimation 
becomes essential for extracting the timber products from forest stands, maintaining and conserving 
biodiversity. 
The results revealed that, despite the capability for reconstructing the stem from TLS data, the ALS was 
the most implemented technique for investigating productivity-related issues. These results, however, have 
highlighted that the detection of trees (Table 5) remains a challenging step. Nevertheless, most of them, 
well-documented, were focused on large trees (dominant and co-dominant trees) for pure and mixed-species 
(Kaartinen et al. 2012; Wang et al. 2016), because of the detection accuracy decrease for small trees, 
especially in forests characterized by high structural heterogeneity. In this context, some authors have 
suggested that occlusion factors were mitigated for large and small trees in ALS plots with higher than 30 
points m-2 and dividing the ALS point cloud into varying slices (i.e. stratifying approach) (Sačkov et al. 
2016; Hamraz et al. 2017). 
The integration of ALS data with the RS data gained more attention from researchers for forest monitoring. 
This greater attention was supported by the capability of spectral resources from RS data to reinforce the 
low-quality of point clouds (<10 points/m2) become an effective approach for characterizing the trees and 
to cope with distinct forest ecosystem issues (Wulder et al. 2012).  Conversely, despite the significant 
contribution received from the integration of ALS with RS data, the implementation of it on timber 
assortment estimation remains still a critical challenge. Unlike the combined use of ALS with RS data, the 
combined use of ALS with TLS data provided an accurate estimation of the timber assortments and stem 
distribution at large scales, however, in this combination, the role of TLS data became essential (Kankare 
et al. 2014), because TLS was able to depict small and large profiles and vary automatic algorithms are 
available (Liu et al. 2017). 
The results revealed that the implementation of machine learning algorithms is being increasingly tested 
for analysing the LiDAR data. The implementation was supported by the power of machine learning for 
running many functions (i.e. inferring, upscaling, modelling, classifying), as well as offering better-fitted 
timber assortments prediction using even huge quantity of point density compared to least-squared 
regression. The strengths of machine learning reside on the strategies used for processing LiDAR data, as 
for example, conceptually, RF, is an ensemble method and it is composed by a combination of several tree 
predictors, which are composed by random, independent and equally distributed values within a dataset, 
practically, RF is capable to process the LiDAR data through a decision trees approach, and to select the 
most explicative predictor variables, from a training data, measuring the variable importance (Breiman 
2001); conceptually, K-NN is a non-parametric method and it allows to run the classification and the 
regression analysis of a dataset: the classification of single vector (with an specific label) is based on the 
"K" nearest training reference labels within a dataset; the regression of single value is inferred as the 
weighted average values based on the closely training reference value within a dataset; practically, K-NN 
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predicts the environmental parameter value for every pixel using the weighted average of the nearest "K" 
observing parameter values (Maselli et al. 2011). Nevertheless, the capability to make better use of the 
reduced number of predictor variables compared to the least-squared approach was even highlighted 
(Hauglin et al. 2013).  A systematic benchmarking of fourteen algorithms, between machine learning (i.e. 
SVR, KNN, RF) and least-squared regression (i.e. liner regression) methods, were used for calculating 
various FIVs using LiDAR data. The results revealed that better R-squared and RMSE results were obtained 
from machine learning algorithms, especially the SVR algorithm (García-Gutiérrez et al. 2015).  Despite 
the countless benefits provided by machine learning algorithms, its use for timber assortment estimation is 
still limited, especially in forests characterized by mixed-species and multi-layered (Vastaranta et al. 2014; 
Silva et al. 2017). For this reason, studies that deal with the implementation of machine learning algorithms 
for timber assortment assessment can be useful to improve the use of LiDAR data for forest monitoring 
(Vastaranta et al. 2014). 
In addition, we noted that a considerable part of productivity studies (about 69 % of “P” literature) benefited 
from the funds provided by the NATIONAL programs (i.e. Institute, University and or Ministry): e.g., 
MOST fund of the Ministry of Science and Technology (Taiwan) and National Council of Technological 
and Scientific Development (CNPq), and EUROPEAN programs (i.e. LIFE programs): e.g., FRESh LIFE 
and ForestSAFE projects. More precisely, two types of collaboration strategies were adopted for those 
studies: 1) the scientific collaboration with expert researchers of pre-processing and processing of LiDAR 
data, and with researchers having LiDAR raw data (about 83 % of “P” literature); 2) the scientific 
collaboration between two or more institutional entities (i.e. University, Research Institute) geographically 
distant between them were also adopted into productivity studies (about 17 % of “P” literature) e.g., 
“NASA” – “National Key Basic Research Development Program of China” and “FRESh LIFE project 
Italy” – “Slovak Research and Development Agency”. Analysing both collaboration strategies, the 
implementation of the first strategy could be supported by the fact that one LiDAR strip raw data can be 
used for several forest issues, and the implementation of the second strategy could be supported by the 
efficiency and synergism of methods aimed at accurately analysing the LiDAR data. 
2.1.7.  Conclusion 
This paper provides an overview of the recent advances in using LiDAR data for timber assortment 
estimation. This review outlines the importance of the LiDAR data for tree structure characterization, as 
well as to cope with several forest inventory issues. 
There was a greater interest by research to use LiDAR data for retrieving and gathering forest inventory 
information from forest stands (45.3 %), followed by forest productivity information (23.5%). The poor 
interest from researchers for timber assortment assessment maintaining and conserving the biodiversity was 
supported by the proportion of studies found out in “B” (7.26 %), and the studies focused on monitoring 
the climate change effects on trees were even limited (6.15 %). These results highlighted that to sustainably 
manage the forests using LiDAR techniques is still necessary for greater efforts. 
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The two implemented LiDAR devices used for timber assortment assessment were airborne (i.e. ALS) and 
terrestrial (i.e. TLS) devices. As concerns the ALS data, based on the assumption of the timber assortment 
prediction increase, as tree detection accuracy increase, several tree detection algorithms were tested (i.e. 
reFLex, MS-STI). However, the best tree detection algorithms tested on forests characterized by mixed-
species and multi-layered require specific point cloud data (>30 points/m2) and processing (stratifying 
approach). The best approach for extracting the timber assortment from standing trees was the TLS. TLS 
is a powerful source to reconstruct the stems from standing trees through automatic approaches (i.e. 
cylinder-fitting). However, the success or failure of the TLS implementation for forest monitoring takes 
into account some limitations, such as, operational and technical aspects, and weather conditions. The 
integration of ALS with TLS proved to be an effective method for timber assortment prediction at plot 
level, however, among them, TLS data played an essential role in the accuracy of this study. The 
implementation of machine learning algorithms became effective for predicting, upscaling, modelling and 
classifying the LiDAR data in forest studies. However, studies using machine learning algorithms for timber 
assortment assessment were still limited, especially at the single tree level. 
This study outlines that the success of LiDAR implementation for timber assortment assessment was 
followed by optimal flight campaign strategies, which were translated into the good quality of point cloud 
data, robust tree detection methods, and machine learning approaches.  
In conclusion, for small areas, the TLS data became the most effective method for timber assortment 
estimation, while for large areas, the integration of ALS with TLS using machine learning algorithms 
became the most effective method for timber assortment estimation. Further investigation deals with the 
processing of the combined use of ALS with TLS data through machine learning can be useful information 
for revalorising the stems in mixed and heterogeneous forest stands. Despite the poor interest of researchers 
showed on forest issues gaps (i.e. biodiversity and climate change effects), it could become the tendency in 
the future, in the light of the worldwide policies implemented to protect the planet. 
2.1.8.  Postface 
In this study, we developed an overview of the most implemented approaches using LiDAR data for timber 
assortment assessment. Nearby the half of the studies were focused on assessing inventory information 
from forests stand based on ABA and nearby one-quarters of studied studies explored productivity 
indicators based on ITD that gained the least attention by the scientific community for connecting timber 
assortment with biodiversity and climate change indicators. This amount is worrisome in climate change 
context and SFM context, also because there is the useful information of how such matter can be resolved 
This study highlighted that the most recommended LiDAR data for timber assortment assessment were 
ALS and TLS. The main challenge of ALS was the detection accuracy, especially in mixed-species and 
multi-layered forests. While the main challenges provided by TLS studies were associated with operational, 
technical, weather conditions, forest stand structure. The promising approaches capable to overcome the 
challenges observed for studies were the stratification associated with the clustering approach for ALS data 
and cylinder-fitting approaches for TLS data, respectively. A further study testing alternative tree detection 
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approaches, cylinder-fitting and machine learning approaches on LiDAR data can result effective for timber 
assortment assessment. 
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2.2. Unsupervised algorithms to detect single trees in a 
mixed-species and multi-layered Mediterranean forest 
using LiDAR data. 
2.2.1. Preface 
In the forest, an accurate and reliable method for detecting the trees on ALS data became essential for 
optimizing the timber assortment extraction from forest stands, as well as for implementing SFM actions. 
Some studies using ALS data for monitoring the forests proved that the accuracy of the total forest inventory 
variable increases, as the detection rate increases. However, nowadays, enhanced findings were showed by 
studies using a well quality of ALS point cloud and within homogenous forest stands (Vastaranta et al. 
2014; Sačkov et al. 2016; Hamraz et al. 2017). As a result, a greater detection accuracy was found for trees 
belonging to the upper and the intermediate layers (Wang et al. 2016, 2017; Liang et al. 2019) and a lesser 
detection accuracy was found on trees belonging to the lower layer (Vastaranta et al. 2014; Sačkov et al. 
2016; Hamraz et al. 2017). Although the role of the trees belonging to the lower layer can be judged on 
timber provision terms, the importance of these lies in the capability in ensuring forest regeneration, 
succession and stability (Jules et al. 2008; Antos 2009). In the light of the foregoing, a tree detection method 
for detecting trees over the lower, intermediate and upper layers can be beneficial to better characterize the 
trees. In this context, this study introduces a stepwise approach using two unsupervised algorithms for 
detecting the trees across the strata in mixed-forest and multi-layered Mediterranean forests. 
2.2.2. Abstract 
Accurate measurement of forest growing stock is a prerequisite for implementing Climate-Smart Forestry 
strategies. This study deals with the use of Airborne Laser Scanning data to detect carbon stock at the tree 
level. It aims to demonstrate that the combined use of two unsupervised techniques will improve the 
accuracy of estimation supporting sustainable forest management. Based on the heterogeneity of tree height 
and point cloud density, we classified 31 forest stands into four complexity categories. The point cloud for 
each stand was further cut in three horizontal layers, improving the accuracy of tree detection at tree level 
for which we calculated volume and carbon stock. The average accuracy of tree detection was 0.48. The 
accuracy was higher for forest stands with lower tree density and higher frequency of large trees, as well 
as a dense point cloud (0.65). The prediction of carbon stock was higher with a bias ranging from -0.3 % 
to 1.5 % and the RMSE ranging from 0.14 % to 1.48 %. 
Keywords: Tree detection; Airborne Laser Scanning (ALS), Forest structure, Carbon stock, Natural forest, 
Climate-Smart Forestry. 
2.2.3.  Introduction 
In Europe, forests cover about 33 % of the total land area (FOREST EUROPE 2015) and play a significant 
role in climate change mitigation thanks to their capacity to remove carbon dioxide from the atmosphere 
and to store carbon in timber (Nabuurs et al. 2018). Improving the storage of carbon through mitigation 
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techniques and the adaptation of forest ecosystems to climate change, namely managing the forest in a 
responsible way, supporting the provision of socio-economic and environmental benefits, requires 
advanced knowledge and continuous update of forest inventory data (Lindner and Karjalainen, 2007; IPCC 
2014). However, traditional forest inventory methods are time-consuming and require enormous efforts, 
particularly in multi-layered forests or poorly accessible forest areas, like those in mountain areas. In these 
environments, time-efficient and accurate techniques are required to facilitate data acquisition, particularly 
to provide timely forest management responses facing climate change in threatened forest ecosystems, such 
as those of Mediterranean mountains. Information about forest area, forest damages, tree species 
composition, growing stock, and carbon stock is increasingly important to develop climate change 
mitigation and adaptation strategies for the management of forest ecosystems (Santopuoli et al. 2020b), 
while maintaining the full set of ecosystem services, in short Climate-Smart Forestry, CSF. Bowditch et al. 
(2020) ranked sustainable forest management indicators to assess CSF, based on their usefulness to monitor 
forest adaptation and mitigation. Among others, growing stock and carbon stock were considered highly 
important for CSF. In the last decades, several studies focused on the use of remote sensing for assessing 
forest growing stock and carbon stock (Chirici et al. 2008; Brosofske et al. 2014).  Since the early 2000s, 
the use of Light Detection and Ranging (LiDAR) has considerably increased in the forest sector, particularly 
the Airborne Laser Scanning (ALS), which is a sensor mounted on aerial vehicles (Næsset 1997). ALS 
provides advantages in the prediction of forest inventory variables at different scales, from the landscape 
to the stand levels (Montaghi et al. 2013; McRoberts et al. 2015; Chirici et al. 2016), and even at single 
tree level (Kandare et al. 2014; Mongus and Žalik, 2015; Shao et al. 2018). The accuracy of prediction is 
higher for the individual tree-based approach compared to the area-based approach, as demonstrated for 
example by Yu et al. (2010). Despite the increased use of ALS devices for assessing forest inventory 
variables, the individual tree-based approach remaining very challenging, particularly for trees belonging 
the understory layers of multi-layered and mixed forests (Kaartinen et al. 2012; Sačkov et al. 2016; Balsi 
et al. 2018).  
We propose that ALS may allow quantifying and monitoring smartness indicators in response to rapidly 
changing environmental conditions while collecting detailed information on stand productivity, tree health, 
and species diversity from forest patches. Nevertheless, studies using ALS data to characterize mixed 
forests showed that the identification of single trees is strongly influenced by forest structure, such as tree 
species composition, tree height stratification, and stand density (Liang et al. 2019; Wang et al. 2019). 
Accordingly, better results at single tree level were obtained in regular forest structures, such as pure conifer 
stands or forest plantations (Dalponte et al. 2015; Torresan et al. 2020). Indeed, natural and unmanaged 
forests represent a hard sampling problem for single tree detection through ALS data, due to the challenges 
for deriving single tree-related forest inventory variables (Duncanson et al. 2014; Kandare et al. 2016; 
Liang et al. 2019), which serve as an important benchmark for CSF.  
Recently, many approaches have been developed to exploit ALS point clouds for detecting single trees. 
Kandare et al. (2014) and Sačkov et al. (2016) used respectively the K-means algorithm and reFLex 
algorithm, showing several limitations for detecting understory vegetation layers. Both methods detected 
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about 46 % of trees with height lower than 12 m through K-means and 18 % of all trees in intermediate and 
suppressed layers through reFLex. To improve the detection accuracy, some authors suggested splitting the 
point clouds into several tiles simulating the vertical distribution of trees in the forests, obtaining a higher 
detection accuracy for trees in the understory layers (68 %) (Hamraz et al. 2017).  Further approaches, such 
as RANSAC (RANdom SAmple Consensus) algorithm (Balsi et al. 2018) and MCGC (Multi-Class Graph 
Cut) (Williams et al. 2019), have been used for tree segmentation with interesting results for trees belonging 
to large diameter classes (> 30 cm), but with uncertain results for trees with a diameter at breast height < 
30 cm. In particular, RANSAC algorithm allowed detecting about 86 % of trees in the overstory layer, 
while MCGC method allowed detecting approximately 30 % of trees in the understory layer. Overall, the 
accuracy of the detection rate is higher for trees belonging to the top canopy, rather than for those in the 
understory vegetation. We hypothesize that the combined use of the clustering approach and the 
stratification of point clouds may improve the accuracy of results, even with low-density ALS point clouds. 
Though trees of the understory layer contribute less to the forest carbon sink in comparison with those of 
the overstory layer, they are crucial for the resilience and the stability of forests, thus contributing to 
mitigate the effects of climate change (Jules et al. 2008; Antos 2009) and ensuring the continuity of forest 
regeneration and successional processes. 
In particular, describing the vertical structure of multi-layered stands, such as the Mediterranean mountain 
forests that are characterized by a complex stratification of canopy layers and a mixture of tree species, is 
a difficult task. Despite their continuous improvement, single-tree based methods for delineating vertically 
heterogeneous canopies remain of difficult application, because of the requirement of site-specific 
parameters and the geometry of multi-canopy layers (Hamraz et al. 2017; Sačkov et al. 2016). Developing 
a suitable method for fostering the segmentation of trees in a multi-layered mixed forest through remote 
sensing techniques is crucial to support CSF, particularly with the objectives of reducing the loss of 
biodiversity and increasing the adaptation of trees facing climatic changes. 
In this study, we combined, for the first time, two unsupervised techniques to identify individual trees in 
order to assess carbon stock at the tree level in a mixed-species and multi-layered forest, using ALS data. 
To reach this objective, we firstly focused on the identification of single trees and subsequently showed the 
changes in the accuracy of detection rate across the three canopy layers. The successful use of these 
unsupervised techniques in combination might provide a great contribution in monitoring forest ecosystems 
and collecting CSF indicators. 
2.2.4. Materials and Methods 
2.2.4.1.  Study area 
The study area is located in Central Italy (Molise; 41°42′ N, 14° 12′ E), namely Bosco Pennataro (Figure 
1). Bosco Pennataro is recognized as part of the core area of the Man and Biosphere (MaB) Reserve of 
Collemeluccio-Montedimezzo Alto Molise and included in the Natura 2000 network. Bosco Pennataro is a 
mixed Mediterranean forest with 13 tree species, Turkey oak (Quercus cerris L.; 40 %), European beech 
(Fagus sylvatica L.; 21 %), and Italian maple (Acer obtusatum Mill.; 9.6 %) being the most frequent ones 
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(Santopuoli et al. 2019). The natural forest community is Aremonio agrimonioidis - Quercetum cerridis 
(Biondi et al. 2010), classified as Oak-hornbeam according to the European Forest Type (Barbati et al. 
2014). The mean altitude of Bosco Pennataro is about 930 m a.s.l., while the average annual precipitation 
and temperature are 723.5 mm year-1 and 14.5 °C, respectively (https://power.larc.nasa.gov). The current 
management system is a high forest with continuous canopy cover and uneven-aged mixed species trees. 
The average stand density is about 700 trees ha-1, the growing stock is 385 m3 ha-1 of which 366 m3 ha-1 
are living trees and 19 m3 ha-1 are standing dead trees (Santopuoli et al. 2019). The absence of forestry 
interventions over the years has facilitated the conversion from even-aged to the uneven-aged forest, 
supporting the shift of stand structure, from monolayer to multilayer.  
The field survey used the one-per-stratum stratified sampling scheme (Barabesi et al. 2012). This sampling 
strategy partitions a region into several equal-size strata and selects one portion for each stratum based on 
a random and uniform criterion. Based on a one-per-stratum scheme, Bosco Pennataro was stratified into 
50 strata and one squared field plot (hereafter ADS) of 529 m2 per stratum was randomly selected and 
considered for the ALS study. Since the ALS strips covered only partially Bosco Pennataro, we selected 
the ADS covered by ALS data, and 31 out of 50 ADS were selected (Figure 6). 
 
FIGURE 6 LOCATION OF STUDY AREA BOSCO PENNATARO (RED TRIANGLE) AND LOCATION OF THE FIELD PLOTS 
(ADS). 
2.2.4.2. Ground truth data 
The forest-related characteristics within each ADS were collected in 2016, using the Field-Map technology 
(https://www.fieldmap.cz/). The sampled parameters were: tree position, tree crown area, tree species, tree 
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height (TH, m), height of the first branch insertion (I, m), and diameter at breast height (DBH, cm) for all 
trees with a DBH ≥ 2.5 cm. The stem volume (VOL, m3) was calculated through allometric equations 
developed for the Italian tree species (Tabacchi et al. 2011) and used in the National Forest Inventory. The 
carbon stock stored in stems and large branches with diameter ≥ 5 cm (CS, tons) was calculated by 
multiplying the aboveground biomass (AGB, tons) by 0.5 (Federici et al. 2008), following the equation (1): 
𝐴𝐺𝐵 = 𝐺𝑆 ∗ 𝐵𝐸𝐹 ∗ 𝑊𝐵𝐷 ∗ 𝐴        (eq. 1) 
where:  
AGB — aboveground biomass, (tons);  
GS — growing stock (m³ ha-1);  
BEF — biomass expansion factor, which is equal to 1.47; 
WBD — wood basal density (t d.m. m-3 f.v.), which is equal to 0.38;  
A — forest area occupied by a specific forest category (ha-1).  
According to Federici et al. (2008), “other broadleaved” forest category was used for BEF and WBD 
values. 
2.2.4.3.  ALS data collection and analysis  
The ALS data were collected in June 2016, in leaf-on forest canopy condition, by Oben S.r.l. company 
(https://www.oben.it/sito/). The LiDAR sensor (YellowScan Mapper) was mounted on an ultra-light 
vehicle able to collect 3 echoes per laser pulse, with an average point cloud density equal to 60 points m-² 
and accuracy equal to ± 15 cm (± 50° of Scan angle and pulse frequency of 20 kHz), however, most points 
belonged to the first echo. The ultra-light vehicle flew at an altitude of 100 m above ground level.  
In this study, a step-by-step methodological approach was implemented, consisting of the following five 
steps: 1) pre-processing of the ALS data; 2) grouping and stratifying the ADS point clouds; 3) tree detection 
and segmentation; 4) validation of the predicted tree crowns; and, 5) prediction of forest inventory variables 
(Figure 7). 
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FIGURE 7 METHODOLOGICAL WORKFLOW APPLIED TO DERIVE THE CARBON STOCK AT THE SINGLE TREE LEVEL, 
USING AIRBORNE LASER SCANNING (ALS) DATA. THE ALS DATA WAS CUT USING THE FIELD PLOT (ADS) BOX 
DIMENSIONS AND STRATIFIED INTO LOWER (LAYER1), INTERMEDIATE (LAYER2) AND UPPER (LAYER3) CANOPY 
LAYERS. THE ROOT MEAN SQUARED ERROR (RMSE) AND COEFFICIENT OF DETERMINATION (R-SQUARED) 
VALUES FOR STEM VOLUME PREDICTION WAS EVEN DISPLAYED 
Step 1 - Pre-processing of ALS data 
As part of the preprocessing step, the computing of ALS point cloud was running through several 
modules embedded in LAStools software (www.rapidlasso.com). Initially, the raw ALS point cloud was 
classified in the ground and non-ground strata using the “lasground” module, then, the points marked as 
outlier were filtered using “lasheight” to generate a point cloud classified and cleaned. The generated 
point cloud was height normalized, based on the ground surface, using “lasheight” module to derive a 
normalized above-ground point cloud source. The normalized above-ground point cloud was clipped 
based on the ADS dimension using “lasclip” module. To include the crowns of the edge trees, the areas of 
ADS were enlarged with a buffer of 2 m, shifting from 529 m2 to 729 m2. The enlarged clipped point 
clouds for each ADS were used as input variables in the following steps. 
Step 2 - Grouping and stratifying the ADS point cloud 
To investigate factors influencing the accuracy of tree detection, due to the mixed-species and multi-layered 
characteristics of forest stands, the ADS point clouds were split in four groups (A, B, C, and D) according 
to the forest stand condition (i.e. tree height variation) and the point clouds density. This step was necessary 
to classify different complexity levels of the forest stand in more homogeneous groups, according to the 
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sample probability distribution theory (Barabesi et al. 2012). Based on the mean values of both the average 
point density (APD) (Hamraz et al. 2017; Hamraz et al. 2017a) and the standard deviation of surveyed tree 
heights (THsd) (Wang et al. 2019a; Liang et al. 2019), four groups containing the uniform number of 
observations, i.e., ADS, were discriminated (Figure 3). The value adopted as a threshold for APD was fixed 
at 31.02 points m-², while for THsd the value was established at 6.879 m. Group A included the ADS that 
showed the lowest values of both APD and THsd; group B included ADS with lowest values of APD and 
highest values of THsd; group C included ADS with the highest values of both APD and THsd; group D 
included the ADS with highest values of APD and lowest values of THsd. The grouping process was 
achieved using “TreeLS" (available on GitHub, https://github.com/tiagodc/TreeLS) and "stats" (authors, R 
Core Team, and contributors worldwide) R packages. 
Moreover, the four groups were ranked in four complexity categories (“highly difficult”, “moderately 
difficult”, “highly easy”, “moderately easy”) (Liang et al. 2018, 2019; Wang et al. 2019) to discriminate 
the accuracy of the detection approach within different forest structures (Figure 8).  
In detail, the ADS characterized by the highest number of trees with a higher frequency of small trees (DBH 
≤ 20 cm), as for example ADS of group A and D, fall in the categories “highly difficult” and “moderately 
difficult” respectively, though with differences in the APD values, which were 21.9 points m-2 for ADS of 
“highly difficult” and 106.6 points m-2 for ADS of the “moderately difficult”. Conversely, the ADS 
belonging groups B and C, characterized by the lowest number of trees with a higher frequency of large 
trees (DBH > 20 cm), were in the categories “moderately easy” and “highly easy”, respectively, with values 
of APD equal to 100.3 points m-2 for “highly easy” category and 19.75 points m-2 for “moderately easy” 
category. Therefore, the ALS and forest stand conditions preserved the structural heterogeneity between 
ADS, while maintaining the structural homogeneity within categories, which supports the assumption that 
an appropriate sample probability distribution of ADS was sampled (Barabesi et al. 2012). 
 
FIGURE 8 WORKFLOW OF THE PROCESSING OF THE AIRBORNE LASER SCANNING (ALS) POINT CLOUD FOR EVERY 
CANOPY LAYER (LAYER1, LAYER2 AND LAYER3) WITHIN EACH FIELD PLOT (ADS). THE DIAMETER AT BREAST 
HEIGHT (DBH) AND TREE HEIGHT (TH) WERE CONSIDERED IN THE CATEGORIZATION STEP 
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Thereafter, to simulate the vertical stratification of the forest stands, each ADS point cloud was split in 
three canopy layers, from suppressed to top canopy trees. Layer1 representing the vegetation of the 
suppressed trees, Layer2 representing the subdominant trees and Layer3 representing the dominant and 
codominant trees. The splitting procedure based on the vertical distribution of the tree heights, namely 33th 
(Layer1), 66th (Layer2), and 99th (Layer3) percentiles (Figure 3), was done using “lascanopy” module 
available on LAStools software. The resulted from tiled point clouds were used as input data for the tree 
detection and segmentation (step 3). 
Step 3 - Tree detection and segmentation 
To detect the stem position and to segment the stem and crown of every single tree, the combined use of 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al. 1996) and K-means, 
was implemented. DBSCAN is an unsupervised clustering algorithm able to discover the clusters, the noise 
and the outliers in a database, with poor knowledge of arbitrary shapes. Conceptually, the Density-Based 
clustering approach is referred to a set of points (p) belonging to a database (D); p ∈ D. The DBSCAN 
algorithm strives to estimate the quantity of points (p) around each point in a database (D) based on a 
Euclidean distance measurement called Eps-neighborhood distance. The Eps-neighborhood of each point, 
named NEps(p), can be derived following the equation: 
𝑁𝐸𝑝𝑠(𝑝) = {𝑞 ∈ 𝐷 |𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}                                (eq. 2)             
Where p and d ∈ D, dist. is the distance. In density-based clustering, p is located within the Eps-
neighborhood distance. Nevertheless, the size of NEps(p) around each point relies on a specific minimum 
number of points used to form a dense region, called MinPts.  
NEps(p) and MinPts are mandatory thresholds to classify the point dispersion into core, border and noise 
points (Ester et al. 1996; Smits et al. 2012). The core point consists of a high density of points based on 
MinPts (NEps(p) ≥ MinPts); the border is a point out of the core point but easy to be reachable (p ∈ NEps(q)); 
the noise point is an isolated point far away from the core point (Figure 9). To define the core, border and 
noise points, the DBSCAN algorithm plays an internal validation based on the density-reachability and 
density-connectivity (Figure 4) (Ester et al. 1996; Smits et al. 2012). 
 
FIGURE 9 THE PROCESSING OF THE AIRBORNE LASER SCANNING (ALS) POINT CLOUD THROUGH DENSITY-BASED 
SPATIAL CLUSTERING OF APPLICATIONS WITH NOISE (DBSCAN) ALGORITHM. THE MINIMUM NUMBER OF 
POINTS (MINPTS) AND THE EPS NEIGHBORHOOD DISTANCE (NEPS(P)) THRESHOLDS WERE CONSIDERED. 
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K-means is an unsupervised clustering algorithm able to partition a database into K clusters for N 
dimensions, with high intra-class similarities, based on the concept that the K parameter has to be set 
(Hartigan 1975; Hartigan and Wong, 1979). The K-means equation is: 
𝐾 𝑛
(𝑗) 2
𝑗 = ∑ ∑ ‖  𝑋𝑖 − 𝐶𝑗 ‖                                                  (eq. 3) 
𝑗=1 𝑖=1
Where j is the K-means function, “K” is the number of clusters, n is the number of cases, X is a case j and 
C is a centroid for cluster j.  
To retrieve the value of “K” cluster from all horizontal strata in order to run the partition of the K-means 
processing, the DBSCAN was applied for each horizontal stratum (i.e., Layer1, Layer2 and Layer3) over 
all ADS point clouds.  
K-means algorithm allowed us to delineate the tree crown boundary of detected tree positions, using the K 
number of clusters derived by DBSCAN findings (Figure 10).  
 
FIGURE 10 WORKFLOW OF THE PROCESSING FOR DETECTING THE TREES ACROSS THE THREE CANOPY LAYERS (I.E. 
LOWER LAYER: LAYER1, INTERMEDIATE LAYER: LAYER2 AND UPPER LAYER: LAYER3) FROM AIRBORNE LASER 
SCANNING (ALS) POINT CLOUD. THE MINIMUM NUMBER OF POINTS (MINPTS) AND EPS NEIGHBORHOOD 
DISTANCE (EPS) THRESHOLDS WERE USED FOR PROCESSING DENSITY-BASED SPATIAL CLUSTERING OF 
APPLICATIONS WITH NOISE (DBSCAN) AND K-MEANS. 
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Since the MinPts and NEps(p) were pre-requisites to run DBSCAN algorithm, we manually calculated 
these two values (Ferrara et al. 2018). In particular, the "MinPts" was set to 7 and the “NEps(p)” was set to 
0.5 (Figure 5). The analysis was developed in R software, through the “TreeLS” package (available on 
GitHub, https://github.com/tiagodc/TreeLS), “dbscan” and the “kNNdist” function (Hahsler et al. 2016). 
Since the “K” number of clusters was provided by DBSCAN processing (MacQueen 1967; Kandare et al. 
2016), the number of K-means clusters was the same. Each K-means cluster was composed by the “K” 
centroids (tree position) and “K” clusters (tree crown dimension). To remove the noise contained in the 
predicted tree clusters, we used Mahalanobis distance using R packages “TreeLS”, “akmeans” (Kwak 
2014), “rgdal” (Bivand and Rowlingson, 2016) and “rLiDAR” (Silva et al. 2015). ALS metrics were 
extracted for each true detected tree through the “lascanopy” module implemented in LAStools software. 
The point cloud data for each potential stem were exported and validated in the following step.  
Step 4 - Validation of predicted tree crowns  
The validation accuracy of the DBSCAN and K-means results was carried out following the most used 
accuracy parameters in ALS detection studies (Kandare et al. 2014; Vastaranta et al. 2014; Sačkov et al. 
2016). More precisely, the accuracy of the tree position and tree crown delineation was achieved by 
comparing the reference data (tree position, tree crown dimension from field survey) with the predicted 
data (centroid of stems, tree crowns from ALS data) through the Euclidean distance, with a tolerance value 
of three meters, as reference values to validate the detection accuracy. Specific accuracy parameters were: 
 True-positive (TruePos; units), representing the correctly identified tree.  
 False-positive (FalsePos; units) was the commission error, representing the trees that could not 
be associated with any surveyed tree (i.e., identified but not real).  
 False-negative (FalseNeg; units) was the omission error, representing the non-segmented tree.  
 Percent tree crown overlap (TREE CROWN OVERLAP; %), as the parameter indicating the 
difference between the isolated reference and predicted crown segment.  
 Distance between the predicted centroid of the crown segment and the centroid of the reference 
crown (Euclidean distance; m). Euclidean distance was applied to determine the distance 
between the predicted and reference centroid crown segments. 
 Detection Rate (DR; %), reporting the relationship between the TruePos and the reference stem.  
 Time for tree detection (Time for TD; sec), reporting the time-consuming in analyzing each 
sampled area of 729 m2.  
Step 5 - Prediction of forest inventory variables 
To predict different forest inventory variables, for trees that were previously identified, the Random Forests 
algorithm was applied. Random Forests algorithm allowed us to achieve regression tree classification based 
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on decision trees (Breiman 2001), as being widely used to handle a high number of factors and for reducing 
the overfitting (Shi et al. 2018). 
The Random Forests parameters used for the prediction were (a) “Ntree”, the number of decision trees to 
be used during the prediction phase; (b) “Mtry”, the number of input variables for splitting at each tree 
nodes; and (c) “nodesize”, the minimum size of terminal nodes (Belgiu and Drăgu, 2016).  
In this study, the three forest inventory variables (i.e., DBH, TH, and VOL) for each layer (i.e., Layer1, 
Layer2 and Layer3, and Layer1-Layer3) within each category (i.e., highly difficult, moderately difficult, 
highly easy, moderately easy) were predicted using the ALS metrics (Top-nine) of its corresponding 
TruePos. The whole predicted models amount to 48: 16 out of 48 corresponding to DBH, 16 out of 48 
corresponding to TH and 16 out of 48 corresponding to VOL. Furthermore, to investigate the performance 
of models using the ALS metrics (Top-nine) given to the total TruePos, we calculated the forest inventory 
variables (i.e., DBH, TH, and VOL) using the merged information of categories; the whole predicted 
models were three, one per forest inventory variable. 
The Random Forests models were implemented using the randomForest package in R (Liaw and Wiener, 
2002). The setting of the Random Forests algorithm was implemented by "Ntree" as 1000, "Mtry" as 3-4, 
and node size as 5. The validation of these models was developed by the coefficient of determination (R-
squared; 0-1) and root mean square error (RMSE; cm, m, m³) for the number of trees examined (N°trees; 
units), using the “stats” (authors, R Core Team and contributors worldwide) and “usdm” (Naimi 2017) R 
packages.  
Moreover, the CS was predicted using as input the VOL from ALS data for each canopy layer. Validation 
was done by comparing the predicted vs. observed CS amount for each ADS. 
2.2.5. Results  
Bosco Pennataro is characterized by a heterogeneous forest structure; among the ADS, the number of trees 
ranged between 453 and 3698 trees ha-1, the mean DBH ranged between 9.9 cm and 26.9 cm, the mean TH 
ranged between 8.2 m and 23.1 m, and the stem volume ranged from 183 m³ ha-1 (carbon amount = 51.1 
tons ha-1) to 633.9 m³ ha-1 (carbon amount = 177 tons ha-1). The heterogeneity of the forest stand, due to 
both vertical stratification and DBH variability, as well as the stand density, impacted the point density and 
spacing of ALS point clouds that varied from 12.13 points m-² to 292.9 points m-² (Table 6) 
2.2.5.1. ADS groups and ALS point clouds layers 
The clusterization of the surveyed ADS in four distinct groups allowed us to assess forest inventory 
variables in this mixed-species and multilayered Mediterranean forest correctly. Though the number of 
ADS for each group was similar (Figure 11), ADS showed a varying pattern across the complex forest 
structure (Table 6). Stand density was high among ADS of difficult categories, ranged between 1724 trees 
ha-1 and 1542 trees ha-1. Moreover, these ADS presented high standard deviation values (985 trees ha-1 and 
840 trees ha-1), compared to those of easy categories (between 339 trees ha-1 and 262 trees ha-1). 
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Additionally, the easy categories were characterized by a great number of big trees compared to the difficult 
categories and, as a consequence, by high values of assessed forest inventory variables, i.e., DBH, TH, 
VOL, and CS. 
 
FIGURE 11 GRAPHICAL DISTRIBUTION OF THE FIELD PLOTS (ADS) ACCORDING TO THE AVERAGE POINT DENSITY 
(APD; POINTS M-2) AND THE STANDARD DEVIATION OF TREE HEIGHT (THSD; M) FOR EACH CATEGORY FROM A 
TO D GROUPS (A, HIGHLY DIFFICULT; B, MODERATELY EASY; C, HIGHLY EASY; D, MODERATELY DIFFICULT). 
Results showed a greater variability among ADS of the difficult categories rather than among ADS of the 
easy categories, allowing us to state that the heterogeneity of forest structure impacted on the detection of 
single trees.  
TABLE 6 SUMMARY OF FOREST STAND CHARACTERISTICS OF AIRBORNE LASER SCANNING (ALS) AND FOREST 
INVENTORY DATA PER EACH FIELD PLOT (ADS) AND COMPLEXITY CATEGORIES. THE AVERAGE POINT DENSITY 
(APD; POINTS M-²), AVERAGE POINT SPACING (APS; M), DIAMETER AT BREAST HEIGHT (DBH; CM) AND TREE 
HEIGHT (TH; M) WERE ESTIMATED PER ADS. THE STEM VOLUME (VOL; M³) AND CARBON STOCK (CS; TONS) 
WERE ESTIMATED PER HECTARE (HA.). THE NUMBER OF TREES (N°TREES; UNITS) WERE CALCULATED PER ADS 
AND HA. THE MEAN (*1) AND SUM (*2) AND STANDARD DEVIATION (*3) VALUES WERE SHOWED.  
ALS data   Forest inventory data 
ADS Ha 
6 30 0.2 32 18 17.3 604 220.3 61.5 
8 13.8 0.3 52 15.7 13.7 981 307.8 86 
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9 14.9 0.3 47 19 16.3 887 353.4 98.7 
11 30 0.2 86 15.2 12.9 1623 341.7 95.4 
15 16.3 0.3 196 9.9 8.2 3698 183 51.1 
16 23.4 0.2 121 12.1 9.4 2302 272.1 76 
18 16.8 0.2 95 12.9 9.7 1792 277.3 77.4 
21 30 0.2 101 14 11.4 1906 329 91.9 
(*1) 21.9 0.2 91 14.6 12.4 1724 285.6 79.8 
(*2)   730   13792   
(*3) 7.3 0.1 52 3 3.3 985 60 16.8 
5 17.2 0.2 34 20 18.2 642 325.9 91 
13 26.5 0.2 83 16.5 14.6 1566 488.3 136.4 
17 12.1 0.3 58 18.1 13.3 1094 485.9 135.7 
20 20.8 0.2 31 21.1 16 585 308.8 86.3 
22 13.9 0.3 70 17.1 15.6 1321 633.9 177 
24 13.5 0.3 42 18.6 16.2 792 406.4 113.5 
27 31 0.2 54 13.5 11.1 1019 408.1 114 
31 23 0.2 63 17.1 14 1189 435.2 121.5 
(*1) 19.75 0.24 54 17.75 14.88 1026 436.56 121.93 
(*2)     435     8208     
(*3) 6.78 0.05 18 2.32 2.14 339 103.06 28.77 
4 62.5 0.1 49 17.8 15.3 925 357.2 99.8 
7 74.4 0.1 36 20 13.3 679 450.2 125.7 
10 73.7 0.1 37 23.1 16.9 698 528.5 147.6 
25 81.6 0.1 32 20.7 21.3 623 430.4 120.2 
26 48.6 0.1 24 25.8 23.1 453 477.1 133.3 
29 292.9 0.1 60 16.1 15.4 1132 400 111.7 
30 68.7 0.1 60 16.5 13.9 1132 413.6 115.5 
(*1) 100.3 0.1 43 20 17 806 436.7 122 
(*2)     298     5642     
(*3) 85.6 0 14 3.6 3.8 262 55.5 15.5 
1 31.3 0.2 33 20.5 18.5 623 249 69.6 
2 227.6 0.1 120 12.8 9.8 2264 270.8 75.6 
3 96.6 0.1 35 26.9 17.1 660 537.5 150.1 
12 67.1 0.1 140 10.6 9.1 2642 286.8 80.1 
14 99.9 0.1 91 11.6 9.8 1717 344.7 96.3 
19 84.3 0.1 50 20.1 14.3 943 295.4 82.5 
23 43.8 0.2 53 18 12.3 1000 390.7 109.1 
28 202.7 0.1 132 10.7 10.8 2491 220.2 61.5 
(*1) 106.66 0.13 82 16.4 12.71 1542 324.39 90.6 
(*2)   654   12340   
(*3) 71.41 0.05 45 5.92 3.57 840 101.34 28.29 
 
The number of trees across the three canopy layers was rather similar, from Layer1 to Layer3, with a 
relatively low presence of trees in the Layer2 (Figure 12). Therefore, the discrimination of trees was similar 
also across different ADS. 
However, the distinction of crowns across the three canopy layers was facilitated in ADS of easy compared 
to difficult categories. For this reason, the poor presence of stems, more accentuated in ADS of the “slightly 
easy” and “moderately easy” categories, was a contributing factor that enabled the discrimination of single 
trees (Figure 12B and Figure 12C); while the high values of stand density created an overlapping effect 
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among tree crowns, which slightly hindered the detection of trees, particularly for the intermediate layers. 
(Figure 12A and Figure 12D).  
 
FIGURE 12 FOUR REPRESENTATIVE MAPS OF THE FOUR DIFFERENT AIRBORNE LASER SCANNING (ALS) POINT CLOUD 
COMBINATIONS (ONE PER CATEGORY). THE RED SQUARE SHOWED THE FIELD PLOT (ADS) BORDER; THE 
NUMBER OF TREES (N°TREES; UNITS) WAS SHOWED FOR EVERY CANOPY LAYER (I.E. LOWER LAYER: LAYER1, 
INTERMEDIATE LAYER: LAYER2 AND UPPER LAYER: LAYER3); THE TREE HEIGHT (TH; M) AND THE DIAMETER AT 
BREAST HEIGHT (DBH; CM) WERE EXPRESSED IN AVERAGE AND THE STANDARD DEVIATION (SD; ±) VALUES; 
THE TOP LETTERS REPORT THE CATEGORY LEVEL (I.E. A, HIGHLY DIFFICULT; B, MODERATELY EASY; C, 
HIGHLY EASY; D, MODERATELY DIFFICULT). 
2.2.5.2. Tree detection  
We detected 952 out of 2117 reference trees, reaching an average detection rate of 48 % (Table 7), with a 
moderate uniformity/similarity across the three layers (SD = ±12.5). Our tree detection approach was more 
sensitive to the omission error, 1165 out of 2117 reference trees, than to the commission error, 795 out of 
2117 reference trees. Better results in terms of the detection rate were obtained in ADS belonging to the 
ADS of groups B and C (easy categories) rather than in those of groups A and D (difficult categories). The 
detection rate was 36 % (SD = ± 7.3) for ADS of the “highly difficult” category, identifying 261 out of 730 
trees. The detection rate was 49 % (SD = ± 19.2) for ADS of “moderately difficult” category, identifying 
215 out of 435 trees. The detection rate for ADS of “moderately easy” category was 43 % (SD = ± 7.8), 
identifying 282 out of 654 trees. The detection rate for ADS of “highly easy” category reached 65 % (SD 
= ± 7.0), identifying 194 out of 298 trees.  
The detection rate values were more accurate for trees of the Layer2 (54 %, SD = ± 13.7) than for trees of 
the Layer1 (42 %, SD = ± 7.8) and Layer3 (49 %, SD = ±15.4).  
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The detection of trees in ADS with the lowest point density, corresponding to the “highly difficult” and 
“moderately easy” categories, was affected by the occlusion effects from subdominant, codominant and 
dominant to suppressed trees; a better performance was obtained for trees of the Layer2 and Layer3. 
Whereas, an opposite pattern was observed in ADS with a higher point density, “highly easy” and 
“moderately difficult” categories. Hence, the point density influenced the occlusion effects from large to 
small tree crown dimension in tree detection, regardless the forest structure.  
The highest value of the commission error was found for the ADS of the “highly easy” category, which 
was 123 %, (367 FalsePos), while ranging between 21 % and 25 % in the remaining three categories 
Similarly, the highest value of the omission error was found in the “highly easy” category, which was 135 
%, (104 FalseNeg), while the omission error for the other three categories ranged between 51 % and 64 %. 
The best and worst compromise between commission and omission errors were found in ADS of 
“moderately easy” (106 and 220 out of 435 surveyed stems) and “highly easy” (367 and 104 out of 298 
surveyed stems), respectively.  
The sensitivity variation of our algorithm for commission and omission errors was rather small among the 
three canopy layers, which ranged from 44 % to 58 % for FalsePos and from 46 % to 58 % for FalseNeg.  
TABLE 7 TREE DETECTION RESULTS. NUMBER OF STEMS OBSERVED FROM REFERENCE DATA (TR; UNITS) AND 
NUMBER OF STEMS PREDICTED FROM ALS DATA (TALS; UNITS), TRUE POSITIVE (TRUEPOS; UNITS), FALSE 
POSITIVE (FALSEPOS; UNITS), FALSE NEGATIVE (FALSENEG; UNITS) AND DETECTION RATE (DR; %) FOR LOWER 
(LAYER1), INTERMEDIATE (LAYER2) AND UPPER (LAYER3) CANOPY LAYERS. 
Tree detection results 
Tree detection 
TR 
Categories Canopy layers TALS TruePos FalsePos FalseNeg (units) DR (%) 
(units) (units) (units) (units) 
Layer1 245 124 69 55 176 28  
Layer2 237 176 101 75 136 43  
Highly difficult Layer3 248 147 91 56 157 37  
Sum 730 447 261 186 469   
Mean & SD (±)      36 (7.3) 
Layer1 144 54 40 14 104 28  
Layer2 141 120 78 42 63 55  
Moderately easy Layer3 150 147 97 50 53 65  
Sum 435 321 215 106 220   
Mean & SD (±)      49 (19.2) 
Layer1 99 178 63 115 36 64  
Layer2 96 213 70 143 26 73  
Highly easy Layer3 103 170 61 109 42 59  
Sum 298 561 194 367 104   
Mean & SD (±)      65 (7.0) 
Layer1 218 166 108 58 110 50  
Layer2 213 147 97 50 116 46  
Moderately 
Layer3 223 105 77 28 146 35  
difficult 
Sum 654 418 282 136 372   
Mean & SD (±)      43 (7.8) 
Sum 706 522 280 242 426   
Layer1 
Mean & SD (±)      42 (17.5) 
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Sum 687 656 346 310 341   
Layer2 
Mean & SD (±)      54 (13.7) 
Sum 724 569 326 243 398   
Layer3 
Mean & SD (±)      49 (15.4) 
Sum 2117 1747 952 795 1165   
Total 
Mean & SD (±)      48 (12.5) 
 
The estimation of the crown position displayed similar values for all four categories, ranging between 1.73 
m and 2.55 m (Figure 13II). The similarities were also observed among the three canopy layers, particularly 
for ADS of the “highly easy” category, within which the most homogeneous values were observed. On the 
contrary, small differences were observed between Layer3 and Layer1 or layer2 in the remaining categories. 
Although the observed crown dimension was not completely covered by the predicted tree crown 
dimension, the average overlap value was 57%; this was moderately consistent across ADS (SD = ± 11) 
(Figure 13III), within which Layer2 was the most accurate.  
Time required in detecting the trees, using combined unsupervised algorithms, was faster in the ADS with 
the lowest (21.9 points m-²) point density in comparison with those with the highest (19.7 points m-²) 
(Figure 13IV). 
 
FIGURE 13 COMPARISON BETWEEN PREDICTED VS. OBSERVED VALUES OF I) DETECTION RATE (DR; %), II) EUCLIDEAN 
DISTANCE (M), III) TREE CROWN OVERLAP (%), AND IV) TIME FOR TREE DETECTION (TIME FOR TD; SEC) FOR 
EACH CANOPY LAYER (LAYER1 “L1”, LAYER2 “L2”, AND LAYER3 “L3”) AND FOR EVERY CATEGORY (HIGHLY 
DIFFICULT, MODERATELY EASY, HIGHLY EASY AND MODERATELY DIFFICULT). THE AVERAGE VALUES OF THE 
TIME CONSUMING FOR DETECTING TREE (TIME FOR TD, SEC) BELONGING TO EACH PLOT WAS DISPLAYED FOR 
EACH CATEGORY. 
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2.2.5.3. Forest inventory variables 
Comparing the predicted vs. observed data from correctly detected trees, corresponding to 952 trees, we 
found significant values of the coefficient of determination and the RMSE for DBH (0.92; 4.03 cm), TH 
(0.95; 1.33 m) and VOL (0.82; 0.31 m3), respectively (Figure 14). 
 
FIGURE 14 PREDICTED VALUES VS. OBSERVED FOREST INVENTORY VARIABLES. THE BOX A) SHOWS 
DIAMETER AT BREAST HEIGHT (DBH, CM); BOX B) SHOWS TREE HEIGHT (TH; M) AND BOX C) 
DISPLAYS STEM VOLUME (VOL, M³). THE NUMBER OF TREES (N°TREES; UNITS), NUMBER OF 
PREDICTORS (N°PREDICTORS; UNITS), COEFFICIENT OF DETERMINATION (R-SQUARED; 0-1) AND 
ROOT MEAN SQUARED ERROR (RMSE; CM, M AND M3) WERE EVEN REPORTED. 
Despite the different quantities of trees analyzed (TruePos), slight differences in terms of coefficient of 
determination between predicted vs. observed across categories were observed. However, the categories 
were less accurate for DBH (N° trees = 261 and 215; R-squared = 0.9) belonging to ADS of the “highly 
difficult” and “moderately easy” categories; whereas, for TH (N° trees = 215; R-squared = 0.93) and 
VOL (N° trees = 215; R-squared = 0.89), this was the case for the ADS belonging to the “moderately 
easy” category. Therefore, the categories with smaller point densities (in absolute terms) were slightly 
less accurate (Table 8).  
TABLE 8 SUMMARY STATISTICS OF THE FOREST INVENTORY VARIABLES ESTIMATED WITH THE RANDOM FORESTS 
ALGORITHM BY USING TOP-NINE METRICS FOR DIAMETER AT BREAST HEIGHT (DBH; CM), TREE HEIGHT (TH; 
M), AND STEM VOLUME (VOL; M3). THE NUMBER OF TREES (N°TREES; UNITS), COEFFICIENT OF 
DETERMINATION (R-SQUARED; 0-1) AND ROOT MEAN SQUARED ERROR (RMSE; CM, M AND M3) WERE 
DISPLAYED. THE OUTCOMES WERE DISPLAYED FOR ALL FOUR CATEGORIES (HIGHLY DIFFICULT, 
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MODERATELY EASY, HIGHLY EASY AND MODERATELY DIFFICULT), WHICH WAS FURTHER DIVIDED BY LOWER 
(LAYER1), INTERMEDIATE (LAYER2) AND UPPER (LAYER3) CANOPY LAYERS.  
Linear regression 
DBH (cm) TH (m) VOL (m3) 
N°trees 69 101 91 261 69 101 91 261 69 101 91 261 
R-
0.91 0.91 0.89 0.9 0.92 0.91 0.91 0.95 0.93 0.87 0.91 0.9 
squared 
RMSE 0.9 2.25 3.8 3.62 1.05 1.01 1.03 1.14 0.01 0.05 0.27 0.2 
N°trees 40 78 97 215 40 78 97 215 40 78 97 215 
R-
0.91 0.89 0.88 0.9 0.92 0.92 0.89 0.93 0.78 0.89 0.87 0.89 
squared 
RMSE 1.44 2.43 4.25 4.59 0.7 0.93 1.1 1.38 0.02 0.08 0.37 0.35 
N°trees 63 70 61 194 63 70 61 194 63 70 61 194 
R-
0.82 0.89 0.91 0.91 0.82 0.93 0.9 0.95 0.8 0.89 0.88 0.9 
squared 
RMSE 1.77 3.26 4.28 4.63 1.87 1.07 1.25 1.56 0.04 0.12 0.56 0.4 
N°trees 108 97 77 282 108 97 77 282 108 97 77 282 
R-
0.88 0.9 0.89 0.91 0.86 0.97 0.89 0.95 0.81 0.86 0.91 0.9 
squared 
RMSE 1.38 3.3 5.15 4.08 1.16 0.61 1.52 1.21 0.02 0.15 0.38 0.24 
 
We observed that the best and worst accuracies were found in the ADS of the “moderately easy” and “highly 
difficult” categories, based on the fitted prediction for stem volume (RMSE = 0.14 % and bias = 0.1 %) 
and carbon stock (RMSE = 1.48 % and bias = 1.5 %) variables (Table 9). However, we note that the 
“moderately difficult” category offered better performances than the “highly easy” category. Therefore, 
ADS with a higher number of trees with a higher frequency of small trees were less affected by the 
performance of the models in terms of bias and RMSE values. Moreover, the bias and RMSE in the case 
of “moderately easy” and “moderately difficult” categories suggested that the ADS with a higher point 
density associated and higher share of trees with the predominance of large trees might solve issues 
associated with uncertainties. It is worth noting that the prediction of stem volume was weakly related to 
the tree detection accuracy. 
TABLE 9 COMPARISON BETWEEN PREDICTED AND OBSERVED VALUES OF STEM VOLUME (VOL; M3) AND 
CARBON STOCK (CS; TONS) DERIVED FROM AIRBORNE LASER SCANNING (ALS) METRICS. THESE VALUES 
WERE FURTHERLY DISPLAYED BY EACH CATEGORY (HIGHLY DIFFICULT, MODERATELY EASY, HIGHLY 
EASY AND MODERATELY DIFFICULT) AND BY EACH FIELD PLOT (ADS). THE NUMBER OF TREES (N°TREES; 
UNITS) WAS CALCULATED PER ADS AND HA-1. ABSOLUTE (M3 AND TONS) AND PERCENT (%) VALUES OF 
BIAS AND ROOT MEANS SQUARED ERROR (RMSE) WERE EVEN DISPLAYED. 
Stem volume and carbon stock prediction  
  N°trees VOL (m3 ha-1) CS (tons ha-1) VOL CS VOL and CS 
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6 29 547 185.5 227 51.8 63.4     
8 22 415 253 245.2 70.7 68.5     
9 34 641 304.1 305.1 84.9 85.2     
11 28 528 143.5 146.9 40.1 41     
15 40 755 34.2 32.4 9.6 9.1     
16 40 755 105.1 102.6 29.4 28.7     
18 31 585 119.8 131.8 33.5 36.8     
21 37 698 175.1 148.9 48.9 41.6     
Sum 261 4924         
Mean   165 167.5 46.1 46.8     
Accuracy       -2.4 -0.7 1.5(-0.14) 1.48 
5 30 566 322 325.2 89.9 90.8     
13 38 717 277.2 310.8 77.4 86.8     
17 20 377 306.2 284.1 85.5 79.3     
20 17 321 200.1 212.3 55.9 59.3     
22 43 811 471.7 493.3 131.7 137.8     
24 19 358 304 308.4 84.9 86.1     
27 16 302 256.4 227.5 71.6 63.5     
31 32 604 338.9 318.3 94.7 88.9     
Sum 215 4056         
Mean   309.6 310 86.5 86.6     
Accuracy       -0.4 -0.1 0.1(0.46) 0.14 
4 34 641 192.4 198.7 53.7 55.5     
7 20 377 417.1 324 116.5 90.5     
10 28 528 388.7 372.2 108.6 104     
25 23 434 392.3 420.6 109.6 117.5     
26 21 396 441.6 462.3 123.3 129.1     
29 44 830 304.3 371.1 85 103.7     
30 24 453 158.4 164.6 44.2 46     
Sum 194 3659         
Mean   327.8 330.5 91.6 92.3     
Accuracy       -2.7 -0.8 0.8(-0.46) 0.83 
1 22 415 172.7 188.2 48.2 52.6     
2 40 755 29.7 44.3 8.3 12.4     
3 25 472 406.5 407.6 113.6 113.8     
12 32 604 68.5 58 19.1 16.2     
14 25 472 170.6 177.9 47.7 49.7     
19 41 774 265.5 253.9 74.2 70.9     
23 22 415 159.7 147.6 44.6 41.2     
28 75 1415 119.8 111.4 33.5 31.1     
Sum 282 5322         
Mean   174.1 173.6 48.6 48.5     
Accuracy       0.5 0.1 -0.3(-0.88) 0.3 
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2.2.6. Discussion 
2.2.6.1. Tree detection 
Results revealed that the joint use of DBSCAN and K-means allowed detecting nearly half of the trees 
identified through ALS data in the studied multi-layered and mixed-species Mediterranean mountain forest. 
Enhanced detection accuracy was obtained in forest ADS with higher heterogeneity of tree height, 
regardless of stand density. This approach may improve monitoring of forest dynamics related to tree 
growth and surveying of tree mortality due to forest disturbance. Indeed, mixed-species and multi-layered 
forests in Mediterranean mountains are complex systems and the assessment of their 3D full structure is of 
importance for reducing uncertainties in the collection of reference data. In particular, consistent ALS 
monitoring of forest changes may allow deriving new indicators of CSF related to vertical and horizontal 
forest attributes (Bodwitch et al. 2020; Santopuoli et al. 2020b). 
Though the detection was challenging for trees of the lower layer, results obtained here were somewhat 
encouraging in comparison with those reported by other authors. For example, Sačkov et al. (2016) showed 
accuracy values from 24 % (all trees) to 36 % (trees higher than 16 m) and 48 % (trees higher than 21 m). 
Similarly, Duncanson et al. (2014) reported values from 21 % for suppressed trees to 70 % for dominant 
trees, and Hamraz et al. (2017) observed that the accuracy of tree detection decreased from dominant to 
suppressed trees and highlighted that a dense point cloud was required for a satisfactory detection. The 
LiDAR point clouds used here had an average of 60 points m-², ranging between 21 to 106 points m-². 
Nevertheless, the choice to split the point clouds into three canopy layers allowed us to improve the overall 
detection accuracy, supporting the use of ALS data for monitoring forest inventory variables and smart 
forestry indicators at a large scale. This aspect is crucial to support forest managers with a monitoring tool 
for well-timed and spatial-explicit forest inventory data, and appears promising for implementing smart 
management strategies to reduce operating costs (Torresan et al. 2021)  
Our study revealed that the point density, the forest stand conditions (Hamraz et al. 2017; Kandare et al. 
2016; Williams 2019), and the site-specific parameters, e.g., species composition and forest structure 
(Sackov et al. 2016; Liang et al. 2019) impacted the identification of trees, as well as the detection rate, 
and commission and omission errors. Therefore, the density of ALS point clouds would represent one 
important limitation of unsupervised techniques for detecting single trees, which failed for values below 
the threshold of 30 points m-². In particular, the detection accuracy was further worsened in ADS of this 
Mediterranean mountain mixed-species and multi-layered forest with high values of stand density (1542 
trees ha-1). Beyond the stand density, the presence of large trees was advantageous in the identification 
processes using our unsupervised approach. Therefore, the detection was more accurate for those ADS with 
higher average values of DBH and TH, namely veteran trees (Santopuoli et al. 2020a). 
It is important to note that, though the detection accuracy was higher for trees belonging to the intermediate 
and upper layers, a better compromise between omission and commission errors was found for the lower 
layer (Table 2). This apparent contradiction was probably related to the higher stand density inducing 
commission errors but avoiding omission errors, due to the clustering approach and the Mahalanobis 
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filtering the outliers. Dense forest stands may hinder the correct separation between nearby trees (Kaartinen 
et al. 2012; Dalponte et al. 2015; Wang et al. 2016). This means that the ALS point density and the forest 
structure may play a complementary role in identifying and segmenting trees using point cloud sources for 
multi-layered as well as for two-layered mixed-species forests (Torresan et al. 2020).  
The detection performance was improved by the evaluation of the crown radius, which allowed us to obtain 
good results (ranging between 1.73 m and 2.55 m), somehow better than those reported in the literature. 
For example, 2 m was the value reported by Shao et al. (2018), 2.5 m by Balsi et al. (2018), 3.5 m by 
Mongus and Žalik (2015), and 5 m by Sačkov et al. (2016). Contrary to what was revealed by these authors, 
for which the values of Euclidean distance decreased from the upper to the lower layers, we demonstrated 
that the detection accuracy could be relatively constant across the three canopy layers. Tree crown overlap 
ranged between 47.26 % and 82.51 % (more stable values were obtained in ADS of the “highly easy” and 
“highly difficult” categories), supporting the hypothesis that an optimum performance for identifying and 
segmenting trees could be expected for multi-layered mixed-species forests of this type.  
2.2.6.2. Forest inventory variables 
The approach implemented in this study allowed us to predict three forest inventory variables, namely 
DBH, TH, and VOL, reaching the accuracy in coefficient of determination of about 0.92 for DBH, 0.95 for 
TH, and 0.82 for VOL. Though the feasibility of the prediction approach was tested in four complexity 
levels, there were no substantial differences in the prediction accuracy among all categories. Such versatility 
of the Random Forests approach increased the prediction performance of forest inventory variables and was 
proved promising for collecting CSF indicators. It is worth noting that ALS data analyzed by means of 
canopy layers might describe thoroughly the forest inventory variables for trees within every canopy layer, 
especially for trees of intermediate and lower layers.  
The performance of VOL models was more accurate using the information of whole TruePos (Layer1-
Layer3) compared to the TruePos of the upper layer (Layer3), based on the RMSE measurements found in 
all four categories. More accurate prediction of DBH and VOL was observed in the “highly difficult” 
category, whereas, for TH the fitted prediction was observed in all four categories. The effect of the quantity 
of TruePos on the performance of models was mitigated by the bootstrap approach of the Random Forests 
algorithm, as supported by almost all RMSE values across the three canopy layers. 
As expected, the performance of models based on RMSE values declined from Layer1 to Layer3 for DBH 
and VOL; however, this pattern was moderately smoothed for TH. This means that the estimation of DBH 
and VOL for intermediate and dominant trees was a challenging task, when the stratification approach was 
applied; whereas, the prediction for TH was rather accurate for all three canopy layers.    
Here, the stand structural heterogeneity and the ALS point density represented the most hindering factors 
for the prediction, though results were satisfactory and higher than those reported in similar studies. Indeed, 
the accuracy obtained for the prediction of DBH in this study was higher than in Sačkov et al. (2016, 2019), 
who reported R-squared equal to 0.71 for mixed-species forest stands, and 0.78 for deciduous and 0.72 for 
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coniferous forests. Yet, for the prediction of VOL, other studies reported lower values of accuracy (Sačkov 
et al. 2016; Alberti et al. 2013).  
The prediction accuracy for carbon stock was more accurate in the ADS with high ALS point density 
(“moderately difficult”; bias = -0.1) and low ALS point density (“moderately easy”; bias = -0.1), but with 
a more homogeneous forest structure. Therefore, in the prediction of forest inventory variables, a low ALS 
density would represent an issue in areas with relatively homogeneous forest structures. Results obtained 
for the stem volume (where input data to derive the carbon stock was ranged between 0.89 and 0.90 of R-
squared) were in line with those observed by other authors: Popescu (2007) showed higher R-squared 
values for above-ground biomass in mature stands of loblolly pine, ranging between 0.88 and 0.93, whereas 
Allouis et al. (2012) reported higher R-squared values of above-ground biomass in individual black pine 
trees, ranging between 0.87 and 0.91.  
Accurate predictions of carbon stock could be expected in all the four categories considered here. However, 
the bias in prediction (minimum bias = -0.3 % and maximum bias = 1.5 %) could be associated with other 
factors, e.g., understory vegetation, standing deadwood, terrain slope, site aspect, and species richness 
(Næsset and Gobakken, 2008; Yu et al. 2010; White et al. 2014).  
Overall, the accuracy of tree detection and carbon stock accurateness assessment resulted to be more 
sensitive to point density than heterogeneity of forest structure (Table 7; Table 9). This means that further 
efforts focused on improving the quality of points will be beneficial to better exploit the potential of tested 
algorithms. We found many weak points during the ALS processing. For example, the ADS point clouds 
characterized by lower, altered and irregularly-spaced densities were hard to be processed by DBSCAN 
algorithm; fixed values of minPts and Eps-neighborhood became disadvantageous for identifying the trees 
in ADS from difficult categories; the ADS with dense points are time-consuming. These weakness points 
suggested that DBSCAN algorithm was sensitive to the quality of point cloud and fixed minPts and Eps-
neighborhood values (Ahmad and Dang, 2015). Nevertheless, careful consideration in operational activities 
could be beneficial to overcome part of these issues, especially before the collection phase: 1) forest canopy 
structure (changing from leaf-on to leaf-off) (Shao et al. 2018); 2) flight strips (changing from 0 % to more 
than 50 % of overlapped flight strips) (Liang et al. 2019) and 3) ALS sensor (changing from 3 echoes to 4-
15 echoes) (Kandare et al. 2016; Hamraz et al. 2017). Since our ultra-light vehicle flew at an altitude of 
100 m above ground level, we hypothesized this flying height was good enough. In conclusion, the quality 
of the point cloud may vary depending on the ALS sensor returns, operational aspect and forest structure, 
therefore, the potential of our algorithm can also be affected. 
2.2.7. Conclusion 
This study aimed to improve the use of ALS data for the prediction of forest inventory variables in mixed-
species and multi-layered forests of Mediterranean mountain environments. Such a development might 
represent an important advance for the estimation of forest characteristics and the collection of CSF 
indicators, as well as to monitor the dynamics of these complex forest ecosystems over time. 
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The most important limitation faced in this study was the ALS point density. Using very low point density, 
the detection of single trees was challenging, as for those stands with less than 30 points m-2. ADS primarily 
composed of big trees would be less problematic. In this latter case, we obtained more than 65 % of 
detection accuracy, regardless of the canopy layers. Nevertheless, to detect trees in forest areas where small 
trees are abundant, a denser point cloud would be required. The stratification approach adopted in this 
study, minimized the negative impacts due to the low point density and the heterogeneity of forest structure, 
stressing the usefulness of ALS data for assessing forest inventory variables and climate-smart forestry 
indicators.  However, the heterogeneity of forest structure could be an important hindering factor when 
using ALS in the understory layer, especially in forest areas with poor ALS densities (>30 points m-2). The 
occlusion effect of ALS point in tree detection could be caused by highly overlapped crowns, hindering the 
detection of trees. It is worth noting that the unsupervised technique implemented in this study allowed us 
to obtain satisfactory accuracy for a forest ecosystem characterized by heterogeneous canopy profiles and 
big tree sizes. 
The application of unsupervised algorithms for detecting single trees in a mixed-species and multi-layered 
Mediterranean forest through LiDAR data was proved feasible in support of actively measuring and 
monitoring of complex mountain forest ecosystems. The stratification of ALS point clouds might represent 
a valid alternative to simulate the vertical distribution of trees in stands with heterogeneous structures, 
allowing forest operators to detect and monitor a large number of trees.   
2.2.8. Postface 
In this study, a stepwise approach composed of two unsupervised algorithms and a machine learning 
algorithm was tested for carbon stock assessment at a single tree level. The detection approach using two 
unsupervised algorithms was tested for the first time in forests, especially in mixed-species and multi-
layered forests were presented. This unsupervised method allowed us to detect nearby the half of reference 
trees and a considerable part of them belonging to trees from lowest and intermediate strata. A point of 
strength was the capability to identify the trees without previous knowledge of the number of trees. This is 
important because this information may prove to be expensive and time-consuming. We noted that our 
stepwise approach better works in the forest with high tree height variation, especially in forests covered 
by a point density of more than 30 points m-2. It is worth noting that most points belonged to the first return 
and that the collection of ALS data was done in leaf-on condition. The carbon stock estimation resulted to 
be accurate for all forest field plots, in fact, the bias varied from -0.3 % to 1.5 %. Further studies testing our 
stepwise approach can be useful to deeper understand the potential of detecting trees with the better 
condition of ALS collection. 
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2.3. A stepwise approach for deriving timber assortment of 
trees from Terrestrial Laser Scanning data 
2.3.1. Preface 
Providing accurate and reliable approaches for extracting the timber assortment information from tree 
stands became crucial in the forestry sector, especially in managed forests (Marchetti et al. 2018; SoEF 
2020). Recent studies using TLS have reported a great capacity for reconstructing the trees of the upper, 
intermediate and lower canopy layers, however, its accuracy was conditioned by the operational (i.e. 
sampling design), the technical (i.e. automatically), the weather condition (i.e. wind) and the forest structure 
(i.e. stem density) (Dassot et al. 2011; Liang et al. 2018; Wan et al. 2019). In 2004, the cylinder-fitting 
approach was introduced as a useful tool for measuring the diameter at breast height of trunks on TLS point 
cloud; while now this approach proved to be efficient for reconstructing the trunk section on TLS point 
cloud, namely stem curve. However, to date, the use of the cylinder-fitting approach for retrieving 
quantitative and qualitative information of the logs belonging to the trunk section on TLS point cloud has 
not been investigated. In this context, this study introduces a stepwise approach for timber assortment 
assessments using TLS point cloud in mixed tree-species and multi-layered Mediterranean forests 
2.3.2. Abstract 
Forest ecosystems represent an important source of income for landowners and at the same time an 
important source of ecosystem services for society. Quantitative and qualitative information about timber 
assortments is particularly important to support sustainable forest management, representing a crucial 
prerequisite for active forest management. To date, the most accurate methods for assessing the timber 
assortments available within forest stands are destructive, and the development of an effective method for 
deriving these estimates on standing trees is highly needed. This is particularly more evident for mixed 
forests, which are often subject to the conflict between conservation and productive functions. 
This study aims to introduce a stepwise approach for timber assortment estimation and classification using 
TLS data. The proposed approach is consisting of four steps: a) timber-leave discrimination, b) tree 
detection, c) stem reconstruction, and d) timber assortment estimation and classification. The study was 
carried out in a mixed tree-species and multi-layered Mediterranean forest, observing 178 trees of twelve 
different species, wherein 70 out of 178 were large trees, with a diameter at breast height higher than 20 
cm. 
Results indicate that the discrimination between timber and leaves reached 0.98 for accuracy using Random 
Forest algorithm. The overall detection rate was 84.40 % (SD± = 4.7 %), particularly, all trees with a 
diameter at breast height higher than 30 cm were correctly identified. Among the detected trees, the most 
frequent species detected were A. lobelii, S. torminalis, F. excelsior, Q. cerris, A. campestre and F. sylvatica 
(higher than 84.3%) tree species. 47 out of 70 large trees from observed data were correctly reconstructed. 
These 47 trees provided 179 merchantable logs and 40 non-merchantable logs from observed data. We 
quantified 134 out of 179 merchantable logs and 34 out of 40 non-merchantable logs. The 179 merchantable 
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logs were classified into 15 assortment types, which were even categorized into five assortment groups (i.e. 
saw-log plus, saw-log, pulpwood, other industrial roundwood and fuelwood). The most accurate timber 
assortment assessment assessed were saw-log and other industrial roundwood and someone else of the other 
assortment types. The abovementioned results support the feasibility of this stepwise approach for 
calculating the timber assortment of standing trees, hence it can be used to valorise the timber resource 
from forests, even those with a high richness of species and structural heterogeneity.  
Keywords: Timber quality, stepwise procedure, 3D modelling, point cloud, multi-layered, mixed-forest, 
LiDAR.  
2.3.3. Introduction 
At Pan-European level, the roundwood from forests, since offering socio-economic and environmental 
benefits to forest owners and stakeholders, is an essential source for the forestry production chain. 
Roundwood products can be subdivided into industrial roundwood (wood in the rough) and woodfuel 
sources (wood used for energy purpose) (FOREST EUROPE 2015). Over the years, roundwood production 
in Europe has been growing, reaching a maximum of almost 550 million m³ annually (SoEF 2020), making 
the Europe's forests one of the main producers of industrial roundwood (Proskurina et al. 2019); however, 
many European countries faced difficulties in monitoring the woodfuel production (FOREST EUROPE 
2015). The reasons might be found in the lower market value of woodfuel respect to the roundwood, the 
dimension of logs which usually are lower than logs used for industrial roundwood, such as coppice forests 
or the branches and other minute parts of large trunks, the lack of management plans or equivalent for small 
and private forests, due to the fragmented forest ownership.  
Therefore, innovative and accurate methods for roundwood assessment are necessary to promote the 
faithful classification of the assortments from standing trees in order to support sustainable forest 
management through the revalorisation of timber from forest resources (Gazull and Gautier, 2014). 
Several approaches have been developed worldwide, however, accurate timber assortment measurements 
have to consider many tree factors as stem tapering, stem curve and stem diameter (Kankare et al. 2014), 
to accurately reconstruct the stem profile and the stem volume (West 2009). Moreover, stem curve allows 
reconstructing the diameters at different heights through consecutive cylinders’ models (Lassasenaho 
1982).  Other approaches focused on the assessment of the stem profile factor, as (Togni 2017) proposed 
some sets of mathematical equations to classify the timber assortments from both coniferous and 
broadleaves stems focusing on the description of geometry wood defects (i.e. stem straightness, and stem 
tapering); (Lassasenaho 1982) which proposed the use of polynomial functions to derive the stem curves 
and stem volume from coniferous and broadleaves stems (i.e. pine, spruce and birch); (Tabacchi et al. 2011) 
that proposed the usage of equations for accurate estimation of the aboveground biomass estimation of 
Italian tree species.  
Hence, accurate measurement of standing trees became a crucial pre-requisite to manage forests (La Marca 
and Notarangelo, 2009), to define and schedule forestry interventions and harvesting activities (Nosenzo 
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2007), in light of sustainable forest management (SFM) criteria, as well as to maintain or enhance the 
provision of multiple forest ecosystem services. Over the last decades, accurate measurement of the forest 
timber resources was obtained using LiDAR (Light Detection and Ranging) data at national (i.e. national 
forest inventories) and regional levels (McRoberts and Tomppo, 2007; Chirici et al. 2020). This means that 
LiDAR technique can be an effective tool in monitoring the forest timber resources supporting forest 
inventory and the implementation of SFM at different geographical levels. 
Among LiDAR data, in the last two decades, Terrestrial Laser Scanning (TLS) has gained more attention 
among scientists due to the high accuracy reconstruction of stem architecture from 3D point cloud data 
(Dassot et al. 2011; Disney et al. 2019). The high versatility of TLS point cloud, and the development of 
new approaches and models to automatically elaborate TLS point cloud (Liang et al. 2018) , fostered the 
use of TLS for several issues in distinct topics, as for example, in geomorphology to reduce the uncertainties 
associated with the georeferencing of TLS data (Walicka et al. 2019); in forest biodiversity to assess the 
relationships between forest structure and habitat quality (Michel et al. 2008), to assess the accuracy for 
the reconstruction of tree characteristics (Bournez et al. 2017; Othmani et al. 2016; Torresan et al. 2018);  
the classification of tree species composition (Othmani et al. 2013) (Lin and Herold, 2016) and the 
discrimination between timber and leave (Ferrara et al. 2018; Wang et al. 2017). 
As reported in many studies, assessing tree characteristics, as the stem profile, through TLS data is easier 
in forest plantations rather than in natural forests (Liang and Hyyppä, 2011; Kankare et al. 2013; Liang et 
al. 2018). Robust cylinder-fitting methods are the most common approach to assess the stem profile (Pfeifer 
et al. 2004; Liang et al. 2018). Such approach is based on the subdivision of point cloud in several horizontal 
slices, and by the recognition of the stem position into the horizontal slices and then detecting the closest 
cylinders from each stem (Lukács et al. 1997; Liang et al. 2014; Wang et al. 2016b; Pitkänen et al. 2019a). 
As supported by an international study comparing about 18 algorithms, to validate the stem curve 
performance, fitted cylinder prediction (consecutive cylinders along the stem from the ground; 0.50m 
±0.015m), the curve length ratio (CLR) and percent of the tree height covered (PHC) are often tested (Liang 
et al. 2018). 
Otherwise, to systematically compare the accuracy, such as completeness and correctness of stem 
reconstruction, (Liang et al. 2018) tested the accuracy of 18 algorithms for tree characteristic evaluation 
using two scan modes (single-scan and multi-scans) and three structural complexity levels as driving 
factors. Particularly, the advantage of the tested TLS algorithms lies in the capacity to automatically model 
the TLS data (≥ 80%), in the versatility for processing huge point clouds through recent approaches (i.e. 
raster-based, voxel-based and point-based). By contrast, the limitations were associated with the 
characterization of small trees and the occlusion effects associated with the poor density from single-scan 
(Wan et al. 2019). Moreover, it was demonstrated that several models focused to reconstruct stem profile 
e.g., TreeQSM (Raumonen et al. 2013), Simple-Tree (Hackenberg et al. 2015), TreeLS (de Conto et al. 
2017), 3Dforest (Trochta et al. 2017), Computree (Torresan et al. 2018), L-Architect (Côté et al. 2018), 
treeSeg (Burt et al. 2019), were affected by forest stand factors (i.e. stem density, dense small branches, the 
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presence of leaves) and methods for aligning and assembling the TLS scans were missing. However, a 
modular program, named OPALS (Orientation and Processing of Airborne Laser Scanning data), offers the 
possibility to overcome part of the abovementioned issues enabling the accurate description of the stem 
profile (https://opals.geo.tuwien.ac.at) (Wang et al. 2016, 2016a). 
Recently, few studies have tried to retrieve the timber assortment using TLS data, even less were focused 
on natural forests (Murphy et al. 2010; Mengesha et al. 2015; Sun et al. 2016; Stovall et al. 2018; Saarinen 
et al. 2019; Chianucci et al. 2020). This means that a procedure suitable to overcome the hindering factors 
in order to optimize the use of TLS data for timber assortment estimation became crucial to implement 
SFM strategies.  
This study aims to introduce a stepwise procedure to quantify and classify the timber assortments from 
standing trees using TLS data in mixed-forest and multi-layered forests. Stem detection and reconstruction 
were achieved through a robust cylinder-fitting approach. The stepwise approach follows four steps: a) 
timber-leave discrimination, b) tree detection, c) stem reconstruction, and d) timber assortment estimation 
and classification. 
2.3.4. Materials and Methods: 
2.3.4.1. Study area  
The study was carried out in Bosco Pennataro (Figure 15 A-B), a Mediterranean mixed tree species forest 
located in Molise region (Central of Italy, 41°42′ N, 14° 12′ E). Bosco Pennataro is characterized by the 
high tree species richness and heterogeneous forest structure (Fig 15C-D). The tree species composition of 
Bosco Pennataro includes Q. cerris (40%), F. sylvatica (21%), A. obtusatum Mill. (9.6%), and other 
broadleaves tree species (Santopuoli et al. 2019). Due to the large number of broadleaves species with 
predominance of Q. cerris, the forest community of Bosco Pennataro is classified as oak–hornbeam forest 
type (Barbati et al. 2014). Bosco Pennataro, besides belonging to the network of Natura 2000 sites, is 
worldwide recognized as a core area of the Man and Biosphere (MaB) reserve of Collemeluccio-
Montedimezzo Alto Molise. Due to the recognized ecological importance, the forest was historically 
managed for productive purposes as an even-aged forest with natural regeneration, while in the last 50 years 
the harvesting activities were very limited and focused to prevent fire. As a result, currently, the forest is 
characterized by high structural heterogeneity, both vertical and horizontal as well as a high value of 
biodiversity (i.e. microhabitat) (Santopuoli et al. 2019a). 
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FIGURE 15 A) SHOWS THE LOCATION OF THE FIELD PLOTS (ADS) IN RELATION TO ITALY LANDSCAPE; B) DISPLAYS THE 
ADS IN RELATION WITH BOSCO PENNATARO; C) SHOWS ONE PICTURE OF THE TERRESTRIAL LASER SCANNING 
(TLS) DEVICE AND D) SHOWS A PICTURE OF BOSCO PENNATARO. 
2.3.4.2. Ground truth field data 
The sampling was carried out in 2016 for five square plots (hereafter ADS) of 529 m2 (23m * 23m) within 
Bosco Pennataro. All trees with a diameter at breast height (DBH) ≥ 2.5 cm were measured through the 
Field-Map tool (https://www.fieldmap.cz/). The sampled forest-related characteristics surveyed were: 
DBH, tree height (TH), the height of the first attached branch or branch union (TH1), stem position, canopy 
projection area (CPA), tree species and tree vitality. Moreover, the stem volume (TSv) was calculated 
through allometric equations implemented for Italian tree species in the National Forest Inventory 
(Tabacchi et al. 2011). 
2.3.4.3. Terrestrial Laser Scanning data 
Terrestrial Laser Scanning (TLS) data were collected using a Leica ScanStation P30/40 device 
(https://leica-geosystems.com/it-it/) in July 2018. The laser scanning system for Leica ScanStation P30/40 
is an Ultra-high-speed time-of-flight enhanced by Waveform Digitising (WFD) technology. Leica 
ScanStation P30/40 is a Laser 3D scanner suitable for collecting 1 million points per second for a wide 
range of up to 270 m. The horizontal and vertical field-of-view of Leica ScanStation P30/40 was 360° and 
290°, respectively. The distance measurement accuracy for the objects was equal to ± 2 mm. A total of 178 
single trees, divided into five ADS, were scanned using the Leica ScanStation P30/40 (Figure 15B-C). The 
average of TLS multiple-scans collected among the ADS was 9 (SD = ±1.4 TLS multiple-scans). 
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The TLS multiple-scans were co-registered through an automatic Leica Geosystems processing 
(https://leica-geosystems.com/). This co-registration was supported by the recorded geographic coordinates 
taken into random positions derived from the GPS Trimble GeoXT mounted on a Hurrican Antenna. To 
minimize the distance between two sets of points (one set = one TLS single-scan), in an iterative way, 
caused by a systematic residual error from the co-registration, a rigid transformation was computed on it 
through an Iterative closest points (ICP) algorithm (Besl and McKay, 1992). To reach this transformation, 
the TLS multiple-scans were further pre-processed, particularly, the alignment, co-registration and 
assembling were running followed batch scripts in OPALS modular program (Glira et al. 2015; Fuad et al. 
2018), especially the OpalsICP batch scripts (https://opals.geo.tuwien.ac.at/html/stable/ModuleICP.html). 
As a result, five merged TLS multiple-scans were generated. Finally, to optimize the point cloud depicting 
of trees located at the edge of each ADS, the ADS point cloud from each ADS was enlarged from 529 m² 
to 729 m². To reach this, the merged TLS multiple-scans were imported, clipped and exported using a box 
dimension equal to 729 m² (27*27m) through opalsImport, opalsAlgebra and opalsExport batch scrips 
running in OPALS modular program (https://opals.geo.tuwien.ac.at/html/stable/index.html). The five TLS 
multiple-scans including geographic coordinates (i.e. x, y, z) and intensity feature data were used as the 
input source in the following subsequent steps. 
2.3.4.4.  Ground truth TLS data 
Some tree measurements were manually measured using TLS data through CloudCompare software. The 
useful trunk section used for retrieving tree measurements was ranged between the ground (0.50 m, named 
THbase) and the first attached branch or branch union (TH1). The trees considered for retrieving tree 
measurements were trees with more than 20 cm of DBH (Nosenzo 2007; Jukka et al. 2010; Togni 2017; 
Liang et al. 2018). Moreover, in order to optimize the valorisation of the trunk section (in commercial 
terms), each trunk section was divided into merchantable logs (2.5 m ≤ length of log ≤ 3 m) and non-
merchantable logs (2.5 m < length of log) (Nosenzo 2007; Jukka et al. 2010) (Figure 16). Based on such 
statements, several measurements from merchantable and non-merchantable logs were manually extracted 
using CloudCompare software (http://www.danielgm.net/cc/). These measurements were: the maximum 
and minimum end diameters (Dmax and Dmin) and the length of log (L). Along with these measurements, 
the log volume (hereafter TTv.log) was estimated using the Dmax, Dmin and L through the Smalian 
formula, following the equation (1). 
(𝐷𝑚𝑖𝑛2+𝐷𝑚𝑎𝑥2)
𝑇𝑇𝑣𝑙𝑜𝑔 =   ∗ 𝜋 ∗ 𝐿                                        (eq. 1) 8
Where: 
TTv.log – log volume, (m³); 
Dmax – maximum diameter of ends log, (m); 
Dmin –minimum diameter of ends log, (m); 
L –length of log, (m); and 
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π –3.1416.  
Furthermore, the trunk volume (hereafter TTv. Trunk) was estimated by summing the TTv.log belonging 
to the same tree, which includes the merchantable and non-merchantable logs. In addition, to optimize the 
characterization of the high-quality logs, merchantable logs, the straightness (STR) and tapering (TAP) 
characteristics of these logs were calculated through the equations (2 and 3) (Figure 16) (Togni 2017) . 
The stem diameter information (Dmin and Dmax) was scaled from m to cm. 
ℎ
𝑆𝑇𝑅 =                                                (eq. 2) 
𝐿
(𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛)
𝑇𝐴𝑃 =                           (eq. 3) 
𝐿
Where: 
STR– straightness of logs, (cm/m); 
TAP– tapering of logs, (cm/m); 
L – length of log, (m); 
Dmax – maximum diameter of ends log, (cm);  
Dmin – minimum diameter of ends log, (cm); and 
h – perpendicular distance (90°) between the highest convex curve and the straight line between small 
(Dmin) and large (Dmax) ends logs. 
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FIGURE 16 GRAPHIC REPRESENTATION OF A TRUNK STRUCTURE AND MERCHANTABLE LOG FOR STRAIGHTNESS AND 
TAPERING ESTIMATION. THE “H” INDICATES THE HIGHEST CONVEX CURVE, THE MINIMUM AND MAXIMUM 
DIAMETER OF THE LOG ENDS (DMIN AND DMAX, RESPECTIVELY) WERE DISPLAYED. 
Lastly, to classify the merchantable logs into several types of assortments, based on their geometric defects 
(Togni, 2017). Before classifying the logs, we generated fifteen types of assortments using the STR and 
Dmin thresholds described by Togni (2017) (Table10). In detail, 3 of them representing the type “A”, 3 of 
them representing the type “B” and so on.  Then, every merchantable log was classified into one out of 15 
assortment types. 
TABLE 10 TIMBER ASSORTMENT CHARACTERISTICS BASED ON GEOMETRY WOOD DEFECTS. THE STRAIGHTNESS (STR) 
AND DIAMETER MINIMUM OF ENDS LOGS (DMIN) WERE DISPLAYED. “X” REPRESENTS THE VALUES NEEDED 
FOR STR AND DMIN CHARACTERISTICS. 
Timber assortment 
Advanced forest-related 
STR Dmin 
ID Timber assortment Abbreviation 
Thresholds Thresholds 
Type Type 
(cm/m) (cm/m) 
1 1 A+ A x ≤ 2 Higher 0.30 ≤ x 
2 Saw-log plus 2 A0 A x ≤ 2 Medium 0.2 < x ≤ 0.30 
3 3 A- A x ≤ 2 Lower x < 0.20 
4 1 B+ B 2 < x ≤ 3.4 Higher 0.30 ≤ x 
5 Saw-log 2 B0 B 2 < x ≤ 3.4 Medium 0.2 < x ≤ 0.30 
6 3 B- B 2 < x ≤ 3.4 Lower x < 0.20 
7 1 C+ C 3.4 < x ≤ 5 Higher 0.30 ≤ x 
8 Pulpwood 2 C0 C 3.4 < x ≤ 5 Medium 0.2 < x ≤ 0.30 
9 3 C- C 3.4 < x ≤ 5 Lower x < 0.20 
10 1 D+ D 5 < x ≤ 6.6 Higher 0.30 ≤ x 
Other industrial 
11 2 D0 D 5 < x ≤ 6.6 Medium 0.2 < x ≤ 0.30 
roundwood 
12 3 D- D 5 < x ≤ 6.6 Lower x < 0.20 
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13 1 Fuelwood+ Fuelwood 6.6 < x Higher 0.30 ≤ x 
14 Fuelwood 2 Fuelwood0 Fuelwood 6.6 < x Medium 0.2 < x ≤ 0.30 
15 3 Fuelwood- Fuelwood 6.6 < x Lower x < 0.20 
 
 
2.3.4.5. TLS analysis 
In this study, a stepwise approach for deriving the timber assortments of trees using TLS data was 
implemented. The four steps are a) timber-leaves discrimination; b) tree detection; c) stem reconstruction 
and d) timber assortment estimation (Figure 17) 
 
FIGURE 17 METHODOLOGICAL APPROACH FOR TIMBER ASSORTMENT ESTIMATION USING TERRESTRIAL LASER 
SCANNING (TLS) DATA. GREY RECTANGLES INDICATE THE SUB-STEPS. 
Step 1- Timber-wood point clouds discrimination 
To discriminate the timber from leaf point clouds, a binary classification of the TLS point clouds was 
implemented through Random Forest (RF) algorithm. The binary classification processing consists of three 
sub-steps: a) geometry-based calculation, b) predictor variables selection and c) binary classification 
(Figure 18).  
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FIGURE 18 AN OVERVIEW OF THE SUB-STEPS FOR TIMBER-LEAVES DISCRIMINATION. THE INPUT TLS DATA (TOP LEFT), 
THE GEOMETRY-BASED CALCULATION (A), PREDICTOR VARIABLES SELECTION (B) AND TIMBER-LEAVES 
DISCRIMINATION (C) AND OUTPUT TIMBER POINT CLOUD (BOTTOM RIGHT). 
Sub-step 1.1. Geometry-based calculation 
To optimize the extraction of information from the point clouds an optimal local neighbourhood (hereafter 
Ln) was searched using a tool named “compute geometric features” embedded in CloudCompare open 
source software (http://www.danielgm.net/cc/). The “Ln” values allowed us to characterize the local surface 
and local point density variation within the point cloud, optimizing and facilitating the description of the 
point clouds (Hackel et al. 2016). The “compute geometric features” is a tool embedded in CloudCompare 
software. It allowed us to detect the contours of several surface orientations using specific “Ln” values, 
commonly called geometry-based features (Weinmann et al. 2014, 2015; Hackel et al. 2016). 
To find the optimal “Ln” values in every ADS point cloud, 10 % of each ADS point cloud was computed 
using four distinct “Ln” values (0.03 m, 0.05 m, 0.07 m and 0.09 m) through “compute geometric features” 
tool. The value 0.07 m proved to be effective to characterize 92% of point clouds for each ADS (Belton 
and Lichti, 2006). 
Geometry-based extraction: Subsequently, eighteen geometry-based features (i.e. roughness, mean 
curvature, Gaussian curvature, Gaussian normal change rate, number of neighbors, surface density, volume 
density, sum of eigenvalues, omnivariance, eigenentropy, anisotropy, planarity, linearity, first “PCA1” and 
second principal component “PCA2”, surface variation, sphericity and verticality) were automatically 
generated, using the 0.07 m of “Ln” in “compute geometric features” CloudCompare tool (Hackel et al. 
2016; Abu Alasal et al. 2014). The geometry-based and point cloud information were used in the subsequent 
sub-step. 
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Sub-step 1.2. Predictor variables selection 
To reduce the quantity of geometry-based information without losing its contribution into models, the most 
explicative geometry-based features, named predictor variables, were selected through the variance 
inflation factor (VIF) score. The VIF score can find the correlation, collinearity and multicollinearity among 
variables, increasing significantly the contribution of each feature. Several studies highlighted that 
significant predictor variables were obtained customizing the VIF score as 5 of value tolerance (Neter et al. 
1996; Zuur et al. 2010). Based on the results of previous studies, the VIF values higher than 5 derived from 
the geometry-based features were discarded. The VIF score quantification was running through the 
“vifstep” function implemented in usdm R package (Naimi 2015). The generated data including eight 
geometry-based features (i.e. anisotropy, sum of eigenvalues, Gaussian curvature, mean curvature, PCA2, 
roughness, verticality, volume density) and the five TLS point clouds were used as input data in the 
subsequent sub-step.  
Sub-step 1.3. Binary classification 
To classify the 3D point cloud as timber and leave classes, a binary classification was running through RF 
algorithm, because it was faster, easy-to-use and more accurate than other machine learning approaches in 
classifying the point cloud (Wang et al. 2017). RF is an algorithm able to build multiple decision trees from 
randomly input training data for accurate classification and regression (Breiman 2001). 
In this study, RF classifies the point cloud into timber and leaf labels using eight geometry-based features 
through a package embedded in R, named Weighted Subspace Random Forest for Classification (wsrf), 
(Geiß et al. 2015; Zhao et al. 2017). The parameters set out for binary classification through wsrf were 
"Ntree" as 2500, "Mtry" as 3-4, and node size as 5.  
Lastly, to remove the noise points, we implemented a filtering approach using a geometry-based, named 
eigenentropy. We used eigenentropy geometry-based values for filtering processing because it was assessed 
useful for better characterizing the surface noise on point clouds (Weinmann et al. 2015). This filtering 
approach considers the extreme values of eigenentropy geometry-based, ranging between 0.03 (25th 
percentile) and 0.80 (75th percentile), as noise points (Weinmann et al. 2014, 2015; Hackel et al. 2016). In 
our study, to predict the eigentropy values of the point clouds, we followed the same processes described 
in Sub-step 2.1. (Geometry-based calculation); while to remove the extreme eigenentropy geometry-based 
values, we imported, removed and exported the point clouds in R software (no packages are required).  
To validate the classification accuracy, we assessed the sensitivity, the specificity and the accuracy 
measurements, as (Wang et al. 2017). The sensitivity represents the percentage of point clouds correctly 
identified (true positive), the specificity represents the percentage of point clouds correctly excluded (true 
negative) and the accuracy represents the proportion of true positive values. These statistics measurements 
were computed through pROC R package (Robin et al. 2020). 
Step 2- Tree detection 
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This step aimed to find the potential stem position and to derive the DBH of these using the timber TLS 
point cloud through a raster-based approach embedded in OPALS modular program. OPALS is a powerful 
modular program consisting of several modules (derived from grouped packages). It is capable to process 
several types of LiDAR data, from airborne and terrestrial platforms, across several topics, as for example, 
forestry topics, named opalsForest (https://opals.geo.tuwien.ac.at). Inside opalsForest package, there are 
many algorithms for calculating the stem diameter distribution, tree height, tree crown gaps, and others 
forest variables (https://opals.geo.tuwien.ac.at/html/stable/pkg_opalsForest.html).   
In this study, some modules from several packages (i.e. opalsForest) were used for detecting and estimating 
the trees using TLS point cloud. Prior detecting the tree position, the TLS grids, named Digital Terrain 
Model (DTM; 0.05 m) and Digital Surface Model (DSM; 0.20 m), were generated for each ADS using 
opalsDSM and opalsGrid OPALS modules. The normalization of the point cloud data, using both TLS 
grids, was running through opalsCell OPALS module. For each ADS, a thick horizontal slice between 1m 
and 2m above the ground was extracted from the normalized point cloud. Each thick horizontal slice was 
divided into 9 thin horizontal slices. These thin horizontal slices were further cut in several voxel-based 
(0.01m³). The statistic information (i.e. sum, mean and maximum) from the points contained in each voxel-
based was achieved by running opalsAlgebra OPALS module to generate several zones by each horizontal 
slice. The several zones from the horizontal slices were used as input data for detecting and estimating the 
stem position and DBH using a least-squared cylinder-fitting approach implemented in opalsDBH OPALS 
module (https://opals.geo.tuwien.ac.at/html/nightly/ModuleDBH.html). To run the tree detection and DBH 
estimation, the TLS data were analysed by several OPALS modules e.g., opalsImport, opalsCell, 
opalsAlgebra and opalsExport, and the final product was composed by tree position and predicted DBH, 
exported as .txt and. LAS formats. 
The accuracy parameters assessed for evaluating the tree detection and DBH results were: True-positive 
(TruePos; units) representing the correctly identified trees; the false-positive (FalsePos; units) representing 
the commission error; the false-negative (FalseNeg; units) representing the omission error, the detection 
rate and completeness (DR and completeness; percentage) representing the relationship between TruePos 
and observed tree and the correctness (correctness; percentage) representing the relationship between 
TruePos and number of stems extracted from TLS data (TreeTLS).  
Step 3- Stem reconstruction  
The stem reconstruction, corresponding to the trunk section of detected trees, was based on a cylinder-
fitting approach embedded in opalsDBH OPALS module. OpalsDBH is one of many forestry modules, 
embedded in OPALS modular program. This module was initially developed for estimating the DBH, but 
it recently has been adjusted for measuring the stem diameters at different height levels 
(https://opals.geo.tuwien.ac.at/html/nightly/ModuleDBH.html), namely stem curve (Liang et al. 2018). 
Theoretically, the cylinder and cone geometric shapes drawn on cross-section horizontal slice were 
measured using a least-squares cylinder-fitting approach implemented in opalsDBH OPALS module 
(Lukács et al. 1997). Practically, the shape of cylinders drawn on each cross-section horizontal slice were 
measured through a cylinder-fitting approach. The reconstruction of tree trunk was done measuring the 
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cross-sections consecutive belong to the same stem position, based on the Euclidean distance between 
predicted vs. observed stem position. The consecutive cylinders distributed along the tree trunk were 
separated by 0.15 m between two consecutive cylinders (Liang et al. 2012). 
In this study, the stem position, the DBH and the TLS point clouds labelled as timber are the sources 
required for running the opalsDBH OPALS module. In addition, we set some mandatory parameters 
“trace”, representing the option to enable the search of cylinders in one stem axis; “overlap”, representing 
the percentage of overlapping patches values between traced cylinders; and “patchLength”, representing 
the length of the shift vector between two consecutive patches. Particularly, the “trace”, “patchLength” and 
“overlap” parameters were set to 1-1, 0.5 and 0.8, respectively. However, the tracing of cylinders drawn on 
the cross-sections is stopped if the stem characteristics showed some incongruences: 1) the axis change 
(>10°); 2) the change between two consecutive stem radius (>50 %); 3) trunk consecutive overlap (>60 %) 
and 4) distance between two consecutive cylinders (>50 % or “patchLength”). To understand the quantity 
of reconstructed stems and the proportion of the trunk section was covered by stem curve measurements, 
four validation parameters were tested: 
 Reconstructed stem from TLS data (RStem; units), representing the quantity of reconstructed 
stems; 
 RStem rates (TrueRStem; %), representing the relationship between RStem and observed trees; 
 Curve length ratio (CLR, %), representing the relationship between proportion of the stem length 
covered by the extracted stem curve from TLS data and that obtained from observed data (Liang 
et al., 2018); 
 Percent of the tree height covered (PHC, %), representing the relationship between proportion of 
the stem length covered by the extracted stem curve from TLS data and the tree height from 
observed data (Liang et al., 2018). 
It is worth to noting that, the extracted stem curve was forced to stop at the TH1 due to inaccurate estimation 
were expected after this point. Since TH1 was adjusted, these outcomes cannot be used to compare these 
results to the results of other studies. 
Nevertheless, Dmin and Dmax measurements for each trunk stem were validated through statistic 
measurements. In particular, the coefficient of determination (R-squared; 0-1) and root mean square error 
(RMSE; m, m³) obtained from linear regression models including and excluding were considered. These 
measurements were implemented using “stats” (authors, R Core Team and contributors worldwide) and 
“usdm” (Naimi 2015) R packages. The stem curve information was used as input data in the subsequent 
step. 
Step 4- Timber assortment estimation 
In this step, to extract the timber assortment information from point cloud (labelled as timber), we follow 
three sub-steps: 1) quantifying the logs (i.e. merchantable or non-merchantable logs); 2) characterizing the 
80 
 
LiDAR as a tool for timber assortment assessment and characterization in mountain forests 
merchantable logs, based on the STR and TAP measurements; and, 3) classifying each merchantable logs 
into one out of 15 types of assortment. 
Sub-step 4.1. Quantifying the logs 
In this sub-step, the log quantification was based on stem curve output and it was ran using many R 
packages. Prior to start with the quantification approach, the stem curve obtained in previous step was 
further pre-processed, particularly, we first calculated the Euclidean distance between two consecutive 
cylinder positions from down to up; we second grouped the consecutive cylinders included in each trunk 
section into two cylinders’ groups using the accumulated Euclidean distance values as predicted length of 
log. This means that the large cylinders’ groups corresponding to merchantable logs and the small cylinders’ 
groups corresponding to non-merchantable logs (the length for logs and the accumulated Euclidean distance 
values were considered equivalent measurements); we third quantified the number of cylinders’ groups for 
both merchantable and non-merchantable types. It is worth noting that, to remove the unnecessary cylinder 
information from merchantable logs to use in the subsequent sub-step, we reduced the number of cylinders 
included in merchantable logs from infinite to three cylinders by everyone, therefore, the “first cylinder”, 
the “second cylinder” and the “third cylinder” representing maximum, central and minimum cylinder 
position were left (Figure 19) (Liang et al., 2012).  To run the quantification approach, the “stats” (authors, 
R Core Team, and contributors worldwide), the “dplyr” (Wickham and Francois, 2016) and “usdm” (Naimi, 
2015) R packages were implemented. The validation was carried out comparing predicted vs. observed 
merchantable and non-merchantable measurements. The mean, standard deviation (SD ±) and sum of the 
quantity of log and length of logs for each log types were used as the evaluation criteria. 
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FIGURE 19 AN EXPLICATIVE EXAMPLE ABOUT THE DISTRIBUTION OF CYLINDER ALONG THE TRUNK WITH AN 
INTERVAL OF 0.15 M (LEFT IMAGE) AND THE THREE CYLINDERS ALONG THE LOGS WITH AN INTERVAL OF 1.4 M 
(RIGHT IMAGE). 
Sub-step 4.2. Merchantable log characterization 
For extracting the STR and TAP patterns of the solely merchantable log, the two equations (2 and 3) 
described from (Togni 2017) were adjusted and implemented using the information of the three cylinders 
through R functions. These R functions used the “stats” (authors, R Core Team and contributors worldwide) 
and “dplyr” (Wickham and Francois, 2016) R packages. For the matches, the accuracy of the predicted STR 
and TAP was evaluated with respect to the observed data. The mean and the standard deviation (SD±), the 
bias and the RMSE were used as the evaluation criteria. 
Sub-step 4.3. Merchantable log classification 
For classifying the merchantable logs into one of 15 timber assortments, the STR and Dmin outcomes 
provided by the previous sub-step were used here. Particularly, we used the threshold limits (Table 10), 
described by Togni (2017), for classifying those logs. To run this classification, we implemented a function 
classifying the logs using the STR and Dmin measurements. To reach this, we used the “stats” (authors, R 
Core Team and contributors worldwide) and the “dplyr” (Wickham and Francois, 2016) R packages. For 
the matches, the accuracy of the predicted number of merchantable logs by class was evaluated with respect 
to the observed data. The bias and the RMSE were used as the evaluation criteria.  
2.3.5. Results 
The samples plots were characterized by a huge tree species richness and structural heterogeneity (Table 
11). The most frequent tree species, ranging from 5 to 9, were F. sylvatica (28.7%), F. excelsior (14%), U. 
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carpinifolia (12.4%), and Q. cerris (11.8%) (Figure 20). Among the ADS, the structural heterogeneity was 
supported by the DBH ranging between 0.16 m and 0.26 m, the TH ranging between 13.28 m and 23.10 m 
and the TSv ranging between 0.31 m3 and 1.05 m3 per ADS, as well as by stem density (Table 11). However, 
the stem density may be divided into complexity levels:  low (<500 trees ha-1), moderate (500-900 trees ha-
1) and high (>900 trees ha-1). The randomly locations of the all single-scan positions, ranging between 7 
and 10 single-scans, were also showed (Figure 20).  
TABLE 11 SUMMARY OF FOREST-RELATED CHARACTERISTIC FROM ALL TREES OVER FIVE FIELD PLOTS (ADS). THE 
DIAMETER AT BREAST HEIGHT (DBH), TREE HEIGHT (TH), HEIGHT OF THE FIRST ATTACHED BRANCH OR 
BRANCH UNION (TH1), TREE STEM VOLUME (TSV) AND THE TREE SPECIES COMPOSITION (TSC) WERE SHOWED. 
Field data 
N°trees Forest-related characteristics  
-1 ComplexitADS ADS  (N° Descriptio TSC 
-1 y level DBH (m) TH (m) TH1 (m) TSV (m³) trees ha ) n (units) 
Mean 0.2 18.52 7.94   
1 33 (623) moderate SD (+/-) 0.09 5.16 3.35   
Sum    13.2 7 
Mean 0.2 13.28 6.05   
2 36 (679) moderate SD (+/-) 0.19 8.19 2.86   
Sum    23.86 9 
Mean 0.16 13.72 7.12   
3 52 (981) high SD (+/-) 0.13 6.79 3.51   
Sum    16.32 8 
Mean 0.21 21.27 9.86   
4 33 (623) moderate SD (+/-) 0.14 8.97 3.84   
Sum    22.81 9 
Mean 0.26 23.1 10.57   
5 24 (453) low SD (+/-) 0.15 10.22 6.06   
Sum    25.29 5 
Sum 178 (3358)        
 
 
FIGURE 20 TREE POSITION AND SINGLE-SCAN LOCATION WITHIN EACH FIELD PLOT (ADS). THE BLACK SQUARES 
REPRESENT THE ADS BOUNDARIES, THE YELLOW SQUARES REPRESENT THE SINGLE-SCAN POSITIONS, THE 
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COLOURED DOT POINTS REPRESENT THE OBSERVED TREE POSITION CLASSIFIED BY TREE SPECIES ON 
DIGITAL TERRAIN MODEL (DTM) BACKGROUND. 
In our study, more than one-third of observed trees, corresponding to 70 out of 178 observed trees, were 
suited for timber assortment assessment based on (DBH > 0.20 m). Overall, the most frequent species of 
them were the F. sylvatica (32.9 %; 23 trees), Q. cerris (21.4 %; 15 trees), F. excelsior (14.3 %; 10 trees) 
and A. opalus (11.4 %; 8 trees) and other four broadleaved species (20%; 14 trees). 70 observed trees 
provide 306 and 79 observed merchantable and non-merchantable logs (Table 12). Based on the STR, 
ranging between 1.4 cm m-1 and 2.9 cm m-1, and the TAP, ranging between 1.1 cm m-1 and 1.8 cm m-1, 
measurements, most merchantable logs goes from slightly to strongly contorted due to the stem profile 
description. The volume stored in merchantable logs was ten times higher than that stored in non-
merchantable logs. 
TABLE 12 LOG QUALITY TRAITS FOR ALL FIVE STUDY AREAS (ADS). THE STRAIGHTNESS (STR) AND TAPERING (TAP) 
VARIABLES, AND THE LOG VOLUME (TTV.LOG) OF MERCHANTABLE AND NON-MERCHANTABLE LOGS WERE 
DISPLAYED. THE MEAN, STANDARD DEVIATION (SD ±) AND THE SUM WERE USED FOR EVALUATING THE 
ACCURACY. 
Log quality traits 
ADS   STR (cm m-1) TAP (cm m-1) TTv.log (m3) 
Type ADS N°logs Mean SD (±) Mean SD (±) Sum 
1 88 2.9 1.9 1.5 0.7 7.2 
2 45 1.6 1.3 1.8 1.0 10.9 
3 35 1.4 1.1 1.6 0.4 6.7 
Merchantable 4 56 1.8 1.4 1.1 0.5 12.9 
5 82 1.6 0.9 1.2 0.4 12.4 
Mean  1.8 1.3 1.4 0.6 10.0 
Sum 306      
1 30 2.1 4.0 1.3 2.6 1.1 
2 13 1.7 2.5 0.9 1.3 1.2 
3 11 1.4 1.7 0.5 1.2 0.7 
Non-merchantable 4 8 2.1 2.9 1.0 1.4 0.4 
5 17 1.3 2.6 1.0 1.3 1.2 
Mean  1.7 2.7 0.9 1.6 0.9 
Sum 79      
 
2.3.5.1. Timber-leaves discrimination 
The results revealed that the Random Forest algorithm was able to accurately discriminate the timber from 
leave points in mixed-species and heterogeneous stand structure, as supported by the similar accuracy 
(0.98), sensitivity (0.98) and specificity (0.98) values obtained in all five ADS. Despite the optimal 
capability for classifying the point clouds, the upper part of canopy height (affecting taller trees) and the 
presence of shrubs and or lianas (understory layer) have favoured the occurrence of noise points. In the 
light of the foregoing, the timber-leave discrimination was slightly influenced by the quality of point clouds 
and forest structure in mixed-species and multi-layered forests. 
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2.3.5.2. Tree detection and DBH estimation  
We detected 151 out of 178 observed trees, reaching average detection rate accuracy equal to 84.4%, with 
high uniformity/similarity across the ADS, based on the standard deviation values (SD = ±4.7%) (Table 
13). The results revealed that the tree detection approach was more sensitive to the commission error (84 
as the sum of FalsePos) than the omission error (27 as the sum of FalseNeg), which was also supported by 
the different patterns of the completeness (84.4%) and correctness (66.9%) accuracies (Table 13). It is 
worth noting that, although the average detection accuracy was 84.4 %, it was increased for large trees with 
a DBH > 0.30 m, reaching an average detection accuracy equal to 100 %. 
The detection accuracy was rather variables among the three complexity levels of stem density. Particularly, 
as concerns the ADS belonging to moderate complexity levels, we detected 87 out of 102 observed trees, 
reaching an accuracy ranged between 80.6% and 90.9%. About the ADS belonging to the high complexity 
level, we detected 45 out of 52 observed trees, supporting an accuracy equal to 86.6%. About the ADS 
belonging to low stem density level, we detected 19 out of 24 observed trees, reaching an accuracy equal 
to 79.2% (Table 13). In the light of above, the detection accuracy increased in moderate and high 
complexity levels of stem density.  
TABLE 13 SUMMARY OF TREE DETECTION RESULTS. OBSERVED TREES FROM FIELD DATA (TR), PREDICTED TREES 
FROM TLS DATA (TREETLS), TRUE POSITIVE (TRUEPOS), FALSE POSITIVE (FALSEPOS), FALSE NEGATIVE 
(FALSENEG), DETECTION RATE (DR), COMPLETENESS AND CORRECTNESS FOR EACH STUDY AREA (ADS). MEAN, 
STANDARD DEVIATION (SD ±) AND SUM WERE ALSO DISPLAYED. 
Tree detection results 
Tree detection measurements 
ADS TR Completeness Correctness 
TreeTLS TruePos FalsePos FalseNeg DR (%) 
(%) (%) 
1 33 45 30 15 3 90.9 90.9 66.7 
2 36 54 29 25 7 80.6 80.6 53.7 
3 52 71 45 26 7 86.5 86.6 63.4 
4 33 36 28 8 5 84.8 84.9 77.8 
5 24 26 19 7 5 79.2 79.2 73.1 
Sum 178 232 151 81 27    
Mean 36 46 30 16 5 84.4 84.4 66.9 
SD (+/-) 10.2 17.2 9.4 9.0 1.7 4.7 4.7 9.3 
 
The detection accuracy decreases, as the tree species composition increase because the best and worst 
detection accuracy was found in ADS including five (ADS5; DR = 90.9 %) and seven (ADS1; DR = 79.2 
%) tree species. Conversely, the detection accuracy varies from 80.6 % to 86.5 % in ADS include seven, 
eight and nine different tree species (ADS2, ADS3 and ADS4). Nevertheless, a great detection rate accuracy 
was found in A. lobelii, S. torminalis, F. excelsior, Q. cerris, A. campestre and F. sylvatica (> 84.3 %) 
compared to other six broadleaved stems (50-77 %) (Figure 21). Although the detection accuracy increases 
in ADS with a least number of species (< 5 tree species), it is related to tree species (A. lobelii). (Figure 21) 
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FIGURE 21 DETECTION RATE (DR) VALUES FOR INDIVIDUAL TREE SPECIES 
The detection accuracy increases, as the stem dimension increases, and therefore, a great capacity for 
detecting large trees (DBH > 0.30 m) was proved by using the cylinder-fitting approach (DR = 100 %). 
This statement was more evident for ADS showing moderate stem densities (ADS 1, 2 and 4) compared to 
ADS showing lowest and highest stem densities (ADS 3 and 5) (Table 14). 
TABLE 14 DETECTION ACCURACY. OBSERVED TREES FROM FIELD DATA (TR, UNITS), TRUE POSITIVE (TRUEPOS, UNITS) 
AND DETECTION RATE (DR, %) WERE SHOWED FOR THE THREE DIFFERENT DIAMETERS AT BREAST HEIGHT 
(DBH) INTERVALS. MEAN, STANDARD DEVIATION (SD ±) AND SUM WERE ALSO DISPLAYED. 
 Tree detection results 
 ADS1 ADS2 ADS3 ADS4 ADS5 
DBH 
interval (m) 
1st [<0.1] 3 2 66.7 17 12 70.6 22 17 77.3 5 4 80 4 3 75 
2nd [0.1-0.2] 17 15 88.2 5 3 60 17 16 94.1 15 12 80 3 1 33.3 
3rd [0.2-0.3] 7 7 100 6 6 100 4 3 75 7 6 85.7 9 7 77.8 
4th [>0.3] 6 6 100 8 8 100 9 9 100 6 6 100 8 8 100 
Sum 33 30  36 29  52 45  33 28  24 19  
Mean   88.7   82.7   86.6   86.4   71.5 
SD (±)   15.7   20.5   12.3   9.4   27.8 
 
Comparing the predicted vs. observed DBH data from correctly detected trees, corresponding to 151 trees 
(Table 15), we found better predictions accuracy in the linear regression model excluding the outlier data 
(R-squared = 0.84; RMSE = 0.02 m) than that including outlier data (R-squared = 0.67; RMSE = 0.08 m) 
(Figure 22). The cleaned outliers, mainly overestimated, belong to both large and small stems (different 
DBH patterns), hence, a moderate accuracy for predicting the DBH was showed for all stems.  
86 
 
TR 
TD 
DR (%) 
TR 
TD 
DR (%) 
TR 
TD 
DR (%) 
TR 
TD 
DR (%) 
TR 
TD 
DR (%) 
LiDAR as a tool for timber assortment assessment and characterization in mountain forests 
 
FIGURE 22 PREDICTED VS. OBSERVED VALUES OF THE TWO LINEAR MODELS FOR THE DIAMETER AT BREAST HEIGHT 
(DBH). 
2.3.5.3. Stem reconstruction 
We reconstructed 47 out of 70 observed trees using TLS data through a cylinder-fitting approach, reaching 
an average stem reconstruction accuracy equal to 67.2%, with low similarity/uniformity among the ADS 
(SD = ±14.86%) (Table 15).  
The stem reconstruction accuracy was rather variables among the three complexity levels of stem density. 
Particularly, as concerns the ADS belonging to moderate complexity levels, we reconstructed 28 out of 40 
observed trees, reaching a stem reconstruction accuracy ranged between 53.8 % and 84.6 %. About the 
ADS belonging to the high complexity level, we reconstructed 7 out of 13 observed trees, supporting a stem 
reconstruction accuracy equal to 53.8 %. About the ADS belonging to low stem density level, we 
reconstructed 12 out of 17 observed trees, reaching a stem reconstruction accuracy equal to 70.6 % (Table 
15). 
Although the reconstruction accuracy was equal to 67.2 %, an enhanced stem reconstruction was found for 
Q. cerris (66.7%), A. opalus (41.7%) and F. excelsior (40%) because the other five tree species showed a 
reconstruction accuracy lower than 26 % (Figure 23). 
TABLE 15 STEM RECONSTRUCTION RESULTS. OBSERVED TREES FROM FIELD DATA (TR, UNITS), RECONSTRUCTED 
STEM FROM TERRESTRIAL LASER SCANNING DATA (RSTEM; UNITS) AND RATE OF RSTEM (TRUERSTEM, 
PERCENT) WERE DISPLAYED FOR FIVE DIFFERENT DIAMETERS AT BREAST HEIGHT (DBH) INTERVALS AND IT IS 
SEPARATED BY EACH STUDY ARE (ADS). MEAN, STANDARD DEVIATION (SD ±) AND SUM WERE ALSO DISPLAYED. 
Stem reconstruction results 
DBH interval (m) 
ADS Description 1st 2nd 3rd
Total 
 4th 5th 
[0.2-0.3] [0.3-0.4] [0.4-0.5] [0.5-0.6] [>0.6] Sum % 
TR 7 6    13  
ADS1 RStem 6 4    10  
TrueRStem       76.9 
TR 6 1 3 2 2 14  
ADS2 
RStem 2 1 1 2 1 7  
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TrueRStem       50 
TR 4 3 6   13  
ADS3 RStem 1 2 4   7  
TrueRStem       53.8 
TR 7 1 3 2  13  
ADS4 RStem 5 1 3 2  11  
TrueRStem       84.6 
TR 9 6 0 1 1 17  
ADS5 RStem 6 5 0 1 0 12  
TrueRStem       70.6 
TR 33 17 12 5 3 70  
Sum 
RStem 20 13 8 5 1 47  
Mean and 
TrueRStem 60.6 76.5 66.7 100 33.3  67.2 (14.9) 
SD (±) 
 
 
FIGURE 23 RATE OF RECONSTRUCTED STEM DERIVED FROM TERRESTRIAL LASER SCANNING DATA (TRUERSTEM) WAS 
SHOWED FOR EACH TREE SPECIES 
The capability of the cylinder-fitting approach for detecting and tracing the cylinders along each trunk was 
accurately proved by the stem curve patterns. These patterns were supported by the high CLR and PHC 
accuracies, 88.1% (SD = ± 16.7 %) and 35.4% (SD = ±11.3 %) (Figure 24A-B), respectively.  
As regards the trunk section described by the cylinders, more than three-quarters of all stems, corresponding 
to 39 reconstructed stems, were entirely described by fitted cylinders (CLR > 80 %) and remaining stems, 
corresponding to 8 reconstructed trees, were solely partially described by cylinders, ranged between 26.4 
% and 76.3 % (Figure 24A). As regards the proportion of tree height described by fitting cylinders, nearby 
three-quarters of all stems, corresponding to 34 reconstructed stems, were partially described by fitted 
cylinders (30 % >PHC > 68.3 %) and the remaining stems, corresponding to 13 reconstructed trees, were 
barely described by cylinders, ranged between 12.9 % and 29.9 % (Figure 24B). Despite the small PHC 
values support the idea that trunk section with productivity aptitudes was short, the main cause that stopped 
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the detection of the cylinder along each stem was derived from the height of the first attached branch or 
branch union (Figure 24A-B). 
 
FIGURE 24 STEM CURVE PERFORMANCE. THE CURVE LENGTH RATIO (CLR; A) AND THE PERCENTAGE OF THE TREE 
HEIGHT COVERED (PHC; B) WERE DISPLAYED FOR ALL RECONSTRUCTED TREES. 
Comparing the predicted vs. observed values for Dmax and Dmin data from correctly reconstructed trees, 
corresponding to 47 trees, we found better predictions accuracy in the linear regression model excluding 
outlier for both Dmax (R-squared = 0.86; RMSE = 0.03 m) and Dmin (R-squared = 0.89; RMSE = 0.03 
m), respect to that including the outliers for both Dmax (R-squared = 0.60; RMSE = 0.08 m) and Dmin (R-
squared = 0.56; RMSE = 0.08 m) (Figure 25). As regards the Dmax outliers, the eleven cleaned outliers, 
that fostered a slight Dmax under/overestimation, were values exceeding 0.49 m. As regards the Dmin 
outliers, the three cleaned outliers, that fostered a slight Dmin underestimation, were values exceeding 0.61 
m. Therefore, fitted predictions for both Dmax and Dmin were found for values lower than 0.49 m and 0.61 
m, respectively.  
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FIGURE 25 PREDICTED VS OBSERVED VALUES OF THE LINEAR MODELS OBTAINED FOR MAXIMUM (DMAX) AND 
MINIMUM (DMIN) ENDS DIAMETERS. 
2.3.5.4. Timber assortment estimation 
Log quantification: 
Since the timber assortment assessment was based on stem reconstruction outcomes, we used the 
reconstructed trees, corresponding to 47 reconstructed trees, for timber assortment assessment. In our study, 
47 observed trees provided 179 merchantable and 40 non-merchantable logs. More than three-quarters of 
both type of logs were quantified, particularly, 134 out of 179 merchantable logs and 34 out of 40 non-
merchantable logs were quantified. (Table 6). Comparing the predicted vs. observed length of logs, we 
noted that predicted data was larger than observed data, and such difference was similar for merchantable 
(2.5m vs. 2.78) and non-merchantable (1.35m vs. 1.62) logs (Table 16). 
TABLE 16 LOG QUANTIFICATION RESULTS. THE NUMBER OF LOGS (N°LOGS, UNITS) AND THE LENGTH OF LOG (L.LOG, 
M) MEASUREMENTS WERE DISPLAYED FOR MERCHANTABLE AND NON-MERCHANTABLE LOGS. MEAN, 
STANDARD DEVIATION (SD ±) AND SUM WERE ALSO DISPLAYED. 
 Log section results  
 Observed data   Predicted data   
L.log L.log 
Log section N°logs N°logs 
Mean SD(±) Sum Mean SD(±) Sum 
Merchantable 179 2.5 0 447.5 134 2.78 0.12 372.51 
Non-merchantable 40 1.35 0.69 53.90 34 1.62 0.57 54.99 
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Considering the quantity of predicted and observed logs for each tree species, we observed a similar 
quantification accuracy for both log types. The quantification accuracy obtained for merchantable logs 
based on bias and RMSE were 5.6 and 8.3 units per tree species, respectively. The quantification accuracy 
obtained for non-merchantable logs based on bias and RMSE were 0.8 and 1.7 units per tree species, 
respectively. We also noted that an enhanced quantification accuracy was found for C. betulus (1 out of 1), 
F. sylvatica (36 out of 42), A. opalus (11 out of 14), F. excelsior (34 out of 45), U. carpinifolia (3 out of 4), 
since more than three-quarters of logs were correctly matched between observed and predicted data (Table 
17). 
TABLE 17 LOG RESULTS SHOWED FOR TREE SPECIES.  
Log results for tree species 
  Merchantable (Units) Non-merchantable (Units) 
 Tree species Observed data Predicted data Accuracy Observed data Predicted data Accuracy 
1 Q. cerris 62 43  10 11  
2 F. sylvatica 42 36  12 10  
3 F. excelsior 45 34  10 6  
4 A. campestre 3 2  0 0  
5 A. opalus 14 11  5 4  
6 T. cordata 8 4  1 1  
7 U. carpinifolia 4 3  1 1  
8 C. betulus 1 1  1 1  
 Sum 179 134  40 34  
 bias   5.6   0.8 
 RMSE   8.3   1.7 
 
Comparing the predicted vs. observed TTv.log data, from quantified 134 merchantable logs, we found 
better predictions accuracy in the linear regression model excluding the outlier data (R-squared = 0.92; 
RMSE = 0.03 m³) than that including the outlier data (R-squared = 0.77; RMSE = 0.06 m³) (Figure 26). As 
far as concerns the outliers, the twelve cleaned outliers, that fostered a slight TTv.log overestimation, were 
values exceeding 0.33 m3. Therefore, fitted predictions were observed for TTv.log values to be inferior 0.33 
m3. 
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FIGURE 26 PREDICTED VS OBSERVED VALUES OF THE LINEAR MODELS FOR THE VOLUME OF LOGS (TTV.LOG). 
Log characterization 
The characterization of logs proved to be more accurate for STR with respect to TAP measurements, based 
on the accuracy findings found for these, particularly, the STR bias value was 0.77 cm m-1 and the TAP 
bias value was 1.69 cm m-1(Figure 27). Conversely, the TAP and STR patterns resulted to be rather similar 
among them based on the standard deviation values for these: TAP (SD = ±1.79 cm m-1) and STR (SD = 
±1.73 cm m-1). Despite the poor accuracy obtained comparing predicted with observed TAP data, in several 
log cases the negative and positive patterns found for observed data were even reported for predicted data.  
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FIGURE 27 THE STRAIGHTNESS (STR) AND TAPERING (TAP) VALUES FOR MERCHANTABLE LOGSTHE RED SQUARED 
INDICATES THE NEGATIVES VALUES OF TAP REPORTED FOR PREDICTED AND OBSERVED DATA.  
Log classification: 
The results highlighted that the log classification resulted to be fit for eleven out of 14 assortment types. It 
was based on the absolute lower values of bias and RMSE accuracy, -1.36 and 7.13 logs per type of 
assortment, respectively (Figure 28). Comparing predicted with observed log classification findings, we 
observed that 8 out of 11 assortment types proved to be more accurate based on the variation of 
merchantable logs (±2). These assortment types belong mainly to saw-log and other industrial roundwood 
and someone else of other assortment types, particularly, A-, B-, B0, B+, C-, D-, D+ and Fuelwood-. The 
principal high-quality assortment, namely A+, was found to be strongly overestimated (predicted = 67 vs. 
observed = 43) (Figure 28). Among the assortment types that did not include some merchantable logs, 
corresponding to C+, Fuelwood+ and Fuelwood0, one was empty using observed data too and the other 
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two were assortment less abundant or low-quality (C+ = 2 logs, Fuelwood+ = 1 log and Fuelwood0 = 7 
logs). 
 
FIGURE 28 CLASSIFICATION OF THE MERCHANTABLE LOGS INTO FIFTEEN ASSORTMENT TYPES BELONGING TO SAW-
LOG PLUS, SAW-LOG, PULPWOOD, OTHER INDUSTRIAL ROUNDWOOD AND FUELWOOD ASSORTMENTS. 
2.3.6. Discussion  
2.3.6.1. Separating the timber from point clouds 
Results display that occlusion factors as trees in the understory layers, trunks, branches and leaves hinder 
the discrimination of timber from leaves points. This is even more worsened by the abundance of lianas, as 
a naturalness indicator of this forest (Santopuoli et al. 2019; Vicari et al. 2019). Although the eigenentropy 
thresholds allowed us to remove the noise points that prompted the timber-leaf discrimination, more efforts 
are necessary to better classify small branches (< 0.01m), especially those situated in the upper portion of 
the canopy. (Ma et al. 2016; Vicari et al. 2019) faced similar challenges in the timber-leave discrimination, 
and they associated it with the quality of point cloud, particularly, the point spacing, the density and the 
incidence angle uncertainties; other study indicated that these challenges can be also associated with the 
shaded effect from large to small stems derived from the pre-processing issues (i.e. assembling among 
scans) (Vicari et al. 2019). In our study, the shaded effect in the discrimination approach seems to be a 
plausible justification, but it was aggravated in study areas with high richness species and structural 
heterogeneity stands. Despite the challenges found in timber-leave discrimination, our findings were in line 
with that reported in some studies (Ma et al. 2016; Wang et al. 2017; Vicari et al. 2019). However, the two 
main differences between our study and other studies were the number of predictor variables (our study = 
8 predictor variables vs. literature = 10 predictor variables) and tree species composition (our study = 9 vs. 
literature = less than 3 tree species) (Ma et al. 2016; Wang et al. 2017; Vicari et al. 2019). 
94 
 
LiDAR as a tool for timber assortment assessment and characterization in mountain forests 
We observed that the standard value of “Ln” has influenced the interpretation of neighbouring points, in 
particular, the occurrence of noise points resulted to be most abundant in some trees, despite of these were 
removed using the filtering approach. Therefore, timber-leaf discrimination can be improved using variable 
values of “Ln” in accordance with its point cloud quality, and it can also result beneficial in interpreting the 
neighbouring points (Lari and Habib, 2012; Weinmann et al. 2015).  Nevertheless, the combined use of RF 
algorithm with a filtering approach allowed us to separate the timber from leaves points and to generate 
appropriate input data for tree detection and stem reconstruction subsequent steps. Similar strategies were 
even tested to improve the performance of the binary classification approach, for example, (Vicari et al. 
2019) proposed a stepwise approach for timber-leaves discrimination following four steps: majority filter, 
feature filter, cluster filter and path filter; (Tao et al., 2015) proposed an approach using the spatial 
distribution of the point neighbourhoods for separating the leaves from timber points. 
2.3.6.2. Tree detection  
It is worth highlighting that our study was carried out in a mixed and multilayer Mediterranean forest, 
within which the main management aim is biodiversity conservation through very limited harvesting 
activities in the last 50 years. The results revealed that the tree species composition and forest structure 
have slightly influenced the detection accuracy of trees using TLS data, reaching an average DR (DR = 
84.4 %) (Table 13). Enhanced detection accuracy was found in the forest with more than 500 tree ha-1, for 
six tree species (i.e. A. lobelii), and large trees (DBH > 0.30 m). Conversely, we observed a limited capacity 
of the cylinder-fitting algorithm for detecting small trees, however, this challenge was even found for 
eighteen automatic and semi-automatic algorithms (Liang et al. 2018), and in this study, this challenge was 
related to the incomplete definition of the cylinder of stems. The main hindering factors influencing the 
incomplete definition of the cylinder of stems were shadow effects from large to small trees, poor point 
density, assembling errors, shadow effects from branches to trunk, stem straightness, non-circular shape 
and tree species composition (Liang et al., 2018). Along with these hindering factors, secondary factors, 
such as, lianas’ and shrubs’ occurrence, and also the terrain pendency, can affect the detection accuracy of 
small trees (Liang et al. 2012; Olofsson et al. 2014; Koreň et al. 2017). However, in our study, since the 
commission error was superior to omission error, the assumption of a shadow effect from large to small 
trees, shadow effects from branches to trunk, stem straightness became plausible. 
Despite the slightly different forest stand conditions amongst the ADS, our results were higher and or in 
line than the results observed in studies using TLS single-scan and TLS multiple-scans in other contexts. 
For example, TLS single-scans in forests characterized by mixed dry broadleaved species, (Reddy et al. 
2018) reached to detect more than 70 % of observed trees in plots with 450 trees ha-1 (vs. ADS 5; DR = 
79.2 %; ADS with high stem density) through a circle-fitting approach; in forest characterized by Pinus 
spp., P. abies and B. pendula (Liang et al. 2012) reached to detect the 73 % of observed trees in plots with 
509 - 1432 trees ha-1 (vs. ADS1,2,4; DR = 80.6 - 90.9 %; ADS with low and moderate stem density) through 
an approach using the flatness, direction and shape features for detecting trees. As regards the multiple-
scans: in forest characterized by P. abies, Pinus spp. and B. pendula, (Olofsson et al. 2014)reached to detect 
the 87 % of observed trees in plots with 358 - 1042 trees ha-1 ( vs. DR = 84.4 %) through a cylinder-fitting 
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approach using the TLS features (i.e. flatness saliency) for detecting trees; in forest characterized by C. 
betulus, F. sylvatica, P. menziessi, P. abies, Quercus spp. and P. sylvestris, (Bauwens et al. 2016) reached 
to detect the 93% (SD ± 8%) of observed trees in plots with 113 - 1344 trees ha-1 (vs. DR = 84.4 %) through 
a cylinder-fitting approach. 
Nevertheless, comparing our tree detection method with other fourteen algorithms using multiple-scans, 
our completeness accuracy (84.4%) was in line with the best five algorithms (ranged between 76 % and 
88%) (Liang et al. 2018), despite the forest stand condition difference (i.e. 4 vs. 12 tree species and 
monolayer vs. multi-layered). However, the correctness obtained from our study (66.9 %) was lower than 
the results from fourteen algorithms (ranged between 50 - 95%) (Liang et al. 2018). 
The accuracy of DBH detection was affected by the occlusion and shadow effects from the bark roughness, 
stem straightness and non-circular shape of trunks, liana’s presence and non-circular shape of trunks, 
despite the powerful capability of the cylinder-fitting approach (Liang et al., 2018, 2019). Such hindering 
factors are often caused by technical (i.e. collection-georeferencing) and operational aspects (distance 
between tree position and TLS scanner, number of scans) (Saarinen et al. 2017; Liang et al. 2019). 
However, in our study, the automatic approaches applied allowed to overcome part of these (i.e. OpalsICP 
for georeferencing). The RMSE values showed by our linear models including and excluding outliers 
(ranged between 0.01 m and 0.086 m) were comparable with the results obtained in other studies from 
about 14 TLS algorithms (0.053m - 0.074m SD ± 0.057m – 0.072m) (Liang et al. 2018). Similarly, our 
DBH responses in RMSE terms were comparable with the result showed for (Reddy et al. 2018), ranging 
between 0.01 m and 0.05 m, for (Kankare et al. 2016), ranging between 0.063 m and 0.147 m and for 
(Bauwens et al. 2016) was 0.013 m, despite the forest structure in Bosco Pennataro was rather complex. 
2.3.6.3. Stem reconstruction  
Results revealed that the use of a cylinder-fitting approach allowed us to reconstruct nearby three-quarters 
of detected trees from TLS point cloud in mixed-species and heterogeneous stand structures (Table 14 and 
Table 15). The enhanced stem reconstruction values were found in the ADS of moderate and high 
complexity density levels, and with lower than 5 tree species, especially the Q. cerris. This is because 
despite Q. cerris. presents logs defects, such as, the variation in straight and the presence of insect holes 
(Musat et al. 2017), these defects were overcome required by our cylinder-fitting approach due to the stem 
diameter and straightness were computed. It is important to underline the tree species with a high dimension 
were the most frequently reconstructed (A. opalus, F. excelsior, F. sylvatica). This can be supported by the 
genetic traits of each tree species, represented by the stem straightness and irregularities of the trunks (i.e. 
knots, bulges). In the light of the above, the stem reconstruction accuracy becomes the challenge for stem 
with irregular stem profile (i.e. stem straightness) and it can be further worsened by the presence of lianas 
around stem axis, or showing trunk-branch crossing or some microhabitats type (Griinwall et al. 2005; 
Kankare et al. 2016; Koreň et al. 2017; Santopuoli et al. 2019). 
A good proportion of the stems were reconstructed based on the stem curve pattern, which was supported 
by the CLR and PHC outcomes, particularly the average of CLR was 88.1 % (SD = ±16.7 %) and PHC was 
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35.4 % (SD = ±11.3 %) (Figure 24). Our CLR and PHC results were comparable with the results from 
thirteen algorithms using multiple-scans, which ranged between 74 % and 87 % (Liang et al. 2018) and 
ranged between 56 % and 94 %, CLR and PHC, respectively. Despite the optimal capability of cylinder-
fitting approach for extracting the stem curve, the stem curve accuracy decrease as the tree height increase, 
especially at the height of first attached branch and in the branch union (Wang et al. 2016a; Liang et al. 
2018) due to the point density in the upper canopy decrease (Figure 24). 
In regards to the stem diameter, the Dmin and Dmax resulted to be more accurate in linear regression 
models excluding the outliers, which are frequent belong to the large stem diameters. This result could be 
supported by the three assumptions: 1) high frequency of irregular forms, compared to the cylinder, for 
large trees respect to the small trees, due to the presence of lianas, non-circular forms, presence of knots 
and or bulges, presence of microhabitats (Bienert et al. 2007; Koreň et al. 2017; Kankare et al. 2013; 
Rehush et al. 2018); 2) low quality of the TLS point clouds which fostered a shadow effect of the cylinders 
on the cross-sections (Olofsson et al. 2014; Pitkänen et al. 2019), and, 3) the manual gathered of diameters 
using CloudCompare software which increased the uncertainties of the cylinder measurements (Kankare et 
al. 2013; Olofsson et al. 2014). All the above-mentioned assumptions are strictly dependent on the forest 
structures, even if the latter could be improved with experience and well-trained staff. 
2.3.6.4. Timber assortment 
Results revealed that the quantification and classification were based on stem reconstruction outcomes 
(Table 16-17). Forty-seven detected trees have provided 219 logs, 179 merchantable logs and 40 non-
merchantable logs. More than three-quarters of merchantable and non-merchantable logs were quantified 
using the cylinder position and cylinder dimension from the stem curve (Table 16). We noted that some 
logs from observed data were “missing”; most of these “missing” logs were triggered from the trunks that 
not were completely covered by the stem curve (CLR patterns; Figure 24). This error, however, was 
associated with the irregular stem form (i.e. stem straightness) and the irregularities on the bark (i.e. 
geometry defects: knots, bulges, microhabitats) (West 2009; Liang and Hyyppä, 2011).  
As regards the log volume (TTv.log), the best prediction was shown for the linear regression model 
excluding the outliers (R-squared = 0.91; RMSE = 0.03 m³; Figure 16). This was supported by comparing 
our results with that obtained in other pure stands, despite the forest covers studied were characterized by 
the tree species richness and heterogeneous stand structure. For example, our results were comparable with 
results reported for a study focused on P. sylvestris and P. abies, in which the accuracy for stem volume 
was 0.83 (R-squared), using the cylinder position and dimension as input data, and 0.94 (R-squared) using 
a stem model approach (Kankare et al. 2013). Conversely, our accuracy was lower than the accuracy found 
in Pinus spp. and P. abies stems due to the R-squared and RMSE was 0.98 (RMSE = 0.02-0.03m3) and in 
our study was 0.89 (RMSE = 0.03m3) (Liang et al. 2014), probably due to the different tree species 
composition and complexity of forest structure. 
In our study, the log quality of the merchantable logs from observed data was characterized by the crooked 
logs with several bends based on STR and TAP measurements. Particularly, the STR and TAP patterns 
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derived from observed data showed high variability/uniformity among the merchantable logs and this 
variability was more marked for TAP compared to STR pattern. The variability of the STR and TAP 
patterns however might be associated with the morphological traits and these were based on genetic and 
physiologic factors and our plots including eight tree species (Cowell 2004; West 2009). Along with genetic 
and physiologic factors, some secondary factors might also influence the TAP and STR patterns, such as, 
the stem form, stem density, edaphic condition, bark irregularities, as well as by the manual approach 
implemented for characterising the logs (Cowell 2004; West, 2009). Nevertheless, the variability of STR 
and TAP might be even influenced by the manual procedure used for measuring the advanced forest-related 
measurements in CloudCompare software (Henning and Radtke, 2006), and it became hard in trees with 
bark irregularities or infested by lianas (Liang and Hyyppä, 2011; Wan et al. 2019). Hence, in our study, 
we assume that the variation of the advanced forest-related measurements can be linked to the management 
of forests, due to the structural heterogeneity played a crucial role in the accuracy of the advanced forest-
related measurements, even if the manual approach used for estimating these from TLS data became crucial 
too. 
As regards the classification of the merchantable logs, 134 out of 179 merchantable logs were classified in 
one of the 15 assortment types. The whole predicted logs were classified in 11 assortment types, so eleven 
out of 15 assortment types were correctly matched between predicted and observed data. The classification 
of merchantable logs was more accurate for eight assortment types. These 8 assortment types were included 
in saw-log and other industrial roundwood and someone else of other assortment types (i.e. A-, B-, B0, B+, 
C-, D-, D+ and Fuelwood-), which was ±2 merchantable logs. Since the STR and Dmin were mandatory 
pre-requisites for classifying the merchantable logs, their accuracy affected the log quality. Therefore, if 
the dimension of each cylinder is overestimated, the log tapering will be overestimated too. In this context, 
the inaccuracy of the measurement of cylinders can promote a hindering factor. In our study, some of them 
can be the tree species richness, architecture of stems, irregularities of the bark (i.e. knots, lianas, bulges, 
microhabitats) (West 2009; Cowell 2004). Along with these hindering factors, the stem form (i.e. neiloidic, 
parabolic) and their eccentricities can even play an important role in describing the stem curve (Puletti et 
al. 2019; Luoma et al. 2019).   
2.3.7. Conclusion  
This study provides a stepwise procedure for extracting the timber assortment of standing trees using TLS 
data in forests characterized by a high tree species richness and heterogeneous stand structure. Results 
display that the approach provides significant insights for mixed and multi-layered forests allowing 
assessing the timber assortments for productive forests, but also to characterize timber volume within 
forests with conservative management aims, as carbon storage in old-growth forests or within protected 
areas. Furthermore, from a productive point of view, it represents a suitable approach to assess the timber 
assortment types within abandoned forests allowing their revalorization and utilization supporting the 
revalorization of socio-economic function within marginal mountain areas.  
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The stepwise approach offered the possibility to extract the timber assortments from standing trees of eight 
tree species using TLS data, especially the Q. cerris. From technical point of view, an accurate and realistic 
timber-leave discrimination was made through RF algorithm. The cylinder-fitting approach allowed us to 
reconstruct the trunk of stems, however, the main challenges making difficult the reconstruction were the 
stem form, presence of shrubs, lianas and microhabitat. Since our approach was tested, for the first time, in 
Mediterranean forest, especially in mixed-species and multi-layered forests, the comparison with other 
similar studies has not been possible. However, our approach proved to be a useful source for valorising 
the timber resource in an accurate way, even considering the conservative purpose of forest stands. The 
most accurate timber assortment assessment was found for saw-log and other industrial roundwood and 
someone else of other assortment types. The implementation of our approach for analysing TLS data could 
serve to better select the trees to be fell and cut, making more efficient the harvesting activities, therefore, 
it could ensure the timely and accurate forest decision towards the SFM. Further investigation to increase 
the knowledge about the applicability of this approach in other forest stand conditions could be useful for 
future studies. 
2.3.8. Postface 
This study proposes, for the first time, a stepwise approach for retrieving the qualitative and quantitative 
information of the timber assortment on TLS point cloud in mixed-species and multi-layered forests. Our 
stepwise approach proved to be efficient for separating the timber from leave points. This outcome allowed 
us to better identify and reconstruct the trunk of trees. All trees with a DBH higher than 30 cm were correctly 
identified. Moreover, the cylinder-fitting approach proved to be accurate in the reconstruction of eight trees 
species with a DBH higher 20 cm, especially for Q. cerris. The cylinder-fitting approach proved to be 
competitive in comparison with several similar algorithms, it allowed us to accurately reconstruct the trunk 
section of trees, regardless the stem form, presence of bulges, microhabitats. Our approach was proved to 
be accurate for quantifying and classifying the logs from the reconstructed trees, in fact, more than three-
quarters were quantified and classified. However, the accuracy in classification was well performed for 
eight out of 15 types of assortment, but it can be associated with many aspects, such as, the observed data 
that has been manually estimated. Our approach represents a starting point for valorising the forest managed 
with conservative purposes.  
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3. CHAPTER 3 – CONCLUSION AND FUTURE 
PERSPECTIVES 
 
The main objective of this thesis was to develop one or more approaches analysing LiDAR data for timber 
assortment assessment. LiDAR is a promising source for monitoring the forest because it now is available 
at worldwide (spaceborne LiDAR data is free data); the usability and versatility of ALS joint to the cost-
effectiveness is increasingly being encouraging. 
Literature review allowed a deeper understanding of the usability and versatility of LiDAR data for timber 
assortment evaluation. Five conclusions may be drawn from the literature review. First, there is great 
interest for retrieving forest inventory information and there is less interest for connecting inventory with 
biodiversity purposes; second, the most recommended LiDAR data to use for timber assortment 
investigation were the ALS and TLS, ALS because allows covering several hectares by each flight and TLS 
because was able to reconstruct the architecture of trees, regardless of the dimensions; third, better 
simulation of the vertical stratification of trees was favoured by the vertical splitting of the point cloud; 
fourth, the clustering is revealed as a promising approach for detecting the trees in forest covered by low 
point densities. Fifth, trees belonging to intermediate or lower canopy layers are a challenge to identifying 
using ALS data, and an approach for quantifying and classifying the timber assortment using TLS data is 
still required. 
As outlined by the previous conclusions, a prerequisite to better use of ALS data for timber assortment 
assessment was associated with a reliable and accurate tree detection approach. We proposed a stepwise 
approach for carbon stock assessment at single tree level in mixed-species and multi-layered forests. Such 
an approach was subdivided into tree detection and carbon stock approaches. Four conclusions may be 
drawn from the stepwise approach used for analysing the ALS data. First, the combined use of two 
unsupervised algorithms proved to be appropriate for detecting trees in heterogeneous forest structure; 
second, the detection accuracy using our tree detection approach is favoured by the heterogeneity of forest 
structure and high point density (>30 points m-2); third, our approach allowed to identify the trees without 
previous information of the tree position; fourth, a fit prediction of the carbon stock was achieved for all 
detected trees, therefore, the timber assortment assessment at single tree level can even be derived using 
our stepwise approach. Since one algorithm is used for detecting trees, named DBSCAN, better detection 
accuracy can be expected in forest areas with dense points.  
The findings obtained using our stepwise approach for timber assortment assessment from TLS data 
provided many insights. In particular, the assessment of the timber resource from the productive forest, the 
selection of the trees with a lesser ecological weight for cutting process and the balance between productive 
and ecological aspects can be integrated in the planning and management of forest. Moreover, five 
conclusions may be drawn from the stepwise approach used for analysing the TLS data. First, accurate 
timber-leaves discrimination favoured the reconstruction of dominant trees species; second, most of the 
large trees (> 20 cm of DBH) were accurately identified; third, the cylinder-fitting approach proved to be 
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powerful for reconstructing the trunk section, especially the Q. cerris; fourth, the stem form, presence of 
shrubs, lianas and microhabitats were the main challenges hindering the stem reconstruction step; fifth, our 
approach proved to be more accurate in quantifying and classifying most of appreciated 15 assortments 
types, such as, pulpwood and other industrial roundwood. Since the main challenges found in this study 
were associated with forest stand conditions, we suggested that the forest stand condition (i.e. leaf-off 
canopy conditions) can favoured the stem reconstruction using our stepwise approach. Our approach better 
work in veteran trees, this is a significant outcome, because this approach is focused on trees with a greater 
timber volume.   
In conclusion, the thesis provides two stepwise approaches using ALS and TLS data for timber assortment 
assessment and some suggestions for the better use of LiDAR data. As for example, about the ALS, the 
challenge associated with the vertical stratification of strata was overcome using a stratification approach, 
the challenge with the relationship between point density and forest structure was overcome in a 
heterogeneous forest stand, better conditions of the forest canopy condition (i.e. leaf-on) and the occlusion 
from large to small trees can facilitate the timber assortment assessment; about the TLS, the challenges 
were mainly associated with the stem form, irregularity of bark, microhabitats, however, these aspects can 
be used for discarding the trees, based on the assumption that tree with a greater productive aptitude holds 
a lesser ecological aptitudes. It is worth highlighting that the paper review offers a pool of approaches for 
analysing ALS data, and as many suggestions for increasing the accuracy of the ALS survey.  
More efforts should be concentred on connecting biodiversity and climate change indicators with inventory 
LiDAR campaign, because forests play a vital role in life and human wellbeing now and in future. In the 
light of the above, the finding of this thesis proved to be useful to accurately valorise the timber resource 
taking into account the conservative management of forests. The implementation of the approaches for 
analysing the LiDAR data can give many social and environmental benefits, as well as can facilitate the 
selection of trees to be fell and cut, making timber use more efficient. Further studies to increase the 
knowledge of the versatility of our approaches can be useful to deeper understand the potential under 
different forest stand conditions. The implementation of these methods on the rainforest and tropical forest 
can be beneficial to valorise the trees with high ecological aptitudes. 
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