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Temporal datasets provide records of the evolution and dependencies of ran-

dom variables over time. Recently, there has been an increase in the application

of temporal datasets in areas such as intrusion detection, fraud detection, activity

recognition, etc. Interesting temporal outliers are anomalies that incorporate im-

portant or new information and contradict the causal probabilistic relationship in

the domain knowledge described in a temporal dataset. One main objective of Data

Mining is to discover interesting temporal anomalous patterns. Moreover, provide

contextualization of the interestingness of the reported outliers. Most of the methods

used to discover temporal outliers are reduction-based, losing valuable information

in the discovery process. On the other hand, there are scarce studies about the in-

terestingness of reported temporal outliers. Even less, to provide contextualization

of the anomaly causes.

This thesis deals with the problem of discovering these interesting temporal out-

liers in datasets. We present probabilistic association rules as measures to discover

interesting temporal outliers based on domain knowledge that has been learned
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and represented by a Dynamic Bayesian Network. Dynamic Bayesian networks are

models to represent complex stochastic processes, to establish probabilistic depen-

dencies in the feature space over time, and to capture the background knowledge in

a causal relationship between features. The two probabilistic association rules:

i) low support & high confidence, and ii) high support & low confidence, were used

to identify scenarios where the discrepancies between prior and conditional prob-

abilities are significant. Our novel approach coalesces both methods. It allows us

to discover interesting temporal outliers and provide contextualization in the form

of relational subspaces, under the proposed methodology called “Domain Specific

Temporal Anomalous Patterns.”

The evaluation of the proposed methodology was done on synthetic and real tempo-

ral datasets on the unsupervised and supervised scenario. The experimental results

on temporal datasets show that our approach can detect genuine temporal outliers

and provide relational subspaces to explain the probable causes of the reported out-

liers, with reasonable efficiency measures. In this way, our technique becomes a state

of the art method to discover interesting temporal outliers in temporal datasets. De-

signed to provide contextual information of the reported outliers; this, in turn, can

be used to improve our understanding of the domain knowledge and the underlying

temporal data generating process.
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Los datos temporales proporcionan registros de la evolución y las dependencias

de variables aleatorias a lo largo del tiempo. Recientemente, ha habido un incre-

mento en la aplicación de los datos temporales en disciplinas como la detección de

intrusos, la detección de fraudes, el reconocimiento de actividades, etc. Los valores

at́ıpicos temporales interesantes son anomaĺıas que incorporan información impor-

tante o nueva, y contradicen la relación causal probabiĺıstica en el conocimiento de

una disciplina descrito en un conjunto de datos temporales. Uno de los principales

objetivos en la Mineŕıa de Datos es descubrir patrones anómalos temporales intere-

santes; además, proveer una contextualización de lo interesante del valor at́ıpico

reportado. Muchos de los métodos para descubrir valores at́ıpicos temporales están

basados en la reducción de dimensionalidad, perdiendo aśı información importante

en el proceso de descubrimiento. Por otro lado, hay muy pocos estudios acerca de lo

interesante de un valor at́ıpico temporal reportado, mucho menos que proporcionen

contextualización de la causa de la anomaĺıa.

Esta tesis trata el problema de descubrir valores at́ıpicos temporales interesantes en
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un conjunto de datos. Presentamos reglas de asociación probabiĺısticas como medi-

das para descubrir valores at́ıpicos temporales interesantes basados en el conocimiento

del dominio que ha sido aprendido y representado por una Red Bayesiana Dinámica.

Las redes Bayesianas dinámicas son modelos para representar procesos estocásticos

complejos, para establecer dependencias probabiĺısticas en el espacio de variables a

lo largo del tiempo y para capturar el conocimiento previo en una relación causal

entre variables aleatorias. Las dos reglas de asociación probabiĺıstica definidas como:

i) soporte bajo & confianza alta y ii) soporte alto & confianza baja, fueron usadas

para identificar escenarios donde las discrepancias entre las probabilidades previas

y condicionales son significativas. Nuestro enfoque novedoso une ambos métodos y

nos permite descubrir valores at́ıpicos temporales interesantes y proporcionan una

contextualización en forma de sub-espacios relacionales, bajo la metodoloǵıa pro-

puesta llamada “Patrones At́ıpicos Temporales en un Dominio Espećıfico.”

La evaluación de la metodoloǵıa propuesta fue realiza en datos temporales simula-

dos y reales, en escenarios no supervisados y supervisados. Los resultados experi-

mentales en datos temporales muestran que nuestro enfoque puede detectar valores

at́ıpicos temporales genuinos y proporcionar sub-espacios relacionales para explicar

las causas probables de los valores at́ıpicos temporales reportados, con buenas me-

didas de eficiencia. De esta manera, nuestra técnica se convierte en un método de

vanguardia para descubrir valores at́ıpicos temporales interesantes en conjuntos de

datos temporales y diseñado para proporcionar información contextual de valores

at́ıpicos reportados, esto a su vez, puede usarse para mejorar nuestra comprensión

del conocimiento de la disciplina y el proceso subyacente que genera de datos tem-

porales.
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Chapter 1 INTRODUCTION

1.1 Specifying Outliers

Outliers are data items that are substantially dissimilar from rest. Hawkins in

[3] provided a highly accepted definition as: “An outlier is an observation that de-

viates so much from other observations as to arouse suspicion that it was generated

by a different mechanism.” Outliers are also referred to as anomalies.

Outlier detection is an outstanding research line that has been examined in differ-

ent sciences areas, such as in finance to detect fraud on a credit card, in biology

to monitor a disease outbreak, and in cybersecurity to avoid intrusions over a net-

work or internet system, etc., [4]. Outliers frequently correspond to patterns in a

dataset that do not behave as expected for a given domain [1, 5]. Frequently, outlier

detection is a step in data pre-processing, which is essential to extract valid conclu-

sions from data, since dirty data can lead to erroneous conclusions. This scenario is

usually called “Garbage in - Garbage out.” When outliers are identified by any sta-

tistical method or algorithm, they usually are removed from the database regardless

of the useful information that these enclose. Currently, outlier detection is a broad

field, designed to discover anomalies, and explain the interestingness of the reported

outliers.

The concept of interestingness in Data Mining is related to select and rank patterns

corresponding to the concern of the researcher over a specific context. Interesting

or meaningful outliers are those which make sense within a specific context [6]. As

an illustration of the concept of interestingness, consider the hypothetical situation

described in Figure 1–1. This figure represents the dependency relation between the

1
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income and expenditure of a group of people. The figure shows clusters of people

who are similar or share the same interests. The groups C2, C3, C4, C5, and C6 are

reported outliers based on distances, dissimilarities, and densities; but contextual-

izing the information of data, it is evident that there exists a substantial degree of

dependency on income and expenditure (generally, expenditure depends directly on

the income of a person). Thus, interesting or meaningful “true outliers” are those

who belong to clusters C5 and C6 within a specific domain knowledge, because these

groups break the natural structure of dependence between the income and expen-

diture, e.g., is “absurd that a group of people expends more than its incomes, in a

real-life scenario.”

Figure 1–1: Hypothetical scatterplot corresponding to bivariate data relating to the in-
come and expenditure of a group of people.

Analyzing the hypothetical example previously discussed, a challenging problem

arises: To overcome the discrepancy among anomalies as isolated points “which are

far away from their neighbors” and interesting anomalies “which make sense in a
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context.” This problem is subjective due to the particular interest of the researcher,

and it needs an adequate method or algorithm to tackle the problem. A particu-

lar solution to this problem was presented by Babbar in [6]. The author used a

Bayesian Network model in a static “non-temporal” scenario in order to understand

and contextualize the information of a dataset, then, using two probabilistic associ-

ation rules to uncover interesting outliers.

Non-temporal outlier detection methods, including Bayesian Networks, deal with

multidimensional datasets, in which, records are treated independently of one an-

other. These techniques are inadequate for temporal data, due to their natural

dependency over the past of each variable and between variables. In this thesis, we

address the temporal aspect of discovering interesting outliers, based strongly on

the seminal work of Babbar.

1.2 Specifying Temporal Outliers

Temporal outlier detection methods are different from non-temporal because

these do not neglect the dependency between and within variables over time. Tem-

poral data has a degree of autocorrelation within each variable, and crosscorrelation

between variables in different time lags. Thus, the methods for treating temporal

data have to account for the dependency structure. In temporal outlier detection,

time is an important issue, in the way to discover anomalous patterns, since it pro-

vides a natural contextualization of the problem. For example, the monthly sales

of a specific toy, depends intrinsically on the month of the year (time), “usually in

December, the sales of a toy are high.”

The temporal anomalous patterns can occur on datasets in different ways; we can

describe them as:

• Exceptional changes in a timestamp. Figure 1–2 shows a seasonal time series

referred to monthly temperature measures. A temperature of 35◦F is usually
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typical in winter (at time t1), but unacceptable in summer (at time t2), then this

will be a temporal outlier candidate. The same value of the variable temperature

can be considered an outlier in the different timestamp, confirming that time is a

natural contextual variable.

Figure 1–2: Exceptional change in a seasonal time series temperature.

• Unexpected subsequences in a time interval. Figure 1–3 illustrates a data from

an electrocardiogram. The highlighted subsequence denotes a rare part of the

electrocardiogram series, the low values of this part represents a rare subsequence

along the time, technically it describes an “Atrial Premature Contraction.” An

important observation arises when each minimum value by itself does not repre-

sent a temporal outlier, but together as a subsequence will represent a temporal

anomalous pattern.

• Unusual structural changes over time. For example, changes over the mean or vari-

ance of the stochastic process, usually known as a non-stationary process, occurs

when trends, seasons or cycles on the data exist.
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Figure 1–3: Unexpected sequences corresponding to an anomaly contraction in electro-
cardiogram.

These three temporal anomalous patterns described above are principal sources to

uncover any temporal outlier [7]. In specific applications, such as flight safety, intru-

sion detection, fraud detection, healthcare, financial market, environmental science,

etc., datasets are obtained with temporal structures, i.e, Discrete sequences, Dis-

crete series, or Time Series. Therefore, the necessity to explore and develop new

efficient methods to detect interesting temporal anomalies arises.

Outlier detection for temporal data is an ongoing research area. It presents different

formulations due to the nature of the data, and as far as we know, it is not possible

to unify the formulations for generalizing a method to detect temporal anomalies.

The nature of temporal data is broad. There are different temporal sequences ac-

cording to the nature of the processes, e.g., discrete sequences where the value of

data is an integer number, or a time series where data is a real number. Another



6

classification arises on the dimensionality of temporal series, i.e., univariate or mul-

tivariate datasets. Outliers on temporal sequences are described in different ways

due to multiple formulations. For example, a point into a sequence can be an outlier,

a subsequence inside a sequence can be an outlier, or even the complete sequence

can be an outlier corresponding to a set of normal sequences. Thus, the different

formulations about temporal outliers are dissimilar from each other and are treated

in different ways [8]. Since there are a limited number of methods for temporal

outlier detection, the existing research has largely focused on designing measures

based on reduction, distance or similarity to identify temporal outliers. However,

not much effort has been invested in the concept of interestingness of outliers and

the contextualization of outliers.

The occurrence of outliers in dataset is usually unknown. Sometimes an outlier is

discovered as a flawed value, associated with a poor quality condition of data, then

no relevant information can be captured. However, it is possible that discovered

outliers will correspond to a correct instance. In this scenario, a detailed study of

the existence of the outlier will represent a piece of new relevant information. In that

sense, uncovering outliers is important for two reasons, first to enhance the quality

of the dataset, and second to produce additional knowledge about the dataset. After

uncovering outliers, instead of removing it from the dataset, appropriate analysis is

necessary to explain and contextualize why such outliers emerge in the dataset and

what are its possible sources.

Describing the quality of the detected outliers is a challenging task due to their

subjective nature. In fact, to decide if an outlier is just white noise or incorporates

new useful information is difficult. Into the last scenario, one way to decide if the

outliers keep useful information is by incorporating the domain-specific knowledge

[4]. Thus, the approach to establish the interestingness about the uncovered outliers

will be through the well-established knowledge of a specific domain.
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This thesis presents probabilistic interestingness measures to detect interesting tem-

poral anomalies with foundations on domain specific knowledge described through a

dynamic Bayesian network. The explanation of the uncovered outliers is provided.

The proposed research extends the approach of Babbar in [9], to a dynamic scenario.

1.3 Dynamic Bayesian Networks

The dynamic Bayesian network model, DBN for short, represents a specific class

of a probabilistic graphical model that relates probabilistic dependencies between

random variables over time. Technically, a DBN model represents a set of stochastic

processes, their properties, and relationships with the objectives to perform smooth-

ing, filtering, or forecasting. The purpose of applying a DBN model to a dataset is to

determine the dynamical model structure, estimate its parameters with an adequate

method of estimation, and perform efficient inference. Dynamic Bayesian network

models are the expansion of Bayesian network models for a temporal dataset. One

characteristic of a dynamic Bayesian network is that it allows us to describe the

domain knowledge inherent on the dataset. Another quality of a dynamic Bayesian

network is to formulate probabilistic queries, commonly known as reasoning under

uncertainty across time. Sometimes the dynamic Bayesian network model is called

causality probabilistic network, due to the fact that it can handle interactions of

subjective and objective information.

The dynamic Bayesian network model uses the graph structure representation to

model interactions between and within variables over time, where the random vari-

ables represent the nodes of the graph, and the probabilistic causal dependency is

represented by directed arrows between the nodes [10]. For example, Figure 1–4

graphically depicts a dynamic Bayesian network model, a graphical representation

of a DBN model structure related to a complex stochastic process expanded on

three-time instants. Within each timestamp, nodes represent random variables over
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a static BN model, associated with black arrows describing the static relationship

among them. On the other hand, blue arrows represent the dependency within each

variable called “autocorrelation,” and red arrows represent the relationship between

variables called “crosscorrelation.” Note that the static structure is repeated on

different timestamps.

Figure 1–4: A dynamic Bayesian network that represents a complex stochastic process.
Vertices depict features and arrows describe relationships.

In general, there are three crucial issues related to modeling a DBN on datasets.

The first issue is to estimate the network topology e.g., estimate the tree structure

in each timestamp, and the unrolled graph on different timestamps, as illustrated in

Figure 1–4. The second issue refers to parameter learning, also known as the esti-

mation process of the prior and conditional probability tables for discrete variables,

or the estimation of distribution parameters for continuous variables. Finally, the

inference step of a DBN model that computes probability queries of interest given

some evidence, which frequently are marginal probabilities or posterior probabilities

of the variables of interest [11].
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The most relevant characteristic of a DBN model is its capability to encode direc-

tional probabilistic associations which can represent “cause-effect” relationships. It

is conventional wisdom to consider that a good representation of a DBN model is

a causal model in a domain knowledge, where causality flows in the direction of

arrows on the graph [12]. The skill of a DBN model to describe the knowledge

over a scheme of directed association is a significant motivation to select them as

a framework; so that we can analyze observations that disrupt causal affinity, and

perceptively recognize them as inherent real outliers which are reasonable within a

specific context.

Based on domain knowledge captured by a BN model, Babbar in [13] indicates that

“The interesting anomalies are those data points which violate the causal semantic

captured via a Bayesian network.” Thus, a modern definition about outliers arises

as “Unlikely events under the current favored theory of the domain.” This definition

is suitably extended to a DBN model in this work. In summary, we take advantage

of the work done in a static scenario to use it in a dynamic scenario.

1.4 Probabilistic Association Rules

With the aim of discovering interesting temporal anomalies, and provide ex-

plainability, it is necessary to describe the concept of probabilistic association rules

(PAR), as a complementary method of the dynamic Bayesian network model.

In Data Mining, an association rule is defined as a conditional statement between

random variables in a dataset. With the aim to uncover patterns, association rules

are used to find the relationships between variables. In [14], a representative example

is explained, “{milk, eggs} −→ {bread}” which represent a conditional statement,

this will be declared as an association rule, the interpretation of this rule will be

“when milk and eggs are purchased, then, bread is highly likely to be purchased.”

Since an association rule will represent a frequent pattern in a dataset, measuring
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the interestingness of those patterns will be necessary. The measures of interesting-

ness have the objective to select and rank patterns in concordance with the aim of

the researcher. The concept of interestingness is based on some fundamental criteria

in Data Mining literature. Into the categorization of interestingness measures, the

objective measures of interestingness are based on probability theory; thus, using

those measures will identify objectively interesting patterns in datasets. The associ-

ation rules that use objective interestingness measures are known as “probabilistic

association rules.” The importance of probabilistic association rules is that it can

discover patterns in datasets, maintainig the uncertainty as a relevant characteristic

in the discovery process. The two most used objective interestingness measures are

support and confidence. The support measures the proportion that satisfies the rule;

the confidence measures the reliability of the rule. Nevertheless, due to the subjec-

tive nature of interestingness, there is not an optimal measure to uncover interesting

patterns [15]. Instead, we will try to reach a certain degree of interestingness and

objectiveness with those measures.

Since a dynamic Bayesian network model allows a declarative relationship between

parents and children under uncertainty, the probabilistic association rules can natu-

rally be represented inside the model. In this context, two probabilistic association

rules are used to find events that disrupt the declarative relationship over the DBN

model. Note that the proposed methodology tries to uncover interesting temporal

anomalies, which by definition, are infrequent instances. In contrast with associa-

tion rules that aim to discover frequent patterns, thus the proposed rules are defined

as opposite to the “causality effect” in the network. The rules are defined as:

• “Low Support & High Confidence.” This rule will provide patterns with low prob-

able parent nodes, but contradictory, with high impact on the children nodes.

• “High Support & Low Confidence.” This rule will provide patterns with high

probable parent nodes, but contradictory, with low impact on the children nodes.
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The rules will uncover domain-specific temporal anomalous patterns based on the

dynamic Bayesian network model learned from temporal data.

1.5 Research Contribution

In this research work, we propose a dynamic mechanism to discover interesting

temporal outliers on datasets, established on dynamic Bayesian network models and

probabilistic association rules for discrete sequences and time series data. The main

contributions of our research are:

• Learn the dynamic Bayesian network structure and parameters from temporal

datasets, with a state of the art and efficient algorithm. This step is crucial to

efficiently represent the domain-specific knowledge intrinsic in the dataset, then

describe the probabilistic causal dependence between random variables.

• Discover interesting temporal outliers and provide a contextualization of the re-

ported outliers on datasets. By the methodology and algorithm called “Domain

Specific Temporal Anomalous Patterns”, that incorporates the learned dynamic

Bayesian network and the two probabilistic association rules.

R1: “low support & high confidence.”

R2: “high support & low confidence.”

This methodology provides a dynamical extension to discover interesting temporal

outliers and a contextualization of the interestingness of the reported outliers, as

relational subspaces composed by parents and children nodes on a specific times-

tamp.

The whole dynamical procedure to detect interesting temporal outliers and

provide explainability is summarized as follows. First, a dynamic Bayesian network
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model is learned from data, leaving us to describe both temporal structure rela-

tionships, and temporal degrees of belief. Second, the two probabilistic association

rules will provide relational subspaces over a specific timestamp. In those subspaces,

discrepancies over probabilistic dependencies will exist. Finally, these patterns are

chosen as candidates to be interesting temporal anomalous patterns provided by

their contextualization. The experimentation is performed on synthetic and real

datasets. The results show that our methodology is capable of discovering interest-

ing temporal outliers and providing contextual information.

1.6 Thesis Organization

This research work can be structured as follows: In Chapter 2, we introduce

relevant works in the research of outlier detection methods, describing their qualities,

advantages, and disadvantages. In Chapter 3, we present foundations about dynamic

Bayesian network models, their representation, learning, and inference, as well as

probabilistic association rules. In Chapter 4, we present a novel methodology that

coalesces the dynamic Bayesian network model and the two probabilistic association

rules to discover interesting temporal outliers, and to provide contextualization of

the reported outliers on discrete sequences and time series. In Chapter 5, we present

experimental results and discussion of the proposed methodology. In Chapter 6, we

provide conclusions and a future research line. Finally, in Chapter 7, the ethical

considerations are detailed.



Chapter 2 BACKGROUND

Outlier analysis is an important task in Data Mining and Machine Learning.

Some complete surveys about anomaly detection are discussed in [1, 5, 16]. Fur-

thermore, dedicated textbooks provide extensive treatments of outliers [3, 4]. This

chapter describes the literature review related to this research work. First, we treat

different aspects of the outlier detection problem. After that, we review interesing

mining outliers from a static point of view. Then, we explain the current research

work on temporal outlier detection. To finish this chapter, an explanation about the

related research topic on this thesis, its strengths, and differences with our proposi-

tion are presented.

2.1 Aspects of Outlier Detection

An outlier is a pattern in the dataset that disagrees with the natural behavior

into a specific context. Outliers are also known as anomalies; mining them is a

challenging problem, due to several factors:

• The difficulty of defining the standard region where the non-anomaly data exist

is a demanding task since the frontier among normal and outliers is usually not

decisive.

• The lack of labeled data in order to train and validate a method to uncover outliers.

• The lack of a precise definition of the outlier through different domain knowledge.

• The challenge of reporting the quality of the uncovered outlier to determine if it is

noise or if it incorporates unique, useful information.

13
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The reasons described above make discovering outliers a difficult task. The existing

techniques, methods, and algorithms solve a specific formulation within a limited

context, thus there is not a unique method to consolidate the outlier detection prob-

lem. On the other hand, the formulation of the discovery process of anomalies is

inferred by different characteristics such as the type of the dataset, the accessibility

to the data labels, the type of detected outliers, the output of the reported outlier,

and evaluation measures of outlier detection techniques. To describe them, we have

the following:

Nature of Data: A data instance is characterized using a set of random variables

in a dataset. The random variables could be categorical or numerical. Datasets

may be univariate or multivariate; in the multivariate case, all variables might be

categorical, all numerical, or in a more realistic case, a mixture of them. Another

issue on the nature of data instances is the relationship between each other; for

example, temporal, longitudinal or spacial data. Specifically, the temporal case,

treats ordered and dependent data e.g., time series data.

Data Labels: Labels of a data instance indicate if the observation is normal or

an outlier1 . Typically, getting labeled anomalous data instances is more difficult

than normal ones. Based on the condition of labels, if they are available or not,

the methods can perform in the following modes:

• Supervised Mode: The labels are available for both normal data and outliers

in a dataset.

• Semi-Supervised Mode: The labels are available only for normal data, but not

for anomalies in a dataset.

1 known as classes or categories of normal or anomalies instances
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• Unsupervised Mode: The labels are not available in the dataset. In this mode,

the assumption that anomalies are unusual in comparison with normal items

is established.

Type of Outliers: The methods for discovering outliers are classified in agreement

to Figure 2–1.

Figure 2–1: Taxonomy about the existing methods of outlier detection [1].

Most research work on outlier detection is related to point outlier detection. In

this scenario, an instance is treated as unusual with respect to other data items if

it is far away from clusters of normal observations. The nature of classification-

based approaches relies on labeled training data, thus requiring knowledge of both

normal and anomaly classes is essential. Hence, the classification of each instance

or events as a usual observation or an outlier is based on the trained classifier.

The main characteristics of the nearest neighbor techniques in order to discover

outliers is that these techniques not require previous knowledge about the specific

application domain. Clustering based approaches usually do not need data labels,

so they can operate in unsupervised mode without additional knowledge about the
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domain. Statistical parametric approaches require knowledge about prior distri-

bution against non-parametric approaches. Other techniques usually require some

knowledge about assumptions and measures to mine anomalies.

Contextual anomaly detection approach may uncover outliers in some specific con-

text, but not otherwise. The context can be defined by the researcher or user in

subjective mode, or the context can be learned from data. These contextual tech-

niques usually use the concept of domain knowledge before the discovering process.

Collective anomaly detection approach analyzes data which is related to each other.

The techniques need knowledge about the dependency structure of data and do-

main.

The rest of the techniques are relatively new in literature. There is a significant

challenge to analyze online data, due to the dynamic change of common behavior,

thus, the problem of updating the model to rename normal behavior of instances

arises. In distributed outlier detection, since the complete process is on different

branches, the high-performance computing algorithms are desired in order to per-

form the methods in each chunk, then merge the results on a complete integration

process to report outliers.

Output of Outlier Detection: The outlier detection methods usually report scores

or labels for each data instances in order to categorize an outlier as an anomaly or

normal:

• Scores : The techniques provide a score to measure the degree of “Outlier-

ness” to each test instance. It allows the output to be ranked but requires a

threshold parameter to classify the relevant outliers.

• Labels : The techniques provide a data “Label” (normal or outlier) to each

instance.
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Evaluation of the Uncovered Outliers: The outlier detection methods are eval-

uated through their efficiency. This must be measured and is usually an exhaustive

task since the outliers are defined as rare instances in nature. There are standard

measures for evaluating them.

• Precision: Is the ratio among the number of properly discovered outliers and

the announced outliers through the model.

• Recall : Also known as detection rate, is a ratio among the right discovered

outliers and the complete count of outliers.

• False alarm rate: Defined as the ratio among total count of records in a usual

class that is erroneously declared as outliers and all data instances inside of

a normal class.

• ROC Curve: ROC stands for receiver operating characteristic. ROC curve is

a compensation among recall and false alarm rate.

• AUC-ROC : Is the area under the curve ROC.

Different research work on point outlier detection has largely focused on devel-

oping and designing techniques to mine anomalies in databases. This research work

uses dynamic version of the Bayesian network models.

The Bayesian network model belongs to classification-based techniques, thus it needs

a labeled training data. However, these models can also perform in unsupervised

mode in order to discover anomalies in datasets. In this case, the joint probability

distribution for each record is ranked according to their likelihood, thus outliers re-

ceive a low likelihood [17].

A general approach of Bayesian networks on point outlier detection when data has

different categories, is used by classical näıve Bayes network model, in order to cal-

culate posterior probabilities of getting specific class, given evidence or test data. In

this scheme, the Bayesian network model is trained in each class, then the trained
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network is employed to check new data, and the class with the greatest posterior

probability will be selected as the inferred class [4].

The Bayesian network model based on “Audit Data Analysis and Mining” (ADAM)

was used to detect anomalies in the problem of detect intrusion on a network. This

algorithm uses association rule methods to obtain anomalous events in the network

datasets and to perform a classification in order to decide if an anomalous event is

usual or an outlier [18].

In [19], a Bayesian network model was proposed to discover outliers locally in sensor

data referred to the wireless scenario. It describes spatial and temporal correlations

between the sensor nodes previously observed, and also describes conditional de-

pendence between the observations of sensor variables. A Bayesian network model

is trained in each node in order to detect anomalies based on the conduct of the

neighboring nodes and its own measure. An instance is declared an outlier if it

belongs to outside of the scope related to the predicted class.

There are many alternatives for the general approach. A relevant specific vari-

ation is to use the Bayesian network models to describe background knowledge, and

use it to discover outliers in a specific domain knowledge scenario.

In [20], the researcher applied a Bayesian network model to describe the domain

knowledge about a disease outbreak, and used it to detect anomalies in this context.

The set of variables was separated into two user-specified classes: the variables that

are associated to trends form were classified into an environmental class, and the rest

of the variables constituted the indicator set. The structure of the Bayesian network

model was estimated with the purpose of approximating relations only among nodes

that belongs to the environmental set from the variables defined on the indicator

set. The author implemented the WSARE 3.0 algorithm to contrast new data and

the stated distribution described on the Bayesian network model. The objective was
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to develop a guideline to uncover anomalous patterns.

Background knowledge described by a Bayesian network model was proposed in

[9, 21], to take advantage of the cause-effect concept studied deeply in the scenario

of Bayesian networks, as well as the concept of degree of correlation. In this con-

text, causation was described on feature space and was captured by the existing

algorithms on Bayesian scenario. The process of discovering outliers relied on ap-

plying association rules chosen from a probabilistic point of view to discover real

outliers or anomalies that possessed novel information. The author defined real out-

liers as those which disrupted the causality effect.

In [22], the author proposes an anomaly detection method applying the Bayesian

network model. The anomalies presented low likelihood events in the joint probabil-

ity distribution, then the mined anomalies were evaluated to determine if they are

“genuine” or “trivial” anomalies supported by user threshold.

In summary, the Bayesian network model approach is related to employing domain-

specific knowledge to take advantage of uncovering true outliers. The theoretical

foundations about conditional independence, and joint probability distribution en-

hance the method to provide a suitable explanation on why the discovered data

points can be considered significant outliers.

2.2 Mining Interesting Outliers

Outliers are peculiar patterns in datasets; these patterns do not follow a nor-

mal conventional behavior in a domain. The novel theory about interestingness

measures in Data Mining is oriented to ranking the discovered patterns according

to the user objectives over a domain. Intuitively, interestingness is a concept of

real-life importance, thus interestingness measures provide patterns which make a

sense over a specific problem. In outlier detection, it is necessary to incorporate the

concept of interestingness measures in order to uncover anomalies which are “real”
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or “meaningful,” in a specific context.

Discovering interesting outliers is a challenging problem, since there is a sub-

jective intrinsic logic inherent on the researcher or for the subject matter specialist

[23]. For example, a real life application in health surveillance is to discover a pa-

tient that has a specific disease without previous signals of symptoms, as opposed to

discovering patients as an outlier that has advanced age. In the same line, when an

instance is declared like an outlier, to ensure robustness and validity, a description

and explanation are required to determine the specific contextualization in which

it will be declared as a true outlier. Thus, this explanation will provide better un-

derstanding and interpretation of the dataset. In the health surveillance example

described before, recognizing and identifying the real causes of the disease are rele-

vant to provide adequate and timely medical treatment, inside the medical context.

The existing literature in Data Mining is very limited to describe and explain out-

liers in a specific context [24]. The utility of outlier detection methods shows that,

in many application areas, the interesting outliers are more difficult to understand

and harder to find due to their nature. Many outlier detection methods described

in Data Mining literature focus on detecting simple outliers that, in essence, are

outliers which that not embody important information.

Interesting outliers can be uncovered and characterized by employing the domain

specific knowledge. A well described domain specific knowledge of the dataset is a

critical step to elaborate and develop an appropriate model in order to avoid over-

fitting or underfitting [4]. On the same way, the domain specific knowledge, also

known as background knowledge, can be described by using the popular probabilis-

tic graphical models, specifically the Bayesian network model or its dynamic version.

As a consequence, the Bayesian network models coupled with suitable interesting-

ness measures will establish a strong mechanism to uncover and at the same time
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provide a contextual explanation about the interesting outliers.

The objective of interestingness measures is to discover patterns and rank them

depending on the objectives of the researchers. Technically, the interestingness mea-

sures have been developed with the aim of evaluating the performance of association

rules, therefore, specifically, interestingness measures will evaluate the performance

of probabilistic versions of association rules.

The association rule is a conditional statement: A ⇒ B, A is the antecedent, B is

the consequence, and both are disjoint sets of items. Suppose that D is the dataset,

the association rule A⇒ B stands for D with the following properties, D has support

s, and D possesses a confidence c. The support and confidence are interestingness

measures recommended specifically for association rules. Interestingness measures

for association rules, based on probability are objective in nature [14], since these

achieve many of the properties to determine whether or not a pattern is declared

interesting. Given an association rule: A ⇒ B, the two most important inter-

estingness measures based on the probability are: the support described as prior

probability P (A), and confidence described as conditional probability P (B|A).

In [6], the authors suggested using two robust probabilistic association rules

which are originated in the domain causal knowledge described and learned by a

Bayesian network. In order to uncover anomalous patterns for the described do-

main, the authors obtained patterns which fulfill either of the two rules:

R1:= “low support and high confidence.”

R2:= “high support and low confidence.”

In essence, if any instance holds with either one R1 or R2 constrained over the pro-

posed model, the patterns can be declared as a potential candidates to be the inter-

esting outliers using threshold parameters on support and confidence. The principal
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additional issue is that they provide a problem contextualization. Such contextual-

ization contributes a novel property into the knowledge discovery. In this line, the

Bayesian network models can efficiently represent efficiently the causal-effect inter-

action among random variables through the concept of conditional independence

with a suitable network selection. The probabilistic relationship provides a measure

of uncertainty or a degree of belief between random variables or events. Thus, this

quantitative measure calculates the differences in the belief which act as a sensitivity

measure.

In [23], authors described the interestingness measures, and the main issues when us-

ing them as measures of sensitivity over the Bayesian network models. The authors

developed an iterative algorithm in order to use many interestingness measures re-

sulting in performance improvements and sensitivity enhancements on the Bayesian

network models, thus, providing a granular method of discovering the interesting

outliers.

In summary, the problem of outlier detection, and even more, mining interesting

outliers in datasets, becomes a challenging task. Especially, in datasets where there

probabilistic relations between random variables or causal-effects among them exist,

as in the case of temporal data. Temporal datasets have qualities of data depen-

dency; this dependency can be quantified in a probabilistic or causal manner, but it

is important not to neglect this characteristic in the process of knowledge discovery.

Temporal datasets have a wide range of varieties, e.g., longitudinal datasets, time

series datasets, or discrete sequences datasets. In temporal datasets, the patterns

will be discovered in a different manner, taking the consideration of dependency

between the instances and variables as an important issue to define and uncover

anomalies.
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2.3 Temporal Outlier Detection

Designing data mining methods for temporal datasets represents a challenging

process because of the dynamic essence of the data. This particular issue, plus

the complex development of patterns, represents a difficult problem in the knowl-

edge discovery process. The temporal aspect of mining patterns arises in different

scenarios, such as sensors, medical, network, financial, etc. In such applications,

the time continuity is an important issue for providing a specific order over the

dataset. Thus, identifying temporal patterns over temporal continuity suggests that

temporal patterns are not likely to change suddenly unless there exist anomalous

factors in the dynamical processes [25]. In general, the temporal datasets have the

characteristic that two consecutive values are usually close. This issue is due to

the dependency structure and order of temporal datasets; thus, the pattern is not

expected to change abruptly. In particular, time series datasets are a specific type

of temporal data where the stochastic process is related to a continuous random

variable, which we will study in this research.

A time series is a sequence of values in chronological order. Technically, a time series

is a realization of a stochastic process. The set S = {xi[1], xi[2], ..., xi[t], ..., xi[T ]}

represents a time series, where the index t = 1, 2, ..., T , represents time, and the

subindex i = 1, 2, ..., n describe each variable. Thus, xi[t] is a data instance i de-

fined in the instant time t. When n = 1, the time series S will represent univariate

time series; for n > 1, the time series S will be multivariate or multidimensional.

Anciently, in order to discover temporal outliers in a multivariate scenario, an equal

dimension of each series was needed, i.e., an equal number of observations over time,

and same time granularity (spaced time) over temporal data. Currently, data min-

ing methods to detect outliers on sparse or irregular temporal multivariate data are

challenging novel research topics.

The discrete sequences are another important class of temporal data that we treat
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in this research work. These discrete sequences are characterized as a sequence of

events, which are represented by tags if they belong to an alphabet composed of

symbols. In formal language theory, the symbols form an alphabet; for example, the

events in sequences related to the DNA molecule are symbols that form the alphabet

{A,C,G, T}. In the same line, there exist other more complex alphabets, in which

complex discrete sequences will compound the dynamic process.

Note that discrete sequences can occur in different timestamps, not necessarily

equally spaced as in time series. However, both time series and discrete sequences

can be related through a discretization process, in order to conduct a proper anal-

ysis. The discretization of a continuous real-valued time series can be transformed

into qualitative (categorical) data or discrete sequence. With these important class

of temporal data, we describe different methods of outlier detection.

The lack of continuity concerning recent neighbors or its past, defines a tempo-

ral outlier [4]. To describe an example, the sudden changes in temporal data will

represent a temporal anomaly. Another example is if the different appearance of a

subsequence into the whole temporal sequence will represent a temporal pattern out-

lier. Temporal outlier detection examines anomalous patterns across time. It uses

the concept of temporal continuity in order to mine unusual changes (an abrupt

change in the trends), unusual sequences, and unusual temporal patterns (struc-

tural changes). Different aspects of temporal data type should be considered, for

example, if the detection analysis is performed on time series, discrete sequences,

data stream, space-temporal data, etc. If the analysis is proposed on univariate or

multivariate datasets, it is another crucial aspect. The present research is about

multidimensional scenario, e.i., given a multivariate time series or discrete sequence,

find point outliers or sequences (collective) outliers. On the other hand, an essential

strategy to mine temporal outliers is founded in the concept of windows, in this

process, the temporal series will be fragmented in chunks or windows with a set



25

length, the analysis strategy is to treat each window as a unit or item.

In temporal outlier detection, new challenges arise, for example, for diverse applica-

tions, it may often not be possible to use a standard model, since, there exist ample

alternatives to the problem statements. This reason is essential to use the dynamic

Bayesian network models due to the flexibility to represent temporal data in an

equidistant order (time series) or in different timestamps (discrete sequences). Due

to the complex dynamic nature of the data, modeling this scenario is a challeng-

ing task. The dynamic Bayesian network model can handle this complex dynamic

data since it supports categorical or numerical data. Also, a dynamic Bayesian net-

work model has the property to update its parameters (probabilities) in different

timestamps [10]. As mentioned in the case of non-temporal, judging the quality of

the reported outlier is a challenging problem. Determining if an outlier is noise or

embodies new information, and contextualizing the problem is vital. In this line,

the use of background knowledge is required. One way of ascertaining the quality

of the reported outlier is by using dynamic Bayesian network models. The DBN

probabilistically describes background knowledge and is capable of contextualizing

the information in temporal datasets.

As far as we know, regarding temporal outlier detection in the scenario described

above, some relevant research work on temporal outlier detection can be found in

[8]. Here, the author develops an anomaly detection techniques based on semi-

supervised mode related to data sequences, precisely time series data in a univariate

and multivariate scenario. The main approach is related on windows methods, in

the scenario when data are symbolic sequences, applying an alternative model of

finite-state automaton in order to set scores. Mainly, low scores on absent states in

that the outliers sequences represent more plausible to include those states, com-

pared with normal sequences. In the scenario of anomaly detection on univariate
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time series, the adoption of methods of support vector regression coupled with near-

est neighbor density to discover outliers. The method is called WINCSVM and

improves the performance of the discovery process compared to related methods.

As a consequence, anomaly detection on multivariate time series is performed by

employing subspace monitoring for converting a multivariate stochastic process to

univariate by encapsulating the intrinsic dynamic nature of the data. Finally they

applied the previous WINCSVM adaptation.

In [26], independent component analysis (ICA) is proposed with the aim of finding

point anomalies. Those anomalies are also known as novelties in multivariate time

series datasets. The approach is to project the multivariate time series to an inde-

pendent component, where each component is treated as univariate one, reporting

signals of the anomalies, to assess the outlier signal compared with threshold pa-

rameters, to discover outliers. The ICA model considers the linear combination of

independent components and independent noise in the observed signals; a supple-

mentary assumption is that the noise possesses a high kurtosis measure.

One statistical method to project a multidimensional time series on interesting pro-

jections is the well-defined projection pursuit. In [27], the authors adapted the pro-

jection pursuit techniques and implemented algorithms in order to discover anoma-

lies on time series in a multi-dimensional scenario. The method selects an interesting

direction projection to uncover the outliers in this right projection. The procedure

for selecting interesting direction projection was based on the kurtosis coefficient,

using numerical optimization to find the coefficient. Finally, to discover anomalies,

the authors used the mentioned interesting direction projection.

In the scenario of discovering anomalies based on graphs, the concept of kernel ma-

trix is exploited in [28], In this work, authors use an extension method known as

kernel matrix alignment. This novel method can characterize the relations between

variables that describe each time series. They developed an efficient algorithm based
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on the traversal random walk inside the graph that was derived for the extension

method kernel matrix alignment to uncover temporal anomalies in the multivariate

scenario. The algorithm can detect point and subsequence anomalies.

Many research works on detecting temporal outliers in a multivariate scenario

are reduction based techniques. In summary, these methods take a multivariate time

series or discrete multivariate sequence as an input. These are transformed into a

univariate one. Finally, an algorithm is used to detect anomalies in a univariate

scenario. This approach, naturally, loses essential information in the discovery pro-

cess. Thus new techniques will be needed in order to capture meaningful outliers

and provide a contextualization of them.

2.4 Related Work to the Proposed Problem

Into the scenario of uncovering significant temporal anomalies and providing

the explainability of them, background knowledge is a central issue in the process of

discovery. A way of describing the background knowledge or domain-specific knowl-

edge is through the dynamic Bayesian network model. This particular problem

statement has not been solved in the current literature yet. However, some research

works tried to solve the problem, but the complexity is a bottleneck problem. Some

of the most related to our proposal is described as follows:

In [29], a couple of algorithms to uncover outliers in sensor data based on the

dynamic Bayesian network model were presented. The first strategy used a hidden

Markov model (a specific class of a DBN model). In this, the author used a Kalman

filter model in order to gradually get the posterior distribution, related to hidden

state and observed state, in the case when new measurements exist and are accessi-

ble. Using the posterior distribution from the observed state, the Bayesian credible
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intervals for the latest measurements were generated. Thus, if some measurements

do not belong to a Bayesian credible interval, then it is declared an outlier. The

second strategy is to apply the well-known 2-layer dynamic Bayesian network model.

The hidden state of this model is related to the label normal or an outlier in each

measurement derived from the sensor. The maximum a posteriori is computed,

related to the hidden states that indicate the status of the measurement, to charac-

terize if a measurement is normal or an outlier.

In [30], a procedure based on a classification model was performed to uncover out-

liers on “large video sequences of the laser superficial heat treatment process of steel

cylinders.” Before the discovery process, they selected some relevant features based

on clustering algorithms. The outlier discovery process (in situ) applies dynamic

Bayesian network algorithms for two purposes. First, characterization of the tem-

poral process. Second, using a some of the structure learning algorithms to represent

a usual process. The process of uncovering anomaly sequences of consecutive frames

is performed based on the anomalies scores, obtained from the log-likelihood of se-

quences over the dynamic Bayesian network model.

In [31], authors proposed an algorithm for a contextual type of pilot error detection

applying dynamic Bayesian networks as a framework tool in order to learn the model

and discover temporal outlier instances. The dynamic Bayesian network topology

was described and learned based on the actions of the pilots and the data records

from sensor instruments into the flight scenario. The anomalies appeared in both

processes: classification and prediction. The outliers usually pose a wave effect con-

sequence over the next items on the identical timestamp and further timestamps.

Consequently, if the outlier is discovered on a specific instant, its effect will extend

to the connected cases on the identical time instant and also on the next instants.

Eventually, the effect will disappear in the short term and the instances will return

to normal. Thus, the longer the outlier happens, the extended and higher the effect



29

will be.

In [11], two particular cases of the dynamic Bayesian network models to detect

anomalies in flight datasets were proposed. The first DBN model, hidden semi

Markov, was used to represent discrete sequences. The authors developed and pre-

sented an efficient algorithm based on a spectral scenario in order to perform the

inference process in this model. The second DNB model was a vector autoregressive

to represent time series on the multidimensional scenario. A similarity neighborhood

graph was constructed to uncover outliers and determine the event of anomalies. Fi-

nally, the author combined semi Markov and autoregressive models for representing

multidimensional mixed time series. The model proposed was the semi Markov

switching vector autoregressive. In order to discover outliers in a flight scenario, a

prediction-based model was used, measuring dissimilarities on prediction and obser-

vation.

The research works aforementioned, use the dynamic Bayesian network model as

the central tool to describe domain knowledge. However, those previous works do not

learn the structure from datasets. Instead, the dynamic structure was fixed based on

subjective expertise. Thus, previous research works uncover anomalies in temporal

datasets, but they do not uncover meaningful or real outliers. Instead, they provide

regular outliers. Finally, another drawback of those methods is that they do not

provide contextualization of the reported outliers. Thus, we propose to enhance the

use of dynamic Bayesian network models by providing them probabilistic association

rules to discover and contextualize interesting temporal outliers.



Chapter 3 DYNAMIC BAYESIAN NETWORK MODEL
AND PROBABILISTIC ASSOCIATION RULES

This chapter describes concepts of the dynamic Bayesian network model, in

order to mine interesting anomalous patterns of temporal data. Given a temporal

dataset about the specific stochastic process, for example, a protein sequencing to

determine the amino acid subsequence or the whole protein, a stock market to make

efficient forecasting, etc. Depending on the interest of the researcher, there exists a

general need to develop a model to represent the temporal data in order to describe

its properties, discover patterns, mining rules, or perform forecasting. One of the

most suitable models is established on statistical and probability theoretical models,

which are usually created by random processes through datasets. The mentioned

models describe the dependency structure among random variables in an efficient

way. Moreover, these models can handle many parameters related to the research

problem and can efficiently describe the evolution of the features over time. In

this scenario, to efficiently describe relationships between variables, the Bayesian

network model is frequently used. This model is a particular case of probabilistic

graphical models to characterize dependencies among variables in a static scenario.

The dynamic extension is introduced as a temporal ingredient. The extension is

provided to the static Bayesian network models, thus arises the well-studied tempo-

ral model known as the dynamic Bayesian network model [12].

The organization of this chapter is as follows: First, since the dynamic Bayesian

network model is defined as a dynamic version of the Bayesian network model,

we present necessary concepts on the Bayesian network models. Second, essential

30
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definitions of the dynamic Bayesian network model: representation, learning, and

inference are presented. Third, we provide some useful concepts about probabilistic

association rules to merge it with the dynamic Bayesian network model to uncover

and contextualize interesting temporal outliers. Finally, we describe a discretization

method for time series.

3.1 A Bayesian Network as Graphical Guideline

The Bayesian network model represents one particular case of the well-known

probabilistic graphical models. The Bayesian network model, also defined as a be-

lief network, combines the theory of probability and graph theory to substantially

describe problems in which there exist issues like uncertainty and dependency. Into

the Bayesian network model, the graph topology has the capability of encoding the

domain-specific knowledge, through the directed relations between the nodes which

represent random variables attached with arrows beginning in a node known as par-

ent and finishing in other node known as a child.

In the Bayesian network model, the probabilistic relationship among random vari-

ables is usually described as a “cause-effect” framework [32]. Two components are

required to establish a Bayesian network model, the qualitative or structure compo-

nent, and the quantitative or parameter component. The qualitative part is related

to find variables to built up the structure of the graph topology; the graph is formed

by relating two random variables as long as they have a probabilistic relation. Note

that the Bayesian network model will be a directed acyclic graph since it has a

unidirectional relation as a cause-effect relation. The quantitative part is related to

estimate parameters of the distribution of a given random variable. The parameters

are probabilities in a discrete case, and statistical parameters in a continuous case;

in both cases, the parameters represent the degree of relationship between variables

that are connected by an arrow in the Bayesian network model.
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The Bayesian Network models are related to the subjectiveness of the research prob-

lem. The Bayes theorem is used to update the parameters using previous or new

information. The Bayesian network model can differentiate the causal and evidential

scenarios in the learning and inference process. These described qualities from the

Bayesian network model were established on foundations in statistics, probability,

and information theory. Nowadays, it is widely used and applied in Data Mining,

Machine Learning, Artificial Intelligence, and Data Science [32].

3.1.1 Definitions and Properties

A Bayesian network model is a couple of the form (G,Θ), where each compo-

nent are described as:

• G = (V,E ) is a Directed Acyclic Graph (DAG), where, V represent a collec-

tion of nodes (also known as graph vertices), to represents random variables, thus

V = X = {X1, X2, . . . , Xn}. On the other hand, E represent the collection of

edges (oriented arcs); each edge characterize the probabilistic dependencies among

random variables, thus E = {(Xi, Xj)|Xi, Xj ∈ V }, where each arrow (Xi, Xj) is

defined as: If Xi then Xj, or Xi → Xj, or the characterization: Xi “is parent of ”

Xj, or Xj “is child of ” Xi.

• Θ represents the set of parameters from the Bayesian network model, that provides

the quantification of the graph model. In the discrete case, the set of parameters

Θ = θ = {P (X1|Pa(X1)), . . . , P (Xn|Pa(Xn))} represents the set of conditional

probability distributions (CPD), where, P (Xi|Pa(Xi)) is a conditional probability

distribution from a child Xi given its parents Pa(Xi); it is also called conditional

probability table (CPT). In the continuous case, the set of parameters Θ will repre-

sent the set of parameters that characterize the distribution of a random variable.

If a random variable has a Gaussian distribution with parameters µ and σ in the
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network model, then, the set Θ will have the elements µ and σ.

There are fundamental concepts in Statistics and Graph theory to understand

the Bayesian network model; we describe it in the following.

Conditional independence assumption or directed local Markov assumption

is defined as for each random variable Xi, it is probabilistically independent of its

Non-descendants, given its parents, e.i.

∀Xi ∈ X, Xi ⊥ NonDes(Xi)|Pa(Xi). (3.1)

When the nodes of the graph are ordered topologically (Parents before Children),

then a specific node is declared as a descendant of a node if the former is positioned

after the latter in the graph structure.

The chain rule property in a Bayesian network model states that the joint

probability distribution (JPD), will be factorized due to the assumption 3.1, e.i.

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Pa(Xi)) (3.2)

The factorization provides enormous simplification on the computation of the JPD

since a node on a graph depends uniquely on its progenitors.

Information flows in the Bayesian network model occurs when there is new

evidence from some random variables on the model, and someone is interested in

compute some posterior probability referred to another subset of features given

available evidence. Thus, the information in a Bayesian network can drift in three

different kinds according to the way of connections of the nodes in the graph struc-

ture.
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• Serial connections are often addressed as causal chains, e.g., X1 → X2 → X3.

Here, if there is no evidence, the information flows in both directions through the

nodes in this connection. A particular situation happens when the middle node

is available; then, the information flows between the extreme nodes may not be

available in this scenario.

• Diverging connections have a common cause, e.g., X2 ← X1 → X3. Here, like in

previous connection, the information flows despite there is not any evidence.

• Converging connection or v-structure. This connection is characterized by a single

destination node of two or many nodes described as parents, e.g., X1 → X3 ← X2.

The main difference between previous connections is that here, the information

cannot flow among variables if there is not any evidence about the destination

node.

d-separation in the Bayesian network model: Given X and Y nodes on a

graph, If there exists another node Z on any path among X and Y (could be

undirected path) over the graph, thus it says that “X and Y are d-separated, such

that Z satisfy” either:

• Node Z is known, and it is located on a serial or diverging connection on the graph.

• Node Z is located on a converging connection on the graph, and neither Z nor any

descendants of Z have got evidence.

Figure 3–1 graphically depicts these two cases. The d-separation concept represents

the properties of probabilistic conditional independence in the topology graph. The

probabilistic conditional independence is intuitively defined on the graph theory as:

If the random variables (nodes) X and Y are d-separated by another random variable

(node) Z, then X and Y are conditionally independent given Z [12].
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Figure 3–1: d-separation cases.
Figure 3–2: Markov blanket.

The Markov blanket in the Bayesian network model. Given a node X in the

graph, the Markov blanket of X is a collection of parents, children, and all nodes

that share a common child of X. The Markov blanket describes a subset of nodes

such that completely d-separated a node of other nodes into the graph; thus, given

a Markov blanket from a node, this node is independent of other nodes in a con-

ditional way [12]. Figure 3–2 shows a hypothetical Bayesian network graph and a

Markov blanket of the node cancer in dashed lines.

Independence map: The independency map (I-map) represents the agree-

ment among graphical separation which is defined as the lacking of an arc between

nodes, and probabilistic independence which describes the degree of association be-

tween random variables [32]. The combination of graph and probability theories will

represent a DAG with probability distribution P, as an I-map. The probabilistic

conditional independence in P will represent the concept of d-separation in the I-

map graph, e.i., for every X, Y, and Z subsets of nodes of DAG. If X and Y are

d-separated given Z, then X and Y are conditionally independent given Z in the

distribution P. In simple words, the network topology characterizes relationships

between variables in a conditional independence manner. As a consequence, an al-

ternative definition states that a Bayesian network model is a minimal I-map, in

which none any arrow can be deleted from the graph structure without invalidating

the I-map property [12].
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The described properties provide foundations to perform modeling in the Bayesian

network from a dataset. Thus, the Bayesian network model represents a complete

framework with the aim of learning and inference processes. On the other hand,

there are different types of Bayesian network models, depending on the type of ran-

dom variables. Thus, we can describe it as follow:

Types of the Bayesian network models: Due to the nature of variables (discrete,

continuous, mixture), and the type of distributions that they follow (Multinomial,

Gaussian, etc.). The Bayesian network model can be categorized as discrete, con-

tinuous, or hybrids. An important type of Bayesian network model is the discrete

Bayesian network, where the conditional probability distributions for all variables

are multinomials. Another important class is the Gaussian Bayesian network, where

the conditional probability distributions of all variables are linear Gaussian [12]. The

hybrid Bayesian network model where any discrete variable cannot have continuous

Gaussian parents are called linear conditional Gaussian networks (LCG).

The main objectives of the Bayesian network model from datasets are to perform

learning and inference process; in the following, we describe both:

Learning and Inference in a Bayesian network model: Learning is de process

to fit a Bayesian network model from data, it is performed in two different steps,

structure and parameter learning [33]. The inference is the process of answering

probabilistic questions in a Bayesian network model when there is a piece of new ev-

idence. The relevant research work inside the learning process on Bayesian network

models are described in [34]. This work describes contemporary research works,

and some references state that the process of estimate the topology of a Bayesian

network model has an “NP-hard computational complexity.”
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3.1.2 Structure Learning

The process of discovering the topology of the graph for a Bayesian network

model is called structure learning. The principal objective of estimate the graph

skeleton for a Bayesian network model represents the probabilistic conditional inde-

pendence between random variables in a graphical dependency through the directed

arrows. By definition, the graph structure of a Bayesian network model must be a

minimal I-map in order to get the dependency graph topology of the dataset, or at

least the graph structure must be close to the actual probability distribution of the

nodes. The procedures to identify the graph structure are categorized in a couple

of categories. The first is related to discovering the graph structure of the network

by computing independence tests in a restricted mode; these independence tests are

performed over the nodes. The second is based on the searching process. Search

an adequate graph structure over the set of all possible networks composed by the

predefined nodes; this process mainly uses scores to optimize a specific criterion and

also uses many search algorithms, like the heuristic greedy search. As a natural

consequence of both; the hybrids methods can be considered, then we can consider

three categories of algorithms for structure learning of a Bayesian network model

[35]. In the following, we describe the three mentioned categories.

Constraint-Based Algorithms: The constraints are usually conditional indepen-

dence statements. The regular tests to determine the conditional independence

between nodes are applied in a real scenario and are theoretical tests from a sta-

tistical perspective based on evidence. The disadvantages with this approach are:

First, this approach is hard to discover reliable the properties related to probabilis-

tic conditional independence. Second, it is difficult to find the network topology

structure optimally, even more, the algorithms are susceptible to tests of indepen-

dence between nodes, in the presence of failures. If we got wrong answers on the
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procedure of the independence test, then, the network construction procedure will

be wrong [36].

The two first algorithms that we describe are SGS and PC algorithms. The former,

establish if there exists an arrow among a couple of nodes, through of independence

test restricted overall subsets composed by other nodes. The latter, makes tests

based on independencies among all pairs of variables conditioned over other subsets

composed by other variables ordered from little to big. The other algorithms (GS,

IAMB, fast-IAMB, inter-IAMB) are based on the Markov blankets; first, determine

the blanket of each node, simplifying the search over the blanket to determine the

existence of edges [35]. As a remark; usually, this approach line has been a favorite

selection of researchers with a focus on estimate “causal models” from datasets.

Score-Based Algorithms: These procedures consist in to provide a score to each

Bayesian network structure candidate; this score measures the goodness of fit of

the Bayesian network model that best describes the dataset. The main disadvan-

tage of this class of algorithms is to compute the scores for all candidates graph

structures. To alleviate this problem is necessary to design greedy algorithms

to possible find suboptimal graph structures for candidates [36]. In general, the

score-based algorithms usually are characterized by statistical inference concepts,

like the well-known minimum description length, or the score based on Bayesian

statistics. The score that frequently is computed is the BIC-score, BIC stands for

Bayesian information criterion; this score is compound by the likelihood of the

graph structure, and the penalty term to control the complexity of the network

model. BIC-score will be derived from posterior probability relating to the network

structure.

Consider a dataset D, assuming that the network topology G is a random variable

with prior probability distribution P (G), then by Bayes theorem, we obtain the
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posterior probability as:

P (G|D) =
P (D|G)P (G)

P (D)
(3.3)

In order to find the BIC-score, we only need to maximize the numerator of the

fraction because the denominator does not depend on G. To get the likelihood

of dataset given a network topology P (D|G), in Bayesian statistical scenario, the

usual way is to averages summarizing on the set of all feasible parameters, pon-

derating each parameter through its posterior probability distribution:

P (D|G) =

∫
P (D|G,Θ)P (Θ|G)dΘ (3.4)

A difficult stage is to compute the previous integral if the prior probability does not

conjugate with likelihood. To avoid full calculation of the integral in 3.4, examine

its asymptotic behavior is essential. If the sample is large in the limit, it is said

that “the posterior probability is robust to the selection of the prior probability”

[33]. Schwarz showed that the asymptotic estimation for appropriate (does not

give zero probability of any event) priors.

logP (D|G) = logP (D|G, Θ̂)− d

2
logN (3.5)

Where the estimator Θ̂ represents the estimation of parameters on G in order to

optimize the likelihood distribution from dataset, d is defined as the dimension of

G (number of parameters). Finally, the penalty term is −d
2

logN , this penalty act

as a trade-off measure between overfitting and underfitting; specifically, it neglects

complex structures; thus, it avoids that the model will fall in overfitting.

In order to provide a ranking of all possible networks structure candidates, the

BIC-score applies 3.5 without parameter priors.

Some algorithms of score-based are hill-climbing and K2. Those techniques usu-

ally seek in the space of possible structures greedily, beginning with a null network,
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then adding, deleting, or reversing an arrow one at a time until reaching conver-

gence on the score or is not possible to improve the score [35]. Finally, the main

drawback of the score-based approach is that, may have to search in an extensive

set of possible graph structures, making it computationally infeasible.

Hybrid or local search algorithms: This class of algorithms merges the con-

straint and score algorithms to balance its disadvantages. In literature, the two

best-known algorithms are the Sparse Candidate and the Max-Min Hill-Climbing.

Both procedures perform in two phases: restriction and maximization. The first

phase restricts the possible set of candidates for the role of parents en the node

Xi, which made smaller from the complete set X to a subset of nodes C, in which

the behavior showed the relation with Xi. In the second phase, given a score

function, the maximization process optimizes these function, according to imposed

constraints C. In the Sparse Candidate algorithm, the maximization process will be

done iteratively in two steps until reaching an optimal network score, under some

parameters threshold previously specified [37]. In the Max-Min Hill-Climbing al-

gorithm, the maximization process performs these two steps only once by using a

subroutine called “Max-Min Parents and Children.” This subroutine will be per-

formed to estimate the nominee sets C into the heuristic model, in order to find

the optimal network topology [38].

3.1.3 Parameter Learning

After the topology structure of a Bayesian network model was estimated, then,

the task now is learning (estimate) the parameters of the network. By the chain

rule property described in 3.1.1, learning parameters are greatly simplified, since

the joint probability distribution can be factorized by local distributions, that in a

real situation usually has a few numbers of parameters. In literature, there exist a



41

couple of perspectives to the process of learning the parameters: The well-known

Maximum Likelihood Estimation (MLE) for short, and the Bayesian estimation pro-

cess through maximum a posteriori (MAP) for short; or full Bayesian scenarios. The

problem setting is:

Let B = (G,Θ) be a discrete a Bayesian network model with known structure;

we have n random variables, X1, X2, . . . , Xn; each variable, let us say Xi with ri

states; the number of configurations of Pa(Xi) equal to qi, then the parameters to

be estimated are:

θijk = P (Xi = j|Pa(Xi) = k), i = 1, . . . , n; j = 1, . . . , ri; k = 1, . . . , qi (3.6)

The parameter vector θ = {θijk|i = 1, . . . , n; j = 1, . . . , ri; k = 1, . . . , qi}.

The vector of parameters for P (Xi|Pa(Xi)), θi.. = {θijk| j = 1, . . . , ri; k = 1, . . . , qi}.

For vector of parameters P (Xi|Pa(Xi) = k), θi.k = {θijk| j = 1, . . . , ri}.

Note that
∑
θijk = 1; ∀i, k. Let D be the complete dataset with m rows and n

columns, each row, usually called a data instance; the log-likelihood is:

l(θ|D) = logL(θ|D) = logP (D|θ) = log
m∏
l=1

P (Dl|θ) =
m∑
l=1

logP (Dl|θ) (3.7)

Consider the function I(i, j, k : Dl) = 1 if Xi = j, Pa(Xi) = k in Dl, this represents

the characteristic function of instance Dl; and mijk =
∑

l I(i, j, k : Dl), then, making

some calculus we obtain.

l(θ|D) =
m∑
l=1

logP (Dl|θ) =
∑
i,k

∑
j

mijk log θijk (3.8)

We are trying to compute:

arg max
θ
l(θ|D) = arg max

θijk

∑
i,k

∑
j

mijk log θijk (3.9)



42

Optimizing equation 3.9, we can obtain the MLE for θijk, as:

θ∗ijk =
mijk∑
jmijk

(3.10)

In words, the MLE for θijk = P (Xi = j|Pa(Xi) = k) is:

θ∗ijk =
number of cases where Xi = j and Pa(Xi) = k

number of cases where Pa(Xi) = k

In a Bayesian estimation, we view θ as a vector of random variables with prior

probability distribution P (θ), then by Bayes theorem, P (θ|D) ∝ P (θ)L(θ|D). From

3.8, we obtain the posterior probability.

P (θ|D) ∝ P (θ)
∏
i,k

∏
j

θ
mijk

ijk (3.11)

Using a conjugate Dirichlet prior, for P (θi.k), e.i. θi.k ∼ Dir(αi0k, αi1k, . . . , αirik),

where αijk are the hyperparameters. Thus, P (θi.k) ∝
∏

j θ
αijk−1

ijk , neglecting some

constants. Then, we have the product of Dirichlet distributions as prior.

P (θ) =
∏
i,k

∏
j

θ
αijk−1

ijk (3.12)

Replacing 3.12 in 3.11, the posterior distribution is a product of Dirichlet distribu-

tions.

P (θ|D) ∝
∏
i,k

∏
j

θ
mijk+αijk−1

ijk (3.13)

The posterior predictive for a new data instance Dm+1 is:

P (Dm+1|D) =
∏
i

P (Xi|Pa(Xi), D) (3.14)

Further, we have

P (Xi = j|Pa(Xi) = k,D) =

∫
P (Xi = j|Pa(Xi) = k, θijk)P (θijk|D)dθijk

=

∫
θijkP (θijk|D)dθijk (3.15)
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From 3.13, we have P (θi.k|D) ∝
∏

j θ
mijk+αijk−1

ijk , then 3.15 turns in Bayesian esti-

mation closed-form:.

P (Xi = j|Pa(Xi) = k,D) =
mijk + αijk∑
j(mijk + αijk)

(3.16)

Thus, 3.16 is the Bayesian maximum a posteriori (MAP) estimate of θ, such that

θ∗ = arg maxθ P (θ|D).

Estimating parameters when D is uncompleted, makes MLE no longer a vi-

able option. Deal with missing data, specifically the missing at random (MAR);

an assumption is required; the assumption states that, if in the data are features

with MAR, the lost values of the features depend on the rest of features which are

observed totally on data. In this line, the standard approach for estimating param-

eters is the well-known Expectation-maximization (EM) algorithm; this procedure

supposes that the missing values will be in the MAR scenario. The EM procedure

begins with an elementary estimation θ0, then, in each loop t, in the expectation

step fills gaps in the dataset based on θt. In the maximization step, after complete

gaps, the estimation process is required in order to recompute parameters to obtain

θt+1. The EM procedure continues in a loop mode until to reach convergence to a

maximum. The EM algorithm is usually fast, especially at the first few iterations.

Moreover,if there exists a larger amount of missing data, the convergence will reach

slower. Finally, there is no guarantee that the EM algorithm converges to the global

optimum (It might be stacked at local maxima) [39].

3.1.4 Inference Process

The inference process in the Bayesian network model often comes after the

learning procedure. The inference process is related to inferring a collection of vari-

ables in a particular state, given the evidence about the state of other variables.
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The Probabilistic reasoning in a Bayesian network model is the process of answers

probabilistic queries based on new evidence [32]. In Bayesian statistics, the process

of answers probabilistic queries, given new evidence, focuses on computing posterior

probabilities. Thus, initially on the learned Bayesian network model, the beliefs rep-

resents initial probabilities or prior probabilities, before any evidence in the model;

then, after new information about some variables is available, the updates beliefs rep-

resent the posterior probabilities. This procedure of updating the beliefs is defined

as probability propagation. As discussed in 3.1.1, information flows in a Bayesian

network model is not restricted to the defined orientation of the arrows between

nodes; instead, the inference process can consider to reasoning in both bottom-top

or top-bottom fashion [32].

Given a learned Bayesian network model: B = (G,Θ), and given new evidence

E defined as an instantiation of one or more variables in the model, e.i.

E = {Xi1 = e1, Xi2 = e2, . . . , Xik = ek}, i1, . . . , ik ∈ {1, . . . , n} (3.17)

we describe the behavior of the posterior probability distribution given previous

information, by.

P (X|E) = P (X|E,B) (3.18)

Where X = {X1, X2, . . . , Xn}. If we are interested in some subset of X, say Q =

{Xj1 , Xj2 , . . . , Xjl} with j1, . . . , il ∈ {1, . . . , n} and assuming that Q and E are

disjoint, then the conditional probability query is:

P (Q|E) = P (Q|E,B) (3.19)

This probability represents the “Marginal posterior probability distribution of Q” as

say in [12], thus:

P (Q|E,B) =

∫
P (X|E,B)d(X \Q) (3.20)
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The other type of queries is relating to computing the “configuration q∗” from

elements on Q, such that, it has the maximum a posteriori queries, e.i.

MAP (Q|E,B) = q∗ = argmax
q

P (Q = q|E,B) (3.21)

The maximum a posteriori queries and the conditional probability distributions es-

tablish a formal way to describe the inference process on the Bayesian network

model. These inference mechanisms can be addressed in three different types of

reasoning according to [32]:

Causal: This reasoning is when there exist recent information about causes. In

agreement with the orientation of arcs between nodes described on the structure

of the network, the probabilities in the effects can be updated.

Diagnostic: This reasoning is when performing diagnostic, e.i., reasoning from the

effects in the direction to the possible causes. Technically, this reasoning is against

the direction of the learned graph structure.

Intercausal: This reasoning way is when there exist causes with mutual nature, e.i.,

the causes with the same effect; this scenario usually describes the v-structures on

the graph topology.

The inference process on a “large” Bayesian network model is a computationally-

intensive problem. The worst-case scenario happens when; if there is an increment

in the number of random variables, then the inference process problem will increase

in an exponential computational complexity. Thus, the inference process in the

Bayesian network models is an “NP-hard problem,” as stated in [12]. However, in

real-world applications, the inference process on Bayesian network models can effi-

ciently be tackled by employing exact inference techniques over a “fair” number of

variables. Moreover, we can use approximate inference techniques to handle more
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variables in this process. In the following, we describe the two kinds of inference

process algorithms.

Exact inference algorithms: In order to compute the exact values of P (Q|E,B),

this class of algorithms merges iteratively local computations of Bayes rule. Never-

theless, the use of this class of algorithms is limited to a network with a few nodes

or trees or multitrees structure. The two more popular algorithms in this inference

scenario are the well-known variable elimination and junction trees.

• The variable elimination algorithm eliminates one by one of those variables,

which are unnecessary for the probability query. The procedure uses the graph

structure directly, defining the optimal sequence of operations on the local

distributions and using dynamic programming design to save intermediate

outcomes to avoid redundant calculations.

• The junction trees algorithm, transform the Bayesian network model into a

junction tree, this transformation cluster the original nodes to reduce de net-

work in a tree; the algorithm uses “Pearl’s Message-Passing” procedure to

compute probability queries [12].

Approximate inference algorithms: These algorithms simulate many samples

from the learned Bayesian network model, then compute the conditional proba-

bilities of interest, given the evidence, ponderating the samples that posses the

evidence E and the query Q = q. Technically, the samples are extracted randomly

and are usually known as particles in Machine Learning; for this reason, the al-

gorithms based on samples are called particle filters. Algorithms were developed

for random samplings, such as rejection sampling or importance sampling. The
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sampling-based methods are diverse, from the simple process of simulate inde-

pendent samples from local distribution to more sophisticated sampling known as

Markov Chain Monte Carlo (MCMC) [12].

The inference process in a causal way will be described over the Bayesian network

models. The causal interpretation of a probability query given some evidence is

related to the direction of the arrows over the graph structure. Thus, the arrows

can characterize the relationship in a casual way, rather than a probabilistic way.

The queries in inference can be treated as probabilities of some causes of an event

given its effects, or probabilities of some effects of an event given its causes. This

process is known as Causal Inference [32].

The Bayesian network models cannot describe dependencies between variables

in a temporal structure. The temporal characteristic of a problem arises when some

feature evolution along time, and it is related to its past, even more, is related to

other features over time. In many domains as medicine, finance, industry, etc., the

temporal characteristic is relevant; thus, incorporate it on the process of modeling

will be necessary. The Bayesian network model is extended to the temporal version

to develop a precise probabilistic graphical model dynamically. This model is called

a dynamic Bayesian network, which is described in the following.

3.2 Dynamic Bayesian Networks as Temporal Model

The dynamic Bayesian network model is a versatile probabilistic graphical

model to characterize the stochastic processes compactly using a directed graph-

ical model. The dynamic Bayesian network model (DBN) is a generalization of the

well-known state-space model (SSM). Furthermore, the DBN model is a general

case of the Hidden Markov Model (HMM), the Kalman Filter Model (KFM), and

the Vector Autoregressive model (VAR). The DBN models allow to represent in a
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compact factored form the underlying distribution of a temporal dataset; this repre-

sentation is possible by using arbitrary probability distribution and applying a wide

range of algorithms to perform learning and inference.

As in the static version, the objective of the learning process on a dynamic Bayesian

network model is to discover a precise probabilistic graphical model of the underly-

ing temporal distribution of the finite random sample dataset [40]. The versatility of

the dynamic Bayesian network model allows representing a temporal dataset with

a model graph structure along the time. The main reason for using a dynamic

Bayesian network model is the capability to capture domain dynamic knowledge

and reasoning under uncertainty supported on probability and graph theories. Note

that the word “dynamic” represents in this context, modeling a “dynamic system,”

not changing the graph topology over time [10]. In the dynamic Bayesian network

model, every random variable is described by many nodes along time; this situation

does not happen in a static Bayesian network model. In the following, we present

preliminary concepts to express a broad structure of the dynamic Bayesian network

model.

Preliminaries: The dynamic Bayesian network model concerns probabilistic dis-

tributions of random attributes over time. Thus, usually, the terminology is to use

capital letters “X, Y, Z” for random variables, lower case letters “x, y, z” to repre-

sent the instantiations from random variables, respectively. The set of random vari-

ables is usually described boldly as “X,Y,Z,” consequently the instantiations ver-

sion as “x,y, z,” respectively. The standard notation on a dynamic Bayesian net-

work model is X[t] = {X1[t], . . . , Xn[t]} to represent the realization of a stochastic

process of the dynamic model in a sorted way. P (X[t]) = P (X1[t], . . . , Xn[t]) rep-

resent the joint probability distribution of the processes; thus, a dynamic Bayesian

network model characterizes the probabilistic distribution of X[t]. Finally, the time
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is represented by t.

3.2.1 Dynamic Representation

A dynamic Bayesian network model extends the representation of a Bayesian

network model described in 3.1.1 to propose a model for a temporal framework, as-

suming that changes occur between discrete-time slices. Consider the set of random

variables X[t] = {X1[t], X2[t], . . . , Xn[t]} in which the whole set represent a set of

stochastic processes over time; each random process Xi[t] with i = 1, . . . , n describes

the random variable Xi at instant timestamp t. To represent probabilities about dif-

ferent trajectories of the set of stochastic processes X[t], the random variables and

its distributions over X[0]∪X[1]∪ . . . is needed to know; but, this distribution will

be extremely complex. Assuming that X[t] is defined as a Markovian first-order ;

then, the following property holds the process:

P (X[t+ 1]|X[0], . . . ,X[t]) = P (X[t+ 1]|X[t]) (3.22)

Equation 3.22 can be interpreted as “The probability of the process X at instant

time t+ 1 given all the past, only depends on the immediate past at time instant t”.

Another important assumption is that X[t] must be a stationary process ; this is

defined as P (X[t+ 1]|X[t]) does not depend on t, e.i., the probability distribution of

the process does not change over time. If the previous restrictions hold, the dynamic

Bayesian network model characterizes the joint probability distribution of a set of

random variables and its possible trajectories from the stochastic processes X[t].

The dynamic Bayesian network model that we use in this research can be con-

sidered by two sub-models, as following:
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• An initial Bayesian network model B0, also known as prior model, which defines

the prior distribution P (X[0]), at timestamp t = 0.

• The transition Bayesian network model B→ which defines the transition distribu-

tion P (X[t+ 1]|X[t]) over the variables X[t] ∪X[t+ 1], ∀t.

In the transition network B→, the probability distribution of the stochastic process,

assuming the Markovian property will be:

P (X[t+ 1]|X[t]) =
n∏
i=1

P (Xi[t+ 1]|Pa(Xi[t+ 1])) (3.23)

Where Xi[t + 1] represents the ith node in the graph model at timestamp t + 1;

Pa(Xi[t + 1]) are the parents of Xi[t + 1] in the dynamic Bayesian network model.

The observed version of equation 3.23 will be:

P (x[t+ 1]|x[t]) =
n∏
i=1

P (xi[t+ 1]|Pa(Xi[t+ 1])) (3.24)

Note that the transition network B→ is composed for a couple of time slice. The

random variables defined on the first slice from B→ do not possess conditional pa-

rameters related to these. Instead, the variables in the subsequent slice, usually have

parameters related with them; thus, there exist conditional probability distribution

associated with these variables P (Xi[t+ 1]|Pa(Xi[t+ 1])) with t > 0.

The arcs between consecutive time slices from “left to right” graphically depicts the

causal flow. Inside each timestamp, links will represent instantaneous causalities.

As a final remark, the structure of the initial network B0 may be different from the

intra-slice structure of the transition network B→ [10].

An example of a dynamic Bayesian network is displayed in Figure 3–3; both

Bayesian networks, the initial and transition are displayed in different timestamps.
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Figure 3–3: Initial and transition graphs
characterizing a DBN for X1[t], X2[t], X3[t].

Figure 3–4: The corresponding “unrolled”
network [2].

The initial graph B0 represents a static Bayesian network model at the beginning

of time t = 0. The transition graph B→ represents a transition, Bayesian network

model. note that, in this network there exist a couple of vertical layers at time t and

t + 1; in the initial layer, the arrows begin and finish in the other layer; moreover,

no arrows from the finishing layer must go the beginning layer.

The dynamic Bayesian network model can be “unrolling,” e.i., turning in just one full

network. Figure 3–4 represents a dynamic Bayesian network model as an unrolled

version on the network showed in Figure 3–3, corresponding to the same dynamic

model. Note that in this unrolled version, the time-slice t = 0 corresponds to the

initial graph B0, and the subsequence time-slices corresponds to the transition graph

B→.

Definition: A dynamic Bayesian network model is a pair of the form (B0, B→),

for describe the probability distributions of the stochastic processes defined on a

collection of variables in a different timestamps X[0],X[1], . . . ,X[t], . . . .

The dynamic Bayesian network model (B0, B→) is also known as 2-time slice

Bayesian network model (2TBN). In real-life applications, the temporal dataset is

defined on a finite time interval, e.i., t = 0, 1, . . . , T ; thus, the notation of the
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dynamic Bayesian network model can be defined as unrolling the complete model

structure in different timestamps; On timestamp t = 0, the parent nodes for Xi[0]

are defined as nodes into the initial graph B0. On timestamps t+1, the parent nodes

for Xi[t+1] are in timestamps t or t+1; which correspond to the transition graph B→.

On the other hand, given a dynamic Bayesian network model, and using equa-

tion 3.23, the resulting joint probability distribution from the model, over the process

X[0],X[1], . . . ,X[T ], will be:

P (X[0],X[1], . . . ,X[T ]) = P (X[0])
T−1∏
t=0

P (X[t+ 1]|X[t])

=
T∏
t=0

n∏
i=1

P (Xi[t]|Pa(Xi[t])) (3.25)

Note that, Pa(Xi[0]) represents the ancestors of variable Xi[0] in the initial graph

B0; Pa(Xi[t]) represents the parents of the nodes Xi[t] in the transition graph B→,

these parents usually are located on timestamps t− 1 or t, for all t > 0.

The observed version of equation 3.25 is

P (x[0],x[1], . . . ,x[T ]) = P (x[0])
T−1∏
t=0

P (x[t+ 1]|x[t])

=
T∏
t=0

n∏
i=1

P (xi[t]|Pa(Xi[t])) (3.26)

Both Equations 3.25 and 3.26 characterizes the uncertainty behavior of a dynamic

Bayesian network model over a temporal dataset.

The versatility of the dynamic Bayesian network models allows handle stochas-

tic processes like Z[t] = (U [t], X[t], Y [t]) for characterizing the entrance variable,

unseen variable, and exit variable, respectively. These processes are frequently used

in discrete-valued HMMs and their variants. Otherwise, the dynamic Bayesian net-

work models handle not only first-order Markov property but naturally extends to
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higher orders, e.i., kth order Markov process; thus, the 2TBN model will extend to

a kTBN model [41]. Other forms of the dynamic Bayesian network models allow

non-stationary stochastic processes; in this scenario, the topology of the graph con-

tinuously evolution on time [42]. So far, the dynamic Bayesian network models can

handle continuous-valued hidden nodes like the KFMs. The transition probabilities

are linear Gaussian distributions in KFMs; thus, there exists an injective relation

among zeros on parameter and the nonexistence of arrows in the network. An-

other case of the dynamic Bayesian network model is the continuous-valued model

VAR(p). In the VAR model, the conditional probability distributions are defined as

Gaussian distribution. There exist an injective relation among zeros on the regres-

sion matrices of VAR(p) model and the nonexistence on the arrows defined on the

inter-slice over a dynamic Bayesian network model. Finally, A hybrid DBN model

with discrete and continuous nodes is the switching KFMs [10].

The learning process in a dynamic Bayesian network model from datasets is

challenging; the central issue of learning is the nature of complex stochastic prob-

lem formulation, dynamically. For example, a few algorithms related to structure

learning have been presented, using some concepts on the regular Bayesian networks,

described in section 3.1.2; but, there exist differences between static and dynamic

learning; some issues from dynamic learning scenario are:

• In order to describe the behavior of temporal sequences of large length, the pa-

rameters of the dynamic network model have to be linked between time-slices.

• The parameters related to P (Xi[0]) in the initial graph B0, represents the first state

into a dynamic scenario; thus, those parameters are usually determined separately

from the transition graph B→.
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• In order to estimate the graph structure of a dynamic Bayesian network model,

the complete process must be divided in intra-slice and inter-slice structure con-

nections. A static structure learning algorithms can learn the intra-slice structure

connection for a Bayesian network model. The estimation of inter-slice structure

connection will be identical to the problem of feature selection, because, in times-

tamp t, each variable have to possess its parents in the t− 1 timestamp, assuming

that the intra-slice relationship will be fixed. This assumption represents that dy-

namic structure learning is equivalent to the problem of variable selection.

In the case when the dataset is complete, the application of well-known algorithms

for feature selection can be applied without any restriction; those standard algo-

rithms are forward, backward, or stepwise selection methods. However, if we have

incomplete datasets, the process of structure learning will be computationally a

bottleneck. An efficient alternative is the well-known “Structural EM ” (SEM) al-

gorithm described in [10].

The process of structure learning in the dynamic scenario usually extends

methodologies from a static scenario. The structure learning provides and discovers

conditional independencies on temporal datasets. In the following, we describe the

dynamic structure learning.

3.2.2 Dynamic Structure Learning

Estimate the topology structure of a dynamic Bayesian network model from

a temporal dataset, represent the extension of structure scoring rules for standard

Bayesian network model in both complete and incomplete datasets. We now describe

in detail the extension of the BIC-score structure learning described in equation 3.5,

because this is the most relevant algorithm used in practice [2]. Since a dynamic

Bayesian network model is a pair (B0, B→), the main idea is to learn each Bayesian
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network component by stages:

First, estimate the topology structure of the initial Bayesian network model B0 like

a regular structure learning process described in subsection 3.1.2, using the dataset

defined over X[0].

Second, estimate the topology structure of the transition Bayesian network model

B→, using the dataset defined over X[t] ∪X[t+ 1].

If training data instances D (collection of values x[t]) is available, corresponding

to X[t], consisting of Nseq complete observation sequences, let l be the index for

describing each sequence, e.i. l = 1, . . . , Nseq. The lth sequence has length Nl with

values xl[0], . . . ,xl[Nl]. Such a dataset gives us Nseq cases from initial timestamps;

with this available information, the training process for initial model B0 is possible.

On the other hand, with N =
∑

lNl cases from the transition scenario, it is possible

to train the transition model B→.

In order to introduce some notation, recall the subsection 3.1.3, we need an extension

of equation 3.6. Let us define the parameters for the initial model B0.

θ
(0)
ijk = P (Xi[0] = j|Pa(Xi[0]) = k) (3.27)

Where each variable Xi[0] has ri states; the number of configurations of Pa(Xi[0])

is equal to qi, with i = 1, . . . , n; j = 1, . . . , ri; k = 1, . . . , qi.

Similarly, define parameters for transition model B→.

θ→ijk = P (Xi[t] = j|Pa(Xi[t]) = k) (3.28)

Where t = 1, . . . , T . Let us consider an indicator function I(·; xl) equal 1 if the event

“·” happens over xl, and 0 in other cases. Now we can define sufficient statistics for

initial model B0

N
(0)
ijk =

Nseq∑
l=1

I(Xi[0] = j, Pa(Xi[0]) = k; xl) (3.29)
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and for transition model B→

N→ijk =

Nseq∑
l=1

T∑
t=1

I(Xi[t] = j, Pa(Xi[t]) = k; xl) (3.30)

Assuming that G is a candidate dynamic Bayesian network structure, and using

equation 3.25, then the likelihood function according to the structure of the dynamic

Bayesian network model is:

P (D|G) =
T∏
t=0

n∏
i=1

P (Xi[t]|Pa(Xi[t]))

=
n∏
i=1

P (Xi[0]|Pa(Xi[0]))× · · · × P (Xi[T ]|Pa(Xi[T ]))

=
n∏
i=1

ri∏
j=1

qi∏
k=1

θ
(0)
ijk,× · · · × θ

→
ijk

=
n∏
i=1

ri∏
j=1

qi∏
k=1

(
θ

(0)
ijk

)N(0)
ijk × · · · ×

(
θ→ijk
)N→

ijk

=
n∏
i=1

ri∏
j=1

qi∏
k=1

(
θ

(0)
ijk

)N(0)
ijk ×

n∏
i=1

ri∏
j=1

qi∏
k=1

(
θ→ijk
)N→

ijk (3.31)

Then, the log-likelihood is given by:

l(G|D) =
n∑
i=1

ri∑
j=1

qi∑
k=1

N
(0)
ijk log

(
θ

(0)
ijk

)
+

n∑
i=1

ri∑
j=1

qi∑
k=1

N→ijk log
(
θ→ijk
)

(3.32)

Note that, the log-likelihood decomposes in parts that correspond to initial B0 and

transition B→ models; this facilitates the computation of BIC-score for the dynamic

Bayesian network model, and it is given by:

BIC(G|D) = BIC0 +BIC→ (3.33)

Where

BIC0 =
n∑
i=1

ri∑
j=1

qi∑
k=1

N
(0)
ijk log

(
θ̂

(0)
ijk

)
− d0

2
log(Nseq) (3.34)
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And

BIC→ =
n∑
i=1

ri∑
j=1

qi∑
k=1

N→ijk log
(
θ̂→ijk

)
− d→

2
log(N) (3.35)

Where d0 and d→ correspond the quantities of parameters on B0 and B→, respec-

tively. On the other hand, the penalty for BIC0 depends on Nseq, whereas for BIC→

is on the total number of transitions observed N . The parameters estimate θ̂
(0)
ijk and

θ̂→ijk for B0 and B→ respectively, are those who are optimizing log-likelihood 3.32

from dataset.

BIC-score has two important properties. First, the BIC-score has usually repre-

sented as a summation of terms, these terms will characterize the specific score from

a selection of parents corresponding to specific random variables. A particular dif-

ference (add or remove an arrow) to a family will affect just the term on complete

processes. The second property says that the term corresponding to calculate Xi[t]

given the information of its parent nodes, depends on the total counts (N
(0)
ijk or N→ijk)

corresponding to its relatives. Furthermore, when retaining those total counts, it is

possible to compute more families efficiently.

In order to find both graphs B0 and B→, algorithms based on hill-climbing or greedy

search exploit these two properties and progressively enhance a possible structure

through the optimal way when the arrow can be added, removed, or changed the di-

rection [43]. In the scenario of dynamic Bayesian network modeling, compared with

the Bayesian network, it is usually to impose an additional restriction that consists

of repeat the graph structure over time. This process decreases the search ways for

each point; furthermore, the researching process for optimal graph structure for B0

is frequently independent of the process of search the optimal graph structure for

B→.

The structure learning process of a dynamic Bayesian network model based on scor-

ing function, initially learn B0, then B→; then, the user can choose a search algo-

rithm that improves the learning process. In this line, the evolutionary and genetic
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algorithms based on a greedy search mechanism was proposed in [44] for 2TBN

structure learning, in which the process of learning the structure based on Bayesian

optimization is performed in two phases. The initial phase concerns discovering the

topology efficiently and compute the parameters related to the dynamic Bayesian

network model; the next phase is related to obtain novel groups conformable with

the discovered structure of a dynamic Bayesian network model. Using evolutionary

algorithms but incorporating MCMC sampling methods for 2TBN structure learn-

ing is presented in [45].

An important variant in structure learning is proposed in [46]. It proposes a novel

criterion to score the structure learning process in a dynamic Bayesian network

model. This new criterion is based on the statistical concept of cross-validation;

they state that the score generalizes efficiently compared with the BIC-score; then,

their score is more appropriate than the BIC-score. In terms of efficiency, structure

learning of the transition graph B→ is higher than the initial graph B0; thus, in

[47], the authors propose a “Particle Swarm Optimization” algorithm, to estimate

the graph structure of a dynamic Bayesian network model. To learn the transition

network B→ that duplicate the number vertices of B0, it will use a stepwise con-

cept, adding an arrow in the graph topology, and will reach to improve the learning

structure problem.

The family of hybrid structure learning algorithms for a dynamic Bayesian

network model, have a natural extension of static versions. The algorithms for esti-

mating the topology in Bayesian networks based on a hybrid point of view, usually

are called Local Search Algorithms. This kind of procedure tackles the problem by

identifying the local structure network, then performs an optimization process on

a candidate global model restricted to the available information locally. The pro-

cess of identifying the local structure has the aim to discover the possible set of
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candidates Parent-Children that represents the collection of target variables; One

of this subroutine is the well-known “Max-Min Parent Children” algorithm [35]. A

“state of the art” algorithm of this kind is the “Max-Min Hill-Climbing” algorithm

(MMHC) proposed in [38], it combines local discovery “Max-Min Parent Children”

subroutine and the well-known algorithm of search “Greedy Search” globally. Re-

cently, the authors in [48], expanded an efficient procedure, named as “Dynamic

Max-Min Hill-Climbing” (DMMHC); this procedure extends the well-known algo-

rithm MMHC described in subsection 3.1.2, in order to take in account the dynamic

scenario and used on a dynamic Bayesian network model.

3.2.3 Dynamic Parameter Learning

Methods for learning the parameters on a dynamic Bayesian network model are

natural extensions of the static techniques over the regular Bayesian network models

discussed in subsection 3.1.3; however, there are some slight differences between

static and dynamic networks described above.

We already defined the parameters in equations 3.27 and 3.28 for B0 and B→,

respectively. Let D be the complete dataset, let G the graphical structure of the

dynamic Bayesian network model already learned. Summing up the equation 3.31,

we have the likelihood:

P (D|Θ) =
n∏
i=1

ri∏
j=1

qi∏
k=1

(
θ

(0)
ijk

)N(0)
ijk ×

n∏
i=1

ri∏
j=1

qi∏
k=1

(
θ→ijk
)N→

ijk (3.36)

Where N
(0)
ijk and N→ijk are defined in equations 3.29 and 3.30 respectively. Then the

log-likelihood is given by equation 3.32 and represented by

l(Θ|D) =
n∑
i=1

ri∑
j=1

qi∑
k=1

N
(0)
ijk log

(
θ

(0)
ijk

)
+

n∑
i=1

ri∑
j=1

qi∑
k=1

N→ijk log
(
θ→ijk
)

(3.37)

The aim is to optimize the log-likelihood with respect to Θ, e.i., find arg maxΘ l(Θ|D)

for finding the MLE for parameters θ
(0)
ijk and θ→ijk.
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The log-likelihood in 3.37 represents a sum of two quantities, both quantities rely

on conditional probabilities of random features, given its ancestors; in order to find

the MLE is necessary to optimize within every family independently, this means

that, learning the parameter θ
(0)
ijk independently of θ→ijk. Thus, using the standard

maximum likelihood estimate, we immediately get the following expressions for Θ̂,

first for the MLE in B0:

θ̂
(0)
ijk =

N
(0)
ijk∑

j N
(0)
ijk

(3.38)

Then, for the MLE in B→:

θ̂→ijk =
N→ijk∑
j N

→
ijk

(3.39)

On the other hand, a straightforward extension in the case of Bayesian estima-

tion for Θ is presented using conjugate Dirichlet prior. To obtain a “closed-form

solution,” the decomposition of the prior will be

P (Θ) =
∏
i,k

P (θ
(0)
i.k )×

∏
i,k

P (θ→i.k) (3.40)

This factorization is possible if the prior over each conditional probability is indepen-

dent of others. The specific distribution Dirichlet prior, is required to a conjugate

Bayesian analysis for a multinomial distribution. The hyperparameters for the prior

are {N ′
x : x ∈ V al(X)} in both networks B0 and B→, then:

P (θ
(0)
i.k ) ∝

∏
j

(
θ

(0)
ijk

)N ′
x−1

(3.41)

and

P (θ→i.k) ∝
∏
j

(
θ→ijk
)N ′

x−1
(3.42)

Thus the prior distribution will be.

P (Θ) ∝
∏
i,k

∏
j

(
θ

(0)
ijk

)N ′
x−1

×
∏
i,k

∏
j

(
θ→ijk
)N ′

x−1
(3.43)
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From equations 3.36 and 3.43 we obtain the posterior distributions for Θ.

P (Θ|D) ∝
∏
i,k

∏
j

(
θ

(0)
ijk

)N(0)
ijk+N

′
x−1

×
∏
i,k

∏
j

(
θ→ijk
)N→

ijk+N
′
x−1

(3.44)

Since we have each variable Xi[0] with ri states, the number of configurations of

Pa(Xi[0]) is equal to qi, with i = 1, . . . , n; j = 1, . . . , ri; k = 1, . . . , qi.

Similarly for Xi[t] with t > 0. Then each hyperparameter N
′
x has the same configu-

rations, e.i., N
′
x = N

′(0)
ijk in B0 and N

′
x = N ′→ijk in B→. Thus the Bayesian maximum

a posteriori (MAP) estimates of Θ, such that Θ∗ = arg maxΘ P (Θ|D) are:

θ̂
(0)
ijk =

N
(0)
ijk +N

′(0)
ijk∑

j

(
N

(0)
ijk +N

′(0)
ijk

) (3.45)

and

θ̂→ijk =
N→ijk +N ′→ijk∑
j

(
N→ijk +N ′→ijk

) (3.46)

Parameter learning from incomplete datasets has the main difficulty that can

no longer decompose as in equation 3.36. This scenario can be explained, like the

optimal parameter selected on a piece of the graph depends on the selection of the

parameter on another piece of the graph [2]. As in the static scenario, the EM

procedure is used. The expectation process will complete the dataset by estimating

the expected total counts, using the present computed parameters. Then, the max-

imization process optimizes the likelihood again for an estimate of the parameters

to maximize the likelihood distribution; this process estimates the parameters like

if expected total counts were counts, which observed correctly.

3.2.4 Dynamic Inference Process

The process of dynamic inference is related to infer some specific status of a

subset of random features given few preliminary information or evidence of the state
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of other variables, on a specific timestamp. Thus the goal of inference is to calculate

probabilities of the form P (Xi[t]|x1:τ ) defined as marginals, where Xi[t] represents

the i-th random variable at time-instant t and x1:τ represents the evidence.

There exist three cases in the process of inference:

When τ = t, the inference process is known as filtering (also called tracking), here

the process is to compute probability queries of some variables in the actual instant

time on the dynamic network, given the complete accessible information.

When τ > t, the inference process is named smoothing, here the aim is to remove the

noise from temporal data over the past of the data, given the current information

of the data until the present timestamp.

When τ < t, the inference process is known as forecasting or prediction.

Computationally, the inference process in the dynamic Bayesian network mod-

els is defined as an NP-hard problem. Usually, the approaches to solve the inference

process is divided into a couple of categories: the exact and approximate inference,

in both inference in a static Bayesian network model, is called as subroutines.

• In exact inference, the Junction tree algorithm is the most popular. It decom-

poses the computations of joint probability into a linked set of local computations

by transforming a dynamic Bayesian network structure into a Clique tree. The

sum-product algorithm is applied to compute the probability queries of interest.

Other popular algorithms presented in the literature are the smoothing forward-

backward, frontier algorithm which consist of sweep a Markov blanket, then per-

form forward-backward on frontier collection F, over the dynamic Bayesian net-

work model [10]. The computational problems with exact inferences force to use

approximate inference.



63

• Approximate inference algorithms are deterministic or stochastic.

Deterministic approaches are based on variational inference techniques, approxi-

mating the target probabilities with other analytically. First, picking a family of

distributions with specific parameters, then the parameters are varied such that

the approximation is close to target. Finally, it is used as probabilistic queries

of interest [12]. The most common algorithms are the Boyen-Koller algorithm,

which computes the joint probability distribution approximately using an alterna-

tive like multiplication of marginal distributions. The factored frontier algorithm

that describes the boundary distribution represented on factored model, and the

generalization of both previous algorithms, the loopy belief propagation algorithm

is described in detail in [10].

Stochastic approaches are based on numerical sampling, usually knowns as Monte

Carlo techniques. The idea is to approximate the probability distribution with

samples to obtain probability queries; the sampling procedures are based on Markov

Chain Monte Carlo methods (Metropolis-Hastings, Gibbs sampling, Slice sampling,

Simulated annealing) or the Importance sampling algorithms [10]. Another impor-

tant algorithm in an online fashion is the well-known Particle Filtering, a kind of

Importance Sampling method in a sequential mode. A drawback of the sampling

procedure is the computational speed; usually, the time speed is slow compared

with deterministic algorithms.

Hybrids algorithms that combine exact and stochastic inference are proposed in

the literature. The concept behind is to combine exact and approximate scenarios,

some features adopting from exact algorithms, and the remain features adopting

the approximate algorithms based on methods of sampling. This complete hybrid

procedure is defined as the Rao-Blackwellisation; this procedure is based on the the-

orem of Rao-Blackwell, which states the way to make better an estimator subject to

each convex loss function [12].
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Specifically, when using both procedures particle filtering and Rao-Blackwellisation,

the technique is known in the literature as the Rao-Blackwellised Particle Filtering.

As a final remark of this section, in this research work is not relevant to use inference

algorithms.

The objective of this research work is to discover meaningful temporal anomalies

and provide an explanation using a dynamic Bayesian network model and probabilis-

tic association rules. The described fundamental concepts, methods, and algorithms

about the dynamic Bayesian network models represent the foundations to describe

the domain knowledge in data. In the following, we will describe concepts about

probabilistic association rules as a complementary method to reach our objectives.

Finally, the discretization method will be necessary in order to delimit our scope.

3.3 Probabilistic Association Rules

The association analysis has an objective, which is to discover “interesting”

relationships between items. The association rules are patterns to discover “inter-

esting” relations between variables in datasets.

The interestingness measures have an aim to discover and rank patterns (association

rules) corresponding to the interest of the researcher. The concept of “interesting-

ness” is a whole branch in Data Mining, it has foundations on nine principles:

“emphasizes, conciseness, coverage, reliability, peculiarity, diversity, novelty, sur-

prisingness, utility, and actionability.” These principles are widely accepted in spe-

cific situations in the knowledge discovery process and data mining tasks. Usually,

the principles have been used to determine if a discovered pattern is interesting or

not [14].

The nine principles are organized on objective, subjective, and semantic measures.

The measures to reach “objectiveness” are based on three fundamentals: The datasets
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as evidence, none previous knowledge is required, and foundations on probability

theory. Thus, the “interestingness” and “objectiveness” measures will be based on

probability. Finally, we can provide an intuitive concept of probabilistic association

rule as an “Interesting and meaningful discovered pattern.”

Definition: An association rule is a conditional statement of form X −→ Y , where

X and Y represent a disjoint collection of objects.

In our scenario, an association rule can be defined as a conditional statement between

random variables in a dataset.

In order to select “interesting association rules” from the complete collection of rules,

there exist a couple of objective measures that will be used:

Support: “supp(X) = nX/n,” where X is an itemset. The support is the rate

of sharing of “transactions in a database that contains X.” The probabilistic

interpretation of support corresponds to estimate P (X) = supp(X) = nX/n, the

“prior probability of the itemset X is contained in a transaction.”

Confidence: “conf(X −→ Y ) = supp(X ∪ Y )/supp(X)” represent confidence of

“X −→ Y .” “The confidence measures the proportion of sharing of transactions

containing Y in all the transactions containing X.” The probabilistic interpre-

tation of confidence correspond to calculate conditional probability “P (X|Y ) =

conf(X −→ Y ) = P (X ∩ Y )/P (X).”

With both objective measures, the definition of a probabilistic association rule is:

Definition: “Given that:

P (X −→ Y ) = P [supp(X) > minsupp ∧ conf(X −→ Y ) ≥ minconf ].

If P (X −→ Y ) ≥ minprob, then X −→ Y is a probabilistic association rule.”

The parameter minprob is defined as a probability threshold; the parameters
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minsupp and minconf are referred to as minimum support and confidence, re-

spectively.

Note that the parameters min can be replaced by max in order to produce other

probabilistic association rules. We applied two pre-defined probabilistic association

rules with specific parameters. We applied two pre-defined probabilistic associa-

tion rules with specific parameters. Finally, using these probabilistic association

rules based on a dynamic Bayesian network model. It will be possible to discover

a domain specific temporal anomalous patterns to determine interesting temporal

outliers provided by its contextualization.

3.4 Discretization

In this research work, we use discrete dynamic Bayesian network models, which

is a network with discrete-valued stochastic processes. The efficient algorithms for

structure and parameter learning that have been proposed are dedicated to discrete

random variables. Instead, in the continuous case, the dynamic structure learning

algorithms are very scarce, and as far as we know, does not exist an efficient algo-

rithm for this scenario. Thus, a data discretization will be required to improve the

performance in the discovery process. Generally, the discrete representation allows

a tractable computational analysis [49]. Thus, there is a significant reduction in

the computational cost in the dynamic structure learning algorithms for dynamic

Bayesian networks.

Time series are realizations of a continuous stochastic process. The time series dis-

cretization consists of transforming it into a discrete sequence. This process must

preserve the relevant relationship within and between random processes. Most of the

discretization methods are unsupervised; these methods are used in situations when

the labels on the dataset are not available [50]. Since this thesis tries to uncover

temporal outliers, a necessary and sufficient condition is to perform an equal- width
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discretization method, because our objective is to discover outliers. Otherwise, if

we use a very sophisticated and robust discretization method, we lose information

about the outliers, and in advance will be not possible to discover those outliers.

The discretization transform time series: X[t] = {x[1], x[2], . . . , x[n]} into a discrete

sequence Y [t] = {y[1], y[2], . . . , y[n]}. Discretization is performed recursively on an

attribute, selecting thresholds to divide the range of the variable X[t] in equal-

width intervals or binds, thus the range of the variable Y [t] will be 1, 2, . . . , |bins|.

The number of bins (|bins|) was decided under an experimental study, according to

sensitivity analysis in the discovery process of interesting temporal outliers.



Chapter 4 DETECTING INTERESTING TEMPORAL
OUTLIERS

4.1 Introduction

Temporal outlier analysis has the main objectives to discover and analyze the

Temporal anomalous patterns in structured temporal datasets. As in the static

version, temporal outlier detection does not only aim to find outliers but also to

provide explainability of the reported anomalies, and to associate anomalies with

physical scenarios in order to enhance the domain knowledge. Generally, to pro-

vide explainability, it is necessary to find physical scenarios and represent them as

a research problem. One way to represent physical scenarios or physical events is

to represent it by subspaces (a subset of random variables) over the collection of

stochastic processes under the research problem. These subspaces of variables into

the dynamic Bayesian network model will represent contextualizations and will pro-

vide explainability of the discovered temporal anomalies. The main contribution of

this research work goes in line to discover interesting temporal outliers and provide

their explainability.

As an example of the problem to provide explainability and find physical events of

the reported temporal outliers, we describe a particular case in the following:

The abrupt change in the stock market in a particular period, known as “The flash

crash of May 6, 2010,” was a temporal anomalous pattern of the stock market in

the USA. This temporal anomaly should have been discovered in advance since it

should have been related to anomalous physical events in order to provide explain-

ability about what were the possible causes. In this context, examples of anomalous

68
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physical events will be economic factors like the rare event registered previously in

the stock market known as the “toxic order imbalance.” These orders were high

and were registered in a short period previous to the collapse. Another physical

rare temporal pattern was “the inadvertent large sell order for Procter & Gamble

stock,” encouraging huge trading orders by financial algorithms; thus, these events

could have caused the crash in the stock.

Those two explained dynamic physical anomalous events related to “the flash crash

of May 6, 2010,” are examples of domain knowledge of an expert. However, the

capability of a dynamic Bayesian network model allows us to capture this specific

knowledge with a suitable database. Thus, we can tackle the issue of associating a

temporal anomaly with the anomalous physical event to provide explainability, by

making use of the qualities of a dynamic Bayesian network model.

On the other hand, is well known that in Data Mining community, if “A” represents

the collection of uncovered temporal anomalies from the dataset by a method over

a specific research problem, and “B” represent the “unknown true” collection of

temporal anomalies over the same research problem. Then, the “ideal” temporal

anomaly detection algorithm, should have a high statistical performance measure:

“Precision P (B|A), and Recall P (A|B).” However, in general, access to the collec-

tion of true anomalies “B” is impossible; then, temporal outlier detection algorithms

must be done in an unsupervised mode like clustering techniques. Our approach

using Dynamic Bayesian Networks and Probabilistic Association Rules has the ad-

vantage of discovering temporal anomalies in unsupervised mode.

As far as we know, the “state of the art” methods for detecting temporal outliers

in multidimensional datasets, are based on the reduction of dimensionality, losing

valuable information not only in the behavior of the original dataset but also in the

causes of the rare events that are related with outliers. The techniques based on
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dimensionality reduction, generally apply algorithms to detect anomalies in a uni-

variate temporal sequence, without considering another kind of relevant information

like crosscorrelation or dependency relation between temporal sequences. These two

mentioned drawbacks make the recent techniques inefficient in order to detect inter-

esting temporal outliers, much less associate them with rare events and explain the

circumstances where and why they happened.

Instead, the dynamic Bayesian network model, despite being computationally in-

tensive, it can work with complete multidimensional data. Also, it describes and

captures the underlying domain knowledge of the dataset. Then resorting to prob-

abilistic association rules, it is possible to mine anomalous patterns and subspaces

when they happen, to finally discover “interesting” or “real” temporal outliers.

A property of all temporal anomaly detection techniques is that time represents

an essential characteristic in the way of formulating the “Temporal anomalous pat-

terns” in order to detect them as outliers. A main peculiarity of time is the ordered

nature of the temporal dataset since the historical evolution of one variable depends

intrinsically on its past. Moreover the evolution of one variable can depend on the

evolution of other variables over time. A dynamic Bayesian network model well

represents this characteristic of dependency since this model represents naturally

complex stochastic processes. Furthermore, time represents a natural contextual-

ization of temporal datasets, since a “normal” observation or sequence can occur in

an instant time “t1” or time window [ti, ti+w] with a specific value. However, another

observation or sequence with the same value as the previous one can occur in other

instant time “t2” or another time window [tj, tj+w] can be considered as “unusual.”

This phenomenon can happen because of the behavior of the natural components

of a stochastic process like trends, seasonalities, cycles, or noises. Typically, the dy-

namic Bayesian network model can describe and fit the components of a stochastic

process and allow us to handle time contextualization.
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Intuitively we have a multidimensional dataset composed of temporal discrete se-

quences, and time series with equal or different sizes (length) but with same time

granularity, e.g., days, months, etc. Suppose we place time sliding windows with an

appropriate width along the time, these windows may be overlap or not. Over the

windows, each temporal sequence follows a global regular stochastic process, e.g.,

stationary process, Markovian process, etc., into each temporal sequence there exist

relevant properties, as a degree of autocorrelation with its past, and a degree of

cross-correlation between temporal sequences.

Traditionally, temporal anomalies will represent points or sequences over temporal

datasets. The temporal anomalies usually are found on sparse regions into a spec-

ified time-window. Moreover, temporal anomalies do not follow the behavior of an

appropriate stochastic process. On the foundations of Temporal Pattern Mining, the

sparse regions usually are defined as regions with low support, then, these regions

contain the temporal outliers; moreover, those mined outliers go against or disrupt

the normal behavior of the stochastic process model.

In order to discover temporal anomalous patterns, and associate them with physical

anomalous events represented by subspaces of variables, this research work shows

that there exists a necessity to focus on the well-known concept as confidence, to

yield more meaningful results, since confidence gives us information about the con-

ditional probability of an event given prior information. In this context, prior in-

formation refers to the uncertainty states of parent nodes of a particular node, and

conditional information refers to the uncertainty states of the child nodes given its

parents. Both prior and conditional information are defined in an instant time over

a dynamic Bayesian network model.
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4.1.1 Problem Statement and Contribution

We propose here a new approach to discover and explain temporal anomalies,

which couple two fundamental frameworks in data mining, the dynamic Bayesian

networks models, and the probabilistic association rules, inspired and adapted from

the seminal work on “Inferring anomalies from data using Bayesian networks” pro-

posed by Babbar, 2013 [13]. As far as we know, the research mentioned above is

widely considered a contemporary and unique method of this kind. We are convinced

that these approaches and methods to detect “real” and “interesting” temporal out-

liers can suitably extend dynamically and bear in mind the temporal dimension in

datasets.

The dynamic Bayesian network model has the capability of exploring the causality

and probabilistic dependency in the feature space from stochastic processes, through

algorithms for dynamic structure learning, consider the degree of autocorrelation and

crosscorrelation. Moreover, the dynamic Bayesian network model can capture and

organize the uncertainty information about the domain knowledge underlying in a

temporal dataset through the algorithms for dynamic parameter learning.

On the other hand, the two probabilistic association rules, set up as:

• “Low Support & High Confidence.”

• “High Support & Low Confidence.”

Will allow us to find scenarios where the discrepancies between prior and conditional

probabilities are statistically significant. It is necessary to specify that we are not

looking for frequent patterns like in traditional association mining rules; instead, the

aim is to discover unusual patterns, whose existence on the temporal dataset will

be uncommon events and exceptional along the time. Finally, when we found these

discrepancy scenarios, we can discover temporal anomalous patterns, and report the
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explainability of the “interesting” and “real” temporal outliers within a specific do-

main knowledge.

From now, we will denote the uncovered temporal anomaly pattern as “Domain

Specific Temporal Anomalous Pattern” (DSTAP). One DSTAP will represent a sub-

space of random variables over the stochastic process under the specific research

problem. Furthermore, a DSTAP is a substructure (subgraph) inside of the whole

graph structure related to the dynamic Bayesian network model, within a specific

time window, where at least one of the two aforementioned probabilistic association

rules will fulfill. In the test phase, a particular observation or a subsequence is de-

clared as a temporal anomaly by the method into a specific domain, if and only if,

this temporal anomaly will belong to one of the discovered DSTAP. Note that, we

will have a set of discovered DSTAP, along the observation time. On ahead of this

chapter, we address the problem statement summary as:

Input: Given a collection of the temporal dataset.

Output: Discover and explain interesting temporal outliers over a specific domain.

We reach our objectives through the main contribution of this thesis. We are pro-

viding a contemporary framework that coupled two methods, the dynamic Bayesian

network model and probabilistic association rules with the primary objective to

uncover temporal outliers in datasets. Based on causality foundations to provide

characterization and description of why an item is declared as an anomaly. The

proposed method is specially designed to yield a contextual scenario of the outlier,

which is a piece of valuable information that can be used to enhance the knowledge

efficiently from the temporal anomalies.
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4.2 Methodology: Domain Specific Temporal Anomalous Patterns

This section is split into two parts. The first part is dedicated to structure

and parameter learning of a dynamic Bayesian network model from the temporal

dataset. The second part is about the details of the two probabilistic association

rules, and how they use to discover temporal anomalous patterns.

4.2.1 Learning a Dynamic Bayesian Network Model From Dataset

Learning the network topology and parameters of a dynamic Bayesian network

model from the dataset is conducted on local search algorithms for structure learn-

ing described in subsection 3.2.2, and maximum likelihood estimation for parameter

learning explained in subsection 3.2.3.

Consider a dynamic Bayesian network model (B0, B→). Learning the initial

and transition graphs are performed independently. In both networks, the learning

structure is done in a “static” mode; first learn structure and parameters for B0

with dataset X[t = 0], then for B→ with dataset X[t] ∪X[t+ 1].

The general approach of learning the structure of a dynamic Bayesian network

is made in two phases: First, identify a local structure set of “Parent-Children.”

Second, perform an optimization of the global model, constrained to previous local

information. An algorithm to discover the candidates “Parent-Children” is pro-

posed in [51] as a Dynamic Max-Min Parent Children (DMMPC); this algorithm is

composed of two sub-procedures, the neighborhood identification and symmetrical

correction.

The neighborhood identification algorithm is denoted as DMMPC; this identi-

fies the neighborhood Ne0 of the target node T in B0 and the neighborhood Ne+
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of the T in B→.

In the initial network B0, Ne0 is part of X[0] and X[1], thus T can have parents or

children in t = 0, and only have children in t = 1. Then DMMPC uses the static

version algorithm MMPC proposed in [38]. Finding the neighborhoods are based

on the Maximum and Minimum heuristic procedure, which returns the maximum

overall variables of the minimum association with T relative to Ne0, using an asso-

ciation measure like χ2 to represent the degree of dependency between nodes.

In the transition network B→, Ne+ is part of X[t−1], X[t], and X[t+1]; thus, T can

have parents or children in time t, only parents in time t − 1, and only children in

time t+ 1. Similarly, DMMPC, perform the static version algorithm MMPC. Note

that the orientations of arrows between time slices are from t− 1 to t, or t to t+ 1.

The symmetrical correction is performed in the if line. A node X belongs to the

neighborhood of T ; the opposite is also true. In a dynamic scenario, the symmetrical

correction is due to the non-symmetry of temporality.

In the initial network B0, Ne0 is divided in the set of parents or children of T and

the set of children of T , in both sets the correction “ If a node X belongs to the

neighborhood of T , the opposite is also true” must be fulfilled, if not X is removed

from neighborhood.

In the transition network B→, Ne+ is divided into the set of parents of T in time

t − 1, the set of parents or children of T in time t, and the set of children of T in

time t+ 1. The symmetrical correction is applied to the neighborhood of T .

Once the local structure identification of “Parent-Children” is made, the op-

timization process is needed. The dynamic structure learning algorithm identifies

the graphs B0 and B→ independently, through an adaptation of the greedy search

algorithm proposed in [2], constrained with the local information available by the
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identification of Ne0 of each node in B0, and Ne+ of each node in B→. Thus, the

complete procedure to learn the dynamic structure is called “Dynamic Max-Min

Hill-Climbing” (DMMHC). This algorithm adds an edge during the greedy search,

if and only if the starting node is in the neighborhood of the ending node. In the

case of B0, add an edge is perform only to nodes in the set of parents or children

of another node in t = 0. Instead, in B→; adding edges with the constraints of

inter-dependencies between t − 1 and t; and intra-dependency in t. Then, we can

describe the dependency structure of the temporal data by learning the topology of

the dynamic Bayesian network model (B0, B→). In the following, we show the main

algorithm DMMHC, then the subroutines that are recursively called.

Algorithm 1, estimates the dynamic structure of a dynamic Bayesian network from

the dataset. First, learning the initial network B0, then the transition network B→

independently. This algorithm calls a subroutine to find the set “Parents-Children”

and performs a greedy search.

Algorithm 2, represent a subroutine of Algorithm 1, and performs the iden-

tification of the neighborhoods of a node (Ne0 and Ne+ ), and the symmetrical

correction of each node (“ If a node X belongs to the neighborhood of T , the oppo-

site is also true”); this algorithm calls another, the Algorithm 3 which mostly finds

the neighborhoods of a target node.
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Algorithm 1 DMMHC.
Input: Dateset D.
Output: DBN=(B0, B→).

% Initial graph B0

1: for all X ∈ X[t = 0] do
2: CPCX=DMMPC(X,D).CPC0 {CPC0= set of parents or children in t = 0}
3: CCX=DMMPC(X,D).CC1 {CC1= set of children in t = 1}
4: end for
5: if Y ∈ CPCX then
6: add.edge Y → X
7: end if

% Transition graph B→
8: for all X ∈ X[t] do
9: CPCX=DMMPC(X,D).CPC {CPC= set of parents or children in t}

10: CCX=DMMPC(X,D).CC {CC= set of children in t+ 1}
11: CPX=DMMPC(X,D).CP {CP= set of parents in t− 1}
12: end for
13: if Y ∈ CPCX and X, Y ∈ X[t] then
14: add.edge Y → X
15: else if Y ∈ CCX and X ∈ X[t] and Y ∈ X[t+ 1] then
16: add.edge X → Y , and Do not reverse.edge X → Y
17: end if

Algorithm 3, identify the neighborhoods of a target node. It uses as a subroutine

the static algorithm of local search, which is described in Algorithm 4.

Algorithm 4, identifies neighborhoods of a node in a non-temporal dataset, this

procedure uses as a dependency measure an association function Assoc, that in our

case is based on a χ2 measure.

According to [38], the time complexity of Algorithm 4 is governed by the depen-

dency test for the target node with other nodes conditioned on the sets of parents or

children (Ne) in the dataset. Consider the dataset with “n” nodes in the Bayesian

network, consider |Ne| the number of nodes in the set of parents or children; then

the time complexity is bound by O(n2|Ne|). The temporal extension of structure

learning done in [51] establishes that in Algorithm 3, there exist two cases, when

t = 0 and t > 0. In the first case, it computes an association measure of all nodes
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Algorithm 2 DMMPC.

Input: Target node T , Dateset D.
Output: Ne0, Ne+

1: Ne0 = DMMPC(T,D).Ne0

2: Ne+ = DMMPC(T,D).Ne+

3: CPC0 = Ne0 ∩X[0]
4: CC1 = Ne0 ∩X[1]
5: for all X ∈ CPC0 do
6: if T /∈ DMMPC(X,D).Ne0 then
7: CPC0 = CPC0 \ {X}
8: end if
9: end for

10: for all X ∈ CC1 do
11: if T /∈ DMMPC(X,D).Ne+ then
12: CC1 = CC1 \ {X}
13: end if
14: end for
15: Ne0 = CPC0 ∪ CC1

16: for all X ∈ Ne+ do
17: if T /∈ DMMPC(X,D).Ne+ then
18: Ne+ = Ne+ \ {X}
19: end if
20: end for
21: CPC = Ne+ ∩X[t]
22: CC = Ne+ ∩X[t+ 1]
23: CP = Ne+ ∩X[t− 1]

Algorithm 3 DMMPC.

Input: Target node T , Dateset D.
Output: Ne0, Ne+

1: ListC0 = X[0] \ {T} ∪X[1]
2: Ne0 = MMPC(T,D, ListC0)
3: ListC = X[t− 1] ∪X[t] \ {T} ∪X[t+ 1]
4: Ne+ = MMPC(T,D, ListC)



79

Algorithm 4 MMPC.

Input: Target node T , Dateset D, List of candidates ListC.
Output: Neighborhood of T (Ne), set of parents or children.

1: Ne = ∅
2: repeat
3: assocF = maxX∈ListC minS⊆NeAssoc(X;T |S)
4: F = arg maxX∈ListC minS⊆NeAssoc(X;T |S)
5: if assocF 6= 0 then
6: Ne = Ne ∪ {F}
7: ListC = ListC \ {F}
8: end if
9: until Ne has no change or assocF = 0 or ListC = ∅

10: for all X ∈ Ne do
11: if ∃S ⊆ Ne and Assoc(X;T |S) = 0 then
12: Ne \ {X}
13: end if
14: end for

(in t = 0 and t = 1), with the target node in t = 0, conditioned on the set Ne0; as-

suming that n represents the number of nodes, then the time complexity is bounded

by O(2n2|Ne0|). In the second case, there exist three timestamps t− 1, t, and t+ 1,

in which the target node could be associated, conditioned with set Ne+, then the

time complexity is bounded by O(3n2|Ne+|). Algorithm 2, recall the Algorithm 3

two times sequentially, and performs the symmetrical correction in each loop and

bounded by the total number of nodes n. Thus, summing up the computational cost

in Algorithm 2, the time complexity is bounded by O(3n2|Ne+|). Finally, the total

computational cost of construct the graph topology of a dynamic Bayesian network

model (B0, B→), described in Algorithm 1, is bounded by O(|3n|22|Ne|) ≈ O(n22|Ne|).

Because Algorithm 2 is recalled into a loop related to the nodes in the graph in t = 0

and t > 0. Note that Ne represents the largest set of the neighborhood in t − 1, t,

and t+ 1 over all nodes in the time t.

Once the graph structure of the dynamic Bayesian network model is made, the next

step is to perform parameter learning of the model. The procedure to estimate the

parameters of the probability distribution of each node in the discrete case is well
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explained in subsection 3.2.3 through the procedure of maximum likelihood.

4.2.2 Two Probabilistic Association Rules

The learned dynamic Bayesian network model (B0, B→), describes the proba-

bilistic relation between nodes. Now, in order to discover the DSTAP, is necessary

to explain the two probabilistic association rules:

R1 : “low support & high confidence.”

R2 : “high support & low confidence.”

The rules will be applied to each relation of the form P (X[t]|Pa(X[t])). Note that,

in the case of initial graph B0 the parents Pa(X[t]) are in the same timestamp t = 0,

and in the case of transition graph B→ the parents Pa(X[t]) could be in the same

timestamp t or the previous t− 1.

Mimicking the research work in [13] and providing a careful dynamical extension.

The relationships “Parent-Children” described in P (X[t]|Pa(X[t])), are called “rela-

tional subspaces.” These subspaces will provide the advantage of discovering mean-

ingful temporal anomalies in a subspace level, through which reasons for anomalous

temporal nature can also be contextualized and explained.

To explain the concept of relational subspaces, consider Figure 4–1, in which

the unrolled dynamic Bayesian network model on timestamps t − 1, t, and t + 1 is

shown. Let us fixed the timestamp t; in this, there exist three relational subspaces,

i.e., (X1[t]|X1[t− 1]), (X2[t]|X1[t], X1[t− 1], X2[t− 1]), and (X3[t]|X2[t], X2[t− 1]);

we can rewrite this subspaces in a directed relational form, as:
(
X1[t−1]→ X1[t]

)
,(

X1[t], X1[t− 1], X2[t− 1]→ X2[t]
)

, and
(
X2[t], X2[t− 1]→ X3[t]

)
respectively.

In advance, we will refer the l -th relational subspaces as an “RSl”; now it is relevant

to mention the following notes:

• The rules R1 and R2 will be applied to each relational subspace RSl, to discover

low possibles patterns situated in each subspace.
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Figure 4–1: Unrolled dynamic Bayesian network on three timestamps t− 1, t, and t + 1,
describing relational subspaces (X[t]|Pa(X[t])).

• In the transition graph B→, a parent node Pa(X[t]) in one relational subspace RSl,

could be as a child node in other relational subspace, in the same timestamp t or

the previous t− 1, e.g., in Figure 4–1, X2[t] is a parent node in

RSl1 :=
(
X2[t], X2[t− 1]→ X3[t]

)
but, X2[t] is a child node in

RSl2 :=
(
X1[t], X1[t− 1], X2[t− 1]→ X2[t]

)
in the timestamp t.

• In an arbitrary relational subspace RSl in timestamp t, there could exist parents

in the same timestamp t, or the previous t− 1 for just one child.

Now, in order to discover the “Domain Specific Temporal Anomalous Pattern”

(DSTAP) along of each timestamp t, let us define the rules as follows:

R1 : In every relational subspace RSl, choose the configurations in which the parents

of a child node have “low support” & the child node has “high confidence.”

R2 : In every relational subspace RSl, choose the configurations in which the par-

ents of a child node have “high support” & the child node has “low confidence.”
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The rules are based on the concepts of support and confidence, both described

in section 3.3. In the temporal context, we can extend both concepts as:

Definition: support(Xi[t]) = P (Xi[t] = j)

Definition: confidence(Xi[t]) = P
(
Xi[t] = j|Pa(Xi[t]) = k

)
Where i = 1, . . . , n; j = 1, . . . , ri; k = 1, . . . , qi; and t = 0, . . . , T

Since the dynamic Bayesian network model (B0, B→) was already learned, both

support and confidence are available for every node in the model.

Now we can describe the support and confidence in each relational subspace RSl,

the support for the parent nodes, and the confidence for each child node given its

parents in each RSl. Thus, the specific concepts of support and confidence in each

RSl are shown in equation 4.1 and 4.2.

support
(
Xi[t]

)
Xi[t]∈RSl

= P
(
Xi[t] = j

)
Xi[t]∈RSl

(4.1)

confidence
(
Xi[t]

)
Xi[t]∈RSl

= P
(
Xi[t] = j

∣∣∣Pa(Xi[t]
)

= k
)
Pa(Xi[t]),Xi[t]∈RSl

(4.2)

Both rules will provide patterns with no significative evidence to accept them as

a typical pattern in specific domain knowledge. Those mined patterns will be pat-

ters whose “cause” are low probable, but with a high impact in the “effect” inside

each RSl, according to the rule R1. Patterns whose “cause” are highly probable, but

with low impact in the “effect” inside each RSl, according to the rule R2. In both

scenarios described above, there exists a natural conflict on the flow information

into the modeling process.

Table 4–1: Abbreviations of Support and Confidence.

Low Support := minsupp Low Confidence := minconf

High Support := maxsupp High Confidence := maxconf
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Note that both rules are based on high or maximum and low or minimum; thus,

the four combinations are shortened and presented in Table 4–1. Since the dynamic

Bayesian network was learned, every parameter of a node is available; thus, the

combination minsupp is specified by the network. Defined as the j-th configuration

(category) of each node Xi[t] in which, its probability P (Xi[t]) is the lowest of all

configurations ri. Similarly, maxsupp is defined as the j-th configuration of each

node Xi[t] in which, its probability P (Xi[t]) is the greatest of all configurations

ri. Formal definitions of minsupp and maxsupp inside of each RSl are provided in

equations 4.3 and 4.4.

minsupp
(
Xi[t]

)
Xi[t]∈RSl

= arg min
j
P
(
Xi[t] = j

)
Xi[t]∈RSl

(4.3)

maxsupp
(
Xi[t]

)
Xi[t]∈RSl

= arg max
j
P
(
Xi[t] = j

)
Xi[t]∈RSl

(4.4)

In order to discover patterns with non-significative evidence to accept them as

a typical pattern, the two remaining combinations, minconf, and maxconf must be

defined by the user as a “thresholds.”

Keeping in mind that, the parents of a node is a set of nodes, and with these four

combinations set up, the formal definition of the two rules are rewritten in equations

4.5 and 4.6.

R1 :=

[(
P
(
Xpa = k

)
= minsupp

)
∧
(
P
(
Xi[t] = j

∣∣Xpa

)
> maxconf

)]
∀Xpa∈Pa(Xi[t])∈RSl

(4.5)

R2 :=

[(
P
(
Xpa = k

)
= maxsupp

)
∧
(
P
(
Xi[t] = j

∣∣Xpa

)
< minconf

)]
∀Xpa∈Pa(Xi[t])∈RSl

(4.6)

Finally, applying both rules R1 and R2 in each relational subspace RSl, we

can discover each “Domain Specific Temporal Anomalous Pattern” (DSTAP) in a
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relational form: (
Xpa = k

)
→
(
Xi[t] = j

)
(4.7)

Where Xpa ∈ Pa(Xi[t]) represent parent nodes, k and j represent specific config-

urations (categories) taken by parent and child nodes respectively, satisfying both

rules 4.5 and 4.6, in the timestamp t.

To describe the process of the applicability of both rules, we show a small

hypothetical example. Consider the structure of a dynamic Bayesian network model

(B0, B→) described in Figure 4–2, in timestamps t = 0 and t = 1.

Figure 4–2: Hypothetical dynamic Bayesian network model (B0, B→), on time t = 0, 1.

The network (B0, B→), describes two temporal markovian sequences in the two

first timestamps. There are four nodes X1[0], X2[0], X1[1], and X2[1]. Assuming

that each sequence is discrete with two states: true = T and false = F ; thus, the

conditional probability table (CPT) of each node is described in Tables 4–2, 4–3,

4–4, 4–5.

Table 4–2: Hypothetical CPT of X1[0].

X1[0]

F T

0.90 0.10

Table 4–3: Hypothetical CPT of X2[0]
∣∣∣X1[0].

X2[0]

X1[0] F T

F 0.05 0.95

T 0.15 0.85
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Table 4–4: Hypothetical CPT of X1[1]
∣∣∣X1[0].

X1[1]

X1[0] F T

F 0.92 0.08

T 0.22 0.78

Table 4–5: Hypothetical CPT of

X2[1]
∣∣∣X2[0], X1[1].

X2[1]

X2[0] X1[1] F T

F F 0.30 0.70

T F 0.50 0.50

F T 0.97 0.03

T T 0.60 0.40

Note that the table distribution for parent node X1[0] is unconditional, instead

of child nodes are conditionals. An additional remark is that, child nodes X2[0]

and X1[1] from the parent node X1[0] in timestamp t = 0, will be parent nodes in

timestamp t = 1.

In the network (B0, B→) from Figure 4–2, there exist three relational subspaces:

RS1 =
(
X1[0]→ X2[0]

)
RS2 =

(
X1[0]→ X1[1]

)
RS3 =

(
X1[1], X2[0]→ X2[1]

)
Rules R1 and R2 must be applied to the three relational subspaces. Setting up, the

user parameters minconf = 10% and maxconf = 80%

• On RS1, applying 4.3 and 4.4, then, the network parameters minsupp(X1[0]) = T

and maxsupp(X1[0]) = F respectively. The form of the rules R1 and R2 described

in 4.5 and 4.6 will be:

R1 =

[(
P
(
X1[0] = T

)
= 10%

)
∧
(
P
(
X2[0] = j

∣∣X1[0] = T
)
> 80%

)]
R2 =

[(
P
(
X1[0] = F

)
= 90%

)
∧
(
P
(
X2[0] = j

∣∣X1[0] = F
)
< 10%

)]
Finally, applying R1 and R2 on RS1, we obtain two “Domain Specific Temporal

Anomalous Pattern” (DSTAP) of form 4.7:
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X1[0] = T

)
→
(
X2[0] = T

)
example of R1.(

X1[0] = F
)
→
(
X2[0] = F

)
example of R2.

• On RS2, applying both rules R1 and R2, we obtain one DSTAP:(
X1[0] = F

)
→
(
X1[1] = T

)
example of R2.

• On RS3, both parent nodes X1[1] and X2[0], was previously child nodes; now ap-

plying 4.3 and 4.4, we obtain: minsupp(X2[0]) = F , minsupp(X1[1]) = T ,

maxsupp(X2[0]) = T and maxsupp(X1[1]) = F . Then, applying both rules R1

and R2, we obtain one DSTAP:[(
X2[0] = F

)
,
(
X1[1] = T

)]
→
(
X2[1] = F

)
example of R1.

In this way, we discovered in total four DSTAPs on timestamp t = 0, 1 in the dy-

namic Bayesian network model described in Figure 4–2. This process of discovering

a DSTAP will be along the time observation t = 0, . . . T . As a final remark, any

instance belonging to the test data in the process of discovering meaningful temporal

anomalies will be check if the instance fulfill any DSTAP e.i, a simple selection of

each test instance that satisfy any of the discovered DSTAPs will be considered as

an interesting anomaly, e.g., in the hypothetical example described in Figure 4–2,

in t = 0, the procedure will be:

SELECT (a test instance) IF (the test instance satisfy):(
X1[0] = T AND X2[0] = T

)
OR

(
X1[0] = F AND X2[0] = F

)
In the same way for others timestamps t = 1, or a couple of timestamps t, t+ 1.

In summary, our main contribution to the methodology DSTAP will discover

interesting temporal anomalies in datasets. However, there could exist the main

drawback that is the false positive rate, because, in any arbitrary network, we can
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get a large number of DSTAP?s (|DSTAP|). Sensitivity analysis in Bayesian net-

works is performed to avoid this issue. Technically, the sensitivity analysis is the

understanding of the relationship of parameters from the network with conclusions

drawn from the network [52]. Thus, the proposal is to rank every DSTAP according

to how interesting they are if the condition |DSTAP| > 2n is fulfilled on each couple

of timestamp t and t+ 1, according to the model (B0, B→). To score every DSTAP

of the form
(
Xpa = k

)
→
(
Xi[t] = j

)
, based on a sensitivity measure, the instances

in the nodes on the left side of the DSTAP are entered in the model and, the sen-

sitivity measure is computed for the right side node (just a single node). Thus we

get a score for every DSTAP.

4.3 Algorithm: Domain Specific Temporal Anomalous Patterns

The procedure for discovering the “Domain Specific Temporal Anomalous Pat-

terns” (DSTAP) is presented in Algorithm 5. the input elements are the learned

dynamic Bayesian network model (B0, B→). The minconf and maxconf parameters,

which are the minimum and maximum confidence for all child nodes, respectively.

The number of temporal nodes n. The threshold parameter δ to consider the most

relevant DSTAPs.

The Algorithm 5 shows a nested loop, thus the time complexity for this part

is governed by T the length of the temporal sequences, and l the number of rela-

tional subspaces RS in the model (B0, B→). Using both rules, in step 4, is constant

computational time. The sensitivity analysis in Bayesian networks is posed as an

NP-complete problem in the worst case. However, in step 5, sensitivity is using very

sparsely in each DSTAP; thus, it took at most l times, then the order complexity is

O(T l2). Note that the if statements are neglected since the nested loop bounds it.
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Algorithm 5 DSTAP.

Input: DBN = (B0, B→), minconf, maxconf, n, δ, test data.
Output: DSTAP, temporal anomalies.

1: for all pair (t, t+ 1) from 0 to T do
2: Find minsupp and maxsupp for parent nodes in (B0, B→) by 4.3 and 4.4
3: for all Relational subspace RSl in (B0, B→) do
4: Use R1 and R2 by 4.5 and 4.6 to find all DSTAP of the form 4.7
5: Calculate the sensitivity measure for discovered DSTAP according [52].
6: end for

7: end for
8: if |DSTAP| > 2n then
9: Sort all DSTAPs {according its sensitivity measure.}

10: print Top (δ × |DSTAP|) {low scored DSTAP}
11: else
12: print all discovered DSTAP
13: end if
14: if a test instance satisfy any DSTAP then
15: print test instance as interesting temporal anomaly
16: end if

4.4 Efficiency of the DSTAP Methodology

The process of discovering interesting temporal anomalies from the dataset is

based on the theory of dynamic Bayesian network models and the DSTAP method-

ology.

The learning process in the dynamic Bayesian network models integrates the re-

lationships among stochastic processes of a specific domain, and the belief of and

event in probabilistic terms, as we studied in Section 3.2.

The DSTAP methodology depends on the rules R1 that uses the parameter max-

conf, and R2 that uses the parameter minconf ; both parameters are independent

of each other, and a small variation in those parameters does not affect the mining

process of DSTAP significantly. The efficiency of both rules R1 and R2 is based

on the joint probability distribution (JPD). JDP is the product of priors and con-

ditionals probabilities. The scenarios where there is a conflict among the evidence

and the conditional probability of the event, are scenarios indicating potential out-

lying situations and are provided for the theory of dynamic Bayesian network and
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our prior belief of the domain-specific situation. In [53], the scenarios where there

is a conflict (R1 and R2) are called “mere” and “suspicious” coincidence, respec-

tively. Defining a coincidence as “An event that provides support for an alternative

to a currently favored causal theory, but not necessarily enough support to accept

that alternative in light of its low prior probability.” Thus, both rules R1 and R2

helps to discover “interestingly rare temporal patterns” instead of mining “irrelevant

temporal patterns or temporal noise.” Besides, the DSTAP methodology provides

contextual information (in the form of relational subspaces) or explanation from the

discovered temporal anomalies, a relevant property that, none method of temporal

outlier detection reports, as far as we have known.

The related research work with this thesis, described in section 2.4, has two main

drawbacks. First, most of these works do not perform the dynamic structure learning

from datasets; instead, they assume a fixed dynamical network structure extracted

subjectively for an expert. Second, all these works discover anomalies using the

JPD from a DBN model. Making those works computationally intensive because to

compute the JPD requires to perform dynamic inference, which is an NP-Complete

problem. Instead, our DSTAP methodology does not require to compute the JPD;

it only searches for conflict scenarios, described on rules R1 and R2. Thus, the

DSTAP methodology is declared efficient.



Chapter 5 EXPERIMENTAL STUDY

This chapter reports the experimentation process performed in order to discover

domain specific temporal anomalous patterns. With those patterns, we reported

interesting temporal outliers and explaining them in temporal datasets (discrete se-

quences or time series) using coupled dynamic Bayesian networks and probabilistic

association rules.

5.1 General Experimental Protocol

The process of interesting temporal anomaly detection in this thesis required

two subprocesses. First, learning a dynamic Bayesian network from a dataset. Sec-

ond, applying the DSTAP algorithm. The experimentation process for the algo-

rithms described before was implemented by using and extending the “Bayes Net

Toolbox for MATLAB” [54]. First, to reveal a causal probabilistic relationship be-

tween the discrete sequences or time series, technically, this represents learning the

dynamic Bayesian network, and second, to discover the interesting temporal anoma-

lies based on the DSTAP algorithm. Experiments were carried out on a dedicated

PC with Intel Core i7 2.5 GHz, 64 bits architecture, four cores, 8 GB RAM-memory

and under macOS Mojave. In general, the proposed DSTAP methodology runs on

unsupervised mode; however, for evaluation purposes, we run some experiments in

a supervised mode.

In a supervised scenario, the class labels (normal, anomaly) were assigned in the

temporal dataset, where 80% of both classes datasets were used to train the dy-

namic Bayesian networks. The rest 20% of both classes dataset was for testing the

90
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DSTAPs. In a static scenario, an anomaly detection method to reach high accuracy,

must be employed to discover those test instances, which belong to a different class

than the class used to train the model. Instead, in a dynamic scenario, model is

trained with both classes; due to the intrinsic time dependency of the data.

In a unsupervised scenario, we set 80% of the dataset to train the dynamic Bayesian

networks and discover the DSTAPs; the rest 20% for testing purposes was dedicated

to discovering interesting temporal anomalies.

In temporal data, the training dataset represents the first 80%, ordered according

to time. In the supervised mode, the main reason to experiment in a training and

testing scenario is to stand out that relational implication is relevant in discovering

interesting outliers. Instances belonging to different classes may encode different

relational implications between the random variables only on intra timestamps but

not on inter timestamps. For example, in the timestamp t, the relational implication

X1[t] → X2[t] in a particular class may appear like X2[t] → X1[t] in another class

with different probabilistic parameters. However, in the timestamps t and t+ 1, the

relation implication X1[t]→ X2[t+ 1] in a certain class is not possible to appear as

X2[t+ 1]→ X1[t] in another class, due to the way of learning the dynamic structure

of the network (the ordered nature of time).

5.2 Toy Example

Consider the simplest case, a stochastic process composed of two discrete ran-

dom sequences X1[t] and X2[t], each one with two categories (false = F , true =

T ). Suppose that both sequences are related according to the structure of a dy-

namic Bayesian network model described in Figure 5–1. Assuming that the process

is stationary and Markovian, where the sequences X1[t] and X2[t], are related intra

timestamps in the form X1[t] → X2[t] and are related inter timestamps in a first-

order Markovian way into each sequence. The parameters of the network model are
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Figure 5–1: Toy example: unrolled dynamic Bayesian network model

defined for both networks: B0 and B→ as:

• Parameters for B0 for timestamp t = 0 are shown in Tables 5–1 and 5–2.

Table 5–1: Toy example CPT of X1[t].

X1[t]

F T

0.90 0.10

Table 5–2: Toy example CPT of X2[t]
∣∣∣X1[t].

X2[t]

X1[t] F T

F 0.05 0.95

T 0.15 0.85

• Parameters for B→ for timestamps t = 1, 2, ..., T are shown in Tables 5–3 and 5–4.

Table 5–3: Toy example CPT X1[t]
∣∣∣X1[t− 1].

X1[t]

X1[t− 1] F T

F 0.92 0.08

T 0.22 0.78

Table 5–4: Toy example X2[t]|X2[t− 1], X1[t].

X2[t]

X2[t− 1] X1[t] F T

F F 0.30 0.70

T F 0.50 0.50

F T 0.97 0.03

T T 0.60 0.40
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Let us call this model as DBN1 = (B0, B→). Once the dynamic Bayesian network

model is set up, we present a simulation study by generating some training dataset

from the model DBN1, with different configurations, e.i., T that represents the num-

ber of timestamps, and nseqs that represents the number of sequences or repetitions.

When the dataset is in a traditional format like a matrix with each row representing

a discrete random sequence Xi[t], and each column representing a timestamp t, then

nseqs = 1. With those configurations, we can obtain a simulated temporal dataset

to learn the structure and parameters of the dynamic Bayesian network model; after

the network was learned, the DSTAPs and the interesting temporal outliers were

discovered.

• We have been generating a training temporal dataset from the model DBN1, with

T = 100, nseqs = 30, and a fixed seed for repeatability purposes. With this

synthetic data, first, we will reproduce the structure of the DBN1 model using

Algorithm 1. Second, learning the parameters with the MLE method, described in

subsection 3.2.3. Third, discovering the DSTAPs using Algorithm 5. Finally, we

will discover interesting temporal anomalies in unsupervised mode with a simulated

testing dataset from the DBN1 model.

1. Learning the structure of the model DBN1 from the synthetic temporal data:

Assuming that the Intra timestamps relationship is the same in Bayesian

networks B0 and B→. The learned intra timestamps relationship adjacency

matrix was: [
0 1

0 0

]
Representing the directional relationshipX1[t]→ X2[t] for each t = 0, 1, . . . , T.

The learned inter timestamps relationship transition matrix was:[
1 0

0 1

]
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Representing the relationships X1[t − 1] → X1[t] and X2[t − 1] → X2[t] for

t = 1, . . . , T.

2. Learning the parameters of the model DBN1 from synthetic temporal data:

– Parameters learned for B0 for timestamp t = 0, are shown in the Tables

5–5 and 5–6.

Table 5–5: Learned CPT of X1[t].

X1[t]

F T

0.8667 0.1333

Table 5–6: Learned CPT of X2[t]
∣∣∣X1[t].

X2[t]

X1[t] F T

F 0.00 1.00

T 0.25 0.75

– Parameters learned for B→ for timestamps t = 1, 2, ..., T , are shown in

Tables 5–7 and 5–8.

Table 5–7: Learned CPT of X1[t]
∣∣∣X1[t−1]

X1[t]

X1[t− 1] F T

F 0.9184 0.0816

T 0.2030 0.7970

Table 5–8: Learned CPT of

X2[t]
∣∣∣X2[t− 1], X1[t].

X2[t]

X2[t− 1] X1[t] F T

F F 0.3019 0.6981

T F 0.4967 0.5033

F T 0.9522 0.0478

T T 0.5918 0.4082

3. We set the parameters from the Algorithm 5 as: minconf =10%, maxconf =90%

and δ = 50%. After the Algorithm 5 was executed in the DBN1 model:

There are three relational subspaces, because the stochastic process is sta-

tionary for t = 0, 1, . . . , T − 1.
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RS1 =
(
X1[t]→ X2[t]

)
RS2 =

(
X1[t]→ X1[t+ 1]

)
RS3 =

(
X1[t+ 1], X2[t]→ X2[t+ 1]

)
There are three DSTAPs.

(a)
(
X1[t] = F

)
→
(
X2[t] = F

)
example of R2 on RS1.

(b)
(
X1[t] = F

)
→
(
X1[t+ 1] = T

)
example of R2 on RS2.

(c)
[(
X2[t] = F

)
,
(
X1[t + 1] = T

)]
→
(
X2[t + 1] = F

)
example of R1 on

RS3.

In this case, since the number of DSTAPs is smaller than 2(n) = 4, there is

no need to calculate the sensitivity measure.

4. Testing dataset to discover interesting temporal anomaly instances in an un-

supervised mode. Assuming that the test dataset was given with T = 20 and

nseqs = 1, for the specific temporal domain on which the model DBN1 was

previously trained. For this unsupervised task, we check if a test instance

carries any of the three discovered DSTAPs. Figure 5–2 shows a simulated

Figure 5–2: Test dataset from the model DBN1.
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testing temporal dataset from the DBN1 model, the blue discrete sequence

corresponds to the evolution of the stochastic process X1[t], and the red one

corresponds to X2[t], both features are discrete, each with two categories false:

F = 1, and true: T = 2.

DSTAPs are applied to test datasets in order to check if any test instances

fulfill any of the DSTAPs.

Table 5–9: Instantaneous Outliers Associated to DSTAP1.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Outliers 0 0 0 0 0 6 0 0 0 0 0 0 0 14 0 0 0 0 19 0

Table 5–9, shows the static (instantaneous) interesting outliers, related to the

DSTAP1 :=
(
X1[t] = F

)
→
(
X2[t] = F

)
. According to this, test instances

with values X1[t] = F and X2[t] = F for t = 1, 2, . . . , 20, are interesting static

outliers, since they occur in a time instant t. Thus, three static outliers were

discovered in time t = 6, t = 14, and t = 19, associated with the random

process X2[t]. The explainability of why they happened, is related to the

relational subspace RS1 :=
(
X1[t] → X2[t]

)
. Because the parent node X1[t]

has a high prior probability of taking the false value F , child node X2[t] has

a low conditional probability of taking the false value F . Thus, this basic

scenario represent a conflict on the normal behavior of the domain knowledge

captured by the DBN1 model.

Table 5–10: Temporal Outliers Associated to DSTAP2.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Outliers 0 0 0 0 5 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5–10, shows the interesting temporal outliers, related with theDSTAP2 :=(
X1[t] = F

)
→
(
X1[t + 1] = T

)
, test instances with values X1[t] = F and
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X1[t+1] = T for t = 1, 2, . . . , 20, are the outliers corresponding to the random

process X1[t]. Two reported outliers in time t = 5, and t = 7. Note that,

the child node X1[t+ 1], has a parent node X1[t]; thus, the contextualization

of why the interesting temporal outliers where mined, is because X1[t] has

a high prior probability of taking the value false F and conversely the child

node X1[t+ 1] has a low conditional probability of taking the value true T .

Table 5–11: Temporal Outliers Associated to DSTAP3.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Outliers 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5–11, shows the interesting temporal outliers, related with theDSTAP3 :=[(
X2[t] = F

)
,
(
X1[t+ 1] = T

)]
→
(
X2[t+ 1] = F

)
, test instances with values

X2[t] = F , X1[t + 1] = T , and X2[t + 1] = F for t = 1, 2, . . . , 20, are the

outliers corresponding to the random process X2[t]. There is one reported

outlier in time t = 7. Note that, the child node X2[t + 1], has two parent

nodes X2[t] and X1[t+1]. Thus, the interesting temporal outlier where mined

since X2[t] and X1[t + 1] both have low prior probability of taking the false

values F and true values T , respectively. On the other hand, the child node

X2[t+ 1] has a high conditional probability of take the false value F .

• An experimental sensitivity analysis of parameters maxconf and minconf was per-

formed as a simulation study over the model DBN1.

Figure 5–3 shows the impact of the parameter maxconf varying from 0.7 to 0.99,

over the number of discovered DSTAPs related to rule R1. When maxconf is

permissive (between 0.70 and 0.75), the number of DSTAPs is three or two; hence,

the amount of reported instantaneous or temporal outliers will probably be high;

moreover, the method may fall in a high false positive. It will affect the precision
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Figure 5–3: Effect of the user parameter maxconf on the number of discovered DSTAPs.

of the method in a supervised scenario. Instead if maxconf is more restrictive

(between 0.80 and 0.99), the number of DSTAPs is one or zero, then the amount

of reported instantaneous or temporal outliers will be probably low; moreover, the

method may fall in a high false negative, and will affect the recall of the method

in a supervised scenario. Finally, it is necessary to preserve a trade-off of the

parameter maxconf ; empirically, the range of values of maxconf is between 0.80

and 0.95.

Figure 5–4 shows the impact of the parameter minconf varying from 0 to 0.5, over

the number of discovered DSTAPs related to rule R2. When minconf is permis-

sive (between 0.10 and 0.50), the number of DSTAPs is two or three. Instead, if

minconf is more restrictive (between 0 and 0.05), the number of DSTAPs is zero

or one. As in the case of maxconf, the precision and recall will be affected while

setting up a threshold; empirically, the range of values of minconf is between 0.05

and 0.10. Finally, it is important to remark that the DSTAP methodology depends
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Figure 5–4: Effect of the user parameter minconf on the number of discovered DSTAPs.

highly on the previous learned dynamic Bayesian network. The structure and the

parameters both are important since the topology affects the form of the relational

subspaces, and the discovered DSTAPs. On the other hand, the parameters affect

the number of the reported DSTAPs.

5.3 Synthetic Datasets

Now the DSTAP methodology on synthetic temporal datasets related to well-

known DBN models can be employed. The results report interesting temporal out-

liers and their relational subspaces to explain the anomaly causes.

In [51], the author provides well-known dynamic Bayesian network models and

their synthetic temporal datasets to benchmark structure learning algorithms. We

have used four well-known dynamic Bayesian networks and their synthetic temporal

datasets. First, we learned the structure and parameters of each network. Second,

we discovered the DSTAPs for each model. Finally, we reported the interesting
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temporal outliers provided by its probable anomaly causes.

Training temporal datasets were used to perform dynamic structure and parameters

learning in four models, with T = 500, nseqs = 50. Table 5–12 shows the char-

acteristics of the synthetic temporal datasets and a summary of the structure and

parameters learned of each DBN from datasets. For example, the umbrella DBN

model represents three discrete sequences (rain, umbrella, and height). For each

variable, there are two categories. In alarm, there is some random process with

two categories an others with 4. Moreover, the umbrella network presents five links

learned, and 14 parameters learned. Finally, the time in seconds of the learning

process is reported.

Table 5–12: Dynamic Structure and Parameters Learned from Synthetic Datasets.

Dynamic Nets. Sequences Categories Edges Parameters Time (seg)

Umbrella 3 2 5 22 36

Cancer 5 2 12 58 185

Asia 8 2 21 100 450

Alarm 37 2-4 110 945 1.85× 103

Figures 5–5, 5–6, and 5–7 show the structure learned of dynamic Bayesian

networks from synthetic datasets, namely umbrella, cancer, and asia, respectively.

We set the parameters minconf =10%, maxconf =85% and δ = 50%. After Al-

gorithm 5 was executed on the previous dynamic Bayesian networks learned from

synthetic datasets, we summarize the information on the total number of DSTAPs

discovered and the time taken in the discovery process. Table 5–13 shows the find-

ings of the DSTAP methodology.
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Figure 5–5: Structure learned Dynamic Bayesian network Umbrella.

Figure 5–6: Structure learned Dynamic Bayesian network Cancer.

Table 5–13: Number of DSTAPs Discovered and Time on learned DBNs.

Dynamic Bayesian Networks Number of DSTAPs Time (seg)

Umbrella 5 5

Cancer 10 7

Asia 15 23

Alarm 65 244

The testing phase has been done to discover interesting temporal outlier in-

stances in an unsupervised mode. Test data set is given with T = 100 and nseqs = 1.

Table 5–14 shows the outliers, the DSTAPs, and the time slices where they appear
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Figure 5–7: Structure learned Dynamic Bayesian network Asia.

for the umbrella DBN model.

Table 5–14: Relational Subspaces for outliers from Umbrella DBN model.

Outliers DSTAPs Time slices

Temporal
(
Rain[t] = T

)
→
(
Height[t] = L

)
t = 5 : 6, 87 : 89

Global
(
Rain[t] = F

)
→
(
Height[t] = H

)
t = 24

Points
(
Rain[t] = T

)
→
(
Umbrella[t] = F

)
t = 23

and
(
Rain[t] = F

)
→
(
Umbrella[t] = T

)
t = 45 : 47

Collectives
(
Rain[t] = T

)
→
(
Rain[t + 1] = F

)
t = 5 : 7, 45 : 46

The advantage of the DSTAP method is that it can both identify interesting

temporal outliers and explain the reason for their unusual nature. According to

Table 5–14, we can contextualize the findings as follow:

• In time slices t = 5 : 6, 87 : 89 the relational subspace:(
Rain[t] = T

)
→
(
Height[t] = L

)
Reports 5 interesting temporal outliers (global and collective points), on the ran-

dom process Height with level low, moreover, the probable anomaly cause is the

random process Rain with level true.

• In time slice t = 24 the relational subspace:(
Rain[t] = F

)
→
(
Height[t] = H

)
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Report 1 interesting temporal outliers (global point), on the random process Height

with level high, moreover, the probable anomaly cause is the random process Rain

with level false.

• In time slice t = 23 the relational subspace:(
Rain[t] = T

)
→
(
Umbrella[t] = F

)
Report 1 interesting temporal outliers (global point), on the random process Um-

brella with level false, moreover, the probable anomaly cause is the random process

Rain with level true.

• In time slices t = 45 : 47 the relational subspace:(
Rain[t] = F

)
→
(
Umbrella[t] = T

)
Report 3 interesting temporal outliers (global and collective points), on the random

process Umbrella with level true, moreover, the probable anomaly cause is the

random process Rain with level false.

• In time slice t = 4 : 6, 44 : 45 the relational subspace:(
Rain[t] = T

)
→
(
Rain[t+ 1] = F

)
Report 5 interesting temporal outliers (global and collective points), on the random

process Rain with level F at time slice t+1, moreover, the probable anomaly cause

is the random process Rain with level true at the previous time slice t.

A total of 15 interesting temporal outliers was reported and explained according to

their relational subspaces.

For space limitations, we present a summary of the discovered interesting temporal

outliers on DBN models related to Cancer, Asia, and Alarm networks. Table 5–15

summarizes the findings of DSTAPs on Cancer, Asia, and Alarm networks.
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Table 5–15: Summary of temporal outliers of DBNs Cancer, Asia and Alarm.

DBN DSTAPs Temporal Outliers Time slices

Cancer 10 4 t = 35 : 37, 45

Asia 15 8 t = 23, 37 : 39, 85 : 88

Alarm 65 15 t = 11, 45 : 49, 56 : 59, 96 : 100

We have obtained four interesting temporal outliers from a sequence of 100 in-

stances on DBN Cancer, eight interesting temporal outliers from a sequence of 100

instances on DBN Asia, and 15 interesting temporal outliers from a sequence of 100

instances on DBN Alarm. The contextualization of discovered outliers of the DBN

Cancer, Asia, and Alarm must be done in the same manner as the previous DBN

Umbrella.

5.4 Real Datasets

To assess the performance of the DSTAP methodology in a supervised mode in

a specific, realistic scenario, we applied the method on multivariate time series. The

temporal data comes from a secure water treatment (SWaT) system [55], which is a

scaled-down version of a real-world industrial water treatment plant. Data collection

was under two behavioral modes normal and attacked, the period was 11 days, and

it was logged continuously once every second. Data recorded was obtained from

the sensors and actuators. Sensors are devices that convert a physical parameter

into an electronic output, i.e., an electronic value. In contrast, actuators are devices

that convert a signal into a physical output, i.e., turning the pump off or on. In

total, 946,722 samples comprising of 51 attributes were collected, 24 from attributes

correspond to sensors, the remaining to actuators.
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Figure 5–8: Time series from 4 sensors used from SWaT.

We compared our results with the research described in [56]. Unfortunately,

the SWaT dataset1 has labels not aligned with the outliers, because there is a delay

between the attack and the actual disruption of the system. Instead, an attack-free

version was found online, enabling us to perturb the data with the general types

of temporal outliers. The attack-free dataset consists of 496800 instances and 24

time series from sensors in the SWaT. We used four sensors that measured the same

system component, guaranteeing that they are sufficiently correlated. We extracted

only a downsampled version of 2000 instances. The temporal data was previously

standardized. For visual purposes, we separate the series, as shown in Figure 5–8.

• X1[t] =AIT-201: Conductivity analyzer; Measures NaCl level.

• X2[t] =AIT-202: pH analyzer; Measures HCl level.

• X3[t] =AIT-203: ORP analyzer; Measures NaOCl level.

• X4[t] =FIT-201: Flow Transmitter; Control dosing pumps.

1 https://itrust.sutd.edu.sg

https://itrust.sutd.edu.sg
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We perturbed the SWaT dataset by injecting temporal outliers. Injecting with

either global points outliers, contextual points outliers, or contextual collective out-

liers. Sampling, random sequences of 5 data instances for global or contextual points

outliers, and sampling, random sequences of 11 data instances for contextual collec-

tive outliers. We added 3σ to the feature values, and in some cases, flipped the sign

of the data points or sequences, same as in [56]. Table 5–16 summarizes the outlier

characteristics.

Table 5–16: Summary of the injected temporal outliers in the SWaT dataset.

Outlier type Outlying data points

Global points 3 × 5

Contextual points 4 × 5

Contextual collective 5 × 11

In Figure 5–9 we show the perturbed 4 time series.

Figure 5–9: Perturbed time series from 4 sensors used from SWaT.
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The perturbation process of temporal data was done to put the DSTAP method-

ology at work in a supervised mode. As discussed in Section 3.4, we discretized the

data using binds with equal width. An extensive experimental evaluation suggests

that the number of binds ranges between 4 and 9; we choose seven bins forX1[t], X2[t]

and X3[t], instead of for X4[t] we choose four bins (due to the nature of the random

process). Table 5–17 shows the bins and edges of the discretization process

Table 5–17: Summary of the discretization in the SWaT dataset.

Series Bins and Edges

X1[t] 1 = [258, 258.8), 2 = [258.8, 259.6), 3 = [259.6, 260.4), 4 = [260.4, 261.2)

5 = [261.2, 262), 6 = [262, 262.8), 7 = [262.8, 263.6)

X2[t] 1 = [8.3, 8.42), 2 = [8.42, 8.54), 3 = [8.54, 8.66), 4 = [8.66, 8.78)

5 = [8.78, 8.9), 6 = [8.9, 9.02), 7 = [9.02, 9.14)

X3[t] 1 = [410, 429), 2 = [429, 448), 3 = [448, 467), 4 = [467, 486)

5 = [486, 505), 6 = [505, 524), 7 = [524, 543)

X4[t] 1 = [0, 0.9), 2 = [0.9, 1.8), 3 = [1.9, 2.7), 4 = [2.7, 3.6)

We call the DBN model as DBNSWaT . The learned dynamic structure is rep-

resented in Figure 5–10

Note that the structure of DBNSWaT , suggests the time series are autocor-

related with a lag of order one and are cross-correlated within each timestamp.

Moreover, The random process X4[t] =FIT-201: Flow transmitter, represents the

parent node from the child X3[t] =AIT-203: ORP analyzer and X2[t] =AIT-202: pH

analyzer; whereas, X3[t] =AIT-203: ORP analyzer is the parent of X1[t] =AIT-201:

Conductivity analyzer. Those relations represent causal probabilistic dependency.

The learned parameters of the model DBNSWaT were performed. Due to space lim-

itations, we present the two smallest CPTs in Tables 5–18 and 5–19, for X4[t] and
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Figure 5–10: Dynamic structure learned of the DBNSWaT model in timestamps t and
t + 1.

X4[t+ 1]
∣∣∣X4[t] respectively.

Table 5–18: Learned CPT of X4[t] from DBNSWaT .

X4[t]

1 2 3 4

0.2520 0.0050 0.7390 0.0040

Table 5–19: Learned CPT of X4[t+ 1]
∣∣∣X4[t] from DBNSWaT .

X4[t+ 1]

X4[t] 1 2 3 4

1 0.9881 0.0079 0.0020 0.0020

2 0.3333 0.1111 0.5556 0.0000

3 0.0140 0.0270 0.9570 0.0020

4 0.0010 0.0010 0.1924 0.8056
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An extensive experimental evaluation suggests that the threshold parameters

are minconf =10%, maxconf =80%. After the Algorithm 5 was executed in the

DBNSWaT model:

There were seven relational subspaces

RS1 =
(
X4[t]→ X3[t]

)
RS2 =

(
X4[t]→ X2[t]

)
RS3 =

(
X3[t]→ X1[t]

)
RS4 =

(
X4[t]→ X4[t+ 1]

)

RS5 =
(
X3[t], X4[t+ 1]→ X3[t+ 1]

)
RS6 =

(
X2[t], X4[t+ 1]→ X2[t+ 1]

)
RS7 =

(
X1[t], X3[t+ 1]→ X1[t+ 1]

)

DSTAPs

1.
(
X4[t] = 4

)
→
(
X3[t] = 7

)
example of R1 on RS1.

2.
(
X4[t] = 3

)
→
(
X3[t] = 7

)
example of R2 on RS1.

3.
(
X4[t] = 3

)
→
(
X2[t] = 7

)
example of R2 on RS2.

4.
(
X3[t] = 2

)
→
(
X1[t] = 1

)
example of R2 on RS3.

5.
(
X4[t] = 4

)
→
(
X4[t+ 1] = 4

)
example of R1 on RS4.

6.
(
X4[t] = 3

)
→
(
X4[t+ 1] = 4

)
example of R2 on RS4.

7.
[(
X3[t] = 7

)
,
(
X4[t+ 1] = 4

)]
→
(
X3[t+ 1] = 7

)
example of R1 on RS5.

8.
[(
X3[t] = 2

)
,
(
X4[t+ 1] = 3

)]
→
(
X3[t+ 1] = 7

)
example of R2 on RS5.

9.
[(
X1[t] = 1

)
,
(
X3[t+ 1] = 2

)]
→
(
X1[t+ 1] = 1

)
example of R1 on RS7.

10.
[(
X1[t] = 5

)
,
(
X3[t+ 1] = 3

)]
→
(
X1[t+ 1] = 1

)
example of R2 on RS7.

Detecting Interesting Temporal Outliers:

We summarize the findings graphically. Note that the reported interesting temporal

outliers by DSTAPs could represent novelties (points) or sequences, according to

the process of injecting temporal outliers described above.

Figure 5–11, represents the interesting temporal outliers for the time series X1[t]

Conductivity analyzer, discovered by the DSTAPs 4, 9, and 10.
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Figure 5–11: Interesting temporal outliers for time series X1[t]: Conductivity analyzer.

Figure 5–12: Interesting temporal outliers for time series X2[t]: pH analyzer.

Figure 5–12, represents the interesting temporal outliers for the time series X2[t] pH

analyzer, discovered by the DSTAP 3.

Figure 5–13, represents the interesting temporal outliers for the time series X3[t]

ORP analyzer, discovered by the DSTAP 1, 2, 7, and 8.

Figure 5–14, represents the interesting temporal outliers for the time series X4[t]

Flow transmitter, discovered by the DSTAP 5, and 6.

Contextualizing Interesting Temporal Outliers:

The advantage of the DSTAP method is that it can both identify interesting tem-

poral outliers and explain the reason for their unusual nature.



111

Figure 5–13: Interesting temporal outliers for time series X3[t]: ORP analyzer.

Figure 5–14: Interesting temporal outliers for time series X4[t]: Flow transmitter.

The reported interesting temporal outliers from time series X1[t] Conductivity an-

alyzer that measures the NaCl level is associated with the DSTAPs 4, 9, and 10.

Table 5–20 shows the relational subspaces which were targeted by interesting tem-

poral outliers for X1[t] presented in the SWaT dataset. For example:

• In time slices t = 780 : 784, 890 : 894 the relational subspace:(
ORP analyzer[t] = [429, 448)

)
→
(
Conductivity analyzer[t] = [258, 258.8)

)
Reports 10 interesting temporal outliers (global points), on the conductivity an-

alyzer with levels of NaCl between [258, 258.8), moreover, the probable anomaly

cause is the ORP analyzer with leves of NaOCl between [429, 448)
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• In time slices t = 610 : 613 the relational subspace:[(
Conductivity analyzer[t] = [258, 258.8)

)
,
(
ORP analyzer[t+1] = [429, 448)

)]
→(

Conductivity analyzer[t+ 1] = [258, 258.8)
)

Reports 4 interesting temporal outliers (global points), on the conductivity an-

alyzer with levels of NaCl between [258, 258.8), moreover, the probable anomaly

causes are the ORP analyzer with leves of NaOCl between [429, 448) in the same

time slices, and the same conductivity analyzer with levels of NaCl in [258, 258.8)

in the previous time slice.

• In time slice t = 609 the relational subspace:[(
Conductivity analyzer[t] = [261.2, 262)

)
,
(
ORP analyzer[t+1] = [448, 467)

)]
→(

Conductivity analyzer[t+ 1] = [258, 258.8)
)

Reports 1 interesting temporal outlier (global point), on the conductivity ana-

lyzer with levels of NaCl between [258, 258.8), moreover, the probable anomaly

causes are the ORP analyzer with leves of NaOCl between [448, 467) in the same

time slices, and the same conductivity analyzer but with levels of NaCl between

[261.2, 262) in the previous time slice.

Table 5–20: Relational Subspaces for outliers from X1[t] =Conductivity analyzer.

Outliers DSTAPs Time slices

Global
(
X3[t] = 2

)
→
(
X1[t] = 1

)
t = 780 : 784, 890 : 894, 1590 : 1594

points
[(
X1[t] = 1

)
,
(
X3[t + 1] = 2

)]
→
(
X1[t + 1] = 1

)
t = 610 : 613[(

X1[t] = 5
)
,
(
X3[t + 1] = 3

)]
→
(
X1[t + 1] = 1

)
t = 609

The reported interesting temporal outliers from time series X2[t] pH analyzer that

measures the HCl level is associated with the DSTAP 3. Table 5–21shows the re-

lational subspaces which were targeted by interesting temporal outliers for X2[t]

presented in the SWaT dataset. For example:

In time slices t = 1310 : 1320 the relational subspace:
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Flow transmitter[t] = [1.9, 2.7)

)
→
(
pH analyzer[t] = [9.02, 9.14)

)
Reports 11 interesting temporal outliers (contextual collective), on the pH analyzer

with levels of HCl between [9.02, 9.14), moreover, the probable anomaly cause is the

Flow transmitter with leves of dosing pumps between [1.9, 2.7).

Table 5–21: Relational Subspaces for outliers from X2[t] =pH analyzer.

Outliers DSTAP Time slices

Contextual collective
(
X4[t] = 3

)
→
(
X2[t] = 7

)
t = 1310 : 1320

The reported interesting temporal outliers from time series X3[t] ORP analyzer

that measures the NaOCl level is associated with the DSTAPs 1, 2, 7, and 8. Table

5–22 shows the relational subspaces which were targeted by interesting temporal

outliers for X3[t] presented in the SWaT dataset. For example

In time slices t = 610 : 620 the relational subspace:(
Flow transmitter[t] = [2.7, 3.6)

)
→
(
ORP analyzer[t] = [524, 543)

)
Reports 11 interesting temporal outliers (contextual collective), on the ORP ana-

lyzer with levels of NaOCl between [524, 543), moreover, the probable anomaly cause

is the Flow transmitter with leves of dosing pumps between [2.7, 3.6).

Table 5–22: Relational Subspaces for outliers from X3[t] =ORP analyzer.

Outliers DSTAPs Time slices

Contextual
(
X4[t] = 4

)
→
(
X3[t] = 7

)
t = 610 : 620, 1700 : 1704

points
(
X4[t] = 3

)
→
(
X3[t] = 7

)
t = 1500 : 1510, 1668 : 1672, 1858 : 1862

and
[(
X3[t] = 7

)
,
(
X4[t + 1] = 4

)]
→
(
X3[t + 1] = 7

)
t = 611 : 619, 1701 : 1703

collective
[(
X3[t] = 2

)
,
(
X4[t + 1] = 3

)]
→
(
X3[t + 1] = 7

)
t = 1667, 1857
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The reported interesting temporal outliers from time series X4[t] flow transmit-

ter that control dosing pumps is associated with the DSTAP 5 and 6. Table 5–23

shows the relational subspaces which were targeted by interesting temporal outliers

for X4[t] presented in the SWaT dataset. For example:

In time slices t = 610 : 619 the relational subspace:(
Flow transmitter[t] = [2.7, 3.6)

)
→
(
Flow transmitter[t+ 1] = [2.7, 3.6)

)
Reports 10 interesting temporal outliers (contextual collective), on the Flow trans-

mitter with leves of dosing pumps between [2.7, 3.6), moreover, the probable anomaly

cause is the Flow transmitter with leves of dosing pumps between [2.7, 3.6) in the

previous time slice.

Table 5–23: Relational Subspaces for outliers from X4[t] =flow transmitter.

Outliers DSTAPs Time slices

Contextual
(
X4[t] = 4

)
→
(
X4[t + 1] = 4

)
t = 610 : 619, 1480 : 1484, 1640 : 1644, 1670 : 1674

points, collective
(
X4[t] = 3

)
→
(
X4[t + 1] = 4

)
t = 609, 1479, 1669

Efficiency Measures:

The experimental study on SWaT-dataset has been performed in a supervised mode;

thus, the labels (normal or outlier) are available for each instance. When dealing

with imbalanced classes, it is appropriate to report precision and recall as efficiency

measures to guarantee the real detection performance of the DSTAP method avoid-

ing to get in a high ratio of correctly classified. Table 5–24 shows the summary of

efficiency measures achieved using DSTAP methodology on the SWaT dataset.

Table 5–24: Precision and Recall achieved using DSTAP on DBNSWaT .

Data Set Precision Recall

SWaT 0.8295 0.8111
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The research work described in [56] reported the average area under the ROC

curve AUC = 0.85 over 50 runs. Despite the precision and recall are both less than

AUC, our method does not lose any information in the discovery process and does

not run 50 times (falling in an excessive tuning), moreover, provides explanations

and probable causes of the reported temporal outliers.

5.5 Discussion

The DSTAP methodology has the aim to discover interesting temporal outliers

and contextualize their anomalous essence. Based on the performed experimental

study, we may conclude that by considering causal probabilistic relations in the fea-

ture space, we can reach significant results in the discovery process. It is important

to remark that techniques based on transformation do not provide contextualization

of the reported outliers due to the reduction in nature.

We extracted temporal anomalous patterns, which are examples of low support &

high confidence or high support & low confidence events. The temporal anoma-

lous patterns were then tested on datasets to discover interesting temporal outliers.

We proved the credibility of our approach over a toy example, existing well-known

dynamic Bayesian network models and their synthetic datasets, and real datasets

concerned with the water treatment system in the scenario of a cyber-physical sys-

tem.

A detailed procedure of DSTAP has been performed in a toy example. The dis-

covery process was done in an unsupervised scenario. The results have been shown

that DSTAP can detect interesting temporal outliers and can provide an explana-

tion about possible causes. The experimental study based on synthetic datasets

was also performed in an unsupervised scenario. The experimental study was run

on four dynamic Bayesian networks with different configurations. We can conclude

that there exist computational limitations in the learning process of a DBN. Besides
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the computational constraints in the learning process, we can discover meaningful

temporal outliers and its relational subspaces to provide explanations.

To compare the performance of DSTAP with a reduction-based method, we em-

ployed the DSTAP method under the same configurations in [56]. We used the

water treatment system (SWaT) datasets. A comparative experimental study has

been done in a supervised scenario. To discover interesting temporal outliers in

multidimensional time series. First, the DSTAP has been learned DBNSWaT from

datasets, then, DSTAP has been discovered outliers and their relational subspaces

to provide explainability to the reported outliers. Our method presents excellent

performance with the same results as in [56]. However, we can provide contex-

tualization of the reported outliers; thus, we can enrich our knowledge with more

information about the anomaly cause.



Chapter 6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This dissertation proposes a novel technique about discovering interesting tem-

poral outliers and explains the interestingness of the reported outlier in temporal

datasets. The previous works have been concentrated on mining temporal anoma-

lous patterns. However, not providing a contextualization of the interestingness of

the reported outlier. Most of these approaches are based on the transformation and

dimensionality reduction of the temporal datasets, losing valuable information in the

discovery process. The significant distinction of this research work is that it offers the

ability to discover interesting temporal outliers and the relational subspaces where

they appear, providing contextual information of the reported outliers in an effec-

tive and automated manner. The integration of domain knowledge has been needed

in the discovery process. Dynamic Bayesian networks can capture and represent

domain specific knowledge through the available temporal datasets. The process of

structure and parameter learning in the dynamic Bayesian networks provide causal

probabilistic relationships and a degree of belief within and between attributes that

exist in the domain. The learning process in DBN guarantees the representation of

the domain knowledge of the datasets. By taking advantage of these probabilistic

relationships between attributes. The two probabilistic association rules were pro-

posed as low support & high confidence, and high support & low confidence. These

rules were used in order to discover de temporal anomalous patterns, and provide

contextualization of the reported outlier through relational subspaces over a spe-

cific timestamp. This point of view to discover temporal outliers contradicts the

117
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probabilistic causal semantic represented via a dynamic Bayesian network model.

We proposed a novel methodology called “Domain Specific Temporal Anomalous

Patterns,” an algorithm and its implementation to discover and explain interesting

temporal outliers. The experimentation has been done on discrete multivariate se-

quences and multivariate time series in synthetic and real datasets on unsupervised

and supervised scenarios. The experimental results show that our approach can

detect interesting temporal outliers and provide an explanation in the form of rela-

tional subspaces about the probable causes of the reported outliers, with reasonable

efficiency measures, precision, and recall.

6.2 Future Work

This research has proposed a powerful technique to discover interesting tem-

poral outliers using dynamic Bayesian networks and probabilistic association rules.

However, there are some promising research directions to improve and extend the

work presented in this thesis.

• The DSTAP methodology proposed aims to discover interesting temporal outliers

and provide a contextualization of the reported outlier for discrete sequences since

the algorithm to learn the DBN has been implemented for discrete random pro-

cesses. In the case of time series, we performed discretization as a pre-processing

step, in order to use the DSTAP methodology. However, we can extend the learning

process in DBNs to Gaussian random process, called dynamic Gaussian Bayesian

networks. In line with this thesis, we see a promising extension to discover inter-

esting temporal outliers in time series without discretization as a pre-processing

step.

• The assumptions of stationarity and first-order Markovian to learning the DBN

model may be relaxed. Opening the problem to learn from a Non-Stationary Dy-

namic Bayesian Network of k-order Markovian dataset. At first impression, the
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problem with these models may be more complicated than the proposed method-

ology. However, we see promising and more precise results over complex situations

where the temporal dependence is not stationary and is not first-order Markovian.

• The DSTAP methodology was implemented in a sequential process, however, we

see that our algorithm can be parallelized in the task scenario, specifically, in the

computation of relational subspaces and applying the rules to each anomalous

patterns. Data parallelism is not feasible because of the dependency structure in

temporal datasets.



Chapter 7 ETHICAL CONSIDERATIONS

Ethical issues form an essential component of modern research, related to the

subject and researcher. Research ethics require the application of fundamental eth-

ical principles in scientific research. The ethical principles include honesty, objec-

tivity, integrity, carefulness, openness, responsibility, confidentiality, legality, and

respect for intellectual property, all of these based on the Nuremberg Code and the

Declaration of Helsinki [57], represent relevant literature to the ethical and legal

aspects of conducting research.

In the Data Mining community, the design and implementation of methods and

algorithms poses an ethical issue covering privacy, data accuracy, database security,

reproducibility, stereotyping, legal liability, and the broader research dilemmas [58].

In Data Mining, data-driven processes represent an ethical issue in the scenario of

decision making affect people or compromises their privacy [59].

The ethical aspects in Cyber-Physical systems [60] have been responsibly ful-

filled, due to the experimental use of the secure water treatment (SWaT) system

dataset in this thesis. The SWaT dataset corresponded to a Cyber-Physical system,

and was declared by the authors as open access for research in the anomaly detection

community.
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The area of this thesis is Data Mining. The ethical principles mentioned above

were considered thoroughly in this thesis. The proposed methodology has been de-

veloped and implemented fulfilling ethical principles. The temporal datasets used

in this thesis have been described clearly and are declared as general use and open

access. The experimental results have been discussed objectively, without any influ-

ence at all, to arrive at a particular conclusion.The implementation and results of

this thesis have been performed openly to ensure the reproducibility of this thesis

in scientific research, especially in the Data Mining community. In this thesis, no

sensitive data has been used, e.i., datasets regarding experimentation on humans or

other living species.
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d’Ingénieurs de Sfax, 2013.

[52] H. Chan and A. Darwiche. Sensitivity analysis in bayesian networks: From

single to multiple parameters. arXiv preprint arXiv:1207.4124, 2012.

[53] T. Griffiths and J. Tenenbaum. From mere coincidences to meaningful discov-

eries. Cognition, 103(2):180–226, 2007.

[54] K. Murphy. The bayes net toolbox for matlab. Computing Science and Statis-

tics, 33:2001, 2001.

[55] J. Goh, S. Adepu, K. Junejo, and A. Mathur. A dataset to support research in

the design of secure water treatment systems. In International Conference on

Critical Information Infrastructures Security, pages 88–99. Springer, 2016.

[56] M. Hulsebos. Outlier detection in multivariate time series: exploiting recon-

structions from random projections. Master’s thesis, Pattern Recognition Lab-

oratory of Delft University of Technology., Netherlands, 2018.

[57] J. Kruk. Good scientific practice and ethical principles in scientific research and

higher education. Central European Journal of Sport Sciences and Medicine,

2013.

[58] K. Wahlstrom, J. Roddick, R. Sarre, V. Estivill-Castro, and D. deVries. On

the ethical and legal implications of data mining. Technical Report SIE-06-

001,University of Adelaide, Australia., 2006.

[59] P. Fule and J. Roddick. Detecting privacy and ethical sensitivity in data mining

results. In Proceedings of the 27th Australasian conference on Computer science-

Volume 26, pages 159–166. Australian Computer Society, Inc., 2004.

[60] A. Thekkilakattil and G. Dodig-Crnkovic. Ethics aspects of embedded and

cyber-physical systems. In IEEE 39th Annual Computer Software and Appli-

cations Conference, 2015.


	Abstract English
	Abstract Spanish
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Specifying Outliers
	Specifying Temporal Outliers
	Dynamic Bayesian Networks
	Probabilistic Association Rules
	Research Contribution
	Thesis Organization

	Background
	Aspects of Outlier Detection
	Mining Interesting Outliers
	Temporal Outlier Detection
	Related Work to the Proposed Problem

	Dynamic Bayesian Network Model and Probabilistic Association Rules
	A Bayesian Network as Graphical Guideline
	Definitions and Properties
	Structure Learning
	Parameter Learning
	Inference Process

	Dynamic Bayesian Networks as Temporal Model
	Dynamic Representation
	Dynamic Structure Learning
	Dynamic Parameter Learning
	Dynamic Inference Process

	Probabilistic Association Rules
	Discretization

	Detecting Interesting Temporal Outliers
	Introduction
	Problem Statement and Contribution

	Methodology: Domain Specific Temporal Anomalous Patterns
	Learning a Dynamic Bayesian Network Model From Dataset
	Two Probabilistic Association Rules

	Algorithm: Domain Specific Temporal Anomalous Patterns
	Efficiency of the DSTAP Methodology

	Experimental Study
	General Experimental Protocol
	Toy Example
	Synthetic Datasets
	Real Datasets
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Ethical Considerations

